Science.gov

Sample records for acidic degradation products

  1. Acid and base degraded products of ketorolac.

    PubMed

    Salaris, Margherita; Nieddu, Maria; Rubattu, Nicola; Testa, Cecilia; Luongo, Elvira; Rimoli, Maria Grazia; Boatto, Gianpiero

    2010-06-05

    The stability of ketorolac tromethamine was investigated in acid (0.5M HCl) and alkaline conditions (0.5M NaOH), using the same procedure reported by Devarajan et al. [2]. The acid and base degradation products were identified by liquid chromatography-mass spectrometry (LC-MS).

  2. Molecular products from the thermal degradation of glutamic acid.

    PubMed

    Kibet, Joshua K; Khachatryan, Lavrent; Dellinger, Barry

    2013-08-14

    The thermal behavior of glutamic acid was investigated in N2 and 4% O2 in N2 under flow reactor conditions at a constant residence time of 0.2 s, within a total pyrolysis time of 3 min at 1 atm. The identification of the main pyrolysis products has been reported. Accordingly, the principal products for pyrolysis in order of decreasing abundance were succinimide, pyrrole, acetonitrile, and 2-pyrrolidone. For oxidative pyrolysis, the main products were succinimide, propiolactone, ethanol, and hydrogen cyanide. Whereas benzene, toluene, and a few low molecular weight hydrocarbons (propene, propane, 1-butene, and 2-butene) were detected during pyrolysis, no polycyclic aromatic hydrocarbons (PAHs) were detected. Oxidative pyrolysis yielded low molecular weight hydrocarbon products in trace amounts. The mechanistic channels describing the formation of the major product succinimide have been explored. The detection of succinimide (major product) and maleimide (minor product) from the thermal decomposition of glutamic acid has been reported for the first time in this study. Toxicological implications of some reaction products (HCN, acetonitrile, and acyrolnitrile), which are believed to form during heat treatment of food, tobacco burning, and drug processing, have been discussed in relation to the thermal degradation of glutamic acid.

  3. Investigation of sorbic acid volatile degradation products in pharmaceutical formulations using static headspace gas chromatography.

    PubMed

    Yarramraju, Sitaramaraju; Akurathi, Vamsidhar; Wolfs, Kris; Van Schepdael, Ann; Hoogmartens, Jos; Adams, Erwin

    2007-06-28

    An analytical method that allows simultaneous analysis of sorbic acid and its degradation products was developed using static headspace gas chromatography (HS-GC). AT-Aquawax-DA, the capillary column used, showed good selectivity and separation towards sorbic acid and its degradation products. Sorbic acid degradation was investigated in both acidic and aqueous media at room and elevated temperatures. In total 12 sorbic acid degradation products were found, 8 of which could be characterized. The method was investigated for its accuracy towards estimation of degradation products. Using the HS-GC method different batches of pharmaceutical preparations such as cold cream, cetomacrogol cream and vaseline were investigated for sorbic acid degradation products which were estimated by applying the standard addition method. Acetaldehyde was found to be the major degradation product. The other identified degradation products were: acetone; 2-methylfuran; crotonaldehyde; alfa-angelicalactone; 2-acetyl, 5-methylfuran; toluene and 2,5-dimethylfuran. Both mass spectrometeric (MS) and flame ionization detection (FID) were used. The qualitative investigation was done on HS-GC-MS and the quantitative work on HS-GC-FID.

  4. Ultraviolet-induced oxidation of ascorbic acid in a model juice system: identification of degradation products.

    PubMed

    Tikekar, Rohan V; Anantheswaran, Ramaswamy C; Elias, Ryan J; LaBorde, Luke F

    2011-08-10

    Degradation products of ultraviolet (UV-C, 254 nm) treated ascorbic acid (AA) are reported. Analysis by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) conducted in a 0.5% malic acid model juice system (pH 3.3) demonstrated increased degradation of AA above untreated controls with concomitant increases in dehydroascorbic acid (DHA) and 2,3-diketogulonic acid (DKGA) levels. Electron spin resonance (ESR) spectroscopy studies, conducted in phosphate buffer (pH 7.0) to increase detection sensitivity, demonstrated that ascorbyl radical (AA•) formation occurs simultaneously with AA degradation. Consistent with a previous study in which UV treatments were shown to accelerate dark storage degradation, AA• radicals continued to form for up to 200 min after an initial UV treatment. Results from this study suggest that the mechanism for UV-induced degradation is the same as the general mechanism for metal-catalyzed oxidation of AA in juice.

  5. Liquid chromatographic assay of diatrizoic acid and its diiodo degradation products in radio-opaque solutions

    SciTech Connect

    Farag, S.A.

    1995-03-01

    A liquid chromatographic method is described for the analysis of diatrizoic acid (2,4,6-triiodo-3,5-diacetamidobenzoic acid) and its 2,4- and 2,6-diiodo degradation products in radio-opaque injection solutions. The method is accurate, precise, and linear at a concentration range of 5-50 ppm. 12 refs., 6 figs., 5 tabs.

  6. Production and Degradation of Oxalic Acid by Brown Rot Fungi

    PubMed Central

    Espejo, Eduardo; Agosin, Eduardo

    1991-01-01

    Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted 14C-labeled oxalic acid to CO2 during cellulose depolymerization. The other brown rot fungi also oxidized 14C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize 14C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi. PMID:16348522

  7. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  8. Degradation of vanillic acid and production of guaiacol by microorganisms isolated from cork samples.

    PubMed

    Alvarez-Rodríguez, María Luisa; Belloch, Carmela; Villa, Mercedes; Uruburu, Federico; Larriba, Germán; Coque, Juan José R

    2003-03-14

    The presence of guaiacol in cork stoppers is responsible for some cases of cork taint causing unpleasant alterations to wine. We have performed a characterization of the cork-associated microbiota by isolating 55 different microorganisms: eight yeast, 14 filamentous fungi or molds, 13 actinomycetes and 20 non-filamentous bacteria. A screening for degradation of vanillic acid and guaiacol production showed that none of the filamentous fungi could achieve any of these processes. By contrast, five of the eight yeast strains isolated were able to degrade vanillic acid, although it was not converted to guaiacol. Guaiacol production was only detected in four bacterial strains: one isolate of Bacillus subtilis and three actinomycetes, Streptomyces sp. A3, Streptomyces sp. A5 and Streptomyces sp. A13, were able to accumulate this compound in both liquid media and cultures over cork. These results suggest that guaiacol-mediated cork taint should be attributed to the degradative action of vanillic acid by bacterial strains growing on cork.

  9. Chemical nature and immunotoxicological properties of arachidonic acid degradation products formed by exposure to ozone.

    PubMed Central

    Madden, M C; Friedman, M; Hanley, N; Siegler, E; Quay, J; Becker, S; Devlin, R; Koren, H S

    1993-01-01

    Ozone (O3) exposure in vivo has been reported to degrade arachidonic acid (AA) in the lungs of rodents. The O3-degraded AA products may play a role in the responses to this toxicant. To study the chemical nature and biological activity of O3-exposed AA, we exposed AA in a cell-free, aqueous environment to air, 0.1 ppm O3, or 1.0 ppm O3 for 30-120 min. AA exposed to air was not degraded. All O3 exposures degraded > 98% of the AA to more polar products, which were predominantly aldehydic substances (as determined by reactivity with 2,4-dinitrophenylhydrazine and subsequent separation by HPLC) and hydrogen peroxide. The type and amount of aldehydic substances formed depended on the O3 concentration and exposure duration. A human bronchial epithelial cell line (BEAS-2B, S6 subclone) exposed in vitro to either 0.1 ppm or 1.0 ppm O3 for 1 hr produced AA-derived aldehydic substances, some of which eluted with similar retention times as the aldehydic substances derived from O3 degradation of AA in the cell-free system. In vitro, O3-degraded AA induced an increase in human peripheral blood polymorphonuclear leukocyte (PMN) polarization, decreased human peripheral blood T-lymphocyte proliferation in response to mitogens, and decreased human peripheral blood natural killer cell lysis of K562 target cells. The aldehydic substances, but not hydrogen peroxide, appeared to be the principal active agents responsible for the observed effects. O3-degraded AA may play a role in the PMN influx into lungs and in decreased T-lymphocyte mitogenesis and natural killer cell activity observed in humans and rodents exposed to O3. PMID:8354202

  10. Chemical nature and immunotoxicological properties of arachidonic acid degradation products formed by exposure to ozone

    SciTech Connect

    Madden, M.C.; Friedman, M.; Hanley, N.; Siegler, E.; Quay, J.; Becker, S.; Devlin, R.; Koren, H.S. )

    1993-06-01

    Ozone (O3) exposure in vivo has been reported to degrade arachidonic acid (AA) in the lungs of rodents. The O3-degraded AA products may play a role in the responses to this toxicant. To study the chemical nature and biological activity of O3-exposed AA, we exposed AA in a cell-free, aqueous environment to air, 0.1 ppm O3, or 1.0 ppm O3 for 30-120 min. AA exposed to air was not degraded. All O3 exposures degraded > 98% of the AA to more polar products, which were predominantly aldehydic substances (as determined by reactivity with 2,4-dinitrophenylhydrazine and subsequent separation by HPLC) and hydrogen peroxide. The type and amount of aldehydic substances formed depended on the O3 concentration and exposure duration. A human bronchial epithelial cell line (BEAS-2B, S6 subclone) exposed in vitro to either 0.1 ppm or 1.0 ppm O3 for 1 hr produced AA-derived aldehydic substances, some of which eluted with similar retention times as the aldehydic substances derived from O3 degradation of AA in the cell-free system. In vitro, O3-degraded AA induced an increase in human peripheral blood polymorphonuclear leukocyte (PMN) polarization, decreased human peripheral blood T-lymphocyte proliferation in response to mitogens, and decreased human peripheral blood natural killer cell lysis of K562 target cells. The aldehydic substances, but not hydrogen peroxide, appeared to be the principal active agents responsible for the observed effects. O3-degraded AA may play a role in the PMN influx into lungs and in decreased T-lymphocyte mitogenesis and natural killer cell activity observed in humans and rodents exposed to O3.

  11. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids

    PubMed Central

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  12. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    PubMed

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  13. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics and mechanism

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1987-03-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (FGD) conditions. The oxidative degradation constant k/sub 12/ is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times the ratio of the concentration of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately 3 times slower than saturated dicarboxylic acids, while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude factor. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product - smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons. 30 references, 7 figures, 7 tables.

  14. Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system.

    PubMed

    Pollice, A; Laera, G; Cassano, D; Diomede, S; Pinto, A; Lopez, A; Mascolo, G

    2012-02-15

    Chemical-biological degradation of a widely spread antibacterial (nalidixic acid) was successfully obtained by an integrated membrane bioreactor (MBR)-ozonation process. The composition of the treated solution simulated the wastewater from the production of the target pharmaceutical, featuring high salinity and a relevant concentration of sodium acetate. Aim of treatment integration was to exploit the synergistic effects of chemical oxidation and bioprocesses, by adopting the latter to remove most of the COD and the ozonation biodegradable products. Integration was achieved by placing ozonation in the recirculation stream of the bioreactor effluent. The recirculation flow rate was three-fold the MBR feed, and the performance of the integrated system was compared to the standard polishing configuration (single ozonation step after the MBR). Results showed that the introduction of the ozonation step did not cause relevant drawbacks to both biological and filtration processes. nalidixic acid passed undegraded through the MBR and was completely removed in the ozonation step. Complete degradation of most of the detected ozonation products was better achieved with the integrated MBR-ozonation process than using the sequential treatment configuration, i.e. ozone polishing after MBR, given the same ozone dosage.

  15. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    NASA Astrophysics Data System (ADS)

    Araújo, M. M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A. L. C. H.; Bergaentzle, M.

    2012-08-01

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters.

  16. Study on degradation kinetics of 2-(2-hydroxypropanamido) benzoic acid in aqueous solutions and identification of its major degradation product by UHPLC/TOF-MS/MS.

    PubMed

    Zhang, Qili; Guan, Jiao; Rong, Rong; Zhao, Yunli; Yu, Zhiguo

    2015-08-10

    A RP-HPLC method was developed and validated for the degradation kinetic study of 2-(2-hydroxypropanamido) benzoic acid (HPABA), a promising anti-inflammatory drug, which would provide a basis for further studies on HPABA. The effects of pH, temperature, buffer concentration and ionic strength on the degradation kinetics of HPABA were discussed. Experimental parameters such as degradation rate constants (k), activation energy (Ea), acid and alkali catalytic constants (k(ac), k(al)), shelf life (t1/2) and temperature coefficient (Q10) were calculated. The results indicated that degradation kinetics of HPABA followed zero-order reaction kinetics; degradation rate constants (k) of HPABA at different pH values demonstrated that HPABA was more stable in neutral and near-neutral conditions; the function of temperature on k obeyed the Arrhenius equation (r = 0.9933) and HPABA was more stable at lower temperature; with the increase of ionic strength and buffer concentration, the stability of HPABA was decreased. The major unknown degradation product of HPABA was identified by UHPLC/TOF-MS/MS with positive electrospray ionization. Results demonstrated that the hydrolysis product was the primary degradation product of HPABA and it was deduced as anthranilic acid.

  17. Production and partial characterization of uric acid degrading enzyme from new source Saccharopolyspora sp. PNR11.

    PubMed

    Khucharoenphaisan, K; Sinma, K

    2011-02-01

    The strain PNR11 was isolated from gut of termite during the screening for uric acid degrading actinomyces. This strain was able to produce an intracellular uricase when cultured in fermentation medium containing uric acid as nitrogen source. Base on its morphological characters and 16S rDNA sequence analysis, this strain belong to the genus Saccharopolyspora. This is the first report ofuricase produced from the genus Saccharopolyspora. The aim of this study was to investigate the effects of different factors on uricase production by new source of Saccharopolyspora. Saccharopolyspora sp. PNR11 was cultured in production medium in order to determine the best cultivation period. The result showed that the time period required for maximum enzyme production was 24 h on a rotary shaker operating at 180 rpm. Optimized composition of the production medium consisted of 1% yeast extract, 1% maltose, 0.1% K2HPO4, 0.05% MgSO4 7H2O, 0.05% NaCl and 1% uric acid. The optimum pH and temperature for uricase production in the optimized medium were pH 7.0 and 30 degrees C, respectively. When the strain was cultured at optimized condition, the uricase activity reached to 216 mU mL(-1) in confidential level of 95%. The crude enzyme had an optimum temperature of uricase was 37 degrees C and it was stable up to 30 degrees C at pH 8.5. The optimum pH ofuricase was 8.5 and was stable in range of pH 7.0-10.0 at 4 degrees C. This strain might be considered as a candidate source for uricase production in the further studies. Present finding could be fulfill the information ofuricase produce from actinomycetes.

  18. Contact Sensitizers Induce Skin Inflammation via ROS Production and Hyaluronic Acid Degradation

    PubMed Central

    Esser, Philipp R.; Wölfle, Ute; Dürr, Christoph; von Loewenich, Friederike D.; Schempp, Christoph M.; Freudenberg, Marina A.; Jakob, Thilo; Martin, Stefan F.

    2012-01-01

    Background Allergic contact dermatitis (ACD) represents a severe health problem with increasing worldwide prevalence. It is a T cell-mediated skin disease induced by protein-reactive organic and inorganic chemicals. A key feature of contact allergens is their ability to trigger an innate immune response that leads to skin inflammation. Previous evidence from the mouse contact hypersensitivity (CHS) model suggests a role for endogenous activators of innate immune signaling. Here, we analyzed the role of contact sensitizer induced ROS production and concomitant changes in hyaluronic acid metabolism on CHS responses. Methodology/Principal Findings We analyzed in vitro and in vivo ROS production using fluorescent ROS detection reagents. HA fragmentation was determined by gel electrophoresis. The influence of blocking ROS production and HA degradation by antioxidants, hyaluronidase-inhibitor or p38 MAPK inhibitor was analyzed in the murine CHS model. Here, we demonstrate that organic contact sensitizers induce production of reactive oxygen species (ROS) and a concomitant breakdown of the extracellular matrix (ECM) component hyaluronic acid (HA) to pro-inflammatory low molecular weight fragments in the skin. Importantly, inhibition of either ROS-mediated or enzymatic HA breakdown prevents sensitization as well as elicitation of CHS. Conclusions/Significance These data identify an indirect mechanism of contact sensitizer induced innate inflammatory signaling involving the breakdown of the ECM and generation of endogenous danger signals. Our findings suggest a beneficial role for anti-oxidants and hyaluronidase inhibitors in prevention and treatment of ACD. PMID:22848468

  19. Degradation Kinetics and Mechanism of a β-Lactam Antibiotic Intermediate, 6-Aminopenicillanic Acid, in a New Integrated Production Process.

    PubMed

    Su, Min; Sun, Hua; Zhao, Yingying; Lu, Aidang; Cao, Xiaohui; Wang, Jingkang

    2016-01-01

    In an effort to promote sustainability and to reduce manufacturing costs, the traditional production process for 6-aminopenicillanic acid (6-APA) has been modified to include less processing units. The objectives of this study are to investigate the degradation kinetics of 6-APA, to propose a reasonable degradation mechanism, and to optimize the manufacturing conditions within this new process. A series of degradation kinetic studies were conducted in the presence of impurities, as well as at various chemical and physical conditions. The concentrations of 6-APA were determined by high-performance liquid chromatography. An Arrhenius-type kinetic model was established to give a more accurate prediction on the degradation rates of 6-APA. A hydrolysis degradation mechanism is shown to be the major pathway for 6-APA. The degradation mechanisms and the kinetic models for 6-APA in the new system enable the design of a good manufacturing process with optimized parameters.

  20. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone.

  1. Quantitative TOF-SIMS analysis of oligomeric degradation products at the surface of biodegradable poly(alpha-hydroxy acid)s.

    PubMed

    Lee, Joo-Woon; Gardella, Joseph A

    2002-09-01

    This paper reports the development of a new method for quantification of the hydrolytic surface degradation kinetics of biodegradable poly(alpha-hydroxy acid)s using time-of-flight secondary ion mass spectrometry (TOF-SIMS). We report results from static SIMS spectra of a series of poly(alpha-hydroxy acid)s including poly(glycolic acid), poly(L-lactic acid), and random poly(D,L-lactic acid-co-glycolic acid) hydrolyzed in various buffer systems. The distribution of the most intense peak intensities of ions generated in high mass range of the spectrum reflects the intact degradation products (oligomeric hydrolysis products) of each biodegradable polymer. First, a detailed analysis of the oligomeric ions is given based on rearrangement of the intact hydrolysis products. The pattern of ions can distinguish both degradation-generated intact oligomers and their fragment ion peaks with a variety of combinations of each repeat unit. Then, the integration and summation of the area of all ion peaks with the same number of repeat units is proposed as a measurement that provides a more accurate MW average than the typically used method which counts only the most intense peak. The multiple ion summation method described in this paper would be practical in the improvement of quantitative TOF-SIMS studies as a better data reduction method, especially in the surface degradation kinetics of biodegradable polymers.

  2. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay.

  3. Decomposition of phenylarsonic acid by AOP processes: degradation rate constants and by-products.

    PubMed

    Jaworek, K; Czaplicka, M; Bratek, Ł

    2014-10-01

    The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm(-3) phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45 × 10(-3) and 20.12 × 10(-3)) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified.

  4. Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS.

    PubMed

    Neuberger, Sabine; Jooß, Kevin; Ressel, Christian; Neusüß, Christian

    2016-12-01

    Capillary electrophoresis is commonly applied for the analysis of pharmaceutical products due to its high separation efficiency and selectivity. For this purpose, electrospray-ionization-(ESI)-interfering additives or electrolytes are often required, which complicates the identification of impurities and degradation products by mass spectrometry (MS). Here, a capillary zone electrophoresis (CZE) method with ultraviolet (UV) absorption detection for the simultaneous determination and quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets was developed. Related degradation products were identified via CZE-CZE-MS. Systematic optimization yielded 100 mM tricine (pH = 8.8) as appropriate background electrolyte, resulting in baseline separation of ascorbic acid, acetylsalicylic acid, and related anionic UV-active degradation products. The CZE-UV method was successfully validated regarding the guidelines of the Food and Drug Administration. The validated method was applied to trace the degradation rate of the active pharmaceutical ingredients at defined ambient conditions. A heart-cut CZE-CZE-MS approach, including a 4-port-nL-valve, was performed for the identification of the observed degradation products. This 2D setup enables a precise cutting of accurate sample volumes (20 nL) and the independent operation of two physically separated CZE dimensions, which is especially beneficial regarding MS detection. Hence, the ESI-interfering tricine electrolyte components were separated from the analytes in a second electrophoretic dimension prior to ESI-MS detection. The degradation products were identified as salicylic acid and mono- and diacetylated ascorbic acid. This setup is expected to be generally applicable for the mass spectrometric characterization of CZE separated analytes in highly ESI-interfering electrolyte systems. Graphical Abstract A CZE-UV method for the quantification of effervescent tablet ingredients and degradation products

  5. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee.

    PubMed

    Kamiyama, Masumi; Moon, Joon-Kwan; Jang, Hae Won; Shibamoto, Takayuki

    2015-02-25

    Antioxidant activities of brewed coffees prepared from six commercial brands ranged from 63.13 ± 1.01 to 96.80 ± 1.68% at the highest levels tested. Generally, the degree of antioxidant activity of the brewed coffee was inversely proportional to the total chlorogenic acid concentration. A sample obtained from the major chlorogenic acid, 5-caffeoylquinic acid (5-CQA), heated at 250 °C exhibited potent antioxidant activity (79.12 ± 2.49%) at the level of 10 μg/mL, whereas unheated 5-CQA showed only moderate antioxidant activity (44.41 ± 0.27%) at the level of 100 μg/mL. Heat produced relatively high levels of pyrocatechol (2,809.3 μg/g) and 2-methoxy-4-vinylphenol (46.4 μg/g) from 5-CQA, and their antioxidant activity levels were 76.57 ± 3.00 and 98.63 ± 0.01%, respectively. The results of the present study suggest that roasting degrades chlorogenic acids to form potent antioxidants and thus plays an important role in the preparation of high-antioxidant low-acid coffee.

  6. Microbial naphthenic Acid degradation.

    PubMed

    Whitby, Corinne

    2010-01-01

    Naphthenic acids (NAs) are an important group of trace organic pollutants predominantly comprising saturated aliphatic and alicyclic carboxylic acids. NAs are ubiquitous; occurring naturally in hydrocarbon deposits (petroleum, oil sands, bitumen, and crude oils) and also have widespread industrial uses. Consequently, NAs can enter the environment from both natural and anthropogenic processes. NAs are highly toxic, recalcitrant compounds that persist in the environment for many years, and it is important to develop efficient bioremediation strategies to decrease both their abundance and toxicity in the environment. However, the diversity of microbial communities involved in NA-degradation, and the mechanisms by which NAs are biodegraded, are poorly understood. This lack of knowledge is mainly due to the difficulties in identifying and purifying individual carboxylic acid compounds from complex NA mixtures found in the environment, for microbial biodegradation studies. This paper will present an overview of NAs, their origin and fate in the environment, and their toxicity to the biota. The review describes the microbial degradation of both naturally occurring and chemically synthesized NAs. Proposed pathways for aerobic NA biodegradation, factors affecting NA biodegradation rates, and possible bioremediation strategies are also discussed.

  7. [Analysis of alkaline CuO degradation products of acid detergent fiber from tobacco leaves by using liquid chromatography].

    PubMed

    Hao, Weiqiang; Wang, Leijun; Wu, Shun; Yue, Bangyi; Chen, Qiang; Zhang, Peipei

    2015-07-01

    The acid detergent fiber (ADF) from tobacco leaves was obtained by treating the sample with petroleum ether-ethanol (6:4, v/v), 30 g/L sodium dodecylsulfate and 0.5 mol/L sulphuric acid containing 20 g/L hexadecyl trimethyl ammonium bromide successively. The ADF was degraded by the alkaline CuO oxidation procedure. In this work, six samples of ADF degradation products from tobacco leaves were prepared. The samples were analyzed by using gradient liquid chromatography (LC) where an Ultimate XB C18 column was used as stationary phase, with a mixture of methanol and water as mobile phase, at a column temperature of 35 °C and a flow rate of 0.8 mL/min. Dual wavelengths of 280 nm and 320 nm were chosen for the detection. It was found that there were four characteristic peaks for the ADF degradation products. By taking these peaks as research object, the optimum time for the degradation was found to be 5 h and the sample solution could be kept stable within 7 days. The established method may provide a new approach for the studies of the differences between lignin composition in different tobacco leaves and the relationship between lignin content and the smoking quality of tobacco leaves.

  8. The Fate and Transport of Glyphosate and its Degradation Product, Aminomethylphosphonic Acid (AMPA), in Water

    NASA Astrophysics Data System (ADS)

    Scribner, E.; Meyer, M. T.

    2006-05-01

    Since 2001, the U.S. Geological Survey (USGS) has investigated the fate and transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), in surface water, and more recently in tile-drain flow, soil, and wet deposition. According to U.S. Environmental Protection Agency sources, glyphosate is among the world's most widely used herbicides. In 2004, glyphosate usage estimates indicated that between 103 and 113 million pounds were applied annually to crops in the United States. The use of glyphosate over a wide geographic area suggests that this herbicide might be a potential concern for air, water, and soil quality as well as measured in high concentrations in streams; therefore, it is important to monitor its fate and transport in ground-water/surface-water systems. National, regional, and field-scale studies conducted by the USGS National Water-Quality Assessment and Toxic Substance Hydrology Programs have studied the fate and transport of glyphosate in overland flow, tile- drain flow, surface water, soil, and wet-deposition samples. The samples were analyzed for glyphosate and AMPA by using derivatization and online solid-phase extraction with liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS methods developed by the USGS Organic Geochemistry Research Laboratory in Lawrence, Kansas. During spring, summer, and fall 2002 runoff periods in 50 Midwestern streams, glyphosate was detected at or above the 0.10 micrograms per liter detection limit in 35, 41, and 31 percent of samples, respectively. AMPA was detected in 53, 82, and 75 percent of samples, respectively. Results of 128 samples from a field study showed that glyphosate was transported as a narrow high- concentration pulse during the first period of runoff after application and that the concentration of glyphosate in runoff was greater than the concentration of AMPA. In tile-drain flow, glyphosate and AMPA were transported in a broad low-concentration pulse during these same

  9. Stability-indicating methods for the determination of erdosteine in the presence of its acid degradation products.

    PubMed

    Moustafa, Nadia M; Badawey, Amr M; Lamie, Nesrine T; El-Aleem, Abd El-Aziz B Abd

    2014-01-01

    Four accurate, sensitive, and reproducible stability-indicating methods for the determination of erdosteine in the presence of its acid degradation products are presented. The first method involves processing the spectra by using a first-derivative method at 229 nm in a concentration range of 10-70 microg/mL. The mean percentage recovery was 100.43 +/- 0.977. The second method is based on ratio-spectra first derivative spectrophotometry at 227.4 and 255 nm over a concentration range of 10-70 microg/mL. The mean percentage recovery was 99.65 +/- 1.122% and 100.02 +/- 1.306% at 227.4 and 255 nm, respectively. The third method utilizes quantitative densitometric evaluation of the TLC of erdosteine in the presence of its acid degradation products, and uses methanol-chloroform-ammonia (7 + 3 +/- 0.01, v/v/v) as the mobile phase. TLC chromatograms were scanned at 235 nm. This method analyzes erdosteine in a concentration range of 2.4-5.6 microg/spot, with a mean percentage recovery of 100.03 +/- 1.015%. The fourth method is HPLC for the simultaneous determination of erdosteine in the presence of its acid degradation products. The mobile phase consists of water-methanol (65 + 35, v/v). The standard curve of erdosteine showed good linearity over a concentration range of 10-80 microg/mL, with a mean percentage recovery of 99.90 +/- 1.207%. These methods were successfully applied to the determination of erdosteine in bulk powder, laboratory-prepared mixtures containing different percentages of the degradation products, and pharmaceutical dosage forms. The validity of results was assessed by applying the standard addition technique. The results obtained agreed statistically with those obtained by a reported method, showing no significant differences with respect to accuracy and precision.

  10. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production.

    PubMed

    Zhang, Ying-Hua; Xu, Di; Liu, Jia-Qi; Zhao, Xin-Huai

    2014-12-01

    Skimmed milk spiked with five organophosphorus pesticides (OPPs), chlorpyrifos, diazinon, fenitrothion, malathion and methyl parathion, was fermented by ten lactic acid bacteria (LAB) and four strain combinations at 42°C for 24h. OPPs left in the samples at different times were extracted, purified, detected by gas chromatography and calculated for degradation rate constants, based on a first-order reaction model. OPPs degradation was enhanced by the inoculated LAB, resulting in 0.8-225.4% increase in the rate constants. Diazinon and methyl parathion were more stable whereas chlorpyrifos, fenitrothion and malathion were more labile. Lactobacillus brevis 1.0209 showed the strongest acceleration on OPPs degradation while strain combination could bring about a synergy between the strains of lower ability. Phosphatase production of the strains might be one of the key factors responsible for the enhanced OPPs degradation, as the detected phosphatase activities were positively correlated to the measured degradation rate constants of OPPs (r=0.636-0.970, P<0.05).

  11. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    SciTech Connect

    Vlasova, Irina I.; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.; Kostevich, Valeria A.; Gusev, Alexandr A.; Gusev, Sergey A.; Melnikova, Viktoriya I.; Lobach, Anatolii S.

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  12. Excretion pathways and ruminal disappearance of glyphosate and its degradation product aminomethylphosphonic acid in dairy cows.

    PubMed

    von Soosten, D; Meyer, U; Hüther, L; Dänicke, S; Lahrssen-Wiederholt, M; Schafft, H; Spolders, M; Breves, G

    2016-07-01

    From 6 balance experiments with total collection of feces and urine, samples were obtained to investigate the excretion pathways of glyphosate (GLY) in lactating dairy cows. Each experiment lasted for 26d. The first 21d served for adaptation to the diet, and during the remaining 5d collection of total feces and urine was conducted. Dry matter intake and milk yield were recorded daily and milk and feed samples were taken during the sampling periods. In 2 of the 6 experiments, at the sampling period for feces and urine, duodenal contents were collected for 5d. Cows were equipped with cannulas at the dorsal sac of the rumen and the proximal duodenum. Duodenal contents were collected every 2h over 5 consecutive days. The daily duodenal dry matter flow was measured by using chromium oxide as a volume marker. All samples (feed, feces, urine, milk and duodenal contents were analyzed for GLY and aminomethylphosphonic acid (AMPA). Overall, across the 6 experiments (n=32) the range of GLY intake was 0.08 to 6.67mg/d. The main proportion (61±11%; ±SD) of consumed GLY was excreted with feces; whereas excretion by urine was 8±3% of GLY intake. Elimination via milk was negligible. The GLY concentrations above the limit of quantification were not detected in any of the milk samples. A potential ruminal degradation of GLY to AMPA was derived from daily duodenal GLY flow. The apparent ruminal disappearance of GLY intake was 36 and 6%. In conclusion, the results of the present study indicate that the gastrointestinal absorption of GLY is of minor importance and fecal excretion represents the major excretion pathway. A degradation of GLY to AMPA by rumen microbes or a possible retention in the body has to be taken into account.

  13. Biodegradable Ferulic Acid-containing Poly(anhydride-ester): Degradation Products with Controlled Release and Sustained Antioxidant Activity

    PubMed Central

    Ouimet, Michelle A.; Griffin, Jeremy; Carbone-Howell, Ashley L.; Wu, Wen-Hsuan; Stebbins, Nicholas D.; Di, Rong; Uhrich, Kathryn E.

    2013-01-01

    Ferulic acid (FA) is an antioxidant and photoprotective agent used in biomedical and cosmetic formulations to prevent skin cancer and senescence. Although FA exhibits numerous health benefits, physicochemical instability leading to decomposition hinders its efficacy. To minimize inherent decomposition, a FA-containing biodegradable polymer was prepared via solution polymerization to chemically incorporate FA into a poly(anhydride-ester). The polymer was characterized using nuclear magnetic resonance and infrared spectroscopies. The molecular weight and thermal properties were also determined. In vitro studies demonstrated that the polymer was hydrolytically degradable, thus providing controlled release of the chemically incorporated bioactive with no detectable decomposition. The polymer degradation products were found to exhibit antioxidant and antibacterial activity comparable to free FA and in vitro cell viability studies demonstrated that the polymer is non-cytotoxic towards fibroblasts. This renders the polymer a potential candidate for use as a controlled release system for skin care formulations. PMID:23327626

  14. Biodegradable ferulic acid-containing poly(anhydride-ester): degradation products with controlled release and sustained antioxidant activity.

    PubMed

    Ouimet, Michelle A; Griffin, Jeremy; Carbone-Howell, Ashley L; Wu, Wen-Hsuan; Stebbins, Nicholas D; Di, Rong; Uhrich, Kathryn E

    2013-03-11

    Ferulic acid (FA) is an antioxidant and photoprotective agent used in biomedical and cosmetic formulations to prevent skin cancer and senescence. Although FA exhibits numerous health benefits, physicochemical instability leading to decomposition hinders its efficacy. To minimize inherent decomposition, a FA-containing biodegradable polymer was prepared via solution polymerization to chemically incorporate FA into a poly(anhydride-ester). The polymer was characterized using nuclear magnetic resonance and infrared spectroscopies. The molecular weight and thermal properties were also determined. In vitro studies demonstrated that the polymer was hydrolytically degradable, thus providing controlled release of the chemically incorporated bioactive with no detectable decomposition. The polymer degradation products were found to exhibit antioxidant and antibacterial activity comparable to that of free FA, and in vitro cell viability studies demonstrated that the polymer is noncytotoxic toward fibroblasts. This renders the polymer a potential candidate for use as a controlled release system for skin care formulations.

  15. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    PubMed

    Vlasova, Irina I; Vakhrusheva, Tatyana V; Sokolov, Alexey V; Kostevich, Valeria A; Gusev, Alexandr A; Gusev, Sergey A; Melnikova, Viktoriya I; Lobach, Anatolii S

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes.

  16. The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage

    NASA Astrophysics Data System (ADS)

    Ren, Haiyu; Richard, Tom L.; Moore, Kenneth J.

    Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

  17. The impact of enzyme characteristics on corn stover fiber degradation and acid production during ensiled storage.

    PubMed

    Ren, Haiyu; Richard, Tom L; Moore, Kenneth J

    2007-04-01

    Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commercial enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C:H). The highest C:H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

  18. Validated stability-indicating spectrophotometric methods for the determination of cefixime trihydrate in the presence of its acid and alkali degradation products.

    PubMed

    Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A

    2015-01-01

    Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision.

  19. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation.

    PubMed

    Cheng, Jun; Ding, Lingkan; Xia, Ao; Lin, Richen; Li, Yuyou; Zhou, Junhu; Cen, Kefa

    2015-03-01

    The biological hydrogen production from amino acids obtained by protein degradation was comprehensively investigated to increase heating value conversion efficiency. The five amino acids (i.e., alanine, serine, aspartic acid, arginine, and leucine) produced limited hydrogen (0.2-16.2 mL/g) but abundant soluble metabolic products (40.1-84.0 mM) during dark-fermentation. The carbon conversion efficiencies of alanine (85.3%) and serine (94.1%) during dark-fermentation were significantly higher than those of other amino acids. Residual dark-fermentation solutions treated with zeolite for NH4(+) removal were inoculated with photosynthetic bacteria to further produce hydrogen during photo-fermentation. The hydrogen yields of alanine and serine through combined dark- and photo-fermentation were 418.6 and 270.2 mL/g, respectively. The heating value conversion efficiency of alanine to hydrogen was 25.1%, which was higher than that of serine (21.2%).

  20. Aqueous thermal degradation of gallic acid

    SciTech Connect

    Boles, J.S.; Crerar, D.A.; Grissom, G.; Key, T.C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105/sup 0/ and 150/sup 0/C, with an activation energy of 22.9 or 27.8 kcal/mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed,suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  1. Aqueous thermal degradation of gallic acid

    NASA Astrophysics Data System (ADS)

    Snow Boles, Jennifer; Crerar, David A.; Grissom, Grady; Key, Tonalee C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105° and 150°C, with an activation energy of 22.9 or 27.8 kcal/ mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed, suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  2. Formation of degradation products from the pyrolysis of tall oil fatty acids with kraft lignin

    SciTech Connect

    Traitler, H.; Kratzl, K.

    1980-01-01

    Pyrolysis of tall oil fatty acids containing kraft lignin at 160-280 degrees with or without exclusion of O resulted in formation of alkylbenzenes, carboxylic acids, and hydrocarbons, as determined by gas chomatography. In the pyrolysis, ring cleavage of dehydroabietic acids could not be observed, and no cyclic fatty acids could be detected.

  3. Advanced stability indicating chemometric methods for quantitation of amlodipine and atorvastatin in their quinary mixture with acidic degradation products

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-02-01

    Two advanced, accurate and precise chemometric methods are developed for the simultaneous determination of amlodipine besylate (AML) and atorvastatin calcium (ATV) in the presence of their acidic degradation products in tablet dosage forms. The first method was Partial Least Squares (PLS-1) and the second was Artificial Neural Networks (ANN). PLS was compared to ANN models with and without variable selection procedure (genetic algorithm (GA)). For proper analysis, a 5-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the interfering species. Fifteen mixtures were used as calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested models. The proposed methods were successfully applied to the analysis of pharmaceutical tablets containing AML and ATV. The methods indicated the ability of the mentioned models to solve the highly overlapped spectra of the quinary mixture, yet using inexpensive and easy to handle instruments like the UV-VIS spectrophotometer.

  4. CHARACTERIZATION OF ARSENOSUGARS AND ASSOCIATED DEGRADATION PRODUCTS FOLLOWING AN AGGRESSIVE ACID/BASE EXTRACTION PROCEDURE

    EPA Science Inventory

    The speciation of arsenic in seafood products is important for the determination of an improved toxicity based relative source (water vs. diet) contribution estimate. The two major sources of arsenic are drinking water and seafood ingestion. Drinking water contains predominatel...

  5. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    PubMed Central

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies. PMID:24424316

  6. Structural characterization of the degradation products of a minor natural sweet diterpene glycoside Rebaudioside M under acidic conditions.

    PubMed

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-14

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies.

  7. Spectrofluorometry, thin layer chromatography, and column high-performance liquid chromatography determination of rabeprazole sodium in the presence of its acidic and oxidized degradation products.

    PubMed

    Osman, Afaf Osman; Osman, Afaf; Osman, Mohamed

    2009-01-01

    The objective of this study is to develop validated stability-indicating spectrofluorometric, TLC-densitometric, and HPLC methods for the determination of rabeprazole sodium and its degradation products. The first method was based on measuring the fluorescence intensity of the drug at 416 and 311 nm for the emission and at 320 and 274 nm for the excitation for acid and oxidized solutions, respectively. The second method was based on the separation of the drug from its acidic and oxidized degradation products followed by densitometric measurement of the intact drug spot at 284 nm. The separation was carried out on Fluka TLC sheets of silica gel 60 F254 using isopropyl alcohol--30% ammonia (80 + 2, v/v) mobile phase. The third method was based on HPLC separation of rabeprazole sodium from its acidic and oxidized degradation products on a reversed-phase Waters Nova-Pak C18 column using 0.05 M potassium dihydrogen phosphate-methanol-acetonitrile (5 + 3 + 2, v/v/v) pH 7 +/- 0.2 mobile phase. The proposed procedures were successfully applied for the determination of rabeprazole sodium in pure form, laboratory-prepared mixtures, tablet, and expired batch. The obtained results were statistically compared with those of a reported method and validated according to United States Pharmacopeia guidelines. Two main acidic degradation products of the drug were separated and subjected to IR spectrometry and MS to confirm their structures, and the schemes for their formation were elucidated.

  8. Ruminal degradability and intestinal digestibility of protein and amino acids in soybean and corn distillers grains products.

    PubMed

    Mjoun, K; Kalscheur, K F; Hippen, A R; Schingoethe, D J

    2010-09-01

    New fractionation and fermentation technologies in the ethanol industry have resulted in the production of different forms of distillers grains (DG). Such products are reduced-fat, high-protein, and "modified" wet feeds. Characterization of protein fractions of these co-products and other commonly used feedstuffs is important for the formulation of dairy cattle diets. In situ and in vitro techniques were conducted to compare crude protein (CP) availability in 4 DG products with commonly used soybean proteins. Soybean protein products included solvent-extracted soybean meal (SBM; 44% CP), expeller soybean meal (ESBM), and extruded soybeans (ES). The DG products were conventional distillers dried grains with solubles, reduced-fat distillers dried grains with solubles (RFDGS), high-protein distillers dried grains, and modified wet distillers grains with solubles (MWDGS). Nylon bags containing 5 g of each feed were incubated in the rumen of 3 cannulated lactating cows for 2, 4, 8, 16, 24, and 48 h. The rapidly degradable CP fraction varied from 8.1 to 37.2% for SBM and MWDGS, respectively. The slowly degradable CP fraction was greatest for SBM, ES, and high-protein distillers dried grains (88.0%+/-3.7), followed by ESBM, distillers dried grains with solubles, and RFDGS (76.8+/-4.1%). The MWDGS had the lowest slowly degradable CP fraction (61.1%). The rate of degradation of the slowly degradable CP fraction ranged from 11.8 for SBM to 2.7%/h for RFDGS. Rumen-undegradable protein varied widely (32.3 to 60.4%), with RFDGS having the greatest and SBM the lowest concentrations. Intestinal digestibility of rumen-undegradable protein (IDP) was estimated by pepsin-pancreatin digestion of ruminally preincubated (16 h) samples. The IDP was greatest for SBM, ESBM, and ES (97.7%+/-0.75), whereas IDP of DG products was 92.4%+/-0.87. Similarly, total digestible protein was greatest (99.0%) for soybean products, whereas DG products had a total digestible protein of 96.0%. Intestinal

  9. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    PubMed

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated.

  10. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate /n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.; Casella, Amanda J.; Peterman, Dean; Bryan, Samuel A.

    2013-11-05

    In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  11. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate/n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell; Amanda J. Casella; Dean R. Peterman; Samuel A. Bryan

    2013-12-01

    In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  12. Structural elucidation of gemifloxacin mesylate degradation product.

    PubMed

    Paim, Clésio Soldateli; Führ, Fernanda; Martins, Magda Targa; Gnoatto, Simone; Bajerski, Lisiane; Garcia, Cássia Virginia; Steppe, Martin; Schapoval, Elfrides Eva Scherman

    2016-03-01

    Gemifloxacin mesylate (GFM), chemically (R,S)-7-[(4Z)-3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl]-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid methanesulfonate, is a synthetic broad-spectrum antibacterial agent. Although many papers have been published in the literature describing the stability of fluorquinolones, little is known about the degradation products of GFM. Forced degradation studies of GFM were performed using radiation (UV-A), acid (1 mol L(-1) HCl) and alkaline conditions (0.2 mol L(-1) NaOH). The main degradation product, formed under alkaline conditions, was isolated using semi-preparative LC and structurally elucidated by nuclear magnetic resonance (proton - (1) H; carbon - (13) C; correlate spectroscopy - COSY; heteronuclear single quantum coherence - HSQC; heteronuclear multiple-bond correlation - HMBC; spectroscopy - infrared, atomic emission and mass spectrometry techniques). The degradation product isolated was characterized as sodium 7-amino-1-pyrrolidinyl-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylate, which was formed by loss of the 3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl ring and formation of the sodium carboxylate. The structural characterization of the degradation product was very important to understand the degradation mechanism of the GFM under alkaline conditions. In addition, the results highlight the importance of appropriate protection against hydrolysis and UV radiation during the drug-development process, storage, handling and quality control.

  13. Fate and effects of picric acid and 2,6-DNT in marine environments: toxicity of degradation products.

    PubMed

    Nipper, Marion; Carr, R Scott; Biedenbach, James M; Hooten, Russell L; Miller, Karen

    2005-11-01

    The toxicity of transformation products of 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked sandy and fine-grained marine sediments and in seawater. Toxicity of pore water from sediments spiked with 2,6-DNT decreased for the macro-alga, Ulva fasciata, zoospores as biotransformation proceeded, but increased for the copepod, Schizopera knabeni, nauplii. The primary biotransformation product of 2,6-DNT, 2-amino-6-nitrotoluene, was also more toxic than the parent compound to copepod nauplii, but not to alga zoospores, in spiked seawater tests. Two biotransformation products of picric acid, picramic acid and 2,4-DNP, were more toxic than their parent compound. Porewater toxicity from picric acid-spiked sediments decreased significantly at the end of six-months incubation. Fine-grained sediment spiked with either ordnance compound had lower toxicity than its sandy counterpart after six months, suggesting faster microbial transformation in the former and production of less toxic products. Photo-transformation of 2,6-DNT in seawater resulted in a reduction in toxicity.

  14. Anaerobic degradation of linoleic oleic acids

    SciTech Connect

    Lalman, J.A.; Bagley, D.M.

    1999-07-01

    The anaerobic degradation of linoleic (C18:2) and oleic (C18:1) acids was examined in batch experiments. By-product distribution depended on both the type of long chain fatty acid added and initial substrate concentration. Major by-products were palmitic (C16), myristic (C14) and acetic acids. Trace quantities of palmitoleic (C16:1) and lauric (C12) acids were observed together with larger amounts of palmitic (C16), myristic (C14) and hexanoic (C6) acids in cultures incubated with 100 mg/L linoleic (C18:2) acid. Bio-hydrogenation of C18 fatty acids was not necessary for the {beta}-oxidation mechanism to proceed. Aceticlastic methanogenic inhibition was observed in cultures inoculated with greater than 50 mg/L linoleic (C18:2) acid. In cultures incubated with greater than 50 mg/L oleic (C18:1) acid, aceticlastic methanogenic inhibition was observed for a short time period.

  15. Production of polyhydroxyhexadecanoic acid by using waste biomass of Sphingobacterium sp. ATM generated after degradation of textile dye Direct Red 5B.

    PubMed

    Tamboli, Dhawal P; Kagalkar, Anuradha N; Jadhav, Mital U; Jadhav, Jyoti P; Govindwar, Sanjay P

    2010-04-01

    The degradation of textile effluent using microorganisms has been studied extensively, but disposal of generated biomass after dye degradation is a serious problem. The isolated Sphingobacterium sp. ATM was found to decolorize dye Direct Red 5B (DR5B) and simultaneously it produced polyhydroxyhexadecanoic acid (PHD). The organism decolorized DR5B at 500mgl(-1) concentration within 24h of dye addition and gave optimum production of PHD. The medium contains carbon source as a molasses which was found to be more significant within all carbon sources used. The Nuclear Magnetic Resonance spectroscopy (NMR), Fourier Transform Infrared spectroscopy (FTIR) and Gas Chromatography-Mass Spectroscopy (GC-MS) characterization of polyhydroxyalkanoates obtained revealed the compound as a polyhydroxyhexadecanoic acid. The activity of PHA synthase was found more at 24h after dye addition. The enzymes responsible for dye degradation include veratrol oxidase, laccase, DCIP (2,6-dichlorophenol-indophenol) reductase, riboflavin reductase and azo reductase was found to be induced during decolorization process. The FTIR analysis of samples before and after decolorization of dye confirmed the biotransformation of DR5B. The GC-MS analysis of product obtained led to the identification of two metabolites after biotransformation of dye as p-amino benzenesulfonic acid and naphthalene-1-ol.

  16. Development and validation of HPLC and CE methods for simultaneous determination of amlodipine and atorvastatin in the presence of their acidic degradation products in tablets.

    PubMed

    Hassan, Said A; Elzanfaly, Eman S; El-Zeany, Salem Badr A; Salem, Maissa Y

    2016-12-01

    Two methods were developed for separation and quantitation of amlodipine (AML) and atorvastatin (ATV) in the presence of their acidic degradation products. The first method was a simple isocratic RP-HPLC method while the second was capillary electrophoresis (CE). Degradation products were obtained by acidic hydrolysis of the two drugs and their structures were elucidated for the first time by IR and MS spectra. Degradation products did not interfere with the determination of either drug and the assays were therefore stability-indicating. The linearity of the proposed methods was established over the ranges 1-50 μg mL-1 for AML and ATV in the HPLC method and in the range of 3-50 and 4-50 μg mL-1 for AML and ATV, respectively, in the CE method. The proposed methods were validated according to ICH guidelines. The methods were successfully applied to estimation of AML and ATV in combined tablets.

  17. Ultra-fast determination of caffeine, dipyrone, and acetylsalicylic acid by capillary electrophoresis with capacitively coupled contactless conductivity detection and identification of degradation products.

    PubMed

    Marra, Mariana Cardoso; Cunha, Rafael Rodrigues; Vidal, Denis Tadeu Rajh; Munoz, Rodrigo Alejandro Abarza; do Lago, Claudimir Lucio; Richter, Eduardo Mathias

    2014-01-31

    Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D) was used for fast, simultaneous determination of dipyrone (DIP), caffeine (CAF), and acetylsalicylic acid (ASA). In the same run and in less than 1min, the degradation products from DIP and ASA were also detected. In addition, the usage of the CE-C(4)D system allowed, for the first time, the detection of methylamine as a degradation product of DIP. Capillary electrophoresis with electrospray mass spectrometry experiments were carried out in order to confirm the formation of methylamine. The limits of detection by CE-C(4)D were 5, 5, and 6μmolL(-1) for CAF, DIP, and ASA, respectively. The proposed method was applied to the analysis of these compounds in pharmaceutical formulations with similar results to those achieved by HPLC (p<0.05).

  18. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.

    PubMed

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ.

  19. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    NASA Astrophysics Data System (ADS)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  20. 2-hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation.

    PubMed

    Szczepanska, Joanna; Poplawski, Tomasz; Synowiec, Ewelina; Pawlowska, Elzbieta; Chojnacki, Cezary J; Chojnacki, Jan; Blasiak, Janusz

    2012-02-01

    HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.

  1. Glucocorticoid control of rat growth hormone gene expression: Effect on cytoplasmic messenger ribonucleic acid production and degradation

    SciTech Connect

    Gertz, B.J.; Gardner, D.G.; Baxter, J.D. )

    1987-12-01

    The effect of the glucocorticoid dexamethasone on the production and degradation of rat GH (rGH) cytoplasmic mRNA was studied in cultured rat pituitary tumor (GC) cells. The incorporation of (3H)uridine into both rGH cytoplasmic mRNA and the pyrimidine nucleotide precursor pool was determined in hormone-treated and control cells. From these measurements glucocorticoid effects on absolute production rates of rGH cytoplasmic mRNA were determined and compared to effects on rGH mRNA accumulation. Rat GH mRNA half-life was then calculated based on a first-order decay model. Rat GH mRNA half-life was also directly assayed by: (1) pulse-chase studies and (2) measuring the kinetics of decay of rGH mRNA in cells after transfer from serum-containing to hormone-deficient media. From these independent analyses rGH mRNA half-life estimates ranged from 28-55 h in different experiments. Within individual experiments there was little variability of rGH mRNA decay rates; glucocorticoids were found not to alter the stability of rGH cytoplasmic mRNA. Glucocorticoid induction of rGH cytoplasmic mRNA accumulation was accounted for solely on the basis of increased mRNA production.

  2. Stability-indicating methods for the analysis of ciprofloxacin in the presence of its acid induced degradation product: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-04-01

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of its acidic degradation product. The methods under study are ratio derivative, ratio difference, mean centering and dual wavelength. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of ciprofloxacin in quality-control laboratories.

  3. Degradation of organic acids by dairy lactic acid bacteria.

    PubMed

    Hegazi, F Z; Abo-Elnaga, I G

    1980-01-01

    One hundred and twelve different strains of lactic acid bacteria, belonging to the genera Leuconostoc, Streptococcus, and Lactobacillus, were examined for the ability to degrade 10 organic acids by detecting gas production, using the conventional Durham tube method. All the strains did not break down succinate, glutarate, 2-oxo-glutarate, and mucate. Malate, citrate, pyruvate, fumarate, tartrate, and gluconate were variably attacked. Streptococcus cremoiris AM2, ML8, and SK11 required glucose to produce gas from citrate, whereas Leuconostoc citrovorum and Streptococcus faecalis did not. Streptococcus cremoris differed from the other streptococci in not producing gas from gluconate. From all lactic acid bacteria examined, only Lactobacillus plantarum formed gas from tartarate. Determination of acetoin and diacetyl proved to be a more reliable evidence for assessing the degradation of pyruvate, compared with detection of gas production. Homofermentative lactobacilli and Leuconostoc citrovorum produced acetoin and diacetyl from pyruvate, whereas beta-bacteria did not, a character that would be of taxonomic value. Streptobacteria degraded pyruvate in the presence of glucose with lactate as the major product together with a mean acetate of 4.1%, ethanol 7.9%, acetoin 1.7%, and diacetyl 2.6% yield on a molar basis after 60 days at 30 degrees C. L. brevis produced acetate and lactate. Formation of diacetyl from pyruvate by lactic acid bacteria may play an important role in flavour development in fermenting dairy products, especially in cheese, where lactic acid bacteria usually predominate, and pyruvate is probably excreted in the breaking down of lactose and in the oxidative deamination of alanine by the accompanying microflora.

  4. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  5. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    SciTech Connect

    Kita, Kayoko . E-mail: kkayoko@pharm.teikyo-u.ac.jp; Suzuki, Toshihide; Ochi, Takafumi

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.

  6. Use of different dietary protein sources for lactating goats: milk production and composition as functions of protein degradability and amino acid composition.

    PubMed

    Sanz Sampelayo, M R; Pérez, M L; Gil Extremera, F; Boza, J J; Boza, J

    1999-03-01

    To establish the effect of the nature of four different protein sources [fababeans, 27.8% crude protein (CP); sunflower meal, 41.7% CP; corn gluten feed, 18.8% CP; and cottonseed, 18.3% CP] on milk protein production by goats, the ruminal degradation of these feeds was studied as was the amino acid (AA) composition of the original material and that of the undegradable fractions of the protein sources. Four diets were designed; 20% of their protein was supplied by each of the different sources. Four groups of 5 Granadina goats were used to study the utilization of these diets for milk production. No significant differences were observed in dry matter intake or milk production. The milk produced by goats fed the diet containing sunflower meal had the lowest protein concentration; the highest milk protein concentration was observed for goats fed the diet containing corn gluten feed. From a multivariate analysis, it was deduced that the quickly degradable protein fraction in the rumen and the ruminally undegradable protein fraction were the components of the protein sources most directly related to the milk protein produced. Given the similar AA profiles of the undegradable fractions of the different protein sources, the possible supplementation achieved from these ruminally undegradable fractions must be established by the amount of protein supplied regardless of AA composition.

  7. Solvent degradation products in nuclear fuel processing solvents

    SciTech Connect

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  8. Structural insights into 2,2'-azino-Bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-mediated degradation of reactive blue 21 by engineered Cyathus bulleri Laccase and characterization of degradation products.

    PubMed

    Kenzom, T; Srivastava, P; Mishra, S

    2014-12-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated.

  9. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    PubMed Central

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  10. Effect of heat-alkaline treatment as a pretreatment method on volatile fatty acid production and protein degradation in excess sludge, pure proteins and pure cultures.

    PubMed

    Tan, Reasmey; Miyanaga, Kazuhiko; Uy, Davin; Tanji, Yasunori

    2012-08-01

    This study investigated the effect of heat-alkaline treatment (HAT) at pH 11 and 60 °C on volatile fatty acid (VFA) production and protein degradation in excess sludge, soluble and insoluble proteins, and pure cultures. In addition, quantification of bacteria present in the sludge was also examined. Experimental results showed that following acid fermentation under pH 7 and 37 °C, HAT enhanced VFA production in excess sludge, albumin, and Gram-negative bacteria, but not in casein or Gram-positive bacteria. Protein solubility was therefore found not to be the main criteria for VFA production. In the protein analysis, it was shown that the outer membrane protein (OmpC) of Escherichia coli K12 was resistant to chemical and enzymatic hydrolysis. Gram staining revealed that Gram-negative bacteria were predominant in the activated sludge used in this study. In addition, the bacteria present in the activated sludge comprised only 10% of mixed liquor suspended solids (MLSS) by quantitative PCR.

  11. Concentrations of Glyphosate, Its Degradation Product, Aminomethylphosphonic Acid, and Glufosinate in Ground- and Surface-Water, Rainfall, and Soil Samples Collected in the United States, 2001-06

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Gilliom, Robert J.; Meyer, Michael T.

    2007-01-01

    The U.S. Geological Survey conducted a number of studies from 2001 through 2006 to investigate and document the occurrence, fate, and transport of glyphosate, its degradation product, aminomethylphosphonic acid (AMPA), and glufosinate in 2,135 ground- and surface-water samples, 14 rainfall samples, and 193 soil samples. Analytical methods were developed to detect and measure glyphosate, AMPA, and glufosinate in water, rainfall, and soil. Results show that AMPA was detected more frequently and occurred at similar or higher concentrations than the parent compound, glyphosate, whereas glufosinate was seldom found in the environment. Glyphosate and AMPA were detected more frequently in surface water than in ground water. Trace levels of glyphosate and AMPA may persist in the soil from year to year. The methods and data described in this report are useful to researchers and regulators interested in the occurrence, fate, and transport of glyphosate and AMPA in the environment.

  12. Influence of Root Exudates on the Bacterial Degradation of Chlorobenzoic Acids

    PubMed Central

    Lovecká, Petra; Dražková, Milena; Macková, Martina; Macek, Tomas

    2013-01-01

    Degradation of chlorobenzoic acids (e.g., products of microbial degradation of PCB) by strains of microorganisms isolated from PCB contaminated soils was assessed. From seven bulk-soil isolates two strains unique in ability to degrade a wider range of chlorobenzoic acids than others were selected, individually and even in a complex mixture of 11 different chlorobenzoic acids. Such a feature is lacking in most tested degraders. To investigate the influence of vegetation on chlorobenzoic acids degraders, root exudates of two plant species known for supporting PCB degradation in soil were tested. While with individual chlorobenzoic acids the presence of plant exudates leads to a decrease of degradation yield, in case of a mixture of chlorobenzoic acids either a change in bacterial degradation specificity, associated with 3- and 4-chlorobenzoic acid, or an extension of the spectrum of degraded chlorobenzoic acids was observed. PMID:24222753

  13. Development of an enzyme-linked immunosorbent assay to detect benzylpenicilloic acid, a degradation product of penicillin G in adulterated milk.

    PubMed

    Zhang, Yan; Jiang, Yueming; Wang, Shuo

    2010-07-28

    To avoid detection of penicillin G, some producers/merchants illegally add beta-lactamase to milk to degrade it into benzylpenicilloic acid (BPA). This degradation product can cause allergic reactions in humans and, therefore, is a potential hazard to human health. To detect BPA in milk, we established a rapid direct competitive enzyme-linked immunosorbent assay (ELISA) with an IC(50) of 0.32 +/- 0.01 microg L(-1), and a detection limit of 0.030 +/- 0.002 microg L(-1). Matrix effects in the milk samples were easily eliminated by centrifugation and dilution. Recoveries were 72.75-93.25%. Also heat treatments of raw milk did not affect the detection of the BPA. To validate BPA-ELISA, the spiked milk samples were analyzed by ELISA and LC-MS; the results showed a strong correlation (r(2) = 0.99). Incurred samples obtained from Tianjin Entry-Exit Inspection and Quarantine Bureau (TJCIQ) were tested by BPA-ELISA. The results showed an almost 100% correlation (r(2) = 0.99) with the results supplied by the TJCIQ.

  14. Effects of silage protein degradability and fermentation acids on metabolizable protein concentration: a meta-analysis of dairy cow production experiments.

    PubMed

    Rinne, M; Nousiainen, J; Huhtanen, P

    2009-04-01

    A meta-analysis was conducted using data from dairy cow production studies to evaluate silage metabolizable protein (MP) concentrations. The data consisted of 397 treatment means in 130 comparisons, in which the effects of silage factors (e.g., date of harvest, wilting, silage additives) were investigated. Within a comparison, a fixed amount of the same concentrate was fed. A prerequisite of data to be included in the analysis was that silage dry matter (DM), crude protein (CP), ammonia N, lactic acid (LA), and total acid (TA) concentrations and digestibility were determined. A smaller data set (n = 248) comprised studies in which silage water-soluble N concentration was also analyzed. The supply of MP was estimated as amino acids absorbed from the small intestine using a model with constant values for ruminal effective protein degradability (EPD) and intestinal digestibility of rumen undegraded protein. Microbial protein was calculated on the basis of digestible carbohydrates and rumen degradable protein (RDP). Alternative models were used to estimate microbial protein formation, assuming the energy values of RDP and TA to be equivalent to 1.00, 0.75, 0.50, 0.25, and 0 times that of digestible carbohydrates. Because EPD values are seldom determined in production trials, they were derived using empirical models that estimate them from other feed components. The goodness of fit of models was compared on the basis of root mean squared error (RMSE) of milk protein yield (MPY) predicted from MP supply (adjusted for random study effect) and Akaike's information criterion. Metabolizable protein supply calculated from basal assumptions predicted MPY precisely within a study (RMSE = 16.2 g/d). Variable contribution of RDP to the energy supply for microbial synthesis influenced the precision of MPY prediction very little, but RMSE for MPY increased markedly when the energy supply of rumen microbes was corrected for TA concentration. Using predicted rather than constant EPD

  15. Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma.

    PubMed

    Tanaka, Masayuki; Kishi, Yasuhiro; Takanezawa, Yasukazu; Kakehi, Yoshiyuki; Aoki, Junken; Arai, Hiroyuki

    2004-07-30

    Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological activities and is detected in various biological fluids, including human seminal plasma. Due to its cell proliferation stimulatory and anti-apoptotic activities, LPA has been implicated in the progression of some cancers such as ovarian cancer and prostate cancer. Here, we show that prostatic acid phosphatase, which is a non-specific phosphatase and which has been implicated in the progression of prostate cancer, inactivates LPA in human seminal plasma. Human seminal plasma contains both an LPA-synthetic enzyme, lysoPLD, which converts lysophospholipids to LPA and is responsible for LPA production in serum, and its major substrate, lysophosphatidylcholine. In serum, LPA accumulated during incubation at 37 degrees C. However, in seminal plasma, LPA did not accumulate. This discrepancy is explained by the presence of a strong LPA-degrading activity. Incubation of LPA with seminal plasma resulted in the disappearance of LPA and an accompanying accumulation of monoglyceride showing that LPA is degraded by phosphatase activity present in the seminal plasma. When seminal plasma was incubated in the presence of a phosphatase inhibitor, sodium orthovanadate, LPA accumulated, indicating that LPA is produced and degraded in the fluid. Biochemical characterization of the LPA-phosphatase activity identified two phosphatase activities in human seminal plasma. By Western blotting analysis in combination with several column chromatographies, the major activity was revealed to be identical to prostatic acid phosphatase. The present study demonstrates active LPA metabolism in seminal plasma and indicates the possible role of LPA signaling in male sexual organs including prostate cancer.

  16. Forced degradation study of thiocolchicoside: characterization of its degradation products.

    PubMed

    Erika, Del Grosso; Silvio, Aprile; Giorgio, Grosa

    2012-03-05

    Thiocolchicoside (TCC, N-[1,2-dimethoxy-10-methylsulphanyl-9-oxo-3-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydropyran-2-yloxy)-5,6,7,9-tetrahydro-benzo[a]heptalen-7-yl]-acetamide) was subjected to hydrolytic, oxidative, and photolytic stresses. TCC underwent degradation in acidic, basic, and oxidative conditions, while it was stable toward other stress conditions. The degradation products (DPs) were detected and their separation was achieved on a SGE Wakosil C18RS 5μm (250*4.6 mm; SGE) column employing a gradient LC-MS method for a total time of analysis of 18 min. The mass fragmentation pathways of both thiocolchicoside and its degradation products were established using LC-MS experiments assigning the structures to the DPs. In particular, five DPs were identified as: D1SO (N-[1,2-dimethoxy-10-methylsulphoxide-9-oxo-3-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydropyran-2-yloxy)-5,6,7,9-tetrahydro-benzo[a]heptalen-7-yl]-acetamide), D1SO(2) (N-[1,2-dimethoxy-10-methylsulphone-9-oxo-3-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydropyran-2-yloxy)-5,6,7,9-tetrahydro-benzo[a]heptalen-7-yl]-acetamide), D2 ([1,2-dimethoxy-10-methylsulphanyl-9-oxo-3-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydropyran-2-yloxy)-5,6,7,9-tetrahydro-benzo[a]heptalen-7-yl]-amine), D3 (N-[1,2-dimethoxy-3-hydroxy-10-methylsulphanyl-9-oxo-5,6,7,9-tetrahydro-benzo[a]heptalen-7-yl]-acetamide or 3-O-demethylthiocolchicine), D4 ([1,2-dimethoxy-3-hydroxy-10-methylsulphanyl-9-oxo-5,6,7,9-tetrahydro-benzo[a]heptalen-7-yl]-amine or N-deacetyl-3-O-demethylthiocochicine). Moreover, the structures of DPs were confirmed by synthesis of the reference standards which were fully characterized by MS, NMR, IR analyses. Finally a comprehensive degradation scheme of TCC was proposed allowing to outline D1SO and D3 as the indicators of its stability for oxidative and hydrolytic stress conditions.

  17. Evaluation of thermo sensitivity of curcumin and quantification of ferulic acid and vanillin as degradation products by a validated HPTLC method.

    PubMed

    Siddiqui, Nasir Ali

    2015-01-01

    Charismatic therapeutic potential of curcumin in biological research have triggered an interest to explore the thermal degradation pattern of curcumin, formation of ferulic acid and vanillin as degraded metabolites at different temperatures in methanol and corn oil. The results revealed 47% w/w loss of curcumin along with formation of 17% w/w vanillin and 9% w/w ferulic acid at boiling temperature of methanol while oil samples show 38.9% w/w loss of curcumin but not confirming the formation of ferulic acid and vanillin. Findings of this study revealed that formation of vanillin in methanol starts around 50°C and its concentration goes on increasing up to 70°C and then further degraded at boiling temperature of methanol. Formation of ferulic acid begins around 60°C and initially increases with rise of temperature and then decreases approaching boiling point of methanol. Vanillin as well as ferulic acid was absent in corn oil samples though degradation of curcumin was observed by reduction in peak area of curcumin. The present study was done by applying a validated high-performance thin-layer chromatography method. The method involved glass-backed HPTLC plates precoated with silica gel 60F254 as the stationary phase and toluene: ethyl acetate: methanol (8:1:1, v/v/v) as mobile phase.

  18. Production of Insecticide Degradates in Juices: Implications for Risk Assessment.

    PubMed

    Radford, Samantha A; Panuwet, Parinya; Hunter, Ronald E; Barr, Dana Boyd; Ryan, P Barry

    2016-06-08

    This study was designed to observe the production of degradates of two organophosphorus insecticides and one pyrethroid insecticide in beverages. Purified water, white grape juice, apple juice, and red grape juice were fortified with 500 ng/g malathion, chlorpyrifos, and permethrin, and aliquots were extracted for malathion dicarboxylic acid (MDA), 3,5,6-trichloro-2-pyridinol (TCPy), and 3-phenoxybenzoic acid (3-PBA) several times over a 15 day period of being stored in the dark at 2.5 °C. Overall, first-order kinetics were observed for production of MDA, and statistically significant production of TCPy was also observed. Statistically significant production of 3-phenoxybenzoic acid was not observed. Results indicate that insecticides degrade in food and beverages, and this degradation may lead to preexisting insecticide metabolites in the beverages. Therefore, it is suggested that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk.

  19. Ion chromatographic identification and quantification of glycol degradation products.

    PubMed

    Madera, M; Höflinger, W; Kadnar, R

    2003-05-16

    In water-based heat transfer systems, frequently glycols are added to the water to obtain freeze protection. For this purpose, ethylene glycol (EG) is the most common substance used. When heated, the glycol will slowly degrade and the pH of the glycol-water mixture will decrease, leading to corrosion and foaming problems. Carboxylic acids were identified as the main degradation products. Quantification of the carboxylic acids is of importance to monitor the degradation reactions in order to identify hot spots or overheating, caused by severe heat exchanger scaling, where pH measurements will not be sufficient due to buffer substances added for corrosion protection. In this work, ion chromatographic methods havebeen developed to identify the main degradation products of EG in heat transfer systems and to monitor the degradation process. Possible acidic reaction products of EG are glycolic acid, glyoxylic acid, oxalic acid, acetic acid and formic acid. Separations with a Dionex AS9-HC column with Na2CO3 eluents of differing concentrations showed that only trace amounts of carboxylic acids are present in aged heat transfer media. Oxalic acid can be quantified simultaneously to nitrite or molybdate which are added as corrosion inhibitors. A Dionex AS10 separation column with Na2B4O7 eluent enabled base line separation of glycolic acid, acetic acid and formic acid. Heat transfer media, which are operated in different heat transfer systems under different conditions, were analysed. A system was identified, where severe overheating due to fluid maldistribution in the heat exchanger took place.

  20. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  1. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  2. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  3. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  4. Water and UV degradable lactic acid polymers

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.

    1990-06-26

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylane glycols (PVB 6/22/90), propylene and and polypropylene (PVB 6/22/90) glycols, P-dioxanone, 1, 5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  5. Degradation of fish gelatin using hot-compressed water and the properties of the degradation products

    NASA Astrophysics Data System (ADS)

    Ueno, Shigeaki; Ichinoi, Hirokazu; Zhao, Jiahui; Fujii, Tomoyuki

    2015-04-01

    The degradation of fish gelatin using hot-compressed water was investigated. The hot-compressed water treatment resulted in the degradation of fish gelatin into peptides, and the number of the peptides increased with increasing the temperature. The distribution of amino acids in the product mixture indicated that hot-compressed water treatment at 240°C resulted in a high level of amino acid degradation, and the highest concentrations of free amino acids was at 220°C. Lysinoalanine, which is toxic, was rarely generated by hot-compressed water treatment at higher temperature range. Additionally, the optimum temperature for the hot-compressed water treatment with respect to the angiotensin I-converting enzyme inhibitory was at 180°C. These analyses demonstrate that the degradation of fish gelatin with hot-compressed water could be used to generate functional materials.

  6. Degradation of CYANEX 301 in Contact with Nitric Acid Media

    SciTech Connect

    Philippe Marc; Radu Custelcean; Gary S. Groenewold; John R. Klaehn; Dean R. Peterman; Laetitia H. Delmau

    2012-10-01

    The nature of the degradation product obtained upon contacting CYANEX 301 (bis(2,4,4-trimethylpentyl)dithiophosphinic acid) with nitric acid has been elucidated and found to be a disulfide derivative. The first step to the degradation of CYANEX 301 in toluene has been studied using 31P{1H} NMR after being contacted with nitric acid media. The spectrum of the degradation product exhibits a complex multiplet around dP = 80 ppm. A succession of purifications of CYANEX 301 has resulted in single crystals of the acidic form and the corresponding ammonium salt. Unlike the original CYANEX 301, which consists of a complex diastereomeric mixture displaying all possible combinations of chiral orientations at the 2-methyl positions, the purified crystals were shown by single-crystal X-ray diffraction to be racemates, containing 50:50 mixtures of the [R;R] and [S;S] diastereomers. The comparison between the 31P {1H} NMR spectra of the degradation products resulting from the diastereomerically pure CYANEX 301 and the original diastereomeric mixture has elucidated the influence of the isomeric composition on the multiplicity of the 31P {1H} NMR peak. These NMR data indicate the initial degradation leads to a disulfide-bridged condensation product displaying multiple resonances due to phosphorus–phosphorus coupling, which is caused by the inequivalence of the two P atoms as a result of their different chirality. A total of nine different NMR resonances, six of which display phosphorus–phosphorus coupling, could be assigned, and the identity of the peaks corresponding to phosphorus atoms coupled to each other was confirmed by 31P {1H} homodecoupled NMR analysis.

  7. Microbial degradation of usnic acid in the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Barboza, Perry S.; Green, Thomas K.; Folkow, Lars P.; Blix, Arnoldus Schytte; Mathiesen, Svein D.

    2010-03-01

    Reindeer ( Rangifer tarandus) eat and utilize lichens as an important source of energy and nutrients in winter. Lichens synthesize and accumulate a wide variety of phenolic secondary compounds, such as usnic acid, as a defense against herbivores and to protect against damage by UV-light in solar radiation. We have examined where and to what extent these phenolic compounds are degraded in the digestive tract of the reindeer, with particular focus on usnic acid. Three male reindeer were given ad libitum access to a control diet containing no usnic acid for three weeks and then fed lichens ad libitum (primarily Cladonia stellaris) containing 9.1 mg/g DM usnic acid for 4 weeks. Usnic acid intake in reindeer on the lichen diet was 91-117 mg/kg BM/day. In spite of this, no trace of usnic acid or conjugates of usnic acid was found either in fresh rumen fluid, urine, or feces. This suggests that usnic acid is rapidly degraded by rumen microbes, and that it consequently is not absorbed by the animal. This apparent ability to detoxify lichen phenolic compounds may gain increased importance with future enhanced UV-B radiation expected to cause increased protective usnic acid/phenol production in lichens.

  8. Production of shikimic acid.

    PubMed

    Ghosh, Saptarshi; Chisti, Yusuf; Banerjee, Uttam C

    2012-01-01

    Shikimic acid is a key intermediate for the synthesis of the antiviral drug oseltamivir (Tamiflu®). Shikimic acid can be produced via chemical synthesis, microbial fermentation and extraction from certain plants. An alternative production route is via biotransformation of the more readily available quinic acid. Much of the current supply of shikimic acid is sourced from the seeds of Chinese star anise (Illicium verum). Supply from star anise seeds has experienced difficulties and is susceptible to vagaries of weather. Star anise tree takes around six-years from planting to bear fruit, but remains productive for long. Extraction and purification from seeds are expensive. Production via fermentation is increasing. Other production methods are too expensive, or insufficiently developed. In the future, production in recombinant microorganisms via fermentation may become established as the preferred route. Methods for producing shikimic acid are reviewed.

  9. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  10. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products.

    PubMed

    Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François

    2015-01-01

    We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%.

  11. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  12. Varying Conditions for Hexanoic Acid Degradation with BioTiger™

    SciTech Connect

    Foreman, Koji; Milliken, Charles; Brigmon, Robin

    2016-07-27

    BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able to completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of degradation

  13. Poly(lactic acid) degradable plastics, coatings, and binders

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-05-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids` being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  14. Poly(lactic acid) degradable plastics, coatings, and binders

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-01-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids' being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  15. Development and Validation of an RP-HPLC Method for the Determination of Vinpocetine and Folic Acid in the Presence of a Vinpocetine Alkaline Degradation Product in Bulk and in Capsule Form.

    PubMed

    Elkady, Ehab F; Tammam, Marwa H; Mohamed, Ayman A

    2017-01-11

    An alkaline-forced degradation hydrolytic product of vinpocetine was prepared and characterized by 1H-NMR, FTIR spectroscopy, and MS. Subsequently, a simple, selective, and validated reversed-phase HPLC method was developed for the simultaneous estimation of vinpocetine and folic acid in the presence of a vinpocetine alkaline degradation product. Chromatographic separation was achieved using an isocratic mobile phase consisting of acetonitrile-0.02 M KH2PO4 [containing 0.2% (v/v) triethylamine and adjusted to pH 6 with orthophosphoric acid; (80 + 20, v/v)] at a flow rate of 0.9 mL/min at ambient temperature on a Eurospher II C18 (250 × 4.6 mm, 5 μm) column, with UV detection at 280 nm for folic acid and 230 nm for vinpocetine and its alkaline hydrolytic product. Linearity, accuracy, and precision were found to be acceptable over a concentration range of 12.5-200 μg/mL for vinpocetine and 1-16 μg/mL for folic acid. The proposed method was successfully applied for the determination of both drugs and a vinpocetine hydrolysis product in a laboratory-prepared mixture and in a capsule containing both drugs.

  16. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    PubMed

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index.

  17. [HPLC-MS identification of degradation products of levofloxacin].

    PubMed

    Wang, Wei-Jian; Li, Tao; Li, Jun; Liu, Qi; Xie, Yuan-Chao

    2012-04-01

    The study aims to identify the degradation products of levofloxacin by HPLC-MS. The degradation products of levofloxacin were chromatographed on Agilent Zorbax Extend-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 0.1% ammonium acetate solution (using methanoic acid to adjust to pH 3.5)-acetonitrile at the flow rate of 0.5 mL x min(-1) (gradient elution), the column temperature was 40 degrees C. Descarboxyl levofloxacin, desmethyl levofloxacin and levofloxacin N-oxide were identified through comparing with the standard spectrum and the results of mass spectrometry, i.e. m/z 318.2 was descarboxyl levofloxacin, m/z 348.2 was desmethyl levofloxacin, m/z 378.1 was levofloxacin-N-oxide. This method is simple, fast, accurate and suitable for the identification of degradation products of levofloxacin.

  18. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  19. Perfluorooctanoic Acid Degradation Using UV-Persulfate Process: Modeling of the Degradation and Chlorate Formation.

    PubMed

    Qian, Yajie; Guo, Xin; Zhang, Yalei; Peng, Yue; Sun, Peizhe; Huang, Ching-Hua; Niu, Junfeng; Zhou, Xuefei; Crittenden, John C

    2016-01-19

    In this study, we investigated the destruction and by-product formation of perfluorooctanoic acid (PFOA) using ultraviolet light and persulfate (UV-PS). Additionally, we developed a first-principles kinetic model to simulate both PFOA destruction and by-product and chlorate (ClO3(-)) formation in ultrapure water (UW), surface water (SW), and wastewater (WW). PFOA degradation was significantly suppressed in the presence of chloride and carbonate species and did not occur until all the chloride was converted to ClO3(-) in UW and for low DOC concentrations in SW. The model was able to simulate the PS decay, pH changes, radical concentrations, and ClO3(-) formation for UW and SW. However, our model was unable to simulate PFOA degradation well in WW, possibly from PS activation by NOM, which in turn produced sulfate radicals.

  20. Amino Acid Degradation after Meteoritic Impact Simulation

    NASA Technical Reports Server (NTRS)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  1. Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Loftin, Keith A.; Lee, Edward A.; Hinshaw, Gary H.; Dietze, Julie E.; Scribner, Elisabeth A.

    2009-01-01

    The U.S. Geological Survey method (0-2141-09) presented is approved for the determination of glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate in water. It was was validated to demonstrate the method detection levels (MDL), compare isotope dilution to standard addition, and evaluate method and compound stability. The original method USGS analytical method 0-2136-01 was developed using liquid chromatography/mass spectrometry and quantitation by standard addition. Lower method detection levels and increased specificity were achieved in the modified method, 0-2141-09, by using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The use of isotope dilution for glyphosate and AMPA and pseudo isotope dilution of glufosinate in place of standard addition was evaluated. Stable-isotope labeled AMPA and glyphosate were used as the isotope dilution standards. In addition, the stability of glyphosate and AMPA was studied in raw filtered and derivatized water samples. The stable-isotope labeled glyphosate and AMPA standards were added to each water sample and the samples then derivatized with 9-fluorenylmethylchloroformate. After derivatization, samples were concentrated using automated online solid-phase extraction (SPE) followed by elution in-line with the LC mobile phase; the compounds separated and then were analyzed by LC/MS/MS using electrospray ionization in negative-ion mode with multiple-reaction monitoring. The deprotonated derivatized parent molecule and two daughter-ion transition pairs were identified and optimized for glyphosate, AMPA, glufosinate, and the glyphosate and AMPA stable-isotope labeled internal standards. Quantitative comparison between standard addition and isotope dilution was conducted using 473 samples analyzed between April 2004 and June 2006. The mean percent difference and relative standard deviation between the two quantitation methods was 7.6 plus or minus 6.30 (n = 179), AMPA 9.6 plus or minus 8

  2. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    PubMed

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes.

  3. Degradation and Isotope Source Tracking of Glyphosate and Aminomethylphosphonic Acid.

    PubMed

    Li, Hui; Joshi, Sunendra R; Jaisi, Deb P

    2016-01-27

    Glyphosate [N-(phosphonomethyl) glycine], an active ingredient of the herbicide Roundup, and its main metabolite, aminomethylphosphonic acid (AMPA), have been frequently reported to be present in soils and other environments and thus have heightened public concerns on their potential adverse effects. Understanding the fate of these compounds and differentiating them from other naturally occurring compounds require a toolbox of methods that can go beyond conventional methods. Here, we applied individual isotope labeling technique whereby each compound or mineral involved in the glyphosate and AMPA degradation reaction was either synthesized or chosen to have distinct (18)O/(16)O ratios so that the source of incorporated oxygen in the orthophosphate generated and corresponding isotope effect during C-P bond cleavage could be identified. Furthermore, we measured original isotope signatures of a few commercial glyphosate sources to identify their source-specific isotope signatures. Our degradation kinetics results showed that the rate of glyphosate degradation was higher than that of AMPA in all experimental conditions, and both the rate and extent of degradation were lowest under anoxic conditions. Oxygen isotope ratios (δ(18)OP) of orthophosphate generated from glyphosate and AMPA degradation suggested that one external oxygen atom from ambient water, not from dissolved oxygen or mineral, was incorporated into orthophosphate with the other three oxygen atoms inherited from the parent molecule. Interestingly, δ(18)OP values of all commercial glyphosate products studied were found to be the lightest among all orthophosphates known so far. Furthermore, isotope composition was found to be unaffected due to variable degradation kinetics, light/dark, and oxic/anoxic conditions. These results highlight the importance of phosphate oxygen isotope ratios as a nonconventional tool to potentially distinguish glyphosate sources and products from other organophosphorus compounds

  4. Screening organophosphorus nerve agent degradation products in pesticide mixtures by GC-ICPMS.

    PubMed

    Richardson, Douglas D; Caruso, Joseph A

    2007-10-01

    Gas chromatography inductively coupled plasma mass spectrometry (GC-ICPMS) was utilized for the analysis of four organophosphorus nerve agent degradation products in the presence of mixtures of common organophosphorus pesticides. The first degradation products of sarin (isopropyl methylphosphonic acid, GB acid), cyclosarin (cyclohexyl methylphosphonic acid, GF acid), and soman (pinacolyl methylphosphonic acid) as well as their common final hydrolysis product methyl phosphonic acid were utilized throughout these experiments. Due to the non-volatile nature of these alkyl phosphonic acid degradation products, derivatization was performed to generate the volatile tert-butyl dimethylsilyl species. Degraded organophosphorus pesticide standards were obtained for acephate, chlorpyrifos, dichlorvos, ethion, and parathion ethyl. Mixtures consisting of three pesticides in the presence of a single nerve agent degradation product were prepared. GC-ICPMS allowed for the separation and detection of all four degradation products in the presence of pesticide mixtures in just over 12 minutes. This is the first study analyzing pesticides as interfering species for analysis of nerve agent degradation products by GC-ICPMS.

  5. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  6. Microbial Community Evolution Is Significantly Impacted by the Use of Calcium Isosaccharinic Acid as an Analogue for the Products of Alkaline Cellulose Degradation

    PubMed Central

    Kyeremeh, Isaac A.; Charles, Christopher J.; Rout, Simon P.; Laws, Andrew P.

    2016-01-01

    Diasteriomeric isosaccharinic acid (ISA) is an important consideration within safety assessments for the disposal of the United Kingdoms’ nuclear waste legacy, where it may potentially influence radionuclide migration. Since the intrusion of micro-organisms may occur within a disposal concept, the impact of ISA may be impacted by microbial metabolism. Within the present study we have established two polymicrobial consortia derived from a hyperalkaline soil. Here, α-ISA and a diatereomeric mix of ISAs’ were used as a sole carbon source, reflecting two common substrates appearing within the literature. The metabolism of ISA within these two consortia was similar, where ISA degradation resulted in the acetogenesis and hydrogenotrophic methanogenesis. The chemical data obtained confirm that the diastereomeric nature of ISA is likely to have no impact on its metabolism within alkaline environments. High throughput sequencing of the original soil showed a diverse community which, in the presence of ISA allowed for the dominance the Clostridiales associated taxa with Clostridium clariflavum prevalent. Further taxonomic investigation at the genus level showed that there was in fact a significant difference (p = 0.004) between the two community profiles. Our study demonstrates that the selection of carbon substrate is likely to have a significant impact on microbial community composition estimations, which may have implications with respect to a safety assessment of an ILW-GDF. PMID:27806095

  7. Microbial Community Evolution Is Significantly Impacted by the Use of Calcium Isosaccharinic Acid as an Analogue for the Products of Alkaline Cellulose Degradation.

    PubMed

    Kyeremeh, Isaac A; Charles, Christopher J; Rout, Simon P; Laws, Andrew P; Humphreys, Paul N

    2016-01-01

    Diasteriomeric isosaccharinic acid (ISA) is an important consideration within safety assessments for the disposal of the United Kingdoms' nuclear waste legacy, where it may potentially influence radionuclide migration. Since the intrusion of micro-organisms may occur within a disposal concept, the impact of ISA may be impacted by microbial metabolism. Within the present study we have established two polymicrobial consortia derived from a hyperalkaline soil. Here, α-ISA and a diatereomeric mix of ISAs' were used as a sole carbon source, reflecting two common substrates appearing within the literature. The metabolism of ISA within these two consortia was similar, where ISA degradation resulted in the acetogenesis and hydrogenotrophic methanogenesis. The chemical data obtained confirm that the diastereomeric nature of ISA is likely to have no impact on its metabolism within alkaline environments. High throughput sequencing of the original soil showed a diverse community which, in the presence of ISA allowed for the dominance the Clostridiales associated taxa with Clostridium clariflavum prevalent. Further taxonomic investigation at the genus level showed that there was in fact a significant difference (p = 0.004) between the two community profiles. Our study demonstrates that the selection of carbon substrate is likely to have a significant impact on microbial community composition estimations, which may have implications with respect to a safety assessment of an ILW-GDF.

  8. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  9. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids.

    PubMed

    de las Rivas, Blanca; Rodríguez, Héctor; Curiel, José Antonio; Landete, José María; Muñoz, Rosario

    2009-01-28

    The potential to produce volatile phenols from hydroxycinnamic acids was investigated for lactic acid bacteria (LAB) isolated from Spanish grape must and wine. A PCR assay was developed for the detection of LAB that potentially produce volatile phenols. Synthetic degenerate oligonucleotides for the specific detection of the pdc gene encoding a phenolic acid decarboxylase were designed. The pdc PCR assay amplifies a 321 bp DNA fragment from phenolic acid decarboxylase. The pdc PCR method was applied to 85 strains belonging to the 6 main wine LAB species. Lactobacillus plantarum, Lactobacillus brevis, and Pediococcus pentosaceus strains produce a positive response in the pdc PCR assay, whereas Oenococcus oeni, Lactobacillus hilgardii, and Leuconostoc mesenteroides strains did not produce the expected PCR product. The production of vinyl and ethyl derivatives from hydroxycinnamic acids in culture media was determined by high-performance liquid chromatography. A relationship was found between pdc PCR amplification and volatile phenol production, so that the LAB strains that gave a positive pdc PCR response produce volatile phenols, whereas strains that did not produce a PCR amplicon did not produce volatile phenols. The proposed method could be useful for a preliminary identification of LAB strains able to produce volatile phenols in wine.

  10. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products.

    PubMed

    Noutsopoulos, Constantinos; Koumaki, Elena; Mamais, Daniel; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S

    2015-01-01

    Endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) are two groups of emerging pollutants the significance of which rests on their persistent detection in the aquatic environment and their possible adverse effects. Wastewater treatment plants are one of the major ways for transporting such chemicals in the aquatic environment. Chlorination is usually the last stage of treatment before wastewater being disposed to the aquatic environment. This work focuses on the evaluation of the effect of chlorine dose and specific wastewater characteristics (pH, total suspended solids and humic acids) on the removal of target EDCs and NSAIDs through chlorination. Another objective of this study is the identification of chlorination by-products of specific EDCs and NSAIDs and their dependence on contact time. Based on the results it is concluded that the effect of chlorine dose and humic acids concentration on the degradation of target compounds during chlorination is minimal. On the contrary, pH is a critical parameter which highly affects process performance. Moreover, it is concluded that not only the free available chlorine species, but also the properties of EDCs and NSAIDs under different pH conditions can affect chlorination process performance. The effect of TSS on the degradation of the target compounds during chlorination is more profound for chemicals with high Kow values and therefore higher affinity to partition to the particulate phase (i.e. nonylphenols, triclosan). Several degradation by-products were identified through chlorination of nonylphenol, bisphenol A and diclofenac. The dependence of these by-products on chlorination contact time is also demonstrated.

  11. Bioenergetics and pathway of acid blue 113 degradation by Staphylococcus lentus.

    PubMed

    Sekar, Sudharshan; Mahadevan, Surianarayanan; Shanmugam, Bhuvanesh Kumar; Mandal, Asit Baran

    2012-01-01

    Bioreaction calorimetric studies of degradation of the dye acid blue 113 by Staphylococcus lentus are reported for the first time. The heat released during the dye degradation process can be successfully measured using reaction calorimeter. Power time and oxygen uptake rate (OUR) profile followed each other suggesting that heat profiles could monitor the progress of the dye degradation in biocalorimetry. The shifts observed in power-time profile indicated three distinct phases of the bioprocess indicating simultaneous utilization of glucose (primary) and dye (secondary carbon source). Secretion of azoreductase enzyme enhanced the degradation process. Optimization of aeration and agitation rates was observed to be vital to efficient dye degradation. The degradative pathway for acid blue 113 by S. lentus was delineated via high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), and gas chromatography coupled with mass spectrometry (GC-MS) analyses. Interestingly the products of degradation were found to have low toxicity, as per cytotoxicity measurements.

  12. Identification of degradation products of indigoids by tandem mass spectrometry.

    PubMed

    Witkoś, Katarzyna; Lech, Katarzyna; Jarosz, Maciej

    2015-11-01

    The study concerns identification of photodegradation products of indigotin, indirubin and isoindigo. Experimental methodology consists of degradation of standard solutions of indigoids in a solar box and analysis of samples taken at different aging time by using capillary high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometric and spectrophotometric detectors. Identification of the formed compounds was based on careful interpretation of the electrospray ionization MS/MS spectra. Apart from the well-known degradation products of indigoids: isatin, isatoic anhydride and anthranilic acid, another seven species were also identified, and their proposed structures were confirmed by high-resolution molecular masses measurements; according to the best knowledge of authors, they have not been reported so far. The obtained results formed the basis for postulating mechanism of the process. Moreover, the MRM (Multiple Reaction Monitoring) method was developed for the identification of natural dyes and their degradation products in textiles of historical value. Apart from such colorants as indigotin and flavonoids, also presence of degradation products of indigoids was confirmed.

  13. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    degradation of catechol to oxalic acid delivers a maximum yield of approximately 60 %, whereas the presence of chloride reduces the formation of oxalic acid to 30 %. Chloride possibly induces further competing reactions of catechol leading to a lower concentration of oxalic acid. Freeze-dried soil samples have been tested for production of oxalic acid, where the rate of organic matter seems to play an important role for the formation. By adding iron (III) and/or hydrogen peroxide oxalic acid yields increase, which demonstrates the reaction of soil organic matter with iron (III) and hydrogen peroxide as expected. Thus the natural abiotic formation of oxalic acid is confirmed. The results of the soil measurements are similar to those obtained with catechol. Therefore, the newly gained insights with model compounds appear to be applicable to soil conditions and these findings increase our understanding of the degradation pathways of soil organic matter. Furthermore an overview of the rates of oxalic acid formation of a variety of soil samples is shown and discussed in the light of different soil parameter.

  14. [Catalytic ozonation by ceramic honeycomb for the degradation of oxalic acid in aqueous solution].

    PubMed

    Zhao, Lei; Sun, Zhi-Zhong; Ma, Jun

    2007-11-01

    Comparative experiments for the degradation of oxalic acid in aqueous solution were carried out in the three processes of ozonation alone, ceramic honeycomb-catalyzed ozonation and ceramic honeycomb adsorption. The results show that the degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation, ozonation alone and ceramic honeycomb adsorption systems are 37.6%, 2.2% and 0.4%, and the presence of ceramic honeycomb catalyst significantly improves the degradation rate of oxalic acid compared to the results from non-catalytic ozonation and adsorption. With the addition of tert-butanol, the degradation rates of oxalic acid in catalytic ozonation system decrease by 24.1%, 29.0% and 30.1%, respectively, at the concentration of 5, 10 and 15 mg x L(-1). This phenomenon indicates that ceramic honeycomb-catalyzed ozonation for the degradation of oxalic acid in aqueous solution follows the mechanism of *OH oxidation, namely the heterogeneous surface of catalyst enhances the initiation of *OH. The results of TOC analysis demonstrate that the process of ceramic honeycomb-catalyzed ozonation can achieve the complete mineralization level without the formation of intermediary degradation products. The experimental results suggest that the reaction temperature has positive relationship with the degradation rate of oxalic acid. The degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation system are 16.4%, 37.6%, 61.3% and 68.2%, at the respective reaction temperature of 10, 20, 30 and 40 degrees C.

  15. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    SciTech Connect

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.; Utley, B.L.

    1982-12-01

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinic and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.

  16. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  17. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  18. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  19. Properties and degradability of hydrothermal carbonization products.

    PubMed

    Eibisch, Nina; Helfrich, Mirjam; Don, Axel; Mikutta, Robert; Kruse, Andrea; Ellerbrock, Ruth; Flessa, Heinz

    2013-09-01

    Biomass carbonized via hydrothermal carbonization (HTC) yields a liquid and a carbon (C)-rich solid called hydrochar. In soil, hydrochars may act as fertilizers and promote C sequestration. We assumed that the chemical composition of the raw material (woodchips, straw, grass cuttings, or digestate) determines the properties of the liquid and solid HTC products, including their degradability. Additionally, we investigated whether easily mineralizable organic components adsorbed on the hydrochar surface influence the degradability of the hydrochars and could be removed by repetitive washing. Carbon mineralization was measured as CO production over 30 d in aerobic incubation experiments with loamy sand. Chemical analysis revealed that most nutrients were preferably enriched in the liquid phase. The C mineralization of hydrochars from woodchips (2% of total C added), straw (3%), grass (6%), and digestate (14%) were dependent on the raw material carbonized and were significantly lower (by 60-92%; < 0.05) than the mineralization of the corresponding raw materials. Washing of the hydrochars significantly decreased mineralization of digestate-hydrochar (up to 40%) but had no effect on mineralization rates of the other three hydrochars. Variations in C mineralization between different hydrochars could be explained by multiple factors, including differences in the O/C-H/C ratios, C/N ratios, lignin content, amount of oxygen-containing functional groups, and pH. In contrast to the solids, the liquid products were highly degradable, with 61 to 89% of their dissolved organic C being mineralized within 30 d. The liquids may be treated aerobically (e.g., for nutrient recovery).

  20. Degradation of hop bitter acids by fungi.

    PubMed

    Huszcza, Ewa; Bartmańska, Agnieszka; Anioł, Mirosław; Maczka, Wanda; Zołnierczyk, Anna; Wawrzeńczyk, Czesław

    2008-01-01

    Nine fungal strains related to: Trametes versicolor, Nigrospora oryzae, Inonotus radiatus, Crumenulopsis sororia, Coryneum betulinum, Cryptosporiopsis radicicola, Fusarium equiseti, Rhodotorula glutinis and Candida parapsilosis were tested for their ability to degrade humulones and lupulones. The best results were obtained for T. versicolor culture, in which humulones and lupulones were fully degraded after 4days of incubation in the dark or after 36h in the light. The experiments were performed on a commercial hop extract and on sterilized spent hops.

  1. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation.

    PubMed

    Reale, Anna; Konietzny, Ursula; Coppola, Raffaele; Sorrentino, Elena; Greiner, Ralf

    2007-04-18

    Lactic acid fermentation of cereal flours resulted in a 100 (rye), 95-100 (wheat), and 39-47% (oat) reduction in phytate content within 24 h. The extent of phytate degradation was shown to be independent from the lactic acid bacteria strain used for fermentation. However, phytate degradation during cereal dough fermentation was positively correlated with endogenous plant phytase activity (rye, 6750 mU g(-1); wheat, 2930 mU g(-1); and oat, 23 mU g(-1)), and heat inactivation of the endogenous cereal phytases prior to lactic acid fermentation resulted in a complete loss of phytate degradation. Phytate degradation was restored after addition of a purified phytase to the liquid dough. Incubation of the cereal flours in buffered solutions resulted in a pH-dependent phytate degradation. The optimum of phytate degradation was shown to be around pH 5.5. Studies on phytase production of 50 lactic acid bacteria strains, previously isolated from sourdoughs, did not result in a significant production of intra- as well as extracellular phytase activity. Therefore, lactic acid bacteria do not participate directly in phytate degradation but provide favorable conditions for the endogenous cereal phytase activity by lowering the pH value.

  2. Stress degradation studies and stability-indicating TLC-densitometric method of glycyrrhetic acid

    PubMed Central

    2013-01-01

    Background Glycyrrhetic acid, a pentacyclic triterpenoid, possesses a broad range of pharmacological activities and serves as template to synthesize many bioactive drugs. This paper describes a simple, accurate, and sensitive stability-indicating TLC densitometric method for the determination of glycyrrhetic acid and its degradation product as per the ICH guidelines. Results Separation was carried out on TLC aluminium sheet pre-coated with silica gel 60F254 using chloroform, methanol and formic acid (9:0.9:0.1, v/v). Compact spot for glycyrrhetic acid was found at Rf value of 0.42 ± 0.03. Densitometric analysis was carried out in the absorbance mode at λmax 254 nm. Glycyrrhetic acid was found to be stable to the exposure of base, neutral, oxidation, dry heating treatment and wet heating treatment, but showed degradation under acidic and photochemical conditions. Moreover, fragmentation pattern of glycyrrhetic acid was developed by using a positive ion electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QqTOF-MS/MS) hybrid instrument. A photo-degraded product was characterized through comparison of mass spectrometric studies with glycyrrhetic acid. Conclusion The developed stability-indicating TLC-densitometric method can be applied for routine analysis of glycyrrhetic acid in the presence of its degradation products. PMID:23327365

  3. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  4. Polysorbate 20 Degradation in Biopharmaceutical Formulations: Quantification of Free Fatty Acids, Characterization of Particulates, and Insights into the Degradation Mechanism.

    PubMed

    Tomlinson, Anthony; Demeule, Barthélemy; Lin, Baiwei; Yadav, Sandeep

    2015-11-02

    Polysorbate 20 (PS20), a commonly used surfactant in biopharmaceuticals, showed degradation upon long-term (∼18-36 months) storage of two monoclonal antibody (mAb, mAb-A, and mAb-B) drug products at 2-8 °C. The PS20 degradation resulted in the accumulation of free fatty acids (FFA), which ultimately precipitated to form particles upon long-term storage. This study documents the development, qualification, and application of a method for FFA quantification in soluble and insoluble fraction of protein formulation. The method was applied to the quantification of capric acid, lauric acid, myristic acid, palmitic/oleic acid, and stearic acid in placebo as well as active protein formulations on stability. Quantification of FFA in both the soluble and insoluble fraction of mAb-A and mAb-B provided a better mechanistic understanding of PS20 degradation and the dynamics of subsequent fatty acid particle formation. Additionally, the use of this method for monitoring and quantitation of the FFA on real time storage stability appears to aid in identifying batches with higher probability for particulate formation upon extended storage at 5 °C.

  5. Isolation and structure determination of oxidative degradation products of atorvastatin.

    PubMed

    Kracun, Matjaz; Kocijan, Andrej; Bastarda, Andrej; Grahek, Rok; Plavec, Janez; Kocjan, Darko

    2009-12-05

    Methods were developed for the preparation and isolation of four oxidative degradation products of atorvastatin. ATV-FX1 was prepared in the alkaline acetonitrile solution of atorvastatin with the addition of hydrogen peroxide. The exposition of aqueous acetonitrile solution of atorvastatin to sunlight for several hours followed by the alkalization of the solution with potassium hydroxide to pH 8-9 gave ATV-FXA. By the acidification of the solution with phosphoric acid to pH 3 ATV-FXA1 and FXA2 were prepared. The isolation of oxidative degradation products was carried out on a reversed-phase chromatographic column Luna prep C18(2) 10 microm applying several separation steps. The liquid chromatography coupled with a mass spectrometer (LC-MS), high resolution MS (HR-MS), 1D and 2D NMR spectroscopy methods were applied for the structure elucidation. All degradants are due to the oxidation of the pyrrole ring. The most probable reaction mechanism is intermediate endoperoxide formation with subsequent rearrangement and nucleophilic attack by the 5-hydroxy group of the heptanoic fragment. ATV-FX1 is 4-[1b-(4-Fluoro-phenyl)-6-hydroxy-6-isopropyl-1a-phenyl-6a-phenylcarbamoyl-hexahydro-1,2-dioxa-5a-aza-cyclopropa[a]inden-3-yl]-3-(R)-hydroxy-butyric acid and has a molecular mass increased by two oxygen atoms with regard to atorvastatin. ATV-FXA is the regioisomeric compound, 4-[6-(4-Fluoro-phenyl)-6-hydroxy-1b-isopropyl-6a-phenyl-1a-phenylcarbamoyl-hexahydro-1,2-dioxa-5a-aza-cyclopropa[a]inden-3-yl]-3-(R)-hydroxy-butyric acid. Its descendants ATV-FXA1 and FXA2 appeared without the atorvastatin heptanoic fragment and are 3-(4-Fluoro-benzoyl)-2-isobutyryl-3-phenyl-oxirane-2-carboxylic acid phenylamide and 4-(4-Fluoro-phenyl)-2,4-dihydroxy-2-isopropyl-5-phenyl-3,6-dioxa-bicyclo[3.1.0]hexane-1-carboxylic acid phenylamide, respectively. Quantitative NMR spectroscopy was employed for the assay determination of isolated oxidative degradation products. The results obtained were used

  6. Report: More Information Is Needed On Toxaphene Degradation Products

    EPA Pesticide Factsheets

    Report #2006-P-00007, Dec 16, 2005. Toxaphene in the environment changes, or degrades. The degradation products are different from the original toxaphene in chemical composition and how they appear to testing instruments, so they could go unreported.

  7. The role of purine degradation in methane biosynthesis and energy production in Methanococcus vannielii

    SciTech Connect

    DeMoll, E.

    1990-10-22

    Research continues on the role of purine degradation in methane biosynthesis and energy production in Methanococcus vannielii. This report summarizes current progress of the research. Topics include: A survey of other methanogens for the purine degradation pathway; isolate and characterize the enzyme and products of formiminoglycine cleavage; ascertain the fate of glycine from the formiminoglycine cleavage; elucidate the route of incorporation of the formyl moiety of formiminoglycine into methane biosynthesis; determine the percent methane and amino acid synthesis from purine degradation; and related studies on xanthine dehydrogenase and pyrimidine degradation of M. Vannielii. (SM)

  8. Characteristics and kinetics of catalpol degradation and the effect of its degradation products on free radical scavenging

    PubMed Central

    Wei, Guo-dong; Wen, Xue-sen

    2014-01-01

    Background: The dried and steamed roots of Rehmannia glutinosa have different pharmacological functions and indications. Catalpol, the main active component of the dried root, was found to be entirely degraded together with amino acids and some oligosaccharides during preparation of the steamed root. Its degradation may contribute to the differences between dried and steamed roots. Objective: To reveal the characteristics and kinetics of catalpol degradation, and evaluate its influence on the antioxidant properties of steamed Rehmannia roots. Materials and Methods: Purified catalpol was heated under different pH and temperature values for different times, alone or with sugars or amino acids. Catalpol concentration was determined by high-performance liquid chromatography. Browning was expressed by the absorbance at 420 nm (A420), and antioxidation was displayed by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging ability (SADPPH). Activation energy was calculated using Arrhenius plotting. Results: Catalpol was stable in neutral conditions and sensitive to acidic pH under high temperatures. Sugars had no influence on catalpol degradation; however, most amino acids, except for proline, could promote the degradation, and were associated with an increase in A420 and SADPPH values. These changes were proved to be mainly related with catalpol aglycone and were dependent on the presence of amino acids. Catalpol degradation was found to obey first-order kinetics. The activation energies were 81.7, 88.8 and 98.7 kJ/mol at pH 4.0, 5.0, and 6.0 respectively, and 70.7 kJ/mol at pH 4.0 value and in the presence of glycine. Conclusions: Catalpol degradation, especially, in the presence of amino acids can substantially boost antioxidant properties of the products; therefore, the traditional method for processing Rehmannia root seems rather apt. PMID:24914291

  9. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    PubMed

    Lu, Naihao; Li, Jiayu; Tian, Rong; Peng, Yi-Yuan

    2014-06-16

    Previous studies have shown that carboxylated single-walled carbon nanotubes (SWCNTs) can be catalytically biodegraded by hypochlorite (OCl-) and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase (MPO). However, the importance of protein-SWCNT interactions in the biodegradation of SWCNTs was not stressed. Here, we used both experimental and theoretical approaches to investigate the interactions of SWCNTs with human serum albumin (HSA, one of the most abundant proteins in blood circulation) and found that the binding was involved in the electrostatic interactions of positively charged Arg residues of HSA with the carboxyls on the nanotubes, along with the π-π stacking interactions between SWCNTs and aromatic Tyr residues in HSA. Compared with SWCNTs, the binding of HSA could result in a reduced effect for OCl- (or the human MPO system)-induced SWCNTs degradation in vitro. However, the HSA-SWCNT interactions would enhance cellular uptake of nanotubes and stimulate MPO release and OCl- generation in neutrophils, thereby creating the conditions favorable for the degradation of the nanotubes. Upon zymosan stimulation, both SWCNTs and HSA-SWCNTs were significantly biodegraded in neutrophils, and the degree of biodegradation was more for HSA-SWCNTs under these relevant in vivo conditions. Our findings suggest that the binding of HSA may be an important determinant for MPO-mediated SWCNT biodegradation in human inflammatory cells and therefore shed light on the biomedical and biotechnological applications of safe carbon nanotubes by comprehensive preconsideration of their interactions with human serum proteins.

  10. Phytic acid degrading lactic acid bacteria in tef-injera fermentation.

    PubMed

    Fischer, Maren M; Egli, Ines M; Aeberli, Isabelle; Hurrell, Richard F; Meile, Leo

    2014-11-03

    Ethiopian injera, a soft pancake, baked from fermented batter, is preferentially prepared from tef (Eragrostis tef) flour. The phytic acid (PA) content of tef is high and is only partly degraded during the fermentation step. PA chelates with iron and zinc in the human digestive tract and strongly inhibits their absorption. With the aim to formulate a starter culture that would substantially degrade PA during injera preparation, we assessed the potential of microorganisms isolated from Ethiopian household-tef fermentations to degrade PA. Lactic acid bacteria (LAB) were found to be among the dominating microorganisms. Seventy-six isolates from thirteen different tef fermentations were analyzed for phytase activity and thirteen different isolates of seven different species were detected to be positive in a phytase screening assay. In 20-mL model tef fermentations, out of these thirteen isolates, the use of Lactobacillus (L.) buchneri strain MF58 and Pediococcus pentosaceus strain MF35 resulted in lowest PA contents in the fermented tef of 41% and 42%, respectively of its initial content. In comparison 59% of PA remained when spontaneously fermented. Full scale tef fermentation (0.6L) and injera production using L. buchneri MF58 as culture additive decreased PA in cooked injera from 1.05 to 0.34±0.02 g/100 g, representing a degradation of 68% compared to 42% in injera from non-inoculated traditional fermentation. The visual appearance of the pancakes was similar. The final molar ratios of PA to iron of 4 and to zinc of 12 achieved with L. buchneri MF58 were decreased by ca. 50% compared to the traditional fermentation. In conclusion, selected LAB strains in tef fermentations can degrade PA, with L. buchneri MF58 displaying the highest PA degrading potential. The 68% PA degradation achieved by the application of L. buchneri MF58 would be expected to improve human zinc absorption from tef-injera, but further PA degradation is probably necessary if iron absorption has to

  11. Toxicology of atmospheric degradation products of selected hydrochlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Kaminsky, Laurence S.

    1990-01-01

    Trifluoroacetic acid (TFA) is a liquid with a sharp biting odor. It has been proposed as the product of environmental degradation of the hydrochlorofluorocarbons HCFC-123, HCFC-124, HFC-134a, and HFC-125. Compounds HCFC-141b and HCFC-142b could yield mixed fluorochloroacetic acids, for which there is no available toxicologic data. The release of hydrochlorofluorocarbons into the environment could also give rise to HF, but the additional fluoride burden (1 to 3 ppb) in rainwater is trivial compared to levels in fluoridated drinking water (1 ppm), and would provide an insignificant risk to humans. Thus, in this paper only the toxocologic data on TFA is reviewed to assess the potential risks of environmental exposure.

  12. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    PubMed

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products.

  13. Bacterial degradation of m-nitrobenzoic acid.

    PubMed Central

    Nadeau, L J; Spain, J C

    1995-01-01

    Pseudomonas sp. strain JS51 grows on m-nitrobenzoate (m-NBA) with stoichiometric release of nitrite. m-NBA-grown cells oxidized m-NBA and protocatechuate but not 3-hydroxybenzoate, 4-hydroxy-3-nitrobenzoate, 4-nitrocatechol, and 1,2,4-benzenetriol. Protocatechuate accumulated transiently when succinate-grown cells were transferred to media containing m-NBA. Respirometric experiments indicated that the conversion of m-NBA to protocatechuate required 1 mol of oxygen per mol of substrate. Conversions conducted in the presence of 18O2 showed the incorporation of both atoms of molecular oxygen into protocatechuate. Extracts of m-NBA-grown cells cleaved protocatechuate to 2-hydroxy-4-carboxymuconic semialdehyde. These results provide rigorous proof that m-NBA is initially oxidized by a dioxygenase to produce protocatechuate which is further degraded by a 4,5-dioxygenase. PMID:7574625

  14. Chemical Degradation Studies on a Series of Dithiophosphinic Acids

    SciTech Connect

    Melissa E. Freiderich; Dean R. Peterman; John R. Klaehn; Philippe Marc; Laetitia H. Delmau

    2014-04-01

    A significant increase in the stability of a series of dithiophosphinic acids (DPAHs) under oxidizing acidic conditions was achieved. The degradation behavior of a series of DPAHs, designed for lanthanide/actinide separation, was examined. The stability of the DPAHs, when contacted with varying nitric acid concentrations, was tested and monitored using 31P {1H} NMR. Changes in the functional groups of the DPAHs resulted in substantial increases in the stability. However, when placed in contact with 2 M HNO3 all the DPAHs eventually showed signs of degradation. The addition of a radical scavenger, hydrazine, inhibited the degradation of the DPAHs. In the presence of a small concentration of hydrazine, five of the DPAHs remained stable for over a month in direct contact with 2 M HNO3.

  15. Degradation by acetic acid for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Uchiyama, Naomi; Hara, Yukiko

    2015-04-01

    The degradation of crystalline Si photovoltaic modules during damp-heat test was studied using some test modules with and without polymer film insertion by observing electrical and electroluminescence properties and by chemical analyses. Acetic acid generated by the hydrolysis decomposition of ethylene vinyl acetate used as an encapsulant is the main origin of degradation. The change in electroluminescence images is explained on the basis of the corrosion of electrodes by acetic acid. On the other hand, little change was observed at the pn junction even after damp-heat test for a long time. Therefore, carrier generation occurs even after degradation; however, such generated carriers cannot be collected owing to corrosion of electrodes. The guiding principle that module structure and module materials without saving acetic acid into the modules was obtained.

  16. Chemical Degradation Studies on a Series of Dithiophosphinic Acids

    SciTech Connect

    Freiderich, Melissa E; Delmau, Laetitia Helene; Peterman, D. R.; Marc, Philippe L; Klaehn, John D.

    2014-01-01

    In this study a significant increase in the stability of a series of dithiophosphinic acids (DPAHs) under oxidizing acidic conditions was achieved. The degradation behavior of a series of DPAHs, designed for lanthanide/actinide separation, was examined. The stability of the DPAHs, when contacted with varying nitric acid concentrations, was tested and monitored using 31P {1H} NMR. Changes in the functional groups of the DPAHs resulted in substantial increases in the stability. However, all the DPAHs eventually showed signs of degradation when placed in contact with 2 M HNO3. The addition of a radical scavenger, hydrazine, inhibited the degradation of the DPAHs. With small amounts of hydrazine, five of the DPAHs remained stable for over a month in direct contact with 2 M HNO3.

  17. Vibrational spectroscopy for online monitoring of extraction solvent degradation products

    SciTech Connect

    Peterson, J.; Robinson, T.; Bryan, S.A.; Levitskaia, T.G.

    2013-07-01

    In our research, we are exploring the potential of online monitoring of the organic solvents for the flowsheets relevant to the used nuclear fuel reprocessing and tributyl phosphate (TBP)- based extraction processes in particular. Utilization of vibrational spectroscopic techniques permits the discrimination of the degradation products from the primary constituents of the loaded extraction solvent. Multivariate analysis of the spectral data facilitates development of the regression models for their quantification in real time and potentially enables online implementation of a monitoring system. Raman and FTIR spectral databases were created and used to develop the regression partial least squares (PLS) chemometric models for the quantitative prediction of HDBP (dibutyl phosphoric acid) degradation product, TBP, and UO{sub 2}{sup 2+} extraction organic product phase. It was demonstrated that both these spectroscopic techniques are suitable for the quantification of the Purex solvent components in the presence of UO{sub 2}(NO{sub 3}){sub 2}. Developed PLS models successfully predicted HDBP and TBP organic concentrations in simulated Purex solutions.

  18. MONITORING AND MODELLING OF RADIOLYTIC DEGRADATION PRODUCTS OF TBP/n-DODECANE

    SciTech Connect

    Peterson, James M.; Levitskaia, Tatiana G.; Bryan, Samuel A.

    2011-10-03

    The Plutonium Uranium Extraction (PUREX) solvent system was developed for the separation of plutonium and uranium from irradiated fuel. Since the implementation of this process, the degradation chemistry associated with the irradiated solvent system, tributyl phosphate (TBP)/n-dodecane/nitric acid has been extensively studied as the integrity of the organic solvent is paramount for reproducible performance of the separation flowsheet (extraction/scrub/strip) during multiple cycles. In PUREX-like processes, the extent of decomposition is dependent not only upon the solvent, but also upon the presence of constituents, such as nitric acid, that interact with TBP and increase its susceptibility to radiolytic degradation. The build-up of degradation products in the organic phase alters process flowsheet performance via modification of the metal ions speciation, loss of solvent components, and enhanced water transport into the organic phase. On-line identification and quantification of the solvent degradation products would provide the necessary information for more detailed process control as well as providing the basis for timing solvent washing or replacement. In our research, we are exploring the potential of on-line monitoring for the PUREX solvent radiolytic degradation products. To identify degradation products, TBP/n-dodecane solvent, contacted with aqueous nitric acid solutions of variable concentrations are subjected to various gamma radiation external doses then analyzed by electro-spray ionization mass spectrometry (ESMS). In addition, vibrational spectroscopy is utilized to monitor and quantify major degradation products including dibutyl phosphoric acid (HDBP) and monobutyl phosphoric acid (H2MBP) in TBP/n-dodecane solvent. The compiled spectroscopic databases serve for developing interpretive and predictive chemometric models for the quantification of the PUREX solvent degradation products.

  19. Raman spectroscopy and capillary zone electrophoresis for the analysis of degradation processes in commercial effervescent tablets containing acetylsalicylic acid and ascorbic acid.

    PubMed

    Neuberger, Sabine; Jooß, Kevin; Flottmann, Dirk; Scriba, Gerhard; Neusüß, Christian

    2017-02-05

    In order to ensure the stability of pharmaceutical products appropriate manufacturing and storage conditions are required. In general, the degradation of active pharmaceutical ingredients (APIs) and subsequent formation of degradation products affect the pharmaceutical quality. Thus, a fast and effective detection and characterization of these substances is mandatory. Here, the applicability of Raman spectroscopy and CZE for the characterization of the degradation of effervescent tablets containing acetylsalicylic acid (ASA) and ascorbic acid (AA) was evaluated. Therefore, a degradation study was performed analyzing tablets from two different manufacturers at varying conditions (relative humidity (RH) 33%, 52% and 75% at 30°C). Raman spectroscopy combined with principal component analysis could be successfully applied for the fast and easy discrimination of non-degraded and degraded effervescent tablets after a storage period of approximately 24h (RH 52%). Nevertheless, a clear identification or quantification of APIs and degradation products within the analyzed tablets was not possible, i.a. due to missing reference materials. CZE-UV enabled the quantification of the APIs (ASA, AA) and related degradation products (salicylic acid (SA); semi-quantitative also mono- and diacetylated AA) within the complex tablet mixtures. The higher the RH, the faster the degradation of ASA and AA as well as the formation of the degradation products. Mono- and diacetylated AA are major primary degradation products of AA for the applied effervescent tablets. A significant degradation of the APIs was detected earlier by CZE (6-12h, RH 52%) than by Raman spectroscopy. Summarized, Raman spectroscopy is well-suited as quick test to detect degradation of these tablets and CZE can be utilized for further detailed characterization and quantification of specific APIs and related degradation products.

  20. Glycolic acid modulates the mechanical property and degradation of poly(glycerol, sebacate, glycolic acid).

    PubMed

    Sun, Zhi-Jie; Wu, Lan; Huang, Wei; Chen, Chang; Chen, Yan; Lu, Xi-Li; Zhang, Xiao-Lan; Yang, Bao-Feng; Dong, De-Li

    2010-01-01

    The development of biodegradable materials with controllable degradation properties is beneficial for a variety of applications. Poly(glycerol-sebacate) (PGS) is a promising candidate of biomaterials; so we synthesize a series of poly(glycerol, sebacate, glycolic acid) (PGSG) with 1:2:0, 1:2:0.2, 1:2:0.4, 1:2:0.6, 1:2:1 mole ratio of glycerol, sebacate, and glycolic acid to elucidate the relation of doped glycolic acid to the degradation rate and mechanical properties. The microstructures of the polymers with different doping of glycolic acid were dissimilar. PGSG with glycolic acid in the ratio of 0.2 displayed an integral degree of ordering, different to those with glycolic acid in the ratio of 0, 0.4, 0.6, and 1, which showed mild phase separation structure. The number, DeltaH(m), and temperature of the PGSG melting peaks tended to decrease with the increasing ratio of doped glycolic acid. In vitro and in vivo degradation tests showed that the degradation rate of PGSG with glycolic acid in the ratio of 0.2 was slowest, but in the ratio range of 0, 0.4, and 0.6, the degradation rate increased with the increase of glycolic acid. All PGSG samples displayed good tissue response and anticoagulant effects. Our data suggest that doping glycolic acid can modulate the microstructure and degree of crosslinking of PGS, thereby control the degradation rate of PGS.

  1. Determination of the Acid-Base Dissociation Constant of Acid-Degradable Hexamethylenetetramine by Capillary Zone Electrophoresis.

    PubMed

    Takayanagi, Toshio; Shimakami, Natsumi; Kurashina, Masashi; Mizuguchi, Hitoshi; Yabutani, Tomoki

    2016-01-01

    The acid-base equilibrium of hexamethylenetetramine (hexamine) was analyzed with its effective electrophoretic mobility by capillary zone electrophoresis. Although hexamine is degradable in a weakly acidic aqueous solution, and the degraded products of ammonia and formaldehyde can be formed, the effective electrophoretic mobility of hexamine was measured in the pH range between 2.8 and 6.9. An acid-base dissociation equilibrium of the protonated hexamine was analyzed based on the mobility change, and an acid dissociation constant of pKa = 4.93 ± 0.01 (mean ± standard error, ionic strength: 0.020 mol dm(-3)) was determined. The monoprotic acid-base equilibrium of hexamine was confirmed through comparisons of its electrophoretic mobility with the N-ethylquinolinium ion and with the monocationic N-ethyl derivative of hexamine, as well as a slope analysis of the dissociation equilibrium.

  2. Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain.

    PubMed

    Ma, Yuping; Wang, Xiaoyu; Nie, Xueling; Zhang, Zhan; Yang, Zongcan; Nie, Cong; Tang, Hongzhi

    2016-08-01

    In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.

  3. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  4. Epoxy ceriporic acid produced by selective lignin-degrading fungus Ceriporiopsis subvermispora.

    PubMed

    Nishimura, Hiroshi; Setogawa, Yuichi; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2011-11-01

    Ceriporiopsis subvermispora is a selective white rot basidiomycete which degrades lignin in wood at a distance far from enzymes. Low molecular mass metabolites play a central role in the oxidative degradation of lignin. To understand the unique wood-decaying mechanism, we surveyed the oxidized derivatives of ceriporic acids (alk(en)ylitaconic acids) produced by C. subvermispora using high-resolution liquid chromatography multiple-stage mass spectrometry (HR-LC/MS(n)). The analysis of the precursor and product ions from the extract suggested that an epoxidized derivative of ceriporic acid is produced by the fungus. To identify the new metabolite, an authentic compound of ceriporic acid epoxide was synthesized in vitro by reacting (R)-3-[(Z)-hexadec-7-enyl]-itaconic acid (ceriporic acid C) with m-chloroperbenzoic acid. The precursor and product ions from the natural metabolite and authentic epoxide were identical and distinguishable from those of hydroxy and hydroperoxy derivatives after reduction with NaBD(4). Feeding experiments with [U-(13)C]-glucose, 99% and the subsequent analyses of the first and second generation product ions demonstrated that the oxidized ceriporic acid was (R)-3-(7,8-epoxy-hexadecyl)-itaconic acid. To our knowledge, this study is the first to report that natural alkylitaconic acid bears an epoxy group on its side chain.

  5. The nucleotide sequence of cysteine transfer ribonucleic acid from baker's yeast. Identification of the products from partial degradation of the molecule and derivation of the complete sequence.

    PubMed Central

    Holness, N J; Atfield, G

    1976-01-01

    1. A series of large oligonucleotide fragments derived from tRNA Cys, were separated chromatographically and the sequence of each was deduced by examination of the products of digestion with pancreatic and T1 ribonucleases. 2. The location of the specific cleavage points in the nucleotide chain was similar to that produced by brief treatment with pancreatic ribonuclease. 3. The fragments could be arranged into two alternative sequences. The correct sequence was deduced by the sequential removal and identification of the first nine nucleotides from the 3'-end of the terminal half of the molecules. PMID:819006

  6. Photo-degradation of clofibric acid by ultraviolet light irradiation at 185 nm.

    PubMed

    Li, Wenzhen; Lu, Shuguang; Chen, Nuo; Gu, Xiaogang; Qiu, Zhaofu; Fan, Ji; Lin, Kuangfei

    2009-01-01

    As a metabolite of lipid regulators, clofibric acid (CA) was investigated in this study for its ultraviolet (UV) degradation at monochromatic wavelength of 185 nm using Milli-Q water and sewage treatment plant (STP) effluent. The effects of CA initial concentration, solution pH, humic acid (HA), nitrate and bicarbonate anions on CA degradation performances were evaluated. All CA degradation patterns well fitted the pseudo-first-order kinetic model. The results showed that OH generated from water photolysis by UV185 irradiation was involved, resulting in indirect CA photolysis but contributed less to the whole CA removal when compared to the main direct photolysis process. Acid condition favored slightly to CA degradation and other constituents in solution, such as HA (5.0-100.0 mg L(-1)), nitrate and bicarbonate anions (1.0x10(-3) mol L(-1) and 0.1 mol L(-1)), had negative effects on CA degradation. When using real STP effluent CA degradation could reach 97.4% (without filtration) and 99.3% (with filtration) after 1 hr irradiation, showing its potential mean in pharmaceuticals removal in UV disinfection unit. Mineralization tests showed that rapid chloride ion release happened, resulting in no chlorinated intermediates accumulation, and those non-chlorinated intermediate products could further be nearly completely degraded to CO2 and H2O after 6 hrs.

  7. Vascular responsiveness to dimethylaminoethyl methacrylate and its degradation products.

    PubMed

    Abebe, Worku; Maddux, William F; Schuster, George S; Lewis, Jill B

    2003-07-01

    The increasing use of acrylate-based resins in dentistry has raised questions about the biocompatibility of these substances with oral tissues. The focus of the present investigation was to assess the responsiveness of blood vessels to the resin polymerization accelerating agent dimethylaminoethyl methacrylate (DMAEMA) and its degradation products dimethylethanolamine (DME) and methacrylic acid (MAA), using the rat aortic ring preparation as a tissue model. DMAEMA induced concentration-dependent relaxation of norepinephrine (NE)-contracted aortic rings with and without endothelium. N-nitro-L-arginine methyl ester (L-NAME) selectively inhibited the endothelium-dependent relaxation induced by DMAEMA, suggesting the release of nitric oxide from the endothelium by DMAEMA. Both indomethacin and glybenclamide attenuated the vasorelaxation elicited by DMAEMA in the presence as well as in the absence of endothelium, providing evidence for the role of vasorelaxant prostanoid(s) and K(ATP) channel activation in the responses observed. On the other hand, while MAA was without any apparent effect on the rat aorta, DMAEMA at high and DME at relatively low concentrations caused contraction of the tissues with and without endothelium in the absence of NE. The DME-induced contraction was inhibited by indomethacin, suggesting the involvement of contractile arachidonic acid metabolite(s) in the action of DME. This observation was supported by the findings of increased thromboxane A(2) (TXA(2)) production in aortic rings incubated with DME. Taken together, the data suggest that both DMAEMA and its degradation product, DME, are vasoactive, inducing vasorelaxation and contraction by various mechanisms that may involve the release of nitric oxide from the endothelium, the activation of smooth muscle K(ATP) channels, and the generation of vasorelaxant prostanoid(s) and TXA(2). These effects may play a role in tissue homeostasis and certain adverse conditions associated with the use of

  8. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue-gas desulfurization. Final report, June 1984-June 1986

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1988-02-01

    This report gives results of a study of organic acid-degradation conjugated with sulfite oxidation under flue-gas desulfurization (FGD) conditions. The oxidative degradation constant, k12, is defined as the ratio of organic-acid degradation rate and sulfite oxidation-rate times the ratio of the concentrations of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of Mn or Fe. However, k12 is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free-radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide (the major product), smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons.

  9. Photocatalytic degradation of polycyclic aromatic hydrocarbon benzo[a]pyrene by iron oxides and identification of degradation products.

    PubMed

    Gupta, Himanshu; Gupta, Bina

    2015-11-01

    Photocatalytic decay profiles of polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (B[a]P) have been investigated on various synthesized iron oxides and on soil surfaces under a set of diverse conditions. Samples were analysed using the developed HPLC procedure. Results of the present study demonstrate fastest photodisintegration of B[a]P on goethite followed by haematite, magnetite, akaganeite and maghemite, respectively. The effect of soil pH, irradiation wavelength and iron oxide and oxalic acid dose on the degradation of B[a]P was evaluated. The studies revealed enhancement in photodegradation in the presence of oxalic acid due to the occurrence of fenton like reaction. The results showed faster B[a]P degradation under short wavelength UV radiation. Rate constants in acidic, neutral and alkaline soils under optimum dissipation conditions were 1.11×10(-2), 7.69×10(-3) and 9.97×10(-3) h(-1), respectively. The study indicates that iron oxides along with oxalic acid are effective photocatalyst for the remediation of benzo[a]pyrene contaminated soil surfaces. The degradation products of B[a]P in the soils of different pH in presence of goethite were identified and degradation pathways proposed. Peaks due to toxic metabolites such as diones, diols and epoxides disappear after 120 h in all the three soils.

  10. Systematic identification of thermal degradation products of HPMCP during hot melt extrusion process.

    PubMed

    Karandikar, Hrushikesh; Ambardekar, Rohan; Kelly, Adrian; Gough, Tim; Paradkar, Anant

    2015-01-01

    A systematic identification of the degradation products of hydroxypropyl methylcellulose phthalate (HPMCP) during hot melt extrusion (HME) has been performed. A reverse phase HPLC method was developed for the extrudates of both hydroxypropyl methylcellulose acetate succinate (HPMCAS) and HPMCP polymers to quantify their thermal hydrolytic products: acetic acid (AA), succinic acid (SA) for HPMCAS and phthalic acid (PA) for HPMCP, without hydrolysing the polymers in strong alkaline solutions. The polymers were extruded in the temperature range of 160-190 °C at different screw rotation speeds and hydrolytic impurities were analysed. Investigation of extruded HPMCP showed an additional thermal degradation product, who is structural elucidation revealed to be phthalic anhydride (PAH). Moreover, two environmental analytical impurities, dimethyl phthalate and methyl benzoate formed in situ were recorded on GC-MS and their origin was found to be associated with PAH derivatization. Using the experimental data gathered during this study, a degradation mechanism for HPMCP is proposed.

  11. Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth.

    PubMed

    Luo, Shusheng; Chen, Baowei; Lin, Li; Wang, Xiaowei; Tam, Nora Fung-Yee; Luan, Tiangang

    2014-12-02

    Abundant microbes including bacteria, fungi, or algae are capable of biodegrading polycyclic hydrocarbons (PAHs). However, pure cultures never occur in the contaminated environments. This study aimed to understand the general potential mechanisms of interactions between microbes under pollution stress by constructing a consortium of PAH-degrading microalga (Selenastrum capricornutum) and bacterium (Mycobacterium sp. strain A1-PYR). Bacteria alone could grow on the pyrene, whereas the growth of algae alone was substantially inhibited by the pyrene of 10 mg L(-1). In the mixing culture of algae and bacteria, the growth rate of algae was significantly increased from day 4 onward. Rapid bacterial degradation of pyrene might mitigate the toxicity of pyrene to algae. Phenolic acids, the bacterial degradation products of pyrene, could serve as the phytohormone for promoting algal growth in the coculture of algae and bacteria. In turn, bacterial growth was also enhanced by the algae presented in the mixing culture. Consequently, the fastest degradation of pyrene among all biodegradation systems was achieved by the consortium of algae and bacteria probably due to such interactions between the two species by virtue of degradation products. This study reveals that the consortium containing multiple microbial species is high potential for microbial remediation of pyrene-contaminated environments, and provides a new strategy to degrade the recalcitrant PAHs.

  12. Degradation products of cyanidin glycosides from tart cherries and their bioactivities.

    PubMed

    Seeram, N P; Bourquin, L D; Nair, M G

    2001-10-01

    The bioactive anthocyanins present in tart cherries, Prunus cerasus L. (Rosaceae) cv. Balaton, are cyanidin 3-glucosylrutinoside (1), cyanidin 3-rutinoside (2), and cyanidin 3-glucoside (3). Cyanidin (4) is the major anthocyanidin in tart cherries. In our continued evaluation of the in vivo and in vitro efficacy of these anthocyanins to prevent inflammation and colon cancer, we have added these compounds to McCoy's 5A medium in an effort to identify their degradation products during in vitro cell culture studies. This resulted in the isolation and characterization of protocatechuic acid (5), the predominant degradation product. In addition, 2,4-dihydroxybenzoic acid (6) and 2,4,6-trihydroxybenzoic acid (7) were identified as degradation products. However, these degradation products were not quantified. Compounds 5-7 were also identified as degradation products when anthocyanins were subjected to varying pH and thermal conditions. In cyclooxygenase (COX)-I and -II enzyme inhibitory assays, compounds 5-7 did not show significant activities when compared to the NSAIDs Naproxen, Celebrex, and Vioxx, or Ibuprofen, at 50 microM concentrations. However, at a test concentration of 50 microM, the antioxidant activity of protocatechuic acid (5) was comparable to those of the commercial antioxidants tert-butylhydroquinone (TBHQ), butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA), and superior to that of vitamin E at 10 microM concentrations.

  13. Research of the degradation products of chitosan's angiogenic function

    NASA Astrophysics Data System (ADS)

    Wang, Jianyun; Chen, Yuanwei; Ding, Yulong; Shi, Guoqi; Wan, Changxiu

    2008-11-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 °C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent.

  14. LC-MS/MS method for the characterization of the forced degradation products of Entecavir.

    PubMed

    Ramesh, Thippani; Rao, Pothuraju Nageswara; Rao, Ramisetti Nageswara

    2014-02-01

    A rapid, specific, and reliable isocratic LC-MS/MS method has been developed and validated for the identification and characterization of the stressed degradation products of Entecavir (ETV). ETV, an antiviral drug, was subjected to hydrolysis (acidic, alkaline, and neutral), oxidation, photolysis and thermal stress, as per the international conference on harmonization specified conditions. The drug showed extensive degradation under oxidative and acid hydrolysis stress conditions. However, it was stable to thermal, acidic, neutral, and photolysis stress conditions. A total of five degradation products were observed and the chromatographic separation of the drug and its degradation products were achieved on a Waters Symmetry C18 (250 mm × 4.6 mm, id, 5 μm) column using 20 mM ammonium acetate (pH 3)/acetonitrile (50:50, v/v) as a mobile phase. The degradation products were characterized by LC-MS/MS and its fragmentation pathways were proposed. The LC-MS method was validated with respect to specificity, linearity, accuracy, and precision. No previous reports were found in the literature regarding the degradation behavior of ETV.

  15. Kinetics and Degradation Products of Trichloroethene.

    DTIC Science & Technology

    1986-05-01

    contribution by the acid and base catalysis rates and the rate in neutral water according to the following equation: kt = ka [H+I + kn + kb[OH-I if the...HYDROGENATION (REFERENCE 64) cyclohexene 1,2 - ethanediol limonene ascorbic acid dihydrofuran phenols ethanol formic acid propan - 2 - 01 formates benzyl...C . H HCI 0 CO 0 C000CO .4H H FORMIC ACID AND GLYOXYLIC ACID CARBON MONOXIDE Figure S. Postulated 1 cheme for the let.ibolisi of TC ( R ’renc , S

  16. Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle.

    PubMed

    Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2012-01-01

    The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.

  17. Effects of ultrasonic processing on degradation of salvianolic acid B in aqueous solution.

    PubMed

    Guo, Y X; Zhang, L; Lu, L; Liu, E H; Shi, C Z

    2016-09-10

    To evaluate the stability of salvianolic acid B (Sal B) under ultrasound-assisted extraction in the pharmaceutical industry, degradation of Sal B under ultrasonic irradiation was investigated as the function of buffer concentration, pH, and temperature. With regard to Sal-B concentration, a first-order degradation process was determined, with 10% change in assay from its initial concentration as t90=4.81h, under maximum stability acidic conditions (pH 2.0) and at 25°C. The logkpH-pH profile described by specific acid-base catalysis and water molecules supported the experimental results. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed 7 major degradation products whose structures were characterized by electrospray ionization/mass spectrometry. A primary degradation pathway involved cleavage of the ester bond and ring-opening of benzofuran in Sal B was proposed. The complete degradation pathway of Sal B was also proposed. Results showed that ultrasonic irradiation leads to degradation of Sal B in aqueous solution.

  18. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  19. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    PubMed

    Wang, Xiaoyu; Chen, Meili; Xiao, Jingfa; Hao, Lirui; Crowley, David E; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.

  20. Correlation of hydrolytic degradation with structure for copolyesters produced from glycolic and adipic acids.

    PubMed

    Simitzis, J; Triantou, D; Soulis, S; Triantou, K; Simitzis, Ch; Zoumpoulakis, L

    2010-04-01

    Copolyesters based on glycolic acid (G) combined with adipic acid (A) and ethylene glycol (E) were synthesized in different percentage of molar ratios (A: 100-50% and G: 100%) and their hydrolytic degradation was studied and correlated with their structures. According to the DSC, the production of polyesters leads to the formation of copolyesters and not to mixtures of homopolyesters. The crystallites in the copolyesters mainly consist of continuous sequences of ethylene adipate structural units. The hydrolytic degradation of the polyesters was followed by their weight loss during hydrolysis and by the FTIR spectra of the initial polyesters compared with that of the degraded polyesters at equilibrium. The region between 1142 and 800 cm(-1) can be utilized to evaluate the extent of degradation of polyesters after their hydrolysis. The absorption bands at 1142, 1077 and 850 cm(-1) due to the amorphous region decrease after hydrolysis, whereas those at 972, 901 and 806 cm(-1) due to the crystalline region increase. The experimental data of the hydrolytic degradation were fitted with exponential rise to maximum type functions using two-parameter model, which describes very well mainly the initial part of the degradation, and four-parameter model (containing two exponential terms), which is appropriate for fitting the hydrolytic degradation on the entire time period (including the equilibrium). Furthermore, the kinetics of the hydrolytic degradation of the polyesters for the initial time period based on both models results to similar values of the rate constant, k. The synthesized copolyesters of glycolic acid combined with adipic acid and ethylene glycol are soluble in many common organic solvents opposite to PGA, leading to modified biodegradable polyesters and therefore they can be easily processed.

  1. The sources, fate, and toxicity of chemical warfare agent degradation products.

    PubMed Central

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  2. Efficient degradation of tannic acid by black Aspergillus species.

    PubMed

    Van Diepeningen, Anne D; Debets, Alfons J M; Varga, Janos; van der Gaag, Marijn; Swart, Klaas; Hoekstra, Rolf F

    2004-08-01

    A set of aspergillus strains from culture collections and wild-type black aspergilli isolated on non-selective media were used to validate the use of media with 20% tannic acid for exclusive and complete selection of the black aspergilli. The 20% tannic acid medium proved useful for both quantitative and qualitative selection of all different black aspergilli, including all recognized species: A. carbonarius, A. japonicus, A. aculeatus, A foetidus, A. heteromorphus, A. niger, A. tubingensis and A. brasiliensis haplotypes. Even higher concentrations of tannic acid can be utilized by the black aspergilli suggesting a very efficient tannic acid-degrading system. Colour mutants show that the characteristic ability to grow on high tannic acid concentrations is not causally linked to the other typical feature of these aspergilli, i.e. the formation of brown-black pigments. Sequence analysis of the A. niger genome using the A. oryzae tannase gene yielded eleven tannase-like genes, far more than in related species. Therefore, a unique ecological niche in the degradation of tannic acid and connected nitrogen release seems to be reserved for these black-spored cosmopolitans.

  3. Biotechnological production of citric acid

    PubMed Central

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  4. Degradation Kinetics and Mechanism of Lithospermic Acid under Low Oxygen Condition Using Quantitative 1H NMR with HPLC-MS

    PubMed Central

    Pan, Jianyang; Gong, Xingchu; Qu, Haibin

    2016-01-01

    A novel quantitative 1H NMR (Q-NMR) combined with HPLC-MS method has been proposed for investigating the degradation process of traditional Chinese medicine (TCM) components. Through this method, in-situ monitoring of dynamics degradation process of lithospermic acid (LA), one of the popular polyphenolic acids in TCM, was realized under low oxygen condition. Additionally, this methodology was proved to be simple, rapid and specific. Degradation kinetic runs have been carried out to systematically investigate the effects of two key environmental factors, initial pH values and temperatures. Eight main degradation products of LA were detected, seven of which were tentatively structural elucidated with the help of both NMR and LC-MS in this work and salvianolic acid A (Sal A) was the primary degradation product of LA. A possible degradation pathway of LA was proposed, subsequently. The results showed that the degradation of LA followed pseudo-first-order kinetics. The apparent degradation kinetic constants increased as the initial pH value of the phosphate buffer increased. Under the given conditions, the rate constants of overall degradation as a function of temperature obeyed the Arrhenius equation. Our results proved that the Q-NMR combined with HPLC-MS method can be one of the most promising techniques for investigating degradation process of active components in TCM. PMID:27776128

  5. Efficiency of uronic acid uptake in marine alginate-degrading fungi

    NASA Astrophysics Data System (ADS)

    Schaumann, K.; Weide, G.

    1995-03-01

    Despite the fact that many marine fungi, including phycomycetes, yeasts, ascomycetes and hyphomycetes, have been recorded from living and/or dead phaeophytes, only a few of these have been shown to be capable of degrading alginic acid or alginates. The degradation is achieved by the action of an exoenzyme complex, comprising alginate lyase, as well as alginate hydrolase activities. The latter was detected only recently by the authors. In this study, the growth of two marine sodiumalginate-degrading deuteromycetes, Asteromyces cruciatus and Dendryphiella salina, was investigated, and the assimilation efficiency of sodiumalginate and its uronic acid degradation products, respectively, was estimated from the economic coefficient (E). E is calculated from the mycelial dry weight, divided by the weight of substrate consumed for this production. The economic coefficient for A. cruciatus was 48.6%, and that of D. salina 38.9%. This indicates that the former species uses the alginate degradation products more efficiently than the latter. The observed E-values for the marine deuteromycetes agree with those from other fungi, e.g. terrestrial species. In general, it is concluded that the marine fungi appear to play a more important role in kelp-based ecosystems than was realized previously.

  6. Organic Acid Production by Basidiomycetes

    PubMed Central

    Takao, Shoichi

    1965-01-01

    Sixty-seven strains belonging to 47 species of Basidiomycetes were examined for their acid-producing abilities in glucose media, in both the presence and absence of CaCO3, in stationary and shake cultures. Some strains were found to produce large quantities of oxalic acid. The oxalic acid-producing strains could be separated into two groups. Strains of one group (mostly brown-rot fungi) were able to produce oxalic acid, regardless of whether CaCO3 was present in the medium. Strains of the other group (mostly white-rot fungi) were characterized by their ability to produce oxalic acid only when CaCO3 was added to the medium. With the latter group, shake-culturing was generally more effective than stationary culturing in respect to acid production. In the CaCO3-containing media, Schizophyllum commune, Merulius tremellosus, and Porodisculus pendulus were found to produce substantial amounts of L-malic acid as a main metabolic product, along with small quantities of oxalic and other acids in shake cultures. Especially, S. commune and M. tremellosus may be employed as malic acid-producing species. PMID:5867653

  7. Biodegradation of 5-chloro-2-picolinic acid by novel identified co-metabolizing degrader Achromobacter sp. f1.

    PubMed

    Wu, Zhi-Guo; Wang, Fang; Ning, Li-Qun; Stedtfeld, Robert D; Yang, Zong-Zheng; Cao, Jing-Guo; Sheng, Hong-Jie; Jiang, Xin

    2017-02-02

    Several bacteria have been isolated to degrade 4-chloronitrobenzene. Degradation of 4-chloronitrobenzene by Cupriavidus sp. D4 produces 5-chloro-2-picolinic acid as a dead-end by-product, a potential pollutant. To date, no bacterium that degrades 5-chloro-2-picolinic acid has been reported. Strain f1, isolated from a soil polluted by 4-chloronitrobenzene, was able to co-metabolize 5-chloro-2-picolinic acid in the presence of ethanol or other appropriate carbon sources. The strain was identified as Achromobacter sp. based on its physiological, biochemical characteristics, and 16S rRNA gene sequence analysis. The organism completely degraded 50, 100 and 200 mg L(-1) of 5-chloro-2-picolinic acid within 48, 60, and 72 h, respectively. During the degradation of 5-chloro-2-picolinic acid, Cl(-) was released. The initial metabolic product of 5-chloro-2-picolinic acid was identified as 6-hydroxy-5-chloro-2-picolinic acid by LC-MS and NMR. Using a mixed culture of Achromobacter sp. f1 and Cupriavidus sp. D4 for degradation of 4-chloronitrobenzen, 5-chloro-2-picolinic acid did not accumulate. Results infer that Achromobacter sp. f1 can be used for complete biodegradation of 4-chloronitrobenzene in remedial applications.

  8. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products.

    PubMed

    Gomi, Nichina; Yoshida, Shuji; Matsumoto, Kazutsugu; Okudomi, Masayuki; Konno, Hiroki; Hisabori, Toru; Sugano, Yasushi

    2011-11-01

    We examined the degradation of amaranth, a representative azo dye, by Bjerkandera adusta Dec 1. The degradation products were analyzed by high performance liquid chromatography (HPLC), visible absorbance, and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). At the primary culture stage (3 days), the probable reaction intermediates were 1-aminonaphthalene-2,3,6-triol, 4-(hydroxyamino) naphthalene-1-ol, and 2-hydroxy-3-[2-(4-sulfophenyl) hydrazinyl] benzenesulfonic acid. After 10 days, the reaction products detected were 4-nitrophenol, phenol, 2-hydroxy-3-nitrobenzenesulfonic acid, 4-nitrobenzene sulfonic acid, and 3,4'-disulfonyl azo benzene, suggesting that no aromatic amines were created. Manganese-dependent peroxidase activity increased sharply after 3 days culture. Based on these results, we herein propose, for the first time, a degradation pathway for amaranth. Our results suggest that Dec 1 degrades amaranth via the combined activities of peroxidase and hydrolase and reductase action.

  9. Acetamide herbicides and their degradation products in ground water and surface water of the United States, 1993-2003

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Dietze, Julie E.; Thurman, Michael

    2004-01-01

    During 1993 through 2003, the U.S. Geological Survey conducted a number of studies to investigate and document the occurrence, fate, and transport of acetamide herbicides and their degradation products in ground and surface water. As part of these studies, approximately 5,100 water samples were collected and analyzed for the acetamide parent herbicides acetochlor, alachlor, dimethenamid, flufenacet, and metolachlor and their degradation products ethanesulfonic acid, oxanilic acid, and sulfinyl acetic acid. During this period, various analytical methods were developed to detect and measure concentrations of acetamide herbicides and their degradation products in ground water and surface water. Results showed that the degradation products of acetamide herbicides in ground water were detected more frequently and occurred at higher concentrations than their parent compounds. Further study showed that the acetamide herbicides and their degradation products were detected more frequently in surface water than in ground water. In general, the parent compounds were detected at similar or greater frequencies than the degradation products in surface water. The developed methods and data were valuable for acquiring information about the occurrence, fate, and transport of the herbicides and their degradation products and the importance of analyzing for both parent compounds and their degradate products in water-quality studies.

  10. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength.

  11. Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria

    PubMed Central

    Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso

    2016-01-01

    The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485

  12. [Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].

    PubMed

    Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui

    2015-06-01

    Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.

  13. Degradation of 3-phenoxybenzoic acid by a Bacillus sp.

    PubMed

    Chen, Shaohua; Hu, Wei; Xiao, Ying; Deng, Yinyue; Jia, Jianwen; Hu, Meiying

    2012-01-01

    3-Phenoxybenzoic acid (3-PBA) is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L(-1) 3-PBA within 72 h in mineral salt medium (MSM). Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM). The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy) benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q(max), K(s) and K(i) of 0.8615 h(-1), 626.7842 mg·L(-1) and 6.7586 mg·L(-1), respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t(1/2)) for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.

  14. Metabolic engineering strategies to bio-adipic acid production.

    PubMed

    Kruyer, Nicholas S; Peralta-Yahya, Pamela

    2017-03-30

    Adipic acid is the most industrially important dicarboxylic acid as it is a key monomer in the synthesis of nylon. Today, adipic acid is obtained via a chemical process that relies on petrochemical precursors and releases large quantities of greenhouse gases. In the last two years, significant progress has been made in engineering microbes for the production of adipic acid and its immediate precursors, muconic acid and glucaric acid. Not only have the microbial substrates expanded beyond glucose and glycerol to include lignin monomers and hemicellulose components, but the number of microbial chassis now goes further than Escherichia coli and Saccharomyces cerevisiae to include microbes proficient in aromatic degradation, cellulose secretion and degradation of multiple carbon sources. Here, we review the metabolic engineering and nascent protein engineering strategies undertaken in each of these chassis to convert different feedstocks to adipic, muconic and glucaric acid. We also highlight near term prospects and challenges for each of the metabolic routes discussed.

  15. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  16. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  17. Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6.

    PubMed

    Stolz, A

    1999-10-01

    Sphingomonas xenophaga BN6 was isolated from the river Elbe as a member of a multispecies bacterial culture which mineralized 6-aminonaphthalene-2-sulfonate. Pure cultures of strain BN6 converted a wide range of amino- and hydroxynaphthalene-2-sulfonates via a catabolic pathway similar to that described for the metabolism of naphthalene to salicylate by Pseudomonas putida NAH7 or Pseudomonas sp NCIB 9816. In contrast to the naphthalene-degrading pseudomonads, S. xenophaga BN6 only partially degraded the naphthalenesulfonates and excreted the resulting amino- and hydroxysalicylates in almost stoichiometric amounts. Enzymes that take part in the degradative pathway of the naphthalenesulfonates by strain BN6 were purified, characterized and compared with the isofunctional enzymes from the naphthalene-degrading pseudomonads. According to the enzyme structures and the catalytic constants, no fundamental differences were found between the 1,2-dihydroxynaphthalene dioxygenase or the 2'-hydroxybenzalpyruvate aldolase from strain BN6 and the isofunctional enzymes from the naphthalene-degrading pseudomonads. The limited available sequence information about the enzymes from strain BN6 suggests that they show about 40-60% sequence identity to the isofunctional enzymes from the pseudomonads. In addition to the gene for the 1,2-dihydroxynaphthalene dioxygenase, the genes for two other extradiol dioxygenases were cloned and sequenced from strain BN6 and the corresponding gene products were studied. S. xenophaga BN6 has also been used as a model organism to study the mechanism of the non-specific reduction of azo dyes under anaerobic conditions and to establish combined anaerobic/aerobic treatment systems for the degradation of sulfonated azo dyes. Furthermore, the degradation of substituted naphthalenesulfonates by mixed cultures containing strain BN6 was studied in continuous cultures and was described by mathematical models.

  18. Nitrogen incorporation into lignite humic acids during microbial degradation

    SciTech Connect

    Dong, L.H.; Yuan, H.L.

    2009-07-01

    Previous study showed that nitrogen content in lignite humic acids (HA) increased significantly during lignite biodegradation. In this paper we evaluated the factors responsible for the increased level of N in HA and the formation of new nitrogen compound following microbial degradation. When the ammonium sulfate concentration in lignite medium was 0.5%, the N-content in HA was higher than that in the crude lignite humic acid (cHA); when the ammonium sulfate concentration was epsilon 0.5%, both the biodegraded humic acid (bHA) N-content and the content of bHA in lignite increased significantly, but at 2.0% no increase was observed. This indicated that HA incorporated N existing in the lignite medium, and more HA can incorporate more N with the increase of bHA amount in lignite during microbial degradation. CP/MAS {sup 15}N NMR analysis showed that the N incorporated into HA during biotransformation was in the form of free or ionized NH{sub 2}-groups in amino acids and sugars, as well as NH{sub 4}{sup +}. We propose nitrogen can be incorporated into HA biotically and abiotically. The high N content bHA has a potential application in agriculture since N is essential for plant growth.

  19. Isolation and characterization of monochloroacetic acid-degrading bacteria.

    PubMed

    Horisaki, Tadafumi; Yoshida, Eiko; Sumiya, Kaori; Takemura, Tetsuo; Yamane, Hisakazu; Nojiri, Hideaki

    2011-01-01

    Five Burkholderia strains (CL-1, CL-2, CL-3, CL-4, and CL-5) capable of degrading monochloroacetic acid (MCA) were isolated from activated sludge or soil samples gathered from several parts of Japan. All five isolates were able to grow on MCA as the sole source of carbon and energy, and argentometry and gas chromatography-mass spectroscopy analyses showed that these five strains consumed MCA completely and released chloride ions stoichiometrically within 25 h. The five isolates also grew on monobromoacetic acid, monoiodoacetic acid, and L-2-monochloropropionic acid as sole sources of carbon and energy. In addition, the five isolates could not grow with DCA but dehalogenate single chlorine from DCA. Because PCR analyses revealed that all five isolates have an identical group II dehalogenase gene fragment and no group I deh gene, only strain CL-1 was analyzed further. The partial amino acid sequence of the group II dehalogenase of strain CL-1, named DehCL1, showed 74.6% and 65.2% identities to corresponding regions of the two MCA dehalogenases, DehCI from Pseudomonas sp. strain CBS-3 and Hdl IVa from Burkholderia cepacia strain MBA4, respectively. The secondary-structure motifs of the haloacid dehalogenase (HAD) superfamily and the amino acid residues involved in substrate binding, catalysis, and hydrophobic pocket formation were conserved in the partial amino acid sequence of DehCL1.

  20. The pharmacology of curcumin: is it the degradation products?

    PubMed

    Shen, Liang; Ji, Hong-Fang

    2012-03-01

    The natural product curcumin has gained considerable attention in recent years for its multiple pharmacological activities, but more efforts are needed to understand how curcumin can have these pharmacological effects considering its low bioavailability. In addition, it is unclear how curcumin exerts inhibitory effects against numerous enzymes, especially those that cannot accommodate curcumin within recognized binding pockets. By analyzing the similarities between the biological activities of curcumin and its degradation products against diseases such as Alzheimer's disease and cancer, as well as the preferential inhibition of some enzymes by degradation products, it appears that the bioactive degradation products may contribute to the pharmacological effects of curcumin. This possibility should be given full attention when elucidating the pharmacology of this promising natural product for various diseases.

  1. Innovative use of a bacterial enzyme involved in sialic acid degradation to initiate sialic acid biosynthesis in glycoengineered insect cells

    PubMed Central

    Geisler, Christoph; Jarvis, Donald L.

    2012-01-01

    The baculovirus/insect cell system is widely used for recombinant protein production, but it is suboptimal for recombinant glycoprotein production because it does not provide sialylation, which is an essential feature of many glycoprotein biologics. This problem has been addressed by metabolic engineering, which has extended endogenous insect cell N-glycosylation pathways and enabled glycoprotein sialylation by baculovirus/insect cell systems. However, further improvement is needed because even the most extensively engineered baculovirus/insect cell systems require media supplementation with N-acetylmannosamine, an expensive sialic acid precursor, for efficient recombinant glycoprotein sialylation. Our solution to this problem focused on E. coli N-acetylglucosamine-6-phosphate 2′-epimerase (GNPE), which normally functions in bacterial sialic acid degradation. Considering that insect cells have the product, but not the substrate for this enzyme, we hypothesized that GNPE might drive the reverse reaction in these cells, thereby initiating sialic acid biosynthesis in the absence of media supplementation. We tested this hypothesis by isolating transgenic insect cells expressing E. coli GNPE together with a suite of mammalian genes needed for N-glycoprotein sialylation. Various assays showed that these cells efficiently produced sialic acid, CMP-sialic acid, and sialylated recombinant N-glycoproteins even in growth media without N-acetylmannosamine. Thus, this study demonstrated that a eukaryotic recombinant protein production platform can be glycoengineered with a bacterial gene, that a bacterial enzyme which normally functions in sialic acid degradation can be used to initiate sialic acid biosynthesis, and that insect cells expressing this enzyme can produce sialylated N-glycoproteins without N-acetylmannosamine supplementation, which will reduce production costs in glycoengineered baculovirus/insect cell systems. PMID:23022569

  2. Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge.

    PubMed

    Baroutian, Saeid; Gapes, Daniel J; Sarmah, Ajit K; Farid, Mohammed M; Young, Brent R

    2016-04-01

    The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products.

  3. [Surface-enhanced Raman spectra analysis of trace degradation products from goat horn].

    PubMed

    Pan, Yan-Ting; Ao, Ning-Jian; Shan, Guang-Hua; Zhang, Gang-Ping; Zhang, Quan-Bin; Yang, Ji-Wang; He, Chun-Lan; Huang, Yao-Xiong

    2014-04-01

    Nano-silver colloid was synthesized by using microwave method on the mixtures of sodium citrate solution and silver nitrate solution. The method has advantages of fast heating speed, uniform temperature distribution and easily controlled reaction conditions. The sizes and size distributions of the silver particles were characterized by means of quasi-elastic laser scattering (QLS). The average particles size was (53.27 +/- 2.65) nm and the size of the particles was mainly distributed around 56 nm. Surface-enhanced Raman spectra of the degradation products from goat horn were obtained with silver colloid as active substrate. It was observed that the Raman signal of SERS was enhanced significantly compared with that of regular Raman spectrum, especially at the Raman bands of 659, 830, 850, 929, 999, 1 028, 1 280, 1 439 and 1 599 cm(-1) which reflect the biochemical components in degradation products. The characteristic Raman bands of degradation products from goat horn were preliminary assigned. The assignments showed that the main constituents of the degradation products from goat horn were amino acids and polypeptides. It was for the first time that Surface-enhanced Raman spectroscopy was used to detect trace degradation products from the horns. Raman signal enhancement can be obtained with high sensitivity for the trace concentrations as low as ppm level. It is concluded that surface-enhanced Raman spectroscopy can provide a fast, direct and precise detecting method for the detection of trace degradation solution from horns.

  4. Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection.

    PubMed

    Richardson, Douglas D; Caruso, Joseph A

    2007-06-01

    Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC-ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC-time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC-ICPMS.

  5. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products.

    PubMed

    Prieto, Ailette; Möder, Monika; Rodil, Rosario; Adrian, Lorenz; Marco-Urrea, Ernest

    2011-12-01

    More than 90% of the antibiotics ciprofloxacin (CIPRO) and norfloxacin (NOR) at 2 mg L(-1) were degraded by Trametes versicolor after 7 days of incubation in malt extract liquid medium. In in vitro assays with purified laccase (16.7 nkat mL(-1)), an extracellular enzyme excreted constitutively by this fungus, 16% of CIPRO was removed after 20 h. The addition of the laccase mediator 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt led to 97.7% and 33.7% degradation of CIPRO and NOR, respectively. Inhibition of CIPRO and NOR degradation by the cytochrome P450 inhibitor 1-aminobenzotriazole suggests that the P450 system also plays a role in the degradation of the two antibiotics. Transformation products of CIPRO and NOR were monitored at different incubation times by triple-quadrupole and quadrupole time-of-flight mass spectrometry, and can be assigned to three different reaction pathways: (i) oxidation of the piperazinyl substituent, (ii) monohydroxylation, and (iii) formation of dimeric products.

  6. 2('),3(')-didehydro-2('),3(')-dideoxynucleosides are degraded to furfuryl alcohol under acidic conditions.

    PubMed

    Shi, Junxing; Ray, Adrian S; Mathew, Judy S; Anderson, Karen S; Chu, Chung K; Schinazi, Raymond F

    2004-05-03

    2('),3(')-Didehydro-2('),3(')-dideoxynucleosides are clinically relevant antiviral agents. These nucleosides could be degraded under acidic conditions. Acidic stability studies showed the D4N had the following increasing stability order: D4Gacidic cleavage of D4-nucleosides. The cleavage products were characterized as furfuryl alcohol and the corresponding nucleobase. Furfuryl alcohol is an agent found in many everyday food products. The biological results demonstrated that furfuryl alcohol had neither anti-HIV activity nor cytotoxicity in vitro, suggesting the acid instability of D4-nucleosides is unlikely to have an impact on the toxicity of these nucleoside analogs in humans.

  7. Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine.

    PubMed

    Raghavendra, Ponnala; Halami, Prakash M

    2009-07-31

    This study was undertaken to screen and select potent phytate degrading lactic acid bacteria and to evaluate their additional characteristic features. Forty lactic acid bacterial strains were isolated from different sources and screened for their ability to degrade myo-inositol hexaphosphate or IP(6) by cobalt chloride staining (plate assay) method, using calcium or sodium salt of phytic acid as substrate. All the forty isolates were able to degrade calcium phytate. However, only two Pediococcus pentosaceus strains (CFR R38 and CFR R35) were found to degrade sodium phytate. These strains showed phytase activity of 213 and 89 U at 50 degrees C, respectively and poor acid phosphatase activity. These strains were further evaluated for additional characteristic features. At pH 2, P. pentosaceus strains CFR R38 and CFR R35 showed 50.7 and 48.5 percentage survivability after 2 h of incubation respectively and they could also withstand 0.3% ox-bile. These cultures exhibited 54.6 and 44.8% of hydrophobicity to xylene, antibacterial activity against food borne pathogens and possessed beta-galactosidase activity. The resistance pattern to several antibiotics was also analyzed. The present study indicates that these strains, having phytate degrading ability and other characteristic features can be exploited as starter cultures in fermented foods to improve the mineral bioavailability.

  8. Toward Sustainable Amino Acid Production.

    PubMed

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    2016-11-22

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  9. Characterization of degradation products of idarubicin through LC-UV, MS(n) and LC-MS-TOF studies.

    PubMed

    Kaushik, Dheeraj; Bansal, Gulshan

    2013-11-01

    Idarubicin was subjected to forced degradation under the ICH recommended conditions of hydrolysis, oxidation, dry heat and photolysis to characterize its possible impurities and/or degradation products. The drug was found unstable to acid hydrolysis at 85°C and to alkaline hydrolysis, and oxidation at room temperature. The hydrolytic and oxidative degradation products were resolved with gradient and isocratic elution, respectively on an Inertsil RP18 (250 mm × 4.6mm; 5 μ) column with HCOONH4 (20mM, pH 3.0) and acetonitrile. The drug degraded to two products (O-I and O-II) in oxidative condition, two products (K-I and K-II) in alkaline hydrolytic, and one product (A-I) in acidic hydrolytic conditions. The purity of each in the LC-UV chromatogram was ascertained through LC-PDA analysis. The products were characterized through +ESI-MS(n) studies on the drug and LC-MS-TOF studies on the degraded drug solutions. Based on the multistage mass fragmentation pattern of idarubicin and accurate mass analysis of the degradation products, the O-I, O-II and A-I were characterized as desacetylidarubicin hydroperoxide, desacetylidarubicin and deglucosaminylidarubicin, respectively. The products K-I and K-II were not characterized due to their low concentrations and/or extremely weak ionization. The mechanisms of degradation of idarubicin to these products were proposed and discussed.

  10. [Degradation of L-phenylalanine and of aromatic carboxylic acids by chloridazon-degrading bacteria. Combination of side chain degradation and dioxygenase pathway].

    PubMed

    Wegst, W; Lingens, F

    1981-09-01

    Strain N of Chloridazon-degrading bacteria degrades phenylalanine via cis-2,3-dihydro-2,3-dihydroxyphenylalanine,2,3-dihydroxyphenylalanine aspartate and 4-hydroxy-2-oxovalerate [Hoppe-Seyler's Z. Physiol. Chem. 360, 957--969, (1979); Biochem. J. 194, 679--684 (1981)]. cis-2,3-Dihydro-2,3-dihydroxyphenylalanine and 2,3-dihydroxyphenylalanine as well as phenylpyruvate, cis-2,3-dihydro-2,3-dihydroxyphenylpyruvate, 2,3-dihydroxyphenylpyruvate, cis-2,3-dihydro-2,3-dihydroxyphenylacetate, 2,3-dihydroxyphenylacetate and 2,3-dihydroxybenzaldehyde are detectable in the medium of strain E during growth on phenylalanine. Incubation with phenylacetate, 3-phenylpropionate or 4-phenylbutyrate leads to the accumulation of the corresponding cis-2,3-dihydro-2,3-dihydroxyphenyl derivatives. These compounds are transformed with dihydrodiol dehydrogenase to 2,3-dihydroxyphenylacetate, 3-(2,3-dihydroxyphenyl)propionate and 4-(2,3-dihydroxyphenyl)-butyrate, 3-(2,3-dihydroxyphenyl)propionate is attacked by a catechol 2,3-dioxygenase and the meta-cleavage product is again cleaved by a hydrolase yielding succinate. In a similar reaction sequence the degradation of 4-phenylbutyrate leads to the formation of glutarate. From the growth medium of strain E on phenylacetate also small amounts of 2-, 3- and 4-hydroxyphenylacetate were isolated. Resting cells were shown to metabolize 3- and 4-hydroxyphenylacetate via homogentisate and 3,4-dihydroxyphenylacetate. In the culture medium of strain K2AP benzoate could be detected. Pathways for the degradation of phenylalanine and aromatic carboxylic acids in chloridazon degrading bacteria are proposed.

  11. Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus.

    PubMed

    Cajthaml, Tomás; Erbanová, Pavla; Sasek, Václav; Moeder, Monika

    2006-07-01

    Cultures of the ligninolytic fungus Irpex lacteus incubated in a nutrient liquid medium degraded more than 70% of the initially applied benz[a]anthracene within 14 days. At the first step of metabolization, benz[a]anthracene was transformed via a typical pathway of ligninolytic fungi to benz[a]anthracene-7,12-dione (BaAQ). The product was further transformed by at least two ways, whereas one is complied with the anthracene metabolic pathway of I. lacteus. Benz[a]anthracene-7,12-dione was degraded to 1,2-naphthalenedicarboxylic acid and phthalic acid that was followed with production of 2-hydroxymethyl benzoic acid or monomethyl and dimethylesters of phthalic acid. Another degradation product of BaAQ was identified as 1-tetralone. Its transformation via 1,4-naphthalenedione, 1,4-naphthalenediol and 1,2,3,4-tetrahydro-1-hydroxynaphthalene resulted again in phthalic acid. None of the intermediates were identified as dead-end metabolites. Metabolites produced by ring cleavage of benz[a]anthracene using the ligninolytic fungus are firstly presented in this work.

  12. Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Qi, Feng; Zhou, Junhu; Cen, Kefa

    2015-06-01

    The competitive reactions of reducing sugar production and degradation in the subcritical water hydrolysis of rice straw were investigated to optimise reducing sugar yield. The optimised conditions (280°C, 20 MPa, rice straw concentration of 5 wt.% and agitation speed of 200 rpm) resulted in a reducing sugar yield of 0.346 g/g rice straw because of the enhanced reducing sugar production and decreased sugar degradation. The sugar yield increased when the temperature increased from 250°C to 280°C, but it decreased when the temperature further increased to 300°C because of the degradation of monosaccharides (e.g. glucose and xylose) into by-products (e.g. 2-methyltetrahydrofuran and acetic acid). A first-order reaction model was developed to elucidate the competitive reaction kinetics of sugar production and degradation at various temperatures. The highest reducing sugar yield based on the model was achieved at 280°C with the highest production and lowest degradation rates.

  13. Stability-Indicating Method and LC-MS-MS Characterization of Forced Degradation Products of Sofosbuvir.

    PubMed

    Nebsen, M; Elzanfaly, Eman S

    2016-07-19

    Sofosbuvir is a novel direct acting antiviral agent against hepatitis C virus. In the present work, a rapid, specific and reproducible isocratic reversed phase high performance liquid chromatography (RP-HPLC) method has been developed and validated for the determination of sofosbuvir in the presence of its stressed degradation products. Sobosbuvir was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per international conference on harmonization (ICH) conditions. The drug showed degradation under oxidative, photolysis, acid and base hydrolysis stress conditions. However, it was stable under thermal and neutral hydrolysis stress conditions. Chromatographic separation of the drug from its degradation products was performed on Inertsil ODS-3 C18 (250 mm × 4.6 mm i.d., 5 µm) column using a green mobile phase of methanol:water 70:30 (v/v). The degradation products were characterized by LC-MS-MS and the fragmentation pathways were proposed. The developed method was validated as per ICH guidelines. No previous method was reported regarding the degradation behavior of sofosbuvir.

  14. Degradation of net primary production in a semiarid rangeland

    NASA Astrophysics Data System (ADS)

    Jackson, Hasan; Prince, Stephen D.

    2016-08-01

    Anthropogenic land degradation affects many biogeophysical processes, including reductions of net primary production (NPP). Degradation occurs at scales from small fields to continental and global. While measurement and monitoring of NPP in small areas is routine in some studies, for scales larger than 1 km2, and certainly global, there is no regular monitoring and certainly no attempt to measure degradation. Quantitative and repeatable techniques to assess the extent of deleterious effects and monitor changes are needed to evaluate its effects on, for example, economic yields of primary products such as crops, lumber, and forage, and as a measure of land surface properties which are currently missing from dynamic global vegetation models, assessments of carbon sequestration, and land surface models of heat, water, and carbon exchanges. This study employed the local NPP scaling (LNS) approach to identify patterns of anthropogenic degradation of NPP in the Burdekin Dry Tropics (BDT) region of Queensland, Australia, from 2000 to 2013. The method starts with land classification based on the environmental factors presumed to control (NPP) to group pixels having similar potential NPP. Then, satellite remotely sensing data were used to compare actual NPP with its potential. The difference in units of mass of carbon and percentage loss were the measure of degradation. The entire BDT (7.45 × 106 km2) was investigated at a spatial resolution of 250 × 250 m. The average annual reduction in NPP due to anthropogenic land degradation in the entire BDT was -2.14 MgC m-2 yr-1, or 17 % of the non-degraded potential, and the total reduction was -214 MgC yr-1. Extreme average annual losses of 524.8 gC m-2 yr-1 were detected. Approximately 20 % of the BDT was classified as "degraded". Varying severities and rates of degradation were found among the river basins, of which the Belyando and Suttor were highest. Interannual, negative trends in reductions of NPP occurred in 7 % of the

  15. Characterization of radiolytically generated degradation products in the strip section of a TRUEX flowsheet

    SciTech Connect

    Dean R. Peterman; Lonnie G. Olson; Gary S. Groenewold; Rocklan G. McDowell; Richard D. Tillotson; Jack D. Law

    2013-08-01

    This report presents a summary of the work performed to meet the FCRD level 2 milestone M3FT-13IN0302053, “Identification of TRUEX Strip Degradation.” The INL radiolysis test loop has been used to identify radiolytically generated degradation products in the strip section of the TRUEX flowsheet. These data were used to evaluate impact of the formation of radiolytic degradation products in the strip section upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  16. Measurements of chemical warfare agent degradation products using an electrophoresis microchip with contactless conductivity detector.

    PubMed

    Wang, Joseph; Pumera, Martin; Collins, Greg E; Mulchandani, Ashok

    2002-12-01

    This paper reports on a microfluidic device for the screening of organophosphonate nerve agent degradation products. The miniaturized system relies on an efficient chip-based separation of alkyl methylphosphonic acids (breakdown products of Sarin, Soman, and VX nerve agents) followed by their sensitive contactless conductivity detection. Experimental parameters relevant to the separation and detection processes have been optimized to yield high sensitivity (with 48-86 microg L(-1) detection limits), fast response (50 s for a three alkyl methylphosphonic acid mixture), high precision (RSD = 3.8-5.0%), and good linearity (over the 0.3-100 mg L(-1) range). Applicability to natural (river) water samples is demonstrated. The new microsystem offers promise for monitoring degradation products of chemical warfare agents, with advantages of speed/warning, efficiency, portability, sample size, and cost compared to conventional ion chromatography or capillary electrophoresis systems.

  17. Gas-phase and particulate products from the atmospheric degradation of an isoxazole fungicide.

    PubMed

    Tortajada-Genaro, Luis Antonio; Borrás, Esther; Muñoz, Amalia

    2013-08-01

    The isoxazole structure is present in several pesticides. However, there is a lack of information about its degradation products after the release to the atmosphere. The main atmospheric reactions of hymexazol (5-methylisoxazol-3-ol), selected as representative model, were investigated at a large outdoor simulation chamber. The predominant products of atmospheric degradations were gaseous nitrogen derivates (nitric acid, nitrogen dioxide, nitrogen oxide, nitrous acid, and peroxyacetylnitrate), ozone, and small oxygenated compounds (formic acid, formaldehyde, and methylglyoxal). The aerosol yields were lower than 5%, and an OH rate-dependence was observed in the nucleation, particle growth, and size distribution. Also, the chemical composition of minor multi-oxygenated products was studied for OH-photo-oxidations. More than 20 products were detected in the gas or particulate phase. The most abundant were heterocyclic cleavage products with C4-chain and oxygenated moieties at positions 1 and 3, such as 3,4-dioxobutanoic acid, 3-oxobutanoic acid, and 3-oxobutanal. The suggested reaction pathway is the opening of heterocycle ring by the cleavage of N-O bond and C-N bond, releasing nitrogen oxides.

  18. Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan.

    PubMed

    Zhang, Luzhong; Dou, Sufeng; Li, Yan; Yuan, Ying; Ji, Yawei; Wang, Yaling; Yang, Yumin

    2013-07-01

    The films of poly(glycolic acid) grafted chitosan were prepared without using a catalyst to improve the degradable property of chitosan. The films were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The degradation of the poly(glycolic acid) grafted chitosan films were investigated in the lysozyme solution. In vitro degradation tests revealed that the degradation rate of poly(glycolic acid) grafted chitosan films increased dramatically compared with chitosan. The degradation rate of poly(glycolic acid) grafted chitosan films gradually increased with the increasing of the molar ratio of glycolic acid to chitosan. Additionally, the poly(glycolic acid) grafted chitosan films have good biocompatibility, as demonstrated by in vitro cytotoxicity of the extraction fluids. The biocompatible and biodegradable poly(glycolic acid) grafted chitosan would be an effective material with controllable degradation rate to meet the diverse needs in biomedical fields.

  19. Identification of four new degradation products of epirubicin through forced degradation, LC-UV, MSn and LC-MS-TOF studies.

    PubMed

    Kaushik, Dheeraj; Saini, Balraj; Bansal, Gulshan

    2015-01-01

    Epirubicin (EPI) was subjected to International Conference on Harmonization recommended forced degradation under the conditions of hydrolysis, oxidation, dry heat and photolysis to characterize its possible impurities and/or degradation products. The drug was found highly unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80°C and to oxidation at room temperature. The hydrolytic and oxidative degradation products were resolved on an Agilent RP8 (150 mm × 4.6 mm; 5 µm) column with isocratic elution using mobile phase composed of ammonium formate (10 mM, pH 3.0), acetonitrile and methanol. The drug degraded to four oxidative products (O-I, O-II, O-III and O-IV) and to one acid hydrolyzed product (A-I). Purity of each peak in liquid chromatography-ultraviolet (LC-UV) chromatogram was ascertained through photodiode array (LC-PDA) analysis. The products were characterized through electrospray ionization-mass spectrometry (+ESI-MS(n)) studies on EPI and liquid chromatography-time of flight mass spectrometry (LC-MS-TOF) studies on degraded drug solutions. The products, O-I-O-IV, were characterized as 2-hydroxy-8-desacetylepirubicin-8-hydroperoxide, 4-hydroxy-8-desacetylepirubicin-8-hydroperoxide, 8-desacetylepirubicin-8-hydroperoxide and 8-desacetylepirubicin, respectively, and product A-I was characterized as deglucosaminylepirubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of EPI were discussed and outlined.

  20. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  1. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  2. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Yang, Hong

    2015-01-01

    Isoproturon (IPU) is a herbicide widely used to prevent weeds in cereal production. Due to its extensive use in agriculture, residues of IPU are often detected in soils and crops. Overload of IPU to crops is associated with human health risks. Hence, there is an urgent need to develop an approach to mitigate its accumulation in crops. In this study, the IPU residues and its degradation products in wheat were characterized using ultra performance liquid chromatography-time of fight tandem-mass spectrometer/mass spectrometer (UPLC-TOF-MS/MS). Most detected IPU-derivatives were sugar-conjugated. Degradation and glycosylation of IPU-derivatives could be enhanced by applying salicylic acid (SA). While more sugar-conjugated IPU-derivatives were identified in wheat with SA application, lower levels of IPU were detected, indicating that SA is able to accelerate intracellular IPU catabolism. All structures of IPU-derivatives and sugar-conjugated products were characterized. Comparative data were provided with specific activities and gene expression of certain glucosyltransferases. A pathway with IPU degradation and glucosylation was discussed. Our work indicates that SA-accelerated degradation is practically useful for wheat crops growing in IPU-contaminated soils because such crops with SA application can potentially lower or minimize IPU accumulation in levels below the threshold for adverse effects.

  3. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    EPA Science Inventory

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  4. Acid preservation systems for food products

    SciTech Connect

    Tiberio, J. E.; Cirigiano, M. C.

    1984-10-16

    Fumaric acid is used in combination with critical amounts of acetic acid to preserve acid containing food products from microbiological spoilage in the absence of or at reduced levels of chemical preservative.

  5. Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths [Lanthanum and Praseodymium].

    PubMed

    Srivastava, Pankaj; Goyal, Shikha; Patnala, Prem Kishore

    2014-11-01

    Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La(3+) and Pr(3+)). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (φ) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16-40mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20kHz and 250W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products.

  6. Docosahexaenoic acid ester degradation measured by FTIR-ATR with correlation spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly unsaturated fatty acids such as docosahexaenoic acid and linolenic acid are prone to oxidation with a resulting loss of bioactivity and generation of malodorous degradation compounds. Degradation proceeds by formation of the corresponding hydroperoxyl free radical with subsequent oxidative cl...

  7. Aerobic degradation of sulfanilic acid using activated sludge.

    PubMed

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  8. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant.

    PubMed

    Lalitha Devi, M; Chandrasekhar, K B

    2009-12-05

    The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).

  9. Biodegradation of Leonardite by an alkali-producing bacterial community and characterization of the degraded products.

    PubMed

    Gao, Tong-Guo; Jiang, Feng; Yang, Jin-Shui; Li, Bao-Zhen; Yuan, Hong-Li

    2012-03-01

    In this study, three bacterial communities were obtained from 12 Leonardite samples with the aim of identifying a clean, effective, and economic technique for the dissolution of Leonardite, a type of low-grade coal, in the production of humic acid (HA). The biodegradation ability and characteristics of the degraded products of the most effective bacterial community (MCSL-2), which degraded 50% of the Leonardite within 21 days, were further investigated. Analyses of elemental composition, (13)C NMR, and Fourier transform infrared revealed that the contents of C, O, and aliphatic carbon were similar in biodegraded humic acid (bHA) and chemically (alkali) extracted humic acid (cHA). However, the N and carboxyl carbon contents of bHA was higher than that of cHA. Furthermore, a positive correlation was identified between the degradation efficiency and the increasing pH of the culture medium, while increases of manganese peroxidase and esterase activities were also observed. These data demonstrated that both alkali production and enzyme reactions were involved in Leonardite solubilization by MCSL-2, although the former mechanism predominated. No fungus was observed by microscopy. Only four bacterial phylotypes were recognized, and Bacillus licheniformis-related bacteria were identified as the main group in MCSL-2 by analysis of amplified 16S rRNA genes, thus demonstrating that Leonardite degradation ability has a limited distribution in bacteria. Hormone-like bioactivities of bHA were also detected. In this study, a bacterial community capable of Leonardite degradation was identified and the products characterized. These data implicate the use of such bacteria for the exploitation of Leonardite as a biofertilizer.

  10. Characterization of Wall Teichoic Acid Degradation by the Bacteriophage ϕ29 Appendage Protein GP12 Using Synthetic Substrate Analogs.

    PubMed

    Myers, Cullen L; Ireland, Ronald G; Garrett, Teresa A; Brown, Eric D

    2015-07-31

    The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs. The GP12 protein had potent wall teichoic acid hydrolytic activity in vitro and demonstrated ∼13-fold kinetic preference for glycosylated poly(glycerol phosphate) teichoic acid compared with non-glycosylated. Product distribution patterns suggested that the degradation of glycosylated polymers proceeded from the hydroxyl terminus of the polymer, whereas hydrolysis occurred at random sites in the non-glycosylated polymer. In addition, we present evidence that the GP12 protein possesses both phosphodiesterase and phosphomonoesterase activities.

  11. Potential of wine-associated lactic acid bacteria to degrade biogenic amines.

    PubMed

    García-Ruiz, Almudena; González-Rompinelli, Eva M; Bartolomé, Begoña; Moreno-Arribas, M Victoria

    2011-08-02

    Some lactic acid bacteria (LAB) isolated from fermented foods have been proven to degrade biogenic amines through the production of amine oxidase enzymes. Since little is known about this in relation to wine micro-organisms, this work examined the ability of LAB strains (n=85) isolated from wines and other related enological sources, as well as commercial malolactic starter cultures (n=3) and type strains (n=2), to degrade histamine, tyramine and putrescine. The biogenic amine-degrading ability of the strains was evaluated by RP-HPLC in culture media and wine malolactic fermentation laboratory experiments. Although at different extent, 25% of the LAB isolates were able to degrade histamine, 18% tyramine and 18% putrescine, whereas none of the commercial malolactic starter cultures or type strains were able to degrade any of the tested amines. The greatest biogenic amine-degrading ability was exhibited by 9 strains belonging to the Lactobacillus and Pediococcus groups, and most of them were able to simultaneously degrade at least two of the three studied biogenic amines. Further experiments with one of the strains that showed high biogenic amine-degrading ability (L. casei IFI-CA 52) revealed that cell-free extracts maintained this ability in comparison to the cell suspensions at pH 4.6, indicating that amine-degrading enzymes were effectively extracted from the cells and their action was optimal in the degradation of biogenic amines. In addition, it was confirmed that wine components such as ethanol (12%) and polyphenols (75 mg/L), and wine additives such as SO(2) (30 mg/L), reduced the histamine-degrading ability of L. casei IFI-CA 52 at pH 4.6 by 80%, 85% and 11%, respectively, in cell suspensions, whereas the reduction was 91%, 67% and 50%, respectively, in cell-free extracts. In spite of this adverse influence of the wine matrix, our results proved the potential of wine-associated LAB as a promising strategy to reduce biogenic amines in wine.

  12. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  13. Degradation of sunscreen agent p-aminobenzoic acid using a combination system of UV irradiation, persulphate and iron(II).

    PubMed

    Xue, Yicen; Dong, Wenbo; Wang, Xiaoning; Bi, Wenlong; Zhai, Pingping; Li, Hongjing; Nie, Minghua

    2016-03-01

    Increased usage and discharge of sunscreens have led to ecological safety crisis, and people are developing the advanced oxidation processes (AOPs) to treat them. The present study aimed to determine the degradation efficiency and mechanism of the sunscreen agent p-aminobenzoic acid (PABA) using the UV/Fe(2+)/persulphate (PS) method. A series of irradiation experiments were conducted to optimise the system conditions and to study the impacts of the natural anion. Free radicals and degradation products were identified in order to clarify the degradation mechanism. Initial PS and Fe(2+) concentrations showed significant impacts on PABA degradation. Natural anions, such as Cl(-), NO3 (-), H2PO4 (-) and HCO3 (-), impeded PABA degradation because of ion (Fe(2+)) capture, radical scavenging or pH effects. Hydroxyl (HO·) and sulphate (SO4 (·-)) radicals were two main radicals observed in the UV/Fe(2+)/PS system; of these, SO4 (·-) showed greater effects on PABA degradation. Over 99 % of the available PABA was completely degraded into carbon dioxide (CO2) and water (H2O) by the UV/Fe(2+)/PS system, and the remaining PABA participated in complex radical reactions. By-products were identified by total ion chromatography and mass spectrometry. Our research provides a treatment process for PABA with high degradation efficiency and environmental safety and introduces a new strategy for sunscreen degradation.

  14. Degradation of indomethacin in river water under stress and non-stress laboratory conditions: degradation products, long-term evolution and adsorption to sediment.

    PubMed

    Jiménez, Juan J; Sánchez, María I; Pardo, Rafael; Muñoz, Beatriz E

    2017-01-01

    The pharmaceutical compound indomethacin is not totally removed in wastewater treatment plants, whose effluents flow into aquatic environments; concentrations in the 0.1-100ng/L range are commonly found in surface waters, and its fate is unknown. Here, biological, photochemical and thermal degradation assays were conducted under stress and non-stress conditions to estimate its degradation rate in river water and establish its degradation products over time. The results revealed that direct sunlight irradiation promoted the complete degradation of indomethacin (2μg/L) in less than 6hr, but indomethacin was detected over a period of 4months when water was kept under the natural day-night cycle and the exposure to sunlight was partially limited, as occurs inside a body of water. The biological degradation in water was negligible, while the hydrolysis at pH7.8 was slow. Residues were monitored by ultra-pressure liquid chromatography/quadrupole time-of-flight/mass spectrometry after solid-phase extraction, and six degradation products were found; their structures were proposed based on the molecular formulae and fragmentation observed in high-resolution tandem mass spectra. 4-Chlorobenzoic and 2-acetamido-5-methoxybenzoic acids were the long-term transformation products, persisting for at least 30weeks in water kept under non-stress conditions. Furthermore, the degradation in the presence of sediment was also monitored over time, with some differences being noted. The adsorption coefficients of indomethacin and degradation products on river sediment were calculated; long-term degradation products did not have significant adsorption to sediment.

  15. Production and degradation of polyhydroxyalkanoates in waste environment

    SciTech Connect

    Lee, S.Y.; Choi, J.

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.

  16. Novel chromatographic separation and carbon solid-phase extraction of acetanilide herbicide degradation products.

    PubMed

    Shoemaker, Jody A

    2002-01-01

    One acetamide and 5 acetanilide herbicides are currently registered for use in the United States. Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of these acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. Alachlor ESA and other acetanilide degradation products are listed on the U.S. Environmental Protection Agency's (EPA) 1998 Drinking Water Contaminant Candidate List. Consequently, EPA is interested in obtaining national occurrence data for these contaminants in drinking water. EPA currently does not have a method for determining these acetanilide degradation products in drinking water; therefore, a research method is being developed using liquid chromatography/negative ion electrospray/mass spectrometry with solid-phase extraction (SPE). A novel chromatographic separation of the acetochlor/alachlor ESA and OA structural isomers was developed which uses an ammonium acetate-methanol gradient combined with heating the analytical column to 70 degrees C. Twelve acetanilide degradates were extracted by SPE from 100 mL water samples using carbon cartridges with mean recoveries >90% and relative standard deviations < or =16%.

  17. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    USGS Publications Warehouse

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P.; Goerlitz, D.F.

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-1990). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater. ?? 1994.

  18. Amyloid Plaque-Associated Oxidative Degradation of Uniformly Radiolabeled Arachidonic Acid.

    PubMed

    Furman, Ran; Murray, Ian V J; Schall, Hayley E; Liu, Qiwei; Ghiwot, Yonatan; Axelsen, Paul H

    2016-03-16

    Oxidative stress is a frequently observed feature of Alzheimer's disease, but its pathological significance is not understood. To explore the relationship between oxidative stress and amyloid plaques, uniformly radiolabeled arachidonate was introduced into transgenic mouse models of Alzheimer's disease via intracerebroventricular injection. Uniform labeling with carbon-14 is used here for the first time, and made possible meaningful quantification of arachidonate oxidative degradation products. The injected arachidonate entered a fatty acid pool that was subject to oxidative degradation in both transgenic and wild-type animals. However, the extent of its degradation was markedly greater in the hippocampus of transgenic animals where amyloid plaques were abundant. In human Alzheimer's brain, plaque-associated proteins were post-translationally modified by hydroxynonenal, a well-known oxidative degradation product of arachidonate. These results suggest that several recurring themes in Alzheimer's pathogenesis, amyloid β proteins, transition metal ions, oxidative stress, and apolipoprotein isoforms, may be involved in a common mechanism that has the potential to explain both neuronal loss and fibril formation in this disease.

  19. Stability-indicating spectrophotometric methods for determination of the anticoagulant drug apixaban in the presence of its hydrolytic degradation product.

    PubMed

    Tantawy, Mahmoud A; El-Ragehy, Nariman A; Hassan, Nagiba Y; Abdelkawy, Mohamed

    2016-04-15

    Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D(1)), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form.

  20. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resulting in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.

  1. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; ...

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  2. Nonsedimentable Microvesicles from Senescing Bean Cotyledons Contain Gel Phase-Forming Phospholipid Degradation Products 1

    PubMed Central

    Yao, Kening; Paliyath, Gopinadhan; Thompson, John E.

    1991-01-01

    A mixture of liquid-crystalline and gel-phase lipid domains is detectable by wide angle x-ray diffraction in smooth microsomal membranes isolated from senescent 7-day-old cotyledons, whereas corresponding membranes from young 2-day-old cotyledons are exclusively liquid-crystalline. The gel-phase domains in the senescent membranes comprise phospholipid degradation products including diacylglycerols, free fatty acids, long-chain aldehydes, and long-chain hydrocarbons. The same complement of phospholipid degradation products is also present in nonsedimentable microvesicles isolated from senescent 7-day-old cotyledons by filtration of a 250,000g, 12-hour supernatant through a 300,000 dalton cut-off filter. The phospholipid degradation products in the microvesicles form gel-phase lipid domains when reconstituted into phospholipid liposomes. Nonsedimentable microvesicles of a similar size, which are again enriched in the same gel-phase-forming phospholipid degradation products, are also generated in vitro from smooth microsomal membranes isolated from 2-day-old cotyledons when Ca2+ is added to activate membrane-associated lipolytic enzymes. The Ca2+-treated membranes do not contain detectable gel-phase domains, suggesting that the phospholipid degradation products are completely removed by microvesiculation. The observations collectively indicate that these nonsedimentable microvesicles serve as a vehicle for moving phospholipid degradation products out of membrane bilayers into the cytosol. As noted previously (Yao K, Paliyath G, Humphrey RW, Hallett FR, Thompson JE [1991] Proc Natl Acad Sci USA 88: 2269-2273), the term “deteriosome” connotes this putative function and would serve to distinguish these microvesicles from other cytoplasmic microvesicles unrelated to deterioration. ImagesFigure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:16668427

  3. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules.

    PubMed

    Romano, Ariel A; Hahn, Tobias; Davis, Nicole; Lowery, Colin A; Struss, Anjali K; Janda, Kim D; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-02-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C(12)-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding.

  4. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  5. Gradual surface degradation of restorative materials by acidic agents.

    PubMed

    Hengtrakool, Chanothai; Kukiattrakoon, Boonlert; Kedjarune-Leggat, Ureporn

    2011-01-01

    The aim of this study was to investigate the effect of acidic agents on surface roughness and characteristics of four restorative materials. Fifty-two discs were created from each restorative material: metal-reinforced glass ionomer cement (Ketac-S), resin-modified glass ionomer cement (Fuji II LC), resin composite (Filtek Z250), and amalgam (Valiant-PhD); each disc was 12 mm in diameter and 2.5 mm thick. The specimens were divided into four subgroups (n=13) and immersed for 168 hours in four storage media: deionized water (control); citrate buffer solution; green mango juice; and pineapple juice. Surface roughness measurements were performed with a profilometer, both before and after storage media immersion. Surface characteristics were examined using scanning electron microscopy (SEM). Statistical significance among each group was analyzed using two-way repeated ANOVA and Tukey's tests. Ketac-S demonstrated the highest roughness changes after immersion in acidic agents (p<0.05), followed by Fuji II LC. Valiant-PhD and Filtek Z250 illustrated some minor changes over 168 hours. The mango juice produced the greatest degradation effect of all materials tested (p<0.05). SEM photographs demonstrated gradual surface changes of all materials tested after immersions. Of the materials evaluated, amalgam and resin composite may be the most suitable for restorations for patients with tooth surface loss.

  6. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  7. Stress Degradation Behavior of Atorvastatin Calcium and Development of a Suitable Stability-Indicating LC Method for the Determination of Atorvastatin, its Related Impurities, and its Degradation Products.

    PubMed

    Vukkum, Pallavi; Moses Babu, J; Muralikrishna, R

    2013-01-01

    A rapid, reversed-phase liquid chromatographic method was developed for the quantitative determination of Atorvastatin calcium, its related substances (12 impurities), and degradation impurities in bulk drugs. The chromatographic separation was achieved on a Zorbax Bonus-RP column by employing a gradient elution with water-acetonitrile-trifluoroacetic acid as the mobile phase in a shorter run time of 25 min. The flow rate was 1.0 mL/min and the detection wavelength was 245 nm. The drug substance was subjected to stress studies such as hydrolysis, oxidation, photolysis, and thermal degradation, and considerable degradation was observed in acidic hydrolysis, oxidative, thermal, and photolytic stress conditions. The formed degradation products were reported and were well-resolved from the Atorvastatin and its related substances. The stressed samples were quantified against a qualified reference standard and the mass balance was found to be close to 99.5% (w/w) when the response of the degradant was considered to be equal to the analyte (i.e. Atorvastatin), which demonstrates the stability-indicating capability of the method. The method was validated in agreement with ICH requirements. The method developed here was single and shorter (25 min method for the determination of all 12 related impurities of Atorvastatin and its degradation products), with clearly better resolution and higher sensitivity than the European (85 min method for the determination of six impurities) and United States pharmacopeia (115 min and 55 min, two different methods for the determination of six related substances).

  8. Acid attack on hydrated cement — Effect of mineral acids on the degradation process

    SciTech Connect

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E.

    2015-08-15

    During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone between the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.

  9. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  10. Chromatographic Determination of Cyclopentolate Hydrochloride and Phenylephrine Hydrochloride in the Presence of Their Potential Degradation Products.

    PubMed

    Rezk, Mamdouh R; Fayed, Ahmed S; Marzouk, Hoda M; Abbas, Samah S

    2017-03-01

    Two sensitive, selective, and precise stability-indicating methods have been developed for the simultaneous determination of the active pharmaceutical ingredients cyclopentolate hydrochloride (CLO) and phenylephrine hydrochloride (PHE) in their pure forms and in the presence of their degradation products. The methods were applied for the determination of CLO and PHE in a pharmaceutical formulation. Method A was based on isocratic elution HPLC determination. Separation was achieved using a Waters Spherisorb ODS2 C18 analytical column (5 μm particle size) and a mobile phase of 0.1% heptane-1-sulphonic acid sodium salt in methanol-water (80 + 20, v/v). The flow rate was 1.0 mL/min and detection was performed at 210 nm. Method B was an HPTLC- densitometric method using HPTLC silica gel 60 F254 plates and an optimized mobile phase of ethyl acetate-methanol-ammonia (8 + 2 + 0.1, v/v/v). The separated spots were densitometrically scanned at 210 nm. Polynomial equations were used for regression. The developed methods are suitable for the determination of CLO and PHE in their binary mixture and in the presence of their corresponding degradation products. The two methods were validated in compliance with International Conference on Harmonization guidelines and successfully applied for the determination of CLO and PHE as synthetically prepared in laboratory mixtures and in the presence of their possible degradation products. CLO alkaline degradation products were stated as potential impurities in British Pharmacopoeia. The degradation products were separated and identified by mass spectra. Postulation of a PHE oxidative degradation pathway was suggested. The obtained results were statistically analyzed and compared with those obtained by applying the official methods for both drugs.

  11. Effect of scrubbing operating conditions on adipic acid degradation. Final report February-August 1980

    SciTech Connect

    Chang, J.C.S.

    1981-02-01

    The report gives results of adipic acid degradation tests at EPA's IERL-RTP limestone SO2 scrubber, to investigate the effects of operating variables on unaccountable adipic acid loss. It was found that: (1) adipic acid degradation could not be totally quenched by only lowering the pH below 5.0; (2) pH change did significantly affect unaccountable adipic acid loss (other factors may increase the adipic acid degradation rate at both high and low pH); (3) an appreciable amount of adipic acid loss was caused by coprecipitation with calcium sulfite; and (4) forced oxidation could aggravate the adipic acid degradation loss even at pH below 5.0. Adipic acid loss could be reduced: at high sulfite concentrations (the adipic acid degradation rate could be decreased by lowering the destructive free radical concentrations by high total sulfite); in the presence of manganous ion at low pH (the metal ion might act as an inhibitor to the oxidative degradation reaction at low pH); and with high natural oxidation (the adipic acid coprecipitation loss might be reduced with the high natural oxidation). Adipic acid degradation (loss) data were compared from four different test facilities. Most of the data also support these conclusions.

  12. Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions.

    PubMed

    Quici, Natalia; Litter, Marta I

    2009-07-01

    UV/TiO(2)-heterogeneous photocatalysis was tested as a process to degrade gallic acid (Gal) in oxygenated solutions at pH 3. In the absence of oxidants other than oxygen, decay followed a zero order rate at different concentrations and was slow at concentrations higher than 0.5 mM. Addition of Fe(3+), H(2)O(2) and the combination Fe(3+)/H(2)O(2) improved Gal degradation. In the absence of H(2)O(2), an optimal Fe : Gal molar ratio of 0.33 : 1 was found for the photocatalytic decay, beyond which addition of Fe(3+) was detrimental and even worse in comparison with the system in the absence of Fe(3+). TiO(2) addition was beneficial compared with the same system in the absence of the photocatalyst if Fe(3+) was added at low concentration (0.33 : 1 Fe : Gal molar ratio), while at high concentration (1 : 1 Fe : Gal molar ratio) TiO(2) did not exert any significant effect. H(2)O(2) addition (1 : 0.33 Gal : H(2)O(2) molar ratio, absence of Fe(iii)) also enhanced the heterogeneous photocatalytic reaction. Simultaneous addition of Fe(3+) and H(2)O(2) was more effective than the addition of the separate oxidants. This system was compared with Fenton and photo-Fenton systems. At low H(2)O(2) concentration (0.33 : 1 : 0.2 Fe : Gal : H(2)O(2) molar ratio), the presence of TiO(2) also enhanced the reaction. The influence of the thermal charge transfer reaction between Gal and Fe(iii), which leads to an important Gal depletion in the dark with formation of quinones, was analysed. The mechanisms taking place in these complex systems are proposed, paying particular attention to the important charge transfer reaction of the Fe(iii)-Gal complex operative in dark conditions.

  13. Influence of volatile fatty acid concentration stability on anaerobic degradation of linear alkylbenzene sulfonate.

    PubMed

    Okada, Dagoberto Y; Delforno, Tiago P; Esteves, Andressa S; Polizel, Juliana; Hirasawa, Julia S; Duarte, Iolanda C S; Varesche, Maria B A

    2013-10-15

    Linear alkylbenzene sulfonate (LAS) is an anionic surfactant used in cleaning products, which is usually found in wastewaters. Despite the greater LAS removal rate related to a lower concentrations of volatile fatty acids (VFA), the influence of different ranges of VFA on LAS degradation is not known. LAS degradation was evaluated in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors at different ranges of VFA concentrations. The reactors were fed with a synthetic wastewater containing LAS (14 mg/L). A greater LAS removal rate (40-80%) was related to the lower and narrower range of acetic acid concentration (1-22 mg/L) in the EGSB reactor. In the UASB reactor, the acetic acid concentrations presented a wider range (2-45 mg/L), and some low LAS removal rates (around 20-25%) were observed even at low acetic acid concentrations (<10 mg/L). The high recirculation rate in the EGSB reactor improved substrate-biomass contact, which resulted in a narrower range of VFA and greater LAS removal rate.

  14. Degradation of dissolved organic monomers and short-chain fatty acids in sandy marine sediment by fermentation and sulfate reduction

    NASA Astrophysics Data System (ADS)

    Valdemarsen, Thomas; Kristensen, Erik

    2010-03-01

    The decay of a wide range of organic monomers (short-chain volatile fatty acids (VFA's), amino acids, glucose and a pyrimidine) was studied in marine sediments using experimental plug flow-through reactors. The reactions were followed in the presence and absence of 10 mM SO 42-. Degradation stoichiometry of individual monomers (inflow concentration of 6 mM organic C) was traced by measuring organic (VFA's, amino acids) and inorganic (CO 2, NH 4+, SO 42-) compounds in the outflow. Fermentation of amino acids was efficient and complete during passage through anoxic sediment reactors. Aliphatic amino acids (alanine, serine and glutamate) were primarily recovered as CO 2 (24-34%), formate (3-22%) and acetate (41-83%), whereas only ˜1/3 of the aromatic amino acid (tyrosine) was recovered as CO 2 (13%) and acetate (20%). Fermentation of glucose and cytosine was also efficient (78-86%) with CO 2 (30-35%), formate (3%) and acetate (28-33%) as the primary products. Fermentation of VFA's (acetate, propionate and butyrate), on the other hand, appeared to be product inhibited. The presence of SO 42- markedly stimulated VFA degradation (29-45% efficiency), and these compounds were recovered as CO 2 (17% for butyrate to 100% for acetate) and acetate (51% and 82% for propionate and butyrate, respectively). When reaction stoichiometry during fermentation is compared with compound depletion during sulfate reduction, the higher proportion CO 2 recovery is consistent with lower acetate and formate accumulation. Our results therefore suggest that fermentation reactions mediate the initial degradation of added organic compounds, even during active sulfate reduction. Fermentative degradation stoichiometry also suggested significant H 2 production, and >50% of sulfate reduction appeared to be fuelled by H 2. Furthermore, our results suggest that fermentation was the primary deamination step during degradation of the amino acids and cytosine.

  15. Identification, Characterization, and Quantification of Impurities of Safinamide Mesilate: Process-Related Impurities and Degradation Products.

    PubMed

    Zou, Liang; Sun, Lili; Zhang, Hui; Hui, Wenkai; Zou, Qiaogen; Zhu, Zheying

    2017-02-02

    The characterization of process-related impurities and degradation products of safinamide mesilate (SAFM) in bulk drugand a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Four process-related impurities (Imp-B, Imp-C, Imp-D, and Imp-E) were found in the SAFM bulk drug. Five degradation products (Imp-A, Imp-C, Imp-D, Imp-E, and Imp-F) were observed in SAFM under oxidative conditions. Imp-C, Imp-D, and Imp-E were also degradation products and process-related impurities. Remarkably, one new compound, identified as (S)-2-[4-(3-fluoro-benzyloxy) benzamido] propanamide (i.e., Imp-D), is being reported here as an impurity for the first time. Furthermore, the structures of the aforementioned impurities were characterized and confirmed via IR, NMR, and MS techniques, and the most probable formation mechanisms of all impurities proposed according to the synthesis route. Optimum separation was achieved on an Inertsil ODS-3 column (250 × 4.6 mm, 5 μm), using 0.1% formic acid in water (pH adjusted to 5.0) and acetonitrile as the mobile phase in gradient mode. The proposed method was found to be stability-indicating, precise, linear, accurate, sensitive, and robust for the quantitation of SAFM and its process-related substances, including its degradation products.

  16. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland.

    PubMed

    Barchanska, Hanna; Sajdak, Marcin; Szczypka, Kornelia; Swientek, Angelika; Tworek, Martyna; Kurek, Magdalena

    2017-01-01

    The aim of this study was to monitor the sediment, soil and surface water contamination with selected popular triketone herbicides (mesotrione (MES) and sulcotrione(SUL)), atrazine (ATR) classified as a possible carcinogen and endocrine disrupting chemical, as well as their degradation products, in Silesia (Poland). Seventeen sediment samples, 24 soil samples, and 64 surface water samples collected in 2014 were studied. After solid-liquid extraction (SLE) and solid phase extraction (SPE), analytes were determined by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Ten years after the withdrawal from the use, ATR was not detected in any of the collected samples; however, its degradation products are still present in 41 % of sediment, 71 % of soil, and 8 % of surface water samples. SUL was determined in 85 % of soil samples; its degradation product (2-chloro-4-(methylosulfonyl) benzoic acid (CMBA)) was present in 43 % of soil samples. In 17 % of sediment samples, CMBA was detected. Triketones were detected occasionally in surface water samples. The chemometric analysis (clustering analysis (CA), single-factor analysis of variance (ANOVA), N-Way ANOVA) was applied to find relations between selected soil and sediment parameters and herbicides concentration. In neither of the studied cases a statistically significant relationship between the concentrations of examined herbicides, their degradation products and soil parameters (organic carbon (OC), pH) was observed.

  17. Identification, characterization and in silico ADMET prediction of Roflumilast degradation products.

    PubMed

    Pinheiro, Mariana S; Viana, Gil M; Vieira, Bárbara de A Abrahim; de Souza, Alessandra Mendonça Teles; Rodrigues, Carlos Rangel; Marins, Rita de Cássia E E; Cabral, Lúcio M; de Sousa, Valéria P

    2017-05-10

    The present study reports the degradation behavior of roflumilast (RFL), a new drug developed for the treatment of chronic obstructive pulmonary disease. The degradation of RFL was tested under various stress conditions as per the guidelines of the International Conference on Harmonization. The degradation products (DPs) of RFL were identified, characterized and in silico predictions were made of their pharmacokinetic properties, absorption, distribution, metabolism, excretion and toxicity (ADMET). RFL was subjected to various stress conditions including photodegradation, alkaline and acidic hydrolysis, oxidative and metallic degradation. After analysis by HPLC-DAD, the DPs were isolated by preparative TLC and characterized by high resolution mass spectrometry (HRMS), (1)H NMR, (13)C NMR and infrared (IR) spectroscopy. RFL tablets were prepared by the addition of solid stressing substances such as excipients and storage in an accelerated stability chamber (40°C; 75% r.h.) for sixteen months. Resulting DPs from the tablets were analyzed by UFLC-QTOF. The most drastic degradation conditions for RFL were 5M NaOH(aq), 6M HCl(aq), 7.5% v/v peracetic acid, which resulted in the isolation of four DPs. However, milder degradation conditions (1M NaOH(aq) and photolysis) generated six DPs (DP-1, 2, 3, 5, 7 and 8), and are more similar to the actual conditions the drug will be exposed. For tablets containing RFL exposed to an alkaline reagent, two DPs were formed: DP-1 and DP-11. Whereas RFL-containing tablets exposed to acid and oxidizing agents, formed one product DP-11. Forced degradation of RFL led to the formation of eleven DPs, seven of which have never been previously reported. RFL is stable under metallic stress and it is relatively stable during photodegradation testing. The UFLC-QTOF methodology detected a greater number of DPs that formed during the stress conditions tested when compared to the HPLC-DAD methodology. In silico prediction of the ADMET properties of

  18. Cytotoxic glucose degradation products in fluids for peritoneal dialysis.

    PubMed

    Adib, Noushin; Shekarchi, Maryam; Hajimehdipoor, Homa; Shalviri, Gloria; Shekarchi, Maral; Imaninejad, Maryam

    2011-01-01

    During the standard heat sterilization process of the lactate-buffered peritoneal dialysis solutions, glucose (an osmotic active substance) degrades to form compounds called glucose degradation products which are cytotoxic and affect the survival of the peritoneal membrane. This case presentation is based on an observation of 224 aseptic peritonitis cases of unknown etiology. For the purpose of clarification, we analyzed the peritoneal dialysis solutions for the presence of acetaldehyde by using a developed and validated high-performance liquid chromatography (HPLC) pre-column derivitazation. The method was validated with respect to validation factors such as linearity, precision, recovery and (LOD). The acetaldehyde level of solutions before heat sterilization was 1.78 ± 2.7 ppm whereas in samples after heat sterilization was about 20 ± 2.07 ppm. Based on the forementioned findings, we hypothesized that the higher levels of acetaldehyde and possibly the other glucose degradation products may have been an etiological factor in these 224 cases of chemical peritonitis. So it is important for the manufacturers to carefully review the heat of sterilization process in the production line.

  19. Anaerobic Degradation of Cyanuric Acid, Cysteine, and Atrazine by a Facultative Anaerobic Bacterium

    PubMed Central

    Jessee, J. A.; Benoit, R. E.; Hendricks, A. C.; Allen, G. C.; Neal, J. L.

    1983-01-01

    A facultative anaerobic bacterium that rapidly degrades cyanuric acid (CA) was isolated from the sediment of a stream that received industrial wastewater effluent. CA decomposition was measured throughout the growth cycle by using a high-performance liquid chromatography assay, and the concomitant production of ammonia was also measured. The bacterium used CA or cysteine as a major, if not the sole, carbon and energy source under anaerobic, but not aerobic, conditions in a defined medium. The cell yield was greatly enhanced by the simultaneous presence of cysteine and CA in the medium. Cysteine was preferentially used rather than CA early in the growth cycle, but all of the CA was used without an apparent lag after the cysteine was metabolized. Atrazine was also degraded by this bacterium under anaerobic conditions in a defined medium. PMID:16346187

  20. Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour.

    PubMed

    Lopez, H W; Ouvry, A; Bervas, E; Guy, C; Messager, A; Demigne, C; Remesy, C

    2000-06-01

    Five strains of lactic bacteria have been isolated from sour doughs and examined for their ability to degrade phytic acid. In white flour medium in which phytic acid was the only source of phosphorus, the disappearance of phytate and an elevation of inorganic phosphate were observed after only 2 h of incubation in all strains tested (-30 and +60%, respectively). Both phenomena correspond to phytate breakdown. No difference was observed in the levels of phytic acid hydrolysis among strains, suggesting that phytase enzymes are similar among these bacteria. Using whole wheat flour medium naturally rich in phytic acid in the presence of Leuconostoc mesenteroides strain 38, a 9 h fermentation established that the degradation of PA and the production of lactic acid lead to greater Ca and Mg solubility than in control medium.

  1. Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms.

    PubMed

    Kim, Mi Yeon; Kim, Changman; Moon, Jungheun; Heo, Jinhee; Jung, Sokhee P; Kim, Jung Rae

    2017-02-28

    Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.

  2. Degradation of Acid Orange 7 in an Atmospheric-Pressure Plasma-Solution System (Gliding Discharge)

    NASA Astrophysics Data System (ADS)

    NI, Mingjiang; YANG, Huan; CHEN, Tong; ZHANG, Hao; WU, Angjian; DU, Changming; LI, Xiaodong

    2015-03-01

    In this work, a plasma-solution system was applied to the degradation of Acid Orange 7 (AO7). The effects of initial concentration and type of feed gases (air, oxygen, nitrogen or argon) were studied. As the initial concentration increased from 100 mg/L to 160 mg/L, the discolouration rate of AO7 decreased from 99.3% to 95.9%, whereas the COD removal rate decreased from 37.9% to 22.6%. Air provided the best discolouration and COD removal rates (99.3% and 37.9%, respectively). In the presence of a zero-valent iron (ZVI) catalyst, the AO7 COD removal rate increased to 76.4%. The degradation products were analysed by a GC-MS, revealing that the degradation of the dye molecule was initiated through the cleavage of the -N=N- bond before finally being converted to organic acids. supported by National Natural Science Foundation of China (Nos. 50908237, 51076142) and the Open Foundation of the State Key Laboratory of Clean Energy Utilization of China (No. ZJUCEU2009008)

  3. Microbial production of amino acids in Japan.

    PubMed

    Kumagai, H

    2000-01-01

    The microbial biotechnology of amino acids production which was developed and industrialized in Japan have been summarized. The amino acids include L-glutamic acid, L-lysine, L-threonine, L-aspartic acid, L-alanine, L-cysteine, L-dihydroxyphenylalanine, D-p-hydroxyphenyl-glycine, and hydroxy-L-proline.

  4. Nicotinic acid inhibits glioma invasion by facilitating Snail1 degradation

    PubMed Central

    Li, Jiejing; Qu, Jiagui; Shi, Yu; Perfetto, Mark; Ping, Zhuxian; Christian, Laura; Niu, Hua; Mei, Shuting; Zhang, Qin; Yang, Xiangcai; Wei, Shuo

    2017-01-01

    Malignant glioma is a formidable disease that commonly leads to death, mainly due to the invasion of tumor cells into neighboring tissues. Therefore, inhibition of tumor cell invasion may provide an effective therapy for malignant glioma. Here we report that nicotinic acid (NA), an essential vitamin, inhibits glioma cell invasion in vitro and in vivo. Treatment of the U251 glioma cells with NA in vitro results in reduced invasion, which is accompanied by a loss of mesenchymal phenotype and an increase in cell-cell adhesion. At the molecular level, transcription of the adherens junction protein E-cadherin is upregulated, leading to accumulation of E-cadherin protein at the cell-cell boundary. This can be attributed to NA’s ability to facilitate the ubiquitination and degradation of Snail1, a transcription factor that represses E-cadherin expression. Similarly, NA transiently inhibits neural crest migration in Xenopus embryos in a Snail1-dependent manner, indicating that the mechanism of action for NA in cell migration is evolutionarily conserved. We further show that NA injection blocks the infiltration of tumor cells into the adjacent brain tissues and improves animal survival in a rat model of glioma. These results suggest that NA treatment may be developed into a potential therapy for malignant glioma. PMID:28256591

  5. Degradation of 2-methylbenzoic acid by Pseudomonas cepacia MB2

    SciTech Connect

    Higson, F.K.; Focht, D.D. )

    1992-01-01

    The authors report the isolation of Pseudomonas cepacia MB2, believed to be the first microorganism to utilize 2-methylbenzoic acid as the sole carbon source. Its growth range included all mono- and dimethylbenzoates (with the exception of 2,5- and 2,6-dimethylbenzoates) and 3-chloro-2-methylbenzoate (but not 4- or 5-chloro-2-methylbenzoate) but not chlorobenzoates lacking a methyl group. 2-Chlorobenzoate, 3-chlorobenzoate, and 2,3-, 2,4-, and 3,4-dichlorobenzoates inhibited growth of MB2 on 2-methylbenzoate as a result of cometabolism to the corresponding chlorinated catechols which blocked the key enzyme catechol 2,3-dioxygenase. A metapyrocatechase-negative mutant, MB2-G5, showed accumulation of dimethylcatechols from 2,3- and 3,4-dimethylbenzoates, and phenols were detected in resting-cell transformation extracts bearing the same substitution pattern as the original substrate, presumably following thermal degradation of the intermediate dihydrodiol. 2-Methylphenol was also found in extracts of the mutant cells with 2-methylbenzoate. These observations suggested a major route of methylbenzoate metabolism to be dioxygenation to a carboxy-hydrodiol which then forms a catechol derivative. In addition, the methyl group of 2-methylbenzoate was oxidized to isobenzofuranone (by cells of MB2-G5) and to phthalate (by cells of a separate mutant that could not utilize phthalate, MB2-D2). This pathway also generated a chlorinated isobenzofuranone from 3-chloro-2-methylbenzoate.

  6. Production of carboxylic acid and salt co-products

    SciTech Connect

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  7. Mechanism and kinetics of electrochemical degradation of uric acid using conductive-diamond anodes.

    PubMed

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed

    2016-12-01

    Uric acid (UA) is one of the principal effluents of urine wastewaters, widely used in agriculture as fertilizer, which is potentially dangerous and biorefractory. Hence, the degradation of UA (2,6,8-trihydroxy purine) in aqueous solution of pH 3.0 has been studied by conductive-diamond electrochemical oxidation. Hydroxyl radicals formed from water oxidation at the surface of boron-doped diamond anodes were the main oxidizing agents. Effects of current density and supporting electrolyte on the degradation rate and process efficiency are assessed. Results show that the increase of current density from 20 to 60 mA cm(-2) leads to a decrease in the efficiency of the electrochemical process. In addition, the best degradation occurred in the presence of NaCl as conductive electrolyte. Interestingly, an almost total mineralization of 50 ppm UA was obtained when anodic oxidation was performed at low current densities (20 mA cm(-2)) and in the presence of NaCl. This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of UA. The identification of UA transformation products was performed by high-performance liquid chromatography (HPLC). HPLC analysis of treated solutions revealed that oxalic acid and urea were the two intermediates found. Oxalic acid was the most persistent product. Based on detected intermediates and bibliographic research, a mechanism of UA mineralization by anodic oxidation has been proposed. Ionic chromatography analysis confirmed the release of [Formula: see text] and [Formula: see text] ions during UA mineralization.

  8. Fungal degradation of coal as a pretreatment for methane production

    USGS Publications Warehouse

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  9. Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains

    PubMed Central

    Arakaki, R.L.; Monteiro, D.A.; Boscolo, M.; Dasilva, R.; Gomes, E.

    2013-01-01

    Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L−1 of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase. PMID:24688513

  10. ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    In 1998, USEPA published a Drinking Water Contaminant Candidate List (CCL) of 50 chemicals and 10 microorganisms. "Alachlor ESA and other acetanilide herbicide degradation products" is listed on the the 1998 CCL. Acetanilide degradation products are generally more water soluble...

  11. DETERMINATION OF INTERFERING TRIAZINE DEGRADATION PRODUCTS BY GAS CHROMATOGRAPHY-ION TRAP MASS SPECTROMETRY

    EPA Science Inventory

    Deethyl atrazine (DEA), along with other triazine degradation products, has been added to the US Environmental Protection Agency's Drinking Water Contaminant Candidate List (CCL). In its gas chromatographic (GC) analysis, deethyl atrazine, a degradation product of atrazine, can ...

  12. Validated stability-indicating liquid chromatographic method for the determination of ribavirin in the presence of its degradation products: application to degradation kinetics.

    PubMed

    Belal, Fathalla; Sharaf El-Din, Mohie K; Eid, Manal I; El-Gamal, Rania M

    2015-04-01

    Ribavirin was found to be liable to acidic, alkaline, oxidative and photolytic degradation. Hence, a simple, sensitive and stability-indicating reversed-phase liquid chromatographic method was developed and validated for the determination of ribavirin in the presence of its degradation products. The analysis was carried out on an ODS C18 (250 × 4.6 mm i.d.) stainless steel column using a mobile phase consisting of 0.02 M potassium dihydrogen phosphate. The analysis was performed at ambient temperature with a flow rate of 1 mL/min and UV detection at 207 nm. Pyridoxine hydrochloride was used as an internal standard. The method showed good linearity over the concentration range of 2.0-40 µg/mL with limit of detection of 0.34 µg/mL and limit of quantification of 1.03 µg/mL. The suggested method was successfully applied for the analysis of ribavirin in its commercial capsules. Statistical evaluation and comparison of the data obtained by the proposed and comparison method revealed good accuracy and precision of the proposed method. The drug was exposed to forced alkaline, acidic, oxidative and photolytic degradation according to the ICH guidelines. Moreover, the method was utilized to investigate the kinetics of alkaline and acidic degradation of the drug. The apparent first-order rate constants, half-life times and activation energies of the degradation process were calculated.

  13. Stress Degradation Behavior of Abacavir Sulfate and Development of a Suitable Stability-Indicating UHPLC Method for the Determination of Abacavir, its Related Substances, and Degradation Products.

    PubMed

    Vukkum, Pallavi; Deshpande, Girish R; Babu, J Moses; Muralikrishna, R; Jagu, Pavani

    2012-01-01

    A novel, stability-indicating UHPLC method was developed for the quantitative determination of Abacavir sulfate, its related substances, and forced degradation impurities in bulk drugs. The chromatographic separation was achieved on a Waters Acquity BEH C(8), 50 mm × 2.1 mm, 1.7 μm particle size column with a mobile containing a gradient mixture of solution A (0.10 % v/v o-phosphoric acid in water) and solution B (0.10% v/v o-phosphoric acid in methanol). The flow rate was set at 0.40 mL/min and the run time was 6.0 min. The drug substance was subjected to the stress studies of hydrolysis, oxidation, photolysis, and thermal degradation. Abacavir sulfate was found to degrade significantly under acidic hydrolysis and oxidative stress conditions. The formed degradation products were reported and were well-resolved from Abacavir and its related substances. The mass balance was found to be satisfactory in all of the stress conditions, thus proving the stability-indicating capability of the method. The developed UHPLC method was validated to be in agreement with ICH requirements and found to be rapid, accurate, precise, linear, specific, and suitable for the quantitative determination of related substances and degradants in the bulk drug samples of Abacavir sulfate.

  14. Forced degradation of fingolimod: effect of co-solvent and characterization of degradation products by UHPLC-Q-TOF-MS/MS and 1H NMR.

    PubMed

    Patel, Prinesh N; Kalariya, Pradipbhai D; Gananadhamu, S; Srinivas, R

    2015-11-10

    Fingolimod (FGL), an immunomodulator drug for treating multiple sclerosis, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per International Conference on Harmonization specified conditions. The drug showed extensive degradation under base hydrolysis, however, it was stable under all other conditions. A total of three degradation products (DPs) were observed. The chromatographic separation of the drug and its degradation products was achieved on a Fortis C18 (100×2.1mm, 1.7μm) column with a mobile phase composed of 0.1% formic acid (Solvent A) and acetonitrile (Solvent B) in gradient mode. All the DPs were identified and characterized by liquid chromatography-quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) in combination with accurate mass measurements. The major DP was isolated and characterized by Nuclear Magnetic resonance spectroscopy. This is a typical case of degradation where acetonitrile used as co-solvent in stress studies, reacts with FGL in base hydrolytic conditions to produce acetylated DPs. Hence, it can be suggested that acetonitrile is not preferable as a co-solvent for stress degradation of FGL. The developed UHPLC method was validated as per ICH guidelines.

  15. [Progress in microbial production of succinic acid].

    PubMed

    Liu, Rongming; Liang, Liya; Wu, Mingke; Jiang, Min

    2013-10-01

    Succinic acid is one of the key intermediates in the tricarboxylic acid cycle (TCA)and has huge potentials in biopolymer, food, medicine applications. This article reviews recent research progress in the production of succinic acid by microbial fermentation, including discovery and screening of the succinic-acid-producing microbes, the progress of genetic engineering strategy and metabolic engineering technology for construction of succinic acid-producing strains, and fermentation process control and optimization. Finally, we discussed the limitation of current progress and proposed the future research needs for microbial production of succinic acid.

  16. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation.

    PubMed

    Redzepovic, S; Orlic, S; Majdak, A; Kozina, B; Volschenk, H; Viljoen-Bloom, M

    2003-05-25

    To produce a high-quality wine, it is important to obtain a fine balance between the various chemical constituents, especially between the sugar and acid content. The latter is more difficult to achieve in wines that have high acidity due to excess malic acid, since wine yeast in general cannot effectively degrade malic acid during alcoholic fermentation. An indigenous Saccharomyces paradoxus strain RO88 was able to degrade 38% of the malic acid in Chardonnay must and produced a wine of good quality. In comparison, Schizosaccharomyces pombe strain F effectively removed 90% of the malic acid, but did not produce a good-quality wine. Although commercially promoted as a malic-acid-degrading wine yeast strain, only 18% of the malic acid was degraded by Saccharomyces cerevisiae Lalvin strain 71B. Preliminary studies on the transcriptional regulation of the malic enzyme gene from three Saccharomyces strains, i.e. S. paradoxus RO88, S. cerevisiae 71B and Saccharomyces bayanus EC1118, were undertaken to elucidate the differences in their ability to degrade malic acid. Expression of the malic enzyme gene from S. paradoxus RO88 and S. cerevisiae 71B increased towards the end of fermentation once glucose was depleted, whereas no increase in transcription was observed for S. bayanus EC1118 which was also unable to effectively degrade malic acid.

  17. LC method for determination of prasugrel and mass spectrometry detection for thermal and alkaline degradation products.

    PubMed

    Rigobello, C; Barden, A T; Steppe, M

    2015-08-01

    A stability-indicating RP-LC method for the determination of prasugrel in tablets was developed and validated. Stress testing of prasugrel was carried out in accordance with ICH guidelines, where the drug was submitted to acidic and basic hydrolysis, oxidative, thermal and photolytic conditions. Prasugrel was unstable under all the conditions and the degradations products were analyzed by HPLC-UV. Furthermore, two main degradation products found under alkaline and thermal conditions were investigated by LC-MS. Based on the fragmentation patterns, two products resulted from hydrolysis of the acetate ester moiety of prasugrel were observed. Due the chemical equilibrium, tautomerism occurs between the ketone and alcohol functions justifying the similar molecular weight and fragment pattern obtained in degradation products analysis. Successful separation was achieved on a RP-18 octadecyl silane column using acetonitrile and triethylamine 0.5% mixture (50:50, v/v) as the mobile phase at 25 degrees C. The flow rate was 1.0 mL/min and the detector wavelength was 263 nm. The method proposed in this work was successfully applied to quality control of prasugrel and contribute to stability assessment of pharmaceutical products containing this drug.

  18. Separation and recovery of nucleic acids with improved biological activity by acid-degradable polyacrylamide gel electrophoresis.

    PubMed

    Kim, Yoon Kyung; Kwon, Young Jik

    2010-05-01

    One of the fundamental challenges in studying biomacromolecules (e.g. nucleic acids and proteins) and their complexes in a biological system is isolating them in their structurally and functionally intact forms. Electrophoresis offers convenient and efficient separation and analysis of biomacromolecules but recovery of separated biomacromolecules is a significant challenge. In this study, DNAs of various sizes were separated by electrophoresis in an acid-degradable polyacrylamide gel. Almost 100% of the nucleic acids were recovered after the identified gel bands were hydrolyzed under a mildly acidic condition and purified using anion exchange resin. Further concentration by centrifugal filtration and a second purification using ion exchange column chromatography yielded 44-84% of DNA. The second conventional (non-degradable) gel electrophoresis confirmed that the nucleic acids recovered from acid-degradable gel bands preserved their electrophoretic properties through acidic gel hydrolysis, purification, and concentration processes. The plasmid DNA recovered from acid-degradable gel transfected cells significantly more efficiently than the starting plasmid DNA (i.e. improved biological activity via acid-degradable PAGE). Separation of other types of nucleic acids such as small interfering RNA using this convenient and efficient technique was also demonstrated.

  19. Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques.

    PubMed

    Kayan, Berkant; Gözmen, Belgin; Demirel, Muhammet; Gizir, A Murat

    2010-05-15

    Degradation of the acid red 97 dye using wet oxidation, by different oxidants, and electro-Fenton systems was investigated in this study. The oxidation effect of different oxidants such as molecular oxygen, periodate, persulfate, bromate, and hydrogen peroxide in wet oxidation system was compared. Mineralization of AR97 with periodate appeared more effective when compared with that of the other oxidants at equal initial concentration. When 5 mM of periodate was used, at the first minute of the oxidative treatment, the decolorization percentage of AR97 solution at 150 and 200 degrees C reached 88 and 98%, respectively. The total organic carbon removal efficiency at these temperatures also reached 60 and 80%. The degradation of AR97 was also studied by electro-Fenton process. The optimal current value and Fe(2+) concentration were found to be 300 mA and 0.2 mM, respectively. The results showed that electro-Fenton process can lead to 70 and 95% mineralization of the dye solution after 3 and 5h giving carboxylic acids and inorganic ions as final end-products before mineralization. The products obtained from degradation were identified by GC/MS as 1,2-naphthalenediol, 1,1'-biphenyl-4-amino-4-ol, 2-naphthalenol diazonium, 2-naphthalenol, 2,3-dihydroxy-1,4-naphthalenedion, phthalic anhydride, 1,2-benzenedicarboxylic acid, phthaldehyde, 3-hydroxy-1,2-benzenedicarboxylic acid, 4-amino-benzoic acid, and 2-formyl-benzoic acid.

  20. Thermal degradation of aqueous 2-aminoethylethanolamine in CO2 capture; identification of degradation products, reaction mechanisms and computational studies.

    PubMed

    Saeed, Idris Mohamed; Lee, Vannajan Sanghiran; Mazari, Shaukat Ali; Si Ali, B; Basirun, Wan Jeffrey; Asghar, Anam; Ghalib, Lubna; Jan, Badrul Mohamed

    2017-01-01

    Amine degradation is the main significant problems in amine-based post-combustion CO2 capture, causes foaming, increase in viscosity, corrosion, fouling as well as environmental issues. Therefore it is very important to develop the most efficient solvent with high thermal and chemical stability. This study investigated thermal degradation of aqueous 30% 2-aminoethylethanolamine (AEEA) using 316 stainless steel cylinders in the presence and absence of CO2 for 4 weeks. The degradation products were identified by gas chromatography mass spectrometry (GC/MS) and liquid chromatography-time-of-flight-mass spectrometry (LC-QTOF/MS). The results showed AEEA is stable in the absence of CO2, while in the presence of CO2 AEEA showed to be very unstable and numbers of degradation products were identified. 1-(2-Hydroxyethyl)-2-imidazolidinone (HEIA) was the most abundance degradation product. A possible mechanism for the thermal degradation of AEEA has been developed to explain the formation of degradation products. In addition, the reaction energy of formation of the most abundance degradation product HEIA was calculated using quantum mechanical calculation.

  1. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.

    PubMed

    Esclapez, M D; Díez-García, M I; Sàez, V; Bonete, P; González-García, José

    2013-01-01

    The electrochemical degradation of trichloroacetic acid (TCAA) in water has been analysed through voltammetric studies with a rotating disc electrode and controlled-potential bulk electrolyses. The influence of the mass-transport conditions and initial concentration of TCAA for titanium, stainless steel and carbon electrodes has been studied. It is shown that the electrochemical reduction of TCAA takes place prior to the massive hydrogen evolution in the potential window for all electrode materials studied. The current efficiency is high (> 18%) compared with those normally reported in the literature, and the fractional conversion is above 50% for all the electrodes studied. Only dichloroacetic acid (DCAA) and chloride anions were routinely detected as reduction products for any of the electrodes, and reasonable values of mass balance error were obtained. Of the three materials studied, the titanium cathode gave the best results.

  2. Hydrogen production: two stage processes for waste degradation.

    PubMed

    Gómez, X; Fernández, C; Fierro, J; Sánchez, M E; Escapa, A; Morán, A

    2011-09-01

    The dark fermentation process generates hydrogen by biological means. It presents two main advantages: fulfilling requirements for mild operational conditions and gaining benefit from the residual biomass. The process itself may be seen as a pre-treatment step in a complete stabilisation chain, with the aim of attaining the valorisation of residual biomass. However, increasing the yield of H2 production is an imperative task. In this manuscript, a review of recent work in the field of fermentative hydrogen production is presented. As dark fermentation has a maximum yield of 33% (on sugars), a description is also presented of possible second stage processes for the degradation of dark fermentation effluents. Alternatives considered were photofermentation and bioelectrochemical systems (BES) as processes capable of converting fermentation sub-products into H2. Anaerobic digestion as a final stabilisation stage was also considered owing to the wide application of this technology in the treatment of bio-wastes.

  3. [Photocatalytic degradation kinetics of perfluorooctanoic acid (PFOA) in TiO2 dispersion and its mechanism].

    PubMed

    Li, Ming-Jie; Yu, Ze-Bin; Chen, Ying; Wang, Li; Liu, Qing; Liu, Yu-Xin; He, Li-Li

    2014-07-01

    Decomposition of perfluorooctanoic acid (PFOA) is of prime importance since it is recognized as a persistent organic pollutant and is widespread in the environment. Heterogeneous photocatalytic decomposition of PFOA by TiO2 (P25) was investigated under 254 nm UV light. Experimental conditions including initial pH, TiO2 content and PFOA concentration, were varied to demonstrate their effects on the decomposition of PFOA. It was observed that the photocatalytic degradation kinetics of PFOA could be fitted to the quasi-first-order equation. The pH played a determinant role in the decomposition of PFOA and the presence of O2 increased the degradation rate. Optimal conditions for a complete removal were obtained using 1.5 g x L(-1) TiO2 at pH 3 in air atmosphere, with a rate constant of 0.420 6 h(-1). The contribution experiments of various reactive species produced during the photocatalysis were also investigated with the addition of different scavengers and it was found that photogenerated holes (h+) was the major reactive species which was responsible for 66.1% of the degradation rate, and the *OH was involved in PFOA degradation as well. In addition, the photocatalytic experiment with the addition of NaF indicated that the adsorption of PFOA was of primary importance for the photocatalytic decomposition. Perfluorocarboxylic acids (PFCAs) with shorter carbon chain length as intermediates and products were identified with UPLC-QTOF/MS, and a possible mechanism for PFOA decomposition was proposed.

  4. Preparation of salvianolic acid A by the degradation reaction of salvianolic acid B in subcritical water integrated with pH-zone-refining counter-current chromatography.

    PubMed

    Li, Huaizhi; Cheng, Yan; Dong, Hongjing; Wang, Xiao; Li, Jia; Gao, Qianshan

    2016-10-14

    Salvianolic acid A is the major bioactive compound in Danshen, however, due to the chemical instability and low content in Danshen, it is difficult to extract amount of salvianolic acid A. Therefore, this study was to establish an effective strategy for obtaining adequate amount of salvianolic acid A, subcritical water extraction was used to degrade salvianolic acid B and prepare salvianolic acid A. Different reaction conditions including temperature, time, concentration and pH value in subcritical water were investigated. Under 40mg/mL of reactant concentration, 180°C of temperature, 4.0 of pH value and 60min of reaction time, the highest yield rate of salvianolic acid A reached 34.86%. Then, the degradation products were successfully separated by pH-zone-refining counter-current chromatography with the solvent system Pet-EtAc-n-BuOH-H2O (2:3:1:9, v/v), where 10mM TFA was added in stationary phase and 10mM NH3·H2O in mobile phase. As a result, a total of 227.3mg of salvianolic acid A at 98.2% purity, 38.9mg of danshensu at 99.3% purity, 9.5mg of salvianolic acid D at 92.7% purity, and 32.8mg of protocatechuic aldehyde at 93.1% purity were obtained from 1.2g degradation products of salvianolic acid B by one-step purification. The results demonstrated that the combinative application of subcritical water and pH-zone-refining counter-current chromatography is a potential technique for the preparative separation of salvianolic acid A from salvianolic acid B.

  5. Development of an ion-pairing reversed-phase liquid chromatography method using a double detection analysis (UV and evaporative light scattering detection) to monitor the stability of Alimta(®)-pemetrexed preparations: identification and quantification of L-glutamic acid as a potential degradation product.

    PubMed

    Respaud, Renaud; Tournamille, Jean-François; Croix, Cécile; Laborie, Hélène; Elfakir, Claire; Viaud-Massuard, Marie-Claude

    2011-01-25

    A new method based on high-performance liquid chromatography coupled to ultraviolet and evaporative light scattering detection (HPLC-UV-ELSD) was developed for the determination of L-glutamic acid, a potential degradation product of pemetrexed, and for the quantification of pemetrexed itself. This is an ion-pairing, reversed-phase method. The column was a Synergi MAX-RP C12 4 μm (150 mm x 4.6 mm). The mobile phase was 1 mM tridecafluoroheptanoic acid in aqueous solution and acetonitrile under gradient elution mode. L-Glutamic acid was detected by ELSD, and pemetrexed by UV at 254 nm. Good resolution was achieved between pemetrexed and L-glutamic acid. The HPLC method was validated according to SFSTP and ICH guidelines, and applied the accuracy profile procedure with a five-level validation experimental design. For pemetrexed, the decision criteria selected consisted of the acceptability limits (±3%) and the proportion of results within the calculated tolerance intervals (95%). In conclusion, the proposed analytical procedures were validated over the selected validation domains for L-glutamic acid (0.005-0.025 mg/mL) and pemetrexed (0.4-0.6 mg/mL) and shown to provide a very effective method.

  6. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  7. Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Radford, Jessica; Laws, Andrew P.; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J.; Humphreys, Paul N.

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  8. Characterization of stress degradation products of duloxetine hydrochloride employing LC-UV/PDA and LC-MS/TOF studies.

    PubMed

    Chadha, Renu; Bali, Alka; Bansal, Gulshan

    2016-03-20

    Duloxetine HCl was subjected to forced degradation under conditions of hydrolysis (neutral, acidic and alkaline), oxidation, photolysis and thermal stress, as suggested in the ICH guideline Q1A(R2). The drug showed significant degradation under acidic, alkaline and aqueous hydrolytic as well as photolytic conditions. The drug remained stable under thermal and oxidative stress conditions. In total, seventeen degradation products (I-XVII) were formed under varied conditions, which could be separated by chromatography of respective degraded solutions on C18 (250 mm×4.6 mm; 5 μ, Nulceodur) column using isocratic elution method. Detection wavelength was selected as 290 nm. MS/TOF accurate mass studies were carried out to establish the complete fragmentation pathway of the drug and degradation products, which, in turn, was utilized in characterization of the products. The degradation pathway of the drug leading to generation of fifteen products I-X, XII-XIII, XV-XVII was postulated and this has not been reported so far.

  9. Electrochemical destruction of trans-cinnamic acid by advanced oxidation processes: kinetics, mineralization, and degradation route.

    PubMed

    Flores, Nelly; Thiam, Abdoulaye; Rodríguez, Rosa María; Centellas, Francesc; Cabot, Pere Lluís; Garrido, José Antonio; Brillas, Enric; Sirés, Ignasi

    2016-01-14

    Acidic solutions of trans-cinnamic acid at pH 3.0 have been comparatively treated by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), and photoelectro-Fenton (PEF). The electrolytic experiments were carried out with a boron-doped diamond (BDD)/air-diffusion cell. The substrate was very slowly abated by AO-H2O2 because of its low reaction rate with oxidizing (•)OH produced from water discharge at the BDD anode. In contrast, its removal was very rapid and at similar rate by EF and PEF due to the additional oxidation by (•)OH in the bulk, formed from Fenton's reaction between cathodically generated H2O2 and added Fe(2+). The AO-H2O2 treatment yielded the lowest mineralization. The EF process led to persistent final products like Fe(III) complexes, which were quickly photolyzed upon UVA irradiation in PEF to give an almost total mineralization with 98 % total organic carbon removal. The effect of current density and substrate concentration on all the mineralization processes was examined. Gas chromatography-mass spectrometry (GC-MS) analysis of electrolyzed solutions allowed identifying five primary aromatics and one heteroaromatic molecule, whereas final carboxylic acids like fumaric, acetic, and oxalic were quantified by ion exclusion high-performance liquid chromatography (HPLC). From all the products detected, a degradation route for trans-cinnamic acid is proposed.

  10. Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3: efficiency, product and mechanism.

    PubMed

    Xu, Bingbing; Chen, Zhonglin; Qi, Fei; Ma, Jun; Wu, Fengchang

    2010-07-15

    N-nitrosodiethylamine (NDEA) is a member of nitrosamines, which is strong carcinogenic. In order to explore an effective treatment method for NDEA removal from water, sole UV irradiation and UV/O(3) were carried out in this study. The removal efficiency, degradation products and pathways were compared between those two processes. Results showed that NDEA removal efficiency achieved 99% within 15 min by both UV and UV/O(3). Degradation reaction well followed pseudo-first-order kinetics. Water pH had different effect on NDEA degradation in those two processes. Acidic and neutral conditions were good for NDEA degradation by sole UV irradiation. However, NDEA underwent rapid degradation under various pH conditions in the UV/O(3) process. Though the ozone introduction in the UV/O(3) process had little effect on NDEA degradation efficiency, it had significant effect on its degradation products and pathways. Methylamine, dimethylamine, ethylamine and diethylamine were observed as aliphatic amine products of NDEA degradation in both two processes. They were assumed to arise due to N-N bond fission under UV irradiation, or due to the reaction of NDEA and hydroxyl radicals in the UV/O(3) process.

  11. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  12. Microbiological degradation of bile acids. Nitrogenous hexahydroindane derivatives formed from cholic acid by Streptomyces rubescens.

    PubMed Central

    Hayakawa, S; Hashimoto, S; Onaka, T

    1976-01-01

    The metabolism of cholic acid (I) by Streptomyces rubescens was investigated. This organism effected ring A cleavage, side-chain shortening and amide bond formation and gave the following metabolites: (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1 beta-yl]valeric acid (IIa) and its mono-amide (valeramide) (IIb); and 2,3,4,6, 6abeta,7,8,9,9aalpha,9bbeta-decahydro-6abeta-methyl-1H-cyclopenta[f]quinoline-3,7-dione(IIIe)and its homologues with the beta-oriented side chains, valeric acid, valeramide, butanone and propionic acid, in the place of the oxo group at C-7, i.e.compounds (IIIa), (IIIb), (IIIc) and (IIId) respectively. All the nitrogenous metabolites were new compounds, and their structures were established by partial synthesis except for the metabolite (IIIc). The mechanism of formation of these metabolites is considered. A degradative pathway of cholic acid (I) into the metabolites is also tentatively proposed. PMID:1016253

  13. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  14. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  15. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  16. Effects of Ultraviolet (UV) on Degradation of Irgafos 168 and Migration of Its Degradation Products from Polypropylene Films.

    PubMed

    Yang, Yueping; Hu, Changying; Zhong, Huaining; Chen, Xi; Chen, Rujia; Yam, Kit L

    2016-10-05

    The effects of ultraviolet (UV) irradiation on the degradation of Irgafos 168 and the migration of its two degradation products, 2,4-di-tert-butylphenol and tris(2,4-di-tert-butylphenyl)phosphate, from polypropylene (PP) were investigated. A blown film machine was used to extrude PP films containing Irgafos 168, the films were stored in the dark for 45 days, two UV treatments and sunlight exposure were applied to the films, and GC-MS was used for degradation and migration studies. Extrusion, storage, UV treatments, and sunlight exposure significantly affected concentrations of Irgafos 168 and the degradation products. 2,4-Di-tert-butylphenol was the major degradation product produced by UV irradiation, but tris(2,4-di-tert-butylphenyl)phosphate was the major degradation product produced by extrusion, storage, and sunlight exposure. The degradation products have no or little health risk, because migration study and threshold of toxicological concern (TTC) analysis show that experimental maximum migration of 2,4-di-tert-butylphenol and tris(2,4-di-tert-butylphenyl)phosphate are only 2 and 53% of the theoretical maximum migration amounts, respectively.

  17. Microwave activated electrochemical degradation of 2,4-dichlorophenoxyacetic acid at boron-doped diamond electrode.

    PubMed

    Gao, Junxia; Zhao, Guohua; Shi, Wei; Li, Dongming

    2009-04-01

    A method for improving the oxidation ability of the electrode is proposed by using microwave activation in electrochemical oxidation. The electrochemical degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave radiation (MW-EC) was carried out in a continuous flow system under atmospheric pressure. In 3 h the removal of COD, ACE (average current efficiency) and Cl(-) concentration was 1.63, 2.25 and 1.67 times as that without microwave radiation, respectively. The high degradation ability was resulted from the more active centers at the electrode surface due to the microwave radiation. The decay kinetics of 2,4-D followed a pseudo first-order reaction. The rate constant was increased to 2.16x10(-4) s(-1) with the microwave radiation, while it was 8.52x10(-5) s(-1) with electrochemical treatment only (EC). Under both conditions, the main intermediates were identified and quantified by High Performance Liquid Chromatography (HPLC). The formation rate of intermediate products and further degradation rate were increased by about 50-120% with the microwave radiation. The activation of electrochemical oxidation by microwave was discussed from the diffusion process, adsorption and the temperature at boron-doped diamond (BDD) electrode.

  18. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production.

  19. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Aktas, Nahit; Silan, Coskun

    2016-06-01

    From a natural polyphenol, Tannic acid (TA), poly(TA) nanoparticles were readily prepared using a single step approach with three different biocompatible crosslinkers; trimethylolpropane triglycidyl ether (TMPGDE), poly(ethylene glycol) diglycidyl ether (PEGGE), and trisodium trimetaphosphate (STMP). P(TA) particles were obtained with controllable diameters between 400 to 800nm with -25mV surface charge. The effect of synthesis conditions, such as the emulsion medium, pH values of TA solution, and the type of crosslinker, on the shape, size, dispersity, yield, and degradability of poly(Tannic Acid) (p(TA)) nanoparticles was systematically investigated. The hydrolytic degradation amount in physiological pH conditions of 5.4, 7.4, and 9.0 at 37.5°C were found to be in the order TMPGDEdegradation amounts of TA from p(TA) nanoparticles can be controlled by the appropriate choice of crosslinker, and the pH of releasing media. The highest TA release, 600mg/g, was obtained for TMPGDE-crosslinked p(TA) particles in intestinal pH conditions (pH 9) over 3 days; whereas, a slow and linear TA release profile over almost 30 days was obtained by using PEGGE-crosslinked p(TA) in body fluid pH conditions (pH 7.4). The total phenol content of p(TA) particles was calculated as 70±1μgmL(-1) for 170μgmL(-1) p(TA), and the trolox equivalent antioxidant capacity was found to be 2027±104mM trolox equivalent g(-1). Moreover, p(TA) nanoparticles demonstrated strong antimicrobial effects against common bacterial strains. More interestingly, with a higher concentration of p(TA) particles, higher blood clotting indices were obtained.

  20. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  1. LC-MS/MS structural characterization of stress degradation products including the development of a stability indicating assay of Darunavir: An anti-HIV drug.

    PubMed

    Rao, R Nageswara; Ramachandra, B; Sravan, B; Khalid, Sara

    2014-02-01

    Darunavir, an anti-HIV drug was subjected to forced degradation under acid, base, thermal and neutral hydrolysis, oxidation and photolysis as prescribed by ICH guidelines. Four major degradation products were formed under acid and base hydrolysis, while stable under neutral and thermal hydrolysis, oxidative and photolysis. The drug and its degradation products were separated on Hiber, LiChrospher® 60, RP-select B, C8 column (250mm×4.6mm i.d., 5μm) using 10mM ammonium acetate: acetonitrile (52:48, v/v) as mobile phase in an isocratic elution mode by LC. The degradation products were characterized by LC-MS/MS and fragmentation pathways were proposed. The proposed structures of degradation products were confirmed by HRMS and the LC method was validated with respect to specificity, linearity, accuracy, recovery, LOD and LOQ.

  2. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: amino acids play a central role.

    PubMed

    Amado, André M; Cotner, James B; Cory, Rose M; Edhlund, Betsy L; McNeill, Kristopher

    2015-04-01

    Photochemical and bacterial degradation are important pathways to carbon mineralization and can be coupled in dissolved organic matter (DOM) decomposition. However, details of several mechanisms of the coupled photochemical and biological processing of DOM remain too poorly understood to achieve accurate predictions of the impact of these processes on DOM fate and reactivity. The aim of this study was to evaluate how photochemical degradation of amino acids affects bacterial metabolism and whether or not photochemical degradation of DOM competes for amino acids with biological processes. We examined the interactions between photochemical and bacterial degradation dynamics using a mixture of 18 amino acids and examined their dynamics and turnover rates within a larger pool of allochthonous or autochthonous DOM. We observed that photochemical exposure of DOM containing amino acids led to delayed biomass production (even though the final biomass did not differ), most likely due to a need for upregulation of biosynthetic pathways for amino acids that were damaged by photochemically produced reactive oxygen species (ROS). This response was most pronounced in bacterial communities where the abundance of photosensitive amino acids was highest (amended treatments and autochthonous DOM) and least pronounced when the abundance of these amino acids was low (unamended and allochthonous DOM), likely because these bacteria already had these biosynthetic pathways functioning. We observed both a cost and benefit associated with photochemical exposure of DOM. We observed a cost associated with photochemically produced ROS that partially degrade key amino acids and a benefit associated with an increase in the availability of other compounds in the DOM. Bacteria growing on DOM sources that are low in labile amino acids, such as those in terrestrially influenced environments, experience more of the benefits associated with photochemical exposure, whereas bacteria growing in more amino

  3. Studies on the sonic degradation of deoxyribonucleic acid.

    PubMed

    FREIFELDER, D; DAVISON, P F

    1962-05-01

    T7 DNA was partially degraded by x-rays, DNAase, and sonic irradiation. The molecular weight distributions were calculated from sedimentation velocity studies on the resulting preparations. Comparison with the theoretical curve derived by Montroll and Simha showed that the first two degradative methods act grossly at random, whereas sonication is a non-random process resulting in the preferential halving of the DNA molecules in solution.

  4. Studies on the Sonic Degradation of Deoxyribonucleic Acid

    PubMed Central

    Freifelder, David; Davison, Peter F.

    1962-01-01

    T7 DNA was partially degraded by x-rays, DNAase, and sonic irradiation. The molecular weight distributions were calculated from sedimentation velocity studies on the resulting preparations. Comparison with the theoretical curve derived by Montroll and Simha showed that the first two degradative methods act grossly at random, whereas sonication is a non-random process resulting in the preferential halving of the DNA molecules in solution. PMID:13894963

  5. Acid catalysed degradation of some spiramycin derivatives found in the antibiotic bitespiramycin.

    PubMed

    Shi, Xiangguo; Zhang, Shuqiu; Fawcett, J Paul; Zhong, Dafang

    2004-11-15

    Bitespiramycin is a novel antibiotic containing a number of 4''-acylated spiramycin derivatives (isovalerylspiramycins I-III, butanoylspiramycin III, propanoylspiramycin III and acetylspiramycin III) as major components. These spiramycin derivatives are susceptible to degradation in acid solution. Liquid chromatography-ion trap mass spectrometry (LC/MS(n)) was used to study the degradation of these spiramycin derivatives in simulated gastric fluid at 37 degrees C. All derivatives degraded by first-order reactions for which rate constants (k) and half-lives (t(1/2)) were calculated. Acyl groups at position 3 had less effect on acid-stability of spiramycin derivatives than acyl groups at position 4''. The introduction of 4''-acyl groups enhanced the acid-stability of spiramycin derivatives and altered the degradation pathway in simulated gastric fluid such that loss of forosamine rather than loss of mycarose becomes the major degradation pathway.

  6. Malonic acid suppresses mucin-type O-glycan degradation during hydrazine treatment of glycoproteins.

    PubMed

    Goso, Yukinobu

    2016-03-01

    Hydrazine treatment is frequently used for releasing mucin-type O-glycans (O-glycans) from glycoproteins because the method provides O-glycans that retain a reducible GalNAc at their reducing end, which is available for fluorescent labeling. However, many O-glycans are degraded by "peeling" during this treatment. In the current study, it was found that malonic acid suppressed O-glycan degradation during hydrazine treatment of bovine fetuin or porcine gastric mucin in both the gas and liquid phases. This is paradoxical because the release of O-glycans from glycoproteins occurs under alkaline conditions. However, malonic acid seems to prevent the degradation through its acidic property given that other weak acids also prevented the degradation. Accordingly, disodium malonate did not suppress O-glycan degradation. Application of this method to rat gastric mucin demonstrated that the majority of the major O-glycans obtained in the presence of malonic acid were intact, whereas those obtained in the absence of malonic acid were degraded. These results suggest that hydrazine treatment in the presence of malonic acid would allow glycomic analysis of native mucin glycoproteins.

  7. From labdanes to drimanes. Degradation of the side chain of dihydrozamoranic acid.

    PubMed

    Rodilla, Jesús M L; Díez, D; Urones, J G; Rocha, Pedro M

    2004-04-30

    A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.

  8. Magnesium degradation products: effects on tissue and human metabolism.

    PubMed

    Seitz, J-M; Eifler, R; Bach, Fr-W; Maier, H J

    2014-10-01

    Owing to their mechanical properties, metallic materials present a promising solution in the field of resorbable implants. The magnesium metabolism in humans differs depending on its introduction. The natural, oral administration of magnesium via, for example, food, essentially leads to an intracellular enrichment of Mg(2+) . In contrast, introducing magnesium-rich substances or implants into the tissue results in a different decomposition behavior. Here, exposing magnesium to artificial body electrolytes resulted in the formation of the following products: magnesium hydroxide, magnesium oxide, and magnesium chloride, as well as calcium and magnesium apatites. Moreover, it can be assumed that Mg(2+) , OH(-) ions, and gaseous hydrogen are also present and result from the reaction for magnesium in an aqueous environment. With the aid of physiological metabolic processes, the organism succeeds in either excreting the above mentioned products or integrating them into the natural metabolic process. Only a burst release of these products is to be considered a problem. A multitude of general tissue effects and responses from the Mg's degradation products is considered within this review, which is not targeting specific implant classes. Furthermore, common alloying elements of magnesium and their hazardous potential in vivo are taken into account.

  9. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    PubMed

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls.

  10. Partial Transformation Products as Indicators of Microbial Hydrocarbon Degradation in Soils

    NASA Astrophysics Data System (ADS)

    Stringfellow, W. T.

    2001-12-01

    Monitored natural decay (intrinsic bioremediation), a cost-effective method for remediating contaminated property, is widely applied to fuel contaminated sites. If an intrinsic bioremediation approach could be supported for the clean up of polynuclear aromatic hydrocarbon (PAH) contaminated properties, millions of dollars in clean-up costs could potential be saved, especially in transfers of industrial properties that will continue to be used for industrial purposes. Proving intrinsic biodegradation of polynuclear aromatic hydrocarbons (PAHs) is problematic. Slow PAH biodegradation rates in contaminated soils mean that oxygen mass transfer rates into the soil exceeds bacterial oxygen demand. Likewise carbon dioxide production during degradation is sufficiently slow that carbon dioxide will not accumulate in the soil gas to levels exceeding background, uncontaminated soils. Therefore, oxygen depletion and carbon dioxide accumulation, typical indicators of intrinsic remediation activity at fuel contaminated sites, are of little use in demonstrating intrinsic PAH remediation. Additionally, direct measurement of PAH loss over time is of limited use in the absence of extensive historical records, especially at sites that are still emitting PAHs as part of their operations. PAH loss rates may be in the order of 10% per year, whereas combined sampling and analytical error can be greater than 50%. It is our hypothesis that PAH degradation products, such as aromatic carboxylic acids and dihydrodiols, will be present in soils where biodegradation is occurring and absent in soils that are biologically inactive. We have developed methods for the extraction of PAH biodegradation products from soils and the analysis of these metabolites by both gas chromatography and high performance liquid chromatography. We have tested our hypothesis against soils undergoing both active and passive bioremediation. Our results indicate that PAH degradation products are detectable in many soils

  11. Mechanistic Study of the Acid Degradation of Lignin Model Compounds

    SciTech Connect

    Sturgeon, M.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2012-01-01

    Lignin is a major constituent of biomass, which remains underutilized in selective biomass conversion strategies to renewable fuels and chemicals. Here we are interested in understanding the mechanisms related to the acid deconstruction of lignin with a combined theoretical and experimental approach. Two model dimers with a b-O-4 aryl ether linkage (2-phenoxy-1-phenethanol and 2-phenoxy-1-phenyl-1,3 propanediol) and model dimmers with an a-O-4 aryl ether linkage were synthesized and deconstructed in H2SO4. The major products of the acidolysis of the b-O-4 compounds consisted of phenol and two aldehydes, phenylacetaldehyde and benzaldehyde. Quantum mechanical calculations were employed to elucidate possible deconstruction mechanisms with transition state theory. To confirm proposed mechanisms several possible intermediates were studied under similar acidolysis conditions. Although the resonance time for cleavage was on the order several hours, we have shown that the cleavage of the aryl ether linkage affords phenol and aldehydes. We would next like to utilize our mechanism of aryl ether cleavage in actual lignin.

  12. Degradation of Amino Acids and Structure in Model Proteins and Bacteriophage MS2 by Chlorine, Bromine, and Ozone.

    PubMed

    Choe, Jong Kwon; Richards, David H; Wilson, Corey J; Mitch, William A

    2015-11-17

    Proteins are important targets of chemical disinfectants. To improve the understanding of disinfectant-protein reactions, this study characterized the disinfectant:protein molar ratios at which 50% degradation of oxidizable amino acids (i.e., Met, Tyr, Trp, His, Lys) and structure were observed during HOCl, HOBr, and O3 treatment of three well-characterized model proteins and bacteriophage MS2. A critical question is the extent to which the targeting of amino acids is driven by their disinfectant rate constants rather than their geometrical arrangement. Across the model proteins and bacteriophage MS2 (coat protein), differing widely in structure, methionine was preferentially targeted, forming predominantly methionine sulfoxide. This targeting concurs with its high disinfectant rate constants and supports its hypothesized role as a sacrificial antioxidant. Despite higher HOCl and HOBr rate constants with histidine and lysine than for tyrosine, tyrosine generally was degraded in preference to histidine, and to a lesser extent, lysine. These results concur with the prevalence of geometrical motifs featuring histidines or lysines near tyrosines, facilitating histidine and lysine regeneration upon Cl[+1] transfer from their chloramines to tyrosines. Lysine nitrile formation occurred at or above oxidant doses where 3,5-dihalotyrosine products began to degrade. For O3, which lacks a similar oxidant transfer pathway, histidine, tyrosine, and lysine degradation followed their relative O3 rate constants. Except for its low reactivity with lysine, the O3 doses required to degrade amino acids were as low as or lower than for HOCl or HOBr, indicating its oxidative efficiency. Loss of structure did not correlate with loss of particular amino acids, suggesting the need to characterize the oxidation of specific geometric motifs to understand structural degradation.

  13. Effect of exogenous xylanase on rumen in vitro gas production and degradability of wheat straw.

    PubMed

    Togtokhbayar, Norovsambuu; Cerrillo, María A; Rodríguez, Germán Buendía; Elghandour, Mona M M Y; Salem, Abdelfattah Z M; Urankhaich, Chuluunbaatar; Jigjidpurev, Sukhbaatar; Odongo, Nicholas E; Kholif, Ahmed E

    2015-08-01

    The objective of this study was to determine effects of xylanase on in vitro gas production (GP) and in sacco degradability of wheat straw. Rumen fluid was obtained from three Mongolian native goats fitted with permanent rumen cannulas. The trial consisted of five doses (0, 0.5, 1.0, 1.5, 2.0 μL/g of substrate) of a commercial xylanase (Dyadic® xylanase PLUS, Dyadic International, Inc., Jupiter, FL, USA). For the in sacco degradability, different levels of xylanase enzyme were added directly onto 2 g of wheat straw in nylon bags and incubated in the rumen for 3, 6, 12, 24 and 48 h to estimate degradability of wheat straw. Total GP increased (P < 0.001) at all times of incubation at intermediate levels of xylanase. Methane production had a similar pattern at 3 and 12 h of incubation; increased linearly at 24 h of incubation, and was unaffected at 6 and 48 h of incubation. Rumen NH3 -N concentration increased linearly at 3 h and the highest values were observed with intermediate enzyme levels. All ruminal volatile fatty acids increased linearly with intermediate levels of the fibrolytic enzyme. The in sacco rate of dry matter degradation decreased linearly (P = 0.020) with increasing enzymes. Intermediate levels of xylanase improved rumen kinetic fermentation and degradability. The outcome of this research indicated that the application of xylanase enzyme could improve in vitro GP fermentation of wheat straw.

  14. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were

  15. Enzymatic degradation of plutonium-contaminated cellulose products

    SciTech Connect

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.; Avens, L.

    1999-03-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas.

  16. Enzymatic degradation of plutonium-contaminated cellulose products

    SciTech Connect

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-06-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options.

  17. Surface Analysis of Nerve Agent Degradation Products by ...

    EPA Pesticide Factsheets

    Report This sampling and analytical procedure was developed and applied by a single laboratory to investigate nerve agent degradation products, which may persist at a contaminated site, via surface wiping followed by analytical characterization. The performance data presented demonstrate the fitness-for-purpose regarding surface analysis in that single laboratory. Surfaces (laminate, glass, galvanized steel, vinyl tile, painted drywall and treated wood) were wiped with cotton gauze wipes, sonicated, extracted with distilled water, and filtered. Samples were analyzed with direct injection electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC/MS/MS) without derivatization. Detection limit data were generated for all analytes of interest on a laminate surface. Accuracy and precision data were generated from each surface fortified with these analytes.

  18. Psychopharmacological studies on (--)-nuciferine and its Hofmann degradation product atherosperminine.

    PubMed

    Bhattacharya, S K; Bose, R; Ghosh, P; Tripathi, V J; Ray, A B; Dasgupta, B

    1978-09-15

    (--)-Nuciferine and its Hofmann degradation product atherosperminine showed divergent psychopharmacological effects. Because nuciferine has been reported to be a neuroleptic and atherosperminine has some chemical resemblance to dopamine, they were investigated for their dopamine-receptor activities. Nuciferine had a pharmacologic profile of action associated with dopamine-receptor blockade; i.e., it induced catalepsy, inhibited spontaneous motor activity, conditioned avoidance response, amphetamine toxicity and stereotypy. On the other hand, atherosperminine produced effects associated with dopamine receptor stimulation, i.e., stereotypy, increase in spontaneous motor activity and amphetamine toxicity, reversal of haloperidol-induced catalepsy and inhibition of conditioned avoidance response, inhibition of morphine analgesia, and potentiation of the anticonvulsant action of diphenylhydantoin. The results are discussed on the basis of the chemical configuration of the two compounds.

  19. Influence of oxalic acid formed on the degradation of phenol by Fenton reagent.

    PubMed

    Nakagawa, Hiroyuki; Yamaguchi, Emi

    2012-06-01

    The objective of this work is to examine the influence of oxalic acid formed on the degradation of phenol by Fenton reagent. Oxalic acid formed at initial stage within 30 min significantly suppresses the reduction of ferric ion, thus terminating degradation reaction. The yield of oxalic acid is dependent on the amount of ferrous ion dosed since the minimal amount of oxalic acid is formed after the degradation reaction terminates. Mineralization of phenol by Fenton reagent stagnates after 120 min under the conditions used in this study. The reason why the mineralization stagnated can be assumed to be following two mechanisms other than the depletion of H(2)O(2). In the case where a small amount of ferrous ions is dosed, the reduction of ferric ions is minimal by oxalic acid formed. In the case where a large amount of ferrous ions is dosed, the amount of degradable organic compounds is insufficient owing to preferential conversion to oxalic acid. The mineralization can be enhanced by the intermittent dosing of ferrous ions, which facilitates the suppression of oxalic acid formation during the degradation by Fenton reagent.

  20. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Choi, Jong-il; Park, Hyun

    2015-04-01

    Low molecular weight fucoidan, prepared by radical degradation using gamma ray was investigated for its antioxidant activities with different assay methods. As the molecular weight of fucoidan decreased with a higher absorbed dose, ferric-reducing antioxidant power values increased, but β-carotene bleaching inhibition did not change significantly. The antioxidant activity of acid-degraded fucoidan was also examined to investigate the effect of different degradation methods. At the same molecular weight, fucoidan degraded by gamma irradiation showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than that observed with the acidic method. This result reveals that in addition to molecular weight, the degradation method affects the antioxidant activity of fucoidan.

  1. Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition.

    PubMed

    Zhang, Chengdong; Li, Mingzhu; Chen, Xiaoyan; Li, Mingchun

    2015-08-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical that is ubiquitous in the environment because of its broad industrial use. The authors report that the most widely cultivated mushroom in the world (i.e., white-rot fungus, Pleurotus ostreatus) efficiently degraded 10mg/L of BPA in 7 days. Extracellular laccase was identified as the enzyme responsible for this activity. LC-MS analysis of the metabolites revealed the presence of both low- and high-molecular-weight products obtained via oxidative cleavage and coupling reactions, respectively. In particular, an analysis of the fatty acid composition and chemical structure of the fungal mycelium demonstrated that exposure to BPA resulted in no harmful effects on this edible fungus. The results provide a better understanding of the environmental fate of BPA and its potential impact on food crops.

  2. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester... identified generically as carboxylic acid, substituted alkylstannylene ester, reaction products...

  3. Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum.

    PubMed

    Zeng, Li-Mei; Zhang, Jing; Han, Yong-Chao; Yang, Long; Wu, Ming-de; Jiang, Dao-Hong; Chen, Weidong; Li, Guo-Qing

    2014-08-01

    Coniothyrium minitans (Cm) is a mycoparasite of the phytopathogenic fungus Sclerotinia sclerotiorum (Ss). Ss produces a virulence factor oxalic acid (OA) which is toxic to plants and also to Cm, and Cm detoxifies OA by degradation. In this study, two oxalate decarboxylase genes, Cmoxdc1 and Cmoxdc2, were cloned from Cm strain Chy-1. OA and low pH induced expression of Cmoxdc1, but not Cmoxdc2. Cmoxdc1 was partially responsible for OA degradation, whereas Cmoxdc2 had no effect on OA degradation. Disruption of Cmoxdc1 in Cm reduced its ability to infect Ss in dual cultures where OA accumulated. Compared with Chy-1, the Cmoxdc1-disrupted mutants had reduced expression levels of two mycoparasitism-related genes chitinase (Cmch1) and β-1,3-glucanase (Cmg1), and had no detectable activity of extracellular proteases in the presence of OA. On the other hand, the cultural filtrates of the Cmoxdc1-disrupted mutants in OA-amended media showed enhanced antifungal activity, possibly because of increased production of antifungal substances under acidic pH condition resulted from reduced Cmoxdc1-mediated OA degradation. This study provides direct genetic evidence of OA degradation regulating mycoparasitism and antibiosis of Cm against Ss, and sheds light on the sophisticated strategies of Cm in interacting with metabolically active mycelia and dormant sclerotia of Ss.

  4. Fluorescence formation from the interaction of DNA with lipid oxidation degradation products.

    PubMed

    Frankel, E N; Neff, W E; Brooks, D D; Fujimoto, K

    1987-06-23

    To clarify the mechanism of fluorescence formation between DNA and lipid degradation products in the presence of ferric chloride and ascorbic acid, a number of carbonyl compounds and decomposition products of pure methyl linolenate hydroperoxides were examined. Keto derivatives of methyl ricinoleate, linoleate, and oleate, alkanals and 2-alkenals produced little or no fluorescence with DNA in the presence of ferric chloride-ascorbic acid. 2,4-Alkadienals were more active and 2,4,7-decatrienal was the most active. Mixtures of volatile aldehydes prepared from linolenate hydroperoxide decomposed either thermally or with iron and ascorbate had the same activity as 2,4,7-decatrienal. Higher molecular-weight products from the decomposition of methyl linolenate hydroperoxides showed relatively low activity. beta-Carotene, alpha-tocopherol and other antioxidants effectively reduced the amount of fluorescence formed by linolenate hydroperoxides. The results suggest that, in addition to hydroperoxide decomposition products, singlet oxygen and/or free radical species contribute significantly to the fluorescence formed from the interaction of methyl linolenate hydroperoxides with DNA in the presence of ferric chloride and ascorbic acid.

  5. Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating.

    PubMed

    Jaeschke, Débora Pez; Marczak, Ligia Damasceno Ferreira; Mercali, Giovana Domeneghini

    2016-05-15

    The effect of electric field on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating was evaluated. Ascorbic acid kinetic degradation was evaluated at 80, 85, 90 and 95°C during 60 min of thermal treatment by ohmic and conventional heating. Carotenoid degradation was evaluated at 90 and 95°C after 50 min of treatment. The different temperatures evaluated showed the same effect on degradation rates. To investigate the influence of oxygen concentration on the degradation process, ohmic heating was also carried out under rich and poor oxygen modified atmospheres at 90°C. Ascorbic acid and carotenoid degradation was higher under a rich oxygen atmosphere, indicating that oxygen is the limiting reagent of the degradation reaction. Ascorbic acid and carotenoid degradation was similar for both heating technologies, demonstrating that the presence of the oscillating electric field did not influence the mechanisms and rates of reactions associated with the degradation process.

  6. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    PubMed

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  7. Carbon capture and sequestration: an exploratory inhalation toxicity assessment of amine-trapping solvents and their degradation products.

    PubMed

    McDonald, Jacob D; Kracko, Dean; Doyle-Eisele, Melanie; Garner, C Edwin; Wegerski, Chris; Senft, Al; Knipping, Eladio; Shaw, Stephanie; Rohr, Annette

    2014-09-16

    Carbon dioxide (CO2) absorption with aqueous amine solvents is a method of carbon capture and sequestration (CCS) from flue gases. One concern is the possible release of amine solvents and degradation products into the atmosphere, warranting evaluation of potential pulmonary effects from inhalation. The CCS amines monoethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP) underwent oxidative and CO2-mediated degradation for 75 days. C57bl/6N mice were exposed for 7 days by inhalation of 25 ppm neat amine or equivalant concentration in the degraded mixture. The aqueous solutions were nebulized to create the inhalation atmospheres. Pulmonary response was measured by changes in inflammatory cells in bronchoalveolar lavage fluid and cytokine expression in lung tissue. Ames mutagenicity and CHO-K1 micronucleus assays were applied to assess genotoxicity. Chemical analysis of the test atmosphere and liquid revealed complex mixtures, including acids, aldehydes, and other compounds. Exposure to oxidatively degraded MEA increased (p < 0.05) total cells, neutrophils, and lymphocytes compared to control mice and caused inflammatory cytokine expression (statistical increase at p < 0.05). MEA and CO2-degraded MEA were the only atmospheres to show statistical (p < 0.05) increase in oxidative stress. CO2 degradation resulted in a different composition, less degradation, and lower observed toxicity (less magnitude and number of effects) with no genotoxicity. Overall, oxidative degradation of the amines studied resulted in enhanced toxicity (increased magnitude and number of effects) compared to the neat chemicals.

  8. Acid hydrolysis of sugarcane bagasse for lactic acid production.

    PubMed

    Laopaiboon, Pattana; Thani, Arthit; Leelavatcharamas, Vichean; Laopaiboon, Lakkana

    2010-02-01

    In order to use sugarcane bagasse as a substrate for lactic acid production, optimum conditions for acid hydrolysis of the bagasse were investigated. After lignin extraction, the conditions were varied in terms of hydrochloric (HCl) or sulfuric (H(2)SO(4)) concentration (0.5-5%, v/v), reaction time (1-5h) and incubation temperature (90-120 degrees C). The maximum catalytic efficiency (E) was 10.85 under the conditions of 0.5% of HCl at 100 degrees C for 5h, which the main components (in gl(-1)) in the hydrolysate were glucose, 1.50; xylose, 22.59; arabinose, 1.29; acetic acid, 0.15 and furfural, 1.19. To increase yield of lactic acid production from the hydrolysate by Lactococcus lactis IO-1, the hydrolysate was detoxified through amberlite and supplemented with 7 g l(-1) of xylose and 7 g l(-1) of yeast extract. The main products (in gl(-1)) of the fermentation were lactic acid, 10.85; acetic acid, 7.87; formic acid, 6.04 and ethanol, 5.24.

  9. Organic Acid Production by Filamentous Fungi

    SciTech Connect

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  10. Mechanisms of photocatalytical degradation of monomethylarsonic and dimethylarsinic acids using nanocrystalline titanium dioxide.

    PubMed

    Xu, Zhonghou; Jing, Chuanyong; Li, Fasheng; Meng, Xiaoguang

    2008-04-01

    Photodegradation mechanisms of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) with nanocrystalline titanium dioxide under UV irradiation were investigated. In the presence of UV irradiation and 0.02 g/L TiO2, 93% MMA (initial concentration is 10 mg-As/L) was transformed into inorganic arsenate, [As(V)], after 72 h of a batch reaction. The mineralization of DMA to As(V) occurred in two steps with MMA as an intermediate product. The photodegradation rate of MMA and DMA could be described using first-order kinetics, where the apparent rate constant is 0.033/h and 0.013/h for MMA and DMA, respectively. Radical scavengers, including superoxide dimutase (SOD), sodium bicarbonate, tert-butanol, and sodium azide, were used to study the photodegradation mechanisms of MMA and DMA. The results showed that hydroxyl radicals (HO*) was the primary reactive oxygen species for the photodegradation of MMA and DMA. The methyl groups in MMA and DMAweretransformed into organic carbon, including formic acid and possibly methanol, also through photochemical reactions. The results showed that nanocrystalline TiO2 can be used for the photocatalytical degradation of MMA and DMA and subsequent removal of the converted As(V), since the high adsorption capacity of the material for inorganic arsenic species has been demonstrated in previous studies.

  11. Thermal degradation behaviour of nanoamphiphilic chitosan dispersed poly (lactic acid) bionanocomposite films.

    PubMed

    Pal, Akhilesh Kumar; Katiyar, Vimal

    2017-02-01

    In the present study, nano-amphiphilic chitosan termed as chitosan-grafted-oligo l-lactic acid (CH-g-OLLA), is synthesized by microwave initiated insitu condensation polymerization. The synthesized CH-g-OLLA becomes hydrophobic in nature due to chemical bond formation between chitosan backbone and OLLA chains. Further, CH-g-OLLA (30%) bionanocomposite is used as a nanofiller in poly (lactic acid)/chitosan-grafted-oligo l-lactic acid (PLA/CH-g-OLLA) bionanocomposite films. Surface morphology shows a homogeneous dispersion of CH-g-OLLA in the form of spherical aggregates, which vary in the range of ∼20 to 150nm. Non-isothermal degradation kinetics, proposed by Kissinger, Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa and Augis & Bennett models, are utilized to estimate the activation energies (Ea) for PLA, which are 254.1, 260.2, 257.0 and 259.1kJmol(-1) respectively. The reduction in Ea values of bionanocomposite films may be elucidated by intermolecular distance and enrichment in chain mobility. The evolved gaseous products like hydrocarbons, carbon dioxide, carbon monoxide and cyclic oligomers are successfully identified with TG-FTIR analysis.

  12. Advanced oxidation of a commercially important nonionic surfactant: investigation of degradation products and toxicity.

    PubMed

    Karci, Akin; Arslan-Alaton, Idil; Bekbolet, Miray

    2013-12-15

    The evolution of degradation products and changes in acute toxicity during advanced oxidation of the nonionic surfactant nonylphenol decaethoxylate (NP-10) with the H2O2/UV-C and photo-Fenton processes were investigated. H2O2/UV-C and photo-Fenton processes ensured complete removal of NP-10, which was accompanied by the generation of polyethylene glycols with 3-8 ethoxy units. Formation of aldehydes and low carbon carboxylic acids was evidenced. According to the acute toxicity tests carried out with Vibrio fischeri, degradation products being more inhibitory than the original NP-10 solution were formed after the H2O2/UV-C process, whereas the photo-Fenton process appeared to be toxicologically safer since acute toxicity did not increase relative to the original NP-10 solution after treatment. Temporal evolution of the acute toxicity was strongly correlated with the identified carboxylic acids being formed during the application of H2O2/UV-C and photo-Fenton processes.

  13. Production of keratinolytic enzyme by an indigenous feather-degrading strain Bacillus cereus Wu2.

    PubMed

    Lo, Wei-Hsun; Too, Jui-Rze; Wu, Jane-Yii

    2012-12-01

    A novel feather-degrading microorganism was isolated from a poultry farm in Taiwan, and was identified Bacillus cereus Wu2 according to 16S rRNA sequencing. The isolated strain produces keratinolytic enzyme using chicken feather as the sole carbon and nitrogen source. The experimental results indicated that the extra carbon sources (glucose, fructose, starch, sucrose, or lactose) could act as a catabolite repressor to the enzyme secretion or keratinolytic activity when keratinous substrates were employed as protein sources. However, addition of 2 g/L of NH(4)Cl to the feather medium increased the enzyme production. The optimum temperature and initial pH for enzyme production were 30°C and 7.0, respectively. The maximum yield of the enzyme was 1.75 kU/mL in the optimal chicken feather medium; this value was about 17-fold higher than the yield in the basal hair medium. The B. cereus Wu2 possessed disulfide reductase activity along with keratinolytic activity. The amino acid contents of feathers degradated by B. cereus Wu2 were higher, especially for lysine, methionine and threonine which were nutritionally essential amino acids and usually deficient in the feather meal. Thus, B. cereus Wu2 could be not only used to enhance the nutritional value of feather meal but is also a potential bioinoculant in agricultural environments.

  14. Impurity profiling of trandolapril under stress testing: Structure elucidation of by-products and development of degradation pathway.

    PubMed

    Dendeni, M; Cimetiere, N; Amrane, A; Hamida, N Ben

    2012-11-15

    Various regulatory authorities like International Conference on Harmonization (ICH), US Food and Drug Administration, Canadian Drug and Health Agency are emphasizing on the purity requirements and the identification of impurities in active pharmaceutical drugs. Qualification of the impurities is the process of acquiring and evaluating data that establishes biological safety of an individual impurity; thus, revealing the need and scope of impurity profiling of drugs in pharmaceutical research. As no stability-indicating method is available for identification of degradation products of trandolapril, a new angiotensin converting enzyme inhibitor (ACEI), under stress testing, the development of an accurate method is needed for quantification and qualification of degradation products. Ultra high performance liquid chromatography (UPLC) coupled to electrospray tandem mass spectrometry was used for the rapid and simultaneous analysis of trandolapril and its degradation products. Chromatographic separation was achieved in less than 4 min, with improved peak resolution and sensitivity. Thanks to this method, the kinetics of trandolapril degradation under various operating conditions and the characterization of the structure of the by-products formed during stress testing have been determined. Thereafter, a mechanism of trandolapril degradation in acid and neutral conditions, including all the identified products, was then proposed.

  15. Excretion of caffeine and its primary degradation products into bile.

    PubMed

    Holstege, A; Kurz, M; Weinbeck, M; Gerok, W

    1993-01-01

    Caffeine, widely consumed in beverages, is known to alter several biliary parameters that can affect gallstone pathogenesis. To address the question whether methylxanthines can act on the luminal side of biliary epithelial cells, we measured caffeine and its primary demethylation products in human bile. Eight patients had an external biliary drainage due to bile duct or gallbladder disease. Two of the patients suffered from histologically confirmed liver cirrhosis. The levels of caffeine, paraxanthine, theobromine, and theophylline were monitored over 10 h in plasma and bile before and after a prior oral dose of caffeine (5 mg/kg b. wt.). Methylxanthines were enriched by an organic extraction procedure and separated by reversed-phase high-performance liquid chromatography. Time-concentration curves in bile paralleled the time-course of methylxanthine levels in blood plasma. Accordingly, values in bile and blood plasma were highly correlated for each methylxanthine measured. Within 1 h after the oral test dose, peak levels of caffeine were obtained in both fluids. Biliary concentrations were either almost equal (caffeine) or lower (dimethylxanthines) than their respective values in blood plasma. The results of our study indicate that minor amounts of caffeine and its primary degradation products are excreted via the bile allowing local interference with epithelial cell metabolism of bile ducts and gallbladder.

  16. Energetics and kinetics of anaerobic aromatic and fatty acid degradation

    SciTech Connect

    McInerney, M.J.

    1992-11-16

    The kinetics of benzoate degradation by the anaerobic syntrophic bacterium, Syntrophus buswellii, was studied in coculture with Desulfovibrio strain G11. The threshold value for benzoate degradation was dependent on the acetate concentration with benzoate threshold values ranging from 2.4 [mu]M at 20 mM acetate to 30.0 [mu]M at 65 mM acetate. Increasing acetate concentrations also inhibited the rate of benzoate degradation with a apparent K[sub i] for acetate inhibition of 7.0 mM. Lower threshold values were obtained when nitrate rather than sulfate was the terminal electron acceptor. These data are consistent with a thermodynamic explanation for the threshold, and suggest that there is a minimum Gibbs free energy value required for the degradation of benzoate. An acetoacetyl-CoA thiolase has been isolated from Syntrophomonas wolfei; it is apparently a key enzyme controlling the synthesis of poly-B-hydroxyalkanoate from acetyl-CoA in this organism. Kinetic characterization of the acetoacetyl-CoA thiolase from S. wolfei showed that it is similar in its structural, kinetic, and apparent regulatory properties to other biosynthetic acetoacetyl-CoA thiolases from phylogenetically distinct bacteria that synthesize PHA. Intracellular concentrations of CoA and acetyl-CoA are believed to be critical factors regulating the activity of the acetoacetyl-CoA thiolase in S. wolfei. We have also isolated and characterized several new halophilic anaerobic fermentative anaerobes. Phylogenetic analysis indicates that one of these bacteria is a new species in the genus, Haloanaerobium. Two other species appear to be members of the genus, Halobacteroides. Several halophilic acetoclastic methanogenic bacteria have also been isolated and their physiological properties are currently under investigation. We have also isolated an acetate-using dissimilatory iron-reducing bacterium.

  17. Selective determination of diclazuril in the presence of its degradation products.

    PubMed

    Rezk, Mamdouh R

    2015-02-01

    A simple stability-indicating high-performance liquid chromatographic method was developed and validated for the determination of diclazuril (DIC) in the presence of its induced degradation products. The drug was subjected to stress stability study including acidic, alkaline, photolytic, thermal and oxidative stress conditions, and the stressed samples were analyzed by the proposed method. The developed method utilized a C18 column (250 × 4.6 mm, i.d., 5 μm) in an isocratic separation mode with mobile phase consisting of acetonitrile and 0.2% phosphoric acid at a flow rate of 1.2 mL/min with UV-detection at 275 nm. The proposed method was validated according to the International Conference on Harmonization guidelines. The method was applied in short term and accelerated stability studies for determination of the DIC in bulk powder and in its pharmaceutical formulation.

  18. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group-Determination of Dissolved Isoxaflutole and Its Sequential Degradation Products, Diketonitrile and Benzoic Acid, in Water Using Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Lee, Edward A.; Scribner, Elisabeth A.

    2007-01-01

    An analytical method for the determination of isoxaflutole and its sequential degradation products, diketonitrile and a benzoic acid analogue, in filtered water with varying matrices was developed by the U.S. Geological Survey Organic Geochemistry Research Group in Lawrence, Kansas. Four different water-sample matrices fortified at 0.02 and 0.10 ug/L (micrograms per liter) are extracted by vacuum manifold solid-phase extraction and analyzed by liquid chromatography/tandem mass spectrometry using electrospray ionization in negative-ion mode with multiple-reaction monitoring (MRM). Analytical conditions for mass spectrometry detection are optimized, and quantitation is carried out using the following MRM molecular-hydrogen (precursor) ion and product (p) ion transition pairs: 357.9 (precursor), 78.9 (p), and 277.6 (p) for isoxaflutole and diketonitrile, and 267.0 (precursor), 159.0 (p), and 223.1 (p) for benzoic acid. 2,4-dichlorophenoxyacetic acid-d3 is used as the internal standard, and alachlor ethanesulfonic acid-d5 is used as the surrogate standard. Compound detection limits and reporting levels are calculated using U.S. Environmental Protection Agency procedures. The mean solid-phase extraction recovery values ranged from 104 to 108 percent with relative standard deviation percentages ranging from 4.0 to 10.6 percent. The combined mean percentage concentration normalized to the theoretical spiked concentration of four water matrices analyzed eight times at 0.02 and 0.10 ug/L (seven times for the reagent-water matrix at 0.02 ug/L) ranged from approximately 75 to 101 percent with relative standard deviation percentages ranging from approximately 3 to 26 percent for isoxaflutole, diketonitrile, and benzoic acid. The method detection limit (MDL) for isoxaflutole and diketonitrile is 0.003 ug/L and 0.004 ug/L for benzoic acid. Method reporting levels (MRLs) are 0.011, 0.010, and 0.012 ug/L for isoxaflutole, diketonitrile, and benzoic acid, respectively. On the basis

  19. Selective microbial degradation of saturated methyl branched chain fatty acid isomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three strains of Pseudomonas bacteria were screened for their capabilities of degrading chemically synthesized saturated branched-chain fatty acids (sbc-FAs). Mixtures of sbc-FAs with the methyl-branch located at various locales along the fatty acid were used as a carbon feedstock in shake-flask cu...

  20. A study on degradation kinetics of ascorbic acid in amla (Phyllanthus emblica L.) during cooking.

    PubMed

    Nisha, P; Singhal, Rekha S; Pandit, Aniruddha B

    2004-08-01

    The kinetics of ascorbic acid degradation in amla (Phyllanthus emblica L.) as well as in pure ascorbic acid solutions at initial concentrations present in amla over a temperature range of 50-120 degrees C (steady-state temperature) has been studied. The ascorbic acid degradation followed first-order reaction kinetics where the rate constant increased with an increase in temperature. The temperature dependence of degradation was adequately modeled by the Arrhenius equation. The activation energies were found to be 4.09 kcal/mole for amla and 4.49 kcal/mole for pure vitamin solution. The degradation kinetics of ascorbic acid was also evaluated in normal open pan cooking, pressure-cooking and a newly developed and patented fuel-efficient EcoCooker (unsteady state heating process). A mathematical model was developed using the steady-state kinetic parameters obtained to predict the losses of ascorbic acid from the time-temperature data of the unsteady state heating processing method. The results obtained indicate the ascorbic acid degradation is of a similar order of magnitude in all the methods of cooking.

  1. Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production.

    PubMed

    Zhou, Xu; Xu, Jiele; Wang, Ziyu; Cheng, Jay J; Li, Ruyu; Qu, Rongda

    2012-01-01

    Conventional Alamo switchgrass and its transgenic counterparts with reduced/modified lignin were subjected to dilute sulfuric acid pretreatment for improved sugar production. At 150 °C, the effects of acid concentration (0.75%, 1%, 1.25%) and residence time (5, 10, 20, 30 min) on sugar productions in pretreatment and enzymatic hydrolysis were investigated, with the optimal pretreatment conditions determined for each switchgrass genotype based on total sugar yield and the amounts of sugar degradation products generated during the pretreatment. The results show that genetic engineering, although did not cause an appreciable lignin reduction, resulted in a substantial increase in the ratio of acid soluble lignin:acid insoluble lignin, which led to considerably increased sugar productions in both pretreatment and enzymatic hydrolysis. At an elevated threshold concentration of combined 5-hydroxyfuranmethal and furfural (2.0 g/L), the overall carbohydrate conversions of conventional switchgrass and its transgenic counterparts, 10/9-40 and 11/5-47, reached 75.9%, 82.6%, and 82.2%, respectively.

  2. Electrochemical assisted photocatalytic degradation of salicylic acid with highly ordered TiO2 nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Zhu, Jinwei; Wang, Ying; Feng, Jiangtao; Yan, Wei; Xu, Hao

    2014-07-01

    To explore the kinetics of photoelectrocatalytic degradation of salicylic acid, one of the important PPCPs, highly ordered TiO2 nanotube arrays (NTs) were prepared by the electrochemical anodization and characterized with scanning electron microscopy and X-ray diffraction techniques. The effect of TiO2 NTs properties, bias potential, initial salicylic acid concentration and solution pH on the degradation efficiency was studied and carefully analyzed. The results revealed that the salicylic acid degradation follows quasi-first order kinetics in the photoelectrocatalytic process, and the fastest decay kinetics was achieved in acidic environment (pH 2). The result was further interpreted through the electrochemical impedance spectroscopy. It is confirmed that the electrochemical assisted photocatalysis is a synergetic approach to combat stable organic substances with improved efficiency.

  3. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    PubMed

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  4. Preparation and characterization of two new forced degradation products of letrozole and development of a stability-indicating RP-LC method for its determination.

    PubMed

    Elkady, Ehab Farouk; Fouad, Marwa Ahmed

    2015-11-01

    Two new hydrolytic products of letrozole were identified and proved to be true degradation products obtained by alkaline and acidic degradation of the drug. The acid and amide forms of the nitrile groups of letrozole were prepared and identified by IR and mass spectroscopic techniques. Subsequently, a simple, precise and selective stability-indicating RPLC method was developed and validated for the determination of letrozole in the presence of its degradation products. Letrozole was subjected to alkali and acid hydrolysis, oxidation, thermal degradation and photo-degradation. The degradation products were well isolated from letrozole. The chromatographic method was achieved using gradient elution of the drug and its degradation products on a reversed phase Zorbax Eclipse C18 column (100mm x 4.6mm, 3.5 μm) using a mobile phase consisting of 0.01M KH₂PO₄and methanol at a flow rate of 1 mL min⁻¹. Quantitation was achieved with UV detection at 230 nm. Linearity, accuracy and precision were found to be acceptable over the concentration range of 0.01-80 μgmL⁻¹. The proposed method was successfully applied to the determination of letrozole in bulk, plasma and in its pharmaceutical preparation.

  5. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  6. Production of organic acids from kitchen wastes.

    PubMed

    Loh, C W; Fakhru'l-Razi, A; Hassan, M A; Karim, M I

    1999-01-01

    This study involves the production of short-chain organic acids from kitchen wastes as intermediates for the production of biodegradable plastics. Flasks, without mixing were used for the anaerobic conversion of the organic fraction of kitchen wastes into short-chain organic acids. The influence of pH, temperature and addition of sludge cake on the rate of organic acids production and yield were evaluated. Fermentations were carried out in an incubator at different temperatures controlled at 30 degrees C. 40 degrees C, 50 degrees C, 60 degrees C and uncontrolled at room temperature. The pH was also varied at pH 5, 6, 7, and uncontrolled pH. 1.0 M phosphate buffer was used for pH control, and 1.0 M HCl and 1.0 M NaOH were added when necessary. Sludge cake addition enhanced the rate of maximum acids production from 4 days to 1 day. The organic acids produced were maximum at pH 7 and 50 degrees C i.e., 39.84 g/l on the fourth day of fermentation with a yield of 0.87 g/g soluble COD consumed, and 0.84 g/g TVS. The main organic acid produced was lactic acid (65-85%), with small amounts of acetic (10-30%), propionic (5-10%), and butyric (5-20%) acids. The results of this study showed that kitchen wastes could be fermented to high concentration of organic acids, which could be used as substrates for the production of biodegradable plastics.

  7. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  8. A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products.

    PubMed

    van Minnen, B; Stegenga, B; van Leeuwen, M B M; van Kooten, T G; Bos, R R M

    2006-02-01

    The biological safety of degradation products from degradable biomaterials is very important. In this study a new method is proposed to test the cytotoxicity of these degradation products with the aim to save time, laboratory animals, and research funds. A biodegradable polyurethane (PU) foam was subjected to this test method. The PU had soft segments of DL-lactide/epsilon-caprolactone and hard segments synthesized from butanediol and 1,4-butanediiosocyanate. Copolymer foams without urethane segments, consisting of DL-lactide/epsilon-caprolactone, were tested as well. Accumulated degradation products were collected by degrading the foams in distilled water at 60 degrees C up to 52 weeks. Cell-culture medium was prepared from powder medium with this water. In different tests the cytotoxicity of this medium was established. The first signs of cytotoxicity were observed after 3-5 weeks of degradation. This accounts for both materials and reestablishes the good short-term biocompatibility of these materials. The PU showed more toxicity toward the end stages of degradation in comparison with the copolymer. This is probably related to the accumulation of degradation products of the urethane segments. In the in vivo situation the degradation of the PU and the metabolism and excretion of degradation products may differ. Therefore, long-term in vivo studies will have to establish whether these in vitro results are representative for the in vivo behavior of the degrading PU.

  9. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  10. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater.

    PubMed

    Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera

    2016-01-01

    An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples

  11. Process, optimized acidizing reduce production facility upsets

    SciTech Connect

    Ali, S.A.; Hill, D.G.; McConnell, S.B.; Johnson, M.R.

    1997-02-10

    The filtration/absorption process, coupled with optimum treatments, prevent facility upsets that increase the time and resources required for bringing a well back on-line following an acid stimulation. Surface active agents, required in acidizing to improve well productivity, can form oil/water emulsions and cause unacceptable oil and grease levels during acid flowback. But recent offshore experiences after acidizing show that operators can achieve oil and grease discharge limits without facility upsets. To minimize oil and grease, the additives need to be optimized by adding a mutual breakout solvent (MBS). MBS has the dual function of being a mutual solvent and a sludge and emulsion control additive. The paper discusses acidizing problems, acid additives, handling options, and a case history of the Main Pass A field.

  12. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

  13. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Final report

    SciTech Connect

    Michael J. McInerney

    1996-06-24

    The factors that affect the rate and extent of a model aromatic compound, benzoate, in methanogenic environments was studied. Benzoate is degraded to a threshold concentration below which no further substrate degradation occurs. The threshold concentration depended on the substrate concentration and the amount of acetate present. The threshold value was not a function of the kinetic ability of the organism or toxicity of the end products. Rather a minimal Gibb's free energy value may exist where thermodynamic constraints preclude further benzoate degradation. In addition, new bacterial species were isolated and described, that degrade benzoate or reduce iron, cobalt and other metals.

  14. Pinocytosis and intracellular degradation of exogenous protein: modulation by amino acids

    PubMed Central

    1983-01-01

    Intracellular degradation of exogenous (serum) proteins provides a source of amino acids for cellular protein synthesis. Pinocytosis serves as the mechanism for delivering exogenous protein to the lysosomes, the major site of intracellular degradation of exogenous protein. To determine whether the availability of extracellular free amino acids altered pinocytic function, we incubated monolayers of pulmonary alveolar macrophages with the fluid-phase marker, [14C]sucrose, and we dissected the pinocytic process by kinetic analysis. Additionally, intracellular degradation of endogenous and exogenous protein was monitored by measuring phenylalanine released from the cell monolayers in the presence of cycloheximide. Results revealed that in response to a subphysiological level of essential amino acids or to amino acid deprivation, (a) the rate of fluid-phase pinocytosis increased in such a manner as to preferentially increase both delivery to and size of an intracellular compartment believed to be the lysosomes, (b) the degradation of exogenously supplied albumin increased, and (c) the fraction of phenylalanine derived from degradation of exogenous albumin and reutilized for de novo protein synthesis increased. Thus, modulation of the pinosome-lysosome pathway may represent a homeostatic mechanism sensitive to the availability of extracellular free amino acids. PMID:6853596

  15. [Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease].

    PubMed

    Zhou, Jianli; Kang, Zhen; Liu, Qingtao; Du, Guocheng; Chen, Jian

    2016-01-01

    Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.

  16. Degradability of fluorapatite-leucite ceramics in naturally acidic agents.

    PubMed

    Kukiattrakoon, Boonlert; Hengtrakool, Chanothai; Kedjarune-Leggat, Ureporn

    2010-10-01

    This study was conducted to evaluate the titratable acidity and effect of naturally acidic agents on the surface microhardness, elemental composition, and surface morphology of fluorapatite-leucite ceramics. One hundred and ten ceramic disks (IPS d.SIGN), 12.0 mm in diameter and 2.0 mm in thickness, were fabricated. Before immersion, the baseline data of Vickers microhardness and elemental composition were recorded. Four groups were immersed in acidic agents (citrate buffer solution, green mango juice, and pineapple juice) and deionized water (control) at 37ºC for 168 hours, whereas one group was immersed in 4% acetic acid at 80ºC for 168 hours. After immersion, specimens were evaluated and data were analyzed using one-way repeated ANOVA and Tukey's test (α=0.05). Microhardness values significantly decreased after immersion (p<0.05). In terms of elemental composition, the weight percentages of silicon, potassium, aluminum, and sodium also decreased after immersion (p<0.05). Results of this study showed that fluorapatite-leucite ceramics were affected by long-term immersion in acidic agents.

  17. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra).

    PubMed

    Balan, Venkatesh; Sousa, Leonardo da Costa; Chundawat, Shishir P S; Marshall, Derek; Sharma, Lekh N; Chambliss, C Kevin; Dale, Bruce E

    2009-01-01

    There is a growing need to find alternatives to crude oil as the primary feed stock for the chemicals and fuel industry and ethanol has been demonstrated to be a viable alternative. Among the various feed stocks for producing ethanol, poplar (Populus nigra x Populus maximowiczii) is considered to have great potential as a biorefinery feedstock in the United States, due to their widespread availability and good productivity in several parts of the country. We have optimized AFEX pretreatment conditions (180 degrees C, 2:1 ammonia to biomass loading, 233% moisture, 30 minutes residence time) and by using various combinations of enzymes (commercical celluloses and xylanases) to achieve high glucan and xylan conversion (93 and 65%, respectively). We have also identified and quantified several important degradation products formed during AFEX using liquid chromatography followed by mass spectrometry (LC-MS/MS). As a part of degradation product analysis, we have also quantified oligosaccharides in the AFEX water wash extracts by acid hydrolysis. It is interesting to note that corn stover (C4 grass) can be pretreated effectively using mild AFEX pretreatment conditions, while on the other hand hardwood poplar requires much harsher AFEX conditions to obtain equivalent sugar yields upon enzymatic hydrolysis. Comparing corn stover and poplar, we conclude that pretreatment severity and enzymatic hydrolysis efficiency are dictated to a large extent by lignin carbohydrate complexes and arabinoxylan cross-linkages for AFEX.

  18. [Removal of triclosan with the method of UV/ClO2 and its degradation products].

    PubMed

    Li, Yu-Ying; He, Wen-Long; Li, Qing-Song; Jin, Wei-Wei; Chen, Guo-Yuan; Li, Guo-Xin

    2015-02-01

    The UV/ClO2 process for triclosan ( TCS) removal was studied. The influences of several factors such as the initial pH, dose of ClO2, initial concentration of TCS and humic acid( HA) on TCS degradation in the UV/ClO2 combined process were discussed. The results showed that the UV/ClO2 process could effectively remove TCS and had a synergistic effect. When the light intensity was 6.5 μW x Cm(-2), the dose of ClO2 was 0. 5 mg x L(-1) and the concentration of TCS was 300 μg x L(-1), when UV and ClO2 were applied alone, the TCS removal rates within 1 min were only 5.23% and 84.93% respectively. The removal rate reached up to 99.13% after 1 min degradation using the UV/ClO2 combined process. In test conditions ( pH 6-9), the removal rate increased from 99.4% to 99. 63% with the increase of pH. Increasing dose of CIO2 could promote TCS removal. When the dose of ClO2 was 0.5-1.5 mg x L(-1), the removal rate was increased from 98.1% to 99.89%. The initial concentration of TCS was negatively correlated with the removal rate. When the initial concentration increased from 100 - 500 μg x L(-1), the removal rate of TCS was decreased from 99.98% to 94.39%. Low concentration of humic acid was beneficial to the removal of TCS, and high concentration of it had the opposite effect. Degradation products of TCS were investigated by GC/MS. Degradation of TCS by the processes of UV, ClO2 and UV/ClO2 also indicated that the main degradation products of the TCS were 2, 4-dichlorophenol (2,4-DCP), 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD), etc.

  19. Modeling the degradation of Portland cement pastes by biogenic organic acids

    SciTech Connect

    De Windt, Laurent; Devillers, Philippe

    2010-08-15

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  20. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Hawes, S. K.; Steward, R. G.; Baker, K. A.; Smith, R. C.; Mitchell, B. G.

    1991-01-01

    A reflectance model developed to estimate chlorophyll a concentrations in the presence of marine colored dissolved organic matter, pheopigments, detritus, and bacteria is presented. Nomograms and lookup tables are generated to describe the effects of different mixtures of chlorophyll a and these degradation products on the R(412):R(443) and R(443):R(565) remote-sensing reflectance or irradiance reflectance ratios. These are used to simulate the accuracy of potential ocean color satellite algorithms, assuming that atmospheric effects have been removed. For the California Current upwelling and offshore regions, with chlorophyll a not greater than 1.3 mg/cu m, the average error for chlorophyll a retrievals derived from irradiance reflectance data for degradation product-rich areas was reduced from +/-61 percent to +/-23 percent by application of an algorithm using two reflectance ratios rather than the commonly used algorithm applying a single reflectance ratio.

  1. Folic Acid Production by Engineered Ashbya gossypii.

    PubMed

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-10-28

    Folic acid (vitamin B9) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported.

  2. Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides.

    PubMed

    Dziga, Dariusz; Jagiełło-Flasińska, Dominika

    2015-01-01

    Cellulose is a major component of plant biomass and could be applied in the production of biofuels, especially bioethanol. An alternative approach is production of a clean fuel - hydrogen from cellulosic biomass. In this paper an innovatory model of cellulosic waste degradation has been proposed to verify the possibility of utilization of cellulose derivatives by purple non-sulfur bacteria. The concept is based on a two-step process of wheat straw conversion by bacteria in order to obtain an organic acid mixture. In the next stage such products are consumed by Rhodobacter sphaeroides, the known producer of hydrogen. It has been documented that Cellulomonas uda expresses cellulolytic activity in the presence of wheat straw as an only source of carbon. R. sphaeroides applied in this research can effectively consume organic acids released from straw by C. uda and Lactobacillus rhamnosus and is able to grow in the presence of these substrates. Additionally, an increased nitrogenase activity of R. sphaeroides has been indicated when bacteria were cultivated in the presence of cellulose derivatives which suggests that hydrogen production occurs.

  3. Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production.

    PubMed

    Liu, Ying; Lv, Chunwei; Xu, Qing; Li, Shuang; Huang, He; Ouyang, Pingkai

    2015-02-01

    Ensuring a suitable pH in the culture broth is a major problem in microorganism-assisted industrial fermentation of organic acids. To address this issue, we investigated the physiological changes in Rhizopus oryzae at different extracellular pH levels and attempted to solve the issue of cell shortage under low pH conditions. We compared various parameters, such as membrane fatty acids' composition, intracellular pH, and adenosine triphosphate (ATP) concentration. It was found that the shortage of intracellular ATP might be the main reason for the low rate of fumaric acid production by R. oryzae under low pH conditions. When 1 g/l citrate was added to the culture medium at pH 3.0, the intracellular ATP concentration increased from 0.4 to 0.7 µmol/mg, and the fumaric acid titer was enhanced by 63% compared with the control (pH 3.0 without citrate addition). The final fumaric acid concentration at pH 3.0 reached 21.9 g/l after 96 h of fermentation. This strategy is simple and feasible for industrial fumaric acid production under low pH conditions.

  4. The Inhibitory Effect of Natural Products on Protein Fibrillation May Be Caused by Degradation Products – A Study Using Aloin and Insulin

    PubMed Central

    Lobbens, Eva S.; Foderà, Vito; Nyberg, Nils T.; Andersen, Kirsten; Jäger, Anna K.; Jorgensen, Lene; van de Weert, Marco

    2016-01-01

    Protein fibrillation is the pathological hallmark of several neurodegenerative diseases and also complicates the manufacturing and use of protein drugs. As a case study, the inhibitory activity of the natural compound aloin against insulin fibrillation was investigated. Based on Thioflavin T assays, high-performance liquid chromatography and transmission electron microscopy it was found that a degradation product of aloin, formed over weeks of storage, was able to significantly inhibit insulin fibrillation. The activity of the stored aloin was significantly reduced in the presence of small amounts of sodium azide or ascorbic acid, suggesting the active compound to be an oxidation product. A high-performance liquid chromatography method and a liquid chromatography-mass spectrometry method were developed to investigate the degradation products in the aged aloin solution. We found that the major compounds in the solution were aloin A and aloin B. In addition, 10-hydroxy aloin and elgonica dimers were detected in smaller amounts. The identified compounds were isolated and tested for activity by means of Thioflavin T assays, but no activity was observed. Thus, the actual fibrillation inhibitor is an as yet unidentified and potentially metastable degradation product of aloin. These results suggest that degradation products, and in particular oxidation products, are to be considered thoroughly when natural products are investigated for activity against protein fibrillation. PMID:26882071

  5. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes.

    PubMed

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-07-24

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes.

  6. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  7. Synthesis and characterization of hydrolytically degradable copolyester biomaterials based on glycolic acid, sebacic acid and ethylene glycol.

    PubMed

    Simitzis, J; Soulis, S; Triantou, D; Zoumpoulakis, L; Zotali, P

    2011-12-01

    Copolyesters of glycolic acid (G) combined with sebacic acid (S) and ethylene glycol were synthesized in different molar ratios (G: 0-100% and S: 100-0%) and their hydrolytic degradation was studied and correlated with their structures. Based on the FTIR spectra of the homopolyesters and copolyesters and the normalized peak intensity of the I(2918), I(2848) and I(1087) for the corresponding wavenumbers, it is concluded that the I(2918) and the I(2848) are in accordance with the mean number degree of polymerization of ethylene sebacate units and the I(1087) is in accordance with the mean number degree of polymerization of glycolate units. Based on the XRD diffractograms, poly(ethylene sebacate) and poly(glycolic acid) belong to the monoclinic and the orthorhombic crystal system, respectively and both have higher crystallinity than the copolyesters. The experimental data of the hydrolytic degradation were fitted with exponential rise to maximum type functions using two-parameter model and four-parameter model. Three regions can been distinguished for the hydrolytic degradation by decreasing the molar feed ratio of sebacic acid, which are correlated with the changes of crystallinity. Two copolyesters are proposed: first the copolyester with high amount of glycolate units (S10G90) having higher hydrolytic degradation than G100 and second the copolyester with equal amount of glycolate and ethylene sebacate units (S50G50), having lower hydrolytic degradation than G100. These hydrolytically degradable copolyesters are soluble in common organic solvents, opposite to poly(glycolic acid) and could have perspectives for biomedical applications.

  8. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    PubMed Central

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  9. Stability-indicating HPLC method development and structural elucidation of novel degradation products in posaconazole injection by LC-TOF/MS, LC-MS/MS and NMR.

    PubMed

    Yang, Yidi; Zhu, Xi; Zhang, Fei; Li, Wei; Wu, Ying; Ding, Li

    2016-06-05

    Stress testing was carried out under acidic, alkaline, oxidative, thermal and photolytic conditions to evaluate the intrinsic stability of posaconazole injection. A total of four degradation products were detected and the drug was found to be susceptible to oxidative and thermal degradations. Three unknown degradants formed under oxidative stress condition were isolated by preparative HPLC and unambiguously elucidated by LC-TOF/MS, LC-MS/MS, (1)H NMR, (13)C NMR and 2D NMR techniques. Based on the spectrometric and spectroscopic information, these novel degradation products were unequivocally assigned as the N-oxides of posaconazole. Probable mechanisms for the formation of the degradants were proposed. A new and selective HPLC method was developed and validated to separate, detect and quantify all the degradants in posaconazole injection.

  10. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, March 1992--June 1995

    SciTech Connect

    McInerney M.J.

    1995-06-23

    Factors affecting the rate and extent of benzoate degradation by anaerobic syntrophic consortia were studied. Cocultures of a syntrophic benzoate degrader, strain SB, with a hydrogen/formate-using sulfate reducer degraded benzoate to a threshold that depended on the amount of substrate and acetate present. The benzoate threshold was not a function of the inhibition of benzoate degradation capacity by acetate or the toxicity of the undissociated form of acetate. Rather, a critical or minimal Gibb`s free energy value may exist where thermodynamic constraints preclude further benzoate degradation. A sensitive assay to detect low formate concentrations was developed to measure the formate levels when the benzoate threshold was reached. We showed that increased acetate concentrations, even when hydrogen and formate levels are low, affects the extent of benzoate degradation, implicating the importance of interspecies acetate transfer. In addition to benzoate, various saturated and unsaturated fatty acids, 2-methylbutyrate, and methyl esters of fatty acids supported growth in coculture with a hydrogen-using partner. SB is the only syntrophic bacterium known to use both benzoate and fatty acids. Phylogenetic analysis showed that SB clustered with sulfate reducers in the delta subclass of the Proteobacteria. SB grew well in coculture with Desulfoarculus baarsii, a sulfate reducer that uses formate but not hydrogen. This unequivocally shows that SB can grow by interspecies formate transfer.

  11. Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production.

    PubMed

    Guo, Bin; Zhang, Yuanhui; Ha, Suk-Jin; Jin, Yong-Su; Morgenroth, Eberhard

    2012-04-01

    Combined acid catalysis was employed as a pretreatment alternative with combined acid catalysts blending sulfuric acid with two biomimetic acids, trifluoroacetic acid (TFA) and maleic acid (MA), respectively. The influences of acid blending ratio, temperature, and acid dosage on pretreatment performance were investigated. A synergistic effect on hemicellulose decomposition was observed in the combined acid hydrolysis, which greatly increased xylose yield, although TFA/MA would induce more total phenols. Besides, combined TFA pretreatment could efficiently prevent xylose degradation. Fermentation tests of the acid-catalyzed hydrolysates with overliming showed that compared to H(2)SO(4) pretreatment, TFA and MA pretreatments improved overall ethanol yield with an increase by 27-54%. Combined acid catalysis was shown as a feasible pretreatment method for its improved sugar yield, reduced phenols production and catalyst costs.

  12. Determination and characterization of two degradant impurities in bendamustine hydrochloride drug product.

    PubMed

    Chen, Wenhua; Zou, Limin; Zhang, Fei; Xu, Xiangyang; Zhang, Liandi; Liao, Mingyi; Li, Xiaoqiang; Ding, Li

    2015-01-01

    Bendamustine hydrochloride is an alkylating antitumor agent with a good efficacy in the treatment of chronic lymphocytic leukemia (CLL) and B-cell non-Hodgkin's lymphoma (B-NHL). Under the stressed conditions, two degradant impurities in bendamustine hydrochloride drug product were detected by high-performance liquid chromatography. These two degradant impurities were isolated from preparative liquid chromatography, and were further characterized using Q-TOF/MS and nuclear magnetic resonance (NMR). Based on the MS and NMR spectral data, they were characterized as 4-[5-(2-chloro-ethylamino)-1-methyl-1H-benzoimidazol-2-yl] butyric acid hydrochloride (impurity-A) and 4-{5-[[2-(4-{5-[bis-(2-chloroethyl) amino]-1-methyl-1H-benzoimidazol-2-yl}-butyryloxy)-ethyl]-(2-chloroethyl)amino]-1-methyl-3a, 7a-dihydro-1H-benzoimidazol-2-yl} butyric acid hydrochloride (impurity-B). Isolation, structural elucidation of these two impurities by spectral data (Q-TOF/MS, (1)H NMR, (13)C NMR, D2O exchange NMR and two-dimensional NMR) and the probable formation mechanism of the impurities were discussed.

  13. Bioaugmentation of bromoamine acid degradation with Sphingomonas xenophaga QYY and DNA fingerprint analysis of augmented systems.

    PubMed

    Qu, Yuanyuan; Zhou, Jiti; Wang, Jing; Song, Zhiyong; Xing, Linlin; Fu, Xiang

    2006-02-01

    One high-effective bromoamine acid (1-amino-4-bromoanthraquinone-2-sulfonic acid, BAA) degrading strain was isolated previously with the ability to use BAA as sole source of carbon and nitrogen. It was identified as Sphingomonas xenophaga QYY by 16S rDNA sequence analysis and physio-biochemical tests. In this study, bioaugmentation of BAA degradation with suspended and immobilized cells of strain QYY was investigated. The optimal degradation conditions were as follows: temperature 30 degrees C, pH 6.0-7.0, 150 rev min(-1) and the immobilized cells maintained degradation activity to BAA after 60 days storage at 4 degrees C. The structure of BAA was evidently changed according to the analysis of total organic carbon removal of BAA (about 50%) and the UV-VIS spectra changes during the biodegradation. Bioaugmented systems exhibited stronger abilities degrading BAA than the non-bioaugmented control ones. And microbial community dynamics of augmented systems was revealed by amplified ribosomal DNA restriction analysis (ARDRA), a modern DNA fingerprint technique. The results indicated that the microbial community dynamics was substantially changed throughout the augmentation process. This study suggests that it is feasible and potentially useful to enhance BAA degradation using bioaugmentation with the immobilized cells of BAA-degrading bacterium.

  14. Thermal degradation kinetics of sucrose palmitate reinforced poly(lactic acid) biocomposites.

    PubMed

    Valapa, Ravibabu; Pugazhenthi, Gopal; Katiyar, Vimal

    2014-04-01

    The current work is focused on investigating the influence of novel bio-filler, "sucrose palmitate (SP)" on the thermal degradation behavior of poly(lactic acid) (PLA) biocomposites in order to render its suitability for food packaging application. Thermal degradation behavior of the PLA biocomposites was investigated by thermo-gravimetric analysis (TGA) using dynamic heating regime. The differential TG analysis revealed that there is no change in the Tmax value (357 °C) for PLA and its composites up to 5 wt% of bio-filler loading. This reveals that the sucrose palmitate acts as a protective barrier by decelerating the thermal degradation rate of PLA. In the case of 10 wt% of the filler incorporated in the PLA matrix, Tmax rapidly shifted to lower temperature (324 °C). This downturn in Tmax at higher loading of the filler is due to the increase in acidic sites and enhancement in the rate of degradation is observed. Differential scanning calorimetry (DSC) analysis revealed unimodal melting peak indicating the α-crystalline form of PLA. Based on the thermal degradation profile of sucrose palmitate, possible mechanism for degradation of PLA composites is proposed. The activation energies (Ea) of thermal degradation of PLA and PLA composites were evaluated by Flynn-Wall-Ozawa and Kissinger methods.

  15. Stability-Indicating RP-HPLC Method for Simultaneous Estimation of Enrofloxacin and Its Degradation Products in Tablet Dosage Forms

    PubMed Central

    Chakravarthy, V. Ashok; Sailaja, B. B. V.; Kumar, Avvaru Praveen

    2015-01-01

    The present work was the development of a simple, efficient, and reproducible stability-indicating reverse-phase high performance liquid chromatographic (RP-HPLC) method for simultaneous determination enrofloxacin (EFX) and its degradation products including ethylenediamine impurity, desfluoro impurity, ciprofloxacin impurity, chloro impurity, fluoroquinolonic acid impurity, and decarboxylated impurity in tablet dosage forms. The separation of EFX and its degradation products in tablets was carried out on Kromasil C-18 (250 × 4.6 mm, 5 μm) column using 0.1% (v/v) TEA in 10 mM KH2PO4 (pH 2.5) buffer and methanol by linear gradient program. Flow rate was 1.0 mL min−1 with a column temperature of 35°C and detection wavelength was carried out at 278 nm and 254 nm. The forced degradation studies were performed on EFX tablets under acidic, basic, oxidation, thermal, humidity, and photolytic conditions. The degraded products were well resolved from the main active drug and also from known impurities within 65 minutes. The method was validated in terms of specificity, linearity, LOD, LOQ, accuracy, precision, and robustness as per ICH guidelines. The results obtained from the validation experiments prove that the developed method is a stability-indicating method and suitable for routine analysis. PMID:25705547

  16. Detection of explosives and their degradation products in soil environments.

    PubMed

    Halasz, A; Groom, C; Zhou, E; Paquet, L; Beaulieu, C; Deschamps, S; Corriveau, A; Thiboutot, S; Ampleman, G; Dubois, C; Hawari, Jalal

    2002-07-19

    Polynitro organic explosives [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT)] are typical labile environmental pollutants that can biotransform with soil indigenous microorganisms, photodegrade by sunlight and migrate through subsurface soil to cause groundwater contamination. To be able to determine the type and concentration of explosives and their (bio)transformation products in different soil environments, a comprehensive analytical methodology of sample preparation, separation and detection is thus required. The present paper describes the use of supercritical carbon dioxide (SC-CO2), acetonitrile (MeCN) (US Environmental Protection Agency Method 8330) and solid-phase microextraction (SPME) for the extraction of explosives and their degradation products from various water, soil and plant tissue samples for subsequent analysis by either HPLC-UV, capillary electrophoresis (CE-UV) or GC-MS. Contaminated surface and subsurface soil and groundwater were collected from either a TNT manufacturing facility or an anti-tank firing range. Plant tissue samples were taken fromplants grown in anti-tank firing range soil in a greenhouse experiment. All tested soil and groundwater samples from the former TNT manufacturing plant were found to contain TNT and some of its amino reduced and partially denitrated products. Their concentrations as determined by SPME-GC-MS and LC-UV depended on the location of sampling at the site. In the case of plant tissues, SC-CO2 extraction followed by CE-UV analysis showed only the presence of HMX. The concentrations of HMX (<200 mg/kg) as determined by supercritical fluid extraction (SC-CO2)-CE-UV were comparable to those obtained by MeCN extraction, although the latter technique was found to be more efficient at higher concentrations (>300 mg/kg). Modifiers such as MeCN and water enhanced the SC-CO2 extractability of HMX from plant tissues.

  17. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  18. HPLC, TLC, and first-derivative spectrophotometry stability-indicating methods for the determination of tropisetron in the presence of its acid degradates.

    PubMed

    Abdel-Fattah, Laila S; El-Sherif, Zeinab A; Kilani, Khadiga M; El-Haddad, Dalia A

    2010-01-01

    Three stability-indicating assay methods were developed for the determination of tropisetron in a pharmaceutical dosage form in the presence of its degradation products. The proposed techniques are HPLC, TLC, and first-derivative spectrophotometry (1D). Acid degradation was carried out, and the degradation products were separated by TLC and identified by IR, NMR, and MS techniques. The HPLC method was based on determination of tropisetron in the presence of its acid-induced degradation product on an RP Nucleosil C18 column using methanol-water-acetonitrile-trimethylamine (65 + 20 + 15 + 0.2, v/v/v/v) mobile phase and UV detection at 285 nm. The TLC method was based on the separation of tropisetron and its acid-induced degradation products, followed by densitometric measurement of the intact spot at 285 nm. The separation was carried out on silica gel 60 F254 aluminum sheets using methanol-glacial acetic acid (22 + 3, v/v) mobile phase. The 1D method was based on the measurement of first-derivative amplitudes of tropisetron in H2O at the zero-crossing point of its acid-induced degradation product at 271.9 nm. Linearity, accuracy, and precision were found to be acceptable over concentration ranges of 40-240 microg/mL, 1-10 microg/spot, and 6-36 micro/mL for the HPLC, TLC, and 1D methods, respectively. The suggested methods were successfully applied for the determination of the drug in bulk powder, laboratory-prepared mixtures, and a commercial sample.

  19. Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products.

    PubMed

    Feng, Mingbao; Wang, Xinghao; Chen, Jing; Qu, Ruijuan; Sui, Yunxia; Cizmas, Leslie; Wang, Zunyao; Sharma, Virender K

    2016-10-15

    The degradation of five fluoroquinolone (FQ) antibiotics (flumequine (FLU), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL) and marbofloxacin (MAR)) by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was examined to demonstrate the potential of this iron-based chemical oxidant to treat antibiotics in water. Experiments were conducted at different molar ratios of Fe(VI) to FQs at pH 7.0. All FQs, except FLU, were degraded within 2 min at [Fe(VI)]:[FQ] ≤ 20.0. Multiple additions of Fe(VI) improved the degradation efficiency, and provided greater degradation than a single addition of Fe(VI). The effects of anions, cations, and humic acid (HA), usually present in source waters and wastewaters, on the removal of FLU were investigated. Anions (Cl(-), SO4(2-), NO3(-), and HCO3(-)) and monovalent cations (Na(+) and K(+)) had no influence on the removal of FLU. However, multivalent cations (Ca(2+), Mg(2+), Cu(2+), and Fe(3+)) in water decreased the efficiency of FLU removal by Fe(VI). An increase in the ionic strength of the solution, and the presence of HA in the water, also decreased the percentage of FLU removed by Fe(VI). Experiments on the removal of selected FQs, present as co-existing antibiotics in pure water, river water, synthetic water and wastewater, were also conducted to demonstrate the practical application of Fe(VI) to remove the antibiotics during water treatment. The seventeen oxidized products (OPs) of FLU were identified using solid phase extraction-liquid chromatography-high-resolution mass spectrometry. The reaction pathways are proposed, and are theoretically confirmed by molecular orbital calculations.

  20. Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation.

    PubMed

    Baena-Nogueras, Rosa María; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2017-07-15

    Poor removal of many pharmaceuticals and personal care products (PPCPs) in sewage treatment leads to their discharge into the receiving waters, where they may cause negative effects. Their elimination from the water column depends of several processes, including photochemical and biological degradation. We have focused this research on comparing the degradation kinetics of a wide number (n=33) of frequently detected PPCPs considering different types of water, pH and solar irradiation. For those compounds that were susceptible of photodegradation, their rates (k) varied from 0.02 to 30.48h(-1) at pH7, with the lowest values for antihypertensive and psychiatric drugs (t1/2>1000h). Modification of the pH turned into faster disappearance of most of the PPCPs (e.g., k=0.072 and 0.066h(-1) for atenolol and carbamazepine at pH4, respectively). On the other hand, biodegradation was enhanced by marine bacteria in many cases, for example for mefenamic acid, caffeine and triclosan (k=0.019, 0.01 and 0.04h(-1), respectively), and was faster for anionic surfactants. Comparing photodegradation and biodegradation processes, hydrochlorothiazide and diclofenac, both not biodegradable, were eliminated exclusively by irradiation (t1/2=0.15-0.43h and t1/2=0.14-0.17h, respectively). Salicylic acid and phenylbutazone were efficiently photo (t1/2<3h) and biodegraded (t1/2=116-158h), whereas some compounds such as ibuprofen, carbamazepine and atenolol had low degradation rates by any of the processes tested (t1/2=23-2310h), making then susceptible to persist in the aquatic media.

  1. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine.

    PubMed

    Fleischman, R A; Cambell, J L; Richardson, C C

    1976-03-25

    Using the single-stranded circular DNA of bacteriophage fd as template, double-stranded circular DNA has been prepared in vitro with either 5-hydroxymethylcytosine ([hmdC]DNA) or cytosine ([dC]DNA) in the product strand. Extracts prepared from Escherichia coli cells restrictive to T-even phage containing nonglucosylated DNA degrade [hmdC]DNA to acid-soluble material in vitro, but do not degrade [dC]dna. In contrast, extracts prepared from E. coli K12 rglA- rglB-, a strain permissive to T-even phage containing nonglucosylated DNA, do not degrade [hmdC]DNA or [dC]DNA. In addition, glucosylation of the [hmdC]DNA renders it resistant to degradation by extracts from restrictive strains. The conversion of [hmdC]DNA to acid-soluble material in vitro consists of an HmCyt-specific endonucleolytic cleavage requiring the presence of the RglB gene product to form a linear molecule, followed by a non-HmCyt-specific hydrolysis of the linear DNA to acid-soluble fragments, catalyzed in part by exonuclease V. The RglB protein present in extracts of E. coli K12 rglA- rglB+ has been purified 200-fold by complementation with extracts from E. coli K12 rglA- rglB-. The purified RglB protein does not contain detectable HmCyt-specific endonuclease or exonuclease activity. In vitro endonucleolytic cleavage of [hmdC]DNA thus requires additional factors present in cell extracts.

  2. Comparative responses of sperm cells and embryos of Pacific oyster (Crassostrea gigas) to exposure to metolachlor and its degradation products.

    PubMed

    Mai, Huong; Gonzalez, Patrice; Pardon, Patrick; Tapie, Nathalie; Budzinski, Hélène; Cachot, Jérôme; Morin, Bénédicte

    2014-02-01

    Metolachlor is one of the most intensively used chloroacetanilide herbicides in agriculture. Consequently, it has been frequently detected in coastal waters as well as its major degradation products, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOA) which are encountered at higher concentrations than metolachlor. Although a few studies of metolachlor toxicity have been conducted on marine organisms, little is known about the environmental toxicity of metolachlor degradation products. In this study, the deleterious effects of metolachlor and its degradation products on spermatozoa and embryos of Crassostrea gigas have been compared using biomarkers of developmental defects, DNA damage and gene transcription levels. After 24h exposure, significant increases in the percentage of abnormal D-larvae and DNA damage were observed from 0.01 μg L(-1) for S-metolachlor and 0.1 μg L(-1) for MESA and MOA. Results showed that S-metolachlor was more embryotoxic and genotoxic than its degradation products. Oyster sperm was also very sensitive to metolachlor exposure and followed the pattern: metolachlor (0.01 μg L(-1))>MOA (0.1 μg L(-1))>MESA (1 μg L(-1)). Metolachlor and MESA mainly triggered variations in the transcription level of genes encoding proteins involved in oxidative stress responses (mitochondrial superoxide dismutase and catalase). Overall, no significant variation in transcription levels could be detected in C. gigas embryos exposed to MOA. This study demonstrates that metolachlor and its main degradation products have the potential to impact several steps of oyster development and therefore recruitment in coastal areas exposed to chronic inputs of pesticides.

  3. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.

    PubMed

    Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella

    2016-02-01

    The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible.

  4. Economic aspects of amino acids production.

    PubMed

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  5. Effect of chlorine dioxide on cyanobacterial cell integrity, toxin degradation and disinfection by-product formation.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Zhu, Mingqiu; Zhu, Shumin

    2014-06-01

    Bench scale tests were conducted to study the effect of chlorine dioxide (ClO2) oxidation on cell integrity, toxin degradation and disinfection by-product formation of Microcystis aeruginosa. The simulated cyanobacterial suspension was prepared at a concentration of 1.0×10(6)cells/mL and the cell integrity was measured with flow cytometry. Results indicated that ClO2 can inhibit the photosynthetic capacity of M. aeruginosa cells and almost no integral cells were left after oxidation at a ClO2 dose of 1.0mg/L. The total toxin was degraded more rapidly with the ClO2 dosage increasing from 0.1mg/L to 1.0mg/L. Moreover, the damage on cell structure after oxidation resulted in released intracellular organic matter, which contributed to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) as disinfection by-products. Therefore, the use of ClO2 as an oxidant for treating algal-rich water should be carefully considered.

  6. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis *

    PubMed Central

    Cai, Cheng-gang; Lou, Bing-gan; Zheng, Xiao-dong

    2008-01-01

    A new feather-degrading bacterium was isolated from a local feather waste site and identified as Bacillus subtilis based on morphological, physiochemical, and phylogenetic characteristics. Screening for mutants with elevated keratinolytic activity using N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis resulted in a mutant strain KD-N2 producing keratinolytic activity about 2.5 times that of the wild-type strain. The mutant strain produced inducible keratinase in different substrates of feathers, hair, wool and silk under submerged cultivation. Scanning electron microscopy studies showed the degradation of feathers, hair and silk by the keratinase. The optimal conditions for keratinase production include initial pH of 7.5, inoculum size of 2% (v/v), age of inoculum of 16 h, and cultivation at 23 °C. The maximum keratinolytic activity of KD-N2 was achieved after 30 h. Essential amino acids like threonine, valine, methionine as well as ammonia were produced when feathers were used as substrates. Strain KD-N2, therefore, shows great promise of finding potential applications in keratin hydrolysis and keratinase production. PMID:18196614

  7. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers.

    PubMed

    Suchý, Tomáš; Šupová, Monika; Klapková, Eva; Horný, Lukáš; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, Rastislav; Veselý, Jan; Chlup, Hynek; Denk, František

    2016-03-01

    Infections of the musculoskeletal system present a serious problem with regard to the field of orthopedic and trauma medicine. The aim of the experiment described in this study was to develop a resorbable nanostructured composite layer with the controlled elution of antibiotics. The layer is composed of collagen, hydroxyapatite nanoparticles, and vancomycin hydrochloride (10 wt%). The stability of the collagen was enhanced by means of cross-linking. Four cross-linking agents were studied, namely an ethanol solution, a phosphate buffer solution of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide, genipin, and nordihydroguaiaretic acid. High performance liquid chromatography was used so as to characterize the in vitro release rates of the vancomycin and its crystalline degradation antibiotically inactive products over a 21-day period. The maximum concentration of the released active form of vancomycin (approximately 265 mg/L) exceeded the minimum inhibitory concentration up to an order of 17 times without triggering the burst releasing effect. At the end of the experiment, the minimum inhibitory concentration was exceeded by up to 6 times (approximately 100 mg/L). It was determined that the modification of collagen with hydroxyapatite nanoparticles does not negatively influence the sustainable release of vancomycin. The balance of vancomycin and its degradation products was observed after 14 days of incubation.

  8. Photocatalytic degradation of L-acid by TiO2 supported on the activated carbon.

    PubMed

    Wang, Yu-Ping; Wang, Lian-Jun; Peng, Pan-Ying

    2006-01-01

    TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount of photocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34 x 10(-3) mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89.88%. The catalyst was reused 6 times and its degradation efficiency hardly changed.

  9. Oral hygiene products and acidic medicines.

    PubMed

    Hellwig, E; Lussi, A

    2006-01-01

    Acidic or EDTA-containing oral hygiene products and acidic medicines have the potential to soften dental hard tissues. The low pH of oral care products increases the chemical stability of some fluoride compounds, favors the incorporation of fluoride ions in the lattice of hydroxyapatite and the precipitation of calcium fluoride on the tooth surface. This layer has some protective effect against an erosive attack. However, when the pH is too low or when no fluoride is present these protecting effects are replaced by direct softening of the tooth surface. Xerostomia or oral dryness can occur as a consequence of medication such as tranquilizers, anti-histamines, anti-emetics and anti-parkinsonian medicaments or of salivary gland dysfunction e.g. due to radiotherapy of the oral cavity and the head and neck region. Above all, these patients should be aware of the potential demineralization effects of oral hygiene products with low pH and high titratable acids. Acetyl salicylic acid taken regularly in the form of multiple chewable tablets or in the form of headache powder as well chewing hydrochloric acids tablets for treatment of stomach disorders can cause erosion. There is most probably no direct association between asthmatic drugs and erosion on the population level. Consumers, patients and health professionals should be aware of the potential of tooth damage not only by oral hygiene products and salivary substitutes but also by chewable and effervescent tablets. Additionally, it can be assumed that patients suffering from xerostomia should be aware of the potential effects of oral hygiene products with low pH and high titratable acids.

  10. Anti-Atherosclerotic Actions of Azelaic acid, an End Product of Linoleic Acid Peroxidation, in Mice

    PubMed Central

    Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi; Brophy, Larissa; Parthasarathy, Sampath

    2009-01-01

    Background Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr−/−) mice. Methods and results LDLr−/− mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After four months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (p<0.001) less as compared to WD group. The athero-protective effect of AzA was not related to changes in plasma lipid content. AzA supplementation decreased the level of CD68 macrophage marker by 34% (p<0.05). Conclusions The finding that AzA exhibits an anti-atherogenic effect suggests that oxidation of lipid peroxidation-derived aldehydes into carboxylic acids could be an important step in the body’s defense against oxidative damage. PMID:19880116

  11. Degradation process of grease due to SF/sub 6/ gas dissociation products

    SciTech Connect

    Suzuki, T.; Koyama, A.; Tomimuro, S.; Yoshiba, H.

    1982-08-01

    It is known that some insulating materials are degraded due to dissociation products of SF/sub 6/ gas. Many studies related to the degradation of insulating materials have been accomplished. But no studies related to sealing materials, for instance (lubricating) grease and rubber have been made. This paper presents the degradation process of grease as follows. Properties of Lithium grease easily change in SF/sub 6/ gas including dissociation products owing to the degradation of Lithium soap used as thickner of grease. However, in the case of Bentonite grease and Urea grease, any changes of properties are not observed.

  12. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  13. Triacetic acid lactone production from Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacetic acid lactone (TAL) is a potential platform chemical produced from acetyl-CoA and malonyl-CoA by the Gerbera hybrida 2-pyrone synthase (2PS) gene. Studies are ongoing to optimize production, purification, and chemical modification of TAL, which can be used to create the commercial chemicals...

  14. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid.

    PubMed

    Yi, Haakrho; Crowley, David E

    2007-06-15

    Many plant species enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs), but there is little understanding of the mechanisms by which this occurs. This research identified phytochemicals that stimulate pyrene degradation using crushed roottissues from 43 plants that were screened in soil spiked with 100 ppm pyrene. Among the plants tested, root tissues from Apium graveolens (celery), Raphanus sativus (radish), Solanum tuberosum (potato), and Daucus carota (carrot) were most effective for promoting disappearance of pyrene within 40 days. Experiments with A. graveolens showed that plant culture in soil contaminated with pyrene or benzo[a]pyrene was as effective as addition of crushed root tissues. Comparison of the chemical compositions of the effective plants suggested that linoleic acid was the major substance that stimulated PAH degradation. This hypothesis was supported in experiments examining degradation of pyrene and benzo[a]pyrene in soil amended with linoleate, whereas linolenic and palmitic acids did not stimulate degradation within a 20 day period. Antibiotic inhibitor studies implicated gram positive bacteria as a predominant group responding to linoleic acid. These findings provide insight into the mechanisms by which plants enhance degradation of PAHs, and have practical application for remediation of PAH contaminated soils.

  15. Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products

    PubMed Central

    Yan, Ni; Liu, Fei; Xue, Qiang; Brusseau, Mark L.; Liu, Yali; Wang, Junjie

    2015-01-01

    A binary catalytic system, siderite-catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82−), was investigated for the remediation of trichloroethene (TCE) contamination. Batch experiments were conducted to investigate reaction mechanisms, oxidant decomposition rates, and degradation products. By using high performance liquid chromatography (HPLC) coupled with electron paramagnetic resonance (EPR), we identified four radicals (hydroxyl (HO·), sulfate (SO4−·), hydroperoxyl (HO2·), and superoxide (O2−·)) in the siderite-catalyzed H2O2-S2O82− system. In the absence of S2O82− (i.e., siderite-catalyzed H2O2), a majority of H2O2 was decomposed in the first hour of the experiment, resulting in the waste of HO·. The addition of S2O82− moderated the H2O2 decomposition rate, producing a more sustainable release of hydroxyl radicals that improved the treatment efficiency. Furthermore, the heat released by H2O2 decomposition accelerated the activation of S2O82−, and the resultant SO4−· was the primary oxidative agent during the first two hours of the reaction. Dichloroacetic acid was firstly detected by ion chromatography (IC). The results of this study indicate a new insight to the reaction mechanism for the catalytic binary H2O2-S2O82− oxidant system, and the delineation of radicals and the discovery of the chlorinated byproduct provide useful information for efficient treatment of chlorinated-solvent contamination in groundwater. PMID:26236152

  16. Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products.

    PubMed

    Yan, Ni; Liu, Fei; Xue, Qiang; Brusseau, Mark L; Liu, Yali; Wang, Junjie

    2015-08-15

    A binary catalytic system, siderite-catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O8(2-)), was investigated for the remediation of trichloroethene (TCE) contamination. Batch experiments were conducted to investigate reaction mechanisms, oxidant decomposition rates, and degradation products. By using high performance liquid chromatography (HPLC) coupled with electron paramagnetic resonance (EPR), we identified four radicals (hydroxyl (HO·), sulfate (SO4(-)·), hydroperoxyl (HO2·), and superoxide (O2(-)·)) in the siderite-catalyzed H2O2-S2O8(2-) system. In the absence of S2O8(2-) (i.e., siderite-catalyzed H2O2), a majority of H2O2 was decomposed in the first hour of the experiment, resulting in the waste of HO·. The addition of S2O8(2-) moderated the H2O2 decomposition rate, producing a more sustainable release of hydroxyl radicals that improved the treatment efficiency. Furthermore, the heat released by H2O2 decomposition accelerated the activation of S2O8(2-), and the resultant SO4(-)· was the primary oxidative agent during the first two hours of the reaction. Dichloroacetic acid was firstly detected by ion chromatography (IC). The results of this study indicate a new insight to the reaction mechanism for the catalytic binary H2O2-S2O8(2-) oxidant system, and the delineation of radicals and the discovery of the chlorinated byproduct provide useful information for efficient treatment of chlorinated-solvent contamination in groundwater.

  17. Production of amino acids by yogurt bacteria.

    PubMed

    Beshkova, D M; Simova, E D; Frengova, G I; Simov, Z I; Adilov, E F

    1998-01-01

    The dynamics of free amino acid production by the selected strains Streptococcus thermophilus 13a and Lactobacillus bulgaricus 2-11 were studied in pure and mixed cultivations during yogurt starter culture manufacture. L. bulgaricus 2-11 showed the highest activity for producing free amino acids with high individual concentrations over the first hour of growth (50% of the total amount). By the end of milk's full coagulation (4.5 h), 70% of the total amount of amino acids was released. S. thermophilus 13a showed poor proteolytic properties and consumed up to 70% of the free amino acids produced by L. bulgaricus 2-11 in the process of coagulation of milk with the mixed culture.

  18. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol.

    PubMed

    Kuhar, Sarika; Nair, Lavanya M; Kuhad, Ramesh Chander

    2008-04-01

    Phanerochaete chrysosporium, Pycnoporus cinnabarinus,and fungal isolates RCK-1 and RCK-3 were tested for their lignin degradation abilities when grown on wheat straw (WS) and Prosopis juliflora (PJ) under solid-state cultivation conditions. Fungal isolate RCK-1 degraded more lignin in WS (12.26% and 22.64%) and PJ (19.30% and 21.97%) and less holocellulose in WS (6.27% and 9.39%) and PJ (3.01% and 4.58%) after 10 and 20 days, respectively, than other fungi tested. Phanerochaete chrysosporium caused higher substrate mass loss and degraded more of holocellulosic content (WS: 55.67%; PJ: 48.89%) than lignin (WS: 18.89%; PJ: 20.20%) after 20 days. The fungal pretreatment of WS and PJ with a high-lignin-degrading and low-holocellulose-degrading fungus (fungal isolate RCK-1) for 10 days resulted in (i) reduction in acid load for hydrolysis of structural polysaccharides (from 3.5% to 2.5% in WS and from 4.5% to 2.5% in PJ), (ii) an increase in the release of fermentable sugars (from 30.27 to 40.82 g L(-1) in WS and from 18.18 to 26.00 g L(-1) in PJ), and (iii) a reduction in fermentation inhibitors (total phenolics) in acid hydrolysate of WS (from 1.31 to 0.63 g L(-1)) and PJ (from 2.05 to 0.80 g L(-1)). Ethanol yield and volumetric productivity from RCK-1-treated WS (0.48 g g(-1) and 0.54 g L(-1) h(-1), respectively) and PJ (0.46 g g(-1) and 0.33 g L(-1) h(-1), respectively) were higher than untreated WS (0.36 g g(-1) and 0.30 g L(-1) h(-1), respectively) and untreated PJ (0.42 g g(-1) and 0.21 g L(-1) h(-1), respectively).

  19. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; ...

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  20. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA were more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.

  1. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    SciTech Connect

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition.

  2. Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage.

    PubMed

    Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir

    2015-04-15

    The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity.

  3. Degradation of Fe/N/C catalysts upon high polarization in acid medium.

    PubMed

    Goellner, Vincent; Baldizzone, Claudio; Schuppert, Anna; Sougrati, Moulay Tahar; Mayrhofer, Karl; Jaouen, Frédéric

    2014-09-14

    A comprehensive study of the degradation of a highly active Fe/N/C catalyst in acid medium is reported. An accelerated aging protocol was applied in the temperature range of 20 to 80 °C. From fundamental rotating-disc electrode studies and polymer electrolyte membrane fuel cell investigations combined with identical-location electron microscopy and Mößbauer spectroscopy at various stages of degradation, important insights into the structural and chemical changes of the catalyst were obtained. Most importantly, the degradation is strongly enhanced at elevated temperature, which is correlated to (i) increased carbon-corrosion rate and (ii) parallel non-preferential dissolution of the FeNx-based active sites. The degradation not only leads to a decreased ORR kinetics over time but also induces significant charge- and mass-transport resistances due to the collapse of the electrode structure.

  4. Heterogeneous photocatalytic degradation of p-toluenesulfonic acid using concentrated solar radiation in slurry photoreactor.

    PubMed

    Kamble, Sanjay P; Sawant, Sudhir B; Pangarkar, Vishwas G

    2007-02-09

    In this work, the photocatalytic degradation (PCD) of p-toluenesulfonic acid (p-TSA) in batch reactor using concentrated solar radiation was investigated. The effect of the various operating parameters such as initial concentration of substrate, catalyst loading, solution pH and types of ions on photocatalytic degradation has been studied in a batch reactor to derive the optimum conditions. The rate of photocatalytic degradation was found to be maximum at the self pH (pH 3.34) of p-TSA. It was also observed that in the presence of anions and cations, the rate of PCD decreases drastically. The kinetics of photocatalytic degradation of p-TSA was studied. The PCD of p-TSA was also carried at these optimized conditions in a bench scale slurry bubble column reactor using concentrated solar radiation.

  5. Biotechnological production and application of ganoderic acids.

    PubMed

    Xu, Jun-Wei; Zhao, Wei; Zhong, Jian-Jiang

    2010-06-01

    Ganoderic acids (GAs), a kind of highly oxygenated lanostane-type triterpenoids, are important bioactive constituents of the famous medicinal mushroom Ganoderma lucidum. They have received wide attention in recent years due to extraordinarily pharmacological functions. Submerged fermentation of G. lucidum is viewed as a promising technology for production of GAs, and substantial efforts have been devoted to process development for enhancing GA production in the last decade. This article reviews recent publication about fermentative production of GAs and their potential applications, especially the progresses toward manipulation of fermentation conditions and bioprocessing strategies are summarized. The biosynthetic pathway of GAs is also outlined.

  6. Study of kinetics of degradation of cyclohexane carboxylic acid by acclimated activated sludge.

    PubMed

    Wang, Chunhua; Shi, Shuian; Chen, Hongyan

    2016-01-01

    Activated sludge contains complex microorganisms, which are highly effective biodegrading agents. In this study, the kinetics of biodegradation of cyclohexane carboxylic acid (CHCA) by an acclimated aerobic activated sludge were investigated. The results showed that after 180 days of acclimation, the activated sludge could steadily degrade >90% of the CHCA in 120 h. The degradation of CHCA by the acclimated activated sludge could be modeled using a first-order kinetics equation. The equations for the degradation kinetics for different initial CHCA concentrations were also obtained. The kinetics constant, kd, decreased with an increase in the CHCA concentration, indicating that, at high concentrations, CHCA had an inhibiting effect on the microorganisms in the activated sludge. The effects of pH on the degradation kinetics of CHCA were also investigated. The results showed that a pH of 10 afforded the highest degradation rate, indicating that basic conditions significantly promoted the degradation of CHCA. Moreover, it was found that the degradation efficiency for CHCA increased with an increase in temperature and concentration of dissolved oxygen under the experimental conditions.

  7. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the curre...

  8. Degradation of 17beta-estradiol in aqueous solution by ozonation in the presence of manganese(II) and oxalic acid.

    PubMed

    Jiang, Liying; Zhang, Lu; Chen, Jianmeng; Ji, Hong

    2013-01-01

    Natural estrogens, such as 17beta-estradiol (E2), are the main substances responsible for estrogenic activity found in domestic sewage. In the work described herein, the degradation of E2 has been investigated by single ozonation and catalytic ozonation in the presence of manganese ion (Mn2+) and oxalic acid. The presence of Mn2+ and oxalic acid in the ozonation processes significantly improved the E2 degradation and, hence, the reduction of estrogenic activity in aqueous solution. The addition of Mn2+ and oxalic acid produced many more hydroxyl radicals in the catalytic ozonation system than in the single ozonation system. Oxidation products formed during ozonation of E2 have been identified by means of gas chromatography-mass spectrometry (GC-MS), on the basis of which a possible reaction pathway for E2 degradation by ozonation is proposed. E2 was first oxidized to hydroxyl-semiquinone isomers, and these were subsequently degraded to low molecular weight compounds such as oxalic acid and malonic acid. The latter were easily oxidized by ozone to form carbon dioxide (CO2). The results demonstrate that the ozonation-Mn(2+)-oxalic acid system may serve as a powerful tool for removing E2, and the addition of Mn2+ and oxalic acid is favourable for the complete removal of estrogenic activity induced by steroid estrogens in aqueous solution.

  9. Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440.

    PubMed

    Jiménez, José I; Canales, Angeles; Jiménez-Barbero, Jesús; Ginalski, Krzysztof; Rychlewski, Leszek; García, José L; Díaz, Eduardo

    2008-08-12

    The aerobic catabolism of nicotinic acid (NA) is considered a model system for degradation of N-heterocyclic aromatic compounds, some of which are major environmental pollutants; however, the complete set of genes as well as the structural-functional relationships of most of the enzymes involved in this process are still unknown. We have characterized a gene cluster (nic genes) from Pseudomonas putida KT2440 responsible for the aerobic NA degradation in this bacterium and when expressed in heterologous hosts. The biochemistry of the NA degradation through the formation of 2,5-dihydroxypyridine and maleamic acid has been revisited, and some gene products become the prototype of new types of enzymes with unprecedented molecular architectures. Thus, the initial hydroxylation of NA is catalyzed by a two-component hydroxylase (NicAB) that constitutes the first member of the xanthine dehydrogenase family whose electron transport chain to molecular oxygen includes a cytochrome c domain. The Fe(2+)-dependent dioxygenase (NicX) converts 2,5-dihydroxypyridine into N-formylmaleamic acid, and it becomes the founding member of a new family of extradiol ring-cleavage dioxygenases. Further conversion of N-formylmaleamic acid to formic and maleamic acid is catalyzed by the NicD protein, the only deformylase described so far whose catalytic triad is similar to that of some members of the alpha/beta-hydrolase fold superfamily. This work allows exploration of the existence of orthologous gene clusters in saprophytic bacteria and some pathogens, where they might stimulate studies on their role in virulence, and it provides a framework to develop new biotechnological processes for detoxification/biotransformation of N-heterocyclic aromatic compounds.

  10. Effects of acid extrusion on the degradability of maize distillers dried grain with solubles in pigs.

    PubMed

    de Vries, S; Pustjens, A M; van Rooijen, C; Kabel, M A; Hendriks, W H; Gerrits, W J J

    2014-12-01

    Commonly used feed processing technologies are not sufficient to affect recalcitrant nonstarch polysaccharides (NSP) such as arabinoxylans present in maize distillers dried grain with solubles (DDGS). Instead, hydrothermal treatments combined with acid catalysts might be more effective to modify these NSP. The objective of this experiment was to investigate the effects of hydrothermal maleic acid treatment (acid extrusion) on the degradability of maize DDGS in growing pigs. It was hypothesized that acid extrusion modifies DDGS cell wall architecture and thereby increases fermentability of NSP. Two diets, containing either 40% (wt/wt) unprocessed or acid-extruded DDGS, were restrictedly fed to groups of gilts (n=11, with 4 pigs per group; initial mean BW: 20.8±0.2 kg) for 18 d and performance and digestibility were analyzed. Acid extrusion tended to decrease apparent ileal digestibility (AID) of CP (approximately 3 percentage units [% units]); P=0.063) and starch (approximately 1% unit; P=0.096). Apparent digestibility of CP and starch measured at the mid colon (2% units, P=0.030, for CP and 0.3% units, P<0.01, for starch) and apparent total tract digestibility (ATTD; 3% units, P<0.01, for CP and 0.2% units, P=0.024, for starch) were lower for the acid-extruded diet compared with the control diet. Hindgut disappearance was, however, not different between diets, indicating that reduced CP and starch digestibility were mainly due to decreased AID. Acid extrusion tended to increase AID of NSP (6% units; P=0.092) and increased digestibility of NSP measured at the mid colon (6% units; P<0.01), whereas hindgut disappearance and ATTD of NSP did not differ between diets. Greater NSP digestibility was mainly due to greater digestibility of arabinosyl, xylosyl, and glucosyl residues, indicating that both arabinoxylan and cellulose degradability were affected by acid extrusion. In conclusion, these results show that acid extrusion did not improve degradation of DDGS for

  11. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release

    PubMed Central

    Chu, David S.H.; Johnson, Russell N.; Pun, Suzie H.

    2011-01-01

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK10, containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(l)-lysine for nucleic acid binding, (ii) pHCath(d)K10, containing the FKFL linker with oligo-(d)-lysine, and (iii) pH(d)Cath(d)K10, containing all (d) amino acids. Cathepsin B degraded copolymers pHCathK10 and pHCath(d)K10 within one hour while no degradation of pH(d)Cath(d)K10 was observed. Polyplexes formed with pHCathK10 copolymers show DNA release by 4 hrs of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(d)K10 and pH(d)Cath(d)K10 show no DNA release within 8 hrs. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK10 was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. PMID:22036879

  12. Photochemical degradation of ciprofloxacin in UV and UV/H₂O₂ process: kinetics, parameters, and products.

    PubMed

    Guo, Hong-Guang; Gao, Nai-Yun; Chu, Wen-Hai; Li, Lei; Zhang, Yong-Ji; Gu, Jin-Shan; Gu, Yu-Liang

    2013-05-01

    Photochemical degradation of fluoroquinolone ciprofloxacin (CIP) in water by UV and UV/H₂O₂ were investigated. The degradation rate of CIP was affected by pH, H₂O₂ dosage, as well as the presence of other inorganic components. The optimized pH value and H₂O₂ concentration were 7.0 and 5 mM. Carbonate and nitrate both impeded CIP degradation. According to liquid chromatography-tandem mass spectrometry analysis, four and 16 products were identified in UV and UV/H₂O₂ system, respectively. Proposed degradation pathways suggest that reactions including the piperazinyl substituent, quinolone moiety, and cyclopropyl group lead to the photochemical degradation of CIP. Toxicity of products assessed by Vibrio qinghaiensis demonstrated that UV/H₂O₂ process was more capable on controlling the toxicity of intermediates in CIP degradation than UV process.

  13. Solanioic Acid, an Antibacterial Degraded Steroid Produced in Culture by the Fungus Rhizoctonia solani Isolated from Tubers of the Medicinal Plant Cyperus rotundus.

    PubMed

    Ratnaweera, Pamoda B; Williams, David E; Patrick, Brian O; de Silva, E Dilip; Andersen, Raymond J

    2015-05-01

    Solanioic acid (1), a degraded and rearranged steroid that exhibits in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), has been isolated from laboratory cultures of the fungus Rhizoctonia solani obtained from tubers of the plant Cyperus rotundus collected in Sri Lanka. The structure of solanioic acid (1) was elucidated by detailed analysis of NMR data, a single crystal X-ray diffraction analysis of a reduction product 2, and Mosher ester analysis on a derivative of the natural product. Solanioic acid (1) has an unprecedented carbon skeleton.

  14. Quantitative analysis of chemical warfare agent degradation products in beverages by liquid chromatography tandem mass spectrometry.

    PubMed

    Owens, Janel; Koester, Carolyn

    2009-09-23

    Though chemical warfare agents (CWAs) have been banned by the Chemical Weapons Convention, the threat that such chemicals may be used, including their deliberate addition to food, remains. In such matrixes, CWAs may hydrolyze to phosphonic acids, which are good surrogate markers of CWA contamination. The method described here details the extraction of five CWA degradation products, including methylphosphonic acid (MPA), ethyl-MPA, isopropyl-MPA, cyclohexyl-MPA, and pinacolyl-MPA, from five different beverages by strata-X solid phase extraction cartridges. Samples were analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS) with multiple reaction monitoring. The limit of quantitation ranged from 0.05 to 0.5 ng on-column, and the limit of detection was >0.02 ng on-column. Beverages were fortified with the five phosphonic acids at 1 microg/mL and 0.25 microg/mL and quantitated using both an internally standardized method and matrix-matched standards. Reasonable recoveries (>50%) were achieved for ethyl, isopropyl, cyclohexyl, and pinacolyl-MPA for most matrixes.

  15. Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora.

    PubMed

    Paternoster, Thomas; Défago, Geneviève; Duffy, Brion; Gessler, Cesare; Pertot, Ilaria

    2010-12-01

    This work describes a medium-based screening method for selecting microbial biocontrol agents against Erwinia amylovora based on the degradation of a specific growth factor. Erwinia amylovora, the causal agent of the devastating fire blight disease, requires nicotinic acid or nicotinamide as an essential growth factor. Potential biocontrol agents are either selected for antimicrobial production in plate or directly on immature pears or apple blossoms. In this work, we have attempted to streamline the selection of a new potential biocontrol agent with a lower risk of non-target effects by isolation based on the ability to degrade nicotinic acid in vitro, using therefore few plant materials. A total of 735 bacteria and 1237 yeast were isolated from apple blossoms and pre-screened for nicotinic acid-degradation. Pseudomonas rhizosphaerae strain JAN was able to degrade both nicotinic acid and nicotinamide. Mutants deficient in this ability were constructed. JAN, but not the mutants, controlled E. amylovora on pear slices. On detached apple blossoms, JAN colonized apple hypanthia and strongly suppressed E. amylovora growth. Under greenhouse conditions, JAN was more effective in controlling blossom blight than P. fluorescens A506, a commercial biocontrol agent of fire blight unable to degrade nicotinic acid and nicotinamide.

  16. Effect of self-degradation products on crystallization of protease thermolysin

    NASA Astrophysics Data System (ADS)

    Sazaki, Gen; Aoki, Satoshi; Ooshima, Hiroshi; Kato, Jyoji

    1994-05-01

    The effect of self-degradation products of protease thermolysin on the crystallization of thermolysin was investigated. Crystallizations were carried out at the concentration of the self-degradation products of 0 to 0.622 mg/ml, 5 C, and pH 7.0. The initial concentration of thermolysin was constant (1.70 +/- 0.01 mg/ml). Crystallizations were monitored by dynamic light scattering and photomicroscopy. The crystallization of thermolysin in the presence of the self-degradation products proceeded through two successive steps: the formation of primary particles and the formation of large crystals by the aggregation of the primary particles. Low concentration of the self-degradation products (0.212 mg/ml) accelerated the formation of the primary particles and also the formation of the large crystals. High concentration of the self-degradation products, however, inhibited the formation of the primary particles and their aggregation to the large crystals. As the result, a large number of small aggregates which had not grown to the large crystals were observed by photomicroscopy. An analysis of the crystals and the primary particles formed in the presence of the self-degradation products by gel filtration high performance liquid chromatography revealed that the self-degradation products are not incorporated in the primary particles, but are incorporated probably in the openings between the primary particles during the crystallization.

  17. Characterization of the Oxidative Degradation Product of Darunavir by LC-MS/MS

    PubMed Central

    Yamjala, Karthik; Atukuri, Jeevitha; Nagappan, Krishnaveni; Halekote Shivaraju, Nivedeetha; Subramania Nainar, Meyyanathan

    2015-01-01

    A rapid, selective, and reliable LC-MSn method has been developed and validated for the isolation and structural characterization of the degradation product of darunavir (DRV). DRV, an HIV-1 protease inhibitor, was subjected to intrinsic oxidative stress conditions using 30% hydrogen peroxide and the degradation profile was studied. The oxidative degradation of DRV resulted in one degradation product. The unknown degradation product was separated on a Hibar Purospher C18 (250 mm × 4.6 mm; 5 µm) column by using 0.01 M ammonium formate (pH 3.0) and acetonitrile as mobile phase in the ratio of 50:50, v/v. The eluents were monitored at 263 nm using a UV detector. The isolated degradation product was characterized by UPLC-Q-TOF and its fragmentation pathway was proposed. The proposed structure of the degradation product was confirmed by HRMS analysis. The developed stability-indicating LC method was validated with respect to accuracy, precision, specificity/selectivity, and linearity. No prior reports were found in the literature about the oxidative degradation behavior of DRV. PMID:26839843

  18. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products.

    PubMed Central

    Heitkamp, M A; Freeman, J P; Miller, D W; Cerniglia, C E

    1988-01-01

    The degradation of pyrene, a polycyclic aromatic hydrocarbon containing four aromatic rings, by pure cultures of a Mycobacterium sp. was studied. Over 60% of [14C]pyrene was mineralized to CO2 after 96 h of incubation at 24 degrees C. High-pressure liquid chromatography analyses showed the presence of one major and at least six other metabolites that accounted for 95% of the total organic-extractable 14C-labeled residues. Analyses by UV, infrared, mass, and nuclear magnetic resonance spectrometry and gas chromatography identified both pyrene cis- and trans-4,5-dihydrodiols and pyrenol as initial microbial ring-oxidation products of pyrene. The major metabolite, 4-phenanthroic acid, and 4-hydroxyperinaphthenone and cinnamic and phthalic acids were identified as ring fission products. 18O2 studies showed that the formation of cis- and trans-4,5-dihydrodiols were catalyzed by dioxygenase and monooxygenase enzymes, respectively. This is the first report of the chemical pathway for the microbial catabolism of pyrene. PMID:3202634

  19. Degradation products from consumer nanocomposites - a case study on quantum dot lighting

    PubMed Central

    Liu, Jingyu; Katahara, John; Li, Guanglai; Coe-Sullivan, Seth; Hurt, Robert H.

    2012-01-01

    Most nanomaterials enter the natural environment as nano-enabled products, which are typically composites with primary nanoparticles bound on substrates or embedded in liquid or solid matrices. The environmental risks associated with these products are expected to differ from those associated with the as-produced particles. This article presents a case study on the end-of-life emission of a commercial prototype polymer/quantum-dot (QD) composite used in solid-state lighting for homes. We report the extent of cadmium release upon exposure to a series of environmental and biological simulant fluids, and track the loss of QD-characteristic fluorescence as a marker for chemical damage to the CdSe/ZnS nanoparticles. Measured cadmium releases after 30-day exposure range from 0.007-1.2 mg/g of polymer, and the higher values arise for low-pH simulants containing nitric or gastric acid. Centrifugal ultrafiltration and ICP was used to distinguish soluble cadmium from particulate forms. The leachate is found to contain soluble metals with no evidence of free QDs or QD-containing polymeric debris. The absence of free nanoparticles suggests that this product does not raise nanotechnology-specific environmental issues associated with degradation and leaching, but is more usefully regarded as a conventional chemical product that is a potential source of small amounts of soluble cadmium. PMID:22352378

  20. Uptake of 8:2 perfluoroalkyl phosphate diester and its degradation products by carrot and lettuce from compost-amended soil.

    PubMed

    Bizkarguenaga, E; Zabaleta, I; Prieto, A; Fernández, L A; Zuloaga, O

    2016-06-01

    The present work studied the uptake of 8:2 perfluoroalkyl phosphate diester (diPAP) by two different crops (lettuce and carrot) and two different amended soils. Firstly, the possible degradation of 8:2 diPAP in the absence of crop was studied and 8:2 monoPAP (monophosphate), 8:2 FTCA (saturated fluorotelomer carboxylate), 8:2 FTUCA (unsaturated fluorotelomer carboxylate), 7:3 FTCA (saturated fluorotelomer carboxylate), PFHpA (perfluoroheptanoic acid), PFHxA (perfluorohexanoic acid) and PFOA (perfluorooctanoic acid) were detected. In the presence of crops, different degradation products were detected in the soil and, while PFNA (perfluorononanoic acid), PFHpA, PFHxA, PFPeA (perfluoropentacoic acid), PFBA (perfluorobutanoic acid), 7:3 FTCA and PFOA were determined in the cultivation media when carrot was grown, PFOA was the only degradation product detected in the case of lettuce experiments. Regarding the uptake in carrot, all the degradation products except 7:3 FTCA were translocated from the soil to the carrot. Carrot core, peel and leaves bioconcentration factors, BCFs, were determined for 8:2 diPAP and its degradation products. Values lower than method detection limits for core and low BCFs in peel (0.025-0.042) and leaves (0.028-0.049) were achieved for 8:2 diPAP. Regarding to the degradation products, the higher their water solubility, the higher the plant translocation. In this sense, the lower the carbon chain length of PFCAs, the higher the BCFs determined (PFBA > PFHxA > PFHpA > PFOA > PFNA). In general, lower total BCFs were achieved when the total organic carbon of the soils increased. For lettuce experiments, 8:2 diPAP (0.04-0.18) and PFOA (0.28-1.57) were only determined in lettuce heart.

  1. Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data.

    PubMed

    Bargiela, Rafael; Gertler, Christoph; Magagnini, Mirko; Mapelli, Francesca; Chen, Jianwei; Daffonchio, Daniele; Golyshin, Peter N; Ferrer, Manuel

    2015-01-01

    Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyze the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy) amended with natural fertilizer, uric acid (UA), or ammonium (AMM). We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180) to identify potential catabolic differences. A total of 45 (for UA) and 65 (AMM) gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA) and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM), were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered for designing

  2. Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data

    PubMed Central

    Bargiela, Rafael; Gertler, Christoph; Magagnini, Mirko; Mapelli, Francesca; Chen, Jianwei; Daffonchio, Daniele; Golyshin, Peter N.; Ferrer, Manuel

    2015-01-01

    Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyze the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy) amended with natural fertilizer, uric acid (UA), or ammonium (AMM). We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180) to identify potential catabolic differences. A total of 45 (for UA) and 65 (AMM) gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA) and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM), were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered for designing

  3. Coordinated Regulation of Species-Specific Hydroxycinnamic Acid Degradation and Siderophore Biosynthesis Pathways in Agrobacterium fabrum

    PubMed Central

    Baude, Jessica; Vial, Ludovic; Villard, Camille; Campillo, Tony; Lavire, Céline; Nesme, Xavier

    2016-01-01

    ABSTRACT The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species

  4. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  5. Separation of chemical warfare agent degradation products by the reversal of electroosmotic flow in capillary electrophoresis.

    PubMed

    Nassar, A E; Lucas, S V; Jones, W R; Hoffland, L D

    1998-03-15

    We report the development of analyses for nerve agent degradation products or related species by the reversal of electroosmotic flow in capillary electrophoresis (CE). The developed methods were used in this laboratory for analysis of samples in the second and third official proficiency tests (International Round-Robins) for the Provisional Technical Secretariat/Preparatory Commission for the Organization for the Prohibition of Chemical Weapons, and those results are reported here. Analytes studied include methylphosphonic acid (a dibasic acid), the monoisopropyl ester of ethylphosphonic acid, and the monoalkyl esters of methylphosphonic acid (R = ethyl, isopropyl, isobutyl, pinacolyl (3,3-dimethyl-2-butyl), cyclohexyl, and 2-ethylhexyl). The cationic surfactants used here for the reversal of electroosmotic flow are didodecyldimethylammonium hydroxide and cetyltrimethylammonium hydroxide. CE methods using conductivity or indirect UV detection provide a good separation efficiency and very high sensitivity for the analysis of such compounds. The detection limits for these species were about 75 micrograms/L when using conductivity detection and about 100 micrograms/L when using indirect UV detection. Because pH plays an important role in the CE separation of the alkylphosphonic acids and their monoesters, the influence of pH on these separation systems was investigated. Electrolytes were stable for at least 3 months. Excellent separation efficiency and freedom from interference due to common anions were obtained in the developed methods which typically achieved complete separations in less than 3 min. The method was applied to aqueous leachates of soil, wipes of surfaces, and vegetation sampled from a field site known to have been exposed to nerve agents and subsequently cleaned up. The data from these environmental samples indicated that the method can be expected to be useful for environmental monitoring.

  6. 1,3-Dinitrobenzene reductive degradation by alkaline ascorbic acid - Reaction mechanisms, degradation pathways and reagent optimization.

    PubMed

    Ciou, Chiya; Liang, Chenju

    2017-01-01

    Nitro-aromatic compounds (NACs) such as 1,3-dinitrobenzene (1,3-DNB) contain the nitrogroup (-NO2), in which the N with a +III oxidation state accepts electrons. Water soluble ascorbic acid (AsA) at elevated pH produces electron transfer and governs the electron-donating pathway. The influence of the NaOH/AsA molar ratio on the degradation of 1,3-DNB was investigated. Using 0.21-2 M NaOH and 20-100 mM AsA, nearly complete 1,3-DNB removals (90-100%) were achieved within 0.5 h. On the basis of intermediates identified using GC/MS, the reduction pathways of 1,3-DNB can be categorized into step-by-step electron transfer, and condensation routes. A higher NaOH/AsA molar ratio would result in relatively higher AsA decomposition, promote the condensation route into the formation of azo- and azoxy-compounds, and ultimately reduce 1,3-DNB to 1,3-phenylenediamine. Contaminated soil flushing using 500 mM NaOH/100 mM AsA revealed that 1,3-DNB was completely degraded within 2 h. Based on these test results, the alkaline AsA treatment method is a potential remediation process for NACs contaminated soils.

  7. Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry.

    PubMed

    Grinhut, Tzafrir; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Hadar, Yitzhak; Chen, Yona

    2011-04-01

    Enzymatic activities involved in decay processes of natural aromatic macromolecules, such as humic acids (HA) and lignin by white rot fungi, have been widely investigated. However, the physical and chemical analysis of degradation products of these materials has not been intensively explored. Fourier transform cyclotron resonance mass spectrometry (FTICR MS) and 1H NMR as well as CHNOS and size exclusion chromatography were employed to study the mechanisms of HA degradation by Trametes sp. M23 and Phanerochaete sp. Y6. Size exclusion chromatography analyses demonstrate and provide evidence for HA breakdown into low MW compounds. The 1H NMR analysis revealed oxidation, a decrease in the aromatic content, and an indication of demethylation of the HA during biodegradation. Evidence for oxidation was also obtained using CHNOS. Analysis of FTICR MS results using a new software program developed by our group (David Mass Sort) revealed consecutive series of masses suggesting biochemical degradation trends such as oxidation, aromatic cleavage, and demethylation. These results are in agreement with the 1H NMR analysis and with the suggested role of the ligninolytic system leading to HA degradation.

  8. Cellular Site in Bacillus subtilis of a Nuclease Which Preferentially Degrades Single-Stranded Nucleic Acids

    PubMed Central

    Birnboim, H. C.

    1966-01-01

    Birnboim, H. C. (Albert Einstein College of Medicine, New York, N.Y.). Cellular site in Bacillus subtilis of a nuclease which preferentially degrades single-stranded nucleic acids. J. Bacteriol. 91:1004–1011. 1966.—A nuclease, identified by a marked preference for single-stranded nucleic acids, has been demonstrated in extracts of Bacillus subtilis. The enzyme was associated with the cell wall-membrane fraction of mechanically disrupted cells and was released from cells which had been converted to protoplasts by lysozyme. The nuclease activity prepared by the latter procedure was found to be activated and solubilized by treatment with trypsin. The enzyme had about 2% activity on native deoxyribonucleic acid (DNA) as compared with denatured DNA. By use of CsCl analytical density gradient ultracentrifugation, this preparation was shown to degrade denatured DNA selectively in mixtures of native and denatured DNA. PMID:4956329

  9. Caveolin-1–dependent apoptosis induced by fibrin degradation products

    PubMed Central

    Guo, Yi-He; Hernandez, Irene; Isermann, Berend; Kang, Tae-bong; Medved, Leonid; Sood, Rashmi; Kerschen, Edward J.; Holyst, Trudy; Mosesson, Michael W.

    2009-01-01

    In mice lacking the blood coagulation regulator thrombomodulin, fibrinolytic degradation products (FDP) of fibrin induce apoptotic cell death of a specialized cell type in the placenta, polyploid trophoblast giant cells. Here, we document that this bioactivity of FDP is conserved in human FDP, is not limited to trophoblast cells, and is associated with an Aα-chain segment of fibrin fragment E (FnE). The majority of proapoptotic activity is arginine-glycine-aspartic acid (RGD)-independent and requires caveolin-1–dependent cellular internalization of FnE. Internalization through caveoli is mediated by an epitope contained within Aα52-81 that is necessary and sufficient for cellular uptake of FnE. Aα52-81 does not cause apoptosis itself, and competitively inhibits FnE internalization and apoptosis induction. Apoptotic activity per se resides within Aα17-37 and requires the N-terminal neoepitope generated by release of fibrinopeptide A. Cellular internalization of FnE elicits depression of mitochondrial function and consequent apoptosis that is strictly dependent on the activity of caspases 9 and 3. These findings describe the molecular details of a novel mechanism linking fibrin degradation to cell death in the placenta, which may also contribute to pathologic alterations in nonplacental vascular beds that are associated with fibrinolysis. PMID:19074731

  10. Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation.

    PubMed

    Zhai, Pingping; Chen, Xuan; Dong, Wenbo; Li, Hongjing; Chovelon, Jean-Marc

    2017-01-01

    This study aimed to investigate the degradation of triclosan (TCS) in the presence of p-aminobenzoic acid (PABA) under simulated sunlight irradiation (λ ≥ 290 nm). The effect of PABA concentration, pH, dissolved organic matter (DOM), and DOM-hydrolytic Fe(III) species complexes on the photodegradation of TCS in the presence of PABA (TCS-PABA) was also studied. The photolysis of TCS-PABA obeyed pseudo-first-order kinetics well, and the degradation of TCS-PABA enhanced with increasing solution pH (from 3.0 to 11.0). The presence of PABA inhibited the degradation of TCS-PABA, and the weakest inhibitory effect was observed while the concentration of PABA was 5 mg L(-1). The addition of DOM (Suwannee River fulvic acid standard I [SRFA], Suwannee River HA standard II [SRHA], and Suwannee River natural organic matter [SRNOM]) showed different inhibition effects on TCS-PABA degradation. However, higher Fe(III) concentration at the DOM concentration of 5 mg L(-1) could favor the formation of DOM-hydrolytic Fe(III) species complexes, further accelerating the degradation of TCS-PABA. In comparison with deionized water (DI water), TCS-PABA could be better photodegraded in river water nearby the effluent of a wastewater treatment plant. This study provides useful information for understanding the natural behavior of TCS in the presence of other organic contaminants.

  11. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    USGS Publications Warehouse

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  12. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere.

    PubMed

    Chang, Feng-chih; Simcik, Matt F; Capel, Paul D

    2011-03-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from <0.01 to 9.1 ng/m(3) and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥ 30 mm.

  13. Maleimides in recent sediments - Using chlorophyll degradation products for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Naeher, Sebastian; Schaeffer, Philippe; Adam, Pierre; Schubert, Carsten J.

    2013-10-01

    Maleimides (transformation products of chlorophylls and bacteriochlorophylls) were studied in recent sediments from the Swiss lake Rotsee and the Romanian Black Sea Shelf to investigate chlorophyll degradation, the role of oxygen in maleimide formation, and to identify their sources. Naturally occurring maleimides (i.e. "free" maleimides) and maleimides obtained after chromic acid oxidation of sediment extracts (i.e. "bound" maleimides) were analysed. 2-Methyl-maleimide (Me,H maleimide), 2,3-dimethyl-maleimide (Me,Me maleimide), 2-methyl-3-vinyl-maleimide (Me,vinyl maleimide), 2-methyl-3-ethyl-maleimide (Me,Et maleimide) and traces of 2-methyl-3-iso-butyl-maleimide (Me,i-Bu maleimide) occurred naturally in the sediment with a large predominance of the Me,Et homologue. Tetrapyrrolic pigments related to chlorophylls were the main source of maleimides, although variable contributions of other sources such as cytochromes and/or phycobilins cannot be completely ruled out. The predominant Me,Et maleimide and Me,vinyl maleimide most likely originate mainly from chlorophyll a related pigments. The same holds for Me,H maleimide, which might be formed following degradation of ring E from the tetrapyrrolic nucleus. Alternatively, Me,H maleimide and Me,Me maleimides might be formed by a recently discovered transformation pathway involving the oxidation of vinylic chlorophyll substituents and the formation of an aldehyde intermediate. 2-Methyl-3-n-propyl-maleimide (Me,n-Pr maleimide) and Me,i-Bu maleimide arising from bacteriochlorophyll related pigments traced the presence of phototrophic sulfur bacteria (Chlorobi), indicating photic zone euxinic and anoxic conditions in Rotsee during the last 150 years and throughout the Black Sea history, including the limnic phase of the Black Sea (Unit 3). Some other minor maleimides with specific alkylation pattern also originate from bacteriochlorophylls, while the source of others could not be identified. Free maleimides were mainly

  14. An assessment of potential degradation products in the gas-phase reactions of alternative fluorocarbons in the troposphere

    NASA Technical Reports Server (NTRS)

    Niki, Hiromi

    1990-01-01

    Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.

  15. Beta-carotene degradation products - formation, toxicity and prevention of toxicity.

    PubMed

    Siems, Werner; Salerno, Costantino; Crifò, Carlo; Sommerburg, Olaf; Wiswedel, Ingrid

    2009-01-01

    Carotenoids are widely used as important micronutrients in food. Furthermore, carotenoid supplementation has been used in the treatment of diseases associated with oxidative stress such as various types of cancer, inflammatory diseases or cystic fibrosis. However, in some clinical studies harmful effects have been observed, e.g. a higher incidence of lung cancer in individuals exposed to extraordinary oxidative stress. The causal mechanisms of harmful effects are still unclear. Carotenoid breakdown products (CBPs) including highly reactive aldehydes and epoxides are formed during oxidative attacks in the course of antioxidative action. We investigated the formation of CBPs by stimulated neutrophils (and at further conditions), tested the hypothesis that CBPs may exert mitochondriotoxicity and tried to prevent toxicity in the presence of members of the antioxidative network. Stimulated neutrophils are able to degrade beta-carotene and to generate a number of CBPs. Concerning mitochondriotoxicity, we found that CBPs strongly inhibit state 3 respiration of rat liver mitochondria at concentrations between 0.5 and 20 microM. This was true for retinal, beta-ionone, and for mixtures of cleavage/breakdown products. The inhibition of mitochondrial respiration was accompanied by a reduction in protein sulfhydryl content, decreasing GSH levels and redox state, and elevated accumulation of malondialdehyde. Changes in mitochondrial membrane potential favor functional deterioration in the adenine nucleotide translocator as a sensitive target. The presence of additional antioxidants such as alpha-tocopherol, ascorbic acid, N-acetyl-cysteine or others could mitigate mitochondriotoxicity. The findings reflect a basic mechanism of increasing the risk of cancer induced by carotenoid degradation products.

  16. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  17. Extraction chemistry of fermentation product carboxylic acids

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathways and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase.

  18. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  19. Mild MPP(+) exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    PubMed

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP(+) suggest autophagy involvement in the pathogenesis of PD, the effect of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP(+) exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP(+) toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP(+) exposure predominantly inhibited autophagosome degradation, whereas acute MPP(+) exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP(+) exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP(+) exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP(+) exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP(+) exposure and mechanistic differences between mild and acute MPP(+) toxicities. Mild MPP(+) toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP(+) exposure. Mechanistic differences between acute and mild MPP(+) toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause

  20. Degradation of 3-chloro-4-hydroxybenzoic acid in biological treated effluent by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Chu, Libing; Wang, Jianlong

    2016-02-01

    Gamma irradiation-induced degradation of a chlorinated aromatic compound, 3-chloro-4-hydroxybenzoic acid (CHBA) in biological treated effluent was studied and the results were compared with those obtained in deionized water. Gamma irradiation led to a complete decomposition of CHBA and a partial mineralization in the treated effluent. The removal of CHBA followed the pseudo first-order reaction kinetic model and the rate constant in the treated effluent was 1.7-3.5 times lower than that in deionized water. The CHBA degradation rate was higher at acidic condition than at neutral and alkaline conditions. The radiolytic yield, G-value for CHBA degradation was lower in the treated effluent, which decreased with increase in absorbed doses and increased with increase in initial concentrations of CHBA. The degradation mechanism of CHBA using gamma irradiation was proposed through the oxidation by -OH and reduction by eaq- and H- radicals. As exposed to gamma irradiation, dechlorination takes place rapidly and combines with the oxidation and cleavage of the aromatic ring, producing chloride ions, small carboxylic acids, acetaldehyde and other intermediates into the solution.

  1. Nanomechanical properties of poly(lactic-co-glycolic) acid film during degradation.

    PubMed

    Shirazi, Reyhaneh Neghabat; Aldabbagh, Fawaz; Erxleben, Andrea; Rochev, Yury; McHugh, Peter

    2014-11-01

    Despite the potential applications of poly(lactic-co-glycolic) acid (PLGA) coatings in medical devices, the mechanical properties of this material during degradation are poorly understood. In the present work, the nanomechanical properties and degradation of PLGA film were investigated. Hydrolysis of solvent-cast PLGA film was studied in buffer solution at 37 °C. The mass loss, water uptake, molecular weight, crystallinity and surface morphology of the film were tracked during degradation over 20 days. Characterization of the surface hardness and Young's modulus was performed using the nanoindentation technique for different indentation loads. The initially amorphous films were found to remain amorphous during degradation. The molecular weight of the film decreased quickly during the initial days of degradation. Diffusion of water into the film resulted in a reduction in surface hardness during the first few days, followed by an increase that was due to the surface roughness. There was a significant delay between the decrease in the mechanical properties of the film and the decrease in the molecular weight. A sudden decline in mechanical properties indicated that significant bulk degradation had occurred.

  2. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid

    SciTech Connect

    Liuyun, Jiang; Chengdong, Xiong; Lixin, Jiang; Lijuan, Xu

    2013-10-15

    Graphical abstract: In this manuscript, we initiated a systematic study to investigate the effect of HA on thermal properties, inner structure, reduction of mechanical strength, surface morphology and the surface deposit of n-HA/PLGA composite with respect to the soaking time. The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation of n-HA/PLGA composite and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internal fixation materials, and the results would be of reference significance to predict the in vivo degradation and biological properties. - Highlights: • Effect of n-HA on degradation behavior of n-HA/PLGA composite was investigated. • Degradation behaviors of n-HA/PLGA and PLGA were carried out in SBF for 6 months. • Viscosity, thermal properties, inner structure and bending strength were tested. • n-HA can accelerate the degradation and endows it with bioactivity. - Abstract: To investigate the effect of hydroxyapatite(HA) on the degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid (HA/PLGA) nanocomposite, the degradation experiment of n-HA/PLGA composite and pure PLGA were carried out by soaking in simulated body fluid(SBF) at 37 °C for 1, 2, 4 and 6 months. The change of intrinsic viscosity, thermal properties, inner structure, bending strength reduction, surface morphology and the surface deposit of n-HA/PLGA composite and pure PLGA with respect to the soaking time were investigated by means of UbbeloHde Viscometer, differential scanning calorimeter (DSC), scanning electron microscope(SEM), electromechanical universal tester, a conventional camera and X-ray diffraction (XRD). The results showed that n-HA played an important role in improving the degradation behavior of n

  3. Phytate degrading activities of lactic acid bacteria isolated from traditional fermented food

    NASA Astrophysics Data System (ADS)

    Damayanti, Ema; Ratisiwi, Febiyani Ndaru; Istiqomah, Lusty; Sembiring, Langkah; Febrisiantosa, Andi

    2017-03-01

    The objective of this study was to determine the potential of LAB with phytate degrading activity from fermented traditional food grain-based and legume-based. Lactic acid bacteria were isolated from different sources of traditional fermented food from Gunungkidul Yogyakarta Indonesia such as gembus tempeh (tofu waste), soybean tempeh, lamtoro tempeh (Leucaena bean) and kara tempeh. Isolation of LAB was performed using Total Plate Count (TPC) on de Man Rogosa Sharpe Agar (MRSA) medium supplemented with CaCO3. They were screened for their ability to degrade myo-inositol hexaphosphate or IP6 by using qualitative streak platemethod with modified de Man Rogosa-MorpholinoPropanesulfonic Acid Sharpe (MRS-MOPS) medium contained sodium salt of phytic acid as substrate and cobalt chloride staining (plate assay) method. The selected isolates were further assayed for phytase activities using quantitative method with spectrophotometer and the two selected isolates growth were optimized. Furthermore, thhe isolates that shown the highest phytase activity was characterized and identified using API 50 CH kitand 16S rRNA gene sequencing. The results showed that there were 18 LAB isolates obtained from samplesand 13 isolates were able to degrade sodium phytate based on qualitative screening. According to quantitative assay, the highest phytate degrading activities were found in TG-2(23.562 U/mL) and TG-1 (19.641 U/mL) isolated from gembus tempeh. The phytate activity of TG-2 was optimum at 37 °C with agitation, while the phytate activity of TG-1 was optimum at 45 °C without agitation. Characterization and identification of TG-2 isolate with the highest phytate degrading activity using API 50 CH and 16S rRNA showed that TG-2had homology with Lactobacillus fermentum. It could be concluded that LAB from from fermented traditional food grain-based and legume-based produced the extracellular phytase. Keywords: lactic acid bacteria, tempeh, phytatedegrading activity

  4. Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, Acid Orange 7, on TiO{sub 2} particles using visible light

    SciTech Connect

    Vinodgopal, K.; Wynkoop, D.E.; Kamat, P.V.

    1996-05-01

    Photosensitized degradation of a textile azo dye, Acid Orange 7, has been carried out on TiO{sub 2} particles using visible light. Mechanistic details of the dye degradation have been elucidated using diffuse reflectance absorption and FTIR techniques. Degradation does not occur on Al{sub 2}O{sub 3} surface or in the absence of oxygen. The dependence of the dye degradation rate on the surface coverage shows the participation of excited dye and TiO{sub 2} semiconductor in the surface photochemical process. Diffuse reflectance laser flash photolysis confirms the charge injection from the excited dye molecule into the conduction band of the semiconductor as the primary mechanism for producing oxidized dye radical. The surface-adsorbed oxygen plays an important role in scavenging photogenerated electrons, thus preventing the recombination between the oxidized dye radical and the photoinjected electrons. Diffuse reflectance FTIR was used to make a tentative identification of reaction intermediates and end products of dye degradation. The intermediates, 1,2-naphthoquinone and phthalic acid, have been identified during the course of degradation. Though less explored in photocatalysis, the photosensitization approach could be an excellent choice for the degradation of colored pollutants using visible light. 51 refs., 10 figs.

  5. Herbicides and herbicide degradation products in upper midwest agricultural streams during august base-flow conditions

    USGS Publications Warehouse

    Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.

    2003-01-01

    Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.

  6. Continuous cultivation of photosynthetic bacteria for fatty acids production.

    PubMed

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon; Kang, Seoktae; Kim, Mi-Sun

    2013-11-01

    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations. At hydraulic retention time (HRT) 4d, cell concentration continuously increased from 0.97 g dcw/L to 2.05 g dcw/L as lactate concentration increased from 30 mM to 60mM. At 70 mM, however, cell concentration fluctuated with incomplete substrate degradation. By installing a membrane unit to CFSTR, a stable performance was observed under much higher substrate loading (lactate 100mM and HRT 1.5d). A maximum cell concentration of 16.2g dcw/L, cell productivity of 1.9 g dcw/L/d, and FA productivity of 665 mg FA/L/d were attained, and these values were comparable with those achieved using microalgae. The FA content of R. sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7).

  7. Biological monitoring of aromatic diisocyanates in workers exposed to thermal degradation products of polyurethanes.

    PubMed

    Rosenberg, Christina; Nikkilä, Kirsi; Henriks-Eckerman, Maj-Len; Peltonen, Kimmo; Engströrm, Kerstin

    2002-10-01

    Exposure to diisocyanates was assessed by biological monitoring among workers exposed to the thermal degradation products of polyurethanes (PURs) in five PUR-processing environments. The processes included grinding and welding in car repair shops, milling and turning of PUR-coated metal cylinders, injection moulding of thermoplastic PUR, welding and cutting of PUR-insulated district heating pipes during installation and joint welding, and heat-flexing of PUR floor covering. Isocyanate-derived amines in acid-hydrolysed urine samples were analysed as perfluoroacylated derivatives by gas chromatography mass spectrometry in negative chemical ionisation mode. The limits of quantification (LOQs) for the aromatic diamines 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA) and 4,4'-methylenedianiline (4,4'-MDA) were 0.25 nmol l(-1), 0.25 nmol l(-1) and 0.15 nmol l(-1), respectively. The LOQ for the aliphatic diamines hexamethylenediamine (HDA), isophoronediamine (IpDA) and 4,4'-diaminodicyclohexyl methane (4,4'-DDHM) was 5 nmol l(-1). TDA and MDA were detected in urine samples from workers in car repair shops and MDA in samples from workers welding district heating pipes. The 2,4-TDA isomer accounted for about 80% of the total TDA detected. No 2.6-TDA was found in the urine of non-exposed workers. The highest measured urinary TDA and MDA concentrations were 0.79 nmol mmol(-1) creatinine and 3.1 nmol mmol(-1) creatinine, respectively. The concentrations found among non-exposed workers were 0.08 nmol mmol(-1) creatinine for TDA and 0.05 nmol mmol(-1) creatinine for MDA (arithmetic means). Exposure to diisocyanates originating from the thermal degradation of PURs are often intermittent and of short duration. Nevertheless, exposure to aromatic diisocyanates can be identified by monitoring diisocyanate-derived amines in acid-hydrolysed urine samples.

  8. Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana.

    PubMed

    Serra, Anne-Antonella; Nuttens, Andréïna; Larvor, Vanessa; Renault, David; Couée, Ivan; Sulmon, Cécile; Gouesbet, Gwenola

    2013-07-01

    Anthropic changes and chemical pollution confront wild plant communities with xenobiotic combinations of bioactive molecules, degradation products, and adjuvants that constitute chemical challenges potentially affecting plant growth and fitness. Such complex challenges involving residual contamination and mixtures of pollutants are difficult to assess. The model plant Arabidopsis thaliana was confronted by combinations consisting of the herbicide glyphosate, the fungicide tebuconazole, the glyphosate degradation product aminomethylphosphonic acid (AMPA), and the atrazine degradation product hydroxyatrazine, which had been detected and quantified in soils of field margins in an agriculturally intensive region. Integrative analysis of physiological, metabolic, and gene expression responses was carried out in dose-response experiments and in comparative experiments of varying pesticide combinations. Field margin contamination levels had significant effects on plant growth and metabolism despite low levels of individual components and the presence of pesticide degradation products. Biochemical and molecular analysis demonstrated that these less toxic degradation products, AMPA and hydroxyatrazine, by themselves elicited significant plant responses, thus indicating underlying mechanisms of perception and transduction into metabolic and gene expression changes. These mechanisms may explain observed interactions, whether positive or negative, between the effects of pesticide products (AMPA and hydroxyatrazine) and the effects of bioactive xenobiotics (glyphosate and tebuconazole). Finally, the metabolic and molecular perturbations induced by low levels of xenobiotics and associated degradation products were shown to affect processes (carbon balance, hormone balance, antioxidant defence, and detoxification) that are likely to determine environmental stress sensitivity.

  9. Degradation of caffeine and identification of the transformation products generated by ozonation.

    PubMed

    Rosal, Roberto; Rodríguez, Antonio; Perdigón-Melón, José Antonio; Petre, Alice; García-Calvo, Eloy; Gómez, María José; Agüera, Ana; Fernández-Alba, Amadeo R

    2009-02-01

    The ozonation of caffeine in water was performed at different pH values, including acidic conditions. Kinetic experiments were conducted by adding pulses of a concentrated caffeine solution to ozone saturated water. The results showed a rapid decrease of ozone concentration during the first 15s after injection, followed by a gradual decline at a much slower rate. The data were fitted to a second order kinetic model with rate constants increasing from 0.25 to 1.05 M(-1)s(-1) for pH in the 3-10 range. The initial ozone consumption per mol of ozonated caffeine was greater at high pH values, reflecting a higher ozone decomposition rate. The decomposition of ozone was positively affected by the concentration of caffeine, an effect that could be attributed to the presence of a reaction intermediate from the ozonation of caffeine that behaved as a strong promoter of ozone decomposition. A study of the transformation products identified by liquid chromatography in combination with time-of-flight mass spectrometry was carried out, which permitted a tentative degradation pathway to be proposed and several persistent by-products to be identified at both pH 3 and 8. Most transformation products were the result of the opening of the imidazole ring after breaking caffeine's N9C8 double bond.

  10. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    PubMed

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards.

  11. Chemical Degradation of the Cathodic Electrical Contact Between Carbon and Cast Iron in Aluminum Production Cells

    NASA Astrophysics Data System (ADS)

    Brassard, Martin; Désilets, Martin; Soucy, Gervais; Bilodeau, Jean-François; Forté, Martin

    2017-02-01

    The cathodic carbon to cast iron electrical contact degradation is one of the factors to consider in the cathode voltage drop (CVD) increase over the lifetime of aluminum production cells. Lab-scale experiments were carried out to study the cast iron to carbon interface chemical degradation and the impact of important cell parameters like temperature and bath chemistry. Laboratory degradation results were compared with industrial samples. A thermoelectric Ansys numerical model was then used to predict the effect of cast iron surface degradation over CVD. Results show that the aluminum formation on the cast iron surface and its subsequent diffusion creates an immiscible mixture of Fe-Al metal alloy and electrolytic bath. Disparities were also observed between industrial samples taken from two different technologies, suggesting that the degradation can be slowed down. Thermoelectric calculations finally revealed that the impact of the contact resistance augmentation is by far greater than the cast iron degradation.

  12. The role of nanoparticulate agglomerates in TiO2 photocatalysis: degradation of oxalic acid

    NASA Astrophysics Data System (ADS)

    Ivanova, Irina; Mendive, Cecilia B.; Bahnemann, Detlef

    2016-07-01

    The simultaneous bimodal study of the photocatalytic oxalic acid degradation by aqueous TiO2 suspensions revealed that particular systems possess the capacity to protect a certain amount of oxalic acid from oxidation, thus hindering, to some extent, the photocatalytic reaction. While measurements of the oxalic acid concentration in the bulk liquid phase indicated full photocatalytic degradation; in situ pH-stat measurements allowed the quantification of the amount of oxalic acid remaining in the part of the nanoparticulate agglomerates where light could apparently not access. An explanation for this phenomenon takes into account the possibility of the formation of TiO2 agglomerates in which these molecules are hidden from the effect of the light, thus being protected from photocatalytic degradation. Studies of different TiO2 materials with different particle sizes allowed a deeper exploration of this phenomenon. In addition, because this property of encapsulating pollutant molecules by photocatalytic systems is found to be a reversible phenomenon, P25 appears to be more convenient and advantageous as compared to the use of large surface area photocatalysts.

  13. Mechanism of Calcium Lactate Facilitating Phytic Acid Degradation in Soybean during Germination.

    PubMed

    Hui, Qianru; Yang, Runqiang; Shen, Chang; Zhou, Yulin; Gu, Zhenxin

    2016-07-13

    Calcium lactate facilitates the growth and phytic acid degradation of soybean sprouts, but the mechanism is unclear. In this study, calcium lactate (Ca) and calcium lactate with lanthanum chloride (Ca+La) were used to treat soybean sprouts to reveal the relevant mechanism. Results showed that the phytic acid content decreased and the availability of phosphorus increased under Ca treatment. This must be due to the enhancement of enzyme activity related to phytic acid degradation. In addition, the energy metabolism was accelerated by Ca treatment. The energy status and energy metabolism-associated enzyme activity also increased. However, the transmembrane transport of calcium was inhibited by La(3+) and concentrated in intercellular space or between the cell wall and cell membrane; thus, Ca+La treatment showed reverse results compared with those of Ca treatment. Interestingly, gene expression did not vary in accordance with their enzyme activity. These results demonstrated that calcium lactate increased the rate of phytic acid degradation by enhancing growth, phosphorus metabolism, and energy metabolism.

  14. Stability-indicating methods for the determination of famciclovir in the presence of its alkaline-induced degradation product.

    PubMed

    Lotfy, Hayam Mahmoud; Abd El-Moneim Abosen, Mona M; El-Bardicy, Mohamed Galal

    2010-04-01

    Five sensitive, selective and precise stability-indicating methods are presented for the determination of famciclovir (FCV) in the presence of its alkaline-induced degradation product. Method A utilizes the first derivative spectrophotometry at 321 nm. Method B depends on using the first derivative of the ratio spectrophotometry (DD(1)) by measurement of the amplitude at 256 nm. Method C is based on the reaction of FCV with hydroxylamine to form hydroxamic acid, causing the hydroxamic acid to react with triferric ion to form ferric hydroxamate that is measured at 503 nm. Method D is based on the separation of FCV from its degradation product followed by densitometric measurement of the bands at 304 nm. The separation was carried out on silica gel 60 F(254), using chloroform: methanol (70:30, v/v) as a mobile phase. Method E is based on a high performance liquid chromatographic (HPLC) separation of FCV from its degradation product using an ODS column with a mobile phase consisting of methanol-50 mM dipotassium hydrogen phosphate (25:75, v/v, pH 3.0)with UV detection at 304 nm. Regression analysis showed good correlation in the concentration ranges 16-72 microg/ml, 40-240 microg/ml, 40-240 microg/ml, 0.75-5.25 microg/band and 20-240 microg/ml with percentage recoveries of 99.65 +/- 0.85, 100.27 +/- 0.91, 99.72 +/- 0.84, 100.65 +/- 1.52 and 99.88 +/- 0.50 for methods A, B, C, D and E, respectively. These methods are suitable as stability-indicating methods for the determination of FCV in the presence of its degradation product either in bulk powder or in pharmaceutical formulation. Statistical analysis of the results has been carried out revealing high accuracy and good precision.

  15. Sorption and degradation of wastewater-associated pharmaceuticals and personal care products in agricultural soils and sediment.

    PubMed

    Zhang, Ting; Wu, Bo; Sun, Na; Ye, Yong; Chen, Huaixia

    2013-01-01

    Pharmaceuticals and personal care products (PPCPs) have drawn popular concerns recently as an emerging class of aquatic contaminants. In this study, adsorption and degradation of four selected PPCPs, metronidazole, tinidazole, caffeine and chloramphenicol, have been investigated in the laboratory using two agricultural soils in China and sediment from Changjiang River. Adsorption tests using a batch equilibrium method demonstrated that adsorption of all tested chemicals in soils could be well described with Freundlich equation, and their adsorption affinity on soil followed the order of chloramphenicol > caffeine > tinidazole > metronidazole. Generally, higher Kf value was associated with soils which had higher organic matter contents (except for caffeine acid in this study). Degradation of selected PPCPs in soils generally followed first-order exponential decay kinetics, and half-lives ranging from 0.97 to 10.21 d. Sterilization generally decreased the degradation rates, indicating that microbial activity played a significant role in the degradation in soils. The degradation rate constant decreased with increasing initial chemical concentrations in soil, implying that the microbial activity was inhibited with high chemical loading levels.

  16. Selective separation and characterization of the stress degradation products of ondansetron hydrochloride by liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Talluri, Murali V N Kumar; Keshari, Kundan Kumar; Kalariya, Pradipbhai D; Srinivas, Ragampeta

    2015-05-01

    Ondansetron hydrochloride was subjected to forced degradation studies under various conditions of hydrolysis (acidic, basic, and neutral), oxidation, photolysis, and thermal as prescribed by International Conference on Harmonisation guideline Q1A (R2). A simple, selective, precise, and accurate high-performance liquid chromatography method was developed on a Waters Xterra C18 (150 × 4.6 mm id, 3.5 μm) column using 10 mM ammonium formate (pH 3.0)/methanol as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. The method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry for identification and structural characterization of stress degradation products of ondansetron. The drug showed significant degradation in base hydrolytic and photolytic stress conditions in the liquid state, while it was found to be stable in neutral, acidic, thermal, and oxidative stress conditions. A total of five degradation products were characterized and most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H](+) ions of the drug and its degradation products. Finally, the developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonisation guideline Q2 (R1).

  17. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    SciTech Connect

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  18. Selective extraction of organophosphorus nerve agent degradation products by molecularly imprinted solid-phase extraction.

    PubMed

    Le Moullec, Sophie; Bégos, Arlette; Pichon, Valérie; Bellier, Bruno

    2006-03-03

    The analysis of alkyl alkylphosphonic acids, the degradation products of V and G nerve agents as VX, Sarin or Soman, is an important task for the verification of compliance to the Chemical Weapons Convention. The detection of these contaminants at low concentration levels is often difficult in complex matrices due to the amount of interfering substances. Molecularly imprinted solid-phase extraction technique should allow a selective extraction of these compounds from complex samples, and thus make their detection easier. Two molecularly imprinted polymers (MIPs) prepared with methacrylic acid (MAA) as monomer and pinacolyl methylphosphonic acid (PMPA) as template molecule were synthesised and tested. The first polymer, MIP A, was prepared with ethylene glycol dimethacrylate (EGDMA) in dichloromethane. The second polymer, MIP B, was synthesised using trimethylolpropane trimethacrylate (TRIM) in acetonitrile. To evaluate the selectivity provided by these MIPs, the retention of the ethyl methylphosphonic acid (EMPA) target molecule was studied in parallel on a non-imprinted polymer (NIP). While MIP A does not show any difference compared to NIP A, a good selectivity was obtained for MIP B. After the optimisation of the extraction process, 60% of EMPA can be removed from the NIP B without affecting the retention on the MIP B. A recovery of extraction of 93% was then obtained on the MIP B. Its capacity was then measured and corresponds to 97 microg of EMPA per gram of MIP. Finally, the selectivity of MIP B was clearly demonstrated by applying it to the clean-up of a soil extract spiked with EMPA.

  19. Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester.

    PubMed

    Karlsson, Anna; Einarsson, Peter; Schnürer, Anna; Sundberg, Carina; Ejlertsson, Jörgen; Svensson, Bo H

    2012-10-01

    The effect of trace element addition on anaerobic digestion of food industry- and household waste was studied using two semi-continuous lab-scale reactors, one (R30+) was supplied with Fe, Co and Ni, while the other (R30) acted as a control. Tracer analysis illustrated that methane production from acetate proceeded through syntrophic acetate oxidation (SAO) in both digesters. The effect of the trace elements was also evaluated in batch assays to determine the capacity of the microorganisms of the two digesters to degrade acetate, phenyl acetate, oleic acid or propionate, butyrate and valerate provided as a cocktail. The trace elements addition improved the performance of the process giving higher methane yields during start-up and early operation and lower levels of mainly acetate and propionate in the R30+ reactor. The batch assay showed that material from R30+ gave effects on methane production from all substrates tested. Phenyl acetate was observed to inhibit methane formation in the R30 but not in the R30+ assay. A real-time PCR analysis targeting methanogens on the order level as well as three SAO bacteria showed an increase in Methanosarcinales in the R30+ reactor over time, even though SAO continuously was the dominating pathway for methane production. Possibly, this increase explains the low VFA-levels and higher degradation rates observed in the R30+ batch incubations. These results show that the added trace elements affected the ability of the microflora to degrade VFAs as well as oleic acid and phenyl acetate in a community, where acetate utilization is dominated by SAO.

  20. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    PubMed

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here.

  1. Determination of degradation products and pathways of mancozeb and ethylenethiourea (ETU) in solutions due to ozone and chlorine dioxide treatments.

    PubMed

    Hwang, Eun-Sun; Cash, Jerry N; Zabik, Matthew J

    2003-02-26

    The objective of the present study was to determine the degradation products of mancozeb and ethylenethiourea (ETU) and elucidate the possible degradation pathways in solution as a result of chemical oxidation using ozone and chlorine dioxide. This study was developed in a solution at 100 ppm of mancozeb and ETU concentration over the course of 60 min. Two different oxidizing agents used in this study were (1) ozone at 3 ppm and (2) chlorine dioxide at 20 ppm. Ozone was continuously provided throughout the course of the reaction. Degradation products were detected with high-resolution GC-MS. The total analysis time was 4 min per sample combined with rapid GC separation and time-of-flight mass spectrometry (TOFMS). Hydrolysis of mancozeb led to m/z 144 ion fragmentation, which is 5-imidazoledithiocarboxylic acid, as a major degradation product. ETU showed M(+) 102, which corresponds to its mass, indicating this compound was stable in distilled water and did not undergo hydrolysis during 60 min. The average retention times of mancozeb and ETU were approximately 181-189 and 210-230 s, respectively. Ozonation of mancozeb produced ETU as a major product. Treatment of ETU with ozone produced several degradation compounds. From prolonged ozonation, the CS(2) or CS group was removed. Overall, several byproducts identified were M(+) 60, M(+) 84, M(+) 163, M(+) 117, and M(+) 267 by ozone and M(+) 117, M(+) 86, and M(+) 163 by chlorine dioxide treatment. Several of these have been reported, but others have never been reported previously.

  2. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production.

    PubMed

    de Vries, R P

    2003-03-01

    The genus Aspergillus is widely used for the production of plant cell wall polysaccharide-degrading enzymes. The range of enzymes purified from these fungi covers nearly every function required for the complete degradation of cellulose, xyloglucan, xylan, galacto(gluco)mannan and pectin. This paper describes the Aspergillus enzymes involved in the degradation of these polysaccharides and discusses the regulatory systems involved in the expression of the genes encoding these proteins. The latter is of major importance in the large-scale production of these enzymes for industrial applications.

  3. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    PubMed Central

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-01-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  4. Data of thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid as crosslinking agent.

    PubMed

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-06-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: "Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent" González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

  5. Selective separation and characterisation of stress degradation products and process impurities of prucalopride succinate by LC-QTOF-MS/MS.

    PubMed

    Mahamuni, Baira Shandilya; Jajula, Anupama; Awasthi, Atul; Kalariya, Pradipbhai D; Talluri, M V N Kumar

    2016-06-05

    The present study reports the degradation behaviour of a new prokinetic agent, Prucalopride succinate, under various stress conditions as per International Conference on Harmonization guidelines (ICH, Q1A (R2)). The investigation involved monitoring decomposition of the drug under hydrolytic (acidic, basic and neutral), oxidative, photolytic and thermal stress conditions followed by characterization of the degradation products (DPs) and process related impurities (IMPs). A rapid, precise, accurate and robust reverse phase high performance liquid chromatography (RP-HPLC) method has been developed involving mobile phase of 20mM ammonium bicarbonate buffer and acetonitrile: methanol (80:20v/v) on a Waters Xbridge-C8 (150mm×4.6mm i.d., 3.5μm) column using gradient elution. The drug was found to be degraded in hydrolytic (acidic) and oxidative conditions, whereas it was stable under basic and neutral hydrolytic, photolytic and thermal stress conditions. The method was extended to LC-ESI-QTOF-MS/MS for the structural characterization of DPs and process related IMPs. Structural characterization was carried out based on the generated molecular formula of DPs and its fragment ions. It has been observed that two major DPs were formed under each acid hydrolysis and oxidative stress conditions. The most probable mechanisms involved in the formation of DPs were also proposed. Finally, the method was validated in the term of specificity, linearity, accuracy, precision, and robustness as per ICH guidelines, Q2 (R1).

  6. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  7. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation

    PubMed Central

    Demeter, Marc A.; Lemire, Joseph A.; Yue, Gordon; Ceri, Howard; Turner, Raymond J.

    2015-01-01

    Oil sands surface mining for bitumen results in the formation of oil sands process water (OSPW), containing acutely toxic naphthenic acids (NAs). Potential exists for OSPW toxicity to be mitigated by aerobic degradation of the NAs by microorganisms indigenous to the oil sands tailings ponds, the success of which is dependent on the methods used to exploit the metabolisms of the environmental microbial community. Having hypothesized that the xenobiotic tolerant biofilm mode-of-life may represent a feasible way to harness environmental microbes for ex situ treatment of OSPW NAs, we aerobically grew OSPW microbes as single and mixed species biofilm and planktonic cultures under various conditions for the purpose of assaying their ability to tolerate and degrade NAs. The NAs evaluated were a diverse mixture of eight commercially available model compounds. Confocal microscopy confirmed the ability of mixed and single species OSPW cultures to grow as biofilms in the presence of the NAs evaluated. qPCR enumeration demonstrated that the addition of supplemental nutrients at concentrations of 1 g L-1 resulted in a more numerous population than 0.001 g L-1 supplementation by approximately 1 order of magnitude. GC-FID analysis revealed that mixed species cultures (regardless of the mode of growth) are the most effective at degrading the NAs tested. All constituent NAs evaluated were degraded below detectable limits with the exception of 1-adamantane carboxylic acid (ACA); subsequent experimentation with ACA as the sole NA also failed to exhibit degradation of this compound. Single species cultures degraded select few NA compounds. The degradation trends highlighted many structure-persistence relationships among the eight NAs tested, demonstrating the effect of side chain configuration and alkyl branching on compound recalcitrance. Of all the isolates, the Rhodococcus spp. degraded the greatest number of NA compounds, although still less than the mixed species cultures

  8. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial.

    PubMed

    Liu, Juncheng; Wang, Lin; Tang, Jingchun; Ma, Jianli

    2016-04-01

    Naphthenic acids (NAs) are a major contributor to the toxicity in oil sands process-affected water (OSPW), which is produced by hot water extraction of bitumen. NAs are extremely difficult to be degraded due to its complex ring and side chain structure. Photocatalysis is recognized as a promising technology in the removal of refractory organic pollutants. In this work, TiO2-graphene (P25-GR) composites were synthesized by means of solvothermal method. The results showed that P25-GR composite exhibited better photocatalytic activity than pure P25. The removal efficiency of naphthenic acids in acid solution was higher than that in neutral and alkaline solutions. It was the first report ever known on the photodegradation of NAs based on graphene, and this process achieved a higher removal rate than other photocatalysis degradation of NAs in a shorter reaction time. LC/MS analysis showed that macromolecular NAs (carbon number 17-22, z value -2) were easy to be degraded than the micromolecular ones (carbon number 11-16, z value -2). Furthermore, the reactive oxygen species that play the main role in the photocatalysis system were studied. It was found that holes and ·OH were the main reactive species in the UV/P25-GR photocatalysis system. Given the high removal efficiency of refractory organic pollutants and the short degradation time, photodegradation based on composite catalysts has a broad and practical prospect. The study on the photodegradation of commercially sourced NAs may provide a guidance for the degradation of OSPW NAs by this method.

  9. Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell.

    PubMed

    Hou, Yanping; Zhang, Renduo; Yu, Zebin; Huang, Lirong; Liu, Yuxin; Zhou, Zili

    2017-01-01

    The single-chamber microbial electrolysis cell constructed with a TiO2-coated photocathode, termed photocatalytic microbial electrolysis cell (PMEC), was developed to accelerate methyl orange (MO) degradation and concurrent hydrogen (H2) recovery under UV irradiation. Results showed that faster MO decolorization rates were achieved from the PMEC compared with those without UV irradiation or with open circuit. With increase of MO concentrations (acetate as co-substrate) from 50 to 300mg/L at an applied voltage of 0.8V, decolorization efficiencies decreased from 98% to 76% within 12h, and cyclic H2 production declined from 113 to 68mL. As the possible mechanism of MO degradation, bioelectrochemical reduction, co-metabolism reduction, and photocatalysis were involved; and degradation intermediates (mainly sulfanilic acid and N,N-dimethylaniline) were further degraded by OH generated from photocatalysis. This makes MO mineralization be possible in the single-chamber PMEC. Hence, the PMEC is a promising system for dyeing wastewater treatment and simultaneous H2 production.

  10. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates

    PubMed Central

    2013-01-01

    Background Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. Results Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. Conclusions To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p

  11. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    PubMed Central

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range o