Science.gov

Sample records for acidic degradation products

  1. Degradation of caffeic acid in subcritical water and online HPLC-DPPH assay of degradation products.

    PubMed

    Khuwijitjaru, Pramote; Suaylam, Boonyanuch; Adachi, Shuji

    2014-02-26

    Caffeic acid was subjected to degradation under subcritical water conditions within 160-240 °C and at a constant pressure of 5 MPa in a continuous tubular reactor. Caffeic acid degraded quickly at these temperatures; the main products identified by liquid chromatography-diode array detection/mass spectrometry were hydroxytyrosol, protocatechuic aldehyde, and 4-vinylcatechol. The reaction rates for the degradation of caffeic acid and the formation of products were evaluated. Online high-performance liquid chromatography/2,2-diphenyl-1-picryhydrazyl assay was used to determine the antioxidant activity of each product in the solution. It was found that the overall antioxidant activity of the treated solution did not change during the degradation process. This study showed a potential of formation of antioxidants from natural phenolic compounds under these subcritical water conditions, and this may lead to a discovering of novel antioxidants compounds during the extraction by this technique. PMID:24483598

  2. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties. PMID:25748518

  3. Isolation and structure elucidation of a novel product of the acidic degradation of cefaclor.

    PubMed

    Baertschi, S W; Dorman, D E; Occolowitz, J L; Spangle, L A; Collins, M W; Wildfeuer, M E; Lorenz, L J

    1993-06-01

    The acidic aqueous degradation of cefaclor, an orally administered cephalosporin antibiotic, has been investigated. The most prominent peak in the high-performance liquid chromatography profile of a degraded solution of cefaclor was isolated by preparative high-performance liquid chromatography. Mechanistically, the formation of this degradent from cefaclor involves a condensation of two cefaclor degradation products in which both products have undergone contraction from a six-membered cephem ring to a five-membered thiazole ring, presumably via a common episulfonium ion intermediate. PMID:8331538

  4. Production and Degradation of Oxalic Acid by Brown Rot Fungi

    PubMed Central

    Espejo, Eduardo; Agosin, Eduardo

    1991-01-01

    Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted 14C-labeled oxalic acid to CO2 during cellulose depolymerization. The other brown rot fungi also oxidized 14C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize 14C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi. PMID:16348522

  5. Acid-catalyzed hydrolysis of BMS-582664: degradation product identification and mechanism elucidation.

    PubMed

    Zhao, Fang; Derbin, George; Miller, Scott; Badawy, Sherif; Hussain, Munir

    2012-09-01

    BMS-582664 is an investigational drug intended for cancer treatment through oral administration. The preformulation studies revealed two unexpected degradation products under acidic conditions by reversed-phase high-performance liquid chromatography with ultraviolet detection. Additional liquid chromatography-mass spectrometry results suggested that these were cleavage (hydrolysis) products of a diaryl ether. To further understand the degradation mechanism, the reaction was carried out in (18) O-labeled water. The (18) O was found to be incorporated in only one of the two hydrolysis products. The results suggest that the corresponding α carbon in the heterocycle was unusually eletrophilic in acidic conditions probably because of the protonation of the neighboring nitrogen. This led to the selective attack by water and the consequent hydrolysis products. The study provides a new example of hydrolytic degradation of pharmaceutical compounds, and the reaction center is an aromatic heterocyclic carbon with an aryloxy substitution. PMID:22189636

  6. Retrospective analysis for the identification of 4-aminocarminic acid photo-degradation products in beverages.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mastroianni, Rita; Mazzucco, Eleonora; Manfredi, Marcello; Marengo, Emilio

    2015-01-01

    This article deals with the identification of the photo-degradation products of 4-aminocarminic acid potentially present in commercial beverages. Sixteen beverages of different composition but all containing the E120 dye were previously analysed by ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole-time of flight mass spectrometry to identify the common degradation products of the E120 dye. Since it is plausible to find unauthorised 4-aminocarminic acid in beverages which report generic E120 dye on the label, retrospective analysis was employed here not only to search for the possible presence of 4-aminocarminic acid but also to investigate the potential formation of photo-degradation products derived from this compound. For this purpose, a statistical approach based on Student's t-test was used to compare the degraded beverages containing 4-aminocarminic acid with all the others. Five degradation products were identified and their structures were elucidated on the basis of the high-accuracy and high-resolution of mass and mass/mass spectra. The toxicity of the degradation products was evaluated through the Ames Salmonella/microsome mutagenicity assay. No evidence of mutagenicity was obtained for the beverages subjected or not to irradiation, whereas a toxic effect of the 4-aminocarminic acid standard solution already at 100.0 µg l(-1) was found. This leads, once again, to the conclusion that the toxicity study must be carried out on the beverages in order to take into account of all the possible masking/protection interactions among the ingredients. PMID:25562586

  7. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  8. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids.

    PubMed

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  9. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids

    PubMed Central

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  10. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    PubMed

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments. PMID:22629643

  11. Solid supported in situ derivatization extraction of acidic degradation products of nerve agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Dubey, D K; Pardasani, Deepak

    2014-09-12

    This study deals with the solid supported in situ derivatization extraction of acidic degradation products of nerve agents present in aqueous samples. Target analytes were alkyl alkylphosphonic acids and alkylphosphonic acids, which are important environmental signatures of nerve agents. The method involved tert-butyldimethylchlorosilane mediated in situ silylation of analytes on commercially available diatomaceous solid phase extraction cartridges. Various parameters such as derivatizing reagent, its concentration, reaction time, temperature and eluting solvent were optimized. Recoveries of the analytes were determined by GC-MS which ranged from 60% to 86%. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes were achieved down to 78 and 213ngmL(-1) respectively, in selected ion monitoring mode. The successful applicability of method was also demonstrated on samples of biological origin such as plasma and to the samples received in 34th official proficiency test conducted by the Organization for Prohibition the of Chemical Weapons. PMID:25103280

  12. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    NASA Astrophysics Data System (ADS)

    Araújo, M. M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A. L. C. H.; Bergaentzle, M.

    2012-08-01

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters.

  13. Detection of chlorodifluoroacetic acid in precipitation: A possible product of fluorocarbon degradation

    SciTech Connect

    Martin, J.W.; Franklin, J.; Hanson, M.L.; Solomon, K.R.; Mabury, S.A.; Ellis, D.A.; Scott, B.F.; Muri, D.C.G.

    2000-01-15

    Chlorodiffluoroacetic acid (CDFA) was detected in rain and snow samples from various regions of Canada. Routine quantitative analysis was performed using an in-situ derivatization technique that allowed for the determination of CDFA by GC-MS of the anilide derivative. Validation of environmental CDFA was provided by strong anionic exchange chromatography and detection by {sup 19}F NMR. CDFA concentrations ranges from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations ranged from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations in rain event samples showed a seasonal trend between June and November 1998, peaking in late summer and decreasing in the fall for Guelph and Toronto sites. Preliminary toxicity tests with the aquatic macrophytes Myriophyllum sibiricum and Myriophyllum spicatum suggest that CDFA does not represent a risk of acute toxicity to these aquatic macrophytes at current environmental concentrations. A degradation study suggests that CDFA is recalcitrant to biotic and abiotic degradation relative to dichloroacetic acid (DCA) and may accumulate in the aquatic environment. On the basis of existing experimental data, the authors postulate that CDFA is a degradation product of CFC-113 and, to a lesser extent, HCFC-142b. If CFC-113 is a source, its ozone depletion potential may be lower than previously assumed. Further work is required to identify alternative atmospheric and terrestrial sources of CDFA.

  14. Separation and determination of degradation products of acid orange 7 by capillary electrophoresis/capacitively coupled contactless conductivity detector.

    PubMed

    Wang, Xin; Xiong, Ya; Xie, Tianyao; Sharma, Virender K; Tu, Yuting; Yang, Jiannan; Tian, Shuanghong; He, Chun

    2013-07-15

    Capillary electrophoresis (CE) with capacitively coupled contactless conductivity detector (C(4)D) was developed to separate azo-dyestuff acid orange 7 (AO7) and its six degradation products. The analyzed products were sulfamic acid, oxalic acid, benzenesulfonic acid, 4-hydroxybenzene sulfonic acid, phthalic acid, and 4-aminobenzene sulfonic acid. In developing the method, types and concentrations of running buffers, injecting voltage and time, and applied voltage were tested to obtain optimum conditions to analyze target compounds. The separation was successfully achieved within 10 min using a fused-silica capillary under the following conditions: 20 mmol L(-1) acetate acid buffer, electrokinetic injection of -12 kV × 10 s, and applied voltage of -13 kV. The developed method was applied to analyze degradation products in situ during the reaction of AO7 with Fenton reagent (Fe(II)+H2O2 at pH 4.0). PMID:23622525

  15. Stability studies on trans-rosmarinic acid and GC-MS analysis of its degradation product.

    PubMed

    Razboršek, Maša Islamčević

    2011-07-15

    The stability of trans-rosmarinic acid (trans-RA, an important phenolic compound with anti-oxidant, anti-inflammatory, anti-bacterial, and anti-viral properties) exposed to different stress conditions (daylight, higher temperatures, different solvents, and humidity) was investigated. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the degraded samples, and structural identification of degradation products was assigned based upon MS fragmentation pattern. The GC-MS method was validated in terms of linearity, precision as repeatability, accuracy, limit of detection (LOD), limit of quantitation (LOQ) and recovery. The stability experiments were performed on pure trans-RA and on trans-RA present in commercially available rosemary extract. The cis-isomer of RA was the only degradation product. The results showed that trans-RA was readily isomerized into its cis-form within a few hours when dissolved in ethanol, methanol or tetrahydrofuran, and exposed to darkness or daylight at different temperatures. Isomerization took place to a greater extent in protic than in aprotic solvents. Trans-RA in the solid state was found to be stable for up to three months under all tested conditions. The described GC-MS method was also applied to the determination of trans-RA in eight different species of Lamiaceae family. PMID:21515014

  16. Enhanced biofilm production by a toluene-degrading Rhodococcus observed after exposure to perfluoroalkyl acids.

    PubMed

    Weathers, Tess S; Higgins, Christopher P; Sharp, Jonathan O

    2015-05-01

    This study focuses on interactions between aerobic soil-derived hydrocarbon degrading bacteria and a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates that are found in aqueous film-forming foams used for fire suppression. No effect on toluene degradation rate or induction time was observed when active cells of Rhodococcus jostii strain RHA1 were exposed to toluene and a mixture of perfluoroalkyl acids (PFAAs) including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) at concentrations near the upper bounds of groundwater relevance (11 PFAAs at 10 mg/L each). However, exposure to aqueous PFAA concentrations above 2 mg/L (each) was associated with enhanced aggregation of bacterial cells and significant increases in extracellular polymeric substance production. Flocculation was only observed during exponential growth and not elicited when PFAAs were added to resting incubations; analogous flocculation was also observed in soil enrichments. Aggregation was accompanied by 2- to 3-fold upregulation of stress-associated genes, sigF3 and prmA, during growth of this Rhodococcus in the presence of PFAAs. These results suggest that biological responses, such as microbial stress and biofilm formation, could be more prominent than suppression of co-contaminant biodegradation in subsurface locations where poly- and perfluoroalkyl substances occur with hydrocarbon fuels. PMID:25806435

  17. Study on degradation kinetics of 2-(2-hydroxypropanamido) benzoic acid in aqueous solutions and identification of its major degradation product by UHPLC/TOF-MS/MS.

    PubMed

    Zhang, Qili; Guan, Jiao; Rong, Rong; Zhao, Yunli; Yu, Zhiguo

    2015-08-10

    A RP-HPLC method was developed and validated for the degradation kinetic study of 2-(2-hydroxypropanamido) benzoic acid (HPABA), a promising anti-inflammatory drug, which would provide a basis for further studies on HPABA. The effects of pH, temperature, buffer concentration and ionic strength on the degradation kinetics of HPABA were discussed. Experimental parameters such as degradation rate constants (k), activation energy (Ea), acid and alkali catalytic constants (k(ac), k(al)), shelf life (t1/2) and temperature coefficient (Q10) were calculated. The results indicated that degradation kinetics of HPABA followed zero-order reaction kinetics; degradation rate constants (k) of HPABA at different pH values demonstrated that HPABA was more stable in neutral and near-neutral conditions; the function of temperature on k obeyed the Arrhenius equation (r = 0.9933) and HPABA was more stable at lower temperature; with the increase of ionic strength and buffer concentration, the stability of HPABA was decreased. The major unknown degradation product of HPABA was identified by UHPLC/TOF-MS/MS with positive electrospray ionization. Results demonstrated that the hydrolysis product was the primary degradation product of HPABA and it was deduced as anthranilic acid. PMID:25935790

  18. Degradation Kinetics and Mechanism of a β-Lactam Antibiotic Intermediate, 6-Aminopenicillanic Acid, in a New Integrated Production Process.

    PubMed

    Su, Min; Sun, Hua; Zhao, Yingying; Lu, Aidang; Cao, Xiaohui; Wang, Jingkang

    2016-01-01

    In an effort to promote sustainability and to reduce manufacturing costs, the traditional production process for 6-aminopenicillanic acid (6-APA) has been modified to include less processing units. The objectives of this study are to investigate the degradation kinetics of 6-APA, to propose a reasonable degradation mechanism, and to optimize the manufacturing conditions within this new process. A series of degradation kinetic studies were conducted in the presence of impurities, as well as at various chemical and physical conditions. The concentrations of 6-APA were determined by high-performance liquid chromatography. An Arrhenius-type kinetic model was established to give a more accurate prediction on the degradation rates of 6-APA. A hydrolysis degradation mechanism is shown to be the major pathway for 6-APA. The degradation mechanisms and the kinetic models for 6-APA in the new system enable the design of a good manufacturing process with optimized parameters. PMID:26852849

  19. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone. PMID:26111613

  20. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay. PMID:16703628

  1. Decomposition of phenylarsonic acid by AOP processes: degradation rate constants and by-products.

    PubMed

    Jaworek, K; Czaplicka, M; Bratek, Ł

    2014-10-01

    The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm(-3) phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45 × 10(-3) and 20.12 × 10(-3)) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified. PMID:24824504

  2. Degradation of ascorbic acid in ethanolic solutions.

    PubMed

    Hsu, Hsin-Yun; Tsai, Yi-Chin; Fu, Chi-Chang; Wu, James Swi-Bea

    2012-10-24

    Ascorbic acid occurs naturally in many wine-making fruits. The industry also uses ascorbic acid as an antioxidant and color stabilizer in the making of alcoholic beverages including white wine, wine cooler, alcopop, and fruit liqueur. However, the degradation of ascorbic acid itself may cause browning and the deterioration of color quality. This study was aimed to monitor the degradation of ascorbic acid, the formation of degradation products, and the browning in storage of ascorbic acid containing 0-40% (v/v) ethanolic solutions buffered at pH 3.2 as models of alcoholic beverages. The results show that ascorbic acid degradation in the ethanolic solutions during storage follows first-order reaction, that the degradation and browning rates increase with the increase of ethanol concentration, that the activation energy for the degradation of ascorbic acid is in the range 10.35-23.10 (kcal/mol), that 3-hydroxy-2-pyrone is an indicator and a major product of ascorbic acid degradation, and that aerobic degradation pathway dominants over anaerobic pathway in ascorbic acid degradation in ethanolic solutions. PMID:22994409

  3. The Fate and Transport of Glyphosate and its Degradation Product, Aminomethylphosphonic Acid (AMPA), in Water

    NASA Astrophysics Data System (ADS)

    Scribner, E.; Meyer, M. T.

    2006-05-01

    Since 2001, the U.S. Geological Survey (USGS) has investigated the fate and transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), in surface water, and more recently in tile-drain flow, soil, and wet deposition. According to U.S. Environmental Protection Agency sources, glyphosate is among the world's most widely used herbicides. In 2004, glyphosate usage estimates indicated that between 103 and 113 million pounds were applied annually to crops in the United States. The use of glyphosate over a wide geographic area suggests that this herbicide might be a potential concern for air, water, and soil quality as well as measured in high concentrations in streams; therefore, it is important to monitor its fate and transport in ground-water/surface-water systems. National, regional, and field-scale studies conducted by the USGS National Water-Quality Assessment and Toxic Substance Hydrology Programs have studied the fate and transport of glyphosate in overland flow, tile- drain flow, surface water, soil, and wet-deposition samples. The samples were analyzed for glyphosate and AMPA by using derivatization and online solid-phase extraction with liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS methods developed by the USGS Organic Geochemistry Research Laboratory in Lawrence, Kansas. During spring, summer, and fall 2002 runoff periods in 50 Midwestern streams, glyphosate was detected at or above the 0.10 micrograms per liter detection limit in 35, 41, and 31 percent of samples, respectively. AMPA was detected in 53, 82, and 75 percent of samples, respectively. Results of 128 samples from a field study showed that glyphosate was transported as a narrow high- concentration pulse during the first period of runoff after application and that the concentration of glyphosate in runoff was greater than the concentration of AMPA. In tile-drain flow, glyphosate and AMPA were transported in a broad low-concentration pulse during these same

  4. [Analysis of alkaline CuO degradation products of acid detergent fiber from tobacco leaves by using liquid chromatography].

    PubMed

    Hao, Weiqiang; Wang, Leijun; Wu, Shun; Yue, Bangyi; Chen, Qiang; Zhang, Peipei

    2015-07-01

    The acid detergent fiber (ADF) from tobacco leaves was obtained by treating the sample with petroleum ether-ethanol (6:4, v/v), 30 g/L sodium dodecylsulfate and 0.5 mol/L sulphuric acid containing 20 g/L hexadecyl trimethyl ammonium bromide successively. The ADF was degraded by the alkaline CuO oxidation procedure. In this work, six samples of ADF degradation products from tobacco leaves were prepared. The samples were analyzed by using gradient liquid chromatography (LC) where an Ultimate XB C18 column was used as stationary phase, with a mixture of methanol and water as mobile phase, at a column temperature of 35 °C and a flow rate of 0.8 mL/min. Dual wavelengths of 280 nm and 320 nm were chosen for the detection. It was found that there were four characteristic peaks for the ADF degradation products. By taking these peaks as research object, the optimum time for the degradation was found to be 5 h and the sample solution could be kept stable within 7 days. The established method may provide a new approach for the studies of the differences between lignin composition in different tobacco leaves and the relationship between lignin content and the smoking quality of tobacco leaves. PMID:26672209

  5. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production.

    PubMed

    Zhang, Ying-Hua; Xu, Di; Liu, Jia-Qi; Zhao, Xin-Huai

    2014-12-01

    Skimmed milk spiked with five organophosphorus pesticides (OPPs), chlorpyrifos, diazinon, fenitrothion, malathion and methyl parathion, was fermented by ten lactic acid bacteria (LAB) and four strain combinations at 42°C for 24h. OPPs left in the samples at different times were extracted, purified, detected by gas chromatography and calculated for degradation rate constants, based on a first-order reaction model. OPPs degradation was enhanced by the inoculated LAB, resulting in 0.8-225.4% increase in the rate constants. Diazinon and methyl parathion were more stable whereas chlorpyrifos, fenitrothion and malathion were more labile. Lactobacillus brevis 1.0209 showed the strongest acceleration on OPPs degradation while strain combination could bring about a synergy between the strains of lower ability. Phosphatase production of the strains might be one of the key factors responsible for the enhanced OPPs degradation, as the detected phosphatase activities were positively correlated to the measured degradation rate constants of OPPs (r=0.636-0.970, P<0.05). PMID:24996321

  6. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    SciTech Connect

    Vlasova, Irina I.; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.; Kostevich, Valeria A.; Gusev, Alexandr A.; Gusev, Sergey A.; Melnikova, Viktoriya I.; Lobach, Anatolii S.

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  7. Excretion pathways and ruminal disappearance of glyphosate and its degradation product aminomethylphosphonic acid in dairy cows.

    PubMed

    von Soosten, D; Meyer, U; Hüther, L; Dänicke, S; Lahrssen-Wiederholt, M; Schafft, H; Spolders, M; Breves, G

    2016-07-01

    From 6 balance experiments with total collection of feces and urine, samples were obtained to investigate the excretion pathways of glyphosate (GLY) in lactating dairy cows. Each experiment lasted for 26d. The first 21d served for adaptation to the diet, and during the remaining 5d collection of total feces and urine was conducted. Dry matter intake and milk yield were recorded daily and milk and feed samples were taken during the sampling periods. In 2 of the 6 experiments, at the sampling period for feces and urine, duodenal contents were collected for 5d. Cows were equipped with cannulas at the dorsal sac of the rumen and the proximal duodenum. Duodenal contents were collected every 2h over 5 consecutive days. The daily duodenal dry matter flow was measured by using chromium oxide as a volume marker. All samples (feed, feces, urine, milk and duodenal contents were analyzed for GLY and aminomethylphosphonic acid (AMPA). Overall, across the 6 experiments (n=32) the range of GLY intake was 0.08 to 6.67mg/d. The main proportion (61±11%; ±SD) of consumed GLY was excreted with feces; whereas excretion by urine was 8±3% of GLY intake. Elimination via milk was negligible. The GLY concentrations above the limit of quantification were not detected in any of the milk samples. A potential ruminal degradation of GLY to AMPA was derived from daily duodenal GLY flow. The apparent ruminal disappearance of GLY intake was 36 and 6%. In conclusion, the results of the present study indicate that the gastrointestinal absorption of GLY is of minor importance and fecal excretion represents the major excretion pathway. A degradation of GLY to AMPA by rumen microbes or a possible retention in the body has to be taken into account. PMID:27108173

  8. The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage

    NASA Astrophysics Data System (ADS)

    Ren, Haiyu; Richard, Tom L.; Moore, Kenneth J.

    Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

  9. Validated stability-indicating spectrophotometric methods for the determination of cefixime trihydrate in the presence of its acid and alkali degradation products.

    PubMed

    Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A

    2015-01-01

    Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision. PMID:25857876

  10. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase.

    PubMed Central

    Sampson, P M; Rochester, C L; Freundlich, B; Elias, J A

    1992-01-01

    We characterized the mechanisms by which recombinant (r) tumor necrosis factor (TNF), IFN-gamma, and IL-1, alone and in combination, regulate human lung fibroblast hyaluronic acid (HA) production. Each cytokine stimulated fibroblast HA production. The combination of rTNF and rIFN-gamma resulted in a synergistic increase in the production of high molecular weight HA. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous decrease in HA degradation. In contrast, when rTNF and rIL-1 were combined, an additive increase in low molecular weight HA was noted. This was due to a synergistic increase in hyaluronate synthetase activity and a simultaneous increase in HA degradation. Human lung fibroblasts contained a hyaluronidase that, at pH 3.7, depolymerized high molecular weight HA to 10-40 kD end products of digestion. However, hyaluronidase activity did not correlate with fibroblast HA degradation. Instead, HA degradation correlated with fibroblast-HA binding, which was increased by rIL-1 plus rTNF and decreased by rIFN-gamma plus rTNF. Recombinant IL-1 and rTNF weakly stimulated and rIL-1 and rTNF in combination further augmented the levels of CD44 mRNA in lung fibroblasts. In contrast, rIFN-gamma did not significantly alter the levels of CD44 mRNA in unstimulated or rTNF stimulated cells. These studies demonstrate that rIL-1, rTNF, and rIFN-gamma have complex effects on biosynthesis and degradation which alter the quantity and molecular weight of the HA produced by lung fibroblasts. They also show that fibroblast HA degradation is mediated by a previously unrecognized lysosomal-type hyaluronidase whose function may be regulated by altering fibroblast-HA binding. Lastly, they suggest that the CD44 HA receptor may be involved in this process. Images PMID:1401082

  11. Identification of Major Degradation Products of Ketoconazole

    PubMed Central

    Mhaske, Rajendra A.; Sahasrabudhe, Shirish

    2011-01-01

    Analytical methods were developed for the identification of major degradation products of Ketoconazole, an antifungal agent. The stressed degradation of Ketoconazole drug substance was performed under acid, base, thermal, photo and oxidative stress conditions. The major degradation was observed under acid, base and oxidative stress conditions. The degradation study was performed on Inertsil ODS-3V, length 100 X diameter 4.6 mm, particle size 3 μm column using gradient method. These degradants were identified by LC-MS technique. PMID:22145107

  12. The novel acid degradation products of losartan: Isolation and characterization using Q-TOF, 2D-NMR and FTIR.

    PubMed

    Kumar Pandey, Avadhesh; Rapolu, Ravi; Raju, Ch Krishnam; Sasalamari, Gururaj; Kumar Goud, Sanath; Awasthi, Atul; Navalgund, Sameer G; Surendranath, Koduru V

    2016-02-20

    Forced degradation of losartan potassium in acidic condition resulted into three potential unknown impurities. These unknown degradation products marked as LD-I, LD-II and LD-III were analyzed using a new reverse-phase high performance liquid chromatography (HPLC), eluting at 3.63, 3.73 and 3.91 relative retention times with respect to losartan potassium (LOS) peak. All three were isolated from reaction mass using preparative HPLC and their structures were elucidated using LC-MS/MS, multidimensional NMR and FTIR spectroscopic techniques, as 5(2),11(2)-dibutyl-5(4),11(4)-dichloro-1(1)H,5(1)H,7(1)H,11(1)H-1(5,1),7(1,5)-ditetrazola-5,11(1,5)-diimidazola-2,8(1,2),3,9(1,4)-tetrabenzenacyclododecaphane,(Z)-5(2),11(2)-dibutyl-5(4),11(4)-dichloro-1(1)H,5(1)H,7(2)H,11(1)H-1(5,1),7(2,5)-ditetrazola-5,11(1,5)-diimidazola-2,8(1,2),3,9(1,4)-tetrabenzenacyclododecaphane, and 5(2),11(2)-dibutyl-5(4),11(4)-dichloro-1(2)H,5(1)H,7(2)H,11(1)H-1(5,2),7(2,5)-ditetrazola-5,11(1,5)-diimidazola-2,8(1,2),3,9(1,4)-tetrabenzenacyclododecaphane, respectively. To best of our knowledge, all three degradation products are novel impurities which are not discussed at any form of publication yet. PMID:26704631

  13. Advanced stability indicating chemometric methods for quantitation of amlodipine and atorvastatin in their quinary mixture with acidic degradation products

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2016-02-01

    Two advanced, accurate and precise chemometric methods are developed for the simultaneous determination of amlodipine besylate (AML) and atorvastatin calcium (ATV) in the presence of their acidic degradation products in tablet dosage forms. The first method was Partial Least Squares (PLS-1) and the second was Artificial Neural Networks (ANN). PLS was compared to ANN models with and without variable selection procedure (genetic algorithm (GA)). For proper analysis, a 5-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the interfering species. Fifteen mixtures were used as calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested models. The proposed methods were successfully applied to the analysis of pharmaceutical tablets containing AML and ATV. The methods indicated the ability of the mentioned models to solve the highly overlapped spectra of the quinary mixture, yet using inexpensive and easy to handle instruments like the UV-VIS spectrophotometer.

  14. Acid rain degradation of nylon

    SciTech Connect

    Kyllo, K.E.

    1984-01-01

    Acid rain, precipitation with a pH less than 5.6, is known to damage lakes, vegetation and buildings. Degradation of outdoor textiles by acid rain is strongly suspected but not well documented. This study reports the effects of sunlight, aqueous acid, heat and humidity (acid rain conditions) on spun delustered nylon 6,6 fabric. Untreated nylon and nylon treated with sulfuric acid of pH 2.0, 3.0, and 4.4 were exposed to light in an Atlas Xenon-arc fadeometer at 63/sup 0/C and 65% R.H. for up to 640 AATCC Fading Units. The untreated and acid treated nylon fabrics were also exposed to similar temperature and humidity condition without light. Nylon degradation was determined by changes in breaking strength, elongation, molecular weight, color, amino end group concentration (NH/sub 2/) and /sup 13/C NMR spectra. Physical damage was assessed using SEM.

  15. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    PubMed

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase). PMID:25624137

  16. CHARACTERIZATION OF ARSENOSUGARS AND ASSOCIATED DEGRADATION PRODUCTS FOLLOWING AN AGGRESSIVE ACID/BASE EXTRACTION PROCEDURE

    EPA Science Inventory

    The speciation of arsenic in seafood products is important for the determination of an improved toxicity based relative source (water vs. diet) contribution estimate. The two major sources of arsenic are drinking water and seafood ingestion. Drinking water contains predominatel...

  17. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    PubMed Central

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies. PMID:24424316

  18. Structural characterization of the degradation products of a minor natural sweet diterpene glycoside Rebaudioside M under acidic conditions.

    PubMed

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies. PMID:24424316

  19. Characterization of degradation products of ivabradine by LC-HR-MS/MS: a typical case of exhibition of different degradation behaviour in HCl and H2SO4 acid hydrolysis.

    PubMed

    Patel, Prinesh N; Borkar, Roshan M; Kalariya, Pradipbhai D; Gangwal, Rahul P; Sangamwar, Abhay T; Samanthula, Gananadhamu; Ragampeta, Srinivas

    2015-02-01

    A validated stability-indicating HPLC method was established, and comprehensive stress testing of ivabradine, a cardiotonic drug, was carried out as per ICH guidelines. Ivabradine was subjected to acidic, basic and neutral hydrolysis, oxidation, photolysis and thermal stress conditions, and the resulting degradation products were investigated by LC-PDA and LC-HR-MS/MS. The drug was found to degrade in acid and base hydrolysis. An efficient and selective stability assay method was developed on Phenomenex Luna C18 (250 × 4.6 mm, 5.0 µm) column using ammonium formate (10 mM, pH 3.0) and acetonitrile as mobile phase at 30 °C in gradient elution mode. The flow rate was 0.7 ml/min and detection wavelength was 286 nm. A total of five degradation products (I-1 to I-5) were identified and characterized by LC-HR-MS/MS in combination with accurate mass measurements. The drug exhibited different degradation behaviour in HCl and H2SO4 hydrolysis conditions. It is a unique example where two of the five degradation products in HCl hydrolysis were absent in H2SO4 acid hydrolysis. The present study provides guidance to revise the stress test for the determination of inherent stability of drugs containing lactam moiety under hydrolytic conditions. Most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation pattern of the drug and its degradation products. In silico toxicity revealed that the degradation products (I-2 to I-5) were found to be severe irritants in case of ocular irritancy. The analytical assay method was validated with respect to specificity, linearity, range, precision, accuracy and robustness. PMID:25800016

  20. [Microbial degradation of 3-phenoxybenzoic acid--A review].

    PubMed

    Deng, Weiqin; Liu, Shuliang; Yao, Kai

    2015-09-01

    3-phenoxybenzoic acid (3-PBA) with estrogen toxicity is one of the intermediate products of most pyrethroid pesticides. 3-PBA is difficult to degrade in the natural environment, and threatens food safety and human health. Microbial degradation of pyrethroids and their intermediate product (3-PBA) has become a hot topic in recent years. Here, we reviewed microbial species, degrading enzymes and degradation genes, degradation pathways of 3-PBA degrading and the application of 3-PBA degradation strains. This article provides references for the study of 3-PBA degradation by microorganisms. PMID:26762020

  1. Advanced stability indicating chemometric methods for quantitation of amlodipine and atorvastatin in their quinary mixture with acidic degradation products.

    PubMed

    Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2016-02-01

    Two advanced, accurate and precise chemometric methods are developed for the simultaneous determination of amlodipine besylate (AML) and atorvastatin calcium (ATV) in the presence of their acidic degradation products in tablet dosage forms. The first method was Partial Least Squares (PLS-1) and the second was Artificial Neural Networks (ANN). PLS was compared to ANN models with and without variable selection procedure (genetic algorithm (GA)). For proper analysis, a 5-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the interfering species. Fifteen mixtures were used as calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested models. The proposed methods were successfully applied to the analysis of pharmaceutical tablets containing AML and ATV. The methods indicated the ability of the mentioned models to solve the highly overlapped spectra of the quinary mixture, yet using inexpensive and easy to handle instruments like the UV-VIS spectrophotometer. PMID:26513228

  2. Nanobiocatalytic Degradation of Acid Orange 7

    NASA Astrophysics Data System (ADS)

    Hastings, Jason

    The catalytic properties of various metal nanoparticles have led to their use in environmental remediation applications. However, these remediation strategies are limited by their ability to deliver catalytic nanoparticles and a suitable electron donor to large treatment zones. Clostridium pasteurianum BC1 cells, loaded with bio-Pd nanoparticles, were used to effectively catalyze the reductive degradation and removal of Acid Orange 7 (AO7), a model azo compound. Hydrogen produced fermentatively by the C. pasteurianum BC1 acted as the electron donor for the process. Pd-free bacterial cultures or control experiments conducted with heat-killed cells showed limited reduction of AO7. Experiments also showed that the in situ biological production of H2 by C. pasteurianum BC1 was essential for the degradation of AO7, which suggests a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of AO7. The differences in initial degradation rate for experiments conducted using catalyst concentrations of 1ppm Pd and 5ppm Pd and an azo dye concentration of 100ppm AO7 was 0.39 /hr and 1.94 /hr respectively, demonstrating the importance of higher concentrations of active Pd(0). The degradation of AO7 was quick as demonstrated by complete reductive degradation of 50ppm AO7 in 2 hours in experiments conducted using a catalyst concentration of 5ppm Pd. Dye degradation products were analyzed via Gas Chromatograph-Mass Spectrometer (GCMS), High Performance Liquid Chromatography (HPLC), UltraViolet-Visible spectrophotometer (UV-Vis) and Matrix-Assisted Laser Desorption/Ionization (MALDI) spectrometry. The presence of 1-amino 2-naphthol, one of the hypothesized degradation products, was confirmed using mass spectrometry.

  3. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    PubMed

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated. PMID:26246277

  4. Anaerobic degradation of linoleic oleic acids

    SciTech Connect

    Lalman, J.A.; Bagley, D.M.

    1999-07-01

    The anaerobic degradation of linoleic (C18:2) and oleic (C18:1) acids was examined in batch experiments. By-product distribution depended on both the type of long chain fatty acid added and initial substrate concentration. Major by-products were palmitic (C16), myristic (C14) and acetic acids. Trace quantities of palmitoleic (C16:1) and lauric (C12) acids were observed together with larger amounts of palmitic (C16), myristic (C14) and hexanoic (C6) acids in cultures incubated with 100 mg/L linoleic (C18:2) acid. Bio-hydrogenation of C18 fatty acids was not necessary for the {beta}-oxidation mechanism to proceed. Aceticlastic methanogenic inhibition was observed in cultures inoculated with greater than 50 mg/L linoleic (C18:2) acid. In cultures incubated with greater than 50 mg/L oleic (C18:1) acid, aceticlastic methanogenic inhibition was observed for a short time period.

  5. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate/n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell; Amanda J. Casella; Dean R. Peterman; Samuel A. Bryan

    2013-12-01

    In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  6. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate /n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.; Casella, Amanda J.; Peterman, Dean; Bryan, Samuel A.

    2013-11-05

    In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  7. Formic and Acetic Acids in Degradation Products of Plant Volatiles Elicit Olfactory and Behavioral Responses from an Insect Vector.

    PubMed

    George, Justin; Robbins, Paul S; Alessandro, Rocco T; Stelinski, Lukasz L; Lapointe, Stephen L

    2016-05-01

    Volatile phytochemicals play a role in orientation by phytophagous insects. We studied antennal and behavioral responses of the Asian citrus psyllid, Diaphorina citri, vector of the citrus greening disease pathogen. Little or no response to citrus leaf volatiles was detected by electroantennography. Glass cartridges prepared with β-ocimene or citral produced no response initially but became stimulatory after several days. Both compounds degraded completely in air to a number of smaller molecules. Two peaks elicited large antennal responses and were identified as acetic and formic acids. Probing by D. citri of a wax substrate containing odorants was significantly increased by a blend of formic and acetic acids compared with either compound separately or blends containing β-ocimene and/or citral. Response surface modeling based on a 4-component mixture design and a 2-component mixture-amount design predicted an optimal probing response on wax substrate containing a blend of formic and acetic acids. Our study suggests that formic and acetic acids play a role in host selection by D. citri and perhaps by phytophagous insects in general even when parent compounds from which they are derived are not active. These results have implications for the investigation of arthropod olfaction and may lead to elaboration of attract-and-kill formulations to reduce nontarget effects of chemical control in agriculture. PMID:26857741

  8. Production of polyhydroxyhexadecanoic acid by using waste biomass of Sphingobacterium sp. ATM generated after degradation of textile dye Direct Red 5B.

    PubMed

    Tamboli, Dhawal P; Kagalkar, Anuradha N; Jadhav, Mital U; Jadhav, Jyoti P; Govindwar, Sanjay P

    2010-04-01

    The degradation of textile effluent using microorganisms has been studied extensively, but disposal of generated biomass after dye degradation is a serious problem. The isolated Sphingobacterium sp. ATM was found to decolorize dye Direct Red 5B (DR5B) and simultaneously it produced polyhydroxyhexadecanoic acid (PHD). The organism decolorized DR5B at 500mgl(-1) concentration within 24h of dye addition and gave optimum production of PHD. The medium contains carbon source as a molasses which was found to be more significant within all carbon sources used. The Nuclear Magnetic Resonance spectroscopy (NMR), Fourier Transform Infrared spectroscopy (FTIR) and Gas Chromatography-Mass Spectroscopy (GC-MS) characterization of polyhydroxyalkanoates obtained revealed the compound as a polyhydroxyhexadecanoic acid. The activity of PHA synthase was found more at 24h after dye addition. The enzymes responsible for dye degradation include veratrol oxidase, laccase, DCIP (2,6-dichlorophenol-indophenol) reductase, riboflavin reductase and azo reductase was found to be induced during decolorization process. The FTIR analysis of samples before and after decolorization of dye confirmed the biotransformation of DR5B. The GC-MS analysis of product obtained led to the identification of two metabolites after biotransformation of dye as p-amino benzenesulfonic acid and naphthalene-1-ol. PMID:20031399

  9. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.

    PubMed

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ. PMID:27324649

  10. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    NASA Astrophysics Data System (ADS)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  11. Aerobic Microbial Degradation of Glucoisosaccharinic Acid

    PubMed Central

    Strand, S. E.; Dykes, J.; Chiang, V.

    1984-01-01

    α-Glucoisosaccharinic acid (GISA), a major by-product of kraft paper manufacture, was synthesized from lactose and used as the carbon source for microbial media. Ten strains of aerobic bacteria capable of growth on GISA were isolated from kraft pulp mill environments. The highest growth yields were obtained with Ancylobacter spp. at pH 7.2 to 9.5. GISA was completely degraded by cultures of an Ancylobacter isolate. Ancylobacter cell suspensions consumed oxygen and produced carbon dioxide in response to GISA addition. A total of 22 laboratory strains of bacteria were tested, and none was capable of growth on GISA. GISA-degrading isolates were not found in forest soils. Images PMID:16346467

  12. Analytical method for the quantitative determination of cyanuric acid as the degradation product of sodium dichloroisocyanurate in urine by liquid chromatography mass spectrometry.

    PubMed

    Patel, Katan; Jones, Kate

    2007-06-15

    A simple and selective analytical method for the quantitative determination of cyanuric acid, the degradation product of sodium dichloroisocyanurate (NaDCC), in human urine is reported herein. The sample preparation involved the use of diatomaceous earth extraction columns. Quantification was achieved by liquid chromatography mass spectrometry using negative ion electrospray with a cyano (CN) column. Between day relative standard deviation less than 10% (n=6) was obtained at the 5 mg L(-1) level. The assay was linear over the investigated range 0-20 mg L(-1) and the limit of detection (LOD) was confirmed to be 0.1 mg L(-1). The method was applied to monitoring levels of cyanuric acid in healthcare workers using disinfectants products containing NaDCC. PMID:17409034

  13. Glucocorticoid control of rat growth hormone gene expression: Effect on cytoplasmic messenger ribonucleic acid production and degradation

    SciTech Connect

    Gertz, B.J.; Gardner, D.G.; Baxter, J.D. )

    1987-12-01

    The effect of the glucocorticoid dexamethasone on the production and degradation of rat GH (rGH) cytoplasmic mRNA was studied in cultured rat pituitary tumor (GC) cells. The incorporation of (3H)uridine into both rGH cytoplasmic mRNA and the pyrimidine nucleotide precursor pool was determined in hormone-treated and control cells. From these measurements glucocorticoid effects on absolute production rates of rGH cytoplasmic mRNA were determined and compared to effects on rGH mRNA accumulation. Rat GH mRNA half-life was then calculated based on a first-order decay model. Rat GH mRNA half-life was also directly assayed by: (1) pulse-chase studies and (2) measuring the kinetics of decay of rGH mRNA in cells after transfer from serum-containing to hormone-deficient media. From these independent analyses rGH mRNA half-life estimates ranged from 28-55 h in different experiments. Within individual experiments there was little variability of rGH mRNA decay rates; glucocorticoids were found not to alter the stability of rGH cytoplasmic mRNA. Glucocorticoid induction of rGH cytoplasmic mRNA accumulation was accounted for solely on the basis of increased mRNA production.

  14. Stability-indicating methods for the analysis of ciprofloxacin in the presence of its acid induced degradation product: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-04-01

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of its acidic degradation product. The methods under study are ratio derivative, ratio difference, mean centering and dual wavelength. All the methods were validated according to the ICH guidelines and the obtained accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can be used for the routine analysis of ciprofloxacin in quality-control laboratories.

  15. Polyelectrolyte functionalized multi-walled carbon nanotubes as strong anion-exchange material for the extraction of acidic degradation products of nerve agents.

    PubMed

    Kanaujia, Pankaj K; Pardasani, Deepak; Purohit, Ajay K; Tak, Vijay; Dubey, D K

    2011-12-30

    Extraction, enrichment and gas chromatography mass spectrometric analysis of degradation products of nerve agents from water is of significant importance for verification of Chemical Weapons Convention (CWC) and gathering forensic evidence of use of nerve agents. Multi-walled carbon nanotubes (MWCNTs) were non-covalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) to afford the cationic functionalized nano-tubes, which were used as solid-phase anionic-exchanger sorbents to extract the acidic degradation products of nerve agents from water. Extraction efficiencies of MWCNTs-PDDA were compared with those of mixed mode anion-exchange (HLB) and silica based strong anion-exchange (Si-SAX) cartridges. Optimized extraction parameters included MWCNTs-PDDA 12 mg, washing solvent 5 mL water and eluting solvent 3 mL of 0.1M aqueous HCl followed by 3 mL methanol. At 1 ng mL(-1) spiking concentration of mono- and di-basic phosphonic acids, MWCNTs-PDDA exhibited higher extraction efficiencies in comparison to Si-SAX and HLB. The limits of detection were achieved down to 0.05 and 0.11 ng mL(-1) in selected ion and full scan monitoring mode respectively; and limits of quantification in selected ion monitoring mode were achieved down to 0.21 ng mL(-1). PMID:22119612

  16. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents.

    PubMed

    Kita, Kayoko; Suzuki, Toshihide; Ochi, Takafumi

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments. PMID:17321558

  17. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    SciTech Connect

    Kita, Kayoko . E-mail: kkayoko@pharm.teikyo-u.ac.jp; Suzuki, Toshihide; Ochi, Takafumi

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.

  18. Degradation products of benzyldibutylamine as extracton agent

    NASA Astrophysics Data System (ADS)

    Mirchi, R.; Jedinakova, V.

    The composition of the degradation products of benzyldibutylamine (BDBuN) and benzene radiolysis in the presence of nitric acid and lanthanide nitrates was identified by means of mass, NMR and infrared spectra, elementary analysis and gas liquid chromatography. The change in the extraction capacity of this agent and its solutions in aromatic hydrocarbon solvents in the extraction of Eu/III/ and Am/III/ was investigated in dependence on the absorbed dose of the ionising radiation.

  19. Vitamin C Degradation Products and Pathways in the Human Lens*

    PubMed Central

    Nemet, Ina; Monnier, Vincent M.

    2011-01-01

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p < 0.05). In water-insoluble proteins, only 3-deoxythreosone and threosone were detected, whereby the level of 3-deoxythreosone was ∼20 times higher than the level of threosone. The identification of 3-deoxythreosone as the major degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo. PMID:21885436

  20. Screening of nerve agent degradation products by MALDI-TOFMS.

    PubMed

    Shu, You-Ren; Su, An-Kai; Liu, Ju-Tsung; Lin, Cheng-Huang

    2006-07-01

    A novel method for the rapid screening of degradation products derived from nerve agents by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is described. Five standard products were selected as model compounds, including isopropyl methylphosphonic acid (IMPA), pinacolyl methylphosphonic acid (PMPA), ethyl methylphosphonic acid (EMPA), isobutyl methylphosphonic acid (i-BuMPA), and cyclohexyl methylphosphonic acid (CHMPA), which are degradation products of Sarin (GB), Soman (GD), VX, Russian VX (RVX), and GF, respectively. For comparison, CHCA (alpha-cyano-4-hydroxycinnamic acid) and DCCA (7-(diethylamino)coumarin-3-carboxylic acid) were used as the MALDI-matrix when the third harmonic generation (355 nm) of a Nd:YAG laser and a hydrogen Raman laser (multifrequency laser) were used, respectively. The method permitted the five nerve agent degradation products to be screened rapidly and successfully, suggesting that it has the potential for use as a routine monitoring tool. PMID:16808484

  1. Solvent degradation products in nuclear fuel processing solvents

    SciTech Connect

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  2. Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation.

    PubMed

    Tamboli, Dhawal P; Kurade, Mayur B; Waghmode, Tatoba R; Joshi, Swati M; Govindwar, Sanjay P

    2010-10-15

    The degradation of textile effluent using microorganisms has been studied extensively, but disposal of generated biomass after dye degradation is a serious problem. Among all tested microorganisms, isolated Sphingobacterium sp. ATM effectively decolorized (100%) the dye Direct Blue GLL (DBGLL) and simultaneously it produced (64%) polyhydroxyhexadecanoic acid (PHD). The organism decolorized DBGLL at 300 mg l(-1) concentration within 24 h of dye addition and gave optimum production of PHD. The organism also decolorized three combinations of mixture of dyes. The organism decolorized textile effluent too when it was combined with medium. The organism produced a maximum of 66% and 61% PHD while decolorizing mixture of dyes and textile effluent respectively. Molasses was found to be more significant within all carbon sources used. The activity of polyhydroxyalkanoate (PHA) synthase was found to be higher after 24 h of addition of DBGLL. The enzymes responsible for dye degradation, viz. veratryl alcohol oxidase, laccase, DCIP (2,6-dichlorophenol-indophenol) reductase, riboflavin reductase, and azo reductase were found to be induced during decolorization process of DBGLL and mixture of dyes. There was significant reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD). FTIR analysis of samples before and after decolorization of dye confirmed the biotransformation of DBGLL. PMID:20591565

  3. Structural Insights into 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS)-Mediated Degradation of Reactive Blue 21 by Engineered Cyathus bulleri Laccase and Characterization of Degradation Products

    PubMed Central

    Kenzom, T.; Srivastava, P.

    2014-01-01

    Advanced oxidation processes are currently used for the treatment of different reactive dyes which involve use of toxic catalysts. Peroxidases are reported to be effective on such dyes and require hydrogen peroxide and/or metal ions. Cyathus bulleri laccase, expressed in Pichia pastoris, catalyzes efficient degradation (78 to 85%) of reactive azo dyes (reactive black 5, reactive orange 16, and reactive red 198) in the presence of synthetic mediator ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. This laccase was engineered to degrade effectively reactive blue 21 (RB21), a phthalocyanine dye reported to be decolorized only by peroxidases. The 816-bp segment (toward the C terminus) of the lcc gene was subjected to random mutagenesis and enzyme variants (Lcc35, Lcc61, and Lcc62) were selected based on increased ABTS oxidizing ability. Around 78 to 95% decolorization of RB21 was observed with the ABTS-supplemented Lcc variants in 30 min. Analysis of the degradation products by mass spectrometry indicated the formation of several low-molecular-weight compounds. Mapping the mutations on the modeled structure implicated residues both near and far from the T1 Cu site that affected the catalytic efficiency of the mutant enzymes on ABTS and, in turn, the rate of oxidation of RB21. Several inactive clones were also mapped. The importance of geometry as well as electronic changes on the reactivity of laccases was indicated. PMID:25261507

  4. Influence of Root Exudates on the Bacterial Degradation of Chlorobenzoic Acids

    PubMed Central

    Lovecká, Petra; Dražková, Milena; Macková, Martina; Macek, Tomas

    2013-01-01

    Degradation of chlorobenzoic acids (e.g., products of microbial degradation of PCB) by strains of microorganisms isolated from PCB contaminated soils was assessed. From seven bulk-soil isolates two strains unique in ability to degrade a wider range of chlorobenzoic acids than others were selected, individually and even in a complex mixture of 11 different chlorobenzoic acids. Such a feature is lacking in most tested degraders. To investigate the influence of vegetation on chlorobenzoic acids degraders, root exudates of two plant species known for supporting PCB degradation in soil were tested. While with individual chlorobenzoic acids the presence of plant exudates leads to a decrease of degradation yield, in case of a mixture of chlorobenzoic acids either a change in bacterial degradation specificity, associated with 3- and 4-chlorobenzoic acid, or an extension of the spectrum of degraded chlorobenzoic acids was observed. PMID:24222753

  5. Development and validation of a predictive model for the influences of selected product and process variables on ascorbic acid degradation in simulated fruit juice.

    PubMed

    Gabriel, Alonzo A; Cayabyab, Jochelle Elysse C; Tan, Athalie Kaye L; Corook, Mark Lester F; Ables, Errol John O; Tiangson-Bayaga, Cecile Leah P

    2015-06-15

    A predictive response surface model for the influences of product (soluble solids and titratable acidity) and process (temperature and heating time) parameters on the degradation of ascorbic acid (AA) in heated simulated fruit juices (SFJs) was established. Physicochemical property ranges of freshly squeezed and processed juices, and a previously established decimal reduction times of Escherichiacoli O157:H7 at different heating temperatures were used in establishing a Central Composite Design of Experiment that determined the combinations of product and process variable used in the model building. Only the individual linear effects of temperature and heating time significantly (P<0.05) affected AA reduction (%AAr). Validating systems either over- or underestimated actual %AAr with bias factors 0.80-1.20. However, all validating systems still resulted in acceptable predictive efficacy, with accuracy factor 1.00-1.26. The model may be useful in establishing unique process schedules for specific products, for the simultaneous control and improvement of food safety and quality. PMID:25660889

  6. Photolytic degradation of chlorophenols from industrial wastewaters by organic oxidants peroxy acetic acid, para nitro benzoic acid and methyl ethyl ketone peroxide: identification of reaction products.

    PubMed

    Sharma, Swati; Mukhopadhyay, Mausumi; Murthy, Zagabathuni Venkata Panchakshari

    2014-01-01

    In this investigation, chlorophenol (CP) containing industrial wastewater was remediated by ultraviolet irradiation in conjunction with organic oxidants, peroxy acetic acid (PAA); para nitro benzoic acid (PNBA); and methyl ethyl ketone peroxide (MEKP). CP mineralization was studied with regard to chemical oxygen demand (COD) and chloride ion release under identical test conditions. COD depletion to the extent of 81% by PAA, 66% by PNBA, and 67% by MEKP was noted along with an upwardly mobile trend of chloride ion release upon irradiation of samples at 254 nm. A 90-99% decrease in CP concentration (as per high pressure liquid chromatography (HPLC) analysis) was achieved with an additional 15.0 ml of organic oxidant in all cases. Gas chromatography high resolution mass spectroscopy (GC-HRMS) results also indicated the formation of such reaction products as are free from chlorine substitutions. This treatment also leads to total decolorization of the collected samples. PMID:24647192

  7. Concentrations of Glyphosate, Its Degradation Product, Aminomethylphosphonic Acid, and Glufosinate in Ground- and Surface-Water, Rainfall, and Soil Samples Collected in the United States, 2001-06

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Gilliom, Robert J.; Meyer, Michael T.

    2007-01-01

    The U.S. Geological Survey conducted a number of studies from 2001 through 2006 to investigate and document the occurrence, fate, and transport of glyphosate, its degradation product, aminomethylphosphonic acid (AMPA), and glufosinate in 2,135 ground- and surface-water samples, 14 rainfall samples, and 193 soil samples. Analytical methods were developed to detect and measure glyphosate, AMPA, and glufosinate in water, rainfall, and soil. Results show that AMPA was detected more frequently and occurred at similar or higher concentrations than the parent compound, glyphosate, whereas glufosinate was seldom found in the environment. Glyphosate and AMPA were detected more frequently in surface water than in ground water. Trace levels of glyphosate and AMPA may persist in the soil from year to year. The methods and data described in this report are useful to researchers and regulators interested in the occurrence, fate, and transport of glyphosate and AMPA in the environment.

  8. Ultra-high-performance liquid chromatography/tandem high-resolution mass spectrometry analysis of sixteen red beverages containing carminic acid: identification of degradation products by using principal component analysis/discriminant analysis.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Mastroianni, Rita; Marengo, Emilio

    2015-01-15

    The study investigates the sunlight photodegradation process of carminic acid, a natural red colourant used in beverages. For this purpose, both carminic acid aqueous standard solutions and sixteen different commercial beverages, ten containing carminic acid and six containing E120 dye, were subjected to photoirradiation. The results show different patterns of degradation, not only between the standard solutions and the beverages, but also from beverage to beverage. Due to the different beverage recipes, unpredictable reactions take place between the dye and the other ingredients. To identify the dye degradation products in a very complex scenario, a methodology was used, based on the combined use of principal component analysis with discriminant analysis and ultra-high-performance liquid chromatography coupled with tandem high resolution mass spectrometry. The methodology is unaffected by beverage composition and allows the degradation products of carminic acid dye to be identified for each beverage. PMID:25149011

  9. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway

    PubMed Central

    2014-01-01

    Background Due to an increasing demand of transportation fuels, a lower availability of cheap crude oil and a lack of sustainability of fossil fuels, a gradual shift from petroleum based fuels towards alternative and renewable fuel resources will be required in the near future. Fatty acid ethyl esters (FAEEs) have properties similar to current crude diesel and could therefore form an important contribution to the development of sustainable transportation fuels in future. It is important to develop novel cell factories for efficient production of FAEEs and their precursors. Results Here, a Saccharomyces cerevisiae cell factory expressing a heterologous wax ester synthase (ws2) from Marinobacter hydrocarbonoclasticus was used to produce FAEEs from ethanol and acyl-coenzyme A (acyl-CoA). The production of acyl-CoA requires large amounts of NADPH and acetyl-CoA. Therefore, two metabolic engineering strategies for improved provision of NADPH and acetyl-CoA were evaluated. First, the ethanol degradation pathway was employed to re-channel carbon flow towards the synthesis of acetyl-CoA. Therefore, ADH2 and ALD6 encoding, respectively, alcohol dehydrogenase and acetaldehyde dehydrogenase were overexpressed together with the heterologous gene acsSEL641P encoding acetyl-CoA synthetase. The co-overexpression of ADH2, ALD6 and acsSEL641P with ws2 resulted in 408 ± 270 μg FAEE gCDW−1, a 3-fold improvement. Secondly, for the expression of the PHK pathway two genes, xpkA and ack, both descending from Aspergillus nidulans, were co-expressed together with ws2 to catalyze, respectively, the conversion of xylulose-5-phosphate to acetyl phosphate and glyceraldehyde-3-phosphate and acetyl phosphate to acetate. Alternatively, ack was substituted with pta from Bacillus subtilis, encoding phosphotransacetylase for the conversion of acetyl phosphate to acetyl-CoA. Both PHK pathways were additionally expressed in a strain with multiple chromosomally integrated ws2 gene, which

  10. Degradation rates of glycerol polyesters at acidic and basic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  11. Monosaccharide compositions of sulfated chitosans obtained by analysis of nitrous acid degraded and pyrazolone-labeled products.

    PubMed

    Han, Zhangrun; Zeng, Yangyang; Zhang, Meng; Zhang, Yiran; Zhang, Lijuan

    2016-01-20

    Chemically sulfated chitosans are important biomaterials. However, a reliable analytical method for quality control over such compounds is still lacking. In this study, we prepared four different kinds of selectively sulfated chitosans and developed a novel method to analyze their monosaccharide compositions by HPLC. In this method, nitrous acid was used to generate 2, 5-hydro mannose (M), 3-O-sulfated M (M3), 6-O-sulfated M (M6), and 3, 6-O-disulfated M (M9) from the sulfated chitosans. PMP, that is 1-phenyl-3-methyl-5-pyrazolone with a UV absorbance at 245 nm, was used to label all the Ms quantitatively. The monosaccharide compositions for each sulfated chitosan were obtained by C18 HPLC separation and online UV detection of all PMP-labeled Ms. The identities of all Ms were confirmed by MS analysis with the help of standard Ms generated from a heparin pentasaccharide and chitosan. The overall results indicated that the newly developed method had advantages over (13)C NMR in defining the monosaccharide compositions of sulfated chitosans and was useful for quality control purpose. PMID:26572367

  12. Water and UV degradable lactic acid polymers

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.

    1990-06-26

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylane glycols (PVB 6/22/90), propylene and and polypropylene (PVB 6/22/90) glycols, P-dioxanone, 1, 5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  13. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  14. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  15. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  16. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  17. Production of Insecticide Degradates in Juices: Implications for Risk Assessment.

    PubMed

    Radford, Samantha A; Panuwet, Parinya; Hunter, Ronald E; Barr, Dana Boyd; Ryan, P Barry

    2016-06-01

    This study was designed to observe the production of degradates of two organophosphorus insecticides and one pyrethroid insecticide in beverages. Purified water, white grape juice, apple juice, and red grape juice were fortified with 500 ng/g malathion, chlorpyrifos, and permethrin, and aliquots were extracted for malathion dicarboxylic acid (MDA), 3,5,6-trichloro-2-pyridinol (TCPy), and 3-phenoxybenzoic acid (3-PBA) several times over a 15 day period of being stored in the dark at 2.5 °C. Overall, first-order kinetics were observed for production of MDA, and statistically significant production of TCPy was also observed. Statistically significant production of 3-phenoxybenzoic acid was not observed. Results indicate that insecticides degrade in food and beverages, and this degradation may lead to preexisting insecticide metabolites in the beverages. Therefore, it is suggested that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk. PMID:27213611

  18. Degradation of CYANEX 301 in Contact with Nitric Acid Media

    SciTech Connect

    Philippe Marc; Radu Custelcean; Gary S. Groenewold; John R. Klaehn; Dean R. Peterman; Laetitia H. Delmau

    2012-10-01

    The nature of the degradation product obtained upon contacting CYANEX 301 (bis(2,4,4-trimethylpentyl)dithiophosphinic acid) with nitric acid has been elucidated and found to be a disulfide derivative. The first step to the degradation of CYANEX 301 in toluene has been studied using 31P{1H} NMR after being contacted with nitric acid media. The spectrum of the degradation product exhibits a complex multiplet around dP = 80 ppm. A succession of purifications of CYANEX 301 has resulted in single crystals of the acidic form and the corresponding ammonium salt. Unlike the original CYANEX 301, which consists of a complex diastereomeric mixture displaying all possible combinations of chiral orientations at the 2-methyl positions, the purified crystals were shown by single-crystal X-ray diffraction to be racemates, containing 50:50 mixtures of the [R;R] and [S;S] diastereomers. The comparison between the 31P {1H} NMR spectra of the degradation products resulting from the diastereomerically pure CYANEX 301 and the original diastereomeric mixture has elucidated the influence of the isomeric composition on the multiplicity of the 31P {1H} NMR peak. These NMR data indicate the initial degradation leads to a disulfide-bridged condensation product displaying multiple resonances due to phosphorus–phosphorus coupling, which is caused by the inequivalence of the two P atoms as a result of their different chirality. A total of nine different NMR resonances, six of which display phosphorus–phosphorus coupling, could be assigned, and the identity of the peaks corresponding to phosphorus atoms coupled to each other was confirmed by 31P {1H} homodecoupled NMR analysis.

  19. Microbial degradation of usnic acid in the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Barboza, Perry S.; Green, Thomas K.; Folkow, Lars P.; Blix, Arnoldus Schytte; Mathiesen, Svein D.

    2010-03-01

    Reindeer ( Rangifer tarandus) eat and utilize lichens as an important source of energy and nutrients in winter. Lichens synthesize and accumulate a wide variety of phenolic secondary compounds, such as usnic acid, as a defense against herbivores and to protect against damage by UV-light in solar radiation. We have examined where and to what extent these phenolic compounds are degraded in the digestive tract of the reindeer, with particular focus on usnic acid. Three male reindeer were given ad libitum access to a control diet containing no usnic acid for three weeks and then fed lichens ad libitum (primarily Cladonia stellaris) containing 9.1 mg/g DM usnic acid for 4 weeks. Usnic acid intake in reindeer on the lichen diet was 91-117 mg/kg BM/day. In spite of this, no trace of usnic acid or conjugates of usnic acid was found either in fresh rumen fluid, urine, or feces. This suggests that usnic acid is rapidly degraded by rumen microbes, and that it consequently is not absorbed by the animal. This apparent ability to detoxify lichen phenolic compounds may gain increased importance with future enhanced UV-B radiation expected to cause increased protective usnic acid/phenol production in lichens.

  20. Poly(lactic acid) degradable plastics, coatings, and binders

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-05-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids` being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  1. Poly(lactic acid) degradable plastics, coatings, and binders

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-01-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids' being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  2. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  3. Benzoic acid degradation of polyacrylonitrile fibers

    NASA Technical Reports Server (NTRS)

    Varma, D. S.; Needles, H. L.; Cagliostro, D. E.

    1981-01-01

    The reactions of polyacrylonitrile (PAN) fibers in the presence of benzoic acid have been studied. Polyacrylonitrile fibers oxidize more readily in the presence of benzoic acid than in air at temperatures in the range of 170 C. The product decreased in solubility with extent of reaction. Gel permeation chromatography of the soluble fraction showed change in polydispersity. The insoluble product exhibited differences in weight loss as a function of decomposition temperature compared to PAN fibers. Infrared analyses of the fiber product showed absorption peaks similar to air-oxidized PAN. High-energy photoelectron spectral analysis showed a carbon-rich surface which contained oxygen and nitrogen. An air oxidized sample of fiber contained more oxygen at the surface than a fiber treated first with benzoic acid and then air oxidized.

  4. Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari.

    PubMed

    Xie, Xing-Guang; Dai, Chuan-Chao

    2015-03-01

    Biodegradation of ferulic acid, by an endophytic fungus called Phomopsis liquidambari was investigated in this study. This strain can use ferulic acid as the sole carbon for growth. Both in mineral salt medium and in soil, more than 97% of added ferulic acid was degraded within 48 h. The metabolites were identified and quantified using GC-MS and HPLC-MS. Ferulic acid was first decarboxylated to 4-vinyl guaiacol and then oxidized to vanillin and vanillic acid, followed by demethylation to protocatechuic acid, which was further degraded through the β-ketoadipate pathway. During degradation, ferulic acid decarboxylase, laccase and protocatechuate 3,4-dioxygenase activities and their gene transcription levels were significantly affected by the variation of substrate and product concentrations. Moreover, ferulic acid degradation was determined to some extent by P. liquidambari laccase. This study is the first report of an endophytic fungus that has a great potential for practical application in ferulic acid-contaminated environments. PMID:25514400

  5. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products

    PubMed Central

    Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François

    2015-01-01

    We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274

  6. TiO2 Photocatalytic Degradation of Phenylarsonic Acid

    PubMed Central

    Zheng, Shan; Cai, Yong; O’Shea, Kevin E.

    2010-01-01

    Phenyl substituted arsenic compounds are widely used as feed additives in the poultry industry and have become a serious environmental concern. We have demonstrated that phenylarsonic acid (PA) is readily degraded by TiO2 photocatalysis. Application of the Langmuir–Hinshelwood kinetic model for the initial stages of the TiO2 photocatalysis of PA yields an apparent rate constant (kr) of 2.8 µmol/L·min and the pseudo-equilibrium constant (K) for PA is 34 L/mmol. The pH of the solution influences the adsorption and photocatalytic degradation of PA due to the surface charge of TiO2 photocatalyst and speciation of PA. Phenol, catechol and hydroquinone are observed as the predominant products during the degradation. The roles of reactive oxygen species, •OH, 1O2, O2−• and hVB+ were probed by adding appropriate scavengers to the reaction medium and the results suggest that •OH plays a major role in the degradation of PA. By-products studies indicate the surface of the catalyst plays a key role in the formation of the primary products and the subsequent oxidation pathways leading to the mineralization to inorganic arsenic. TiO2 photocatalysis results in the rapid destruction of PA and may be attractive for the remediation of a variety of organoarsenic compounds. PMID:20473340

  7. Amino Acid Degradation after Meteoritic Impact Simulation

    NASA Technical Reports Server (NTRS)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  8. Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation.

    PubMed

    Criquet, J; Nebout, P; Karpel Vel Leitner, N

    2010-01-01

    The aim of this work was to investigate the generation of sulfate radical for the removal of two carboxylic acids in aqueous solution: acetic and citric acids. From photochemical and radiolytic processes, kinetics of the degradation of these two carboxylic acids was studied as a function of the pH of the solution. It was shown that the maximum of acetic acid degradation occurred at pH 5. Above this pH, competitive reactions with the carbon mineralized inhibit the reaction of with the solute. In the case of citric acid, pH has only a little effect on the kinetic of citric acid degradation. The determination of mineralization yields shows several differences depending on carboxylic acids and pH. The degradation of both carboxylic acids was also studied in the radiolysis process whether with or without persulfate addition. A comparison of the processes of sulfate radical production is presented. PMID:20220244

  9. Perfluorooctanoic Acid Degradation Using UV-Persulfate Process: Modeling of the Degradation and Chlorate Formation.

    PubMed

    Qian, Yajie; Guo, Xin; Zhang, Yalei; Peng, Yue; Sun, Peizhe; Huang, Ching-Hua; Niu, Junfeng; Zhou, Xuefei; Crittenden, John C

    2016-01-19

    In this study, we investigated the destruction and by-product formation of perfluorooctanoic acid (PFOA) using ultraviolet light and persulfate (UV-PS). Additionally, we developed a first-principles kinetic model to simulate both PFOA destruction and by-product and chlorate (ClO3(-)) formation in ultrapure water (UW), surface water (SW), and wastewater (WW). PFOA degradation was significantly suppressed in the presence of chloride and carbonate species and did not occur until all the chloride was converted to ClO3(-) in UW and for low DOC concentrations in SW. The model was able to simulate the PS decay, pH changes, radical concentrations, and ClO3(-) formation for UW and SW. However, our model was unable to simulate PFOA degradation well in WW, possibly from PS activation by NOM, which in turn produced sulfate radicals. PMID:26686982

  10. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC.

    PubMed

    Zhang, Ying; Smuts, Jonathan P; Dodbiba, Edra; Rangarajan, Rekha; Lang, John C; Armstrong, Daniel W

    2012-09-12

    Rosemary, whose major caffeoyl-derived and diterpenoid ingredients are rosmarinic acid, carnosol, and carnosic acid, is an important source of natural antioxidants and is being recognized increasingly as a useful preservative, protectant, and even as a potential medicinal agent. Understanding the stability of these components and their mode of interaction in mixtures is important if they are to be utilized to greatest effect. A study of the degradation of rosmarinic acid, carnosol, carnosic acid, and a mixture of the three was conducted in ethanolic solutions at different temperatures and light exposure. As expected, degradation increased with temperature. Some unique degradation products were formed with exposure to light. Several degradation products were reported for the first time. The degradation products were identified by HPLC/MS/MS, UV, and NMR. The degradation of rosemary extract in fish oil also was investigated, and much slower rates of degradation were observed for carnosic acid. In the mixture of the three antioxidants, carnosic acid serves to maintain levels of carnosol, though it does so at least in part at the cost of its own degradation. PMID:22881034

  11. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    PubMed

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. PMID:27507471

  12. Degradation and Isotope Source Tracking of Glyphosate and Aminomethylphosphonic Acid.

    PubMed

    Li, Hui; Joshi, Sunendra R; Jaisi, Deb P

    2016-01-27

    Glyphosate [N-(phosphonomethyl) glycine], an active ingredient of the herbicide Roundup, and its main metabolite, aminomethylphosphonic acid (AMPA), have been frequently reported to be present in soils and other environments and thus have heightened public concerns on their potential adverse effects. Understanding the fate of these compounds and differentiating them from other naturally occurring compounds require a toolbox of methods that can go beyond conventional methods. Here, we applied individual isotope labeling technique whereby each compound or mineral involved in the glyphosate and AMPA degradation reaction was either synthesized or chosen to have distinct (18)O/(16)O ratios so that the source of incorporated oxygen in the orthophosphate generated and corresponding isotope effect during C-P bond cleavage could be identified. Furthermore, we measured original isotope signatures of a few commercial glyphosate sources to identify their source-specific isotope signatures. Our degradation kinetics results showed that the rate of glyphosate degradation was higher than that of AMPA in all experimental conditions, and both the rate and extent of degradation were lowest under anoxic conditions. Oxygen isotope ratios (δ(18)OP) of orthophosphate generated from glyphosate and AMPA degradation suggested that one external oxygen atom from ambient water, not from dissolved oxygen or mineral, was incorporated into orthophosphate with the other three oxygen atoms inherited from the parent molecule. Interestingly, δ(18)OP values of all commercial glyphosate products studied were found to be the lightest among all orthophosphates known so far. Furthermore, isotope composition was found to be unaffected due to variable degradation kinetics, light/dark, and oxic/anoxic conditions. These results highlight the importance of phosphate oxygen isotope ratios as a nonconventional tool to potentially distinguish glyphosate sources and products from other organophosphorus compounds

  13. Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Loftin, Keith A.; Lee, Edward A.; Hinshaw, Gary H.; Dietze, Julie E.; Scribner, Elisabeth A.

    2009-01-01

    The U.S. Geological Survey method (0-2141-09) presented is approved for the determination of glyphosate, its degradation product aminomethylphosphonic acid (AMPA), and glufosinate in water. It was was validated to demonstrate the method detection levels (MDL), compare isotope dilution to standard addition, and evaluate method and compound stability. The original method USGS analytical method 0-2136-01 was developed using liquid chromatography/mass spectrometry and quantitation by standard addition. Lower method detection levels and increased specificity were achieved in the modified method, 0-2141-09, by using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The use of isotope dilution for glyphosate and AMPA and pseudo isotope dilution of glufosinate in place of standard addition was evaluated. Stable-isotope labeled AMPA and glyphosate were used as the isotope dilution standards. In addition, the stability of glyphosate and AMPA was studied in raw filtered and derivatized water samples. The stable-isotope labeled glyphosate and AMPA standards were added to each water sample and the samples then derivatized with 9-fluorenylmethylchloroformate. After derivatization, samples were concentrated using automated online solid-phase extraction (SPE) followed by elution in-line with the LC mobile phase; the compounds separated and then were analyzed by LC/MS/MS using electrospray ionization in negative-ion mode with multiple-reaction monitoring. The deprotonated derivatized parent molecule and two daughter-ion transition pairs were identified and optimized for glyphosate, AMPA, glufosinate, and the glyphosate and AMPA stable-isotope labeled internal standards. Quantitative comparison between standard addition and isotope dilution was conducted using 473 samples analyzed between April 2004 and June 2006. The mean percent difference and relative standard deviation between the two quantitation methods was 7.6 plus or minus 6.30 (n = 179), AMPA 9.6 plus or minus 8

  14. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  15. [Degradation of oxytetracycline with ozonation in acetic acid solvent].

    PubMed

    Li, Shi-Yin; Li, Xiao-Rong; Zhu, Yi-Ping; Zhu, Jiang-Peng; Wang, Guo-Xiang

    2012-12-01

    Use acetic acid as the media of ozone degradation of oxytetracycline (OTC), and effects of the initial dosing ratio of ozone/OTC, ozone flow, free radical scavenger, metal ions on the removal rate of OTC were investigated respectively. The results showed that acetic acid had a high ozone stability and solubility. OTC had a high removal rate and degradation rate in acetic acid solution. With the increase of OTC dosage, the removal rate of OTC decreased in acetic acid. Removal rate of OTC was increased distinctly when ozone flow increased properly. It was also observed that free radical scavenger had a significantly negative effect on OTC ozonation degradation in acetic acid. Furthermore the main reactions of OTC ozone oxidation were direct oxidation and indirect oxidation in acetic acid. When Fe3+ and Co2+ were existent in acetic acid, the degradation of OTC was inhibited significantly. PMID:23379161

  16. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  17. Photolytic and photocatalytic degradation of 6-chloronicotinic acid.

    PubMed

    Zabar, Romina; Dolenc, Darko; Jerman, Tina; Franko, Mladen; Trebše, Polonca

    2011-10-01

    This work describes for the first time the photolytic and photocatalytic degradation of 6-chloronicotinic acid (6CNA) in double deionised water, which is a degradation product of neonicotinoid insecticides imidacloprid and acetamiprid, and it is known to appear in different environmental matrices. Photolytic experiments were performed with three UVA (ultraviolet A) polychromatic fluorescent lamps with broad maximum at 355 nm, while photocatalytic experiments were performed using immobilised titanium dioxide (TiO₂) on six glass slides in the spinning basket inside a photocatalytic quartz cell under similar irradiation conditions. Photolytic degradation revealed no change in concentration of 6CNA within 120 min of irradiation, while the photocatalytic degradation within 120 min, obeyed first-order kinetics. The observed disappearance rate constant was k=0.011 ± 0.001 min⁻¹ and t½ was 63.1 ± 5.5 min. Mineralisation rate was estimated through total organic carbon (TOC) and measurements revealed no carbon removal in case of photolysis after 120 min of exposure. However in photocatalytic experiments 46 ± 7% mineralisation was achieved within 120 min of irradiation. Nevertheless, the removal of total nitrogen (TN) was not observed across all experiments. Ion chromatographic analyses indicated transformation of chlorine atoms to chloride and increase of nitrate(V) ions only via photocatalytic experiments. Efficiency of selected advanced oxidation process (AOP) was investigated through toxicity assessment with Vibrio fischeri luminescent bacteria and revealed higher adverse effects of treated samples on bacteria following photocatalytic degradation in spite of the fact that higher mineralisation was achieved. New hydroxylated product generated in photocatalytic experiments with TiO₂, was confirmed with liquid chromatography-electro spray ionisation mass spectrometry (LC-ESI-MS/MS) analyses, gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic

  18. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    degradation of catechol to oxalic acid delivers a maximum yield of approximately 60 %, whereas the presence of chloride reduces the formation of oxalic acid to 30 %. Chloride possibly induces further competing reactions of catechol leading to a lower concentration of oxalic acid. Freeze-dried soil samples have been tested for production of oxalic acid, where the rate of organic matter seems to play an important role for the formation. By adding iron (III) and/or hydrogen peroxide oxalic acid yields increase, which demonstrates the reaction of soil organic matter with iron (III) and hydrogen peroxide as expected. Thus the natural abiotic formation of oxalic acid is confirmed. The results of the soil measurements are similar to those obtained with catechol. Therefore, the newly gained insights with model compounds appear to be applicable to soil conditions and these findings increase our understanding of the degradation pathways of soil organic matter. Furthermore an overview of the rates of oxalic acid formation of a variety of soil samples is shown and discussed in the light of different soil parameter.

  19. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.

    PubMed

    Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng

    2016-09-01

    Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus. PMID:27102125

  20. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    SciTech Connect

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.; Utley, B.L.

    1982-12-01

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinic and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.

  1. Simultaneous determination of some dihydroxybenzenesulphonic acid derivatives and their degradation product and main impurity (hydroquinone) by ion-pair liquid chromatography.

    PubMed

    Tolba, M M

    2014-11-01

    A simple and sensitive high-performance liquid chromatography method was developed and validated for the determination of calcium dobesilate (DOB) or ethamsylate (ETM) in the presence of their degradation product, hydroquinone (HQ). The analyses were carried out on Promosil C18 column (4.6 mM × 250 mM, 5 µm particle size) using an ion-pair mobile phase consisting of methanol-1.5 mM tetra-butyl ammonium bromide in 0.06 M phosphate buffer (25 : 75, v/v) at pH 6.0 with fluorescence detection at 286/333 nm. Pindolol was used as an internal standard. The proposed method was found to be rectilinear over the concentration ranges of 0.05-0.5 µg/mL for DOB, 0.1-0.8 µg/mL for ETM and 0.005-0.1 µg/mL for HQ. The method was applied for the determination of the studied drugs in different dosage forms and biological fluids. The results of the proposed method were statistically compared with those obtained by the comparison methods revealing no significance differences in the performance of the methods regarding accuracy and precision. Moreover, applying a time-programmed fluorescence technique was valuable for the detection of trace amounts of HQ as an impurity and allowed purity testing of ETM or DOB within the BP pharmacopeial limit (0.1%). PMID:24327536

  2. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    PubMed

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes. PMID:27052717

  3. Identification of forced degradation products of tamsulosin using liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Namdev, Deepak; Borkar, Roshan M; Raju, B; Kalariya, Pradipbhai D; Rahangdale, Vinodkumar T; Gananadhamu, S; Srinivas, R

    2014-01-01

    A rapid and gradient high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of tamsulosin. Tamsulosin, a selective α1-adrenoceptor antagonist, was subjected to forced degradation studies under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions as per ICH guidelines Q1A (R2). The drug degraded significantly under hydrolytic (base and neutral), thermal, oxidative and photolytic conditions, while it was stable to acid hydrolytic stress conditions. A total of twelve degradation products were formed and the chromatographic separation of the drug and its degradation products were achieved on a GRACE C-18 column (250mm×4.6mm, 5μm). All the degradants have been identified and characterized by LC/ESI-MS/MS and accurate mass measurements. To elucidate the structures of degradation products, fragmentation of the [M+H](+) ions of tamsulosin and its degradation products was studied by using LC-MS/MS experiments combined with accurate mass measurements. The product ions of all the protonated degradation products were compared with the product ions of protonated tamsulosin to assign most probable structures for the observed degradation products. PMID:24083958

  4. Degradation of hop bitter acids by fungi

    SciTech Connect

    Huszcza, Ewa Bartmanska, Agnieszka; Aniol, Miroslaw; Maczka, Wanda; Zolnierczyk, Anna; Wawrzenczyk, Czeslaw

    2008-07-01

    Nine fungal strains related to: Trametes versicolor, Nigrospora oryzae, Inonotus radiatus, Crumenulopsis sororia, Coryneum betulinum, Cryptosporiopsis radicicola, Fusarium equiseti, Rhodotorula glutinis and Candida parapsilosis were tested for their ability to degrade humulones and lupulones. The best results were obtained for T. versicolor culture, in which humulones and lupulones were fully degraded after 4 days of incubation in the dark or after 36 h in the light. The experiments were performed on a commercial hop extract and on sterilized spent hops.

  5. Isolation and Characterization of Thermophilic Bacilli Degrading Cinnamic, 4-Coumaric, and Ferulic Acids

    PubMed Central

    Peng, Xue; Misawa, Norihiko; Harayama, Shigeaki

    2003-01-01

    Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do. PMID:12620824

  6. Identification of degradation products of indigoids by tandem mass spectrometry.

    PubMed

    Witkoś, Katarzyna; Lech, Katarzyna; Jarosz, Maciej

    2015-11-01

    The study concerns identification of photodegradation products of indigotin, indirubin and isoindigo. Experimental methodology consists of degradation of standard solutions of indigoids in a solar box and analysis of samples taken at different aging time by using capillary high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometric and spectrophotometric detectors. Identification of the formed compounds was based on careful interpretation of the electrospray ionization MS/MS spectra. Apart from the well-known degradation products of indigoids: isatin, isatoic anhydride and anthranilic acid, another seven species were also identified, and their proposed structures were confirmed by high-resolution molecular masses measurements; according to the best knowledge of authors, they have not been reported so far. The obtained results formed the basis for postulating mechanism of the process. Moreover, the MRM (Multiple Reaction Monitoring) method was developed for the identification of natural dyes and their degradation products in textiles of historical value. Apart from such colorants as indigotin and flavonoids, also presence of degradation products of indigoids was confirmed. PMID:26505769

  7. Stress degradation studies and stability-indicating TLC-densitometric method of glycyrrhetic acid

    PubMed Central

    2013-01-01

    Background Glycyrrhetic acid, a pentacyclic triterpenoid, possesses a broad range of pharmacological activities and serves as template to synthesize many bioactive drugs. This paper describes a simple, accurate, and sensitive stability-indicating TLC densitometric method for the determination of glycyrrhetic acid and its degradation product as per the ICH guidelines. Results Separation was carried out on TLC aluminium sheet pre-coated with silica gel 60F254 using chloroform, methanol and formic acid (9:0.9:0.1, v/v). Compact spot for glycyrrhetic acid was found at Rf value of 0.42 ± 0.03. Densitometric analysis was carried out in the absorbance mode at λmax 254 nm. Glycyrrhetic acid was found to be stable to the exposure of base, neutral, oxidation, dry heating treatment and wet heating treatment, but showed degradation under acidic and photochemical conditions. Moreover, fragmentation pattern of glycyrrhetic acid was developed by using a positive ion electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QqTOF-MS/MS) hybrid instrument. A photo-degraded product was characterized through comparison of mass spectrometric studies with glycyrrhetic acid. Conclusion The developed stability-indicating TLC-densitometric method can be applied for routine analysis of glycyrrhetic acid in the presence of its degradation products. PMID:23327365

  8. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  9. Critical factors in sonochemical degradation of fumaric acid.

    PubMed

    Wu, Zhilin; Cravotto, Giancarlo; Adrians, Marcus; Ondruschka, Bernd; Li, Weixin

    2015-11-01

    The effects of critical factors such as Henry's Law constant, atmospheric OH rate constant, initial concentration, H2O2, FeSO4 and tert-butanol on the sonochemical degradation of fumaric acid have been investigated. The pseudo first-order rate constant for the sonochemical degradation of 1mM fumaric acid is much lower than those for chloroform and phenol degradation, and is related to solute concentration at the bubble/water interface and reactivity towards hydroxyl radicals. Furthermore, fumaric acid is preferentially oxidized at the lower initial concentration. It is unreactive to H2O2 under agitation at room temperature. However, the degradation rate of fumaric acid increases with the addition of H2O2 under sonication. 0.1 mM of fumaric acid suppresses H2O2 formation thanks to water sonolysis, while degradation behavior is also dramatically affected by the addition of an oxidative catalyst (FeSO4) or radical scavenger (tert-butanol), indicating that the degradation of fumaric acid is caused by hydroxyl radicals generated during the collapse of high-energy cavities. PMID:26186831

  10. Analysis of the proteolytic degradation products of hyaline cartilage proteoglycans.

    PubMed

    Liszt, F; Schnittker-Schulze, K; Stuhlsatz, H W; Greiling, H

    1990-01-01

    The proteolytic degradation products of nasal hyaline cartilage proteoglycans produced by polymorphonuclear leukocyte lysosomal enzymes were investigated. The protein content of the degradation products is 7.0-8.6% corresponding to a peptide chain of 24-28 amino acids and the relative molecular mass of the total fragment is M(r) = 37,600-39,200. On an average, each proteoglycan fragment contains two chondroitin-sulphate chains (M(r) = 22,000-22,400), every fourth fragment contains a keratan sulphate chain (M(r) = 7000-7200) and every seventh to eighth contains an O-glycosidic oligosaccharide. The results of the disaccharide analysis show that the galactosaminoglycan chains contain 76.2-83.6% chondroitin-4-sulphate, 12.9-19.4% chondroitin-6-sulphate, 3.5-3.8% chondroitin and no dermatan sulphate. Since composition and relative molecular mass of the chondroitin sulphate and keratan sulphate chains from the degradation products resemble those from native proteoglycans, it is suggested that the degradation of the proteoglycans occurs by proteinases that attack preferably the chondroitin sulphate region of the core protein. PMID:1726643

  11. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms.

    PubMed

    Li, Si; Hu, Jiangyong

    2016-11-15

    The widespread occurrence of tetracycline (TC) in the aquatic environment poses a potential risk to aquatic ecosystem and human health. In this study, elimination of TC by photolysis and TiO2 photocatalysis were investigated by using mercury-free UVA-LED as an alternative light source. Particular emphasis was given to the effect of humic acid (HA) on the reaction kinetics and mechanisms of TC removal. Photolytic degradation of TC was slightly enhanced by HA due to its photosensitization effect, as evidenced by the increased steady-state concentrations of OH. The most abundant transformation product of TC, which was formed by the attack of OH radical, was enhanced during photolytic degradation. During photocatalytic experiments, HA dramatically inhibited TC loss due to the surface deactivation of TiO2 and OH quenching. The steady-state concentration of OH was dramatically decreased in the presence of HA. Identification of transformation products showed that HA could inhibit the oxidation pathways initiated by OH during photocatalysis of TC. These findings provide further insights into the assessment of photolysis and photocatalysis for antibiotics elimination in natural waters where HA exists ubiquitously. PMID:27420385

  12. Polysorbate 20 Degradation in Biopharmaceutical Formulations: Quantification of Free Fatty Acids, Characterization of Particulates, and Insights into the Degradation Mechanism.

    PubMed

    Tomlinson, Anthony; Demeule, Barthélemy; Lin, Baiwei; Yadav, Sandeep

    2015-11-01

    Polysorbate 20 (PS20), a commonly used surfactant in biopharmaceuticals, showed degradation upon long-term (∼18-36 months) storage of two monoclonal antibody (mAb, mAb-A, and mAb-B) drug products at 2-8 °C. The PS20 degradation resulted in the accumulation of free fatty acids (FFA), which ultimately precipitated to form particles upon long-term storage. This study documents the development, qualification, and application of a method for FFA quantification in soluble and insoluble fraction of protein formulation. The method was applied to the quantification of capric acid, lauric acid, myristic acid, palmitic/oleic acid, and stearic acid in placebo as well as active protein formulations on stability. Quantification of FFA in both the soluble and insoluble fraction of mAb-A and mAb-B provided a better mechanistic understanding of PS20 degradation and the dynamics of subsequent fatty acid particle formation. Additionally, the use of this method for monitoring and quantitation of the FFA on real time storage stability appears to aid in identifying batches with higher probability for particulate formation upon extended storage at 5 °C. PMID:26419339

  13. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  14. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  15. Physiological factors affecting production of extracellular lipase (LipA) in Acinetobacter calcoaceticus BD413: fatty acid repression of lipA expression and degradation of LipA.

    PubMed Central

    Kok, R G; Nudel, C B; Gonzalez, R H; Nugteren-Roodzant, I M; Hellingwerf, K J

    1996-01-01

    The extracellular lipase (LipA) produced by Acinetobacter calcoaceticus BD413 is required for growth of the organism on triolein, since mutant strains that lack an active lipase fail to grow with triolein as the sole carbon source. Surprisingly, extracellular lipase activity and expression of the structural lipase gene (lipA), the latter measured through lacZ as a transcriptional reporter, are extremely low in triolein cultures of LipA+ strains. The explanation for this interesting paradox lies in the effect of fatty acids on the expression of lipA. We found that long-chain fatty acids, especially, strongly repress the expression of lipA, thereby negatively influencing the production of lipase. We propose the involvement of a fatty acyl-responsive DNA-binding protein in regulation of expression of the A. calcoaceticus lipBA operon. The potential biological significance of the observed physiological competition between expression and repression of lipA in the triolein medium is discussed. Activity of the extracellular lipase is also negatively affected by proteolytic degradation, as shown in in vitro stability experiments and by Western blotting (immunoblotting) of concentrated supernatants of stationary-phase cultures. In fact, the relatively high levels of extracellular lipase produced in the early stationary phase in media which contain hexadecane are due only to enhanced stability of the extracellular enzyme under those conditions. The rapid extracellular degradation of LipA of A. calcoaceticus BD413 by an endogenous protease is remarkable and suggests that proteolytic degradation of the enzyme is another important factor in regulating the level of active extracellular lipase. PMID:8830702

  16. Deoxyribonucleic Acid Degradation in Bacillus subtilis During Exposure to Actinomycin D1

    PubMed Central

    Farmer, James L.

    1968-01-01

    At high concentrations (10 μg/ml), actinomycin D inhibited deoxyribonucleic acid (DNA) synthesis in Bacillus subtilis. Inhibition occurred quickly (in less than 1 min) and was complete. In strain 23 thy his, inhibition of DNA synthesis by actinomycin D was followed by partial degradation of one of the two daughter strands to acid-soluble products. Degradation began at the replication point and proceeded over a distance equal to about 12% of a chromosome in length. Actinomycin D played some essential part in degradation, since exposure of the cells to other treatments or agents which inhibit growth did not lead to the above result. PMID:4967199

  17. Structure of aldobiouronic acid and glucuronic acid from Agathis australis degraded gum polysaccharide.

    PubMed

    Singh, R B

    2007-04-01

    Agathis australis gum on acid hydrolysis with sulphuric acid yielded L-arabinose and D-galactose in 1:4 molar ratio with traces of L-fucose. The components of aldobiouronic acid and glucuronic acid were obtained by graded hydrolysis of degraded gum polysaccharide. The derivatives of aldobiouronic acid was obtained as methyl ester methyl glycoside. PMID:17915743

  18. Influence of Fenton's reagent doses on the degradation and mineralization of H-acid.

    PubMed

    Liu, Huanhuan; Chen, Quanyuan; Yu, Yang; Liu, Zhenhong; Xue, Gang

    2013-12-15

    The recalcitrant H-acid (1-amino-8-naphthol-3,6-disulfonic acid) in aqueous solution was oxidized by Fenton process, focusing on the relation of Fenton's reagent doses and degradation products. The experimental results showed that COD and TOC removals and biodegradability (BOD/COD ratio) of the solution increased with increasing Fenton's reagent doses. Over 80% COD can be removed and the biodegradability was improved significantly. It was found that major SO3H and NH2 groups in H-acid molecules were mineralized to SO4(2-) and NH4(+) ions during Fenton oxidation processes. H-acid degradation intermediates with benzene structures substituted by hydroxyl and/or carboxyl groups were identified by GC-MS. It was also found that short-chain fatty acids primarily oxalic acid were degradation products of H-acid by Fenton oxidation. Oxalic acid accumulated could account for approximately 60% of the residual TOC. The degradation pathway of H-acid was proposed based on above analyses in this work. PMID:24231329

  19. Determination of the degree of acetylation and the distribution of acetyl groups in chitosan by HPLC analysis of nitrous acid degraded and PMP labeled products.

    PubMed

    Han, Zhangrun; Zeng, Yangyang; Lu, Hong; Zhang, Lijuan

    2015-09-01

    Chitin is one of the most abundant polysaccharides on earth. It consists of repeating β-1,4 linked N-acetylated glucosamine (A) units. Chitosan is an N-deacetylated product of chitin. Chitosan and its derivatives have broad medical applications as drugs, nutraceuticals, or drug delivery agents. However, a reliable analytical method for quality control of medically used chitosans is still lacking. In current study, nitrous acid was used to cleave all glucosamine residues in chitosan into 2,5-anhydromannose (M) or M at the reducing end of di-, tri-, and oligosaccharides. PMP, i.e. 1-phenyl-3-methyl-5-pyrazolone, was used to label all the Ms. Online UV detection allowed quantification of all M-containing UV peaks whereas online MS analysis directly identified 11 different kinds of mono-, di-, tri-, and oligosaccharides that correlated each oligosaccharide with specific UV peak after HPLC separation. The DA (degree of acetylation) for chitosans was calculated based on the A/(A+M) value derived from the UV data. This newly developed method had several advantages for quality control of chitosan: 1. the experimental procedures were extensively optimized; 2. the reliability of the method was confirmed by online LC-MS analysis; 3. the DA value was obtainable based on the UV data after HPLC analysis, which was comparableto that of (1)H NMR and conductometric titration analyses; 4. finally and most importantly, this method could be used to obtain the DA as well as chemical acetylation/deacetylation mechanisms for chitosan by any laboratory equipped with a HPLC and an online UV detector. PMID:26114886

  20. Degradation of h-acid by free and immobilized cells of Alcaligenes latus

    PubMed Central

    Usha, M.S.; Sanjay, M.K.; Gaddad, S.M.; Shivannavar, C.T.

    2010-01-01

    Alcaligenes latus, isolated from industrial effluent, was able to grow in mineral salts medium with 50 ppm (0.15 mM) of H-acid as a sole source of carbon. Immobilization of Alcaligenes latus in Ca-alginate and polyurethane foam resulted in cells embedded in the matrices. When free cells and immobilized cells were used for biodegradation studies at concentration ranging from 100 ppm (0.3 mM) to 500 ppm (1.15 mM) degradation rate was enhanced with immobilized cells. Cells immobilized in polyurethane foam showed 100% degradation up to 350 ppm (1.05 mM) and 57% degradation at 500 ppm (1.5 mM). Degradation rate of Ca-alginate immobilized cells was less as compared to that of polyurethane foam immobilized cells. With Ca-alginate immobilized cells 100% degradation was recorded up to 200 ppm (0.6 mM) of H-acid and only 33% degradation was recorded at 500 ppm (1.5 mM) of H-acid. Spectral analysis of the products after H-acid utilization showed that the spent medium did not contain any aromatic compounds indicating H-acid degradation by A. latus. PMID:24031573

  1. Study on the enzymatic degradation of PBS and its alcohol acid modified copolymer.

    PubMed

    Ding, Mingliang; Zhang, Min; Yang, Jinming; Qiu, Jian-hui

    2012-02-01

    Enzymatic hydrolytic degradation of polybutylene succinate (PBS), poly(polybutylenesuccinate-co-1,4-cyclohexane dimethanol) (PBS/CHDM) and poly(polybutylene succinate-co-diglycolic acid) (PBS/DGA) in mixed solvent of tetrahydrofuran (THF) and toluene was examined. Lipase was used as catalyst to degrade polymers with molecular weight of more than 100,000, and the molecular weight of products ranged from hundreds to thousands. Thermal decomposition temperatures of all products were below 250°C. The degradation products of both PBS/CHDM and PBS/DGA showed two melting points at about 85 and 99°C. Mass spectrometry (MS) was employed to obtain the molecular weight of oligomers extracted from the products, which proved to be low-polyesters with the molecular weight of less 1,000. The butanediol (BDO) monomer was found in PBS/CHDM degradation product for the first time. PMID:21732135

  2. Synthesis and degradation test of hyaluronic acid hydrogels.

    PubMed

    Hahn, Sei Kwang; Park, Jung Kyu; Tomimatsu, Takashi; Shimoboji, Tsuyoshi

    2007-03-10

    Hyaluronic acid (HA) hydrogels prepared with three different crosslinking reagents were assessed by in vitro and in vivo degradation tests for various tissue engineering applications. Adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and used for the preparation of methacrylated HA (HA-MA) with methacrylic anhydride and thiolated HA (HA-SH) with Traut's reagent (imminothiolane). (1)H NMR analysis showed that the degrees of HA-ADH, HA-MA, and HA-SH modification were 69, 29, and 56 mol%, respectively. HA-ADH hydrogel was prepared by the crosslinking with bis(sulfosuccinimidyl) suberate (BS(3)), HA-MA hydrogel with dithiothreitol (DTT) by Michael addition, and HA-SH hydrogel with sodium tetrathionate by disulfide bond formation. According to in vitro degradation tests, HA-SH hydrogel was degraded very fast, compared to HA-ADH and HA-MA hydrogels. HA-ADH hydrogel was degraded slightly faster than HA-MA hydrogel. Based on these results, HA-MA hydrogels and HA-SH hydrogels were implanted in the back of SD rats and their degradation was assessed according to the pre-determined time schedule. As expected from the in vitro degradation test results, HA-SH hydrogel was in vivo degraded completely only in 2 weeks, whereas HA-MA hydrogels were degraded only partially even in 29 days. The degradation rate of HA hydrogels were thought to be controlled by changing the crosslinking reagents and the functional group of HA derivatives. In addition, the state of HA hydrogel was another factor in controlling the degradation rate. Dried HA hydrogel at 37 degrees C for a day resulted in relatively slow degradation compared to the bulk HA hydrogel. There was no adverse effect during the in vivo tests. PMID:17101173

  3. Phytic acid degrading lactic acid bacteria in tef-injera fermentation.

    PubMed

    Fischer, Maren M; Egli, Ines M; Aeberli, Isabelle; Hurrell, Richard F; Meile, Leo

    2014-11-01

    Ethiopian injera, a soft pancake, baked from fermented batter, is preferentially prepared from tef (Eragrostis tef) flour. The phytic acid (PA) content of tef is high and is only partly degraded during the fermentation step. PA chelates with iron and zinc in the human digestive tract and strongly inhibits their absorption. With the aim to formulate a starter culture that would substantially degrade PA during injera preparation, we assessed the potential of microorganisms isolated from Ethiopian household-tef fermentations to degrade PA. Lactic acid bacteria (LAB) were found to be among the dominating microorganisms. Seventy-six isolates from thirteen different tef fermentations were analyzed for phytase activity and thirteen different isolates of seven different species were detected to be positive in a phytase screening assay. In 20-mL model tef fermentations, out of these thirteen isolates, the use of Lactobacillus (L.) buchneri strain MF58 and Pediococcus pentosaceus strain MF35 resulted in lowest PA contents in the fermented tef of 41% and 42%, respectively of its initial content. In comparison 59% of PA remained when spontaneously fermented. Full scale tef fermentation (0.6L) and injera production using L. buchneri MF58 as culture additive decreased PA in cooked injera from 1.05 to 0.34±0.02 g/100 g, representing a degradation of 68% compared to 42% in injera from non-inoculated traditional fermentation. The visual appearance of the pancakes was similar. The final molar ratios of PA to iron of 4 and to zinc of 12 achieved with L. buchneri MF58 were decreased by ca. 50% compared to the traditional fermentation. In conclusion, selected LAB strains in tef fermentations can degrade PA, with L. buchneri MF58 displaying the highest PA degrading potential. The 68% PA degradation achieved by the application of L. buchneri MF58 would be expected to improve human zinc absorption from tef-injera, but further PA degradation is probably necessary if iron absorption has to

  4. The influences of elastomer toward degradability of poly (lactic acid)

    NASA Astrophysics Data System (ADS)

    Kaavessina, Mujtahid; Distantina, Sperisa; Chafidz, Achmad; Fadilah, Al-Zahrani, Saeed M.

    2016-02-01

    Poly (lactic acid)/elastomer blends were prepared via direct injection molding with the different weight fractions of elastomer, namely: 0, 10, 20 and 30 wt%. Degradation test of poly (lactic acid) (PLA) was performed by burial in the soil. The physical appearance and thermal properties of the tested specimens were monitored periodically. The presence of elastomer tended to significantly increase the degradability of PLA after buried for 27 weeks. With 30 wt% elastomer, the color and the surface of specimens become more white and rougher due to the degradation. Differential scanning calorimetry (DSC) was used to evaluate thermal properties and crystallinity of all samples. It was found that the melting temperature decreased as the amount of elastomer increased. The crystallinity showed that the degradation of PLA is occurred firstly in amorphous phase.

  5. Chemical Degradation Studies on a Series of Dithiophosphinic Acids

    SciTech Connect

    Freiderich, Melissa E; Delmau, Laetitia Helene; Peterman, D. R.; Marc, Philippe L; Klaehn, John D.

    2014-01-01

    In this study a significant increase in the stability of a series of dithiophosphinic acids (DPAHs) under oxidizing acidic conditions was achieved. The degradation behavior of a series of DPAHs, designed for lanthanide/actinide separation, was examined. The stability of the DPAHs, when contacted with varying nitric acid concentrations, was tested and monitored using 31P {1H} NMR. Changes in the functional groups of the DPAHs resulted in substantial increases in the stability. However, all the DPAHs eventually showed signs of degradation when placed in contact with 2 M HNO3. The addition of a radical scavenger, hydrazine, inhibited the degradation of the DPAHs. With small amounts of hydrazine, five of the DPAHs remained stable for over a month in direct contact with 2 M HNO3.

  6. Chemical Degradation Studies on a Series of Dithiophosphinic Acids

    SciTech Connect

    Melissa E. Freiderich; Dean R. Peterman; John R. Klaehn; Philippe Marc; Laetitia H. Delmau

    2014-04-01

    A significant increase in the stability of a series of dithiophosphinic acids (DPAHs) under oxidizing acidic conditions was achieved. The degradation behavior of a series of DPAHs, designed for lanthanide/actinide separation, was examined. The stability of the DPAHs, when contacted with varying nitric acid concentrations, was tested and monitored using 31P {1H} NMR. Changes in the functional groups of the DPAHs resulted in substantial increases in the stability. However, when placed in contact with 2 M HNO3 all the DPAHs eventually showed signs of degradation. The addition of a radical scavenger, hydrazine, inhibited the degradation of the DPAHs. In the presence of a small concentration of hydrazine, five of the DPAHs remained stable for over a month in direct contact with 2 M HNO3.

  7. Activated sludge degradation of adipic acid esters.

    PubMed Central

    Saeger, V W; Kalley, R G; Hicks, O; Tucker, E S; Mieure, J P

    1976-01-01

    The biodegradability of three aliphatic adipic acid diesters and a 1,3-butylene glycol adipic acid polyester was determined in acclimated, activated sludge systems. Rapid primary biodegradation from 67 to 99+% was observed at 3- and 13-mg/liter feed levels for di-n-hexyl adipate, di(2-ethylhexyl) adipate, and di(heptyl, nonyl) adipate in 24 h. When acclimated, activated sludge microorganisms were employed as the seed for two carbon dioxide evolution procedures, greater than 75% of the theoretical carbon dioxide was evolved for the three diesters and the polyester in a 35-day test period. The essentially complete biodegradation observed in these studies suggests that these esters would not persist when exposed to similar mixed microbial populations in the environment. PMID:1275494

  8. A degradation study of PLLA containing lauric acid.

    PubMed

    Renouf-Glauser, Annette C; Rose, John; Farrar, David; Cameron, Ruth E

    2005-05-01

    Addition of lauric acid to poly (L-lactide) (PLLA) has resulted in a new family of enhanced degradation biomaterials. Presented is PLLA4.5 (PLLA containing 4.5 wt% lauric acid), the fastest degrading of the family. Degradation was studied via mass changes, gel-permeation chromatography, wide- and small-angle X-ray scattering (WAXS and SAXS), simultaneous SAXS and tensile testing, and visual observation. The undegraded PLLA4.5 deformed by crazing, recognisable from the characteristic shape of the SAXS pattern. As water up-take and degradation proceeded, samples crystallised, decreasing the SAXS long period, until by 4 days the deformation mechanism had become that of crystal-mediated deformation. This resulted in a 'peanut-lemon'-shaped SAXS pattern, interpreted in terms of cavitation and fibrillated shear. Further degradation up to 12 days resulted in the same deformation mechanism at different sample displacements, with samples failing earlier during tensile testing until a ductile-brittle transition occurred. At 30-40 days water up-take and mass-loss increased significantly and global whitening of samples occurred, while the crystallinity and long period stabilised. Complete degradation had not occurred by the end of the study at 73 days. Through an understanding of how the changes in morphology during degradation affect the micromechanisms of deformation, it may be possible to design microstructures to give a tailored evolution of mechanical response in the body. PMID:15585245

  9. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    PubMed

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products. PMID:26910999

  10. Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain.

    PubMed

    Ma, Yuping; Wang, Xiaoyu; Nie, Xueling; Zhang, Zhan; Yang, Zongcan; Nie, Cong; Tang, Hongzhi

    2016-08-01

    In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment. PMID:27068831

  11. Stability of nicotinate and dodecyl sulfate in a Lewis acidic ionic liquid for aluminum electroplating and characterization of their degradation products.

    PubMed

    Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela

    2016-04-01

    Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. PMID:26864607

  12. Toxicology of atmospheric degradation products of selected hydrochlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Kaminsky, Laurence S.

    1990-01-01

    Trifluoroacetic acid (TFA) is a liquid with a sharp biting odor. It has been proposed as the product of environmental degradation of the hydrochlorofluorocarbons HCFC-123, HCFC-124, HFC-134a, and HFC-125. Compounds HCFC-141b and HCFC-142b could yield mixed fluorochloroacetic acids, for which there is no available toxicologic data. The release of hydrochlorofluorocarbons into the environment could also give rise to HF, but the additional fluoride burden (1 to 3 ppb) in rainwater is trivial compared to levels in fluoridated drinking water (1 ppm), and would provide an insignificant risk to humans. Thus, in this paper only the toxocologic data on TFA is reviewed to assess the potential risks of environmental exposure.

  13. Tannic acid degradation by Klebsiella strains isolated from goat feces

    PubMed Central

    Tahmourespour, Arezoo; Tabatabaee, Nooroldin; Khalkhali, Hossein; Amini, Imane

    2016-01-01

    Background and Objectives: Tannins are toxic polyphenols that either bind and precipitate or condense proteins. The high tannin content of some plants is the preliminary limitation of using them as a ruminant feed. So, the aim of this study was the isolation and characterization of tannic acid degrading bacterial strains from goat feces before and after feeding on Pistachio-Soft Hulls as tannin rich diet (TRD). Materials and Methods: Bacterial strains capable of utilizing tannic acid as sole carbon and energy source were isolated and characterized from goat feces before and after feeding on TRD. Tannase activity, maximum tolerable concentration and biodegradation potential were assessed. Results: Four tannase positive isolates were identified as Klebsiella pneumoniae. Isolated strains showed the maximum tolerable concentration of 64g/L of tannin. The tannic acid degradation percentage at a concentration of 15.0 g/L reached a maximum of 68% after 24 h incubation, and more than 98% after 72 h incubation. The pH of the medium also decreased along with tannic acid utilization. Conclusions: It is obvious that TRD induced adaptive responses. Thus, while the bacteria were able to degrade and detoxify the tannic acids, they had to adapt in the presence of high concentrations of tannic acid. So, these isolates have an amazing potential for application in bioremediation, waste water treatment, also reduction of tannins antinutritional effects in animal feeds. PMID:27092220

  14. [Study on cooperating degradation of cypermethrin and 3-phenoxybenzoic acid by two bacteria strains].

    PubMed

    Xu, Yu-Xin; Sun, Ji-Quan; Li, Xiao-Hui; Li, Shun-Peng; Chen, Yi

    2007-10-01

    The microbial cooperated reaction is one of the most important forms of microbial degradation of organic pollutants. Although there were many research reports of cooperating degradation, less report on the microbial cooperated of pyrethroid degradation to be found. We have isolated one degrading-bacteria strain named CDT3 for degradation of cypermethrin, which can degraded the cypermethrin into 3-PBA and DCVA. At the same time, we also isolated another degrading-bacteria strain named as PBM11, which could get multiplication on 3-PBA as its C source and energy source. The cooperative degradation process of cypermethrin and 3-Phenoxybenzoic acid (3-PBA) using the two degrading-bacteria strain CDT3 and PBM11 was investigated. An obvious inhibition to the cypermethrin degrading-bacterium strain CDT3 (Rhodococcus sp.) by its metabolic mediate 3-PBA was found; meanwhile there is no effect on the growth of 3-PBA degrading-bacterium strain PBM11 (Pesudomonas sp.) when the concentration of cypermethrin was lower than 200 mg/L. The degradation rate of cypermethrin by both strain CDT3 and PBM11 was higher than that by CDT3 alone. The biomass of PBM11 increased along with the degradation of cypermethrin and 3-PBA, but that of CDT3 not. There was no the accumulation of 3-PBA when the simultaneous addition of strain CDT3 and PBM11, however, an obvious one within 24h if inoculation of strain PBM11 was later 24h after inoculation of strain CDT3, Subsequently the 3-PBA was degraded rapidly by strain PBM11. The strains CDT3 and PBM11 showed some characteristics of co-metabolism, however it is not actual degradation form of co-metabolism. For examples, although the degrading sub product of cypermethrin by CDT3 could be utilized, the multiplication of PBM11 could not enhance the multiplication of CDT3, implied there is no obvious relationship between the two strains. Also, to add PBM11 could eliminate the inhibition of 3-PBA to CDT3. Thus, the cooperating degradation of strains CDT3

  15. FURTHER STUDY OF ADIPIC ACID DEGRADATION IN FGD SCRUBBERS

    EPA Science Inventory

    The report gives results of investigations of adipic acid degradation to account for losses observed during earlier studies where it was used as an additive to improve SO2 scrubber performance. Bench-scale experiments identified the major species resulting from the oxidative degr...

  16. Advice on Degradation Products in Pharmaceuticals: A Toxicological Evaluation.

    PubMed

    Melo, Sâmia Rocha de Oliveira; Homem-de-Mello, Maurício; Silveira, Dâmaris; Simeoni, Luiz Alberto

    Degradation products are unwanted chemicals that can develop during the manufacturing, transportation, and storage of drug products and can affect the efficacy of pharmaceutical products. Moreover, even small amounts of degradation products can affect pharmaceutical safety because of the potential to cause adverse effects in patients. Consequently, it is crucial to focus on mechanistic understanding, formulation, storage conditions, and packaging to prevent the formation of degradation products that can negatively affect the quality and safety of the drug product. In this sense, databases and software that help predict the reactions involving the pharmaceutically active substance in the presence of degradation conditions can be used to obtain information on major degradation routes and the main degradation products formed during pharmaceutical product storage. In some cases, when the presence of a genotoxic degradation product is verified, it is necessary to conduct more thorough assessments. It is important to consider the chemical structure to distinguish between compounds with toxicologically alerting structures with associated toxic/genotoxic risks and compounds without active structures that can be treated as ordinary impurities. Evaluating the levels of degradation products based on a risk/benefit analysis is mandatory. Controlling critical variables during early development of drug products and conducting a follow-up study of these impurities can prevent degradation impurities present at concentrations greater than threshold values to ensure product quality. The definition of the impurity profile has become essential per various regulatory requirements. Therefore, this review includes the international regulatory perspective on impurity documents and the toxicological evaluation of degradation products. Additionally, some techniquesused in the investigation of degradation products and stability-indicating assay methods are highlighted. PMID:25188345

  17. Degradation of trichloroethylene by hydrodechlorination using formic acid as hydrogen source over supported Pd catalysts.

    PubMed

    Yu, Xin; Wu, Ting; Yang, Xue-Jing; Xu, Jing; Auzam, Jordan; Semiat, Raphael; Han, Yi-Fan

    2016-03-15

    An advanced method for the degradation of trichloroethylene (TCE) over Pd/MCM-41 catalysts through a hydrogen-transfer was investigated. Formic acid (FA) was used instead of gaseous H2 as the hydrogen resource. As a model H-carrier compound, FA has proven to yield less by-products and second-hand pollution during the reaction. Several factors have been studied, including: the property of catalyst supports, Pd loading and size, temperature, initial concentrations of FA and TCE (potential impact on the reaction rates of TCE degradation), and FA decomposition. The intrinsic kinetics for TCE degradation were measured, while the apparent activation energies and the reaction orders with respect to TCE and FA were calculated through power law models. On the basis of kinetics, we assumed a plausible reaction pathway for TCE degradation in which the catalytic degradation of TCE is most likely the rate-determining step for this reaction. PMID:26685065

  18. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  19. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    PubMed

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. PMID:27372125

  20. Thermochemical alkaline degradation of polysaccharide materials: Product characterization and identification

    SciTech Connect

    Krochta, J.M.; Hudson, J.S.; Tillin, S.J.; Spala, K.

    1985-01-01

    Degradation of cellulosics or starch in alkaline solution produces mostly organic acids which are monocarboxylic in nature. Seven of the organic acids have been identified as formic, acetic, glycolic, lactic, 2-hydroxybutyric, 2-hydroxyisobutyric and 2-hydroxyvaleric acids. In total, their yields amount to 41-46% of starting material weight.

  1. Composition of the ozonolytic degradation products of the organic matter of Barzasskii sapromyxite coal

    SciTech Connect

    S.A. Semenova; Y.F.Patrakov

    2009-04-15

    The ozonization of Barzasskii sapromyxite coal in chloroform and the composition of ozonolytic degradation products were studied. Water-insoluble high-molecular-weight products were predominant among the ozonization products. A half of water-soluble substances consisted of aliphatic C{sub 5}-C{sub 12} dicarboxylic acids and benzenedicarboxylic acid derivatives. Sapromyxite has been suggested as a substitute for crude petroleum in the manufacture of motor fuels.

  2. MONITORING AND MODELLING OF RADIOLYTIC DEGRADATION PRODUCTS OF TBP/n-DODECANE

    SciTech Connect

    Peterson, James M.; Levitskaia, Tatiana G.; Bryan, Samuel A.

    2011-10-03

    The Plutonium Uranium Extraction (PUREX) solvent system was developed for the separation of plutonium and uranium from irradiated fuel. Since the implementation of this process, the degradation chemistry associated with the irradiated solvent system, tributyl phosphate (TBP)/n-dodecane/nitric acid has been extensively studied as the integrity of the organic solvent is paramount for reproducible performance of the separation flowsheet (extraction/scrub/strip) during multiple cycles. In PUREX-like processes, the extent of decomposition is dependent not only upon the solvent, but also upon the presence of constituents, such as nitric acid, that interact with TBP and increase its susceptibility to radiolytic degradation. The build-up of degradation products in the organic phase alters process flowsheet performance via modification of the metal ions speciation, loss of solvent components, and enhanced water transport into the organic phase. On-line identification and quantification of the solvent degradation products would provide the necessary information for more detailed process control as well as providing the basis for timing solvent washing or replacement. In our research, we are exploring the potential of on-line monitoring for the PUREX solvent radiolytic degradation products. To identify degradation products, TBP/n-dodecane solvent, contacted with aqueous nitric acid solutions of variable concentrations are subjected to various gamma radiation external doses then analyzed by electro-spray ionization mass spectrometry (ESMS). In addition, vibrational spectroscopy is utilized to monitor and quantify major degradation products including dibutyl phosphoric acid (HDBP) and monobutyl phosphoric acid (H2MBP) in TBP/n-dodecane solvent. The compiled spectroscopic databases serve for developing interpretive and predictive chemometric models for the quantification of the PUREX solvent degradation products.

  3. Vibrational spectroscopy for online monitoring of extraction solvent degradation products

    SciTech Connect

    Peterson, J.; Robinson, T.; Bryan, S.A.; Levitskaia, T.G.

    2013-07-01

    In our research, we are exploring the potential of online monitoring of the organic solvents for the flowsheets relevant to the used nuclear fuel reprocessing and tributyl phosphate (TBP)- based extraction processes in particular. Utilization of vibrational spectroscopic techniques permits the discrimination of the degradation products from the primary constituents of the loaded extraction solvent. Multivariate analysis of the spectral data facilitates development of the regression models for their quantification in real time and potentially enables online implementation of a monitoring system. Raman and FTIR spectral databases were created and used to develop the regression partial least squares (PLS) chemometric models for the quantitative prediction of HDBP (dibutyl phosphoric acid) degradation product, TBP, and UO{sub 2}{sup 2+} extraction organic product phase. It was demonstrated that both these spectroscopic techniques are suitable for the quantification of the Purex solvent components in the presence of UO{sub 2}(NO{sub 3}){sub 2}. Developed PLS models successfully predicted HDBP and TBP organic concentrations in simulated Purex solutions.

  4. Forced Degradation Behaviour of Fluphenazine Hydrochloride by LC and Characterization of its Oxidative Degradation Product by LC–MS/MS

    PubMed Central

    Thummar, Kashyap N.; Ghava, Dilip J.; Mistry, Anvi; Vachhani, Ashish; Sheth, Navin R.

    2015-01-01

    A novel, stability-indicating high-performance liquid chromatographic (HPLC) method is delivered for the determination of fluphenazine hydrochloride (FPZ) and its degradation products. The forced degradation testing of FPZ was carried out for hydrolytic, oxidative, photolytic, and thermal degradation. The degradation appeared using a reversed-phase C18 column at ambient temperature with a mobile phase comprised of methanol : acetonitrile : (10 mM) ammonium acetate (70:15:15, v/v/v) pH 6.0, adjusted with acetic acid, having a flow rate of 1 ml min−1 and a detection wavelength at 259 nm. Primarily, the maximum degradation products were formed under oxidative stress conditions. The product was distinguished through LC-MS/MS fragmentation studies. Based on the results, a more complete degradation pathway for the drug could be proposed. The modernized method was found to be precise, accurate, specific, and selective. The method was found to be suitable for the quality control of fluphenazine hydrochloride in the tablet as well as in stability-indicating studies. PMID:26839816

  5. Forced Degradation Behaviour of Fluphenazine Hydrochloride by LC and Characterization of its Oxidative Degradation Product by LC-MS/MS.

    PubMed

    Thummar, Kashyap N; Ghava, Dilip J; Mistry, Anvi; Vachhani, Ashish; Sheth, Navin R

    2015-01-01

    A novel, stability-indicating high-performance liquid chromatographic (HPLC) method is delivered for the determination of fluphenazine hydrochloride (FPZ) and its degradation products. The forced degradation testing of FPZ was carried out for hydrolytic, oxidative, photolytic, and thermal degradation. The degradation appeared using a reversed-phase C18 column at ambient temperature with a mobile phase comprised of methanol : acetonitrile : (10 mM) ammonium acetate (70:15:15, v/v/v) pH 6.0, adjusted with acetic acid, having a flow rate of 1 ml min(-1) and a detection wavelength at 259 nm. Primarily, the maximum degradation products were formed under oxidative stress conditions. The product was distinguished through LC-MS/MS fragmentation studies. Based on the results, a more complete degradation pathway for the drug could be proposed. The modernized method was found to be precise, accurate, specific, and selective. The method was found to be suitable for the quality control of fluphenazine hydrochloride in the tablet as well as in stability-indicating studies. PMID:26839816

  6. Infusion fluids contain harmful glucose degradation products

    PubMed Central

    Bryland, Anna; Broman, Marcus; Erixon, Martin; Klarin, Bengt; Lindén, Torbjörn; Friberg, Hans; Wieslander, Anders; Kjellstrand, Per; Ronco, Claudio; Carlsson, Ola

    2010-01-01

    Purpose Glucose degradation products (GDPs) are precursors of advanced glycation end products (AGEs) that cause cellular damage and inflammation. We examined the content of GDPs in commercially available glucose-containing infusion fluids and investigated whether GDPs are found in patients’ blood. Methods The content of GDPs was examined in infusion fluids by high-performance liquid chromatography (HPLC) analysis. To investigate whether GDPs also are found in patients, we included 11 patients who received glucose fluids (standard group) during and after their surgery and 11 control patients receiving buffered saline (control group). Blood samples were analyzed for GDP content and carboxymethyllysine (CML), as a measure of AGE formation. The influence of heat-sterilized fluids on cell viability and cell function upon infection was investigated. Results All investigated fluids contained high concentrations of GDPs, such as 3-deoxyglucosone (3-DG). Serum concentration of 3-DG increased rapidly by a factor of eight in patients receiving standard therapy. Serum CML levels increased significantly and showed linear correlation with the amount of infused 3-DG. There was no increase in serum 3-DG or CML concentrations in the control group. The concentration of GDPs in most of the tested fluids damaged neutrophils, reducing their cytokine secretion, and inhibited microbial killing. Conclusions These findings indicate that normal standard fluid therapy involves unwanted infusion of GDPs. Reduction of the content of GDPs in commonly used infusion fluids may improve cell function, and possibly also organ function, in intensive-care patients. Electronic supplementary material The online version of this article (doi:10.1007/s00134-010-1873-x) contains supplementary material, which is available to authorized users. PMID:20397009

  7. Fast in vitro hydrolytic degradation of polyester urethane acrylate biomaterials: structure elucidation, separation and quantification of degradation products.

    PubMed

    Ghaffar, A; Verschuren, P G; Geenevasen, J A J; Handels, T; Berard, J; Plum, B; Dias, A A; Schoenmakers, P J; van der Wal, Sj

    2011-01-21

    Synthetic biomaterials have evoked extensive interest for applications in the field of health care. Prior to administration to the body a quantitative study is necessary to evaluate their composition. An in vitro method was developed for the quick hydrolytic degradation of poly-2-hydroxyethyl methacrylate (pHEMA), poly(lactide-co-glycolide50/50)1550-diol (PLGA(50:50)(1550)-diol), PLGA(50:50)(1550)-diol(HEMA)(2) and PLGA(50:50)(1550)-diol(etLDI-HEMA)(2) containing ethyl ester lysine diisocyanate (etLDI) linkers using a microwave instrument. Hydrolysis time and temperature were optimized while monitoring the degree of hydrolysis by (1)H NMR spectroscopy. Complete hydrolytic degradation was achieved at 120°C and 3 bar pressure after 24 h. Chemical structure elucidations of the degradation products were carried out using (1)H and (13)C NMR spectroscopy. The molecular weight (MW) of the polymethacrylic backbone was estimated via size-exclusion chromatography coupled to refractive index detection (SEC-dRI). A bimodal MW distribution was found experimentally, also in the pHEMA starting material. The number average molecular weights (M(n)) of the PLGA-links (PLGA(50:50)(1550)-diol) were calculated by high pressure liquid chromatography-time-of-flight mass spectrometry (HPLC-TOF-MS) and (1)H NMR. The amounts of the high and low MW degradation products were determined by SEC-dRI and, HPLC-TOF-MS, respectively. The main hydrolysis products poly (methacrylic acid) (PMAA), ethylene glycol (EG), diethylene glycol (DEG), lactic acid (LA), glycolic acid (GA) and lysine were recovered almost quantitatively. The current method leads to the complete hydrolytic degradation of these materials and will be helpful to study the degradation behavior of these novel cross-linked polymeric biomaterials. PMID:21167489

  8. Effects of ultrasonic processing on degradation of salvianolic acid B in aqueous solution.

    PubMed

    Guo, Y X; Zhang, L; Lu, L; Liu, E H; Shi, C Z

    2016-09-10

    To evaluate the stability of salvianolic acid B (Sal B) under ultrasound-assisted extraction in the pharmaceutical industry, degradation of Sal B under ultrasonic irradiation was investigated as the function of buffer concentration, pH, and temperature. With regard to Sal-B concentration, a first-order degradation process was determined, with 10% change in assay from its initial concentration as t90=4.81h, under maximum stability acidic conditions (pH 2.0) and at 25°C. The logkpH-pH profile described by specific acid-base catalysis and water molecules supported the experimental results. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed 7 major degradation products whose structures were characterized by electrospray ionization/mass spectrometry. A primary degradation pathway involved cleavage of the ester bond and ring-opening of benzofuran in Sal B was proposed. The complete degradation pathway of Sal B was also proposed. Results showed that ultrasonic irradiation leads to degradation of Sal B in aqueous solution. PMID:27442887

  9. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    PubMed

    Wang, Xiaoyu; Chen, Meili; Xiao, Jingfa; Hao, Lirui; Crowley, David E; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  10. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  11. Microbial production of lactic acid.

    PubMed

    Eiteman, Mark A; Ramalingam, Subramanian

    2015-05-01

    Lactic acid is an important commodity chemical having a wide range of applications. Microbial production effectively competes with chemical synthesis methods because biochemical synthesis permits the generation of either one of the two enantiomers with high optical purity at high yield and titer, a result which is particularly beneficial for the production of poly(lactic acid) polymers having specific properties. The commercial viability of microbial lactic acid production relies on utilization of inexpensive carbon substrates derived from agricultural or waste resources. Therefore, optimal lactic acid formation requires an understanding and engineering of both the competing pathways involved in carbohydrate metabolism, as well as pathways leading to potential by-products which both affect product yield. Recent research leverages those biochemical pathways, while researchers also continue to seek strains with improved tolerance and ability to perform under desirable industrial conditions, for example, of pH and temperature. PMID:25604523

  12. Photocatalytic degradation of polycyclic aromatic hydrocarbon benzo[a]pyrene by iron oxides and identification of degradation products.

    PubMed

    Gupta, Himanshu; Gupta, Bina

    2015-11-01

    Photocatalytic decay profiles of polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (B[a]P) have been investigated on various synthesized iron oxides and on soil surfaces under a set of diverse conditions. Samples were analysed using the developed HPLC procedure. Results of the present study demonstrate fastest photodisintegration of B[a]P on goethite followed by haematite, magnetite, akaganeite and maghemite, respectively. The effect of soil pH, irradiation wavelength and iron oxide and oxalic acid dose on the degradation of B[a]P was evaluated. The studies revealed enhancement in photodegradation in the presence of oxalic acid due to the occurrence of fenton like reaction. The results showed faster B[a]P degradation under short wavelength UV radiation. Rate constants in acidic, neutral and alkaline soils under optimum dissipation conditions were 1.11×10(-2), 7.69×10(-3) and 9.97×10(-3) h(-1), respectively. The study indicates that iron oxides along with oxalic acid are effective photocatalyst for the remediation of benzo[a]pyrene contaminated soil surfaces. The degradation products of B[a]P in the soils of different pH in presence of goethite were identified and degradation pathways proposed. Peaks due to toxic metabolites such as diones, diols and epoxides disappear after 120 h in all the three soils. PMID:25576129

  13. Degradation of extracellular matrix and its components by hypobromous acid

    PubMed Central

    Rees, Martin D.; McNiven, Tane N.; Davies, Michael J.

    2006-01-01

    EPO (eosinophil peroxidase) and MPO (myeloperoxidase) are highly basic haem enzymes that can catalyse the production of HOBr (hypobromous acid). They are released extracellularly by activated leucocytes and their binding to the polyanionic glycosa-minoglycan components of extracellular matrix (proteoglycans and hyaluronan) may localize the production of HOBr to these materials. It is shown in the present paper that the reaction of HOBr with glycosaminoglycans (heparan sulfate, heparin, chondroitin sulfate and hyaluronan) generates polymer-derived N-bromo derivatives (bromamines, dibromamines, N-bromosulfon-amides and bromamides). Decomposition of these species, which can occur spontaneously and/or via one-electron reduction by low-valent transition metal ions (Cu+ and Fe2+), results in polymer fragmentation and modification. One-electron reduction of the N-bromo derivatives generates radicals that have been detected by EPR spin trapping. The species detected are consistent with metal ion-dependent polymer fragmentation and modification being initiated by the formation of nitrogen-centred (aminyl, N-bromoaminyl, sulfonamidyl and amidyl) radicals. Previous studies have shown that the reaction of HOBr with proteins generates N-bromo derivatives and results in fragmentation of the polypeptide backbone. The reaction of HOBr with extracellular matrix synthesized by smooth muscle cells in vitro induces the release of carbohydrate and protein components in a time-dependent manner, which is consistent with fragmentation of these materials via the formation of N-bromo derivatives. The degradation of extracellular matrix glycosaminoglycans and proteins by HOBr may contribute to tissue damage associated with inflammatory diseases such as asthma. PMID:17014424

  14. Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid

    NASA Astrophysics Data System (ADS)

    Campos, Sandro X.; Vieira, Eny M.; Cordeiro, Paulo J. M.; Rodrigues-Fo, Edson; Murgu, Michael

    2003-12-01

    In this study, gamma radiation from cobalt-60 was used to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt in water in the presence of humic acid. The 2,4-D dimethylamine salt 1.13×10 -4 mol dm -3 solution was irradiated with different doses. HPLC was used as an analytical technique to determine the degradation rate of herbicide studied. The results showed that the herbicide was completely degraded at an absorbed dose of 3 kGy. Degradation decreased when humic acid was added to all the doses. ESI/MS and MS/MS were used to identify the radiolytic degradation products. A fragmentation path for production of 4.6-dichlororesorcinol, is suggested. The radiolytic yields ( G) were calculated.

  15. Adverse effects of air pollutants on wood products and a method for preventing resulting degradation

    SciTech Connect

    Chao, W.Y.

    1992-01-01

    A study of wood surface in hostile environments was undertaken to elucidate the degradation mechanism and develop a method to protect wood in outdoor applications. In this investigation, wood was exposed to SO[sub 2] and NO[sub 2] in the presence and absence of ultraviolet light for up to 4 weeks. The effect of the simulated acid rain on wood with and without an epoxy film was evaluated by intermittent spraying of the wood with either sulfuric, nitric acid or water and irradiated with and without the xenon light in a weatherometer for up to 8 weeks. The surface properties of degraded wood and protective epoxy films were analyzed. UV light changed the wood color. The samples lost weight and generated water-soluble degradation products after the photoirradiation. Sulfur dioxide lighted the wood color; nitrogen dioxide changed wood color to brown. Wood increased its weight during the exposure of SO[sub 2] and NO[sub 2], however, the presence of such gases triggered photo-induced degradation. Lignin was degraded and carbonyl groups were formed at irradiated wood. Sulfur and nitrogen dioxides reduced the intensity of carbonyl groups due to degradative hydrolysis. Water-soluble products were derived from polysaccharides and lignin, nitric acid, sulfuric acid and its dissociated ions. During the simulated acidic weathering, xenon light changed the wood color. The color change rate of earlywood was greater than latewood. The presence of acids and water facilitated the wood degradation, and eventually caused leaching. The primary photodegradation phenomena of lignin was confirmed by the FTIR and UV analyses of the irradiated samples. Transparent anhydride-cured epoxy films partially protected wood against the acidic degradation and photoirradiation. Epoxy film cracked, yellowed and had O-ring shapes cavities after the exposure. Salol-added film provided the best protection for wood, followed by a film without an UV stabilizer and Tinuvin 770-added film last.

  16. Research of the degradation products of chitosan's angiogenic function

    NASA Astrophysics Data System (ADS)

    Wang, Jianyun; Chen, Yuanwei; Ding, Yulong; Shi, Guoqi; Wan, Changxiu

    2008-11-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 °C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent.

  17. Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle.

    PubMed

    Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2012-01-01

    The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer. PMID:22297224

  18. Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria

    PubMed Central

    Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso

    2016-01-01

    The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485

  19. Biotechnological production of citric acid

    PubMed Central

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  20. Amine-degradation products play no part in corrosion at gas-sweetening plants

    SciTech Connect

    Blanc, C.; Grall, M.; Demarais, G.

    1982-11-15

    Gas-sweetening units using diethanolamine (DEA) and methyldiethanolamine (MDEA) are occasionally subject to corrosion. Discounting the basic degradation products of DEA as the cause, researchers (1) confirmed the presence of formic, oxalic, and acetic acids in used amine solutions, (2) defined oxygen's role in forming these carboxylic acids, and (3) demonstrated that the acid contents of different units are about the same order of magnitude for both DEA and MDEA. In most cases, oxygen can be easily excluded from gas-treating units, especially in storage tanks, thereby limiting the formation of acid products.

  1. Nitrogen incorporation into lignite humic acids during microbial degradation

    SciTech Connect

    Dong, L.H.; Yuan, H.L.

    2009-07-01

    Previous study showed that nitrogen content in lignite humic acids (HA) increased significantly during lignite biodegradation. In this paper we evaluated the factors responsible for the increased level of N in HA and the formation of new nitrogen compound following microbial degradation. When the ammonium sulfate concentration in lignite medium was 0.5%, the N-content in HA was higher than that in the crude lignite humic acid (cHA); when the ammonium sulfate concentration was epsilon 0.5%, both the biodegraded humic acid (bHA) N-content and the content of bHA in lignite increased significantly, but at 2.0% no increase was observed. This indicated that HA incorporated N existing in the lignite medium, and more HA can incorporate more N with the increase of bHA amount in lignite during microbial degradation. CP/MAS {sup 15}N NMR analysis showed that the N incorporated into HA during biotransformation was in the form of free or ionized NH{sub 2}-groups in amino acids and sugars, as well as NH{sub 4}{sup +}. We propose nitrogen can be incorporated into HA biotically and abiotically. The high N content bHA has a potential application in agriculture since N is essential for plant growth.

  2. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    PubMed

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. PMID:27459151

  3. The sources, fate, and toxicity of chemical warfare agent degradation products.

    PubMed Central

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  4. The sources, fate, and toxicity of chemical warfare agent degradation products.

    PubMed

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-12-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  5. Efficient sonochemical degradation of perfluorooctanoic acid using periodate.

    PubMed

    Lee, Yu-Chi; Chen, Meng-Jia; Huang, Chin-Pao; Kuo, Jeff; Lo, Shang-Lien

    2016-07-01

    A rapid and efficient treatment method, using periodate (PI) for sonochemical oxidation of persistent and bioaccumulative perfluorooctanoic acid (PFOA) was developed. With an addition of 45 mM PI, 96.5% of PFOA was decomposed with a defluorination efficiency of 95.7% after 120 min of ultrasound (US). The removals of PFOA were augmented with an increase in PI doses. In all the PI+US experimental runs, decomposition efficiencies were essentially similar to those of defluorination, indicating that PFOA was decomposed and mineralized into fluoride ions. Lower solution pHs resulted in an increase in decomposition and defluorination efficiencies of PFOA due to acid-catalyzation. Dissolved oxygen increased the amount of IO4 radicals produced, which consumed the more effective IO3 radicals. Consequently, presence of oxygen inhibited the destruction of PFOA. The PFOA degradation rates with different gases sparging are in the following order: nitrogen>air>oxygen. Effects of anions follow the Hofmeister effects on PFOA degradation (i.e., Br(-)>none ⩾ Cl(-)>SO4(2)(-)). Br(-) could react with OH to yield radical anion Br2(-) that enhances the PFOA degradation. A reaction pathway was also proposed to describe the PI oxidation of PFOA under US irradiation. PMID:26964977

  6. Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater.

    PubMed

    Liu, Chen; Nanaboina, Venkateswarlu; Korshin, Gregory V; Jiang, Wenju

    2012-10-15

    This study addressed the formation and properties of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed during ozonation of secondary wastewater effluent containing these fluoroquinolone antibiotics. The generation of the degradation products was interpreted in the context of transformations of effluent organic matter (EfOM) tracked via absorbance measurements. The structures of 20 degradation products were elucidated for ciprofloxacin and norfloxacin, respectively. 27 degradation products were identified for lomefloxacin. The prevalent oxidation pathways were suggested based on the structures of the identified products formed in the absence and presence of the hydroxyl radical scavenger t-butanol. These pathways were largely similar for all studied fluoroquinolones and involved attacks on the piperazine ring and the quinolone structure. The quinolone ring remained intact in the presence of t-butanol thus indicating that this functional group could only be oxidized by OH radicals while the piperazine ring was readily oxidized by molecular ozone. The cleavage of the quinolone moiety that resulted in several identified degradation products occurred via the attack by hydroxyl radicals on the carbon-carbon double bond adjacent to the carboxylic acid group. Lomefloxacin had more diverse oxidation products due to the presence of a methyl group on its piperazinyl ring. The concentrations of the identified degradation products behaved non-monotonically as a function of ozone dose or treatment time, yet exhibited interpretable correlations versus changes of EfOM absorbance. Examination of these correlations allowed developing a novel approach for elucidating the transformations of fluoroquinolone antibiotics during ozonation. PMID:22863026

  7. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  8. Acetamide herbicides and their degradation products in ground water and surface water of the United States, 1993-2003

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Dietze, Julie E.; Thurman, Michael

    2004-01-01

    During 1993 through 2003, the U.S. Geological Survey conducted a number of studies to investigate and document the occurrence, fate, and transport of acetamide herbicides and their degradation products in ground and surface water. As part of these studies, approximately 5,100 water samples were collected and analyzed for the acetamide parent herbicides acetochlor, alachlor, dimethenamid, flufenacet, and metolachlor and their degradation products ethanesulfonic acid, oxanilic acid, and sulfinyl acetic acid. During this period, various analytical methods were developed to detect and measure concentrations of acetamide herbicides and their degradation products in ground water and surface water. Results showed that the degradation products of acetamide herbicides in ground water were detected more frequently and occurred at higher concentrations than their parent compounds. Further study showed that the acetamide herbicides and their degradation products were detected more frequently in surface water than in ground water. In general, the parent compounds were detected at similar or greater frequencies than the degradation products in surface water. The developed methods and data were valuable for acquiring information about the occurrence, fate, and transport of the herbicides and their degradation products and the importance of analyzing for both parent compounds and their degradate products in water-quality studies.

  9. Mechanism driven structural elucidation of forced degradation products from hydrocortisone in solution.

    PubMed

    Zhang, Fa; Zhou, Jay; Shi, Yiqun; Tavlarakis, Panagiotis; Karaisz, Kenneth

    2016-09-01

    Hydrocortisone degradation products 1, 2, 3, and 4 along with hemiacetal derivatives 5, 6, 7, and 8 were observed through stressed hydrocortisone in solution. Their structures were identified based on HPLC-UV, HPLC-MS, and HPLC-HRMS (high resolution/high accuracy mass spectrometry) analyses as well as reaction mechanistic investigation and synthesis for structural confirmation. 1 and 2 are a pair of E/Z isomers and they were generated through acid catalyzed tautomerization/dehydration of hydrocortisone. Incorporation of water to 1 and 2 resulted in the formation of 3. We also discovered new degradation product 4 which was converted from 3 by oxidation. The degradation products were synthesized by stressing hydrocortisone under the optimized conditions and their structures were characterized by NMR ((1)H/(13)C, COSY, HMBC, HSQC, NOESY) and HRMS analyses. The degradation pathway of hydrocortisone is postulated. PMID:27328360

  10. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  11. LC-MS/MS characterization of forced degradation products of zofenopril.

    PubMed

    Ramesh, Thippani; Nageswara Rao, Pothuraju; Nageswara Rao, Ramisetti

    2014-01-01

    A rapid, specific and reliable isocratic LC-MS/MS method has been developed and validated for the identification and characterization of stressed degradation products of Zofenopril. Zofenopril, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and base hydrolysis stress conditions. However, it was stable to thermal, acid, neutral and photolysis stress conditions. A total of 6 degradation products were observed and the chromatographic separation of the drug and its degradation products were achieved on Phenomenex (Luna) C18 (250mm×4.6mm, i.d., 5μm) column using 20mM ammonium acetate: acetonitrile (50:50, v/v) as a mobile phase. The degradation products were characterized by LC-MS/MS and its fragmentation pathways were proposed. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision. No previous reports were found in the literature regarding the degradation behavior of zofenopril. PMID:24211724

  12. Brevetoxin Degradation and By-Product Formation via Natural Sunlight

    PubMed Central

    Hardman, Ron C.; Cooper, William J.; Bourdelais, Andrea J.; Gardinali, Piero; Baden, Daniel G.

    2010-01-01

    We investigated the effects of solar radiation on brevetoxin (PbTx2). Our findings suggest that natural sunlight mediates brevetoxin (PbTx2) degradation and results in brevetoxin by-product formation via photochemical processes. PMID:26436141

  13. Amino acids in sheep production.

    PubMed

    McCoard, Susan A; Sales, Francisco A; Sciascia, Quentin L

    2016-01-01

    Increasing production efficiency with a high standard of animal welfare and respect for the environment is a goal of sheep farming systems. Substantial gains in productivity have been achieved through improved genetics, nutrition and management changes; however the survival and growth performance of multiple-born lambs still remains a problem. This is a significant production efficiency and animal well-being issue. There is a growing body of evidence that some amino acids have a role in regulating growth, reproduction and immunity through modulation of metabolic and cell signaling pathways. The purpose of this review is to provide an overview of what is currently known about the role of amino acids in sheep production and the potential for supplementation strategies to influence on-farm survival and growth of lambs. PMID:26709661

  14. Cellulose degradation in alkaline media upon acidic pretreatment and stabilisation.

    PubMed

    Testova, Lidia; Nieminen, Kaarlo; Penttilä, Paavo A; Serimaa, Ritva; Potthast, Antje; Sixta, Herbert

    2014-01-16

    The present study reports on a revised kinetic model for alkaline degradation of cellulose accounting for primary peeling/stopping reactions as well as for alkaline hydrolysis followed by secondary peeling. Oxalic acid pretreated cotton linters was utilised as the model substrate for the prehydrolysis-soda anthraquinone process. The main emphasis was investigating the effect of end-group stabilising additives such as sodium borohydride (BH), anthraquinone (AQ), and anthraquinone-2-sulphonic acid sodium salt (AQS) on the rates of the yield loss reactions. BH and AQS ensured a cellulose yield gain of 13% and 11%, respectively, compared to the reference. Both stabilisation agents decreased the content of the reducing end groups in the samples, while in the case of AQS stabilisation a 25% increase in carboxyl group content compared to the reference was also observed. As expected, the addition of end group stabilisers resulted in a significant decrease in the peeling-to-stopping rate constants ratio. PMID:24188853

  15. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.

    PubMed

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C; Tuerk, Jochen

    2016-08-01

    Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP. PMID:27054664

  16. Microbial degradation of isosaccharinic acid at high pH

    PubMed Central

    Bassil, Naji M; Bryan, Nicholas; Lloyd, Jonathan R

    2015-01-01

    Intermediate-level radioactive waste (ILW), which dominates the radioactive waste inventory in the United Kingdom on a volumetric basis, is proposed to be disposed of via a multibarrier deep geological disposal facility (GDF). ILW is a heterogeneous wasteform that contains substantial amounts of cellulosic material encased in concrete. Upon resaturation of the facility with groundwater, alkali conditions will dominate and will lead to the chemical degradation of cellulose, producing a substantial amount of organic co-contaminants, particularly isosaccharinic acid (ISA). ISA can form soluble complexes with radionuclides, thereby mobilising them and posing a potential threat to the surrounding environment or ‘far field'. Alkaliphilic microorganisms sampled from a legacy lime working site, which is an analogue for an ILW-GDF, were able to degrade ISA and couple this degradation to the reduction of electron acceptors that will dominate as the GDF progresses from an aerobic ‘open phase' through nitrate- and Fe(III)-reducing conditions post closure. Furthermore, pyrosequencing analyses showed that bacterial diversity declined as the reduction potential of the electron acceptor decreased and that more specialised organisms dominated under anaerobic conditions. These results imply that the microbial attenuation of ISA and comparable organic complexants, initially present or formed in situ, may play a role in reducing the mobility of radionuclides from an ILW-GDF, facilitating the reduction of undue pessimism in the long-term performance assessment of such facilities. PMID:25062127

  17. Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge.

    PubMed

    Baroutian, Saeid; Gapes, Daniel J; Sarmah, Ajit K; Farid, Mohammed M; Young, Brent R

    2016-04-01

    The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products. PMID:26832394

  18. Degradation of p-hydroxyphenylacetic acid by photoassisted Fenton reaction.

    PubMed

    Acero, L L; Benítez, F J; Real, F J; Leal, A I

    2001-01-01

    The chemical decomposition of p-hydroxyphenylacetic acid, a phenolic pollutant present in agro-industrial plant effluents, has been investigated by means of the Fenton's reaction and the photoassisted Fenton's reaction, the so-called photo-Fenton system. The degradation levels achieved have been compared to those obtained by applying other Advanced Oxidation Processes, such as the combination UV/H2O2. The optimum pH to carry out the decomposition of this organic compound by either Fenton or photo-Fenton systems was found to be pH = 3. The presence of buffers such as phosphate impedes these processes due to the formation of ferric complexes. A reaction mechanism, which allows calculating the contribution of the radical reaction to the global process, has been proposed. According to this mechanism, the dominant way of degradation of p-hydroxyphenylacetic acid is through its reaction with the OH radicals originated in the photolysis of H2O2 and, especially, in the Fenton's reaction. PMID:11695475

  19. Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection.

    PubMed

    Richardson, Douglas D; Caruso, Joseph A

    2007-06-01

    Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC-ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC-time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC-ICPMS. PMID:17356819

  20. Stability-indicating spectrofluorometric method for the determination of some cephalosporin drugs via their degradation products.

    PubMed

    Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A

    2015-01-01

    A stability-indicating spectrofluorometric method was investigated for the determination of three cephalosporin drugs, namely, cefpodoxime proxetil (CPD), cefixime trihydrate (CFX), and cefepime hydrochloride (CPM), via their acid and alkali degradation products. The three drugs were determined via their acid degradation at 432, 422, and 435 nm using an excitation wavelength of 310, 330, and 307 nm for CPD, CFX, and CPM determination, respectively, and via their alkali degradation at 407, 411, and 405 nm using an excitation wavelength of 310, 305, and 297 nm for CPD, CFX, and CPM determination, respectively. Linearity was achieved in the ranges of 0.35-3.50, 0.4-4.0, and 0.3-3.0 μg/mL for the acid degradation products of CPD, CFX, and CPM, respectively, and in ranges of 0.05-0.5, 0.1-1.0, and 0.08-0.80 μg/mL for the alkali degradation products of CPD, CFX, and CPM, respectively. The method was validated for various parameters according to International Conference on Harmonization guidelines. The method was successfully applied for the determination of these cephalosporin drugs in pharmaceutical dosage forms with good accuracy and precision. The results obtained by the proposed spectrofluorometric method were compared with good agreement to the official HPLC method. PMID:25905742

  1. OXIDATIVE DEGRADATION OF ORGANIC ACIDS CONJUGATED WITH SULFITE OXIDATION IN FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of a study of organic acid degradation conjugated with sulfite oxidation under flue gas desulfurization (FGD) conditions. The oxidative degradation constant, k12, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times th...

  2. Analysis of multiple sweeteners and their degradation products in lassi by HPLC and HPTLC plates.

    PubMed

    George, V; Arora, S; Wadhwa, B K; Singh, A K

    2010-08-01

    A solid phase extraction method using C18 cartridges was standardized for the isolation of multiple sweeteners (aspartame, acesulfame-K and saccharin) and their degradation products (diketopiperazine, Lphenylalanine, acetoacetamide and 2-sulfobenzoic acid) from lassi. Analytical conditions for HPLC were standardized over C18 column using UV detector for the simultaneous separation and estimation of multiple sweeteners and their degradation products in lassi sample isolates. A simple cartridge free method was developed for the isolation of sucralose from lassi. Method was also standardized for qualitative detection and quantitative estimation of sucralose over amino and silica gel plates of HPTLC. PMID:23572661

  3. Qualitative Profiling of Polyglucose Degradation Products in Peritoneal Dialysis Fluids.

    PubMed

    Gensberger, Sabrina; Knabner, Carina; Waibel, Reiner; Huppert, Jochen; Pischetsrieder, Monika

    2015-06-16

    Heat sterilization of peritoneal dialysis (PD) fluids leads to partial degradation of the osmotic agent to form reactive carbonyl structures, which significantly reduce the biocompatibility of PD fluids and impair long-term PD therapy. Hence, it is important to know the exact composition of the degradation products to improve biocompatibility of PD fluids. Our study conducted targeted screening for degradation products in polyglucose (icodextrin)-containing PD fluids (pGDPs) by applying o-phenylenediamine (OPD) to form stable derivatives, which were analyzed by ultrahigh-performance liquid chromatography with hyphenated diode array tandem mass spectrometry (UHPLC-DAD-MS/MS). For the first time, specific degradation products of polyglucose, namely, 4-deoxyglucosone (4-DG) and 3,4-dideoxypentosone (3,4-DDPS), could be identified in PD fluids. Further, a reaction product of 5-hydroxymethylfurfural (5-HMF) and OPD could be characterized to be (5-(1H-benzo[d]imidazol-2-yl)furan-2-yl)methanol. Additionally, 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal), both known to be present in glucose-based PD fluids, were also detected in polyglucose-containing fluids. Trapping a hitherto unknown degradation product with OPD yielded 1,4-bis(1H-benzo[d]imidazol-2-yl)-3,4-dihydroxybutan-1-one, which was present in heat- as well as filter-sterilized PD fluids. PMID:25970747

  4. Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products.

    PubMed

    Taylor, M S; Daniels, A U; Andriano, K P; Heller, J

    1994-01-01

    Bioabsorbable polymer implants may provide a viable alternative to metal implants for internal fracture fixation. One of the potential difficulties with absorbable implants is the possible toxicity of the polymeric degradation products especially if they accumulate and become concentrated. Accordingly, material evaluation must involve dose-response toxicity data as well as mechanical properties and degradation rates. In this study the toxicity and rates of degradation for six polymers were determined, along with the toxicity of their degradation product components. The polymers studied were poly(glycolic acid) (PGA), two samples of poly(L-lactic acid) (PLA) having different molecular weights, poly(ortho ester) (POE), poly(epsilon-caprolactone) (PCL), and poly(hydroxy butyrate valerate) (5% valerate) (PHBV). Polymeric specimens were incubated at 37 degrees C in 0.05 M Tris buffer (pH 7.4 at 37 degrees C) and sterile deionized water. The solutions were not changed during the incubation intervals, providing a worst-case model of the effects of accumulation of degradation products. The pH and acute toxicity of the incubation solutions and the mass loss and logarithmic viscosity number of the polymer samples were measured at 10 days, 4, 8, 12, and 16 weeks. Toxicity was measured using a bioluminescent bacteria, acute toxicity assay system. The acute toxicity of pure PGA, PLA, POE, and PCL degradation product components was also determined. Degradation products for PHBV were not tested. PGA incubation solutions were toxic at 10 days and at all following intervals. The lower molecular weight PLA incubation solutions were not toxic in buffer but were toxic by 4 weeks in water.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10147175

  5. Docosahexaenoic acid ester degradation measured by FTIR-ATR with correlation spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly unsaturated fatty acids such as docosahexaenoic acid and linolenic acid are prone to oxidation with a resulting loss of bioactivity and generation of malodorous degradation compounds. Degradation proceeds by formation of the corresponding hydroperoxyl free radical with subsequent oxidative cl...

  6. Phenoloxidase production and vanillic acid metabolism by Zygomycetes.

    PubMed

    Seigle-Murandi, F; Guiraud, P; Steiman, R; Benoit-Guyod, J L

    1992-04-01

    The ability of 23 strains of Zygomycetes to produce extracellular phenoloxidases was examined on solid media by using 10 different reagents. The results varied depending on the reagent and indicated that most of the strains were devoid of phenoloxidase activity. The production of inducible phenoloxidases was demonstrated by the Bavendamm reaction. The study of the biotransformation of vanillic acid in synthetic medium indicated that the reaction most often obtained was the reduction of vanillic acid to vanillyl alcohol. Helicostylum piriforme and Rhizopus microsporus var. chinensis completely metabolized vanillic acid while good transformation was obtained with Absidia spinosa, Cunninghamella bainieri, Mucor bacilliformis, Mucor plumbeus, Rhizopus arrhizus, Rhizopus stolonifer, Syncephalastrum racemosum and Zygorhynchus moelleri. Other strains did not degrade or poorly degraded vanillic acid. Decarboxylation and demethoxylation of this compound was independent of the production of phenoloxidases as in the case of white-rot fungi. Other enzymatic systems might be implicated in this phenomenon. PMID:1602986

  7. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  8. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  9. Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths [Lanthanum and Praseodymium].

    PubMed

    Srivastava, Pankaj; Goyal, Shikha; Patnala, Prem Kishore

    2014-11-01

    Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La(3+) and Pr(3+)). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (φ) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16-40mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20kHz and 250W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products. PMID:24491599

  10. Characterization of Wall Teichoic Acid Degradation by the Bacteriophage ϕ29 Appendage Protein GP12 Using Synthetic Substrate Analogs.

    PubMed

    Myers, Cullen L; Ireland, Ronald G; Garrett, Teresa A; Brown, Eric D

    2015-07-31

    The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs. The GP12 protein had potent wall teichoic acid hydrolytic activity in vitro and demonstrated ∼13-fold kinetic preference for glycosylated poly(glycerol phosphate) teichoic acid compared with non-glycosylated. Product distribution patterns suggested that the degradation of glycosylated polymers proceeded from the hydroxyl terminus of the polymer, whereas hydrolysis occurred at random sites in the non-glycosylated polymer. In addition, we present evidence that the GP12 protein possesses both phosphodiesterase and phosphomonoesterase activities. PMID:26085106

  11. Characterization of radiolytically generated degradation products in the strip section of a TRUEX flowsheet

    SciTech Connect

    Dean R. Peterman; Lonnie G. Olson; Gary S. Groenewold; Rocklan G. McDowell; Richard D. Tillotson; Jack D. Law

    2013-08-01

    This report presents a summary of the work performed to meet the FCRD level 2 milestone M3FT-13IN0302053, “Identification of TRUEX Strip Degradation.” The INL radiolysis test loop has been used to identify radiolytically generated degradation products in the strip section of the TRUEX flowsheet. These data were used to evaluate impact of the formation of radiolytic degradation products in the strip section upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  12. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    USGS Publications Warehouse

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P.; Goerlitz, D.F.

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-1990). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater. ?? 1994.

  13. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    SciTech Connect

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P. ); Goerlitz, D.F. )

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-90). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater.

  14. Gradual surface degradation of restorative materials by acidic agents.

    PubMed

    Hengtrakool, Chanothai; Kukiattrakoon, Boonlert; Kedjarune-Leggat, Ureporn

    2011-01-01

    The aim of this study was to investigate the effect of acidic agents on surface roughness and characteristics of four restorative materials. Fifty-two discs were created from each restorative material: metal-reinforced glass ionomer cement (Ketac-S), resin-modified glass ionomer cement (Fuji II LC), resin composite (Filtek Z250), and amalgam (Valiant-PhD); each disc was 12 mm in diameter and 2.5 mm thick. The specimens were divided into four subgroups (n=13) and immersed for 168 hours in four storage media: deionized water (control); citrate buffer solution; green mango juice; and pineapple juice. Surface roughness measurements were performed with a profilometer, both before and after storage media immersion. Surface characteristics were examined using scanning electron microscopy (SEM). Statistical significance among each group was analyzed using two-way repeated ANOVA and Tukey's tests. Ketac-S demonstrated the highest roughness changes after immersion in acidic agents (p<0.05), followed by Fuji II LC. Valiant-PhD and Filtek Z250 illustrated some minor changes over 168 hours. The mango juice produced the greatest degradation effect of all materials tested (p<0.05). SEM photographs demonstrated gradual surface changes of all materials tested after immersions. Of the materials evaluated, amalgam and resin composite may be the most suitable for restorations for patients with tooth surface loss. PMID:21903509

  15. Identification of four new degradation products of epirubicin through forced degradation, LC-UV, MSn and LC-MS-TOF studies.

    PubMed

    Kaushik, Dheeraj; Saini, Balraj; Bansal, Gulshan

    2015-01-01

    Epirubicin (EPI) was subjected to International Conference on Harmonization recommended forced degradation under the conditions of hydrolysis, oxidation, dry heat and photolysis to characterize its possible impurities and/or degradation products. The drug was found highly unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80°C and to oxidation at room temperature. The hydrolytic and oxidative degradation products were resolved on an Agilent RP8 (150 mm × 4.6 mm; 5 µm) column with isocratic elution using mobile phase composed of ammonium formate (10 mM, pH 3.0), acetonitrile and methanol. The drug degraded to four oxidative products (O-I, O-II, O-III and O-IV) and to one acid hydrolyzed product (A-I). Purity of each peak in liquid chromatography-ultraviolet (LC-UV) chromatogram was ascertained through photodiode array (LC-PDA) analysis. The products were characterized through electrospray ionization-mass spectrometry (+ESI-MS(n)) studies on EPI and liquid chromatography-time of flight mass spectrometry (LC-MS-TOF) studies on degraded drug solutions. The products, O-I-O-IV, were characterized as 2-hydroxy-8-desacetylepirubicin-8-hydroperoxide, 4-hydroxy-8-desacetylepirubicin-8-hydroperoxide, 8-desacetylepirubicin-8-hydroperoxide and 8-desacetylepirubicin, respectively, and product A-I was characterized as deglucosaminylepirubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of EPI were discussed and outlined. PMID:26162378

  16. Amyloid Plaque-Associated Oxidative Degradation of Uniformly Radiolabeled Arachidonic Acid.

    PubMed

    Furman, Ran; Murray, Ian V J; Schall, Hayley E; Liu, Qiwei; Ghiwot, Yonatan; Axelsen, Paul H

    2016-03-16

    Oxidative stress is a frequently observed feature of Alzheimer's disease, but its pathological significance is not understood. To explore the relationship between oxidative stress and amyloid plaques, uniformly radiolabeled arachidonate was introduced into transgenic mouse models of Alzheimer's disease via intracerebroventricular injection. Uniform labeling with carbon-14 is used here for the first time, and made possible meaningful quantification of arachidonate oxidative degradation products. The injected arachidonate entered a fatty acid pool that was subject to oxidative degradation in both transgenic and wild-type animals. However, the extent of its degradation was markedly greater in the hippocampus of transgenic animals where amyloid plaques were abundant. In human Alzheimer's brain, plaque-associated proteins were post-translationally modified by hydroxynonenal, a well-known oxidative degradation product of arachidonate. These results suggest that several recurring themes in Alzheimer's pathogenesis, amyloid β proteins, transition metal ions, oxidative stress, and apolipoprotein isoforms, may be involved in a common mechanism that has the potential to explain both neuronal loss and fibril formation in this disease. PMID:26800372

  17. Degradation of sunscreen agent p-aminobenzoic acid using a combination system of UV irradiation, persulphate and iron(II).

    PubMed

    Xue, Yicen; Dong, Wenbo; Wang, Xiaoning; Bi, Wenlong; Zhai, Pingping; Li, Hongjing; Nie, Minghua

    2016-03-01

    Increased usage and discharge of sunscreens have led to ecological safety crisis, and people are developing the advanced oxidation processes (AOPs) to treat them. The present study aimed to determine the degradation efficiency and mechanism of the sunscreen agent p-aminobenzoic acid (PABA) using the UV/Fe(2+)/persulphate (PS) method. A series of irradiation experiments were conducted to optimise the system conditions and to study the impacts of the natural anion. Free radicals and degradation products were identified in order to clarify the degradation mechanism. Initial PS and Fe(2+) concentrations showed significant impacts on PABA degradation. Natural anions, such as Cl(-), NO3 (-), H2PO4 (-) and HCO3 (-), impeded PABA degradation because of ion (Fe(2+)) capture, radical scavenging or pH effects. Hydroxyl (HO·) and sulphate (SO4 (·-)) radicals were two main radicals observed in the UV/Fe(2+)/PS system; of these, SO4 (·-) showed greater effects on PABA degradation. Over 99 % of the available PABA was completely degraded into carbon dioxide (CO2) and water (H2O) by the UV/Fe(2+)/PS system, and the remaining PABA participated in complex radical reactions. By-products were identified by total ion chromatography and mass spectrometry. Our research provides a treatment process for PABA with high degradation efficiency and environmental safety and introduces a new strategy for sunscreen degradation. PMID:26517998

  18. Reaction pathway of the degradation of the p-hydroxybenzoic acid by sulfate radical generated by ionizing radiations

    NASA Astrophysics Data System (ADS)

    Criquet, Justine; Leitner, Nathalie Karpel Vel

    2015-01-01

    The degradation of p-hydroxybenzoic acid (HBA) in aqueous solutions by ionizing radiation was studied. The phenolic pollutant was easily removed by the electron beam irradiation, as more than 80% of the initial 100 μM introduced was degraded for a dose of 600 Gy. It was shown that the addition of persulfate, producing the sulfate radical as additional reactive species, induced a change in the reaction pathway. LC-MS analyses were performed in order to identify the different by-products formed. In the absence of persulfate, the main by-product formed was 3,4-dihydroxybenzoic acid, while in presence of persulfate, 1,4-benzoquinone was detected and the hydroxylated by-products were not present. A reaction pathway of HBA degradation by hydroxyl and sulfate radicals was proposed from the identification of the chemical structure of the different by-products detected. The influences of pH and dissolved oxygen were also studied. A high decline of HBA degradation was observed at pH 11 compared to pH 4.5, this decrease was minimized in the presence of persulfate. The dissolved oxygen concentration was found to be a limiting parameter of HBA degradation, however an excess of dissolved oxygen in solution did not improve the degradation to a large extent.

  19. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils.

    PubMed

    Xu, Jian; Wu, Laosheng; Chang, Andrew C

    2009-11-01

    Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in the environment, which have drawn popular concerns recently. Most studies on the environmental fate of PPCPs have focused on their behaviors during wastewater treatment processes, in aquatic environments, and in the sludge, however, little is known about their behavior in agricultural soils. In this study, adsorption and degradation of six selected PPCPs, including clofibric acid, ibuprofen, naproxen, triclosan, diclofenac and bisphenol A have been investigated in the laboratory using four US agricultural soils associated with reclaimed wastewater reuse. Adsorption test using a batch equilibrium method demonstrated that adsorption of all tested chemicals in soils could be well described with Freundlich equation, and their adsorption affinity on soil followed the order of triclosan>bisphenol A>clofibric acid>naproxen>diclofenac>ibuprofen. Retardation factor (R(F)) suggested that ibuprofen had potential to move downward with percolating water, while triclosan and bisphenol A were readily retarded in soils. Degradation of selected PPCPs in soils generally followed first-order exponential decay kinetics, with half-lives ranging from 0.81 to 20.44 d. Degradation of PPCPs in soils appeared to be influenced by the soil organic matter and clay contents. Sterilization generally decreased the degradation rates, indicating microbial activity played a significant role in the degradation in soils. The degradation rate constant decreased with increasing initial chemical concentrations in soil, implying that the microbial activity was inhibited with high chemical loading levels. PMID:19853275

  20. Acid attack on hydrated cement — Effect of mineral acids on the degradation process

    SciTech Connect

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E.

    2015-08-15

    During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone between the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.

  1. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    EPA Science Inventory

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  2. Development of a sensor for polypropylene degradation products.

    SciTech Connect

    Sawyer, Patricia Sue; Howell, Stephen Wayne; Hochrein, James Michael; Dirk, Shawn M.; Bernstein, Robert; Washburn, Cody M.; Graf, Darin C.

    2009-04-01

    This paper presents the development of a sensor to detect the oxidative and radiation induced degradation of polypropylene. Recently we have examined the use of crosslinked assemblies of nanoparticles as a chemiresistor-type sensor for the degradation products. We have developed a simple method that uses a siloxane matrix to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. These sensors were exposed with the use of a gas chromatography system to three previously identified polypropylene degradation products including 4-methyl-2-pentanone, acetone, and 2-pentanone. The limits of detection 210 ppb for 4-methy-2-pentanone, 575 ppb for 2-pentanone, and the LoD was unable to be determined for acetone due to incomplete separation from the carbon disulfide carrier.

  3. Anticataractogenesis Mechanisms of Curcumin and a Comparison of Its Degradation Products: An in Vitro Study.

    PubMed

    Liao, Jiahn-Haur; Huang, Yi-Shiang; Lin, Yu-Ching; Huang, Fu-Yung; Wu, Shih-Hsiung; Wu, Tzu-Hua

    2016-03-16

    Curcumin (Cur) exhibits anticataractogenesis activity. This study aimed to compare the activities of Cur with those of its degradation products in a series of in vitro lens protein turbidity assays. The results show that Cur (200 μM) ameliorates selenite-induced crystallin aggregation, and the mean OD value was 0.10 ± 0.02 (p < 0.05), which was significantly different from controls (0.15 ± 0.01) after incubating for 3 days. However, Cur did not significantly inhibit calcium-induced proteolysis after incubating for 3 days. Such results were supported by isothermal titration calorimetry observation that Cur binds with selenite but not with calcium. Presence of Cur and the degradation products examined (ferulic acid, cinnamic acid, vanillin, and vanillic acid) indicates significantly protective activities on lens γ-crystallins after UVC exposure for 3 h. Among the compounds examined, only ferulic acid exhibited a significant inhibitory effect against UVB-induced turbidity with a mean OD of 0.32 ± 0.01 (p < 0.05), which was significantly different from controls (0.49 ± 0.02). The previously reported anticataract effects of Cur may stem not only from Cur but also from its degradation products through various cataractogenesis mechanisms in vitro. PMID:26905955

  4. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes.

    PubMed

    Andersen, Gorm; Björnberg, Olof; Polakova, Silvia; Pynyaha, Yuriy; Rasmussen, Anna; Møller, Kasper; Hofer, Anders; Moritz, Thomas; Sandrini, Michael Paolo Bastner; Merico, Anna-Maria; Compagno, Concetta; Akerlund, Hans-Erik; Gojković, Zoran; Piskur, Jure

    2008-07-18

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyveri, we show that during degradation, uracil is not reduced to dihydrouracil. Six loci, named URC1-6 (for uracil catabolism), are involved in the novel catabolic pathway. Four of them, URC3,5, URC6, and URC2 encode urea amidolyase, uracil phosphoribosyltransferase, and a putative transcription factor, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1p and Urc4p are therefore likely the core components of this novel biochemical pathway. A combination of genetic and analytical chemistry methods demonstrates that uridine monophosphate and urea are intermediates, and 3-hydroxypropionic acid, ammonia and carbon dioxide the final products of degradation. The URC pathway does not require the presence of an active respiratory chain and is therefore different from the oxidative and rut pathways described in prokaryotes, although the latter also gives 3-hydroxypropionic acid as the end product. The genes of the URC pathway are not homologous to any of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date. PMID:18550080

  5. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation.

    PubMed

    Frková, Zuzana; Johansen, Anders; de Jonge, Lis Wollesen; Olsen, Preben; Gosewinkel, Ulrich; Bester, Kai

    2016-11-01

    Phenoxy acid-contaminated subsoils are common as a result of irregular disposal of residues and production wastes in the past. For enhancing in situ biodegradation at reducing conditions, biostimulation may be an effective option. Some phenoxy acids were marketed in racemic mixtures, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth at environmentally relevant (nM) MCPP concentrations: enantiomer fraction (EF)<0.5. On the other hand, we observed preferential degradation of the S-enantiomer in all samples and treatments at elevated (μM) MCPP concentrations: EF>0.5. Three different microbial communities were discriminated by enantioselective degradation of MCPP: 1) aerobic microorganisms with little enantioselectivity, 2) aerobic microorganisms with R-selectivity and 3) anaerobic denitrifying organisms with S-selectivity. Glucose-amendment did not enhance MCPP degradation, while nitrate amendment enhanced the degradation of high concentrations of the herbicide. PMID:27432728

  6. Management Practices to Improve Productivity of Degraded/Eroded Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Productivity of degraded/eroded soils can be restored by using organic amendment, such as manure, and improved soil management. A study is being conducted near Hays, KS, to investigate and compare restorative potential of two nitrogen (N) sources. Dried beef manure and urea fertilizer were each appl...

  7. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide

    PubMed Central

    Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    Summary A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a –N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  8. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide.

    PubMed

    Carvalho, M Fernanda N N; Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a -N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  9. Spectrophotometric and liquid chromatographic determination of trimebutine maleate in the presence of its degradation products.

    PubMed

    El-Gindy, Alaa; Emara, Samy; Hadad, Ghada M

    2003-09-19

    Three methods are presented for the determination of trimebutine maleate (TM) in the presence of its degradation products. The first method was based on a high performance liquid chromatographic (HPLC) separation of TM from its degradation products using an ODS column at ambient temperature with a mobile phase consisting of acetonitrile-5 mM heptane sulfonic acid disodium salt (45:55, v/v, pH 4) with UV detection at 215 nm. The second method depends on using first derivative spectrophotometry (1D) by measurement of the amplitude at 252.2 nm. The third method depends on using first derivative of the ratio spectrophotometry (1DD) by measurement of the amplitude at 282.4 nm where a normalized spectrum of 3,4,5-trimethoxy benzoic acid is used as divisor. The proposed HPLC and 1D methods were used to investigate the kinetics of acidic and alkaline degradation processes. The pH-rate profile of degradation of TM in Britton-Robinson buffer solutions within the pH range 2-11.9 was studied. PMID:12972088

  10. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  11. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    NASA Astrophysics Data System (ADS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-06-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  12. Degradation of a stilbene-type fluorescent whitening agent with hypochlorite: identification of the degradation products by capillary electrophoresis.

    PubMed

    Blanco, M; Jiménez, L; Valverde, I

    2001-10-01

    The E,E-(4,4'-bis[2-sulfostyryl]biphenyl) (DSBP) is a fluorescent whitening agent widely used by the textile and detergent industries to whiten fabrics. Hypochlorite used to bleach fabrics oxidizes DSBP slowly at room temperature and in a higher rate at 60 degrees C. The ions of metals such as Fe, Cu, and Mn accelerate the process considerably. At ambient temperature, the oxidation results from cleavage of the stilbene bonds and involves the formation of various intermediates that evolve to end products. The intermediates form within minutes to hours and the end products within months. At 60 degrees C or in presence of the previously mentioned transition metals, intermediates form within minutes and the end products within days. The end products of the oxidation are 4-sulfobenzaldehyde and 4,4'-bisaldehyde biphenyl; in the presence of excess of hypochlorite, however, the process yields their corresponding oxidized derivatives 4-sulfobenzoic acid and 4,4'-biphenyldicarboxylic acid. Despite the chlorinating ability of hypochlorite, the major degradation products formed contain no chlorine. PMID:11596750

  13. Biodegradation of Leonardite by an alkali-producing bacterial community and characterization of the degraded products.

    PubMed

    Gao, Tong-Guo; Jiang, Feng; Yang, Jin-Shui; Li, Bao-Zhen; Yuan, Hong-Li

    2012-03-01

    In this study, three bacterial communities were obtained from 12 Leonardite samples with the aim of identifying a clean, effective, and economic technique for the dissolution of Leonardite, a type of low-grade coal, in the production of humic acid (HA). The biodegradation ability and characteristics of the degraded products of the most effective bacterial community (MCSL-2), which degraded 50% of the Leonardite within 21 days, were further investigated. Analyses of elemental composition, (13)C NMR, and Fourier transform infrared revealed that the contents of C, O, and aliphatic carbon were similar in biodegraded humic acid (bHA) and chemically (alkali) extracted humic acid (cHA). However, the N and carboxyl carbon contents of bHA was higher than that of cHA. Furthermore, a positive correlation was identified between the degradation efficiency and the increasing pH of the culture medium, while increases of manganese peroxidase and esterase activities were also observed. These data demonstrated that both alkali production and enzyme reactions were involved in Leonardite solubilization by MCSL-2, although the former mechanism predominated. No fungus was observed by microscopy. Only four bacterial phylotypes were recognized, and Bacillus licheniformis-related bacteria were identified as the main group in MCSL-2 by analysis of amplified 16S rRNA genes, thus demonstrating that Leonardite degradation ability has a limited distribution in bacteria. Hormone-like bioactivities of bHA were also detected. In this study, a bacterial community capable of Leonardite degradation was identified and the products characterized. These data implicate the use of such bacteria for the exploitation of Leonardite as a biofertilizer. PMID:22075634

  14. Degradation of dissolved organic monomers and short-chain fatty acids in sandy marine sediment by fermentation and sulfate reduction

    NASA Astrophysics Data System (ADS)

    Valdemarsen, Thomas; Kristensen, Erik

    2010-03-01

    The decay of a wide range of organic monomers (short-chain volatile fatty acids (VFA's), amino acids, glucose and a pyrimidine) was studied in marine sediments using experimental plug flow-through reactors. The reactions were followed in the presence and absence of 10 mM SO 42-. Degradation stoichiometry of individual monomers (inflow concentration of 6 mM organic C) was traced by measuring organic (VFA's, amino acids) and inorganic (CO 2, NH 4+, SO 42-) compounds in the outflow. Fermentation of amino acids was efficient and complete during passage through anoxic sediment reactors. Aliphatic amino acids (alanine, serine and glutamate) were primarily recovered as CO 2 (24-34%), formate (3-22%) and acetate (41-83%), whereas only ˜1/3 of the aromatic amino acid (tyrosine) was recovered as CO 2 (13%) and acetate (20%). Fermentation of glucose and cytosine was also efficient (78-86%) with CO 2 (30-35%), formate (3%) and acetate (28-33%) as the primary products. Fermentation of VFA's (acetate, propionate and butyrate), on the other hand, appeared to be product inhibited. The presence of SO 42- markedly stimulated VFA degradation (29-45% efficiency), and these compounds were recovered as CO 2 (17% for butyrate to 100% for acetate) and acetate (51% and 82% for propionate and butyrate, respectively). When reaction stoichiometry during fermentation is compared with compound depletion during sulfate reduction, the higher proportion CO 2 recovery is consistent with lower acetate and formate accumulation. Our results therefore suggest that fermentation reactions mediate the initial degradation of added organic compounds, even during active sulfate reduction. Fermentative degradation stoichiometry also suggested significant H 2 production, and >50% of sulfate reduction appeared to be fuelled by H 2. Furthermore, our results suggest that fermentation was the primary deamination step during degradation of the amino acids and cytosine.

  15. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resulting in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.

  16. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGESBeta

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  17. Characterization of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid-degrading fungi in Vietnamese soils.

    PubMed

    Itoh, Kazuhito; Kinoshita, Masahiro; Morishita, Shigeyuki; Chida, Masateru; Suyama, Kousuke

    2013-04-01

    Sixty-nine fungal strains were isolated countrywide from 10 Vietnamese soils, in areas both with and without a history of exposure to Agent Orange, and their degrading activities on the phenoxy acid herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), as well as related compounds, were examined. Among taxonomically various fungi, 45, 12 and 4% of the isolates degraded phenoxyacetic acid (PA), 2,4-D and 2,4,5-T, respectively. While the PA-degrading fungi were distributed to all sites and among many genera, the 2,4-D-degraders were found only in order Eurotiales in class Eurotiomycetes. All of the 2,4,5-T-degrading fungal strains were phylogenetically close to Eupenicillium spp. and were isolated from southern Vietnam. As a degradation intermediate, the corresponding phenol compounds were detected in some strains. The degradation substrate spectrum for 26 compounds of Eupenicillium spp. strains including 2,4,5-T-degraders and -non-degraders seemed to be related to phylogenetic similarity and soil sampling location of the isolates. These results suggest that the heavily contaminated environments enhanced the adaptation of the phylogenetic group of Eupenicillium spp. toward to obtain the ability to degrade 2,4,5-T. PMID:23167922

  18. EFFECT OF TRACE METALS AND SULFITE OXIDATION OF ADIPIC ACID DEGRADATION IN FGD SYSTEMS

    EPA Science Inventory

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the ...

  19. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  20. Product analysis for polyethylene degradation by radiation and thermal ageing

    NASA Astrophysics Data System (ADS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides.

  1. Stability-indicating spectrophotometric methods for determination of the anticoagulant drug apixaban in the presence of its hydrolytic degradation product.

    PubMed

    Tantawy, Mahmoud A; El-Ragehy, Nariman A; Hassan, Nagiba Y; Abdelkawy, Mohamed

    2016-04-15

    Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D(1)), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form. PMID:26824484

  2. Stability-indicating spectrophotometric methods for determination of the anticoagulant drug apixaban in the presence of its hydrolytic degradation product

    NASA Astrophysics Data System (ADS)

    Tantawy, Mahmoud A.; El-Ragehy, Nariman A.; Hassan, Nagiba Y.; Abdelkawy, Mohamed

    2016-04-01

    Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D1), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form.

  3. Degradation of Acid Orange 7 in an Atmospheric-Pressure Plasma-Solution System (Gliding Discharge)

    NASA Astrophysics Data System (ADS)

    NI, Mingjiang; YANG, Huan; CHEN, Tong; ZHANG, Hao; WU, Angjian; DU, Changming; LI, Xiaodong

    2015-03-01

    In this work, a plasma-solution system was applied to the degradation of Acid Orange 7 (AO7). The effects of initial concentration and type of feed gases (air, oxygen, nitrogen or argon) were studied. As the initial concentration increased from 100 mg/L to 160 mg/L, the discolouration rate of AO7 decreased from 99.3% to 95.9%, whereas the COD removal rate decreased from 37.9% to 22.6%. Air provided the best discolouration and COD removal rates (99.3% and 37.9%, respectively). In the presence of a zero-valent iron (ZVI) catalyst, the AO7 COD removal rate increased to 76.4%. The degradation products were analysed by a GC-MS, revealing that the degradation of the dye molecule was initiated through the cleavage of the -N=N- bond before finally being converted to organic acids. supported by National Natural Science Foundation of China (Nos. 50908237, 51076142) and the Open Foundation of the State Key Laboratory of Clean Energy Utilization of China (No. ZJUCEU2009008)

  4. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: catalyst characterization, performance and degradation products.

    PubMed

    Zhong, Yuanhong; Liang, Xiaoliang; Zhong, Yin; Zhu, Jianxi; Zhu, Sanyuan; Yuan, Peng; He, Hongping; Zhang, Jing

    2012-10-01

    Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant, could negatively affect various aspects of mammalian and human physiology, which triggers effective techniques for its removal. In this work, the degradation characteristics of TBBPA in heterogeneous UV/Fenton reaction catalyzed by titanomagnetite (Fe(3-x)Ti(x)O₄) were studied. Batch tests were conducted to evaluate the effects of titanomagnetite dosage, H₂O₂ concentration and titanium content in magnetite on TBBPA degradation. In the system with 0.125 g L⁻¹ of Fe₂.₀₂Ti₀.₉₈O₄ and 10 mmol L⁻¹) of H₂O₂, almost complete degradation of TBBPA (20 mg L⁻¹) was accomplished within 240 min UV irradiation at pH 6.5. The titanium incorporation obviously enhanced the catalytic activity of magnetite. As shown by the XRD and XANES results, titanomagnetite had a spinel structure with Ti⁴⁺ occupying the octahedral sites. On the basis of the degradation products identified by GC-MS, the degradation pathways of TBBPA were proposed. TBBPA possibly underwent the sequential debromination to form TriBBPA, DiBBPA, MonoBBPA and BPA, and β-scission to generate seven brominated compounds. All of these products were finally completely removed from reaction solution. In addition, the reused catalyst Fe₂.₀₂Ti₀.₉₈O₄ still retained the catalytic activity after three cycles, indicating that titanomagnetite had good stability and reusability. These results demonstrated that heterogeneous UV/Fenton reaction catalyzed by titanomagnetite is a promising advanced oxidation technology for the treatment of wastewater containing TBBPA. PMID:22784808

  5. Production and degradation of polyhydroxyalkanoates in waste environment

    SciTech Connect

    Lee, S.Y.; Choi, J.

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.

  6. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI).

    PubMed

    Wang, Hongyu; Liu, Yibing; Jiang, Jia-Qian

    2016-07-01

    This paper investigates the degradation of acetaminophen (AAP) in aqueous solutions by ferrate (VI), aiming to propose the kinetics, pathways and the oxidation products' formation in the AAP degradation. A series of jar tests were undertaken over ferrate (VI) dosages (molar ratios of ferrate (VI):AAP, 5:1 to 25:1) and pH values (4-11). The effects of co-existing ions (0.2-5 mM) and humic acid (10-50 mg l(-1)) on the AAP removal were investigated. Ferrate (VI) can remove 99.6% AAP (from 1000 μg l(-1)) in 60 min under study conditions when majority of the AAP reduction occurred in the first 5 min. The treatment performance depended on the ferrate(VI) dosage, pH and the type and strength of co-existing ions and humic acid. Raising ferrate (VI) dosage with optimal pH 7 improved the AAP degradation. In the presence of humic acid, the AAP degradation by ferrate (VI) was promoted in a short period (<30 min) but then inhibited with increasing in humic acid contents. The presence of Al(3+), CO3(2-) and PO4(3-) ions declined but the existence of K(+), Na(+), Mg(2+) and Ca(2+) ions can improve the AAP removal. The catalytic function of Al(3+) on the decomposition of ferrate (VI) in aqueous solution was found. The kinetics of the reaction between ferrate (VI) and AAP was pseudo first-order for ferrete (VI) and pseudo second-order for AAP. The pseudo rate constant of ferrate (VI) with AAP was 1.4 × 10(-5) L(2) mg(-2) min(-1). Three oxidation products (OPs) were identified and the AAP degradation pathways were proposed. PMID:27155474

  7. Counteraction of antibiotic production and degradation stabilizes microbial communities

    PubMed Central

    Kelsic, Eric D.; Zhao, Jeffrey; Vetsigian, Kalin; Kishony, Roy

    2015-01-01

    Summary A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity1-8, and in particular how antibiotic producing, sensitive and resistant species coexist9-15. While cyclic “rock-paper-scissors” interactions can stabilize communities in spatial environments9-11, coexistence in unstructured environments remains an enigma12,16. Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on 3-way interactions where an antibiotic degrading species attenuates the inhibitory interactions between two other species. These 3-way interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by “cheating” species that cease producing or degrading antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamical behaviors ranging from stable fixed-points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatial and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin production and degradation for microbial biodiversity. PMID:25992546

  8. Degradation of 3-phenylbutyric acid by Pseudomonas sp.

    PubMed Central

    Sariaslani, F S; Sudmeier, J L; Focht, D D

    1982-01-01

    Pseudomonas sp. isolated by selective culture with 3-phenylbutyrate (3-PB) as the sole carbon source metabolized the compound through two different pathways by initial oxidation of the benzene ring and by initial oxidation of the side chain. During early exponential growth, a catechol substance identified as 3-(2,3-dihydroxyphenyl)butyrate (2,3-DHPB) and its meta-cleavage product 2-hydroxy-7-methyl-6-oxononadioic-2,4-dienoic acid were produced. These products disappeared during late exponential growth, and considerable amounts of 2,3-DHPB reacted to form brownish polymeric substances. The catechol intermediate 2,3-DHPB could not be isolated, but cell-free extracts were able only to oxidize 3-(2,3-dihydroxyphenyl)propionate of all dihydroxy aromatic acids tested. Moreover, a reaction product caused by dehydration of 2,3-DHPB on silica gel was isolated and identified by spectral analysis as (--)-8-hydroxy-4-methyl-3,4-dihydrocoumarin. 3-Phenylpropionate and a hydroxycinnamate were found in supernatants of cultures grown on 3-PB; phenylacetate and benzoate were found in supernatants of cultures grown on 3-phenylpropionate; and phenylacetate was found in cultures grown on cinnamate. Cells grown on 3-PB rapidly oxidized 3-phenylpropionate, cinnamate, catechol, and 3-(2,3-dihydroxyphenyl)propionate, whereas 2-phenylpropionate, 2,3-dihydroxycinnamate, benzoate, phenylacetate, and salicylate were oxidized at much slower rates. Phenylsuccinate was not utilized for growth nor was it oxidized by washed cell suspensions grown on 3-PB. However, dual axenic cultures of Pseudomonas acidovorans and Klebsiella pneumoniae, which could not grow on phenylsuccinate alone, could grow syntrophically and produced the same metabolites found during catabolism of 3-PB by Pseudomonas sp. Washed cell suspensions of dual axenic cultures also immediately oxidized phenylsuccinate, 3-phenylpropionate, cinnamate, phenylacetate, and benzoate. PMID:7118830

  9. Zinc chloride mediated degradation of cellulose at 200 °C and identification of the products

    PubMed Central

    Amarasekara, Ananda S.; Ebede, Chidinma C.

    2009-01-01

    The effect of ZnCl2 on the degradation of cellulose was studied to develop conditions to produce useful feedstock chemicals directly from cellulosic biomass. Cellulose containing 0.5 mol of ZnCl2/mol of glucose unit of cellulose was found to degrade at 200 °C when heated for more than 60 s in air. The major non gaseous products of the degradation were identified as furfural, 5-hydroxymethylfurfural and levulinic acid. The maximum yields for furfural and 5-hydroxymethylfurfural are 8 and 9 % respectively based on glucose unit of cellulose. These yields are reached after 150 s of heating at 200 °C. A cellulose sample containing 0.5 mol of ZnCl2/mol of glucose unit of cellulose and 5.6 equivalents of water when heated for 150 s at 200 °C produced levulinic acid as the only product in 6% yield. The ZnCl2 mediated controlled degradation of cellulose at 200 °C is shown to produce useful feedstock chemicals in low yield. PMID:19540751

  10. Microbiological degradation of bile acids. Nitrogenous hexahydroindane derivatives formed from cholic acid by Streptomyces rubescens.

    PubMed Central

    Hayakawa, S; Hashimoto, S; Onaka, T

    1976-01-01

    The metabolism of cholic acid (I) by Streptomyces rubescens was investigated. This organism effected ring A cleavage, side-chain shortening and amide bond formation and gave the following metabolites: (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1 beta-yl]valeric acid (IIa) and its mono-amide (valeramide) (IIb); and 2,3,4,6, 6abeta,7,8,9,9aalpha,9bbeta-decahydro-6abeta-methyl-1H-cyclopenta[f]quinoline-3,7-dione(IIIe)and its homologues with the beta-oriented side chains, valeric acid, valeramide, butanone and propionic acid, in the place of the oxo group at C-7, i.e.compounds (IIIa), (IIIb), (IIIc) and (IIId) respectively. All the nitrogenous metabolites were new compounds, and their structures were established by partial synthesis except for the metabolite (IIIc). The mechanism of formation of these metabolites is considered. A degradative pathway of cholic acid (I) into the metabolites is also tentatively proposed. PMID:1016253

  11. Degradation of carbohydrates during dilute sulfuric acid pretreatment can interfere with lignin measurements in solid residues.

    PubMed

    Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F

    2013-04-01

    The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high. PMID:23428141

  12. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.

    PubMed

    Esclapez, M D; Díez-García, M I; Sàez, V; Bonete, P; González-García, José

    2013-01-01

    The electrochemical degradation of trichloroacetic acid (TCAA) in water has been analysed through voltammetric studies with a rotating disc electrode and controlled-potential bulk electrolyses. The influence of the mass-transport conditions and initial concentration of TCAA for titanium, stainless steel and carbon electrodes has been studied. It is shown that the electrochemical reduction of TCAA takes place prior to the massive hydrogen evolution in the potential window for all electrode materials studied. The current efficiency is high (> 18%) compared with those normally reported in the literature, and the fractional conversion is above 50% for all the electrodes studied. Only dichloroacetic acid (DCAA) and chloride anions were routinely detected as reduction products for any of the electrodes, and reasonable values of mass balance error were obtained. Of the three materials studied, the titanium cathode gave the best results. PMID:23530352

  13. [Photocatalytic degradation kinetics of perfluorooctanoic acid (PFOA) in TiO2 dispersion and its mechanism].

    PubMed

    Li, Ming-Jie; Yu, Ze-Bin; Chen, Ying; Wang, Li; Liu, Qing; Liu, Yu-Xin; He, Li-Li

    2014-07-01

    Decomposition of perfluorooctanoic acid (PFOA) is of prime importance since it is recognized as a persistent organic pollutant and is widespread in the environment. Heterogeneous photocatalytic decomposition of PFOA by TiO2 (P25) was investigated under 254 nm UV light. Experimental conditions including initial pH, TiO2 content and PFOA concentration, were varied to demonstrate their effects on the decomposition of PFOA. It was observed that the photocatalytic degradation kinetics of PFOA could be fitted to the quasi-first-order equation. The pH played a determinant role in the decomposition of PFOA and the presence of O2 increased the degradation rate. Optimal conditions for a complete removal were obtained using 1.5 g x L(-1) TiO2 at pH 3 in air atmosphere, with a rate constant of 0.420 6 h(-1). The contribution experiments of various reactive species produced during the photocatalysis were also investigated with the addition of different scavengers and it was found that photogenerated holes (h+) was the major reactive species which was responsible for 66.1% of the degradation rate, and the *OH was involved in PFOA degradation as well. In addition, the photocatalytic experiment with the addition of NaF indicated that the adsorption of PFOA was of primary importance for the photocatalytic decomposition. Perfluorocarboxylic acids (PFCAs) with shorter carbon chain length as intermediates and products were identified with UPLC-QTOF/MS, and a possible mechanism for PFOA decomposition was proposed. PMID:25244845

  14. Cytotoxic Glucose Degradation Products in Fluids for Peritoneal Dialysis

    PubMed Central

    Adib, Noushin; Shekarchi, Maryam; Hajimehdipoor, Homa; Shalviri, Gloria; Shekarchi, Maral; Imaninejad, Maryam

    2011-01-01

    During the standard heat sterilization process of the lactate–buffered peritoneal dialysis solutions, glucose (an osmotic active substance) degrades to form compounds called glucose degradation products which are cytotoxic and affect the survival of the peritoneal membrane. This case presentation is based on an observation of 224 aseptic peritonitis cases of unknown etiology. For the purpose of clarification, we analyzed the peritoneal dialysis solutions for the presence of acetaldehyde by using a developed and validated high-performance liquid chromatography (HPLC) pre-column derivitazation. The method was validated with respect to validation factors such as linearity, precision, recovery and (LOD). The acetaldehyde level of solutions before heat sterilization was 1.78 ± 2.7 ppm whereas in samples after heat sterilization was about 20 ± 2.07 ppm. Based on the forementioned findings, we hypothesized that the higher levels of acetaldehyde and possibly the other glucose degradation products may have been an etiological factor in these 224 cases of chemical peritonitis. So it is important for the manufacturers to carefully review the heat of sterilization process in the production line. PMID:24363689

  15. Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl.

    PubMed

    Fang, Guo-Dong; Zhou, Dong-Mei; Dionysiou, Dionysios D

    2013-04-15

    Increasing attention has been paid to magnetite nanoparticles (MNPs) due to their highly reductive reactivity toward environmental contaminants. However, there is little information related to the generation of reactive oxygen species (ROS) by MNPs, which in fact plays a vital role for the transformation of contaminants. In this paper, the degradation of 2-chlorobiphenyl (2-CB) by MNPs was investigated. The role of ROS generated by MNPs in this process was elucidated. The results demonstrated that hydroxyl radicals (OH) generated by MNPs at low pH could efficiently degrade 2-CB. The mechanism of the formation of OH by MNPs was divided into two steps: (i) the superoxide radical anion (O2(-)) mediated production of hydrogen peroxide (H2O2), and (ii) the reaction of formed H2O2 with Fe(II) dissolved from MNPs to produce OH through Fenton reaction. Comparison of the degradation products of 2-CB by MNPs with MNPs/ethanol and Fenton reagents further supported the involvement of OH in the degradation of 2-CB. The degradation efficiency of 2-CB by MNPs under acidic conditions was higher than that in alkaline solution. These findings provide a new insight into the understanding of reactivity of MNPs for the transformation of 2-CB and possibly other relevant environmental contaminants. PMID:23434481

  16. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  17. Use of LC-MS/TOF, LC-MS(n), NMR and LC-NMR in characterization of stress degradation products: Application to cilazapril.

    PubMed

    Narayanam, Mallikarjun; Sahu, Archana; Singh, Saranjit

    2015-01-01

    Forced degradation studies on cilazapril were carried out according to ICH and WHO guidelines. Significant degradation of the drug was observed in acid and base conditions, resulting primarily in cilazaprilat. In neutral condition, five degradation products were formed, while under oxidative condition, two degradation products were generated. In total, seven degradation products were formed, which were separated on an Inertsil C-18 column using a stability-indicating HPLC method. Structure elucidation of the degradation products was done by using sophisticated and hyphenated tools like, LC-MS/TOF, LC-MS(n), on-line H/D exchange, LC-NMR and NMR. Initially, comprehensive mass fragmentation pathway of the drug was laid down. Critical comparison of mass fragmentation pathways of the drug and its hydrolytic degradation products allowed structure characterization of the latter. 1D and 2D proton LC-NMR studies further confirmed the proposed structures of hydrolytic degradation products. The oxidative degradation products could not be characterized using LC-MS and LC-NMR tools. Hence, these degradation products were isolated using preparative HPLC and extensive 1D ((1)H, (13)C, DEPT) and 2D (COSY, TOCSY, HETCOR and HMBC) NMR studies were performed to ascertain their structures. Finally, degradation pathways and mechanisms of degradation of the drug were outlined. PMID:25890215

  18. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  19. Fate of products of degradation processes: consequences for climatic change.

    PubMed

    Slanina, J; ten Brink, H M; Khlystov, A

    1999-03-01

    The end products of atmospheric degradation are not only CO2 and H2O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m-2 and an indirect effect of as large as -5 watt m-2. About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions. PMID:10070730

  20. Radiolytic gas production in the alpha particle degradation of plastics

    SciTech Connect

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-05-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100{degree}C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100{degree}C.

  1. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J.; Standley, Stephany M.; Jain, Rachna; Lee, Cameron C.

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  2. Identification and Characterization of Hydrolytic Degradation Products of Cefditoren Pivoxil using LC and LC-MS/TOF

    PubMed Central

    Gawande, V. T.; Bothara, K. G.; Singh, A.; Mahajan, A. A.

    2015-01-01

    The present research work was carried out to determine stability of cefditoren pivoxil, an orally absorbed prodrug that is rapidly hydrolysed by intestinal esterases to the active cephalosporin cefditoren. Cefditoren was subjected to stress conditions recommended by the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use guideline Q1A (R2). Cefditoren pivoxil was susceptible for degradation under acidic, alkaline and neutral hydrolytic conditions while it was stable under photolytic and thermal stress conditions. Separation of cefditoren and degradation products were carried out by using HPLC. The unknown degradation products were characterized by liquid chromatography-mass spectrometry/time of flight studies. Structures were proposed for each fragment based on best possible molecular formula and complete degradation pathways were reported for cefditoren and its degradants. PMID:25767321

  3. Liquid chromatography-fluorescence and liquid chromatography-mass spectrometry detection of tryptophan degradation products of a recombinant monoclonal antibody.

    PubMed

    Nowak, Christine; Ponniah, Gomathinayagam; Cheng, Guilong; Kita, Adriana; Neill, Alyssa; Kori, Yekaterina; Liu, Hongcheng

    2016-03-01

    Light exposure is one of several conditions used to study the degradation pathways of recombinant monoclonal antibodies. Tryptophan is of particular interest among the 20 amino acids because it is the most photosensitive. Tryptophan degradation forms several products, including an even stronger photosensitizer and several reactive oxygen species. The current study reports a specific peptide mapping procedure to monitor tryptophan degradation. Instead of monitoring peptides using UV 214 nm, fluorescence detection with an excitation wavelength of 295 nm and an emission wavelength of 350 nm was used to enable specific detection of tryptophan-containing peptides. Peaks that decreased in area over time are likely to contain susceptible tryptophan residues. This observation can allow further liquid chromatography-mass spectrometry (LC-MS) analysis to focus only on those peaks to confirm tryptophan degradation products. After confirmation of tryptophan degradation, susceptibility of tryptophan residues can be compared based on the peak area decrease. PMID:26717898

  4. Supercritical fluid chromatography as a method of analysis for the determination of 4-hydroxybenzylglucosinolate degradation products.

    PubMed

    Buskov, S; Hasselstrøm, J; Olsen, C E; Sørensen, H; Sørensen, J C; Sørensen, S

    2000-07-01

    In the present study analytical and preparative supercritical fluid chromatography (SFC) were used for investigation of myrosinase catalysed degradation of 4-hydroxybenzylglucosinolate (sinalbin). Sinalbin occurs as a major glucosinolate in seeds of Sinapis alba L., in various mustards and other food products. The degradation products were identified and quantified by analysis based on a developed SFC method using a bare silica column. Determinations comprised transformation products of sinalbin, produced both during degradation of isolated sinalbin, and during autolysis of meal from S. alba seeds. The conditions in the developed SFC method were used as basis for the preparative SFC procedure applied for isolation of the components prior to their identification by nuclear magnetic resonance (NMR) spectroscopy. Myrosinase catalysed sinalbin hydrolysis resulted in the reactive 4-hydroxybenzyl isothiocyanate as an initial product at pH values from 3.5 to 7.5 whereas 4-hydroxybenzyl cyanide was one of the major products at low pH values. 4-Hydroxybenzyl isothiocyanate was found to disappear from the aqueous reaction mixtures in a few hours, as it reacted easily with available nucleophilic reagents. 4-Hydroxybenzyl alcohol was found as the product from reaction with water, and with ascorbic acid, 4-hydroxybenzylascorbigen was produced. PMID:10869674

  5. Stress Degradation Behavior of Abacavir Sulfate and Development of a Suitable Stability-Indicating UHPLC Method for the Determination of Abacavir, its Related Substances, and Degradation Products.

    PubMed

    Vukkum, Pallavi; Deshpande, Girish R; Babu, J Moses; Muralikrishna, R; Jagu, Pavani

    2012-12-01

    A novel, stability-indicating UHPLC method was developed for the quantitative determination of Abacavir sulfate, its related substances, and forced degradation impurities in bulk drugs. The chromatographic separation was achieved on a Waters Acquity BEH C(8), 50 mm × 2.1 mm, 1.7 μm particle size column with a mobile containing a gradient mixture of solution A (0.10 % v/v o-phosphoric acid in water) and solution B (0.10% v/v o-phosphoric acid in methanol). The flow rate was set at 0.40 mL/min and the run time was 6.0 min. The drug substance was subjected to the stress studies of hydrolysis, oxidation, photolysis, and thermal degradation. Abacavir sulfate was found to degrade significantly under acidic hydrolysis and oxidative stress conditions. The formed degradation products were reported and were well-resolved from Abacavir and its related substances. The mass balance was found to be satisfactory in all of the stress conditions, thus proving the stability-indicating capability of the method. The developed UHPLC method was validated to be in agreement with ICH requirements and found to be rapid, accurate, precise, linear, specific, and suitable for the quantitative determination of related substances and degradants in the bulk drug samples of Abacavir sulfate. PMID:23264939

  6. Validated stability-indicating liquid chromatographic method for the determination of ribavirin in the presence of its degradation products: application to degradation kinetics.

    PubMed

    Belal, Fathalla; Sharaf El-Din, Mohie K; Eid, Manal I; El-Gamal, Rania M

    2015-04-01

    Ribavirin was found to be liable to acidic, alkaline, oxidative and photolytic degradation. Hence, a simple, sensitive and stability-indicating reversed-phase liquid chromatographic method was developed and validated for the determination of ribavirin in the presence of its degradation products. The analysis was carried out on an ODS C18 (250 × 4.6 mm i.d.) stainless steel column using a mobile phase consisting of 0.02 M potassium dihydrogen phosphate. The analysis was performed at ambient temperature with a flow rate of 1 mL/min and UV detection at 207 nm. Pyridoxine hydrochloride was used as an internal standard. The method showed good linearity over the concentration range of 2.0-40 µg/mL with limit of detection of 0.34 µg/mL and limit of quantification of 1.03 µg/mL. The suggested method was successfully applied for the analysis of ribavirin in its commercial capsules. Statistical evaluation and comparison of the data obtained by the proposed and comparison method revealed good accuracy and precision of the proposed method. The drug was exposed to forced alkaline, acidic, oxidative and photolytic degradation according to the ICH guidelines. Moreover, the method was utilized to investigate the kinetics of alkaline and acidic degradation of the drug. The apparent first-order rate constants, half-life times and activation energies of the degradation process were calculated. PMID:25092904

  7. Fungal degradation of coal as a pretreatment for methane production

    USGS Publications Warehouse

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  8. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Aktas, Nahit; Silan, Coskun

    2016-06-01

    From a natural polyphenol, Tannic acid (TA), poly(TA) nanoparticles were readily prepared using a single step approach with three different biocompatible crosslinkers; trimethylolpropane triglycidyl ether (TMPGDE), poly(ethylene glycol) diglycidyl ether (PEGGE), and trisodium trimetaphosphate (STMP). P(TA) particles were obtained with controllable diameters between 400 to 800nm with -25mV surface charge. The effect of synthesis conditions, such as the emulsion medium, pH values of TA solution, and the type of crosslinker, on the shape, size, dispersity, yield, and degradability of poly(Tannic Acid) (p(TA)) nanoparticles was systematically investigated. The hydrolytic degradation amount in physiological pH conditions of 5.4, 7.4, and 9.0 at 37.5°C were found to be in the order TMPGDEdegradation amounts of TA from p(TA) nanoparticles can be controlled by the appropriate choice of crosslinker, and the pH of releasing media. The highest TA release, 600mg/g, was obtained for TMPGDE-crosslinked p(TA) particles in intestinal pH conditions (pH 9) over 3 days; whereas, a slow and linear TA release profile over almost 30 days was obtained by using PEGGE-crosslinked p(TA) in body fluid pH conditions (pH 7.4). The total phenol content of p(TA) particles was calculated as 70±1μgmL(-1) for 170μgmL(-1) p(TA), and the trolox equivalent antioxidant capacity was found to be 2027±104mM trolox equivalent g(-1). Moreover, p(TA) nanoparticles demonstrated strong antimicrobial effects against common bacterial strains. More interestingly, with a higher concentration of p(TA) particles, higher blood clotting indices were obtained. PMID:26970821

  9. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions

    SciTech Connect

    Blum, U.

    1998-04-01

    Reversible sorption of phenolic acids by soils may provide some protection to phenolic acids from microbial degradation. In the absence of microbes, reversible sorption 35 days after addition of 0.5--3 {micro}mol/g of ferulic acid or p-coumaric acid was 8--14% in Cecil A{sub p} horizon and 31--38% in Cecil B{sub t} horizon soil materials. The reversibly sorbed/solution ratios (r/s) for ferulic acid or p-coumaric acid ranged from 0.12 to 0.25 in A{sub p} and 0.65 to 0.85 in B{sub t} horizon soil materials. When microbes were introduced, the r/s ratio for both the A{sub p} and B{sub t} horizon soil materials increased over time up to 5 and 2, respectively, thereby indicating a more rapid utilization of solution phenolic acids over reversibly sorbed phenolic acids. The increase in r/s ratio and the overall microbial utilization of ferulic acid and/or p-coumaric acid were much more rapid in A{sub p} than in B{sub t} horizon soil materials. Reversible sorption, however, provided protection of phenolic acids from microbial utilization for only very short periods of time. Differential soil fixation, microbial production of benzoic acids (e.g., vanillic acid and p-hydroxybenzoic acid) from cinnamic acids (e.g., ferulic acid and p-coumaric acid, respectively), and the subsequent differential utilization of cinnamic and benzoic acids by soil microbes indicated that these processes can substantially influence the magnitude and duration of the phytotoxicity of individual phenolic acids.

  10. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide.

    PubMed

    Dillert, Ralf; Bahnemann, Detlef; Hidaka, Hisao

    2007-03-01

    The UV-photon-induced degradation of heptafluorobutanoic acid was investigated in acidic aqueous solutions in the presence of titanium dioxide. Heptafluorobutanoic acid could be degraded with this photocatalyst in a light-induced reaction generating carbon dioxide and fluoride anions. Carbon dioxide evolution in a significant amount occurred only in the presence of molecular oxygen and the photocatalyst. The light-induced degradation of trifluoroacetic acid, pentafluoropropanoic acid, nonafluorobutanoic acid, pentadecafluorooctanoic acid, nonafluorobutanesulfonic acid, and heptadecafluorooctanesulfonic acid in the presence of titanium dioxide was also studied. The perfluorocarboxylic acids under investigation are degraded to generate CO(2) and fluoride anions while both perfluorinated sulfonic acids are persistent under the experimental conditions employed in this study. For all compounds photonic efficiencies of the mineralization reaction were estimated to be smaller than 1x10(-5). To increase the photocatalytic activity mixed systems containing homogeneous phosphotungstic acid and heterogeneous titanium dioxide catalysts were also investigated. In the mixtures of these two photocatalysts, the formation rate of CO(2) increased with illumination time. PMID:17126882

  11. Forced degradation of fingolimod: effect of co-solvent and characterization of degradation products by UHPLC-Q-TOF-MS/MS and 1H NMR.

    PubMed

    Patel, Prinesh N; Kalariya, Pradipbhai D; Gananadhamu, S; Srinivas, R

    2015-11-10

    Fingolimod (FGL), an immunomodulator drug for treating multiple sclerosis, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per International Conference on Harmonization specified conditions. The drug showed extensive degradation under base hydrolysis, however, it was stable under all other conditions. A total of three degradation products (DPs) were observed. The chromatographic separation of the drug and its degradation products was achieved on a Fortis C18 (100×2.1mm, 1.7μm) column with a mobile phase composed of 0.1% formic acid (Solvent A) and acetonitrile (Solvent B) in gradient mode. All the DPs were identified and characterized by liquid chromatography-quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) in combination with accurate mass measurements. The major DP was isolated and characterized by Nuclear Magnetic resonance spectroscopy. This is a typical case of degradation where acetonitrile used as co-solvent in stress studies, reacts with FGL in base hydrolytic conditions to produce acetylated DPs. Hence, it can be suggested that acetonitrile is not preferable as a co-solvent for stress degradation of FGL. The developed UHPLC method was validated as per ICH guidelines. PMID:26279369

  12. Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains

    PubMed Central

    Arakaki, R.L.; Monteiro, D.A.; Boscolo, M.; Dasilva, R.; Gomes, E.

    2013-01-01

    Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L−1 of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase. PMID:24688513

  13. Degradable Cationic Shell Crosslinked Knedel-like Nanoparticles: Synthesis, degradation, nucleic acid binding and in vitro evaluation

    PubMed Central

    Samarajeewa, Sandani; Ibricevic, Aida; Gunsten, Sean P.; Shrestha, Ritu; Elsabahy, Mahmoud; Brody, Steven L.; Wooley, Karen L.

    2013-01-01

    In this work, degradable cationic shell crosslinked knedel-like (deg-cSCK) nanoparticles were developed as an alternative platform to replace similar non-degradable cSCK nanoparticles that have been utilized for nucleic acids delivery. An amphiphilic diblock copolymer poly(acrylamidoethylamine)90-block-poly(DL-lactide)40 (PAEA90-b-PDLLA40) was synthesized, self-assembled in aqueous solution and shell crosslinked using a hydrolyzable crosslinker to afford deg-cSCKs with an average core diameter of 45 ± 7 nm. These nanoparticles were fluorescently labeled for in vitro tracking. The enzymatic- and hydrolytic-degradability, siRNA binding affinity, cell uptake and cytotoxicity of the deg-cSCKs were evaluated. Esterase-catalyzed hydrolysis of the nanoparticles resulted in the degradation of ca. 24% of the PDLLA core into lactic acid within 5 d, as opposed to only ca. 9% degradation from aqueous solutions of the deg-cSCK nanoparticles in the absence of enzyme. Cellular uptake of deg-cSCKs was efficient, while exhibiting low cytotoxicity with LD50 values of ca. 90 μg/mL and 30 μg/mL in RAW 264.7 mouse macrophages and MLE 12 cell lines, respectively, ca. 5–6-fold lower than the cytotoxicity observed for non-degradable cSCK analogs. Additionally, deg-cSCKs were able to complex siRNA at an N/P ratio as low as 2, and were efficiently able to facilitate cellular uptake of the complexed nucleic acids. PMID:23510389

  14. Degradation of trans-ferulic acid in acidic aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton.

    PubMed

    Flores, Nelly; Sirés, Ignasi; Garrido, José Antonio; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Brillas, Enric

    2016-12-01

    Solutions of pH 3.0 containing trans-ferulic acid, a phenolic compound in olive oil mill wastewater, have been comparatively degraded by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Trials were performed with a BDD/air-diffusion cell, where oxidizing OH was produced from water discharge at the BDD anode and/or in the solution bulk from Fenton's reaction between cathodically generated H2O2 and added catalytic Fe(2+). The substrate was very slowly removed by AO-H2O2, whereas it was very rapidly abated by EF and PEF, at similar rate in both cases, due to its fast reaction with OH in the bulk. The AO-H2O2 process yielded a slightly lower mineralization than EF, which promoted the accumulation of barely oxidizable products like Fe(III) complexes. In contrast, the fast photolysis of these latter species under irradiation with UVA light in PEF led to an almost total mineralization with 98% total organic carbon decay. The effect of current density and substrate concentration on the performance of all treatments was examined. Several solar PEF (SPEF) trials showed its viability for the treatment of wastewater containing trans-ferulic acid at larger scale. Four primary aromatic products were identified by GC-MS analysis of electrolyzed solutions, and final carboxylic acids like fumaric, acetic and oxalic were detected by ion-exclusion HPLC. A reaction sequence for trans-ferulic acid mineralization involving all the detected products is finally proposed. PMID:26691522

  15. Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Yi; Wakeham, Stuart G.; Lee, Cindy

    1997-01-01

    The rates and pathways of labile organic matter degradation significantly affect the cycling of organic carbon and nutrients in coastal sediments. In this study, we measured degradation rate constants of saturated and unsaturated fatty acids by incubating radiolabeled 1- 14C-palmitic (16:0) and 1- 14C-oleic (18:1) acids and an unlabeled plankton mixture in oxic and anoxic sediments from Long Island Sound (LIS) under laboratory-controlled conditions. Rate constants for degradation of 16:0 and 18:1 fatty acids were higher in oxic sediments than in anoxic sediments. Degradation of the unsaturated 18:1 acid in anoxic sediments was two times faster than for 16:0, while there was little difference between the two fatty acids in oxic sediments. The incubation results clearly showed that fatty acids degrade through multiple pathways in both oxic and anoxic sediments. About 80-90% of the label was lost from the incubated sediments (presumably as 14CO 2 or other volatile products), and 5-10% was incorporated into the sediment matrix. Both degradation and incorporation into the sediment matrix were slightly greater under oxic conditions. A small part (5-10%) of the label was incorporated into what are presumed to be metabolic products. A higher percentage of this incorporation occurred under anoxic conditions, implying that anaerobic bacteria are less efficient at degrading the labeled fatty acid to volatile products such as CO 2. In the oxic sediments, more oleic than palmitic acid was converted into intermediate metabolites, indicating that the unsaturated fatty acid was degraded less efficiently. There was little difference in formation of metabolites between oleic and palmitic acids under anoxic conditions. The seasonal distributions of palmitic and oleic acids at two coastal LIS sites with distinctive oxygen content were modeled to yield degradation rate constants for these two fatty acids. The comparison between fatty acid degradation rate constants derived from

  16. Production of 3-hydroxypropionic acid from acrylic acid by newly isolated rhodococcus erythropolis LG12.

    PubMed

    Lee, Sang-Hyun; Park, Si Jae; Park, Oh-Jin; Cho, Junhyeong; Rhee, Joo Won

    2009-05-01

    A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropolis LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an OD600 of 5. Further cultivation of R. erythropolis LG12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/I/h at 30 degrees after 72 h. PMID:19494695

  17. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L.

    PubMed Central

    Neuhaus, H E; Schulte, N

    1996-01-01

    C3 or crassulacean acid metabolism (CAM)-induced Mesembryanthemum crystallinum plants perform nocturnal starch degradation which is linear with time. To analyse the composition of metabolites released by isolated leaf chloroplasts during starch degradation we developed a protocol for the purification of starch-containing plastids. Isolated chloroplasts from C3 or CAM-induced M. crystallinum plants are also able to degrade starch. With respect to the endogenous starch content of isolated plastids the rate of starch degradation in intact leaves. The combined presence of Pi, ATP, and oxaloacetate is identified to be the most positive effector combination to induce starch mobilization. The metabolic flux through the oxidative pentose-phosphate pathway in chloroplasts isolated from CAM-induced M. crystallinum is less than 3.5% compared with other metabolic routes of starch degradation. Here we report that starch-degrading chloroplasts isolated from CAM-induced M. crystallinum plants use exogenously supplied oxaloacetate for the synthesis of malate. The main products of starch degradation exported into the incubation medium by these chloroplasts are glucose 6-phosphate, 3-phosphoglyceric acid, dihydroxyacetone phosphate and glucose. The identification of glucose 6-phosphate as an important metabolite released during starch degradation is in contrast to the observations made on all other types of plastids analysed so far, including chloroplasts isolated from M. crystallinum in the C3 state. Therefore, we analysed the transport properties of isolated chloroplasts from M. crystallinum. Surprisingly, both types of chloroplasts, isolated from either C3 or CAM-induced plants, are able to transport glucose 6-phosphate in counter exchange with endogenous Pi, indicating the presence of a glucose 6-phosphate translocator as recently demonstrated to occur in other types of plastids. The composition of metabolites released and the stimulatory effect of oxaloacetate on the rate of

  18. Hydrolytic degradation study of biodegradable polyesteramide copolymers based on epsilon-caprolactone and 11-aminoundecanoic acid.

    PubMed

    Qian, Zhiyong; Li, Sai; He, Yi; Zhang, Hailian; Liu, Xiaobo

    2004-05-01

    In this paper, a new kind of aliphatic biodegradable polyesteramide copolymers P(CL/AU)x/y based on epsilon-caprolactone and 11-aminoundecanoic acid were synthesized by the melt polycondensation method. Hydrolytic degradation behavior of P(CL/AU) copolymers were studied by using FTIR, 1H-NMR and DSC. Chemical compositions, macromolecular weight, thickness of the test sample, and pH of the degradation medium have great effect on degradation rate. The degradation rate decreased with increase in aminoundecanoic acid content, macromolecular weight, and thickness of the test samples, but increased with incubation temperature and pH of the degradation medium. The degradation mechanism was studied according to the mathematical model developed by professor Göpferich. PMID:14741611

  19. ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    In 1998, USEPA published a Drinking Water Contaminant Candidate List (CCL) of 50 chemicals and 10 microorganisms. "Alachlor ESA and other acetanilide herbicide degradation products" is listed on the the 1998 CCL. Acetanilide degradation products are generally more water soluble...

  20. DETERMINATION OF INTERFERING TRIAZINE DEGRADATION PRODUCTS BY GAS CHROMATOGRAPHY-ION TRAP MASS SPECTROMETRY

    EPA Science Inventory

    Deethyl atrazine (DEA), along with other triazine degradation products, has been added to the US Environmental Protection Agency's Drinking Water Contaminant Candidate List (CCL). In its gas chromatographic (GC) analysis, deethyl atrazine, a degradation product of atrazine, can ...

  1. [Determination of main degradation products of lignin using reversed-phase high performance liquid chromatography].

    PubMed

    Jiang, Zhijing; Zhu, Junjun; Li, Xin; Lian, Zhina; Yu, Shiyuan; Yong, Qiang

    2011-01-01

    An analytical method using reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the separation and quantitative determination of main degradation products of lignin (4-hydroxybenzoic acid, vanillic acid, syringic acid, 4-hydroxybenzaldehyde, vanillin and syringaldehyde) during the steam exploded pretreatment for corn stovers. The separation was carried out on a C18 column with the mobile phase of acetonitrile-water (containing 1.5% acetic acid) at 30 degrees C at a flow rate of 0.8 mL/min and the detection wavelengths of 254 and 280 nm. Under the optimized conditions, the correlation coefficients of the 6 compounds were between 0.999 9 and 1.000 0. The recoveries of the 6 compounds were all above 96% and the relative standard deviations (n = 6) were less than 2.5%. This method is suitable for the determination of the main degradation products of lignin during the steam exploded pretreatment of lignocellulosics. PMID:21574401

  2. Draft Genome Sequence of Perfluorooctane Acid-Degrading Bacterium Pseudomonas parafulva YAB-1

    PubMed Central

    Tang, Chongjian; Peng, Qingjing; Peng, Qingzhong

    2015-01-01

    Pseudomonas parafulva YAB-1, isolated from perfluorinated compound-contaminated soil, has the ability to degrade perfluorooctane acid (PFOA) compound. Here, we report the draft genome sequence and annotation of the PFOA-degrading bacterium P. parafulva YAB-1. The data provide the basis to investigate the molecular mechanism of PFOA metabolism. PMID:26337877

  3. Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Radford, Jessica; Laws, Andrew P.; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J.; Humphreys, Paul N.

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  4. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  5. Comparison of degradation reactions of Acid Yellow 61 in both oxidation processes of H2O2/UV and O3.

    PubMed

    Wang, Y Z; Yedeler, A; Kettrup, A

    2001-07-01

    The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H2O2/UV and O3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented similar, it was found there are some differences from the results of AOX removal and production of inorganic ions and organic acids. The results reveal that the H2O2/UV has beneficial effect on mineralization than O3 only for degradation of Acid Yellow 61 solution and it is possible for enhancement of method efficiency by taking longer reaction time and addition of high concentration of oxidants. PMID:11590760

  6. Characterization of stress degradation products of duloxetine hydrochloride employing LC-UV/PDA and LC-MS/TOF studies.

    PubMed

    Chadha, Renu; Bali, Alka; Bansal, Gulshan

    2016-03-20

    Duloxetine HCl was subjected to forced degradation under conditions of hydrolysis (neutral, acidic and alkaline), oxidation, photolysis and thermal stress, as suggested in the ICH guideline Q1A(R2). The drug showed significant degradation under acidic, alkaline and aqueous hydrolytic as well as photolytic conditions. The drug remained stable under thermal and oxidative stress conditions. In total, seventeen degradation products (I-XVII) were formed under varied conditions, which could be separated by chromatography of respective degraded solutions on C18 (250 mm×4.6 mm; 5 μ, Nulceodur) column using isocratic elution method. Detection wavelength was selected as 290 nm. MS/TOF accurate mass studies were carried out to establish the complete fragmentation pathway of the drug and degradation products, which, in turn, was utilized in characterization of the products. The degradation pathway of the drug leading to generation of fifteen products I-X, XII-XIII, XV-XVII was postulated and this has not been reported so far. PMID:26775018

  7. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  8. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    PubMed

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  9. Mechanistic Study of the Acid Degradation of Lignin Model Compounds

    SciTech Connect

    Sturgeon, M.; Kim, S.; Chmely, S. C.; Foust, T. D.; Beckham, G. T.

    2012-01-01

    Lignin is a major constituent of biomass, which remains underutilized in selective biomass conversion strategies to renewable fuels and chemicals. Here we are interested in understanding the mechanisms related to the acid deconstruction of lignin with a combined theoretical and experimental approach. Two model dimers with a b-O-4 aryl ether linkage (2-phenoxy-1-phenethanol and 2-phenoxy-1-phenyl-1,3 propanediol) and model dimmers with an a-O-4 aryl ether linkage were synthesized and deconstructed in H2SO4. The major products of the acidolysis of the b-O-4 compounds consisted of phenol and two aldehydes, phenylacetaldehyde and benzaldehyde. Quantum mechanical calculations were employed to elucidate possible deconstruction mechanisms with transition state theory. To confirm proposed mechanisms several possible intermediates were studied under similar acidolysis conditions. Although the resonance time for cleavage was on the order several hours, we have shown that the cleavage of the aryl ether linkage affords phenol and aldehydes. We would next like to utilize our mechanism of aryl ether cleavage in actual lignin.

  10. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.

    PubMed

    Lu, L; Peter, S J; Lyman, M D; Lai, H L; Leite, S M; Tamada, J A; Uyama, S; Vacanti, J P; Langer, R; Mikos, A G

    2000-09-01

    foams exhibited significantly faster degradation in vivo as compared to in vitro conditions due to an autocatalytic effect of the accumulated acidic degradation products in the medium surrounding the implants. These results suggest that the polymer composition and environmental conditions have significant effects on the degradation rate of porous PLGA foams. PMID:10919687

  11. Degradation Products of Benzophenone-3 in Chlorinated Seawater Swimming Pools.

    PubMed

    Manasfi, Tarek; Storck, Veronika; Ravier, Sylvain; Demelas, Carine; Coulomb, Bruno; Boudenne, Jean-Luc

    2015-08-01

    Oxybenzone (2-hydroxy-4-methoxyphenone, benzophenone-3) is one of the UV filters commonly found in sunscreens. Its presence in swimming pools and its reactivity with chlorine has already been demonstrated but never in seawater swimming pools. In these pools, chlorine added for disinfection results in the formation of bromine, due to the high levels of bromide in seawater, and leads to the formation of brominated disinfection byproducts, known to be more toxic than chlorinated ones. Therefore, it seems important to determine the transformation products of oxybenzone in chlorinated seawater swimming pools; especially that users of seawater swimming pools may apply sunscreens and other personal-care products containing oxybenzone before going to pools. This leads to the introduction of oxybenzone to pools, where it reacts with bromine. For this purpose, the reactivity of oxybenzone has been examined as a function of chlorine dose and temperature in artificial seawater to assess its potential to produce trihalomethanes and to determine the byproducts generated following chlorination. Increasing doses of chlorine and increasing temperatures enhanced the formation of bromoform. Experiments carried out with excess doses of chlorine resulted in the degradation of oxybenzone and allowed the determination of the degradation mechanisms leading to the formation of bromoform. In total, ten transformation products were identified, based on which the transformation pathway was proposed. PMID:26167727

  12. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. PMID:26996259

  13. Do stable nitroxide radicals catalyze or inhibit the degradation of hyaluronic acid?

    PubMed

    Lurie, Ziva; Offer, Tal; Russo, Angelo; Samuni, Amram; Nitzan, Dorrit

    2003-07-15

    Reactive oxygen-derived species and particularly OH radicals can degrade hyaluronic acid (HA), resulting in a loss of viscosity and a subsequent decrease in its effectiveness as a joint-lubricating agent. The production of OH in the vicinity of HA can be catalyzed by bound redox-active metals, which participate in the Haber-Weiss reaction. Damage to HA can also occur as a result of hypochlorite formed by myeloperoxidase (MPO). The protective reagents commonly used to inhibit oxidative stress-induced degradation of HA include antioxidative enzymes, such as SOD and catalase, chelators that coordinate metal ions rendering them redox-inactive, and scavengers of radicals, such as OH, as well as nonradical reactive species. In recent years, stable cyclic nitroxides have also been widely used as effective antioxidants. In many cases, nitroxide antioxidants operate catalytically and mediate their protective effect through an exchange between their oxidized and reduced forms. It was anticipated, therefore, that nitroxides would protect HA from oxidative degradation as well. On the other hand, nitroxides serve as catalysts in many oxidation reactions of alcohols, sugars and polysaccharides, including hyalouronan. Such opposite effects of nitroxides on oxidative degradation are particularly intriguing and the aim of the present study was to examine their effect on HA when subjected to diverse forms of oxidative stress. The results indicate that nitroxides protect HA from OH radicals generated enzymatically or radiolytically. The protective effect is attributable neither to the scavenging of OH nor to the oxidation of reduced metal, but to the reaction of nitroxides with secondary carbohydrate radicals-most likely peroxyl radicals. PMID:12853073

  14. Use of an acidic Fe/O{sub 2} cell for wastewater treatment: Degradation of aniline

    SciTech Connect

    Brillas, E.; Sauleda, R.; Casado, J.

    1999-12-01

    Solutions containing 0.50 mol dm{sup {minus}3} Na{sub 2}SO{sub 4} and aniline concentrations between 129 and 1,000 ppm have been decontaminated using an acidic Fe/O{sub 2} cell with an Fe anode and a carbon-poly(tetrafluoroethylene) O{sub 2}-fed cathode. This system produces spontaneously strong oxidizing radicals, such as OH{sup {sm{underscore}bullet}} and HO{sub 2}{sup {sm{underscore}bullet}}, which react with pollutants. Decontamination is more efficient for solutions with pH > 3 where intermediates coagulate with the Fe(OH){sub 3} precipitate formed. A 95% degradation is reached after 1 h of treatment of 129 ppm of aniline at initial pH 4 and at 35 C. For higher substrate levels, pollutants are quickly destroyed if the pH is regulated between 4 and 5. After 2 h, solutions up to 500 ppm of aniline are almost completely degraded, whereas 81% of the degradation is reached for 1,000 ppm of substrate. Benzoquinone and nitrobenzene are detected as intermediates. An insignificant accumulation of these products is found in the treatment of 1,000 ppm of substrate, suggesting the formation of polymers that coagulate with the Fe(OH){sub 3} precipitate. Low concentrations of ammonium and nitrate ions have been determined in treated solutions. The major part of the initial carbon and nitrogen is retained in the precipitate, indicating that coagulation of intermediates predominates over their mineralization. A reaction pathway for the degradation of aniline involving all intermediates detected is proposed.

  15. Rapid liquid chromatographic method for the determination of roflumilast in the presence of degradation products.

    PubMed

    Barhate, V D; Deosthalee, Priya

    2010-05-01

    A forced degradation study on roflumilast drug substance was conducted under the conditions of hydrolysis, oxidation, thermal and photolysis. The method was developed and optimized by analyzing forcefully degraded samples. The best separation was achieved on a Zorbax SB C18 1.8 µm column with 0.005 M ammonium formate buffer pH 3.5 and acetonitrile as mobile phase in a 13 min run time. The proposed method was able to resolve all the possible degradation products formed during stress study. The drug was stable to neutral, thermal and photolytic conditions but unstable to acidic, alkaline and oxidative conditions at 80° for 24 h. The degradation products resulting from stress study did not interfere in assay and related substances of roflumilast and thus the method can be regarded as stability indicating. An alternate method was also developed on a conventional 250×4.6 mm, 5 µm column wherein runtime was 38 min. Thus rapid resolution high throughput column was able to reduce the run time from 38 min to 13 min. PMID:21188058

  16. Reactions of clofibric acid with oxidative and reductive radicals-Products, mechanisms, efficiency and toxic effects

    NASA Astrophysics Data System (ADS)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-09-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2-•/HO2• reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2-•/HO2•. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC-MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid.

  17. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were

  18. Degradation of Amino Acids and Structure in Model Proteins and Bacteriophage MS2 by Chlorine, Bromine, and Ozone.

    PubMed

    Choe, Jong Kwon; Richards, David H; Wilson, Corey J; Mitch, William A

    2015-11-17

    Proteins are important targets of chemical disinfectants. To improve the understanding of disinfectant-protein reactions, this study characterized the disinfectant:protein molar ratios at which 50% degradation of oxidizable amino acids (i.e., Met, Tyr, Trp, His, Lys) and structure were observed during HOCl, HOBr, and O3 treatment of three well-characterized model proteins and bacteriophage MS2. A critical question is the extent to which the targeting of amino acids is driven by their disinfectant rate constants rather than their geometrical arrangement. Across the model proteins and bacteriophage MS2 (coat protein), differing widely in structure, methionine was preferentially targeted, forming predominantly methionine sulfoxide. This targeting concurs with its high disinfectant rate constants and supports its hypothesized role as a sacrificial antioxidant. Despite higher HOCl and HOBr rate constants with histidine and lysine than for tyrosine, tyrosine generally was degraded in preference to histidine, and to a lesser extent, lysine. These results concur with the prevalence of geometrical motifs featuring histidines or lysines near tyrosines, facilitating histidine and lysine regeneration upon Cl[+1] transfer from their chloramines to tyrosines. Lysine nitrile formation occurred at or above oxidant doses where 3,5-dihalotyrosine products began to degrade. For O3, which lacks a similar oxidant transfer pathway, histidine, tyrosine, and lysine degradation followed their relative O3 rate constants. Except for its low reactivity with lysine, the O3 doses required to degrade amino acids were as low as or lower than for HOCl or HOBr, indicating its oxidative efficiency. Loss of structure did not correlate with loss of particular amino acids, suggesting the need to characterize the oxidation of specific geometric motifs to understand structural degradation. PMID:26488608

  19. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Choi, Jong-il; Park, Hyun

    2015-04-01

    Low molecular weight fucoidan, prepared by radical degradation using gamma ray was investigated for its antioxidant activities with different assay methods. As the molecular weight of fucoidan decreased with a higher absorbed dose, ferric-reducing antioxidant power values increased, but β-carotene bleaching inhibition did not change significantly. The antioxidant activity of acid-degraded fucoidan was also examined to investigate the effect of different degradation methods. At the same molecular weight, fucoidan degraded by gamma irradiation showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than that observed with the acidic method. This result reveals that in addition to molecular weight, the degradation method affects the antioxidant activity of fucoidan.

  20. Fibrinogen Degradation Products and Periodontitis: Deciphering the Connection

    PubMed Central

    2015-01-01

    Introduction Fibrinogen degradation products (e.g. D-dimer) arise from digested fibrin clots and fibrinogen. Elevated concentrations accompany activation of coagulation and fibrinolysis and indicate chronic inflammatory diseases. D-Dimer tests are a quick, noninvasive method to rule out abnormal clotting. Periodontitis strongly affects the haemostatic system and evokes a procoagulant state. Correlation of chronic periodontitis with early indicators of disease (biomarkers) might be useful. Aim The aim of the study was to examine whether the plasma D-dimer concentration reflects the progression of chronic periodontitis and the beneficial effect of periodontal therapy. Materials and Methods Forty randomly selected subjects were divided into four groups, Group I: 10 healthy subjects, Group II: 10 with mild periodontitis, Group III: 10 with moderate periodontitis, Group IV: 10 with severe periodontitis. After thorough dental and periodontal examination, 3 mL of venous blood was collected for measurement of fibrinogen degradation products. Results The patients with moderate and chronic periodontitis exhibited high concentrations of D-dimer (mean value 434.98–535.52 mcg/mL), whereas subjects with mild or no periodontitis exhibited values of 329.78–211.29 mcg/mL. Concentrations of D-dimer were significantly reduced after therapy of all classes of periodontitis. Conclusion Periodontal treatment can reduce amount of D-dimer in the plasma. A higher than normal concentration is observed in chronic periodontitis. PMID:26816985

  1. [Analysis and stability of suxamethonium chloride. 1. Detection and quantitative determination of the intact active agent with its degradation products].

    PubMed

    Döge, G; Pohloudek-Fabini, R; Kottke, D

    1982-10-01

    The authors developed methods permitting to follow the course of degradation in injectable solutions of suxamethonium chloride. The qualitative detection of the active agent in the presence of degradation products is achieved by thin-layer chromatography and spraying with Dragendorff's reagent and bromocresol green indicator solution. The same separation technique may be used for determining with sufficient accuracy the intact agent in the eluate, using the method of Okken and Haas. Furthermore, a modified Draganic procedure (which is based on the spectrophotometric determination of the hydrolysis products succinic acid monocholine chloride and succinic acid as a Cu-benzidine complex) is suited for estimating the degree of degradation. No previous separation is required because the molar extinction efficients of the monoester and of the acid are in agreement, so that the degree of degradation can be calculated from the sum of the molar concentrations. The value of these methods is demonstrated by analyzing experimental mixtures of the intact agent and degradation products. PMID:7178216

  2. LC-MS/MS structural characterization of stress degradation products including the development of a stability indicating assay of Darunavir: An anti-HIV drug.

    PubMed

    Rao, R Nageswara; Ramachandra, B; Sravan, B; Khalid, Sara

    2014-02-01

    Darunavir, an anti-HIV drug was subjected to forced degradation under acid, base, thermal and neutral hydrolysis, oxidation and photolysis as prescribed by ICH guidelines. Four major degradation products were formed under acid and base hydrolysis, while stable under neutral and thermal hydrolysis, oxidative and photolysis. The drug and its degradation products were separated on Hiber, LiChrospher® 60, RP-select B, C8 column (250mm×4.6mm i.d., 5μm) using 10mM ammonium acetate: acetonitrile (52:48, v/v) as mobile phase in an isocratic elution mode by LC. The degradation products were characterized by LC-MS/MS and fragmentation pathways were proposed. The proposed structures of degradation products were confirmed by HRMS and the LC method was validated with respect to specificity, linearity, accuracy, recovery, LOD and LOQ. PMID:24252722

  3. Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition.

    PubMed

    Zhang, Chengdong; Li, Mingzhu; Chen, Xiaoyan; Li, Mingchun

    2015-08-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical that is ubiquitous in the environment because of its broad industrial use. The authors report that the most widely cultivated mushroom in the world (i.e., white-rot fungus, Pleurotus ostreatus) efficiently degraded 10mg/L of BPA in 7 days. Extracellular laccase was identified as the enzyme responsible for this activity. LC-MS analysis of the metabolites revealed the presence of both low- and high-molecular-weight products obtained via oxidative cleavage and coupling reactions, respectively. In particular, an analysis of the fatty acid composition and chemical structure of the fungal mycelium demonstrated that exposure to BPA resulted in no harmful effects on this edible fungus. The results provide a better understanding of the environmental fate of BPA and its potential impact on food crops. PMID:25933259

  4. Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating.

    PubMed

    Jaeschke, Débora Pez; Marczak, Ligia Damasceno Ferreira; Mercali, Giovana Domeneghini

    2016-05-15

    The effect of electric field on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating was evaluated. Ascorbic acid kinetic degradation was evaluated at 80, 85, 90 and 95°C during 60 min of thermal treatment by ohmic and conventional heating. Carotenoid degradation was evaluated at 90 and 95°C after 50 min of treatment. The different temperatures evaluated showed the same effect on degradation rates. To investigate the influence of oxygen concentration on the degradation process, ohmic heating was also carried out under rich and poor oxygen modified atmospheres at 90°C. Ascorbic acid and carotenoid degradation was higher under a rich oxygen atmosphere, indicating that oxygen is the limiting reagent of the degradation reaction. Ascorbic acid and carotenoid degradation was similar for both heating technologies, demonstrating that the presence of the oscillating electric field did not influence the mechanisms and rates of reactions associated with the degradation process. PMID:26775953

  5. Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites.

    PubMed

    Valapa, Ravi Babu; G, Pugazhenthi; Katiyar, Vimal

    2016-08-01

    This work discusses the influence of novel biofiller, "sucrose palmitate" (SP) on the hydrolytic degradation behavior of poly(lactic acid) (PLA) nanocomposites. The influence of temperature and pH of the solution on the hydrolytic degradation behavior of PLA and PLA-SP nanocomposites was investigated. The variation in the crystallinity of PLA and PLA composites subjected to the hydrolytic degradation process is verified by XRD and DSC analysis. The morphological changes that occurred during the degradation process are observed by scanning electron microscopy (SEM). Thermo-gravimetric analysis confirms the loss of thermal stability of the neat PLA as well as composites after hydrolytic degradation process. Transparency measurements support the enhancement in opacity of both the PLA and PLA-SP nanocomposites with progress in hydrolytic degradation period. PMID:27095433

  6. Degradable cationic shell cross-linked knedel-like nanoparticles: synthesis, degradation, nucleic acid binding, and in vitro evaluation.

    PubMed

    Samarajeewa, Sandani; Ibricevic, Aida; Gunsten, Sean P; Shrestha, Ritu; Elsabahy, Mahmoud; Brody, Steven L; Wooley, Karen L

    2013-04-01

    In this work, degradable cationic shell cross-linked knedel-like (deg-cSCK) nanoparticles were developed as an alternative platform to replace similar nondegradable cSCK nanoparticles that have been utilized for nucleic acids delivery. An amphiphilic diblock copolymer poly(acrylamidoethylamine)(90)-block-poly(DL-lactide)(40) (PAEA(90)-b-PDLLA(40)) was synthesized, self-assembled in aqueous solution, and shell cross-linked using a hydrolyzable cross-linker to afford deg-cSCKs with an average core diameter of 45 ± 7 nm. These nanoparticles were fluorescently labeled for in vitro tracking. The enzymatic- and hydrolytic-degradability, siRNA binding affinity, cell uptake and cytotoxicity of the deg-cSCKs were evaluated. Esterase-catalyzed hydrolysis of the nanoparticles resulted in the degradation of ca. 24% of the PDLLA core into lactic acid within 5 d, as opposed to only ca. 9% degradation from aqueous solutions of the deg-cSCK nanoparticles in the absence of enzyme. Cellular uptake of deg-cSCKs was efficient, while exhibiting low cytotoxicity with LD50 values of ca. 90 and 30 μg/mL in RAW 264.7 mouse macrophages and MLE 12 cell lines, respectively, ca. 5- to 6-fold lower than the cytotoxicity observed for nondegradable cSCK analogs. Additionally, deg-cSCKs were able to complex siRNA at an N/P ratio as low as 2, and were efficiently able to facilitate cellular uptake of the complexed nucleic acids. PMID:23510389

  7. Energetics and kinetics of anaerobic aromatic and fatty acid degradation

    SciTech Connect

    McInerney, M.J.

    1992-11-16

    The kinetics of benzoate degradation by the anaerobic syntrophic bacterium, Syntrophus buswellii, was studied in coculture with Desulfovibrio strain G11. The threshold value for benzoate degradation was dependent on the acetate concentration with benzoate threshold values ranging from 2.4 [mu]M at 20 mM acetate to 30.0 [mu]M at 65 mM acetate. Increasing acetate concentrations also inhibited the rate of benzoate degradation with a apparent K[sub i] for acetate inhibition of 7.0 mM. Lower threshold values were obtained when nitrate rather than sulfate was the terminal electron acceptor. These data are consistent with a thermodynamic explanation for the threshold, and suggest that there is a minimum Gibbs free energy value required for the degradation of benzoate. An acetoacetyl-CoA thiolase has been isolated from Syntrophomonas wolfei; it is apparently a key enzyme controlling the synthesis of poly-B-hydroxyalkanoate from acetyl-CoA in this organism. Kinetic characterization of the acetoacetyl-CoA thiolase from S. wolfei showed that it is similar in its structural, kinetic, and apparent regulatory properties to other biosynthetic acetoacetyl-CoA thiolases from phylogenetically distinct bacteria that synthesize PHA. Intracellular concentrations of CoA and acetyl-CoA are believed to be critical factors regulating the activity of the acetoacetyl-CoA thiolase in S. wolfei. We have also isolated and characterized several new halophilic anaerobic fermentative anaerobes. Phylogenetic analysis indicates that one of these bacteria is a new species in the genus, Haloanaerobium. Two other species appear to be members of the genus, Halobacteroides. Several halophilic acetoclastic methanogenic bacteria have also been isolated and their physiological properties are currently under investigation. We have also isolated an acetate-using dissimilatory iron-reducing bacterium.

  8. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut

    PubMed Central

    Chen, Hui; Wilkerson, Curtis G.; Kuchar, Jason A.; Phinney, Brett S.; Howe, Gregg A.

    2005-01-01

    The plant hormone jasmonic acid (JA) activates host defense responses against a broad spectrum of herbivores. Although it is well established that JA controls the expression of a large set of target genes in response to tissue damage, very few gene products have been shown to play a direct role in reducing herbivore performance. To test the hypothesis that JA-inducible proteins (JIPs) thwart attack by disrupting digestive processes in the insect gut, we used a MS-based approach to identify host proteins that accumulate in the midgut of Manduca sexta larvae reared on tomato (Solanum lycopersicum) plants. We show that two JIPs, arginase and threonine deaminase (TD), act in the M. sexta midgut to catabolize the essential amino acids Arg and Thr, respectively. Transgenic plants that overexpress arginase were more resistant to M. sexta larvae, and this effect was correlated with reduced levels of midgut Arg. We present evidence indicating that the ability of TD to degrade Thr in the midgut is enhanced by herbivore-induced proteolytic removal of the enzyme's C-terminal regulatory domain, which confers negative feedback regulation by isoleucine in planta. Our results demonstrate that the JA signaling pathway strongly influences the midgut protein content of phytophagous insects and support the hypothesis that catabolism of amino acids in the insect digestive tract by host enzymes plays a role in plant protection against herbivores. PMID:16357201

  9. Selective microbial degradation of saturated methyl branched chain fatty acid isomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three strains of Pseudomonas bacteria were screened for their capabilities of degrading chemically synthesized saturated branched-chain fatty acids (sbc-FAs). Mixtures of sbc-FAs with the methyl-branch located at various locales along the fatty acid were used as a carbon feedstock in shake-flask cu...

  10. ADIPIC ACID DEGRADATION MECHANISM IN AQUEOUS FGD (FLUE GAS DESULFURIZATION) SYSTEMS

    EPA Science Inventory

    The report gives results of a field and laboratory study of the adipic acid degradation mechanism in aqueous flue gas desulfurization (FGD) systems. (Adding adipic acid to limestone-based, SO2 wet scrubbers increases SO2 removal and limestone utilization. However, as much as 80% ...

  11. A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels

    PubMed Central

    Murthy, Niren; Xu, Mingcheng; Schuck, Stephany; Kunisawa, Jun; Shastri, Nilabh; Fréchet, Jean M. J.

    2003-01-01

    The development of protein-based vaccines remains a major challenge in the fields of immunology and drug delivery. Although numerous protein antigens have been identified that can generate immunity to infectious pathogens, the development of vaccines based on protein antigens has had limited success because of delivery issues. In this article, an acid-sensitive microgel material is synthesized for the development of protein-based vaccines. The chemical design of these microgels is such that they degrade under the mildly acidic conditions found in the phagosomes of antigen-presenting cells (APCs). The rapid cleavage of the microgels leads to phagosomal disruption through a colloid osmotic mechanism, releasing protein antigens into the APC cytoplasm for class I antigen presentation. Ovalbumin was encapsulated in microgel particles, 200–500 nm in diameter, prepared by inverse emulsion polymerization with a synthesized acid-degradable crosslinker. Ovalbumin is released from the acid-degradable microgels in a pH-dependent manner; for example, microgels containing ovalbumin release 80% of their encapsulated proteins after 5 h at pH 5.0, but release only 10% at pH 7.4. APCs that phagocytosed the acid-degradable microgels containing ovalbumin were capable of activating ovalbumin-specific cytoxic T lymphocytes. The acid-degradable microgels developed in this article should therefore find applications as delivery vehicles for vaccines targeted against viruses and tumors, where the activation of cytoxic T lymphocytes is required for the development of immunity. PMID:12704236

  12. Analytical studies on degradation mechanism of herbicide 4-chlorophenoxyacetic acid in water by gamma/H2O2 and gamma/ozone processes.

    PubMed

    Torun, Murat; Şolpan, Dilek

    2016-10-01

    Radiolytic degradation of 4-chlorophenoxyacetic acid was followed in the presence of hydrogen peroxide and ozone. The synergic effect of ozone is found to be relatively high since the amounts of detected aromatic intermediates are lower as well as the amounts of small aliphatic acids are higher. Chloride ions are one of the most important mineralization products and splitted with a yield of more than 80%. The amounts of small aliphatic acids formed in the last step before mineralization (oxalic, acetic and formic acid) were followed and their formation from 4-chlorophenoxyacetic acid was confirmed. Dissolved oxygen was consumed to form reactive radicals during irradiation. Product analysis and confirmation are followed by gas chromatography/mass spectrometry and ion chromatography. The degradation path of 4-chlorophenoxyacetic acid was suggested with determined intermediates. PMID:26878254

  13. Forced degradation study of racecadotril: Effect of co-solvent, characterization of degradation products by UHPLC-Q-TOF-MS/MS, NMR and cytotoxicity assay.

    PubMed

    Chiguru, Vishnuvardhan; Lingesh, Allakonda; R, Srinivas; N, Satheeshkumar

    2016-09-01

    Racecadotril, an enkephalinase inhibitor, was subjected to hydrolysis (acidic and alkaline), oxidation, photolysis and thermal stress, as per ICH specified conditions. The drug showed extensive degradation under acidic, basic hydrolysis and oxidative stress conditions whereas, it was stable under other stress conditions. A total of seven degradation products (DPs) were observed. The chromatographic separation was optimized on Acquity HSS Cyano (100×2.1mm, 1.8μ) column using 0.1% formic acid and acetonitrile as mobile phase in gradient mode. Six DPs were characterised by LC-MS/MS and DP1 by GC-MS. The major DPs (DP 2 and DP 5) were isolated and characterised by NMR. This is a typical case of degradation where co solvent methanol reacts with racecadotril leading to the formation of pseudo DPs, DP 6 and DP 5. Interestingly the MS/MS spectra of protonated drug, DP 4 and DP 7 showed product ions which were formed due to intramolecular benzyl migrations. In vitro cytotoxic activity studies on isolated DP 2 and DP 5 revealed that the former has no cytotoxic nature, whereas the latter has potential pulmonary and hepatic toxicity. PMID:27209450

  14. Electrochemical assisted photocatalytic degradation of salicylic acid with highly ordered TiO2 nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Zhu, Jinwei; Wang, Ying; Feng, Jiangtao; Yan, Wei; Xu, Hao

    2014-07-01

    To explore the kinetics of photoelectrocatalytic degradation of salicylic acid, one of the important PPCPs, highly ordered TiO2 nanotube arrays (NTs) were prepared by the electrochemical anodization and characterized with scanning electron microscopy and X-ray diffraction techniques. The effect of TiO2 NTs properties, bias potential, initial salicylic acid concentration and solution pH on the degradation efficiency was studied and carefully analyzed. The results revealed that the salicylic acid degradation follows quasi-first order kinetics in the photoelectrocatalytic process, and the fastest decay kinetics was achieved in acidic environment (pH 2). The result was further interpreted through the electrochemical impedance spectroscopy. It is confirmed that the electrochemical assisted photocatalysis is a synergetic approach to combat stable organic substances with improved efficiency.

  15. By-products formation during degradation of isoproturon in aqueous solution. I: Ozonation.

    PubMed

    Mascolo, G; Lopez, A; James, H; Fielding, M

    2001-05-01

    The degradation of the herbicide isoproturon during its ozonation in aqueous solution has been investigated with the aim of identifying intermediate as well as final by-products formed. At ambient temperature, phosphate-buffered (pH = 7) isoproturon aqueous solutions (10, 10(-1) and 10(-3) mg/l) were ozonated in a semi-batch reactor, under a continuous flow of ozonated air whose ozone concentration was 9 and 0.9 mg O3/lair for the highest and the two lower herbicide concentrations respectively. Measured steady-state ozone concentrations during the two sets of experiments (i.e. the highest and the lower isoproturon concentration) were 1.9 and 0.7 mg O3/l. Under all of the above conditions, isoproturon was always completely removed in a period ranging between 5 and 15 min, essentially by reacting with molecular ozone. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses indicate that primary degradation by-products are formed either by introducing OH groups in the aromatic ring and/or in the side-chain substituents, or by breaking down the isopropyl alkyl chain. The results also show that these primary intermediates are successively degraded yielding low molecular weight compounds such as aldehydes, simple organic acids and alpha-oxo-acids, which have been identified by gas chromatography-electron capture detection (GC-ECD), ion chromatography (IC) and GC-MS, respectively. On the basis of the analytical results, a pathway for the degradation of isoproturon by ozone has been proposed. PMID:11329671

  16. Analysis of l-DOPA-derived melanin and a novel degradation product formed under alkaline conditions.

    PubMed

    Omotani, Hidetoshi; Yasuda, Makoto; Ishii, Ritsuko; Ikarashi, Tsukasa; Fukuuchi, Tomoko; Yamaoka, Noriko; Mawatari, Ken-Ichi; Kaneko, Kiyoko; Nakagomi, Kazuya

    2016-06-01

    When the therapeutic drug l-DOPA, which is used to treat Parkinson's disease, is combined with magnesium oxide (MgO), a formulation change produces a dark substance. Infrared spectroscopy reveals that this substance is melanin. After allowing the l-DOPA and MgO mixture to stand, the l-DOPA content decreases significantly, and a new degradation product (the final degradation product of l-DOPA, FDP-D) is generated. Formation of this product requires a solution with a pH of >10, and the presence of MgO is not necessary. FDP-D is not produced by tyrosinase decomposition of l-DOPA and is therefore not a melanin-related compound. Pure FDP-D is isolated by adjusting the l-DOPA solution to pH 10 with ammonium hydroxide, allowing it to stand for 3 days at room temperature, adding trifluoroacetic acid (TFA), filtering the precipitate, and separating the supernatant with high-performance liquid chromatography (HPLC). Mass spectrometry indicates that the isolated FDP-D has a molecular formula of C9H9NO7. On the basis of NMR analysis ((1)H NMR, (13)C NMR, DEPT, H-H COSY, HMQC, and HMBC), FDP-D appears to be a substance with the novel structure 7a-hydroxy-5-oxo-1,2,3,5,7,7a-hexahydropyrano [3,4-b]pyrrole-2,7-dicarboxylic acid. PMID:26999318

  17. Capillary electrophoresis separation of the desamino degradation products of oxytocin

    PubMed Central

    Creamer, Jessica S.; Krauss, Shannon T.; Lunte, Susan M.

    2014-01-01

    Oxytocin is an endogenous and therapeutic hormone necessary for maternal health. It is also the subject of fast growing research in the field of behavioral science. This article describes a rapid capillary electrophoresis method using UV detection at 214 nm for the determination of the deamidation products of oxytocin. Deamidation is the most common degradation pathway of peptides and proteins and can lead to reduced therapeutic efficiency of biopharmaceuticals. To achieve a separation of the seven structurally similar desamino peptides from oxytocin, 11 mM sulfobutyl ether β-cyclodextrin and 10% v/v MeOH were added to a background electrolyte of 50 mM phosphate buffer at pH 6.0. The assay is linear within ≤5-100 μM for all species with a total analysis time of 12 min. The method was then applied to monitor the heat-stress degradation of oxytocin at 70°C, where all seven desamino species were observed over a 96 h period. PMID:24166826

  18. Structural elucidation of two photolytic degradation products of tetrabenazine.

    PubMed

    Bourezg, Zouaoui; Cartiser, Nathalie; Ettouati, Laurent; Guillon, Jean; Lacoudre, Aline; Pinaud, Noël; Le Borgne, Marc; Fessi, Hatem

    2014-03-01

    During solution formulation study of tetrabenazine (TBZ), a dopamine depleting agent, used in chorea associated with Huntington's disease and symptomatic treatment of hyperkinetic movement disorder it was observed a strong discoloration upon storage. We investigated this physico-chemical behavior by implementing forced degradation studies. It was observed yellowing only under Suntest(®) light exposure of TBZ solution. LC-MS (liquid chromatography coupled to mass spectrometer detection) analysis of light exposed TBZ samples allowed us to propose 1,11b-dedihydrotetrabenazine (DTBZ) and 1,3,4,11b-detetrahydrotetrabenazine (TTBZ) as the main TBZ impurities. Synthesis and complete structural determination of DTBZ and TTBZ·HCl by NMR and X-ray crystallography were carried out. They were identical in LC-MS with polar impurities found in light exposed TBZ samples. However, even if these TBZ degradation products are correlated with discoloration of TBZ solution there is no evidence they are directly responsible of it. PMID:24457996

  19. Effects of D-amino acid substituents on degradation of LHRH analogues by proximal tubule

    SciTech Connect

    Flouret, G.; Majewski, T.; Peterson, D.R.; Kenny, A.J.; Carone, F.A.

    1987-03-01

    The luteinizing hormone-releasing hormone, LHRH, is degraded in renal proximal tubules (PT) in vivo (rat) and in vitro (rabbit) to < Glu-His (2), < Glu-His-Trp (3), and < Glu-His-Trp-Ser (4). LHRH may be cleaved by endopeptidases simultaneously at multiple bonds, or initially at Ser/sup 4/-Try/sup 5/ followed by carboxypeptidase hydrolysis of 4 to 3 and then 2. To distinguish between these mechanisms, (/sup 3/H)LHRH analogues were incubated with rabbit renal brush-border membranes (BBM), microinfused into PT in vivo or in vitro, and products were analyzed by HPLC. (D-Ser/sup 4/)LHRH was not cleaved at D-Ser/sup 4/-Try/sup 5/ but yielded < Glu-His-Trp-D-Ser-Tyr-Gly as the major metabolite plus 2 and 3. (D-Trp/sup 6/)LHRH was cleaved by BBM and PT to 2 and 3, but not to 4. (D-Ser/sup 4/, D-Trp/sup 6/)LHRH was not cleaved by BBM, but was degraded to 2 by PT in vivo. Thus, D-amino acid substituents altered the expected cleavage pattern of these analogues. Thus, normally LHRH may be cleaved in PT by endopeptidase-24.11 to 2 and 4, and by angiotensin I-converting enzyme to 3, its know cleavage site.

  20. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation.

    PubMed

    Ledger, T; Pieper, D H; González, B

    2006-04-01

    Phenoxyalkanoic compounds are used worldwide as herbicides. Cupriavidus necator JMP134(pJP4) catabolizes 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), using tfd functions carried on plasmid pJP4. TfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol (2,4-DCP) and 4-chloro-2-methylphenol (MCP), respectively. These intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdB(I) and tfdB(II) genes to produce the respective chlorocatechols. We studied the specific contribution of each of the TfdB enzymes to the 2,4-D/MCPA degradation pathway. To accomplish this, the tfdB(I) and tfdB(II) genes were independently inactivated, and growth on each chlorophenoxyacetate and total chlorophenol hydroxylase activity were measured for the mutant strains. The phenotype of these mutants shows that both TfdB enzymes are used for growth on 2,4-D or MCPA but that TfdB(I) contributes to a significantly higher extent than TfdB(II). Both enzymes showed similar specificity profiles, with 2,4-DCP, MCP, and 4-chlorophenol being the best substrates. An accumulation of chlorophenol was found to inhibit chlorophenoxyacetate degradation, and inactivation of the tfdB genes enhanced the toxic effect of 2,4-DCP on C. necator cells. Furthermore, increased chlorophenol production by overexpression of TfdA also had a negative effect on 2,4-D degradation by C. necator JMP134 and by a different host, Burkholderia xenovorans LB400, harboring plasmid pJP4. The results of this work indicate that codification and expression of the two tfdB genes in pJP4 are important to avoid toxic accumulations of chlorophenols during phenoxyacetic acid degradation and that a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds. PMID:16597983

  1. Degradability of fluorapatite-leucite ceramics in naturally acidic agents.

    PubMed

    Kukiattrakoon, Boonlert; Hengtrakool, Chanothai; Kedjarune-Leggat, Ureporn

    2010-10-01

    This study was conducted to evaluate the titratable acidity and effect of naturally acidic agents on the surface microhardness, elemental composition, and surface morphology of fluorapatite-leucite ceramics. One hundred and ten ceramic disks (IPS d.SIGN), 12.0 mm in diameter and 2.0 mm in thickness, were fabricated. Before immersion, the baseline data of Vickers microhardness and elemental composition were recorded. Four groups were immersed in acidic agents (citrate buffer solution, green mango juice, and pineapple juice) and deionized water (control) at 37ºC for 168 hours, whereas one group was immersed in 4% acetic acid at 80ºC for 168 hours. After immersion, specimens were evaluated and data were analyzed using one-way repeated ANOVA and Tukey's test (α=0.05). Microhardness values significantly decreased after immersion (p<0.05). In terms of elemental composition, the weight percentages of silicon, potassium, aluminum, and sodium also decreased after immersion (p<0.05). Results of this study showed that fluorapatite-leucite ceramics were affected by long-term immersion in acidic agents. PMID:20827032

  2. Identification and characterization of stressed degradation products of metoprolol using LC/Q-TOF-ESI-MS/MS and MS(n) experiments.

    PubMed

    Borkar, Roshan M; Raju, B; Srinivas, R; Patel, Prashant; Shetty, Satheesh Kumar

    2012-06-01

    A rapid, specific and reliable isocratic high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed and validated for the identification and characterization of stressed degradation products of metoprolol. Metoprolol, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and hydrolysis (acid and base) stress conditions. However, it was stable to thermal, neutral and photolysis stress conditions. A total of 14 degradation products were observed and the chromatographic separation of the drug and its degradation products was achieved on a C(18) column (4.6 × 250 mm, 5 µm). To characterize degradation products, initially the mass spectral fragmentation pathway of the drug was established with the help of MS/MS, MS(n) and accurate mass measurements. Similarly, fragmentation pattern and accurate masses of the degradation products were established by subjecting them to LC-MS/QTOF analysis. Structure elucidation of degradation products was achieved by comparing their fragmentation pattern with that of the drug. The degradation products DP(2) (m/z 153) and DP(14) (m/z 236) were matched with impurity B, listed in European Pharmacopoeia and British Pharmacopoeia, and impurity I, respectively. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision. PMID:21989963

  3. Biochemistry of microbial itaconic acid production

    PubMed Central

    Steiger, Matthias G.; Blumhoff, Marzena L.; Mattanovich, Diethard; Sauer, Michael

    2013-01-01

    Itaconic acid is an unsaturated dicarbonic acid which has a high potential as a biochemical building block, because it can be used as a monomer for the production of a plethora of products including resins, plastics, paints, and synthetic fibers. Some Aspergillus species, like A. itaconicus and A. terreus, show the ability to synthesize this organic acid and A. terreus can secrete significant amounts to the media (>80 g/L). However, compared with the citric acid production process (titers >200 g/L) the achieved titers are still low and the overall process is expensive because purified substrates are required for optimal productivity. Itaconate is formed by the enzymatic activity of a cis-aconitate decarboxylase (CadA) encoded by the cadA gene in A. terreus. Cloning of the cadA gene into the citric acid producing fungus A. niger showed that it is possible to produce itaconic acid also in a different host organism. This review will describe the current status and recent advances in the understanding of the molecular processes leading to the biotechnological production of itaconic acid. PMID:23420787

  4. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater.

    PubMed

    Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera

    2016-01-01

    An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples

  5. Enzymatic degradation of plutonium-contaminated cellulose products

    SciTech Connect

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.; Avens, L.

    1999-03-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas.

  6. Enzymatic degradation of plutonium-contaminated cellulose products

    SciTech Connect

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-06-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options.

  7. Organic Acid Production by Filamentous Fungi

    SciTech Connect

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  8. D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study.

    PubMed

    Ohide, Hiroko; Miyoshi, Yurika; Maruyama, Rindo; Hamase, Kenji; Konno, Ryuichi

    2011-11-01

    It was believed for long time that d-amino acids are not present in mammals. However, current technological advances and improvements in analytical instruments have enabled studies that now indicate that significant amounts of D-amino acids are present in mammals. The most abundant D-amino acids are D-serine and D-aspartate. D-Serine, which is synthesized by serine racemase and is degraded by D-amino-acid oxidase, is present in the brain and modulates neurotransmission. D-Aspartate, which is synthesized by aspartate racemase and degraded by D-aspartate oxidase, is present in the neuroendocrine and endocrine tissues and testis. It regulates the synthesis and secretion of hormones and spermatogenesis. D-Serine and D-aspartate bind to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and function as a coagonist and agonist, respectively. The enzymes that are involved in the synthesis and degradation of these D-amino acids are associated with neural diseases where the NMDA receptors are involved. Knockout mice for serine racemase and D-aspartate oxidase have been generated, and natural mutations in the d-amino-acid oxidase gene are present in mice and rats. These mutant animals display altered behaviors caused by enhanced or decreased NMDA receptor activity. In this article, we review currently available studies on D-amino acid metabolism in mammals and discuss analytical methods used to assay activity of amino acid racemases and D-amino-acid oxidases. PMID:21757409

  9. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group-Determination of Dissolved Isoxaflutole and Its Sequential Degradation Products, Diketonitrile and Benzoic Acid, in Water Using Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    USGS Publications Warehouse

    Meyer, Michael T.; Lee, Edward A.; Scribner, Elisabeth A.

    2007-01-01

    An analytical method for the determination of isoxaflutole and its sequential degradation products, diketonitrile and a benzoic acid analogue, in filtered water with varying matrices was developed by the U.S. Geological Survey Organic Geochemistry Research Group in Lawrence, Kansas. Four different water-sample matrices fortified at 0.02 and 0.10 ug/L (micrograms per liter) are extracted by vacuum manifold solid-phase extraction and analyzed by liquid chromatography/tandem mass spectrometry using electrospray ionization in negative-ion mode with multiple-reaction monitoring (MRM). Analytical conditions for mass spectrometry detection are optimized, and quantitation is carried out using the following MRM molecular-hydrogen (precursor) ion and product (p) ion transition pairs: 357.9 (precursor), 78.9 (p), and 277.6 (p) for isoxaflutole and diketonitrile, and 267.0 (precursor), 159.0 (p), and 223.1 (p) for benzoic acid. 2,4-dichlorophenoxyacetic acid-d3 is used as the internal standard, and alachlor ethanesulfonic acid-d5 is used as the surrogate standard. Compound detection limits and reporting levels are calculated using U.S. Environmental Protection Agency procedures. The mean solid-phase extraction recovery values ranged from 104 to 108 percent with relative standard deviation percentages ranging from 4.0 to 10.6 percent. The combined mean percentage concentration normalized to the theoretical spiked concentration of four water matrices analyzed eight times at 0.02 and 0.10 ug/L (seven times for the reagent-water matrix at 0.02 ug/L) ranged from approximately 75 to 101 percent with relative standard deviation percentages ranging from approximately 3 to 26 percent for isoxaflutole, diketonitrile, and benzoic acid. The method detection limit (MDL) for isoxaflutole and diketonitrile is 0.003 ug/L and 0.004 ug/L for benzoic acid. Method reporting levels (MRLs) are 0.011, 0.010, and 0.012 ug/L for isoxaflutole, diketonitrile, and benzoic acid, respectively. On the basis

  10. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    PubMed

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking. PMID:27262203

  11. Modeling the degradation of Portland cement pastes by biogenic organic acids

    SciTech Connect

    De Windt, Laurent; Devillers, Philippe

    2010-08-15

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  12. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Final report

    SciTech Connect

    Michael J. McInerney

    1996-06-24

    The factors that affect the rate and extent of a model aromatic compound, benzoate, in methanogenic environments was studied. Benzoate is degraded to a threshold concentration below which no further substrate degradation occurs. The threshold concentration depended on the substrate concentration and the amount of acetate present. The threshold value was not a function of the kinetic ability of the organism or toxicity of the end products. Rather a minimal Gibb's free energy value may exist where thermodynamic constraints preclude further benzoate degradation. In addition, new bacterial species were isolated and described, that degrade benzoate or reduce iron, cobalt and other metals.

  13. Identifying high production, low production and degraded rangelands in Senegal with normalized difference vegetation index data

    USGS Publications Warehouse

    Tappan, G. Gray; Wood, Lynette; Moore, Donald G.

    1993-01-01

    Seasonal herbaceous vegetation production on Senegal's native rangelands exhibits high spatial and temporal variability. This variability can be monitored using normalized difference vegetation index (NDVI) data computed from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) image data. Although annual fluctuations in rainfall account for some of the variability, numerous long-term production patterns are evident in the AVHRR time-series data. Different n productivity reflect variations in the region's climate, topography, soils, and land use. Areas of overgrazing and intensive cultivation have caused long-term soil and vegetation degradation. Rangelands of high and low productivity, and degraded rangelands were identified using NDVI. Time-series image data from 1987 though 1992 were used to map relative rangeland productivity. The results were compared to detailed resource maps on soils, vegetation and land use. Much of the variation in rangeland productivity correlated well to the known distribution of resources. The study developed an approach that identified a number of areas of degraded soils and low vegetation production.

  14. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  15. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    PubMed

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water. PMID:27164884

  16. Carbon capture and sequestration: an exploratory inhalation toxicity assessment of amine-trapping solvents and their degradation products.

    PubMed

    McDonald, Jacob D; Kracko, Dean; Doyle-Eisele, Melanie; Garner, C Edwin; Wegerski, Chris; Senft, Al; Knipping, Eladio; Shaw, Stephanie; Rohr, Annette

    2014-09-16

    Carbon dioxide (CO2) absorption with aqueous amine solvents is a method of carbon capture and sequestration (CCS) from flue gases. One concern is the possible release of amine solvents and degradation products into the atmosphere, warranting evaluation of potential pulmonary effects from inhalation. The CCS amines monoethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP) underwent oxidative and CO2-mediated degradation for 75 days. C57bl/6N mice were exposed for 7 days by inhalation of 25 ppm neat amine or equivalant concentration in the degraded mixture. The aqueous solutions were nebulized to create the inhalation atmospheres. Pulmonary response was measured by changes in inflammatory cells in bronchoalveolar lavage fluid and cytokine expression in lung tissue. Ames mutagenicity and CHO-K1 micronucleus assays were applied to assess genotoxicity. Chemical analysis of the test atmosphere and liquid revealed complex mixtures, including acids, aldehydes, and other compounds. Exposure to oxidatively degraded MEA increased (p < 0.05) total cells, neutrophils, and lymphocytes compared to control mice and caused inflammatory cytokine expression (statistical increase at p < 0.05). MEA and CO2-degraded MEA were the only atmospheres to show statistical (p < 0.05) increase in oxidative stress. CO2 degradation resulted in a different composition, less degradation, and lower observed toxicity (less magnitude and number of effects) with no genotoxicity. Overall, oxidative degradation of the amines studied resulted in enhanced toxicity (increased magnitude and number of effects) compared to the neat chemicals. PMID:25167095

  17. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    PubMed Central

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  18. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  19. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: A typical case of alteration of degradation pathway of one drug by another.

    PubMed

    Handa, Tarun; Singh, Saranjit; Singh, Inder Pal

    2014-02-01

    An increasing interest is being shown throughout the world on the use of fixed-dose combinations of drugs in the therapy of select diseases, like cardiovascular diseases, due to their multiple advantages. Though the main criterion for combining drugs in a single dosage form is the rationale, but consideration like stability of formulation is equally important, due to an added aspect of drug-drug interaction. The objective of this study was to evaluate interaction among the drugs in an antihypertensive combination of nifedipine and atenolol. Nifedipine is a known light sensitive drug, which degrades via intra-molecular mechanisms to nitro- and nitroso-pyridine analogs, along with a few minor secondary products that are formed through inter-molecular interactions amongst primary degradation products and their intermediates. Atenolol is reasonably stable weakly basic drug that is mainly hydrolyzed at acetamide terminal amide moiety to its corresponding carboxylic acid. To the best of our knowledge, there is no known information on chemical compatibility among the two drugs. The present study involved subjecting of nifedipine, atenolol and their combination to a variety of accelerated and stress conditions. HPLC studies revealed formation of a new product in the mixture of two drugs (∼2%), which was also generated from nifedipine alone, but at trace levels (<0.1%). The product was isolated by preparative chromatography and subjected to indepth studies for its characterization. Ultra-violet, FT-IR, mass spectrometric and nuclear magnetic resonance spectroscopic studies highlighted that the principal photo-degradation pathway of nifedipine was modified and diverted in the presence of atenolol. To verify the same, a study was conducted employing two other β-blockers with similar structures to atenolol, and the same product was formed in relatively higher quantity therein also. The new product is postulated to be produced as a result of rearrangement of hydroxylamine

  20. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs. PMID:26293409

  1. GFP Reporter Screens for the Engineering of Amino Acid Degrading Enzymes from Libraries Expressed in Bacteria

    PubMed Central

    Paley, Olga; Agnello, Giulia; Cantor, Jason; Yoo, Tae Hyun; Georgiou, George; Stone, Everett

    2014-01-01

    There is significant interest in engineering human amino acid degrading enzymes as non-immunogenic chemotherapeutic agents. We describe a high-throughput fluorescence activated cell sorting (FACS) assay for detecting the catalytic activity of amino acid degrading enzymes in bacteria, at the single cell level. This assay relies on coupling the synthesis of the GFP reporter to the catalytic activity of the desired amino acid degrading enzyme in an appropriate E. coli genetic background. The method described here allows facile screening of much larger libraries (106–107) than was previously possible. We demonstrate the application of this technique in the screening of libraries of bacterial and human asparaginases and also for the catalytic optimization of an engineered human methionine gamma lyase. PMID:23423887

  2. Energetics and kinetics of anaerobic aromatic and fatty acid degradation. Progress report, March 1992--June 1995

    SciTech Connect

    McInerney M.J.

    1995-06-23

    Factors affecting the rate and extent of benzoate degradation by anaerobic syntrophic consortia were studied. Cocultures of a syntrophic benzoate degrader, strain SB, with a hydrogen/formate-using sulfate reducer degraded benzoate to a threshold that depended on the amount of substrate and acetate present. The benzoate threshold was not a function of the inhibition of benzoate degradation capacity by acetate or the toxicity of the undissociated form of acetate. Rather, a critical or minimal Gibb`s free energy value may exist where thermodynamic constraints preclude further benzoate degradation. A sensitive assay to detect low formate concentrations was developed to measure the formate levels when the benzoate threshold was reached. We showed that increased acetate concentrations, even when hydrogen and formate levels are low, affects the extent of benzoate degradation, implicating the importance of interspecies acetate transfer. In addition to benzoate, various saturated and unsaturated fatty acids, 2-methylbutyrate, and methyl esters of fatty acids supported growth in coculture with a hydrogen-using partner. SB is the only syntrophic bacterium known to use both benzoate and fatty acids. Phylogenetic analysis showed that SB clustered with sulfate reducers in the delta subclass of the Proteobacteria. SB grew well in coculture with Desulfoarculus baarsii, a sulfate reducer that uses formate but not hydrogen. This unequivocally shows that SB can grow by interspecies formate transfer.

  3. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  4. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide. PMID:25585639

  5. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products

    NASA Astrophysics Data System (ADS)

    Ruggiero, P.; Interesse, F. S.; Cassidei, L.; Sciacovelli, O.

    1980-04-01

    1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -( CH2) n - CH3 ( n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.

  6. Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension.

    PubMed

    Giraldo, Ana L; Peñuela, Gustavo A; Torres-Palma, Ricardo A; Pino, Nancy J; Palominos, Rodrigo A; Mansilla, Héctor D

    2010-10-01

    In the work presented here, a photocatalytic system using titanium Degussa P-25 in suspension was used to evaluate the degradation of 20mg L(-1) of antibiotic oxolinic acid (OA). The effects of catalyst load (0.2-1.5 g L(-1)) and pH (7.5-11) were evaluated and optimized using the surface response methodology and the Pareto diagram. In the range of variables studied, low pH values and 1.0 g L(-1) of TiO(2) favoured the efficiency of the process. Under optimal conditions the evolution of the substrate, chemical oxygen demand, dissolved organic carbon, toxicity and antimicrobial activity on Escherichia coli cultures were evaluated. The results indicate that, under optimal conditions, after 30 min, the TiO(2) photocatalytic system is able to eliminate both the substrate and the antimicrobial activity, and to reduce the toxicity of the solution by 60%. However, at the same time, ∼53% of both initial DOC and COD remain in solution. Thus, the photocatalytical system is able to transform the target compound into more oxidized by-products without antimicrobial activity and with a low toxicity. The study of OA by-products using liquid chromatography coupled with mass spectrometry, as well as the evaluation of OA degradation in acetonitrile media as solvent or in the presence of isopropanol and iodide suggest that the reaction is initiated by the photo-Kolbe reaction. Adsorption isotherm experiments in the dark indicated that under pH 7.5, adsorption corresponded to the Langmuir adsorption model, indicating the dependence of the reaction on an initial adsorption step. PMID:20633918

  7. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.

    PubMed

    Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella

    2016-02-01

    The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible. PMID:26292078

  8. Enzymes involved in a novel anaerobic cyclohexane carboxylic acid degradation pathway.

    PubMed

    Kung, Johannes W; Meier, Anne-Katrin; Mergelsberg, Mario; Boll, Matthias

    2014-10-01

    The anaerobic degradation of cyclohexane carboxylic acid (CHC) has so far been studied only in Rhodopseudomonas palustris, in which CHC is activated to cyclohexanoyl coenzyme A (cyclohexanoyl-CoA [CHCoA]) and then dehydrogenated to cyclohex-1-ene-1-carboxyl-CoA (CHeneCoA). This intermediate is further degraded by reactions of the R. palustris-specific benzoyl-CoA degradation pathway of aromatic compounds. However, CHeneCoA is not an intermediate in the degradation of aromatic compounds in all other known anaerobic bacteria; consequently, degradation of CHC was mostly unknown in anaerobic bacteria. We identified a previously unknown CHC degradation pathway in the Fe(III)-reducing Geobacter metallireducens by determining the following CHC-induced in vitro activities: (i) the activation of CHC to CHCoA by a succinyl-CoA:CHC CoA transferase, (ii) the 1,2-dehydrogenation of CHCoA to CHeneCoA by CHCoA dehydrogenase, and (iii) the unusual 1,4-dehydrogenation of CHeneCoA to cyclohex-1,5-diene-1-carboxyl-CoA. This last represents a previously unknown joint intermediate of the CHC and aromatic compound degradation pathway in bacteria other than R. palustris. The enzymes catalyzing the three reactions were purified and characterized as specific enzymes after heterologous expression of the encoding genes. Quantitative reverse transcription-PCR revealed that expression of these genes was highly induced during growth with CHC but not with benzoate. The newly identified CHC degradation pathway is suggested to be present in nearly all CHC-degrading anaerobic bacteria, including denitrifying, Fe(III)-reducing, sulfate-reducing, and fermenting bacteria. Remarkably, all three CHC degradation pathways always link CHC catabolism to the catabolic pathways of aromatic compounds. We propose that the capacity to use CHC as a carbon source evolved from already-existing aromatic compound degradation pathways. PMID:25112478

  9. SURFACE DEGRADATION OF COMPOSITE RESINS BY ACIDIC MEDICINES AND pH-CYCLING

    PubMed Central

    Valinoti, Ana Carolina; Neves, Beatriz Gonçalves; da Silva, Eduardo Moreira; Maia, Lucianne Cople

    2008-01-01

    This study evaluated the effects of acidic medicines (Dimetapp® and Claritin®), under pH-cycling conditions, on the surface degradation of four composite resins (microhybrid: TPH, Concept, Opallis and Nanofilled: Supreme). Thirty disc-shaped specimens (Ø = 5.0 mm / thickness = 2.0 mm) of each composite were randomly assigned to 3 groups (n = 10): a control and two experimental groups, according to the acidic medicines evaluated. The specimens were finished and polished with aluminum oxide discs, and the surface roughness was measured by using a profilometer. After the specimens were submitted to a pH-cycling regimen and immersion in acidic medicines for 12 days, the surface roughness was measured again. Two specimens for each material and group were analyzed by scanning electron microscopy (SEM) before and after pH-cycling. Data were analyzed by the Student's-t test, ANOVA, Duncan's multiple range test and paired t-test (α=0.05). Significant increase in roughness was found only for TPH in the control group and TPH and Supreme immersed in Claritin® (p<0.05). SEM analyses showed that the 4 composite resins underwent erosion and surface degradation after being subjected to the experimental conditions. In conclusion, although the roughness was slightly affected, the pH-cycling and acidic medicines caused surface degradation of the composite resins evaluated. Titratable acidity seemed to play a more crucial role on surface degradation of composite resins than pH. PMID:19089257

  10. Uric Acid-Degrading Bacteria in Guts of Termites [Reticulitermes flavipes (Kollar)] †

    PubMed Central

    Potrikus, C. J.; Breznak, John A.

    1980-01-01

    Uricolytic bacteria were present in guts of Reticulitermes flavipes in populations up to 6 × 104 cells per gut. Of 82 strains isolated under strict anaerobic conditions, most were group N Streptococcus sp., Bacteroides termitidis, and Citrobacter sp. All isolates used uric acid (UA) as an energy source anaerobically, but not aerobically, and NH3 was the major nitrogenous product of uricolysis. However, none of the isolates had an absolute requirement for UA. Utilization of heterocyclic compounds other than UA was limited. Fresh termite gut contents also degraded UA anaerobically, as measured by 14CO2 evolution from [2-14C]UA. The magnitude of anaerobic uricolysis [0.67 pmol of UA catabolized/(gut × h)] was entirely consistent with the population density of uricolytic bacteria in situ. Uricolytic gut bacteria may convert UA in situ to products usable by termites for carbon, nitrogen, energy, or all three. This possibility is consistent with the fact that R. flavipes termites from UA, but they do not void the purine in excreta despite the lack of uricase in their tissues. PMID:16345587

  11. The radiation-induced degradation of hyaluronic acid

    NASA Astrophysics Data System (ADS)

    Deeble, D. J.; Phillips, G. O.; Bothe, E.; Schuchmann, H.-P.; von Sonntag, C.

    Free-radical-induced chain scission in hyaluronic acid in aqueous solution has been studied using pulse radiolysis. In the absence of oxygen (nitrous oxide-saturated solutions) the process of chain breakage was monitored by measuring changes in conductivity resulting from the release of condensed counter-ions (K +), originally located in the vicinity of the break. The rate of formation of breaks was found to be first order and was catalysed by acid and base (overall half-lives at pH values of 4.8, 7 and 10.2 were 0.6, 1 and 0.1 ms). It would seem that more than two independent reaction pathways are involved in the cleavage processes. In the presence of oxygen (N 2O/O 2), chain scission has been measured by pulse radiolysis monitoring changes in scattered light intensity as well as following conductivity changes. In oxygenated solutions, the kinetics of OH-radical-induced chain scission were found to contain a second-order component; the rate of breakage was base catalysed. Yield-dose plots for chain breaks (N 2O/O 2, pulse-irradiated), showed a marked dependence on pH, with G-values (molecules/100 eV) of 0.7, 2.5 and 4.7 at pH values of 7, 9.7 and 10.4, respectively. Steady-state radiolysis (N 2O/O 2) was used to determine G-values for oxygen consumption [ G(-O 2) ≈ 6], carbon dioxide formation [ G(CO 2) = 0.8 in the absence of O 2 and 1.3 in its presence] and peroxide formation [ G(H 2O 2) ≈ 2; G(organic hydroperoxide) < 0.15].

  12. [Removal of triclosan with the method of UV/ClO2 and its degradation products].

    PubMed

    Li, Yu-Ying; He, Wen-Long; Li, Qing-Song; Jin, Wei-Wei; Chen, Guo-Yuan; Li, Guo-Xin

    2015-02-01

    The UV/ClO2 process for triclosan ( TCS) removal was studied. The influences of several factors such as the initial pH, dose of ClO2, initial concentration of TCS and humic acid( HA) on TCS degradation in the UV/ClO2 combined process were discussed. The results showed that the UV/ClO2 process could effectively remove TCS and had a synergistic effect. When the light intensity was 6.5 μW x Cm(-2), the dose of ClO2 was 0. 5 mg x L(-1) and the concentration of TCS was 300 μg x L(-1), when UV and ClO2 were applied alone, the TCS removal rates within 1 min were only 5.23% and 84.93% respectively. The removal rate reached up to 99.13% after 1 min degradation using the UV/ClO2 combined process. In test conditions ( pH 6-9), the removal rate increased from 99.4% to 99. 63% with the increase of pH. Increasing dose of CIO2 could promote TCS removal. When the dose of ClO2 was 0.5-1.5 mg x L(-1), the removal rate was increased from 98.1% to 99.89%. The initial concentration of TCS was negatively correlated with the removal rate. When the initial concentration increased from 100 - 500 μg x L(-1), the removal rate of TCS was decreased from 99.98% to 94.39%. Low concentration of humic acid was beneficial to the removal of TCS, and high concentration of it had the opposite effect. Degradation products of TCS were investigated by GC/MS. Degradation of TCS by the processes of UV, ClO2 and UV/ClO2 also indicated that the main degradation products of the TCS were 2, 4-dichlorophenol (2,4-DCP), 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD), etc. PMID:26031077

  13. Development and Validation of a Stability-Indicating Assay of Etofenamate by RP-HPLC and Characterization of Degradation Products.

    PubMed

    Peraman, Ramalingam; Nayakanti, Devanna; Dugga, Hari Hara Theja; Kodikonda, Sudhakara

    2013-12-01

    A validated stability-indicating RP-HPLC method for etofenamate (ETF) was developed by separating its degradation products on a C18 (250 mm × 4.6 mm 5 μm) Qualisil BDS column using a phosphate buffer (pH-adjusted to 6.0 with orthophosphoric acid) and methanol in the ratio of 20:80 % v/v as the mobile phase at a flow rate of 1.0 mL/min. The column effluents were monitored by a photodiode array detector set at 286 nm. The method was validated in terms of specificity, linearity, accuracy, precision, detection limit, quantification limit, and robustness. Forced degradation of etofenamate was carried out under acidic, basic, thermal, photo, and peroxide conditions and the major degradation products of acidic and basic degradation were isolated and characterized by (1)H-NMR, (13)C-NMR, and mass spectral studies. The mass balance of the method varied between 92-99%. PMID:24482770

  14. Development and Validation of a Stability-Indicating Assay of Etofenamate by RP-HPLC and Characterization of Degradation Products

    PubMed Central

    Peraman, Ramalingam; Nayakanti, Devanna; Dugga, Hari Hara Theja; Kodikonda, Sudhakara

    2013-01-01

    A validated stability-indicating RP-HPLC method for etofenamate (ETF) was developed by separating its degradation products on a C18 (250 mm × 4.6 mm 5 μm) Qualisil BDS column using a phosphate buffer (pH-adjusted to 6.0 with orthophosphoric acid) and methanol in the ratio of 20:80 % v/v as the mobile phase at a flow rate of 1.0 mL/min. The column effluents were monitored by a photodiode array detector set at 286 nm. The method was validated in terms of specificity, linearity, accuracy, precision, detection limit, quantification limit, and robustness. Forced degradation of etofenamate was carried out under acidic, basic, thermal, photo, and peroxide conditions and the major degradation products of acidic and basic degradation were isolated and characterized by 1H-NMR, 13C-NMR, and mass spectral studies. The mass balance of the method varied between 92–99%. PMID:24482770

  15. Isolation and characterization of Bradyrhizobium sp. 224 capable of degrading sulfanilic acid.

    PubMed

    Hayase, Nobuki; Fujikawa, Yui; Nakagawa, Katsuhiko; Ushio, Kazutoshi

    2016-08-01

    A bacterial strain (strain 224), which has the ability to utilize sulfanilic acid as a sole source of carbon, was isolated from soil. 16S rRNA gene sequence obtained from strain 224 exhibited 100% identical to that of species in the genus Bradyrhizobium. Strain 224 degraded 4.7 mM of sulfanilic acid and released almost the same molar concentration of sulfate ion. PMID:27108596

  16. Biodegradation of dimethyl phthalate by Sphingomonas sp. isolated from phthalic-acid-degrading aerobic granules.

    PubMed

    Zeng, Ping; Moy, Benjamin Yan-Pui; Song, Yong-Hui; Tay, Joo-Hwa

    2008-10-01

    Phthalic acid esters (PAEs) contamination in water, air, and soil is one of the major environmental concerns in many countries. Besides the PAE biodegradation process, the PAE degrading bacteria have become one of the focuses of study. This study reports the successful isolation of one kind of indigenous bacterium PA-02 from phthalic acid (PA)-degrading aerobic granules. Based on its 16S ribosomal DNA sequence, isolate PA-02 was identified as Sphingomonas genus with 100% similarity to Sphingomonas sp. strain D84532. Strain PA-02 was a Gram-negative, rod-shaped bacterium with strong auto-aggregation ability. In particular, the strain PA-02 possessed PAE-degrading ability without acclimation. Results of growth tests showed that strain PA-02 could degrade dimethyl phthalate (DMP), dibutyl phthalate, and diethylhexyl phthalate. The specific degradation rates of DMP and PA were concentration-dependent with maximum values of 0.4 g-DMP g(-1) biomass h(-1) and 1.3 g-PA g(-1) biomass h(-1), respectively. Kinetic studies also revealed that PA-02 was robust under high concentrations of DMP and PA. Even when the PA concentration was increased to 1,000.0 mg l(-1), the specific PA degradation rate was about 0.25 g-PA g(-1) biomass h(-1). The corresponding value for DMP was 0.067 g-DMP g(-1) biomass h(-1) at 1,000 mg l(-1). PMID:18751698

  17. Protocatechuic Acid Promoted Alachlor Degradation in Fe(III)/H2O2 Fenton System.

    PubMed

    Qin, Yaxin; Song, Fahui; Ai, Zhihui; Zhang, Pingping; Zhang, Lizhi

    2015-07-01

    In this study, we demonstrate that protocatechuic acid (PCA) can significantly promote the alachlor degradation in the Fe(III)/H2O2 Fenton oxidation system. It was found that the addition of protocatechuic acid could increase the alachlor degradation rate by 10 000 times in this Fenton oxidation system at pH = 3.6. This dramatic enhancement of alachlor degradation was attributed to the complexing and reduction abilities of protocatechuic ligand, which could form stable complexes with ferric ions to prevent their precipitation and also accelerate the Fe(III)/Fe(II) cycle to enhance the ·OH generation. Meanwhile, the Fe(III)/PCA/H2O2 system could also work well at near natural pH even in the case of PCA concentration as low as 0.1 mmol/L. More importantly, both alachlor and PCA could be effectively mineralized in this Fenton system, suggesting the environmental benignity of PCA/Fe(III)/H2O2 Fenton system. We employed gas chromatography-mass spectrometry to identify the degradation intermediates of alachlor and then proposed a possible alachlor degradation mechanism in this novel Fenton oxidation system. This study provides an efficient way to remove chloroacetanilide herbicides, and also shed new insight into the possible roles of widely existed phenolic acids in the conversion and the mineralization of organic contaminants in natural aquatic environment. PMID:26066010

  18. Photoluminescence of friction-induced polymer degradation products

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Savitskiĭ, A. V.; Scherbakov, I. P.

    2008-07-01

    We have studied the photoluminescence (PL) spectra of polyethylene (PE), polypropylene, and polyamide 6 excited using laser radiation with a photon energy (˜3.68 eV) within a spectral interval (3.65 3.75 eV) corresponding to the optical absorption due to C=O bonds. The PL spectra of the products of friction-induced degradation of these polymers display an intense peak in the region of about 2 2.5 eV. In order to elucidate the nature of this peak, the surface of PE film samples upon friction (rubbing) has been studied using IR spectroscopy in the attenuated total reflection (ATR) mode. The ATR spectra of these samples exhibit a sharp increase in the intensity of bands assigned to vibrations of the conjugated sequences of carbon-carbon bonds in the backbone of PE macromolecules. This result allows the PL peak at 2 2.5 eV to be assigned to the π* → π transition in the conjugated sequences of such bonds excited by means of the intramolecular energy transfer from C=O bonds.

  19. Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage.

    PubMed

    Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir

    2015-04-15

    The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity. PMID:25466074

  20. Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides.

    PubMed

    Dziga, Dariusz; Jagiełło-Flasińska, Dominika

    2015-01-01

    Cellulose is a major component of plant biomass and could be applied in the production of biofuels, especially bioethanol. An alternative approach is production of a clean fuel - hydrogen from cellulosic biomass. In this paper an innovatory model of cellulosic waste degradation has been proposed to verify the possibility of utilization of cellulose derivatives by purple non-sulfur bacteria. The concept is based on a two-step process of wheat straw conversion by bacteria in order to obtain an organic acid mixture. In the next stage such products are consumed by Rhodobacter sphaeroides, the known producer of hydrogen. It has been documented that Cellulomonas uda expresses cellulolytic activity in the presence of wheat straw as an only source of carbon. R. sphaeroides applied in this research can effectively consume organic acids released from straw by C. uda and Lactobacillus rhamnosus and is able to grow in the presence of these substrates. Additionally, an increased nitrogenase activity of R. sphaeroides has been indicated when bacteria were cultivated in the presence of cellulose derivatives which suggests that hydrogen production occurs. PMID:26192769

  1. First-order kinetics analysis of monomer composition dependent polyhydroxyalkanoic acid degradation in Pseudomonas spp.

    PubMed

    Choi, Mun Hwan; Rho, Jong Kook; Lee, Ho-Joo; Song, Jae Jun; Yoon, Sung Chul; Lee, Sang Yeol

    2003-01-01

    The intracellular degradation of polyhydroxyalkanoic acid (PHA) in pseudomonads was investigated by first-order kinetics analysis using the initial rate method. One type of PHA was accumulated in five Pseudomonas spp., P. oleovorans, P. aeruginosa, P. fluorescens, P. citronellolis, and P. putida, by growing them on octanoic acid. The monomer compositions of the five PHA were not significantly different from one another: 85-90 mol % 3-hydroxyoctanoic acid (3HO), 7-12 mol % 3-hydorxycaproic acid (3HC), and 3-6 mol % 3-hydroxydecanoic acid (3HD). The first-order degradation rate constants (k(1)) for the octanoate-derived PHA (designated P(3HO)) in the five species were in a similar range between 0.060 and 0.088 h(-1). This may indicate the similar specificities of the five intracellular depolymerases. In addition, the similar k(1) among the different species may correlate with the high degree of amino acid sequence identities (over 85%) among the intracellular PHA depolymerase phaZ genes. Six other chemically different types of PHA were accumulated in P. putida from n-nonanoic acid, n-decanoic acid, 5-phenyvaleric acid, or 11-phenoxyundecanoic acid as a single or a mixed carbon source. The calculated k(1) values were characteristic to each PHA, reflecting their chemical structures. In comparison with P(3HO), an increase in the levels of the two minor monomers 3HC and 3HD as in P(21 mol % 3HC-co-56 mol % 3HO-co-23 mol % 3HD) significantly slowed the rate of intracellular degradation. From the comparison of k(1) values, it is suggested that the P. putida intracellular depolymerase is most active against P(3HO). PMID:12625741

  2. Stability-indicating HPLC method development and structural elucidation of novel degradation products in posaconazole injection by LC-TOF/MS, LC-MS/MS and NMR.

    PubMed

    Yang, Yidi; Zhu, Xi; Zhang, Fei; Li, Wei; Wu, Ying; Ding, Li

    2016-06-01

    Stress testing was carried out under acidic, alkaline, oxidative, thermal and photolytic conditions to evaluate the intrinsic stability of posaconazole injection. A total of four degradation products were detected and the drug was found to be susceptible to oxidative and thermal degradations. Three unknown degradants formed under oxidative stress condition were isolated by preparative HPLC and unambiguously elucidated by LC-TOF/MS, LC-MS/MS, (1)H NMR, (13)C NMR and 2D NMR techniques. Based on the spectrometric and spectroscopic information, these novel degradation products were unequivocally assigned as the N-oxides of posaconazole. Probable mechanisms for the formation of the degradants were proposed. A new and selective HPLC method was developed and validated to separate, detect and quantify all the degradants in posaconazole injection. PMID:27023129

  3. Nitrite attenuated hypochlorous acid-mediated heme degradation in hemoglobin.

    PubMed

    Lu, Naihao; Li, Jiayu; Ren, Xiaoming; Tian, Rong; Peng, Yi-Yuan

    2015-08-01

    Hypochlorous acid (HOCl) is elevated in many inflammatory diseases and causes the accumulation of free iron. Through the Fenton reaction, free iron has the ability to generate free radicals and subsequently is toxic. Recent studies have demonstrated that HOCl participates in heme destruction of hemoglobin (Hb) and free iron release. In this study, it was showed that nitrite (NO2(-)) could prevent HOCl-mediated Hb heme destruction and free iron release. Also, NO2(-) prevented HOCl-mediated loss of Hb peroxidase activity. After the NO2(-)/HOCl treatment, Tyr 42 in α-chain was found to be nitrated in Hb, attenuating the electron transferring abilities of phenolic compounds. The protective effects of NO2(-) on HOCl-induced heme destruction were attributed to its reduction of ferryl Hb and/or direct scavenging of HOCl. Therefore, NO2(-) could show protective effects in some inflammatory diseases by preventing HOCl-mediated heme destruction of hemoproteins and free iron release. PMID:26051522

  4. Persistence assessment of cyclohexyl- and norbornyl-derived ketones and their degradation products in different OECD screening tests.

    PubMed

    Seyfried, M; van Ginkel, C G; Boschung, A; Miffon, F; Fantini, P; Tissot, E; Baroux, L; Merle, P; Chaintreau, A

    2015-07-01

    The persistence of synthetic cyclohexyl- and norbornyl-derived ketones was assessed by using OECD 301F and 301D biodegradation tests. While cyclohexyl-derived ketones either reached or came close to the pass level (60%) after 60 d, the corresponding norbornyl derivatives yielded significantly less biodegradation (<40%). By analyzing extracts at 60 d, the key degradation products of four norbornyl derivatives were identified. Consistently, 2-bicyclo[2.2.1]heptane carboxylic acid was found as a principal degradation product with minor quantities of bicyclo[2.2.1]heptan-2-one and 2-bicyclo[2.2.1]heptane acetic acid. When the three degradation products were re-synthesized and tested individually for biodegradability, the former two were found to be ultimately biodegradable after 60 d in OECD 301D tests, thus proving non-persistence. Similarly, 2-bicyclo[2.2.1]heptane acetic acid was found to be degraded significantly, albeit with long lag phases exceeding 60 d in the case of freshwater inoculum, then ultimately reaching the pass level. On the other hand, norbornyl ketones were still only partially biodegradable in the same test. We conclude that despite the potential for ultimate biodegradation of norbornyl-derived ketones, current screening tests yield an incomplete picture of their biodegradability, particularly when applying strict OECD criteria. The appearance of long lag phases when re-testing norbornyl ketone degradation products underlines the importance of extending tests to well beyond 28 and even 60 d in the case of freshwater inocula. PMID:25769113

  5. Degradation of ferric chelate of ethylenediaminetetraacetic acid by bacterium isolated from deep-sea stalked barnacle.

    PubMed

    Imada, Chiaki; Harada, Yohei; Kobayashi, Takeshi; Hamada-Sato, Naoko; Watanabe, Etsuo

    2005-01-01

    Twenty strains of marine bacteria that degrade ferric chelate of ethylenediaminetetraacetic acid (Fe-EDTA) were isolated from among 117 strains collected from a marine environment. Among them strain 02-N-2, which was isolated from stalked barnacle collected from the deep sea in the Indian Ocean, had the highest Fe-EDTA degradation ability and was selected for further study. The strain showed high Fe-EDTA degradation ability at different seawater concentrations. In addition, the intact cells of this strain had the ability to degrade such metal-EDTAs as Ca, Cu, and Mg. The strain was an aerobic, gram-variable, rod-shaped organism. The results of various taxonomic studies revealed that the strain had significant similarity to Bacillus jeotgali JCM 10885(T), which was isolated from a Korean traditional fermented seafood, Jeotgal. PMID:15747087

  6. Degradation of Poly(L-Lactic acid) and Biocomposites in various Alkaline and Temperature Treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribbons of poly(lactic acid) (PLA) and PLA containing 10 or 25 % Osage orange (OO) biocomposites of various sized heartwood particles were exposed to soil conditions either outdoors or in a greenhouse. No appreciable degradation was evident even after 200 days treatments. An artificial alkaline de...

  7. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the curre...

  8. Fibrinogen degradation by two neutral granulocyte proteinases. Influence of calcium on the generation of fibrinogen degradation products with anticlotting properties.

    PubMed

    Bingenhkeimer, C; Gramse, M; Egbring, R; Havemann, K

    1981-07-01

    Degradation of human fibrinogen by elastase-like proteinase, chymotrypsin-like proteinase and plasmin, was done in the presence and absence of calcium ions, respectively. The resulting fibrinogen degradation products were tested for their coagulant and anti-coagulant properties. The results show that 1. fibrinogenolysis is delayed in the presence of calcium ions. Higher enzyme concentrations are required to get unclottable split products when calcium ions are present. 2. The fibrinogen fragments obtained in the presence of calcium are different in their molecular weights and anticoagulant activities compared to those obtained in the absence of calcium ions. This effect of calcium is most striking during fibrinogen cleavage by chymotrypsin-like proteinase. Elastase and plasmin-induced fibrinogenolysis was substantially influenced by calcium only at a late degradation stage. PMID:6456216

  9. Study of kinetics of degradation of cyclohexane carboxylic acid by acclimated activated sludge.

    PubMed

    Wang, Chunhua; Shi, Shuian; Chen, Hongyan

    2016-01-01

    Activated sludge contains complex microorganisms, which are highly effective biodegrading agents. In this study, the kinetics of biodegradation of cyclohexane carboxylic acid (CHCA) by an acclimated aerobic activated sludge were investigated. The results showed that after 180 days of acclimation, the activated sludge could steadily degrade >90% of the CHCA in 120 h. The degradation of CHCA by the acclimated activated sludge could be modeled using a first-order kinetics equation. The equations for the degradation kinetics for different initial CHCA concentrations were also obtained. The kinetics constant, kd, decreased with an increase in the CHCA concentration, indicating that, at high concentrations, CHCA had an inhibiting effect on the microorganisms in the activated sludge. The effects of pH on the degradation kinetics of CHCA were also investigated. The results showed that a pH of 10 afforded the highest degradation rate, indicating that basic conditions significantly promoted the degradation of CHCA. Moreover, it was found that the degradation efficiency for CHCA increased with an increase in temperature and concentration of dissolved oxygen under the experimental conditions. PMID:27191578

  10. Rate Motifs Tune Auxin/Indole-3-Acetic Acid Degradation Dynamics1[OPEN

    PubMed Central

    Moss, Britney L.; Mao, Haibin; Guseman, Jessica M.; Hinds, Thomas R.; Hellmuth, Antje; Kovenock, Marlies; Noorassa, Anisa; Lanctot, Amy; Villalobos, Luz Irina A. Calderón; Zheng, Ning; Nemhauser, Jennifer L.

    2015-01-01

    Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases facilitates ubiquitination of auxin (aux)/indole-3-acetic acid (IAA) repressor proteins in the presence of auxin. Rates of auxin-induced degradation vary widely within the Aux/IAA family, and sequences outside of the characterized degron (the minimum region required for auxin-induced degradation) can accelerate or decelerate degradation. We have used synthetic auxin degradation assays in yeast (Saccharomyces cerevisiae) and in plants to characterize motifs flanking the degron that contribute to tuning the dynamics of Aux/IAA degradation. The presence of these rate motifs is conserved in phylogenetically distant members of the Arabidopsis (Arabidopsis thaliana) Aux/IAA family, as well as in their putative Brassica rapa orthologs. We found that rate motifs can act by enhancing interaction between repressors and the E3, but that this is not the only mechanism of action. Phenotypes of transgenic plants expressing a deletion in a rate motif in IAA28 resembled plants expressing degron mutations, underscoring the functional relevance of Aux/IAA degradation dynamics in regulating auxin responses. PMID:26149575

  11. Rate Motifs Tune Auxin/Indole-3-Acetic Acid Degradation Dynamics.

    PubMed

    Moss, Britney L; Mao, Haibin; Guseman, Jessica M; Hinds, Thomas R; Hellmuth, Antje; Kovenock, Marlies; Noorassa, Anisa; Lanctot, Amy; Villalobos, Luz Irina A Calderón; Zheng, Ning; Nemhauser, Jennifer L

    2015-09-01

    Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases facilitates ubiquitination of auxin (aux)/indole-3-acetic acid (IAA) repressor proteins in the presence of auxin. Rates of auxin-induced degradation vary widely within the Aux/IAA family, and sequences outside of the characterized degron (the minimum region required for auxin-induced degradation) can accelerate or decelerate degradation. We have used synthetic auxin degradation assays in yeast (Saccharomyces cerevisiae) and in plants to characterize motifs flanking the degron that contribute to tuning the dynamics of Aux/IAA degradation. The presence of these rate motifs is conserved in phylogenetically distant members of the Arabidopsis (Arabidopsis thaliana) Aux/IAA family, as well as in their putative Brassica rapa orthologs. We found that rate motifs can act by enhancing interaction between repressors and the E3, but that this is not the only mechanism of action. Phenotypes of transgenic plants expressing a deletion in a rate motif in IAA28 resembled plants expressing degron mutations, underscoring the functional relevance of Aux/IAA degradation dynamics in regulating auxin responses. PMID:26149575

  12. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release

    PubMed Central

    Chu, David S.H.; Johnson, Russell N.; Pun, Suzie H.

    2011-01-01

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK10, containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(l)-lysine for nucleic acid binding, (ii) pHCath(d)K10, containing the FKFL linker with oligo-(d)-lysine, and (iii) pH(d)Cath(d)K10, containing all (d) amino acids. Cathepsin B degraded copolymers pHCathK10 and pHCath(d)K10 within one hour while no degradation of pH(d)Cath(d)K10 was observed. Polyplexes formed with pHCathK10 copolymers show DNA release by 4 hrs of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(d)K10 and pH(d)Cath(d)K10 show no DNA release within 8 hrs. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK10 was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. PMID:22036879

  13. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Hawes, S. K.; Steward, R. G.; Baker, K. A.; Smith, R. C.; Mitchell, B. G.

    1991-01-01

    A reflectance model developed to estimate chlorophyll a concentrations in the presence of marine colored dissolved organic matter, pheopigments, detritus, and bacteria is presented. Nomograms and lookup tables are generated to describe the effects of different mixtures of chlorophyll a and these degradation products on the R(412):R(443) and R(443):R(565) remote-sensing reflectance or irradiance reflectance ratios. These are used to simulate the accuracy of potential ocean color satellite algorithms, assuming that atmospheric effects have been removed. For the California Current upwelling and offshore regions, with chlorophyll a not greater than 1.3 mg/cu m, the average error for chlorophyll a retrievals derived from irradiance reflectance data for degradation product-rich areas was reduced from +/-61 percent to +/-23 percent by application of an algorithm using two reflectance ratios rather than the commonly used algorithm applying a single reflectance ratio.

  14. Economic aspects of amino acids production.

    PubMed

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  15. The Inhibitory Effect of Natural Products on Protein Fibrillation May Be Caused by Degradation Products--A Study Using Aloin and Insulin.

    PubMed

    Lobbens, Eva S; Foderà, Vito; Nyberg, Nils T; Andersen, Kirsten; Jäger, Anna K; Jorgensen, Lene; van de Weert, Marco

    2016-01-01

    Protein fibrillation is the pathological hallmark of several neurodegenerative diseases and also complicates the manufacturing and use of protein drugs. As a case study, the inhibitory activity of the natural compound aloin against insulin fibrillation was investigated. Based on Thioflavin T assays, high-performance liquid chromatography and transmission electron microscopy it was found that a degradation product of aloin, formed over weeks of storage, was able to significantly inhibit insulin fibrillation. The activity of the stored aloin was significantly reduced in the presence of small amounts of sodium azide or ascorbic acid, suggesting the active compound to be an oxidation product. A high-performance liquid chromatography method and a liquid chromatography-mass spectrometry method were developed to investigate the degradation products in the aged aloin solution. We found that the major compounds in the solution were aloin A and aloin B. In addition, 10-hydroxy aloin and elgonica dimers were detected in smaller amounts. The identified compounds were isolated and tested for activity by means of Thioflavin T assays, but no activity was observed. Thus, the actual fibrillation inhibitor is an as yet unidentified and potentially metastable degradation product of aloin. These results suggest that degradation products, and in particular oxidation products, are to be considered thoroughly when natural products are investigated for activity against protein fibrillation. PMID:26882071

  16. The Inhibitory Effect of Natural Products on Protein Fibrillation May Be Caused by Degradation Products – A Study Using Aloin and Insulin

    PubMed Central

    Lobbens, Eva S.; Foderà, Vito; Nyberg, Nils T.; Andersen, Kirsten; Jäger, Anna K.; Jorgensen, Lene; van de Weert, Marco

    2016-01-01

    Protein fibrillation is the pathological hallmark of several neurodegenerative diseases and also complicates the manufacturing and use of protein drugs. As a case study, the inhibitory activity of the natural compound aloin against insulin fibrillation was investigated. Based on Thioflavin T assays, high-performance liquid chromatography and transmission electron microscopy it was found that a degradation product of aloin, formed over weeks of storage, was able to significantly inhibit insulin fibrillation. The activity of the stored aloin was significantly reduced in the presence of small amounts of sodium azide or ascorbic acid, suggesting the active compound to be an oxidation product. A high-performance liquid chromatography method and a liquid chromatography-mass spectrometry method were developed to investigate the degradation products in the aged aloin solution. We found that the major compounds in the solution were aloin A and aloin B. In addition, 10-hydroxy aloin and elgonica dimers were detected in smaller amounts. The identified compounds were isolated and tested for activity by means of Thioflavin T assays, but no activity was observed. Thus, the actual fibrillation inhibitor is an as yet unidentified and potentially metastable degradation product of aloin. These results suggest that degradation products, and in particular oxidation products, are to be considered thoroughly when natural products are investigated for activity against protein fibrillation. PMID:26882071

  17. Stability-Indicating RP-HPLC Method for Simultaneous Estimation of Enrofloxacin and Its Degradation Products in Tablet Dosage Forms.

    PubMed

    Chakravarthy, V Ashok; Sailaja, B B V; Kumar, Avvaru Praveen

    2015-01-01

    The present work was the development of a simple, efficient, and reproducible stability-indicating reverse-phase high performance liquid chromatographic (RP-HPLC) method for simultaneous determination enrofloxacin (EFX) and its degradation products including ethylenediamine impurity, desfluoro impurity, ciprofloxacin impurity, chloro impurity, fluoroquinolonic acid impurity, and decarboxylated impurity in tablet dosage forms. The separation of EFX and its degradation products in tablets was carried out on Kromasil C-18 (250 × 4.6 mm, 5 μm) column using 0.1% (v/v) TEA in 10 mM KH2PO4 (pH 2.5) buffer and methanol by linear gradient program. Flow rate was 1.0 mL min(-1) with a column temperature of 35°C and detection wavelength was carried out at 278 nm and 254 nm. The forced degradation studies were performed on EFX tablets under acidic, basic, oxidation, thermal, humidity, and photolytic conditions. The degraded products were well resolved from the main active drug and also from known impurities within 65 minutes. The method was validated in terms of specificity, linearity, LOD, LOQ, accuracy, precision, and robustness as per ICH guidelines. The results obtained from the validation experiments prove that the developed method is a stability-indicating method and suitable for routine analysis. PMID:25705547

  18. The role of degradant profiling in active pharmaceutical ingredients and drug products.

    PubMed

    Alsante, Karen M; Ando, Akemi; Brown, Roland; Ensing, Janice; Hatajik, Todd D; Kong, Wei; Tsuda, Yoshiko

    2007-01-10

    Forced degradation studies are used to facilitate the development of analytical methodology, to gain a better understanding of active pharmaceutical ingredient (API) and drug product (DP) stability, and to provide information about degradation pathways and degradation products. In order to fulfill development and regulatory needs, this publication provides a roadmap for when and how to perform studies, helpful tools in designing rugged scientific studies, and guidance on how to record and communicate results. PMID:17187892

  19. Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data

    PubMed Central

    Bargiela, Rafael; Gertler, Christoph; Magagnini, Mirko; Mapelli, Francesca; Chen, Jianwei; Daffonchio, Daniele; Golyshin, Peter N.; Ferrer, Manuel

    2015-01-01

    Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyze the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy) amended with natural fertilizer, uric acid (UA), or ammonium (AMM). We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180) to identify potential catabolic differences. A total of 45 (for UA) and 65 (AMM) gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA) and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM), were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered for designing

  20. Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data.

    PubMed

    Bargiela, Rafael; Gertler, Christoph; Magagnini, Mirko; Mapelli, Francesca; Chen, Jianwei; Daffonchio, Daniele; Golyshin, Peter N; Ferrer, Manuel

    2015-01-01

    Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyze the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy) amended with natural fertilizer, uric acid (UA), or ammonium (AMM). We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180) to identify potential catabolic differences. A total of 45 (for UA) and 65 (AMM) gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA) and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM), were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered for designing

  1. Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products.

    PubMed

    Feng, Mingbao; Wang, Xinghao; Chen, Jing; Qu, Ruijuan; Sui, Yunxia; Cizmas, Leslie; Wang, Zunyao; Sharma, Virender K

    2016-10-15

    The degradation of five fluoroquinolone (FQ) antibiotics (flumequine (FLU), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL) and marbofloxacin (MAR)) by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was examined to demonstrate the potential of this iron-based chemical oxidant to treat antibiotics in water. Experiments were conducted at different molar ratios of Fe(VI) to FQs at pH 7.0. All FQs, except FLU, were degraded within 2 min at [Fe(VI)]:[FQ] ≤ 20.0. Multiple additions of Fe(VI) improved the degradation efficiency, and provided greater degradation than a single addition of Fe(VI). The effects of anions, cations, and humic acid (HA), usually present in source waters and wastewaters, on the removal of FLU were investigated. Anions (Cl(-), SO4(2-), NO3(-), and HCO3(-)) and monovalent cations (Na(+) and K(+)) had no influence on the removal of FLU. However, multivalent cations (Ca(2+), Mg(2+), Cu(2+), and Fe(3+)) in water decreased the efficiency of FLU removal by Fe(VI). An increase in the ionic strength of the solution, and the presence of HA in the water, also decreased the percentage of FLU removed by Fe(VI). Experiments on the removal of selected FQs, present as co-existing antibiotics in pure water, river water, synthetic water and wastewater, were also conducted to demonstrate the practical application of Fe(VI) to remove the antibiotics during water treatment. The seventeen oxidized products (OPs) of FLU were identified using solid phase extraction-liquid chromatography-high-resolution mass spectrometry. The reaction pathways are proposed, and are theoretically confirmed by molecular orbital calculations. PMID:27429354

  2. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  3. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation[S

    PubMed Central

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Stafforini, Diana M.; Azhar, Salman; Liu, Jingwen

    2014-01-01

    ACSL4 is a member of the long-chain acyl-CoA synthetase (ACSL) family with a marked preference for arachidonic acid (AA) as its substrate. Although an association between elevated levels of ACSL4 and hepatosteatosis has been reported, the function of ACSL4 in hepatic FA metabolism and the regulation of its functional expression in the liver remain poorly defined. Here we provide evidence that AA selectively downregulates ACSL4 protein expression in hepatic cells. AA treatment decreased the half-life of ACSL4 protein in HepG2 cells by approximately 4-fold (from 17.3 ± 1.8 h to 4.2 ± 0.4 h) without causing apoptosis. The inhibitory action of AA on ACSL4 protein stability could not be prevented by rosiglitazone or inhibitors that interfere with the cellular pathways involved in AA metabolism to biologically active compounds. In contrast, treatment of cells with inhibitors specific for the proteasomal degradation pathway largely prevented the AA-induced ACSL4 degradation. We further show that ACSL4 is intrinsically ubiquitinated and that AA treatment can enhance its ubiquitination. Collectively, our studies have identified a novel substrate-induced posttranslational regulatory mechanism by which AA downregulates ACSL4 protein expression in hepatic cells. PMID:24879802

  4. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers.

    PubMed

    Suchý, Tomáš; Šupová, Monika; Klapková, Eva; Horný, Lukáš; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, Rastislav; Veselý, Jan; Chlup, Hynek; Denk, František

    2016-03-01

    Infections of the musculoskeletal system present a serious problem with regard to the field of orthopedic and trauma medicine. The aim of the experiment described in this study was to develop a resorbable nanostructured composite layer with the controlled elution of antibiotics. The layer is composed of collagen, hydroxyapatite nanoparticles, and vancomycin hydrochloride (10 wt%). The stability of the collagen was enhanced by means of cross-linking. Four cross-linking agents were studied, namely an ethanol solution, a phosphate buffer solution of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide, genipin, and nordihydroguaiaretic acid. High performance liquid chromatography was used so as to characterize the in vitro release rates of the vancomycin and its crystalline degradation antibiotically inactive products over a 21-day period. The maximum concentration of the released active form of vancomycin (approximately 265 mg/L) exceeded the minimum inhibitory concentration up to an order of 17 times without triggering the burst releasing effect. At the end of the experiment, the minimum inhibitory concentration was exceeded by up to 6 times (approximately 100 mg/L). It was determined that the modification of collagen with hydroxyapatite nanoparticles does not negatively influence the sustainable release of vancomycin. The balance of vancomycin and its degradation products was observed after 14 days of incubation. PMID:26886321

  5. Rumen fermentation and degradability in buffalo and cattle using the in vitro gas production technique.

    PubMed

    Calabrò, S; Moniello, G; Piccolo, V; Bovera, F; Infascelli, F; Tudisco, R; Cutrignelli, M I

    2008-06-01

    An in vitro trial was conducted to investigate the effect of different inoculum sources (buffalo vs. cattle) on rumen fermentation and degradability. Incubations were carried out using rumen fluid obtained from buffalo or cattle fed the same diet [60% grass hay and 40% concentrate; 18 kg dry matter (DM)/day]. The fermentation kinetics of eight feeds commonly used in ruminant nutrition (alfalfa hay, barley meal, beet pulp, corn meal and silage, ryegrass hay and silage and soya bean meal s.e.) were studied with the in vitro gas production technique and rumen fermentation parameters (substrate disappearance, pH and volatile fatty acids production) were determined after 120 h of incubation. The linear relationship indicates that the microbial metabolic pathways of the two inocula for all the substrates were qualitatively similar, albeit often quantitatively different. In this in vitro study, a significant influence of rumen inoculum (buffalo vs. cow) on fermentation and degradability of the examined substrates was found. The differences in buffalo and cattle rumen fermentation can be explained with a different microbial activity of the two ruminant species, because of different amount of microbial population or microbial population constituted by different species of bacteria and protozoa. PMID:18477317

  6. Precipitation of organic arsenic compounds and their degradation products during struvite formation.

    PubMed

    Lin, Jin-Biao; Yuan, Shoujun; Wang, Wei; Hu, Zhen-Hu; Yu, Han-Qing

    2016-11-01

    Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH4(+)-N) and phosphate (PO4(3-)-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO4(3-)-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation. PMID:27262276

  7. Influence of cellulose powder structure on moisture-induced degradation of acetylsalicylic acid.

    PubMed

    Mihranyan, A; Strømme, M; Ek, R

    2006-02-01

    The stability of crystalline acetylsalicylic acid (ASA) powder in binary mixtures with cellulose powders was investigated to reveal information about the influence of the cellulose structural properties on the moisture-induced ASA degradation. Different cellulose powder samples were manufactured and characterized by X-ray diffraction and N2 BET gas adsorption. The degradation patterns in ASA/cellulose mixtures were monitored as a function of salicylic acid increase versus time under various relative humidity conditions at 50 degrees C. The crystallinity index of cellulose samples varied between approximately 49 and 95%. The results indicated that cellulose powder with the lowest crystallinity index exhibited lower degradation rates than the samples with the higher crystallinity index. It should be noted that higher ASA degradation rates were observed in the samples with comparably lower moisture contents. This effect was most pronounced in the 1:3 (w/w), ASA/cellulose mixtures, whereas in 3:1 (w/w), ASA/cellulose mixtures the effect was less obvious. The findings emphasise the importance of cellulose structural organisation when governing the moisture's partition between cellulose and ASA during the hydrolytic degradation. PMID:16311024

  8. Control of the molecular degradation of hyaluronic acid hydrogels for tissue augmentation.

    PubMed

    Oh, Eun Ju; Kang, Sun-Woong; Kim, Byung-Soo; Jiang, Ge; Cho, Il Hwan; Hahn, Sei Kwang

    2008-09-01

    A novel protocol to control the molecular degradation of hyaluronic acid (HA) hydrogels was successfully developed for tissue augmentation applications. HA has a different conformational structure in water and organic solvent, and the carboxyl group of HA is known to be the recognition site of hyaluronidase and HA receptors. Based on these findings, HA was chemically modified by grafting adipic acid dihydrazide (ADH) to the carboxyl group of HA in the water to prepare HA-ADH(WATER) and in the mixed solvent of water and ethanol to prepare degradation-controlled HA-ADH(WATER/ETHANOL). Three kinds of HA hydrogels were prepared by the crosslinking of HA-ADH(WATER) or HA-ADH(WATER/ETHANOL) with bis(sulfosuccinimidyl) suberate, and by the crosslinking of HA-OH with divinyl sulfone (DVS). In vitro and in vivo degradation tests showed that HA-DVS hydrogels were degraded most rapidly, followed by HA-ADH(WATER) hydrogels and HA-ADH(WATER/ETHANOL) hydrogels. There was no adverse effect during and after in vivo degradation tests. All of the HA hydrogel samples appeared to be biocompatible, according to the histological analysis with hematoxylin-eosin and Alcian blue. PMID:18022803

  9. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    PubMed

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-01

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy. PMID:25412478

  10. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere.

    PubMed

    Chang, Feng-chih; Simcik, Matt F; Capel, Paul D

    2011-03-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from <0.01 to 9.1 ng/m(3) and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥ 30 mm. PMID:21128261

  11. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    USGS Publications Warehouse

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  12. Degradation of 3-chloro-4-hydroxybenzoic acid in biological treated effluent by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Chu, Libing; Wang, Jianlong

    2016-02-01

    Gamma irradiation-induced degradation of a chlorinated aromatic compound, 3-chloro-4-hydroxybenzoic acid (CHBA) in biological treated effluent was studied and the results were compared with those obtained in deionized water. Gamma irradiation led to a complete decomposition of CHBA and a partial mineralization in the treated effluent. The removal of CHBA followed the pseudo first-order reaction kinetic model and the rate constant in the treated effluent was 1.7-3.5 times lower than that in deionized water. The CHBA degradation rate was higher at acidic condition than at neutral and alkaline conditions. The radiolytic yield, G-value for CHBA degradation was lower in the treated effluent, which decreased with increase in absorbed doses and increased with increase in initial concentrations of CHBA. The degradation mechanism of CHBA using gamma irradiation was proposed through the oxidation by -OH and reduction by eaq- and H- radicals. As exposed to gamma irradiation, dechlorination takes place rapidly and combines with the oxidation and cleavage of the aromatic ring, producing chloride ions, small carboxylic acids, acetaldehyde and other intermediates into the solution.

  13. Photocatalytic degradation of N-nitrosodimethylamine: mechanism, product distribution, and TiO2 surface modification.

    PubMed

    Lee, Jaesang; Choi, Wonyong; Yoon, Jeyong

    2005-09-01

    The photocatalytic degradation (PCD) reaction of N-nitrosodimethylamine (NDMA) in water was investigated using pure and surface-modified TiO2. The PCD products of NDMA were methylamine (MA), dimethylamine (DMA), nitrite, nitrate, and ammonium, and their distribution could be changed by modifying the surface of TiO2. The PCD reaction of NDMA seems to be initiated mostly by OH radicals, not valence band holes, because the addition of excess oxalates (hole scavengers) only moderately retarded the PCD rate. The presence of oxalate, however, enabled a new reductive transformation path in which the CO2-* radicals generated from the oxalate converted NDMA into DMA. In acidic suspensions of pure TiO2, the formation of MA was highly favored over DMA and NH3, whereas all degradation products (MA, DMA, and NH3) were generated at comparable concentrations at basic pH. It is suggested that there are three parallel paths depending on the position of the initial attack of OH radical on NDMA and the product distribution is closely related with which path is favored under a specific condition. DMA production is related to the OH radical attack on the nitrosyl nitrogen. Platinum deposition, silica loading, Nafion coating, and surface fluorination were tested to investigate the effects of TiO2 surface modification on the product distribution. The surface platinization of TiO2 had little effect on the PCD reaction of NDMA under air-equilibrated conditions but accelerated the PCD reaction under deaerated conditions. An enhanced PCD reaction of NDMA was achieved with the silica-loaded TiO2 and Nafion-coated TiO2, both of which favored the formation of DMA over MA. The PCD of NDMA on surface-fluorinated TiO2 was also highly enhanced but favored the formation of MA over the formation of DMA. PMID:16190242

  14. Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products

    PubMed Central

    Yan, Ni; Liu, Fei; Xue, Qiang; Brusseau, Mark L.; Liu, Yali; Wang, Junjie

    2015-01-01

    A binary catalytic system, siderite-catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82−), was investigated for the remediation of trichloroethene (TCE) contamination. Batch experiments were conducted to investigate reaction mechanisms, oxidant decomposition rates, and degradation products. By using high performance liquid chromatography (HPLC) coupled with electron paramagnetic resonance (EPR), we identified four radicals (hydroxyl (HO·), sulfate (SO4−·), hydroperoxyl (HO2·), and superoxide (O2−·)) in the siderite-catalyzed H2O2-S2O82− system. In the absence of S2O82− (i.e., siderite-catalyzed H2O2), a majority of H2O2 was decomposed in the first hour of the experiment, resulting in the waste of HO·. The addition of S2O82− moderated the H2O2 decomposition rate, producing a more sustainable release of hydroxyl radicals that improved the treatment efficiency. Furthermore, the heat released by H2O2 decomposition accelerated the activation of S2O82−, and the resultant SO4−· was the primary oxidative agent during the first two hours of the reaction. Dichloroacetic acid was firstly detected by ion chromatography (IC). The results of this study indicate a new insight to the reaction mechanism for the catalytic binary H2O2-S2O82− oxidant system, and the delineation of radicals and the discovery of the chlorinated byproduct provide useful information for efficient treatment of chlorinated-solvent contamination in groundwater. PMID:26236152

  15. Stimulation of aryl metabolite production in the basidiomycete Bjerkandera sp. strain BOS55 with biosynthetic precursors and lignin degradation products.

    PubMed Central

    Mester, T; Swarts, H J; Romero i Sole, S; de Bont, J A; Field, J A

    1997-01-01

    Aryl metabolites are known to have an important role in the ligninolytic system of white rot fungi. The addition of known precursors and aromatic acids representing lignin degradation products stimulated the production of aryl metabolites (veratryl alcohol, veratraldehyde, p-anisaldehyde, and 3-chloro-p-anisaldehyde) in the white rot fungus Bjerkandera sp. strain BOS55. The presence of manganese (Mn) is known to inhibit the biosynthesis of veratryl alcohol (T. Mester, E. de Jong, and J.A. Field, Appl. Environ. Microbiol. 61:1881-1887, 1995). A new finding of this study was that the production of the other aryl metabolites, p-anisaldehyde and 3-chloro-p-anisaldehyde, was also inhibited by Mn. We attempted to bypass the Mn-inhibited step in the biosynthesis of aryl metabolites by the addition of known and suspected precursors. Most of these compounds were not able to bypass the inhibiting effect of Mn. Only the fully methylated precursors (veratrate, p-anisate, and 3-chloro-p-anisate) provided similar concentrations of aryl metabolites in the presence and absence of Mn, indicating that Mn does not influence the reduction of the benzylic acid group. The addition of deuterated benzoate and 4-hydroxybenzoate resulted in the formation of deuterated aryl metabolites, indicating that these aromatic acids entered into the biosynthetic pathway and were common intermediates to all aryl metabolites. Only deuterated chlorinated anisyl metabolites were produced when the cultures were supplemented with deuterated 3-chloro-4-hydroxybenzoate. This observation combined with the fact that 3-chloro-4-hydroxybenzoate is a natural product of Bjerkandera spp. (H. J. Swarts, F. J. M. Verhagen, J. A. Field, and J. B. P. A. Wijnberg, Phytochemistry 42:1699-1701, 1996) suggest that it is a possible intermediate in chlorinated anisyl metabolite biosynthesis. PMID:9143129

  16. Biotechnological production and application of ganoderic acids.

    PubMed

    Xu, Jun-Wei; Zhao, Wei; Zhong, Jian-Jiang

    2010-06-01

    Ganoderic acids (GAs), a kind of highly oxygenated lanostane-type triterpenoids, are important bioactive constituents of the famous medicinal mushroom Ganoderma lucidum. They have received wide attention in recent years due to extraordinarily pharmacological functions. Submerged fermentation of G. lucidum is viewed as a promising technology for production of GAs, and substantial efforts have been devoted to process development for enhancing GA production in the last decade. This article reviews recent publication about fermentative production of GAs and their potential applications, especially the progresses toward manipulation of fermentation conditions and bioprocessing strategies are summarized. The biosynthetic pathway of GAs is also outlined. PMID:20437236

  17. Isolation and structure elucidation of the major degradation products of cefaclor in the solid state.

    PubMed

    Dorman, D E; Lorenz, L J; Occolowitz, J L; Spangle, L A; Collins, M W; Bashore, F N; Baertschi, S W

    1997-05-01

    Cefaclor is a beta-lactam antibiotic that degrades slowly under normal storage conditions to several minor products. To obtain samples large enough to permit structure elucidation, cefaclor was allowed to degrade at 40 degrees C (75% relative humidity) and at 85 degrees C. The profile of degradation products formed under these conditions is qualitatively similar to the profile of degradation products observed in samples of cefaclor aged for 14 years at room temperature, although some products found in the sample degraded at 85 degrees C are not formed at the lower temperatures. Using preparative reversed-phase high-performance liquid chromatography (rp-HPLC) and a combination of spectroscopic methods, we have isolated and characterized 17 of these degradation products. Some of these products were also isolated from studies of aqueous degradations. The major products appear to have arisen from five distinct pathways: (1) isomerization of the double bond in the dihydrothiazine ring; (2) decarboxylation; (3) ring contraction of the cephem nucleus to thiazole structures; (4) oxidative attack at carbon 4 of the dihydrothiazine ring; and (5) intramolecular attack of the primary amine of the side chain on either the beta-lactam carbonyl to form 3-phenyl-2,5-diketopiperazines or the "masked aldehyde" at carbon 6 to form 2-hydroxy-3-phenylpyrazine derivatives. The pathway involving oxidation at carbon 4 is particularly important at ambient temperatures and is unique to the solid-state degradation. PMID:9145376

  18. Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge.

    PubMed

    Chen, Gang; Ginige, Maneesha P; Kaksonen, Anna H; Cheng, Ka Yu

    2014-01-01

    Sulfanilic acid (SA) is a toxic sulfonated aromatic amine commonly found in anaerobically treated azo dye contaminated effluents. Aerobic acclimatization of SA-degrading mixed microbial culture could lead to co-enrichment of ammonium-oxidizing bacteria (AOB) because of the concomitant release of ammonium from SA oxidation. To what extent the co-enriched AOB would affect SA oxidation at various ammonium concentrations was unclear. Here, a series of batch kinetic experiments were conducted to evaluate the effect of AOB on aerobic SA degradation in an acclimatized activated sludge culture capable of oxidizing SA and ammonium simultaneously. To account for the effect of AOB on SA degradation, allylthiourea was used to inhibit AOB activity in the culture. The results indicated that specific SA degradation rate of the mixed culture was negatively correlated with the initial ammonium concentration (0-93 mM, R²= 0.99). The presence of AOB accelerated SA degradation by reducing the inhibitory effect of ammonium (≥ 10 mM). The Haldane substrate inhibition model was used to correlate substrate concentration (SA and ammonium) and oxygen uptake rate. This study revealed, for the first time, that AOB could facilitate SA degradation at high concentration of ammonium (≥ 10 mM) in an enriched activated sludge culture. PMID:25259503

  19. Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications.

    PubMed

    Dyson, J S; Beulke, S; Brown, C D; Lane, M C G

    2002-01-01

    The ability of soils to adsorb and degrade pesticides strongly influences their environmental fate. This paper examines the adsorption and degradation of a weak acid, a new herbicide mesotrione 12-[4-(methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione], in 15 different soils from Europe and the USA. Experiments were conducted to understand the influence of soil properties, covering a wide range of soil textures, soil pH values (4.4 to 7.5), and organic carbon contents (0.6 to 3.35%). Mesotrione adsorption (Kd values ranged from 0.13 to 5.0 L/kg) was primarily related to soil pH, and to a lesser extent by percent organic carbon (%OC). As soil pH rose. mesotrione Kd values got smaller as mesotrione dissociated from the molecular to anionic form. Mesotrione degradation (half-lives ranged from 4.5 to 32 d) was also related to soil pH, getting shorter as soil pH rose. Simple regression of mesotrione adsorption against soil pH and %OC and against degradation provided a close fit to the data. The correlation between mesotrione adsorption and degradation means that Kd and half-life values are only relevant for use in environmental fate assessment if these values are "paired" for the same soil pH and %OC. The implications were as illustrated for leaching, raising important issues about combining pesticide adsorption and degradation behavior in environmental fate assessments. PMID:11931453

  20. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid

    SciTech Connect

    Liuyun, Jiang; Chengdong, Xiong; Lixin, Jiang; Lijuan, Xu

    2013-10-15

    Graphical abstract: In this manuscript, we initiated a systematic study to investigate the effect of HA on thermal properties, inner structure, reduction of mechanical strength, surface morphology and the surface deposit of n-HA/PLGA composite with respect to the soaking time. The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation of n-HA/PLGA composite and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internal fixation materials, and the results would be of reference significance to predict the in vivo degradation and biological properties. - Highlights: • Effect of n-HA on degradation behavior of n-HA/PLGA composite was investigated. • Degradation behaviors of n-HA/PLGA and PLGA were carried out in SBF for 6 months. • Viscosity, thermal properties, inner structure and bending strength were tested. • n-HA can accelerate the degradation and endows it with bioactivity. - Abstract: To investigate the effect of hydroxyapatite(HA) on the degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid (HA/PLGA) nanocomposite, the degradation experiment of n-HA/PLGA composite and pure PLGA were carried out by soaking in simulated body fluid(SBF) at 37 °C for 1, 2, 4 and 6 months. The change of intrinsic viscosity, thermal properties, inner structure, bending strength reduction, surface morphology and the surface deposit of n-HA/PLGA composite and pure PLGA with respect to the soaking time were investigated by means of UbbeloHde Viscometer, differential scanning calorimeter (DSC), scanning electron microscope(SEM), electromechanical universal tester, a conventional camera and X-ray diffraction (XRD). The results showed that n-HA played an important role in improving the degradation behavior of n

  1. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE PAGESBeta

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  2. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    SciTech Connect

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition.

  3. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA were more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.

  4. Mechanism of Calcium Lactate Facilitating Phytic Acid Degradation in Soybean during Germination.

    PubMed

    Hui, Qianru; Yang, Runqiang; Shen, Chang; Zhou, Yulin; Gu, Zhenxin

    2016-07-13

    Calcium lactate facilitates the growth and phytic acid degradation of soybean sprouts, but the mechanism is unclear. In this study, calcium lactate (Ca) and calcium lactate with lanthanum chloride (Ca+La) were used to treat soybean sprouts to reveal the relevant mechanism. Results showed that the phytic acid content decreased and the availability of phosphorus increased under Ca treatment. This must be due to the enhancement of enzyme activity related to phytic acid degradation. In addition, the energy metabolism was accelerated by Ca treatment. The energy status and energy metabolism-associated enzyme activity also increased. However, the transmembrane transport of calcium was inhibited by La(3+) and concentrated in intercellular space or between the cell wall and cell membrane; thus, Ca+La treatment showed reverse results compared with those of Ca treatment. Interestingly, gene expression did not vary in accordance with their enzyme activity. These results demonstrated that calcium lactate increased the rate of phytic acid degradation by enhancing growth, phosphorus metabolism, and energy metabolism. PMID:27324823

  5. Production of fusaric acid by Fusarium species.

    PubMed Central

    Bacon, C W; Porter, J K; Norred, W P; Leslie, J F

    1996-01-01

    Fusaric acid is a mycotoxin with low to moderate toxicity, which is of concern since it might be synergistic with other cooccurring mycotoxins. Fusaric acid is widespread on corn and corn-based food and feeds and is frequently found in grain, where Fusarium spp. are also isolated. We surveyed 78 strains of Fusarium moniliforme, F. crookwellense, F. subglutinans, F. sambucinum, F. napiforme, F. heterosporum, F. oxysporum, F. solani, and F. proliferatum for their ability to produce fusaric acid. Strains in Fusarium section Liseola also were assigned to mating population of the Gibberella fujikuroi species complex. The fungi could be divided into three classes, low (< 100 micrograms/g), moderate (100 to 500 micrograms/g), and high (> 500 micrograms/g), based on the amounts of this mycotoxin produced in culture on autoclaved corn. Strains of mating populations C from rice consistently produced moderate to high concentrations of fusaric acid. Two isolates, one each from mating populations C and D, produced fusaric acid in excess of 1,000 micrograms/g of corn. No isolates of any of the Fusarium species examined were negative for the production of fusaric acid on autoclaved corn. PMID:8899996

  6. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.

    PubMed

    Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique

    2016-10-01

    Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios. PMID:27459161

  7. Stability-indicating methods for determination of vincamine in presence of its degradation product.

    PubMed

    Shehata, Mostafa A M; El Sayed, Mohammad A; El Tarras, Mohammad F; El Bardicy, Mohammad G

    2005-06-01

    Three different stability indicating assay methods are developed and validated for determination of vincamine in the presence of its degradation product (vincaminic acid). The first method is based on the derivative ratio zero crossing spectrophotometric technique using 0.1 N hydrochloric acid as a solvent. In the second method, measurements are based on spectro-densitometric technique using high performance thin-layer chromatography (HPTLC) plates with a developing system consisting of methanol-chloroform-ethyl acetate (2:1:1, v/v/v). The third method depends on high-performance liquid chromatography (HPLC). Separation of vincamine from vincaminic acid using Lichrocart RP-18 column (250 mm x 4.6 mm i.d.) with a mobile phase consisting of acetonitrile-ammonium carbonate (0.01 M) (7:3, v/v) is achieved. The methods showed high sensitivity with good linearity over the concentration ranges of 12 to 48 microg ml-1, 3 to 17 microg/spot, and 2 to 20 microg ml-1 for derivative spectrophotometry, spectro-densitometry and HPLC methods, respectively. The developed methods were successfully applied to the analysis of pharmaceutical formulations containing vincamine with excellent recoveries. PMID:15907622

  8. Macro kinetic studies for photocatalytic degradation of benzoic acid in immobilized systems.

    PubMed

    Mehrotra, Kanheya; Yablonsky, Gregory S; Ray, Ajay K

    2005-09-01

    Semiconductor photocatalytic process has been studied extensively in recent years due to its intriguing advantages in environmental remediation. In this study, a two-phase swirl-flow monolithic-type reactor is used to study the kinetics of photocatalytic degradation of benzoic acid in immobilized systems. Transport contributions into the observed degradation rates were determined when catalyst is immobilized. Intrinsic kinetic rate constants and its dependence on light intensity and catalyst layer thickness, values of adsorption equilibrium constant, internal as well as external mass transfer parameters were determined. The simultaneous effect of catalyst loading and light intensity and optimum catalyst layer thickness were also determined experimentally. Reaction rate constants and overall observed degradation rates were compared with slurry systems. PMID:16054912

  9. Cullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response

    PubMed Central

    Ferry, Christine; Gaouar, Samia; Fischer, Benoit; Boeglin, Marcel; Paul, Nicodeme; Samarut, Eric; Piskunov, Aleksandr; Pankotai-Bodo, Gabriella; Brino, Laurent; Rochette-Egly, Cecile

    2011-01-01

    SRC-3 is an important coactivator of nuclear receptors including the retinoic acid (RA) receptor α. Most of SRC-3 functions are facilitated by changes in the posttranslational code of the protein that involves mainly phosphorylation and ubiquitination. We recently reported that SRC-3 is degraded by the proteasome in response to RA. Here, by using an RNAi E3-ubiquitin ligase entry screen, we identified CUL-3 and RBX1 as components of the E3 ubiquitin ligase involved in the RA-induced ubiquitination and subsequent degradation of SRC-3. We also show that the RA-induced ubiquitination of SRC-3 depends on its prior phosphorylation at serine 860 that promotes binding of the CUL-3–based E3 ligase in the nucleus. Finally, phosphorylation, ubiquitination, and degradation of SRC-3 cooperate to control the dynamics of transcription. In all, this process participates to the antiproliferative effect of RA. PMID:22147914

  10. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). PMID:21855329

  11. Uptake of 8:2 perfluoroalkyl phosphate diester and its degradation products by carrot and lettuce from compost-amended soil.

    PubMed

    Bizkarguenaga, E; Zabaleta, I; Prieto, A; Fernández, L A; Zuloaga, O

    2016-06-01

    The present work studied the uptake of 8:2 perfluoroalkyl phosphate diester (diPAP) by two different crops (lettuce and carrot) and two different amended soils. Firstly, the possible degradation of 8:2 diPAP in the absence of crop was studied and 8:2 monoPAP (monophosphate), 8:2 FTCA (saturated fluorotelomer carboxylate), 8:2 FTUCA (unsaturated fluorotelomer carboxylate), 7:3 FTCA (saturated fluorotelomer carboxylate), PFHpA (perfluoroheptanoic acid), PFHxA (perfluorohexanoic acid) and PFOA (perfluorooctanoic acid) were detected. In the presence of crops, different degradation products were detected in the soil and, while PFNA (perfluorononanoic acid), PFHpA, PFHxA, PFPeA (perfluoropentacoic acid), PFBA (perfluorobutanoic acid), 7:3 FTCA and PFOA were determined in the cultivation media when carrot was grown, PFOA was the only degradation product detected in the case of lettuce experiments. Regarding the uptake in carrot, all the degradation products except 7:3 FTCA were translocated from the soil to the carrot. Carrot core, peel and leaves bioconcentration factors, BCFs, were determined for 8:2 diPAP and its degradation products. Values lower than method detection limits for core and low BCFs in peel (0.025-0.042) and leaves (0.028-0.049) were achieved for 8:2 diPAP. Regarding to the degradation products, the higher their water solubility, the higher the plant translocation. In this sense, the lower the carbon chain length of PFCAs, the higher the BCFs determined (PFBA > PFHxA > PFHpA > PFOA > PFNA). In general, lower total BCFs were achieved when the total organic carbon of the soils increased. For lettuce experiments, 8:2 diPAP (0.04-0.18) and PFOA (0.28-1.57) were only determined in lettuce heart. PMID:26991379

  12. Extraction chemistry of fermentation product carboxylic acids

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathways and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase.

  13. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  14. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial.

    PubMed

    Liu, Juncheng; Wang, Lin; Tang, Jingchun; Ma, Jianli

    2016-04-01

    Naphthenic acids (NAs) are a major contributor to the toxicity in oil sands process-affected water (OSPW), which is produced by hot water extraction of bitumen. NAs are extremely difficult to be degraded due to its complex ring and side chain structure. Photocatalysis is recognized as a promising technology in the removal of refractory organic pollutants. In this work, TiO2-graphene (P25-GR) composites were synthesized by means of solvothermal method. The results showed that P25-GR composite exhibited better photocatalytic activity than pure P25. The removal efficiency of naphthenic acids in acid solution was higher than that in neutral and alkaline solutions. It was the first report ever known on the photodegradation of NAs based on graphene, and this process achieved a higher removal rate than other photocatalysis degradation of NAs in a shorter reaction time. LC/MS analysis showed that macromolecular NAs (carbon number 17-22, z value -2) were easy to be degraded than the micromolecular ones (carbon number 11-16, z value -2). Furthermore, the reactive oxygen species that play the main role in the photocatalysis system were studied. It was found that holes and ·OH were the main reactive species in the UV/P25-GR photocatalysis system. Given the high removal efficiency of refractory organic pollutants and the short degradation time, photodegradation based on composite catalysts has a broad and practical prospect. The study on the photodegradation of commercially sourced NAs may provide a guidance for the degradation of OSPW NAs by this method. PMID:26874061

  15. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation

    PubMed Central

    Demeter, Marc A.; Lemire, Joseph A.; Yue, Gordon; Ceri, Howard; Turner, Raymond J.

    2015-01-01

    Oil sands surface mining for bitumen results in the formation of oil sands process water (OSPW), containing acutely toxic naphthenic acids (NAs). Potential exists for OSPW toxicity to be mitigated by aerobic degradation of the NAs by microorganisms indigenous to the oil sands tailings ponds, the success of which is dependent on the methods used to exploit the metabolisms of the environmental microbial community. Having hypothesized that the xenobiotic tolerant biofilm mode-of-life may represent a feasible way to harness environmental microbes for ex situ treatment of OSPW NAs, we aerobically grew OSPW microbes as single and mixed species biofilm and planktonic cultures under various conditions for the purpose of assaying their ability to tolerate and degrade NAs. The NAs evaluated were a diverse mixture of eight commercially available model compounds. Confocal microscopy confirmed the ability of mixed and single species OSPW cultures to grow as biofilms in the presence of the NAs evaluated. qPCR enumeration demonstrated that the addition of supplemental nutrients at concentrations of 1 g L-1 resulted in a more numerous population than 0.001 g L-1 supplementation by approximately 1 order of magnitude. GC-FID analysis revealed that mixed species cultures (regardless of the mode of growth) are the most effective at degrading the NAs tested. All constituent NAs evaluated were degraded below detectable limits with the exception of 1-adamantane carboxylic acid (ACA); subsequent experimentation with ACA as the sole NA also failed to exhibit degradation of this compound. Single species cultures degraded select few NA compounds. The degradation trends highlighted many structure-persistence relationships among the eight NAs tested, demonstrating the effect of side chain configuration and alkyl branching on compound recalcitrance. Of all the isolates, the Rhodococcus spp. degraded the greatest number of NA compounds, although still less than the mixed species cultures

  16. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids.

    PubMed

    Delgado, Rosa M; Hidalgo, Francisco J; Zamora, Rosario

    2016-03-01

    The Strecker-type degradation of phenylalanine in the presence of 2-pentanal and phenolic compounds was studied to investigate possible interactions that either promote or inhibit the formation of Strecker aldehydes in food products. Phenylacetaldehyde formation was promoted by 2-pentenal and also by o- and p-diphenols, but not by m-diphenols. This is consequence of the ability of phenolic compounds to be converted into reactive carbonyls and produce the Strecker degradation of the amino acid. When 2-pentenal and phenolic compounds were simultaneously present, an antagonism among them was observed. This antagonism is suggested to be a consequence of the ability of phenolic compounds to either react with both 2-pentenal and phenylacetaldehyde, or compete with other carbonyl compounds for the amino acids, a function that is determined by their structure. All these results suggest that carbonyl-phenol reactions may be used to modulate flavor formation produced in food products by lipid-derived reactive carbonyls. PMID:26471665

  17. Imprinted sol-gel materials for monitoring degradation products in automotive oils by shear transverse wave.

    PubMed

    Mujahid, Adnan; Afzal, Adeel; Glanzing, Gerd; Leidl, Anton; Lieberzeit, Peter A; Dickert, Franz L

    2010-08-18

    Titania sol-gel layers imprinted with capric acid have been used as synthetic receptors for highly sensitive detection of oxidized products resulting from degradation of automotive engine oil. These layers have been applied as sensitive coating material on shear transverse wave (STW) resonators of frequencies ranging from 100 MHz to 430 MHz. A relatively small size of STW resonators, i.e. about 2 mm for 430 MHz makes these devices extremely useful while considering the concept of miniaturization. It has been proved experimentally that by increasing fundamental resonance frequency of these devices, a very high sensor response i.e. 22 kHz up to 460 kHz can be generated. The geometry of long chain capric acid fits best as recognition element in the synthesis of imprinted TiO(2) network. The thin titania layers coated on transducer surface provide excellent diffusion pathways to oxidized products of waste engine oil for selective and reversible re-inclusion i.e. recovery time of 30 min. Viscosity effects of oxidized engine oil can be minimized by shear waves which do not dissipate considerable amount of energy that ensure smooth liquid phase operation. Different oxidized products i.e. carbonic acids and esters can be characterized in lubricant via infra-red (IR) spectroscopy. The increasing IR absorbance of different waste oil samples is a clear indication of increasing concentration of carbonyl group. The IR absorbance of carbonyl groups is directly correlated to the age of respective waste engine oil samples and a quantitative relationship between sensor responses from STWs and IR absorbance was also developed. PMID:20708116

  18. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    PubMed Central

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-01-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  19. Data of thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid as crosslinking agent.

    PubMed

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-06-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: "Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent" González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  20. Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver.

    PubMed Central

    Pösö, A R; Mortimore, G E

    1984-01-01

    Protein degradation in liver is actively controlled by a small group of inhibitory amino acids--leucine, tyrosine (or phenylalanine), glutamine, proline, histidine, tryptophan, and methionine. Other evidence, however, suggests that one or more of the remaining 12 noninhibitory amino acids is also required for suppression of proteolysis at normal concentrations. This question was investigated in livers of fed rats perfused in the single-pass mode. The deletion of alanine at normal (1x), but not at 4x or 10x normal, plasma amino acid concentrations evoked a near-maximal acceleration of protein degradation. No other noninhibitory amino acid was effective. Because alanine alone was not directly inhibitory and its omission was not associated with a decrease in inhibitory amino acid pools, alanine was presumed to act as a coregulator in the expression of inhibitory activity. When tested alone, the inhibitory group was as effective as the complete mixture at 0.5x and 4x levels, but it lost its suppressive ability within a narrow zone of concentration centered slightly above 1x. The addition of 1x (0.48 mM) alanine completely restored the inhibition. Pyruvate and lactate could be effectively substituted, but only at concentrations 10-20 times greater than that of alanine. These, together with earlier findings, indicate the existence of a regulatory complex that recognizes specific amino acids and transmits positive and negative signals to proteolytic sites. The results also suggest that alanine can provide an important regulatory link between energy demands and protein degradation. PMID:6589593

  1. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  2. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds

    PubMed Central

    Cornelius, Stefanie; Witz, Sandra; Rolletschek, Hardy; Möhlmann, Torsten

    2011-01-01

    PYD1 (dihydropyrimidine dehydogenase) initiates the degradation of pyrimidine nucleobases and is located in plastids. In this study, a physiological analysis of PYD1 employing T-DNA knockout mutants and overexpressors was carried out. PYD1 knockout mutants were restricted in degradation of exogenously provided uracil and accumulated high uracil levels in plant organs throughout development, especially in dry seeds. Moreover, PYD1 knockout mutants showed delayed germination which was accompanied by low invertase activity and decreased monosaccharide levels. Abscisic acid (ABA) is an important regulator of seed germination, and ABA-responsive genes were deregulated in PYD1 knockout mutants. Together with an observed increased PYD1 expression in wild-type seedlings upon ABA treatment, an interference of PYD1 with ABA signalling can be assumed. Constitutive PYD1 overexpression mutants showed increased growth and higher seed number compared with wild-type and knockout mutant plants. During senescence PYD1 expression increased to allow uracil catabolism. From this it is concluded that early in development and during seed production PYD1 is needed to balance pyrimidine catabolism versus salvage. PMID:21865177

  3. An okadaic acid-sensitive phosphatase negatively controls the cyclin degradation pathway in amphibian eggs.

    PubMed Central

    Lorca, T; Fesquet, D; Zindy, F; Le Bouffant, F; Cerruti, M; Brechot, C; Devauchelle, G; Dorée, M

    1991-01-01

    Inhibition of okadaic acid-sensitive phosphatases released the cyclin degradation pathway from its inhibited state in extracts prepared from unfertilized Xenopus eggs arrested at the second meiotic metaphase. It also switched on cyclin protease activity in a permanent fashion in interphase extracts prepared from activated eggs. Even after cdc2 kinase inactivation, microinjection of okadaic acid-treated interphase extracts pushed G2-arrested recipient oocytes into the M phase, suggesting that the phosphatase inhibitor stabilizes the activity of an unidentified factor which shares in common with cdc2 kinase the maturation-promoting factor activity. Images PMID:1846666

  4. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides.

    PubMed

    Schellenberger, Stefanie; Drake, Harold L; Kolb, Steffen

    2012-02-01

    Herbicides have the potential to impair the metabolism of soil microorganisms. The current study addressed the toxic effect of bentazon and 4-chloro-2-methylphenoxyacetic acid on aerobic and anaerobic Bacteria that are involved in cellulose and cellobiose degradation in an agricultural soil. Aerobic saccharide degradation was reduced at concentrations of herbicides above environmental values. Microbial processes (e.g. fermentations, ferric iron reduction) that were linked to anaerobic cellulose and cellobiose degradation were reduced in the presence of both herbicides at concentrations above and at those that occur in crop field soil. 16S rRNA gene transcript numbers of total Bacteria, and selected bacterial taxa (Clostridia [Group I], Planctomycetaceae, and two uncultivated taxa of Bacteroidetes) decreased more in anoxic than in oxic cellulose-supplemented soil microcosms in the presence of both herbicides. Collectively, the results suggested that the metabolism of anaerobic cellulose-degrading Bacteria was impaired by typical in situ herbicide concentrations, whereas in situ concentrations did not impair metabolism of aerobic cellulose- and cellobiose-degrading soil Bacteria. PMID:22098368

  5. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  6. Maleimides in recent sediments - Using chlorophyll degradation products for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Naeher, Sebastian; Schaeffer, Philippe; Adam, Pierre; Schubert, Carsten J.

    2013-10-01

    Maleimides (transformation products of chlorophylls and bacteriochlorophylls) were studied in recent sediments from the Swiss lake Rotsee and the Romanian Black Sea Shelf to investigate chlorophyll degradation, the role of oxygen in maleimide formation, and to identify their sources. Naturally occurring maleimides (i.e. "free" maleimides) and maleimides obtained after chromic acid oxidation of sediment extracts (i.e. "bound" maleimides) were analysed. 2-Methyl-maleimide (Me,H maleimide), 2,3-dimethyl-maleimide (Me,Me maleimide), 2-methyl-3-vinyl-maleimide (Me,vinyl maleimide), 2-methyl-3-ethyl-maleimide (Me,Et maleimide) and traces of 2-methyl-3-iso-butyl-maleimide (Me,i-Bu maleimide) occurred naturally in the sediment with a large predominance of the Me,Et homologue. Tetrapyrrolic pigments related to chlorophylls were the main source of maleimides, although variable contributions of other sources such as cytochromes and/or phycobilins cannot be completely ruled out. The predominant Me,Et maleimide and Me,vinyl maleimide most likely originate mainly from chlorophyll a related pigments. The same holds for Me,H maleimide, which might be formed following degradation of ring E from the tetrapyrrolic nucleus. Alternatively, Me,H maleimide and Me,Me maleimides might be formed by a recently discovered transformation pathway involving the oxidation of vinylic chlorophyll substituents and the formation of an aldehyde intermediate. 2-Methyl-3-n-propyl-maleimide (Me,n-Pr maleimide) and Me,i-Bu maleimide arising from bacteriochlorophyll related pigments traced the presence of phototrophic sulfur bacteria (Chlorobi), indicating photic zone euxinic and anoxic conditions in Rotsee during the last 150 years and throughout the Black Sea history, including the limnic phase of the Black Sea (Unit 3). Some other minor maleimides with specific alkylation pattern also originate from bacteriochlorophylls, while the source of others could not be identified. Free maleimides were mainly

  7. An assessment of potential degradation products in the gas-phase reactions of alternative fluorocarbons in the troposphere

    NASA Technical Reports Server (NTRS)

    Niki, Hiromi

    1990-01-01

    Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.

  8. Degradation of bromamine acid by nanoscale zero-valent iron (nZVI) supported on sepiolite.

    PubMed

    Fei, Xuening; Cao, Lingyun; Zhou, Lifeng; Gu, Yingchun; Wang, Xiaoyang

    2012-01-01

    Sepiolite, a natural nano-material, was chosen as a carrier to prepare supported nanoscale zero-valent iron (nZVI). The effects of preparation conditions, including mass ratio of nZVI and activated sepiolite and preparation pH value, on properties of the supported nZVI were investigated. The results showed that the optimal mass ratio of nZVI and sepiolite was 1.12:1 and the optimal pH value was 7. The supported nZVI was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS), and furthermore an analogy model of the supported nZVI was set up. Compared with the nZVI itself, the supported nZVI was more stable in air and possessed better water dispersibility, which were beneficial for the degradation of bromamine acid aqueous solution. The degradation characteristics, such as effects of supported nZVI dosage, initial concentration and initial pH value of the solution on the decolorization efficiency were also investigated. The results showed that in an acidic environment the supported nZVI with a dosage of 2 g/L showed high activity in the degradation of bromamine acid with an initial concentration of 1,000 mg/L, and the degree of decolorization could reach up to 98%. PMID:23109568

  9. Effect of the Electric Field Frequency on Ascorbic Acid Degradation during Thermal Treatment by Ohmic Heating

    PubMed Central

    Mercali, Giovana Domeneghini; Schwartz, Steven; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina; Sastry, Sudhir

    2014-01-01

    In this work, the influence of the electric field frequency and solids content on the degradation kinetics of ascorbic acid during ohmic heating of acerola pulp and acerola serum was investigated. The degradation percentage of ascorbic acid in the pulp after 120 min of heating varied between 12 and 17%. For the serum, the degradation percentage was in the range of 13 and 18%. The results were fitted to the first-order model, and the kinetic rate constants ranged from 1.1 to 1.6 × 10−3 min−1 and from 1.1 to 1.5 × 10−3 min−1 for pulp and serum, respectively. D values ranged between 1480 and 2145 min for the pulp and between 1524 and 1951 min for the serum. A distinct behavior between the kinetic parameters of the pulp and serum in electric field frequencies ranging from 10 to 1000 Hz indicates that the presence of distinct amounts and types of solids might affect the rate of the electron transfer in electrochemical reactions. These variables may also affect the polarization process stimulated by the oscillating electric field. The non-achievement of the equilibrium of the polarization process may have an influence on oxidation reactions, affecting the predisposition to hydrogen donation from the ascorbic acid molecule. PMID:24892902

  10. Effect of the electric field frequency on ascorbic acid degradation during thermal treatment by ohmic heating.

    PubMed

    Mercali, Giovana Domeneghini; Schwartz, Steven; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina; Sastry, Sudhir

    2014-06-25

    In this work, the influence of the electric field frequency and solids content on the degradation kinetics of ascorbic acid during ohmic heating of acerola pulp and acerola serum was investigated. The degradation percentage of ascorbic acid in the pulp after 120 min of heating varied between 12 and 17%. For the serum, the degradation percentage was in the range of 13 and 18%. The results were fitted to the first-order model, and the kinetic rate constants ranged from 1.1 to 1.6×10(-3) min(-1) and from 1.1 to 1.5×10(-3) min(-1) for pulp and serum, respectively. D values ranged between 1480 and 2145 min for the pulp and between 1524 and 1951 min for the serum. A distinct behavior between the kinetic parameters of the pulp and serum in electric field frequencies ranging from 10 to 1000 Hz indicates that the presence of distinct amounts and types of solids might affect the rate of the electron transfer in electrochemical reactions. These variables may also affect the polarization process stimulated by the oscillating electric field. The non-achievement of the equilibrium of the polarization process may have an influence on oxidation reactions, affecting the predisposition to hydrogen donation from the ascorbic acid molecule. PMID:24892902

  11. Free fatty acids degradation in grease trap purification using ozone bubbling and sonication

    NASA Astrophysics Data System (ADS)

    Piotr Kwiatkowski, Michal; Satoh, Saburoh; Fukuda, Shogo; Yamabe, Chobei; Ihara, Satoshi; Nieda, Masanori

    2013-02-01

    The oil and fat were treated at first by only ozone bubbling and it was confirmed that the collection efficiency of them became 98.4% when the aeration was used. It showed that the aeration method in a grease trap cleared the standard value of 90% and there was no worry on the oil and fat outflow from a grease trap. The characteristics of sonication process were studied for free fatty acids degradation. The free saturated fatty acids are the most hard-degradable compounds of the fats, oils and greases (FOGs) in the grease trap. The influence of various parameters such as immersion level of an ultrasound probe in the liquid and bubbling of various gases (Ar, O2, air, O3) on the sonochemical and energy efficiency of the sonication process was investigated. The most effective degradation treatment method for saturated free fatty acids was the combination of sonication and low flow rate argon bubbling. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  12. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    NASA Astrophysics Data System (ADS)

    Guo, Wenlu; Liu, Xiaolin; Huo, Pengwei; Gao, Xun; Wu, Di; Lu, Ziyang; Yan, Yongsheng

    2012-07-01

    Anatase TiO2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO2 consisted of well-defined spheres with size of 3-5 μm. The photocatalytic activity of spherical TiO2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h).

  13. Optimized photocatalytic degradation of caffeic acid by sol-gel TiO₂.

    PubMed

    García-Montelongo, Xiomara L; Martínez-de la Cruz, Azael; Contreras, David; Mansilla, Héctor D

    2015-01-01

    TiO₂anatase powder was prepared by means of the sol-gel method with titanium(IV) butoxide as precursor. The formation of a tetragonal crystal structure of TiO₂anatase at 500 °C was confirmed by X-ray powder diffraction. The characterization of the samples synthesized was complemented by scanning electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy, nitrogen adsorption-desorption isotherms (Brunauer-Emmett-Teller) and diffuse reflectance spectroscopy. The photocatalytic activity of the TiO₂anatase powder was evaluated in the degradation of caffeic acid in aqueous solution under ultraviolet radiation. A central composite circumscribed design was used to assess the weight of the experimental variables, pH and amount of catalyst in the percentage of caffeic acid degraded and the optimal conditions. The optimized conditions were found to be pH = 5.2 and a load of TiO₂of 1.1 g L⁻¹. Under these conditions more than 90% of caffeic acid degradation was achieved after 30 min of lamp irradiation. At this time the mineralization reached was almost 60%. PMID:25812097

  14. In vitro degradation and in vivo biocompatibility of poly(lactic acid) mesh for soft tissue reinforcement in vaginal surgery.

    PubMed

    de Tayrac, Renaud; Chentouf, Samir; Garreau, Henri; Braud, Christian; Guiraud, Isabelle; Boudeville, Philippe; Vert, Michel

    2008-05-01

    This study was aimed at evaluating the in vitro degradation, the in vivo biocompatibility and at comparing the effects of two methods of sterilization on poly(L-lactic acid) (PLA(94)) resorbable mesh. The mesh was manufactured to be used as surgical soft tissue reinforcement in the vaginal area. Samples of 100 mg of PLA(94) mesh (10 x 10 mm(2)) were immersed in isoosmolar 0.13M, pH 7.4 phosphate buffer solution at 37 degrees C, during 12 months. The hydrolytic degradation up to 12 months after immersion was monitored by measuring weight loss, mesh area changes, and by various analytical techniques namely Differential scanning calorimetry (DSC), capillary zone electrophoresis (CZE), size exclusion chromatography (SEC), and environmental scanning electron microscopy (ESEM). Specimens of nonsterilized, ethylene-oxide (ETO) sterilized, and gamma-ray sterilized PLA(94) mesh were compared. Fifteen samples were implanted in an incisional hernia Wistar rat model. Histopathology was performed up to 90 days after implantation to evaluate the inflammatory response and the collagen deposition. Although the decrease of molecular weight due to polymer chain scissions started 6 weeks after in vitro immersion, water-soluble degradation products and decrease of tensile strength appeared after 8 months only. Analyses showed also that ETO sterilization did not affect the degradation of the PLA(94) mesh. In contrast, gamma-ray sterilization increased very much the sensitivity of the mesh to the hydrolytic degradation. In vivo, the PLA(94) mesh exhibited good biocompatibility over the investigated time period. PMID:18161812

  15. Trichloroethene degradation by UV/H2O2 advanced oxidation process: product study and kinetic modeling.

    PubMed

    Li, Ke; Stefan, Mihaela I; Crittenden, John C

    2007-03-01

    The broadband UV irradiation of 1.1 mM trichloroethene (TCE) aqueous solution in the presence of 10.4 mM H2O2 resulted in formic, oxalic, dichloroacetic (DCA), and monochloroacetic (MCA) acids, as organic byproducts. The organic chlorine was converted completely to chloride ion as a final product. TCE and its degradation products were completely mineralized in 30 min, under a volume-averaged UV-C irradiant power of 35.7 W/L from a 1 kW medium-pressure mercury vapor arc lamp. TCE degraded primarily through hydroxyl radical-induced reactions and onlyto a low extentthrough direct UV photolysis and chlorine atom-induced chain reactions. The experimental patterns of TCE, H2O2, and detected reaction products combined with the literature information on radical reactions in the aqueous phase were used to postulate a degradation mechanism and to develop a kinetic model to predict the TCE decay, formation and degradation of byproducts, and pH and oxygen profiles. The agreement between the model calculations and the experimental data is satisfactory. PMID:17396662

  16. Evidence suggesting that HCV p7 protects E2 glycoprotein from premature degradation during virus production.

    PubMed

    Atoom, Ali M; Jones, Daniel M; Russell, Rodney S

    2013-09-01

    The hepatitis C virus (HCV) genome encodes a 63 amino acid (aa) protein, p7, which is located between the structural and non-structural proteins. p7 localizes to endoplasmic reticulum membranes and is composed of two transmembrane domains (TM1 and TM2) and a cytoplasmic loop. While its exact role is unknown, p7 is crucial for assembly and/or release of infectious virus production in cell culture, as well as infectivity in chimpanzees. The contribution of p7 to the HCV life cycle may result from at least two distinct roles. Firstly, several studies have shown that p7 acts as an ion channel, the functionality of which is critical for infection. Secondly, p7 interacts with NS2 in a manner that may regulate the targeting of other structural proteins during the assembly process. In this study, we observed that mutations in TM1 and the cytoplasmic loop of p7 decreased infectious virus production in a single-cycle virus production assay. Analysis of intra- and extracellular virus titers indicated that p7 functions at a stage prior to generation of infectious particles. These effects were not due to altered RNA replication since no effects on levels of NS3 or NS5A protein were observed, and were not a consequence of altered recruitment of core protein to lipid droplets. Similarly, these mutations seemingly did not prevent nucleocapsid oligomerization. Importantly, we found that an alanine triplet substitution including the two basic residues of the cytoplasmic loop, which is integral to p7 ion channel function, significantly reduced E2 glycoprotein levels. A time course experiment tracking E2 levels indicated that E2 was degraded over time, as opposed to being synthesized in reduced quantities. The results of this study provide strong evidence that one of the functions of p7 is to protect HCV glycoproteins from premature degradation during virion morphogenesis. PMID:23816605

  17. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fibrinogen/fibrin degradation products assay. 864.7320 Section 864.7320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7320 Fibrinogen/fibrin degradation...

  18. 21 CFR 864.7320 - Fibrinogen/fibrin degradation products assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fibrinogen/fibrin degradation products assay. 864.7320 Section 864.7320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7320 Fibrinogen/fibrin degradation...

  19. A stability indicating HPLC method for the determination of clobazam and its basic degradation product characterization

    PubMed Central

    2014-01-01

    Background Clobazam is used for the treatment of different types of seizure and epilepsy. The present research is undertaken to study the systematic forced degradation of clobazam and to identify its main degradation product under basic conditions. Methods The degradation of clobazam was studied under different conditions. Clobazam and its degradation products were separated using a Nova-Pak C18 column and a mixture of KH2PO4 50 mM (pH 8.5) and acetonitrile (50:50, v/v) as the mobile phase with UV detection at 230 nm. Results The within-day and between-day precision values in the calibration range of 0.1-20 μg/ml were within 0.5-1.5%. Clobazam was relatively stable in solid from under exposure to visible and UV light and also heat. The clobazam aqueous solution of clobazam was more labile under exposure to visible and UV light. The bulk drug was significantly degraded under exposure to 2 M HCl, 0.1 M NaOH or 3% H2O2. Using the tablet powder, higher degradation rates were observed under different stress conditions. The main degradation product of clobazam under basic condition was subsequently characterized. Conclusion The developed method could be used for the determination of clobazam in the presence of its degradation products with acceptable precision and accuracy. The applicability of the proposed method was evaluated in commercial dosage forms analysis. PMID:24919821

  20. Oxidative degradation of bis (2,4,4-trimethylpentyl) dithiophosphinic acid in nitric acid studied by electrospray ionization mass spectrometry

    SciTech Connect

    G. S. Groenewold; D. R. Peterman

    2012-10-01

    Samples of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex-301) were analyzed using direct infusion electrospray ionization mass spectrometry. Positive ion spectra of standard and stereo-pure acids displayed ions typical of the unmodified compound, cationized monomeric and dimeric cluster ion species. In addition, a significant ions 2 u less than the dimeric clusters were seen, that correspond to an oxidatively coupled species designated Cyx2 that is observed as H- or Na-cationized species in the electrospray analyses. Based on uncorrected ion intensities, Cyx2 is estimated to account for about 20% of the total in the standard materials. When samples that were contacted with 3 M HNO3 were analyzed, the positive ion spectrum consisted nearly entirely of ions derived from the oxidatively coupled product, indicating that the acid promotes coupling. The negative ion spectra of the standard acids consisted nearly entirely of the conjugate base that is formed by deprotonation of the acids, and cluster ions containing multiple acid molecules. The negative spectra of the HNO3-contacted samples also contained the conjugate base of the unmodified acid, but also two other species that correspond to the dioxo- and perthio- derivatives. It is concluded that HNO3 contact causes significant oxidation, forming at least three major products, Cyx2, the perthio-acid, and the dioxo-acid.

  1. Isolation and characterization of a novel acid degradation impurity of Amlodipine Besylate using Q-TOF, NMR, IR and single crystal X-ray.

    PubMed

    Rapolu, Ravi; Raju, Ch Krishnam; Srinivas, Kolupula; Awasthi, Atul; Navalgund, Sameer G; Surendranath, Koduru V

    2014-10-01

    Forced degradation of Amlodipine Besylate (AMD) in acidic condition gave rise to a potential unknown impurity. This unknown acid degradation product (ADP) was evaluated using a new-reverse-phase high performance liquid chromatography (HPLC), where it was eluted at 1.24 relative retention time to AMD peak. ADP was isolated using preparative HPLC from degradation mixture. Later, structure of ADP was elucidated using high resolution MS, multidimensional NMR and FTIR spectroscopic techniques, and characterized as ethyl-6-(2-chlorophenyl)-8-methyl-3,4,6,7-tetrahydro-2H-benzo[b][1,4]oxazine-5-carboxylate. The presence of ADP recemic mixture was confirmed by polarimeter and chiral HPLC. Given the complexity associated with ADP generation, single crystal X-ray crystallography technique was used to confirm proposed structure. In addition, reaction mechanism was postulated and confirmed using computational chemistry. To our knowledge, it is a novel impurity and not reported elsewhere. PMID:25072842

  2. Identification of insulin domains important for binding to and degradation by endosomal acidic insulinase.

    PubMed

    Authier, F; Danielsen, G M; Kouach, M; Briand, G; Chauvet, G

    2001-01-01

    The endosomal compartment of hepatic parenchymal cells contains an acidic endopeptidase, endosomal acidic insulinase (EAI), which hydrolyzes internalized insulin at a limited number of sites. Although the positions of these cleavages are partially known, the residues of insulin important in its binding to and proteolysis by EAI have not been defined. To this end, we have studied the degradation over time of native human insulin and three insulin-analog peptides using a soluble endosomal extract from rat liver parenchyma followed by purification of the products by HPLC and determination of their structure by mass spectrometry. We found variable rates of ligand processing, i.e. high ([Asp(B10)]- and [Glu(A13),Glu(B10)]-insulin), moderate (insulin) and low (the H2-analog). On the basis of IC(50) values, competition studies revealed that human and mutant insulins display nearly equivalent affinity for the EAI. Proteolysis of human and mutant insulins by EAI resulted in eight cleavages in the B-chain which occurred in the central region (Glu(B13)-Leu(B17)) and at the C-terminus (Arg(B22)-Thr(B27)), the latter region comprising the initial cleavages at Phe(B24)-Phe(B25) (major pathway) and Phe(B25)-Tyr(B26) (minor pathway) bonds. Except for the [Glu(A13),Glu(B10)]-insulin mutant, only one cleavage on the A-chain was observed at residues Gln(A15)-Leu(A16). Analysis of the nine cleavage sites showed a preference for hydrophobic and aromatic amino acid residues on both the carboxyl and amino sides of a cleaved peptide bond. Using the B-chain alone as a substrate resulted in a 30-fold increase in affinity for EAI and a 6-fold increase in the rate of hydrolysis compared with native insulin. A similar role for the C-terminal region of the B-chain of insulin in the high-affinity recognition of EAI was supported by the use of the corresponding B(22)-B(30) peptide, which displayed an increase in EAI affinity similar to the entire B-chain vs. wild-type insulin. Thus, we have

  3. Determination of polymer electrolyte membrane (PEM) degradation products in fuel cell water using electrospray ionization tandem mass spectrometry.

    PubMed

    Zedda, Marco; Tuerk, Jochen; Peil, Stefan; Schmidt, Torsten C

    2010-12-30

    Within the scope of research of membrane degradation phenomena during fuel cell operation a reliable analytical procedure for the extraction, detection and quantification of possible membrane oxidation products has been developed. These oxidation products originate from the attack of hydroxyl or peroxyl radicals on the membrane polymer. Such radicals are formed in situ (during fuel cell operation) or ex situ (Fenton test as oxidative stress simulation). The analysis of membrane oxidation products was carried out by electrospray ionization tandem mass spectrometry. Five potential membrane oxidation products (4-hydroxybenzoic acid (4-HBA), 4-hydroxybenzaldehyde (4-HBAD), 4,4-biphenol (4,4-BP), 4-hydroxybenzenesulfonate (4-HBS), and 4,4-sulfonylbiphenol (4,4-SBP)) were selected based on the molecular structure of the sulfonated polyarylether membrane used. In conjunction with the development of a multiple reaction monitoring (MRM) method, the ionization and fragmentation of the selected compounds were investigated. For 4,4-BP a molecular ion (M(+•) ) was observed in the positive ionization mode and used for MRM method development. Reproducible extraction of the model compounds was achieved using a mixed-mode sorbent material with both weak anion-exchange and reversed-phase retention properties. By using the developed analytical procedure, the identities of two membrane degradation products (4-HBA and 4-HBAD) were determined in situ and ex situ. In addition to the investigation of membrane degradation phenomena, the combination of extraction on a mixed-mode sorbent material and tandem mass spectrometric detection is attractive for the analysis of aromatic sulfonic acids, phenolic acids and phenols. PMID:21080505

  4. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    PubMed

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here. PMID:24343766

  5. Identification and characterization of stress degradation products of dronedarone hydrochloride employing LC-UV/PDA, LC-MS/TOF and MS(n) studies.

    PubMed

    Chadha, Renu; Bali, Alka; Bansal, Gulshan

    2016-01-25

    Dronedarone HCl was subjected to forced decomposition conditions of hydrolysis (neutral, acidic and alkaline), oxidation, photolysis and thermal stress, as suggested in the ICH guideline Q1A(R2). The drug showed significant degradation under alkaline hydrolytic and alkaline photolytic conditions while it remained stable in neutral, acidic, thermal and oxidative conditions. In total, six degradation products (I-VI) were formed, which could be separated by chromatography on C18 (250 mm × 4.6 mm; 5 μ, Xterra) column using isocratic elution method. Detection wavelength was selected as 288 nm. Multi-stage (MS(n)) and MS/TOF accurate mass studies were carried out to establish the complete fragmentation pathway of the drug which in turn was utilized in characterization of the products. The degradation pathway of the drug leading to generation of products I-VI was postulated and this has not been reported so far. PMID:26547261

  6. Photodegradation of fluorene in aqueous solution: Identification and biological activity testing of degradation products.

    PubMed

    Kinani, Said; Souissi, Yasmine; Kinani, Aziz; Vujović, Svetlana; Aït-Aïssa, Sélim; Bouchonnet, Stéphane

    2016-04-15

    Degradation of fluorene under UV-vis irradiation in water was investigated and structural elucidation of the main photoproducts was achieved using gas chromatography coupled with mass spectrometry. Twenty-six photoproducts were structurally identified, mainly on the basis of electron ionization mass spectra interpretation. The main generated transformation products are hydroxy derivatives. Some secondary photoproducts including fluorenone, hydroxy fluorenone, 2-biphenyl carboxylic acid, biphenylene, methanol fluorene congeners and hydroxy fluorene dimers were also observed. A photodegradation pathway was suggested on the basis of the chemical structures of photoproducts. Fluorene as well as its main photoproducts for which chemical standards were commercially available were tested for their ability to elicit cytotoxic, estrogenic and dioxin-like activity by using in vitro cell-based bioassays. None of the tested compounds was cytotoxic at concentrations up to 100μM. However, 2-hydroxyfluorene and 3-hydroxyfluorene exerted significant estrogenic and dioxin-like activity on a concentration range of 3-30μM, while fluorene and 9-hydroxyfluorene were weakly or not active, respectively, in our assays. This supports the view that photodegradation processes can generate by-products of higher toxicological concern than the parent compound and strengthens the need to further identify transformation products in the aquatic environment. PMID:26987414

  7. Herbicides and herbicide degradation products in upper midwest agricultural streams during august base-flow conditions

    USGS Publications Warehouse

    Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.

    2003-01-01

    Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.

  8. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  9. Method for the production of dicarboxylic acids

    DOEpatents

    Nghiem, N.P.; Donnelly, M.; Millard, C.S.; Stols, L.

    1999-02-09

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of (a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; (b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; (c) controllably releasing oxygen to maintain the aerobic atmosphere; (d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/l up to about 1 g/l; (e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; (f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of {>=}1 g/l; and (g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism. 7 figs.

  10. Novel Extracellular PHB Depolymerase from Streptomyces ascomycinicus: PHB Copolymers Degradation in Acidic Conditions

    PubMed Central

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation. PMID:23951224

  11. Peracetic acid degradation in freshwater aquaculture systems and possible practical implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is a highly reactive peroxygen compound with wide-ranging antimicrobial effects and is considered an alternative sanitizer to formaldehyde. Products containing PAA are available in solution with acetic acid and hydrogen peroxide to maintain the stability of the chemical, and it...

  12. Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration.

    PubMed

    Jha, Amit K; Tharp, Kevin M; Browne, Shane; Ye, Jianqin; Stahl, Andreas; Yeghiazarians, Yerem; Healy, Kevin E

    2016-05-01

    A critical design parameter for the function of synthetic extracellular matrices is to synchronize the gradual cell-mediated degradation of the matrix with the endogenous secretion of natural extracellular matrix (ECM) (e.g., creeping substitution). In hyaluronic acid (HyA)-based hydrogel matrices, we have investigated the effects of peptide crosslinkers with different matrix metalloproteinases (MMP) sensitivities on network degradation and neovascularization in vivo. The HyA hydrogel matrices consisted of cell adhesive peptides, heparin for both the presentation of exogenous and sequestration of endogenously synthesized growth factors, and MMP cleavable peptide linkages (i.e., QPQGLAK, GPLGMHGK, and GPLGLSLGK). Sca1(+)/CD45(-)/CD34(+)/CD44(+) cardiac progenitor cells (CPCs) cultured in the matrices with the slowly degradable QPQGLAK hydrogels supported the highest production of MMP-2, MMP-9, MMP-13, VEGF165, and a range of angiogenesis related proteins. Hydrogels with QPQGLAK crosslinks supported prolonged retention of these proteins via heparin within the matrix, stimulating rapid vascular development, and anastomosis with the host vasculature when implanted in the murine hindlimb. PMID:26967648

  13. Selective separation and characterization of the stress degradation products of ondansetron hydrochloride by liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Talluri, Murali V N Kumar; Keshari, Kundan Kumar; Kalariya, Pradipbhai D; Srinivas, Ragampeta

    2015-05-01

    Ondansetron hydrochloride was subjected to forced degradation studies under various conditions of hydrolysis (acidic, basic, and neutral), oxidation, photolysis, and thermal as prescribed by International Conference on Harmonisation guideline Q1A (R2). A simple, selective, precise, and accurate high-performance liquid chromatography method was developed on a Waters Xterra C18 (150 × 4.6 mm id, 3.5 μm) column using 10 mM ammonium formate (pH 3.0)/methanol as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. The method was extended to liquid chromatography quadrupole time-of-flight tandem mass spectrometry for identification and structural characterization of stress degradation products of ondansetron. The drug showed significant degradation in base hydrolytic and photolytic stress conditions in the liquid state, while it was found to be stable in neutral, acidic, thermal, and oxidative stress conditions. A total of five degradation products were characterized and most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H](+) ions of the drug and its degradation products. Finally, the developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonisation guideline Q2 (R1). PMID:25727389

  14. PHOTOCHEMICAL TRANSFORMATION OF THE DDT AND METHOXYCHLOR DEGRADATION PRODUCTS, DDE AND DMDE, BY SUNLIGHT

    EPA Science Inventory

    DDE and DMDE, degradation products of the pesticides DDT and methoxychlor, rapidly undergo an unusual photoisomerization in solution when exposed to sunlight. The isomerization involves the exchange of a vinyl chlorine and an ortho aromatic hydrogen. Other photoproducts identifie...

  15. ANALYSIS OF GLUCOSINOLATES AND GLUCOSINOLATE DEGRADATION PRODUCTS IN SPROUTING BROCCOLI SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total glucosinolate content and glucosinolate degradation products were examined in unsprouted `Marathon' broccoli (Brassica oleracea L., Italica group) seeds and in 1-, 2-, 3-, 5-, 7-, and 10-day-old sprouts. Glucosinolates identified were glucoiberin, glucoraphanin, gluconapin, glucoiberverin, 4-...

  16. Determination of trace amounts of chemical warfare agent degradation products in decontamination solutions with NMR spectroscopy.

    PubMed

    Koskela, Harri; Rapinoja, Marja-Leena; Kuitunen, Marja-Leena; Vanninen, Paula

    2007-12-01

    Decontamination solutions are used for an efficient detoxification of chemical warfare agents (CWAs). As these solutions can be composed of strong alkaline chemicals with hydrolyzing and oxidizing properties, the analysis of CWA degradation products in trace levels from these solutions imposes a challenge for any analytical technique. Here, we present results of application of nuclear magnetic resonance spectroscopy for analysis of trace amounts of CWA degradation products in several untreated decontamination solutions. Degradation products of the nerve agents sarin, soman, and VX were selectively monitored with substantially reduced interference of background signals by 1D 1H-31P heteronuclear single quantum coherence (HSQC) spectrometry. The detection limit of the chemicals was at the low part-per-million level (2-10 microg/mL) in all studied solutions. In addition, the concentration of the degradation products was obtained with sufficient confidence with external standards. PMID:17973498

  17. Selective separation and characterisation of stress degradation products and process impurities of prucalopride succinate by LC-QTOF-MS/MS.

    PubMed

    Mahamuni, Baira Shandilya; Jajula, Anupama; Awasthi, Atul; Kalariya, Pradipbhai D; Talluri, M V N Kumar

    2016-06-01

    The present study reports the degradation behaviour of a new prokinetic agent, Prucalopride succinate, under various stress conditions as per International Conference on Harmonization guidelines (ICH, Q1A (R2)). The investigation involved monitoring decomposition of the drug under hydrolytic (acidic, basic and neutral), oxidative, photolytic and thermal stress conditions followed by characterization of the degradation products (DPs) and process related impurities (IMPs). A rapid, precise, accurate and robust reverse phase high performance liquid chromatography (RP-HPLC) method has been developed involving mobile phase of 20mM ammonium bicarbonate buffer and acetonitrile: methanol (80:20v/v) on a Waters Xbridge-C8 (150mm×4.6mm i.d., 3.5μm) column using gradient elution. The drug was found to be degraded in hydrolytic (acidic) and oxidative conditions, whereas it was stable under basic and neutral hydrolytic, photolytic and thermal stress conditions. The method was extended to LC-ESI-QTOF-MS/MS for the structural characterization of DPs and process related IMPs. Structural characterization was carried out based on the generated molecular formula of DPs and its fragment ions. It has been observed that two major DPs were formed under each acid hydrolysis and oxidative stress conditions. The most probable mechanisms involved in the formation of DPs were also proposed. Finally, the method was validated in the term of specificity, linearity, accuracy, precision, and robustness as per ICH guidelines, Q2 (R1). PMID:27037978

  18. Production of ascorbic acid releasing biomaterials for pelvic floor repair

    PubMed Central

    Mangır, Naşide; Bullock, Anthony J.; Roman, Sabiniano; Osman, Nadir; Chapple, Christopher; MacNeil, Sheila

    2016-01-01

    Objective An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. Materials and methods Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2 weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. Results No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. Conclusion This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. Statement of significance Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better

  19. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural

  20. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin.

    PubMed

    Münchow, Eliseu A; Ferreira, Ana Cláudia A; Machado, Raissa M M; Ramos, Tatiana S; Rodrigues-Junior, Sinval A; Zanchi, Cesar H

    2014-01-01

    Composite resins may undergo wear by the action of chemical substances (e.g., saliva, alcohol, bacterial acids) of the oral environment, which may affect the material's structure and surface properties. This study evaluated the effect of acidic substances on the surface properties of a micro-hybrid composite resin (Filtek Z-250). Eighty specimens were prepared, and baseline hardness and surface roughness (KMN0 and Ra0, respectively) were measured. The specimens were subjected to sorption (SO) and solubility (SL) tests according to ISO 4049:2009, but using different storage solutions: deionized water; 75/25 vol% ethanol/water solution; lactic acid; propionic acid; and acetic acid. The acids were used in two concentrations: PA and 0.02 N. pH was measured for all solutions and final hardness (KMN1) and surface roughness (Ra1) were measured. Data were analyzed with paired t-tests and one-way ANOVA and Tukey's test (a=5%). All solutions decreased hardness and increased the Ra values, except for the specimens stored in water and 0.02 N lactic acid, which maintained the hardness. All solutions produced similar SO and SL phenomena, except for the 0.02 N lactic acid, which caused lower solubility than the other solutions. Ethanol showed the highest pH (6.6) and the 0.02 N lactic acid the lowest one (2.5). The solutions affected negatively the surface properties of the composite resin; in addition, an acidic pH did not seem to be a significant factor that intensifies the surface degradation phenomena. PMID:25250496

  1. Low acid hydrothermal fractionation of Giant Miscanthus for production of xylose-rich hydrolysate and furfural.

    PubMed

    Kim, Tae Hyun; Ryu, Hyun Jin; Oh, Kyeong Keun

    2016-10-01

    Low acid hydrothermal (LAH) fractionation was developed for the effective recovery of hemicellulosic sugar (mainly xylose) from Miscanthus sacchariflorus Goedae-Uksae 1 (M. GU-1). The xylose yield was maximized at 74.75% when the M. GU-1 was fractionated at 180°C and 0.3wt.% of sulfuric acid for 10min. At this condition, the hemicellulose (mainly xylan) degradation was 86.41%. The difference between xylan degradation and xylose recovery yield, i.e., xylan loss, was 11.66%, as indicated by the formation of decomposed products. The furfural, the value added biochemical product, was also obtained by 0.42g/L at this condition, which was 53.82% of furfural production yield based on the xylan loss. After then, the furfural production continued to increase to a maximum concentration of 1.87g/L, at which point the xylan loss corresponded to 25.87%. PMID:27380022

  2. Determination of the Thermal Decomposition Products of Terephthalic Acid by Using Curie-Point Pyrolyzer

    NASA Astrophysics Data System (ADS)

    Begüm Elmas Kimyonok, A.; Ulutürk, Mehmet

    2016-04-01

    The thermal decomposition behavior of terephthalic acid (TA) was investigated by thermogravimetry/differential thermal analysis (TG/DTA) and Curie-point pyrolysis. TG/DTA analysis showed that TA is sublimed at 276°C prior to decomposition. Pyrolysis studies were carried out at various temperatures ranging from 160 to 764°C. Decomposition products were analyzed and their structures were determined by gas chromatography-mass spectrometry (GC-MS). A total of 11 degradation products were identified at 764°C, whereas no peak was observed below 445°C. Benzene, benzoic acid, and 1,1‧-biphenyl were identified as the major decomposition products, and other degradation products such as toluene, benzophenone, diphenylmethane, styrene, benzaldehyde, phenol, 9H-fluorene, and 9-phenyl 9H-fluorene were also detected. A pyrolysis mechanism was proposed based on the findings.

  3. Reproductive and developmental toxicity of degradation products of refrigerants in experimental animals.

    PubMed

    Ema, Makoto; Naya, Masato; Yoshida, Kikuo; Nagaosa, Ryuichi

    2010-01-01

    The present paper summarizes the results of animal studies on the reproductive and developmental toxicity of the degradation products of refrigerants, including trifluoroacetic acid (TFA), carbon dioxide (CO(2)), carbon monoxide (CO), carbonyl fluoride (CF), hydrogen fluoride (HF) and formic acid (FA). Excessive CO(2) in the atmosphere is testicular and reproductive toxic, embryolethal, developmentally neurotoxic and teratogenic in experimental animals. As for CO, maternal exposure causes prenatal and postnatal lethality and growth retardation, skeletal variations, cardiomegaly, blood biochemical, immunological and postnatal behavioral changes, and neurological impairment in offspring of several species. Very early studies of CO in rats and guinea pigs reported fetal malformations in exposed dams. The results of toxicological studies on sodium fluoride (NaF) were used to obtain insight into the toxicity of CF and HF, because CF is rapidly hydrolyzed in contact with water yielding CO(2) and HF, and NaF is similar in kinetics and dynamics to HF. Increased fetal skeletal variation, but not malformation, was noted after the maternal administration of NaF. Rat multiple-generation studies revealed that NaF caused retarded ossification and degenerative changes in the lung and kidney in offspring. There is a lack of information about the toxicity of TFA and FA. PMID:19755147

  4. Characterization of forced degradation products of ketorolac tromethamine using LC/ESI/Q/TOF/MS/MS and in silico toxicity prediction.

    PubMed

    Kalariya, Pradipbhai D; Raju, B; Borkar, Roshan M; Namdev, Deepak; Gananadhamu, S; Nandekar, Prajwal P; Sangamwar, Abhay T; Srinivas, R

    2014-05-01

    Ketorolac, a nonsteroidal anti-inflammatory drug, was subjected to forced degradation studies as per International Conference on Harmonization guidelines. A simple, rapid, precise, and accurate high-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (LC/ESI/Q/TOF/MS/MS) method has been developed for the identification and structural characterization of stressed degradation products of ketorolac. The drug was found to degrade in hydrolytic (acidic, basic, and neutral), photolytic (acidic, basic, and neutral solution), and thermal conditions, whereas the solid form of the drug was found to be stable under photolytic conditions. The method has shown adequate separation of ketorolac tromethamine and its degradation products on a Grace Smart C-18 (250 mm × 4.6 mm i.d., 5 µm) column using 20 mM ammonium formate (pH = 3.2): acetonitrile as a mobile phase in gradient elution mode at a flow rate of 1.0 ml/min. A total of nine degradation products were identified and characterized by LC/ESI/MS/MS. The most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H](+) ions of ketorolac and its degradation products. In silico toxicity of the drug and degradation products was investigated by using topkat and derek softwares. The method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonization guidelines. PMID:24809899

  5. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    SciTech Connect

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  6. Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water.

    PubMed

    Krause, Holger; Schweiger, Bianca; Schuhmacher, Jörg; Scholl, Saskia; Steinfeld, Ute

    2009-04-01

    Common wastewater treatment plants often do not eliminate endocrine disrupting chemicals (EDCs). Aqueous solutions of three EDCs were treated with an enhanced corona discharge technology. The three EDCs were clofibric acid, a blood lipid regulator, carbamazepine, an antiepileptic drug, and iopromide, a contrast media. To simulate real conditions, EDC solutions containing landfill leachate were also used. In our setup, two barrier electrodes provided an atmospheric pressure corona discharge over a thin water film, in which the counter-electrode was submerged. Clofibric acid, carbamazepine, and iopromide were effectively removed from a single solution. After a treatment of 15min, there were no traces of iopromide estrogen activity either as a single substance or as degradation products when using an E-Screen Assay. Continuous treatment was compared with pulsed treatment using carbamazepine solutions mixed with pretreated landfill leachate. Best degradation results were achieved with a 500 W continuous duty cycle treatment. Counter-electrodes from materials such as boron doped diamond (BDD), titanium iridium oxide, and iron were investigated for their influences on the process effectivity. Significant improvements were achieved by using an enclosed reactor, BDD electrodes, and circulating only a fresh air or argon/air mixture as cooling gas through the barrier electrodes. PMID:19150730

  7. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.

    PubMed

    Wei, Ren; Oeser, Thorsten; Schmidt, Juliane; Meier, René; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-08-01

    Recent studies on the enzymatic degradation of synthetic polyesters have shown the potential of polyester hydrolases from thermophilic actinomycetes for modifying or degrading polyethylene terephthalate (PET). TfCut2 from Thermobifida fusca KW3 and LC-cutinase (LCC) isolated from a compost metagenome are remarkably active polyester hydrolases with high sequence and structural similarity. Both enzymes exhibit an exposed active site in a substrate binding groove located at the protein surface. By exchanging selected amino acid residues of TfCut2 involved in substrate binding with those present in LCC, enzyme variants with increased PET hydrolytic activity at 65°C were obtained. The highest activity in hydrolyzing PET films and fibers were detected with the single variant G62A and the double variant G62A/I213S. Both variants caused a weight loss of PET films of more than 42% after 50 h of hydrolysis, corresponding to a 2.7-fold increase compared to the wild type enzyme. Kinetic analysis based on the released PET hydrolysis products confirmed the superior hydrolytic activity of G62A with a fourfold higher hydrolysis rate constant and a 1.5-fold lower substrate binding constant than those of the wild type enzyme. Mono-(2-hydroxyethyl) terephthalate is a strong inhibitor of TfCut2. A determination of the Rosetta binding energy suggested a reduced interaction of G62A with 2PET, a dimer of the PET monomer ethylene terephthalate. Indeed, G62A revealed a 5.5-fold lower binding constant to the inhibitor than the wild type enzyme indicating that its increased PET hydrolysis activity is the result of a relieved product inhibition by mono-(2-hydroxyethyl) terephthalate. Biotechnol. Bioeng. 2016;113: 1658-1665. © 2016 Wiley Periodicals, Inc. PMID:26804057

  8. Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments.

    PubMed

    Mathai, Prince P; Zitomer, Daniel H; Maki, James S

    2015-06-01

    In methanogenic habitats, volatile fatty acids (VFA), such as propionate and butyrate, are major intermediates in organic matter degradation. VFA are further metabolized to H(2), acetate and CO(2) by syntrophic fatty acid-degrading bacteria (SFAB) in association with methanogenic archaea. Despite their indispensable role in VFA degradation, little is known about SFAB abundance and their environmental distribution. To facilitate ecological studies, we developed four novel genus-specific quantitative PCR (qPCR) assays, with primer sets targeting known SFAB: Syntrophobacter, Smithella, Pelotomaculum and Syntrophomonas. Primer set specificity was confirmed using in silico and experimental (target controls, clone libraries and melt-curve analysis) approaches. These qPCR assays were applied to quantify SFAB in a variety of mesophilic methanogenic habitats, including a laboratory propionate enrichment culture, pilot- and full-scale anaerobic reactors, cow rumen, horse faeces, an experimental rice paddy soil, a bog stream and swamp sediments. The highest SFAB 16S rRNA gene copy numbers were found in the propionate enrichment culture and anaerobic reactors, followed by the bog stream and swamp sediment samples. In addition, it was observed that SFAB and methanogen abundance varied with reactor configuration and substrate identity. To our knowledge, this research represents the first comprehensive study to quantify SFAB in methanogenic habitats using qPCR-based methods. These molecular tools will help investigators better understand syntrophic microbial communities in engineered and natural environments. PMID:25814038

  9. The effect of sorption on the degradation of aromatic acids and bases

    SciTech Connect

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound's binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  10. The effect of sorption on the degradation of aromatic acids and bases

    SciTech Connect

    Ainsworth, C.C.; Fredrickson, J.K.; Smith, S.C.

    1992-10-01

    The availability and degradation of selected ionizable organic compounds sorbed to pure mineral phases are discussed. Substrates sorbed to mineral surfaces may or may not be protected from microbial attack; the degree of protection appears to be dependent on the type and cell density of the microorganism involved. The currently available data, however, demonstrate that there is little, if any, consensus on the types of reactions or interactions that facilitate sorbed substrate utilization. Rates of degradation of organic bases and cations that sorb to clay minerals via an exchange reaction are suggested to be directly related to substrate binding intensity and conformation on the clay surface. Similarly, rates of degradation of organic acids sorbed to the surface of oxides are suggested to be related to their interaction with the surface and the type of oxide sorbent. Although the rate-limiting step in microbial utilization of sorbed acids and bases is apparently a desorption process, the rate of desorption is itself linked to the compound`s binding intensities on a given sorbent. Thus, as the binding intensities of compounds increase, chemical kinetic reactions, rather than mass-transfer processes, appear to limit the rate of desorption.

  11. Hyaluronic acid hydrogel scaffolds with a triple degradation behavior for bone tissue engineering.

    PubMed

    Cui, Ning; Qian, Junmin; Liu, Ting; Zhao, Na; Wang, Hongjie

    2015-08-01

    In this study, in order to better mimick the nature of bone extracellular matrix, hyaluronic acid (HA) hydrogels having a triple degradation behavior were synthesized from 3,3'-dithiodipropionate hydrazide-modified HA (DTPH-HA) and polyethylene glycol dilevulinate (LEV-PEG-LEV) via the reaction of the ketone carbonyl groups of LEV-PEG-LEV with the hydrazide groups of DTPH-HA. The HA hydrogels were characterized by solid state (13)C NMR, FT-IR, SEM, and rheological, swelling and degradation tests. The results showed that the HA hydrogels exhibited a highly porous morphology and had pore diameters ranging from 20 to 200 μm. The equilibrium swelling ratio of the HA hydrogels was no less than 37.5. The HA hydrogels could be degraded by hyaluronidase and reducing substances or at acidic pH values. The biocompatibility of the HA hydrogels was evaluated using osteoblast-like MC3T3-E1 cells by live/dead staining and MTT assays. The results revealed that the HA hydrogels had good biocompatibility and could support the attachment and proliferation of MC3T3-E1 cells. All the results indicated that the HA hydrogels synthesized by hydrazone bond crosslinking might have great potential to be used in bone tissue engineering. PMID:25933539

  12. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol.

    PubMed

    Esatbeyoglu, Tuba; Ulbrich, Katrin; Rehberg, Clemens; Rohn, Sascha; Rimbach, Gerald

    2015-03-01

    Curcumin is a secondary plant metabolite present in Curcuma longa L. Since curcumin is widely used as a food colorant in thermally processed food it may undergo substantial chemical changes which in turn could affect its biological activity. In the current study, curcumin was roasted at 180 °C up to 70 minutes and its kinetic of degradation was analyzed by means of HPLC-PDA and LC-MS, respectively. Roasting of curcumin resulted in the formation of the degradation products vanillin, ferulic acid, and 4-vinyl guaiacol. In cultured hepatocytes roasted curcumin as well as 4-vinyl guaiacol enhanced the transactivation of the redox-regulated transcription factor Nrf2, known to be centrally involved in cellular stress response and antioxidant defense mechanisms. The antioxidant enzyme paraoxonase 1 was induced by roasted curcumin and 4-vinyl guaiacol. Furthermore, roasted curcumin and 4-vinyl guaiacol decreased interleukin-6 gene expression in lipopolysaccharide stimulated murine macrophages. Current data suggest that curcumin undergoes degradation due to roasting and its degradation product exhibit significant biological activity in cultured cells. PMID:25619943

  13. Oxidative degradation of nalidixic acid by nano-magnetite via Fe2+/O2-mediated reactions.

    PubMed

    Ardo, Sandy G; Nélieu, Sylvie; Ona-Nguema, Georges; Delarue, Ghislaine; Brest, Jessica; Pironin, Elsa; Morin, Guillaume

    2015-04-01

    Organic pollution has become a critical issue worldwide due to the increasing input and persistence of organic compounds in the environment. Iron minerals are potentially able to degrade efficiently organic pollutants sorbed to their surfaces via oxidative or reductive transformation processes. Here, we explored the oxidative capacity of nano-magnetite (Fe3O4) having ∼ 12 nm particle size, to promote heterogeneous Fenton-like reactions for the removal of nalidixic acid (NAL), a recalcitrant quinolone antibacterial agent. Results show that NAL was adsorbed at the surface of magnetite and was efficiently degraded under oxic conditions. Nearly 60% of this organic contaminant was eliminated after 30 min exposure to air bubbling in solution in the presence of an excess of nano-magnetite. X-ray diffraction (XRD) and Fe K-edge X-ray absorption spectroscopy (XANES and EXAFS) showed a partial oxidation of magnetite to maghemite during the reaction, and four byproducts of NAL were identified by liquid chromatography-mass spectroscopy (UHPLC-MS/MS). We also provide evidence that hydroxyl radicals (HO(•)) were involved in the oxidative degradation of NAL, as indicated by the quenching of the degradation reaction in the presence of ethanol. This study points out the promising potentialities of mixed valence iron oxides for the treatment of soils and wastewater contaminated by organic pollutants. PMID:25756496

  14. Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment.

    PubMed

    Lin, Jo-Chen; Hu, Ching-Yao; Lo, Shang-Lien

    2016-01-01

    Perfluorooctanoic acid (C7F15COOH, PFOA) is an aqueous anionic surfactant and a persistent organic pollutant. It can be easily adsorbed onto the bubble-water interface and both mineralized and degraded by ultrasonic (US) cavitation at room temperature. The aim of this study is to investigate whether the effect of US on the degradation of PFOA in solution can be enhanced by the addition of surfactant. To achieve this aim, we first investigated the addition of a cationic (hexadecyl trimethyl ammonium bromide, CTAB), a nonionic (octyl phenol ethoxylate, TritonX-100), and an anionic (sodium dodecyl sulfate, SDS) surfactant. We found the addition of CTAB to have increased the degradation rate the most, followed by TritonX-100. SDS inhibited the degradation rate. We then conducted further experiments characterizing the removal efficiency of CTAB at varying surfactant concentrations and solution pHs. The removal efficiency of PFOA increased with CTAB concentration, with the efficiency reaching 79% after 120 min at 25°C with a 0.12 mM CTAB dose. PMID:26384891

  15. Sonocatalytic degradation of Acid Blue 92 using sonochemically prepared samarium doped zinc oxide nanostructures.

    PubMed

    Khataee, Alireza; Saadi, Shabnam; Vahid, Behrouz; Joo, Sang Woo; Min, Bong-Ki

    2016-03-01

    Pure and Sm-doped ZnO nanoparticles were synthesized applying a simple sonochemical method. The nanocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques which confirmed the successful synthesis of the doped sonocatalyst. The sonocatalytic degradation of Acid Blue 92 (AB92), a model azo dye, was more than that with sonolysis alone. The 6% Sm-doped ZnO nanoparticles had a band gap of 2.8 eV and demonstrated the highest activity. The degradation efficiency (DE%) of sonolysis and sonocatalysis with undoped ZnO and 6% Sm-doped ZnO was 45.73%, 63.9%, and 90.10%, after 150 min of treatment, respectively. Sonocatalytic degradation of AB92 is enhanced with increasing the dopant amount and catalyst dosage and with decreasing the initial AB29 concentration. DE% declines with the addition of radical scavengers such as chloride, carbonate, sulfate, and tert-butanol. However, the addition of enhancers including potassium periodates, peroxydisulfate, and hydrogen peroxide improves DE% by producing more free radicals. The results show adequate reusability of the doped sonocatalyst. Degradation intermediates were recognized by gas chromatography-mass spectrometry (GC-MS). Using nonlinear regression analysis, an empirical kinetic model was developed to estimate the pseudo-first-order constants (kapp) as a function of the main operational parameters, including the initial dye concentration, sonocatalyst dosage, and ultrasonic power. PMID:26584981

  16. Bacterial production and transformation of dissolved neutral sugars and amino acids in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, L.; Lechtenfeld, O.; Benner, R.; Middelboe, M.; Stedmon, C. A.

    2014-04-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after long-term bacterial degradation. Results from bioassay incubations (32 days) with natural and artificial seawater, indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol%) and heterogeneous contributions from other neutral sugars (3-14 mol%). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol%), followed by glucose (22 mol%) and the remaining neutral sugars (7-11 mol%). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural and artificial seawater samples, suggests that the microbial carbon pump also applies for neutral sugars and amino acids and that bacterially-produced biomolecules persist for long periods in the ocean.

  17. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, L.; Lechtenfeld, O. J.; Benner, R.; Middelboe, M.; Stedmon, C. A.

    2014-10-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3-14 mol %). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7-11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural (representing marine semi-labile and refractory DOM) and artificial (representing bacterially produced DOM) seawater samples, suggests that microbes transform bioavailable neutral sugars and amino acids into a common, more persistent form.

  18. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    PubMed Central

    2014-01-01

    Background The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6- and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. Results Abundance of atrogin-1, but not MuRF1, was greater in 26- than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6- than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the

  19. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  20. Selective enrichment of the degradation products of organophosphorus nerve agents by zirconia based solid-phase extraction.

    PubMed

    Kanaujia, Pankaj K; Pardasani, Deepak; Tak, Vijay; Purohit, Ajay K; Dubey, D K

    2011-09-23

    Selective extraction and enrichment of nerve agent degradation products has been achieved using zirconia based commercial solid-phase extraction cartridges. Target analytes were O-alkyl alkylphosphonic acids and alkylphosphonic acids, the environmental markers of nerve agents such as sarin, soman and VX. Critical extraction parameters such as modifier concentration, nature and volume of washing and eluting solvents were investigated. Amongst other anionic compounds, selectivity in extraction was observed for organophosphorus compounds. Recoveries of analytes were determined by GC-MS which ranged from 80% to 115%. Comparison of zirconia based solid-phase extraction method with anion-exchange solid-phase extraction revealed its selectivity towards phosphonic acids. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes were achieved down to 4.3 and 8.5 ng mL(-1), respectively, in selected ion monitoring mode. PMID:21862029

  1. Non-Aqueous Electromigration Analysis of Some Degradation Products of Carvedilol

    PubMed Central

    Jouyban, Abolghasem; Hasanzadeh, Mohammad; Shadjou, Nasrin

    2014-01-01

    A capillary electrophoresis method was used for assay of some degradation products of carvedilol. The optimized parameters were as; running buffer 80 mM acetate dissolved in methanol/ethanol mixture (65:35% v/v), applied voltage of 19 kV, temperature is 20 ºC and the wavelength range of 200-350 nm. The results indicate that the proposed capillary electrophoresis method could effectively separate carvedilol from its degradation products and can be employed as a stability indicating assay method. In addition, the presence of a new unknown degradation product was discovered by this method. In addition, capillary electrophoresis behaviour of carvedilol in photo/force degradation conditions gave valuable information concerning the dissimilarities of their ionization. Results indicated that the capillary electrophoresis proposed method can be used for the determination of carvedilol in human serum. Finally, accuracy of the proposed method was established by recovery experiments from spiked human serum samples. PMID:25237342

  2. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    SciTech Connect

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  3. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.

    PubMed

    Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2014-05-01

    cis,cis-Muconic acid (MA) and salicylic acid (SA) are naturally-occurring organic acids having great commercial value. MA is a potential platform chemical for the manufacture of several widely-used consumer plastics; while SA is mainly used for producing pharmaceuticals (for example, aspirin and lamivudine) and skincare and haircare products. At present, MA and SA are commercially produced by organic chemical synthesis using petro-derived aromatic chemicals, such as benzene, as starting materials, which is not environmentally friendly. Here, we report a novel approach for efficient microbial production of MA via extending shikimate pathway by introducing the hybrid of an SA biosynthetic pathway with its partial degradation pathway. First, we engineered a well-developed phenylalanine producing Escherichia coli strain into an SA overproducer by introducing isochorismate synthase and isochorismate pyruvate lyase. The engineered strain is able to produce 1.2g/L of SA from simple carbon sources, which is the highest titer reported so far. Further, the partial SA degradation pathway involving salicylate 1-monoxygenase and catechol 1,2-dioxygenase is established to achieve the conversion of SA to MA. Finally, a de novo MA biosynthetic pathway is assembled by integrating the established SA biosynthesis and degradation modules. Modular optimization enables the production of up to 1.5g/L MA within 48h in shake flasks. This study not only establishes an efficient microbial platform for the production of SA and MA, but also demonstrates a generalizable pathway design strategy for the de novo biosynthesis of valuable degradation metabolites. PMID:24583236

  4. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. PMID:26891355

  5. Comparative aquatic toxicity evaluation of 2-(thiocyanomethylthio)benzothiazole and selected degradation products using Ceriodaphnia dubia.

    PubMed

    Nawrocki, S T; Drake, K D; Watson, C F; Foster, G D; Maier, K J

    2005-04-01

    2-(Thiocyanomethylthio)benzothiazole (TCMTB) is a biocide used in the leather, pulp and paper, and water-treatment industries. TCMTB may enter aquatic ecosystems during its manufacture and use. TCMTB is environmentally unstable; therefore, it is important to evaluate the toxicity of the more persistent degradation products. This study compared the toxicity of TCMTB with its degradation products 2-mercaptobenzothiazole (2-MBT), 2-(methylthio)benzothiazole (MTBT), benzothiazole (BT), and 2-hydroxybenzothiazole (HOBT). Toxicity was determined using Ceriodaphnia dubia 48-hour acute and 7-day chronic test protocols. TCMTB was the most toxic compound evaluated in both the acute and chronic tests with EC50s of 15.3 and 9.64 microg/L, respectively. 2-MBT, the first degradation product, was the second most toxic compound with acute and chronic EC50s of 4.19 and 1.25 mg/L, respectively. The toxicity of MTBT and HOBT were similar with acute EC50s of 12.7 and 15.1 mg/L and chronic EC50s of 6.36 and 8.31 mg/L, respectively. The least toxic compound was BT with acute and chronic EC50s of 24.6 and 54.9 mg/L, respectively. TCMTB was orders of magnitude more toxic than its degradation products. Toxicity data on these benzothiazole degradation products is important because of concerns regarding their release, degradation, persistence, and non-target organism effects in aquatic ecosystems. PMID:15750776

  6. Identification and in vitro cytotoxicity of ochratoxin A degradation products formed during coffee roasting.

    PubMed

    Cramer, Benedikt; Königs, Maika; Humpf, Hans-Ulrich

    2008-07-23

    The mycotoxin ochratoxin A is degraded by up to 90% during coffee roasting. In order to investigate this degradation, model heating experiments with ochratoxin A were carried out, and the reaction products were analyzed by HPLC-DAD and HPLC-MS/MS. Two ochratoxin A degradation products were identified, and their structure and absolute configuration were determined. As degradation reactions, the isomerization to 14-(R)-ochratoxin A and the decarboxylation to 14-decarboxy-ochratoxin A were identified. Subsequently, an analytical method for the determination of these compounds in roasted coffee was developed. Quantification was carried out by HPLC-MS/MS and the use of stable isotope dilution analysis. By using this method for the analysis of 15 coffee samples from the German market, it could be shown that, during coffee roasting, the ochratoxin A diastereomer 14-(R)-ochratoxin A was formed in amounts of up to 25.6% relative to ochratoxin A. The decarboxylation product was formed only in traces. For toxicity evaluations, first preliminary cell culture assays were performed with the two new substances. Both degradation products exhibited higher IC50 values and caused apoptotic effects with higher concentrations than ochratoxin A in cultured human kidney epithelial cells. Thus, these cell culture data suggest that the degradation products are less cytotoxic than ochratoxin A. PMID:18588316

  7. Amino acids in the Pearl River Estuary and adjacent waters: origins, transformation and degradation

    NASA Astrophysics Data System (ADS)

    Chen, Jianfang; Li, Yan; Yin, Kedong; Jin, Haiyan

    2004-10-01

    Two cruises were conducted in the Pearl River Estuary (PRE) and adjacent coastal waters during July 1999 and 2000 to investigate spatial variation, transformation and degradation of amino acids (AAs). Salinity, suspended sediments (SS), chl a, nutrients, dissolved organic carbon, particulate organic carbon, AAs, and hexosamines were measured and analyzed. Concentrations of particulate hydrolysable AAs (PHAAs), dissolved combined AAs and dissolved free AAs ranged from 0.41 to 12.6 μmol L-1, 1.1 to 4.0 μmol L-1 and 0.15 to 1.10 μmol L-1, respectively. AAs concentrations were low in waters of salinity <10, increased to the maximum in the estuarine and coastal plumes (salinity =10-25) and decreased beyond the coastal plume. There was a region where PHAAs were maximum, which coincided with the region of the chl a maximum and depletion of dissolved inorganic phosphorus in the coastal plume south of Hong Kong. This indicates that most of the AAs in estuarine and coastal waters were produced through phytoplankton production and AAs might be a temporary sink for inorganic nitrogen. The ratios of AAs/HAs and glucosamine/galactosamine (Glc-NH2/Gal-NH2) were on average, 26.0 and 3.8, respectively, in biogenic particulate matter (chl a >5 μg L-1 and SS<10 mg L-1), decreased in turbid particles (SS>20 mg L-1) and reached the lowest values of 5.8 and 1.4 in sediments. In particular, the ratios of AAs/HAs, Glc-NH2/Gal-NH2 were low in the upper or northwest side of the estuary where turbidity was high. This indicated that these AAs were "old", likely due to resuspension of refractory organic matter from sediments or zooplankton grazing modification and bacterial reworking as the salt wedge advanced upstream near the bottom. Apparently, the dynamics of AAs in the PRE appeared to be governed by biological production processes and estuarine circulation in the estuary. As the chl a maximum developed downstream in the estuarine and coastal plume and the salt wedge moved upstream at

  8. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method.

    PubMed

    Hu, Ting; Li, Chunxia; Zhao, Xia; Li, Guangsheng; Yu, Guangli; Guan, Huashi

    2013-05-24

    Guluronic acid oligosaccharides (GOS) with degree of polymerization (DP) ranging from 1 to 10 were prepared by a rapid microwave degradation method. Polyguluronic acid, fractionated from alginate hydrolysate, was dissolved in dilute ammonia water at a concentration of 20 mg/mL (pH 5) and then hydrolyzed under microwave irradiation (1600 W) at 130°C for 15 min to produce GOS mixture. The GOS mixture was separated by a Bio-Gel P6 column and ten fractions were obtained. Each GOS fraction was further characterized by electrospray ionization mass spectrometry, (1)H NMR, (13)C NMR, and 2D NMR spectroscopy techniques. The data showed that the GOS fractions were saturated oligoguluronates with general molecular formula C(6n)H(8n+2)O(6n+1) (n=1-10). This microwave degradation method was not only convenient, less time consuming, and environment-friendly, but also produced GOS with high yield (71%) and eliminating a desalting procedure compared to conventional acid hydrolysis method. PMID:23584235

  9. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles.

    PubMed

    Singh, Raman Preet; Ramarao, Poduri

    2013-11-01

    Polymeric nanoparticles (PNPs) are a promising platform for drug, gene, and vaccine delivery. Although generally regarded as safe, the toxicity of PNPs is not well documented. The present study investigated in vitro toxicity of poly-ε-caprolactone, poly(DL-lactic acid), poly(lactide-cocaprolactone), and poly(lactide-co-glycide) NPs and possible mechanism of toxicity. The concentration-dependent effect of PNPs on cell viability was determined in a macrophage (RAW 264.7), hepatocyte (Hep G2), lung epithelial (A549), kidney epithelial (A498), and neuronal (Neuro 2A) cell lines. PNPs show toxicity at high concentrations in all cell lines. PNPs were efficiently internalized by RAW 264.7 cells and stimulated reactive oxygen species and tumor necrosis factor-alpha production. However, reactive nitrogen species and interleukin-6 production as well as lysosomal and mitochondrial stability remained unaffected. The intracellular degradation of PNPs was determined by monitoring changes in osmolality of culture medium and a novel fluorescence recovery after quenching assay. Cell death showed a good correlation with osmolality of culture medium suggesting the role of increased osmolality in cell death. PMID:23976781

  10. Diversity in growth and protein degradation by dairy relevant lactic acid bacteria species in reconstituted whey.

    PubMed

    Pescuma, Micaela; Hébert, Elvira M; Bru, Elena; Font de Valdez, Graciela; Mozzi, Fernanda

    2012-05-01

    The high nutritional value of whey makes it an interesting substrate for the development of fermented foods. The aim of this work was to evaluate the growth and proteolytic activity of sixty-four strains of lactic acid bacteria in whey to further formulate a starter culture for the development of fermented whey-based beverages. Fermentations were performed at 37 °C for 24 h in 10 and 16% (w/v) reconstituted whey powder. Cultivable populations, pH, and proteolytic activity (o-phthaldialdehyde test) were determined at 6 and 24 h incubation. Hydrolysis of whey proteins was analysed by Tricine SDS-PAGE. A principal component analysis (PCA) was applied to evaluate the behaviour of strains. Forty-six percent of the strains grew between 1 and 2 Δlog CFU/ml while 19% grew less than 0·9 Δlog CFU/ml in both reconstituted whey solutions. Regarding the proteolytic activity, most of the lactobacilli released amino acids and small peptides during the first 6 h incubation while streptococci consumed the amino acids initially present in whey to sustain growth. Whey proteins were degraded by the studied strains although to different extents. Special attention was paid to the main allergenic whey protein, β-lactoglobulin, which was degraded the most by Lactobacillus acidophilus CRL 636 and Lb. delbrueckii subsp. bulgaricus CRL 656. The strain variability observed and the PCA applied in this study allowed selecting appropriate strains able to improve the nutritional characteristics (through amino group release and protein degradation) and storage (decrease in pH) of whey. PMID:22559062

  11. Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 2002

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Dietze, Julie E.; Thurman, E.M.

    2003-01-01

    Since 1989, the U.S. Geological Survey has conducted periodic reconnaissance studies of streams in the Midwestern United States to determine the geographic and seasonal distribution of herbicide compounds. These studies have documented that large amounts of acetochlor, alachlor, atrazine, cyanazine, metolachlor, and their degradation products are flushed into streams during post-application runoff. Additional studies show that peak herbicide concentrations tend to occur during the first runoff after herbicide application and that herbicide flushes can occur during runoff for several weeks to months following application. Since the first stream study conducted in 1989, several significant changes in herbicide use have occurred. The most substantial change is the tripling in the use of glyphosate during the past 5 years. Over this same time period (1997-2001), usage of acetochlor and atrazine increased slightly, whereas alachlor, cyanazine, and metolachlor usage decreased. During 2002, 154 samples were collected from 51 streams in nine Midwestern States during three periods of runoff. This report provides a compilation of the analytical results of five laboratory methods. Results show that glyphosate was detected in 55 (36 percent) of the samples, and aminomethylphosphonic acid (a degradation product of glyphosate) was detected in 107 (69 percent) of the samples. Atrazine, the most frequently detected herbicide, was found in 93 percent of the samples, followed by metolachlor, found in 73 percent of the samples; metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) were the most frequently detected herbicide degradation products, both being found in more than 95 percent of the samples. The data presented here are valuable for comparison with results from the earlier reconnaissance studies.

  12. Composition, assimilation and degradation of Phaeocystis globosa-derived fatty acids in the North Sea

    NASA Astrophysics Data System (ADS)

    Hamm, Christian E.; Rousseau, Veronique

    2003-12-01

    The fate of a Phaeocystis globosa bloom in the southern North Sea off Belgium, the Netherlands and Germany in May 1995 was investigated during a cruise with RV 'Belgica'. We used fatty acids as biomarkers to follow the fate of Phaeocystis-derived biomass of a Phaeocystis-dominated spring bloom. The bloom, in which up to >99% of the biomass was contributed by Phaeocystis, showed a fatty acid composition with a characteristically high abundance of polyunsaturated C 18-fatty acids, which increased in concentration with number of double bonds up to 18:5 (n-3), and high concentrations of 20:5 (n-3) and 22:6 (n-3). In contrast to most previous studies, fatty acid analysis of the mesozooplankton community (mainly calanoid copepods) and meroplankton ( Carcinus maenas megalope) indicated that P. globosa was a major component (ca. 70% and 50%, respectively) in th