Science.gov

Sample records for acidic hydrogen peroxide

  1. Catalytic hydroxylation of benzoic acid by hydrogen peroxide

    SciTech Connect

    Pulippurasseril, C.R.; Filippova, T.Yu.; Dedov, A.G.

    1992-12-31

    An effective catalytic system based on Fe(III) and surfactants is proposed for the hydroxylation of benozic acid by hydrogen peroxide in an aqueous medium at a temperature of 30-80{degrees}C. 8 refs., 1 tab.

  2. Hydrogen peroxide in sulfuric acid extraction of uranium ores

    SciTech Connect

    DeVries, F.W.

    1984-01-10

    Uranium can be extracted from its ores at a pH of 2.5 to 5.5 using sulfuric acid, hydrogen peroxide, trace of iron and a sulfate. The extraction process is applicable to both tank leaching of conventionally mined ores and in situ leaching.

  3. Hydrogen peroxide poisoning

    MedlinePlus

    ... peroxide is used in these products: Hydrogen peroxide Hair bleach Some contact lens cleaners Note: Household hydrogen peroxide ... it contains 97% water and 3% hydrogen peroxide. Hair bleaches are stronger. They usually have a concentration of ...

  4. Simultaneous electroanalysis of peroxyacetic acid and hydrogen peroxide.

    PubMed

    Awad, M I; Harnoode, C; Tokuda, K; Ohsaka, T

    2001-04-15

    The electrochemical behavior of peroxyacetic acid (PAA) in the presence of hydrogen peroxide (H2O2) has been investigated using cyclic voltammetry and hydrodynamic techniques [rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry]. The results have been analyzed aiming at simultaneous electroanalysis of both species. Glassy carbon and gold electrodes were used for this investigation. It was found that the reduction of PAA, as well as H2O2, is highly sensitive to the electrode material; for example, at 100 mV s-1, the reduction peak potentials of PAA were 0.2 and -1.1 V at gold and glassy carbon electrodes, respectively. The well-separated steady-state limiting currents were obtained using a gold electrode for the reduction of both PAA and H2O2 and also a well-defined one for the oxidation of H2O2. On the basis of the RDE experiments, good calibration curves were obtained for both species over a wide range of their concentrations, for PAA and H2O2 in the range of 0.36 to 110 and 0.11 to 34 mM, respectively. The simultaneous and selective electroanalysis of PAA and H2O2 in their coexistence is demonstrated for the first time.

  5. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also... peroxide formed; by decomposition of barium peroxide with sulfuric or phosphoric acid; by...

  6. Concentration of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  7. Determination of berberine in pharmaceutical preparations using acidic hydrogen peroxide-nitrite chemiluminescence system.

    PubMed

    Liang, Yao-Dong; Yu, Chun-Xia

    2013-03-01

    A stronger chemiluminescence (CL) was observed when hydrogen peroxide was mixed with nitrite and berberine in sulfuric acid solution. The stronger CL originated from peroxidation of berberine by peroxynitrous acid that was synthesized online by the mixing of acidic hydrogen peroxide solution with nitrite solution in a flow system. The emitting species was excited state oxyberberine, a peroxidized product of berberine. Based on the stronger CL, a flow injection CL method for the determination of berberine was proposed. Under optimum experimental conditions, the stronger CL intensity was linearly related to the concentration of berberine over the range of 2.0 × 10(-7) -2.0 × 10(-5) mol L(-1) . The limit of detection (s/n = 3) was 6.2 × 10(-8) mol L(-1) . The proposed method has been evaluated by analyzing berberine in pharmaceutical preparations.

  8. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.

    PubMed

    Boatright, William L

    2016-04-01

    The effect of oxygen on the two separate one-electron reactions involved in the oxidation of ascorbic acid was investigated. The rate of ascorbate radical (Asc(-)) formation (and stability) was strongly dependent on the presence of oxygen. A product of ascorbic acid oxidation was measurable levels of hydrogen peroxide, as high as 32.5 μM from 100 μM ascorbic acid. Evidence for a feedback mechanism where hydrogen peroxide generated during the oxidation of ascorbic acid accelerates further oxidation of ascorbic acid is also presented. The second one-electron oxidation reaction of ascorbic acid leading to the disappearance of Asc(-) was also strongly inhibited in samples flushed with argon. In the range of 0.05-1.2 mM ascorbic acid, maximum levels of measurable hydrogen peroxide were achieved with an initial concentration of 0.2 mM ascorbic acid. Hydrogen peroxide generation was greatly diminished at ascorbic acid levels of 0.8 mM or above.

  9. Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Wu, Ling-Yan; Wang, Tian-He; Ge, Mao-Fa; Wang, Wei-Gang

    2012-01-12

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol (SOA) formation from isoprene and its gas-phase oxidation products, but the kinetics and chemical mechanism remain largely uncertain. Here we report the first measurement of uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide in the temperature range of 253-293 K. The steady-state uptake coefficients were acquired and increased quickly with increasing sulfuric acid concentration and decreasing temperature. Propyne, acetone, and 2,3-dihydroxymethacrylic acid were suggested as the products. The chemical mechanism is proposed to be the oxidation of carbonyl group and C═C double bonds by peroxide hydrogen in acidic environment, which could explain the large content of polyhydroxyl compounds in atmospheric fine particles. These results indicate that multiphase acid-catalyzed oxidation of methacrolein by hydrogen peroxide can contribute to SOA mass in the atmosphere, especially in the upper troposphere.

  10. Electrochemical Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  11. Widespread sulfenic acid formation in tissues in response to hydrogen peroxide

    PubMed Central

    Saurin, Adrian T.; Neubert, Hendrik; Brennan, Jonathan P.; Eaton, Philip

    2004-01-01

    A principal product of the reaction between a protein cysteinyl thiol and hydrogen peroxide is a protein sulfenic acid. Because protein sulfenic acid formation is reversible, it provides a mechanism whereby changes in cellular hydrogen peroxide concentration may directly control protein function. We have developed methods for the detection and purification of proteins oxidized in this way. The methodology is based on the arsenite-specific reduction of protein sulfenic acid under denaturing conditions and their subsequent labeling with biotin–maleimide. Arsenite-dependent signal generation was fully blocked by pretreatment with dimedone, consistent with its reactivity with sulfenic acids to form a covalent adduct that is nonreducible by thiols. The biotin tag facilitates the detection of protein sulfenic acids on Western blots probed with streptavidin–horseradish peroxidase and also their purification by streptavidin–agarose. We have characterized protein sulfenic acid formation in isolated hearts subjected to hydrogen peroxide treatment. We have also purified and identified a number of the proteins that are oxidized in this way by using a proteomic approach. Using Western immunoblotting we demonstrated that a highly significant proportion of some individual proteins (68% of total in one case) form the sulfenic derivative. We conclude that protein sulfenic acids are widespread physiologically relevant posttranslational oxidative modifications that can be detected at basal levels in healthy tissue, and are elevated in response to hydrogen peroxide. These approaches may find widespread utility in the study of oxidative stress, particularly because hydrogen peroxide is used extensively in models of disease or redox signaling. PMID:15604151

  12. Evaluation of a sporicidal peracetic acid/hydrogen peroxide-based daily disinfectant cleaner.

    PubMed

    Deshpande, Abhishek; Mana, Thriveen S C; Cadnum, Jennifer L; Jencson, Annette C; Sitzlar, Brett; Fertelli, Dennis; Hurless, Kelly; Kundrapu, Sirisha; Sunkesula, Venkata C K; Donskey, Curtis J

    2014-11-01

    OxyCide Daily Disinfectant Cleaner, a novel peracetic acid/hydrogen peroxide-based sporicidal disinfectant, was as effective as sodium hypochlorite for in vitro killing of Clostridium difficile spores, methicillin-resistant Staphylococcus aureus, and vancomcyin-resistant enterococci. OxyCide was minimally affected by organic load and was effective in reducing pathogen contamination in isolation rooms.

  13. Evaluation of a sporicidal peracetic acid/hydrogen peroxide-based daily disinfectant cleaner.

    PubMed

    Deshpande, Abhishek; Mana, Thriveen S C; Cadnum, Jennifer L; Jencson, Annette C; Sitzlar, Brett; Fertelli, Dennis; Hurless, Kelly; Kundrapu, Sirisha; Sunkesula, Venkata C K; Donskey, Curtis J

    2014-11-01

    OxyCide Daily Disinfectant Cleaner, a novel peracetic acid/hydrogen peroxide-based sporicidal disinfectant, was as effective as sodium hypochlorite for in vitro killing of Clostridium difficile spores, methicillin-resistant Staphylococcus aureus, and vancomcyin-resistant enterococci. OxyCide was minimally affected by organic load and was effective in reducing pathogen contamination in isolation rooms. PMID:25333438

  14. Reinvestigation of the Henry's law constant for hydrogen peroxide with temperature and acidity variation.

    PubMed

    Huang, Daoming; Chen, Zhongming

    2010-01-01

    Hydrogen peroxide is not only an important oxidant in itself; it also serves as both sink and temporary reservoir for other important oxidants including HOx (OH and HO2) radicals and O3 in the atmosphere. Its partitioning between gas and aqueous phases in the atmosphere, usually described by its Henry's law constant (K(H)), significantly influences its role in atmospheric processes. Large discrepancies between the K(H) values reported in previous work, however, have created uncertainty for atmospheric modelers. Based on our newly developed online instrumentation, we have re-determined the temperature and acidity dependence of K(H) for hydrogen peroxide at an air pressure of (0.960 +/- 0.013) atm (1 atm = 1.01325 x 10(5) Pa). The results indicated that the temperature dependence of K(H) for hydrogen peroxide fits to the Van't Hoff equation form, expressed as lnK(H) = a/T - b, and a = -deltaH/R, where K(H) is in M/atm (M is mol/L), T is in degrees Kelvin, R is the ideal gas constant, and deltaH is the standard heat of solution. For acidity dependence, results demonstrated that the K(H) value of hydrogen peroxide appeared to have no obvious dependence on decreasing pH level (from pH 7 to pH 1). Combining the dependence of both temperature and acidity, the obtained a and b were 7024 +/- 138 and 11.97 +/- 0.48, respectively, deltaH was (58.40 +/- 1.15) kJ/(K x mol), and the uncertainties represent sigma. Our determined K(H) values for hydrogen peroxide will therefore be of great use in atmospheric models. PMID:20617734

  15. Hydrogen Peroxide Concentrator

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.

    2007-01-01

    A relatively simple and economical process and apparatus for concentrating hydrogen peroxide from aqueous solution at the point of use have been invented. The heart of the apparatus is a vessel comprising an outer shell containing tubular membranes made of a polymer that is significantly more permeable by water than by hydrogen peroxide. The aqueous solution of hydrogen peroxide to be concentrated is fed through the interstitial spaces between the tubular membranes. An initially dry sweep gas is pumped through the interiors of the tubular membranes. Water diffuses through the membranes and is carried away as water vapor mixed into the sweep gas. Because of the removal of water, the hydrogen peroxide solution flowing from the vessel at the outlet end is more concentrated than that fed into the vessel at the inlet end. The sweep gas can be air, nitrogen, or any other gas that can be conveniently supplied in dry form and does not react chemically with hydrogen peroxide.

  16. Oxidation of benzene with hydrogen peroxide catalyzed with ferrocene in the presence of pyrazine carboxylic acid

    NASA Astrophysics Data System (ADS)

    Shul'pina, L. S.; Durova, E. L.; Kozlov, Yu. N.; Kudinov, A. R.; Strelkova, T. V.; Shul'pin, G. B.

    2013-12-01

    It is found that ferrocene in the presence of small amounts of pyrazine carboxylic acid (PCA) effectively catalyzes the oxidation of benzene to phenol with hydrogen peroxide. Two main differences upon the oxidation of two different substrates, i.e., cyclohexane and benzene, with the same H2O2-ferrocene-PCA catalytic system are revealed: the rates of benzene oxidation and hydrogen peroxide decomposition are several times lower than the rate of cyclohexane oxidation at close concentrations of both substrates, and the rate constant ratios for the reactions of oxidizing particles with benzene and acetonitrile are significantly lower than would be expected for reactions involving free hydroxyl radicals. The overall rate of hydrogen peroxide decomposition, including both the catalase and oxidase routes, is lower in the presence of benzene than in the presence of cyclohexane. It is suggested on the grounds of these data that a catalytically active particle different from the one generated in the absence of benzene is formed in the presence of benzene. This particle catalyzes hydrogen peroxide decomposition less efficiently than the initial complex and generates a dissimilar oxidizing particle that exhibits higher selectivity. It is shown that reactivity of the system at higher concentrations of benzene differs from that of an initial system not containing an aromatic component with the capability of π-coordination with metal ions.

  17. Stabilized aqueous hydrogen peroxide solution

    SciTech Connect

    Malin, M.J.; Sciafani, L.D.

    1988-05-17

    This patent describes a stabilized aqueous hydrogen peroxide solution having a pH below 7 and an amount of Ferric ion up to about 2 ppm comprising hydrogen peroxide, acetanilide having a concentration which ranges between 0.74 M Mol/L and 2.22 mMol/L, and o-benzene disulfonic acid or salt thereof at a concentration between about 0.86 mMol/L to about 1.62 mMol/L.

  18. A "Green" route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide

    PubMed

    Sato; Aoki; Noyori

    1998-09-11

    Currently, the industrial production of adipic acid uses nitric acid oxidation of cyclohexanol or a cyclohexanol/cyclohexanone mixture. The nitrous oxide emission from this process measurably contributes to global warming and ozone depletion. Therefore, the development of an adipic acid production process that is less damaging to the environment is an important subject in chemical research. Cyclohexene can now be oxidized directly to colorless crystalline adipic acid with aqueous 30 percent hydrogen peroxide under organic solvent- and halide-free conditions, which could provide an ideal solution to this serious problem.

  19. Flow-injection determination of hydrogen peroxide based on fluorescence quenching of chromotropic acid catalyzed with Fe(II).

    PubMed

    Li, Zhen Hai; Li, Dong Hao; Oshita, Koji; Motomizu, Shoji

    2010-09-15

    Flow-injection analysis system (FIA system), which was based on Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide, was developed for the determination of hydrogen peroxide. The chromotropic acid has a fluorescence measured at lambda(em)=440 nm (emission wavelength) with lambda(ex)=235 nm (excitation wavelength), and the fluorescence intensity at lambda(em)=440 nm quietly decreased in the presence of hydrogen peroxide and Fe(II), which was caused by Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide. By measuring the difference of fluorescence intensity, hydrogen peroxide (1.0 x 10(-8)-1.0 x 10(-3) mol L(-1)) could be determined by the proposed FIA system, whose analytical throughput was 40 samples h(-1). The relative standard deviation (RSD) was 1.03% (n=10) for 4.0 x 10(-8) mol L(-1) hydrogen peroxide. The proposed FIA technique could be applied to the determination of hydrogen peroxide in rain water samples.

  20. Preparation of hydrogen peroxide

    SciTech Connect

    Brill, W.F.

    1984-07-31

    Hydrogen peroxide is produced in a reaction between carbon monoxide, oxygen, and water in the presence of a solvent using a Group 8 noble metal as a catalyst. Especially preferred as the working solution is palladium chloride in acetone.

  1. Presence of Hydrogen Peroxide, a Source of Hydroxyl Radicals, in Acid Electrolyzed Water

    PubMed Central

    Mokudai, Takayuki; Nakamura, Keisuke; Kanno, Taro; Niwano, Yoshimi

    2012-01-01

    Background Acid electrolyzed water (AEW), which is produced through the electrolysis of dilute sodium chloride (NaCl) or potassium chloride solution, is used as a disinfectant in various fields because of its potent antimicrobial activity. The hydroxyl radical, an oxygen radical species, is often suggested as a putative active ingredient for AEW antimicrobial activity. Methodology/Principal Findings The aim of the present study is to detect hydroxyl radicals in AEW. The hydroxyl radicals in AEW prepared under different conditions were determined using an electron spin resonance (ESR) technique. A signal from 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH, an adduct of DMPO and the hydroxyl radical, was detected in AEW prepared by double or triple electrolyses of 1% NaCl but not of 0.1% NaCl solution. Then the presence of hydrogen peroxide as a proposed source of hydroxyl radicals was examined using a combination of ESR and a Fenton reaction. The DMPO-OH signal was clearly detected, even in AEW prepared by single electrolysis of 0.1% NaCl solution, when ferrous sulfate was added to induce a Fenton reaction, indicating the presence of hydrogen peroxide in the AEW. Since sodium formate, a hydroxyl radical scavenger, did not affect the bactericidal activity of AEW, it is concluded that the radical is unlikely to contribute to the antimicrobial activity of AEW, although a small amount of the radical is produced from hydrogen peroxide. Dimethyl sulfoxide, the other hydroxyl radical scavenger used in the present study, canceled the bactericidal activity of AEW, accompanied by complete depletion of free available chlorine, suggesting that hypochlorous acid is probably a major contributor to the antimicrobial activity. Conclusions It is strongly suggested that although hydrogen peroxide is present in AEW as a source of hydroxyl radicals, the antimicrobial activity of AEW does not depend on these radicals. PMID:23029505

  2. Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide.

    PubMed

    Mahbub, Parvez; Zakaria, Philip; Guijt, Rosanne; Macka, Mirek; Dicinoski, Greg; Breadmore, Michael; Nesterenko, Pavel N

    2015-10-01

    The applicability of acid degradation of organic peroxides into hydrogen peroxide in a pneumatically driven flow injection system with chemiluminescence reaction with luminol and Cu(2+) as a catalyst (FIA-CL) was investigated for the fast and sensitive detection of organic peroxide explosives (OPEs). The target OPEs included hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP) and methylethyl ketone peroxide (MEKP). Under optimised conditions maximum degradations of 70% and 54% for TATP and HMTD, respectively were achieved at 162 µL min(-1), and 9% degradation for MEKP at 180 µL min(-1). Flow rates were precisely controlled in this single source pneumatic pressure driven multi-channel FIA system by model experiments on mixing of easily detectable component solutions. The linear range for detection of TATP, HMTD and H2O2 was 1-200 µM (r(2)=0.98-0.99) at both flow rates, while that for MEKP was 20-200 µM (r(2)=0.97) at 180 µL min(-1). The detection limits (LODs) obtained were 0.5 µM for TATP, HMTD and H2O2 and 10 µM for MEKP. The detection times varied from 1.5 to 3 min in this FIA-CL system. Whilst the LOD for H2O2 was comparable with those reported by other investigators, the LODs and analysis times for TATP and HMTD were superior, and significantly, this is the first time the detection of MEKP has been reported by FIA-CL. PMID:26078148

  3. Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide.

    PubMed

    Mahbub, Parvez; Zakaria, Philip; Guijt, Rosanne; Macka, Mirek; Dicinoski, Greg; Breadmore, Michael; Nesterenko, Pavel N

    2015-10-01

    The applicability of acid degradation of organic peroxides into hydrogen peroxide in a pneumatically driven flow injection system with chemiluminescence reaction with luminol and Cu(2+) as a catalyst (FIA-CL) was investigated for the fast and sensitive detection of organic peroxide explosives (OPEs). The target OPEs included hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP) and methylethyl ketone peroxide (MEKP). Under optimised conditions maximum degradations of 70% and 54% for TATP and HMTD, respectively were achieved at 162 µL min(-1), and 9% degradation for MEKP at 180 µL min(-1). Flow rates were precisely controlled in this single source pneumatic pressure driven multi-channel FIA system by model experiments on mixing of easily detectable component solutions. The linear range for detection of TATP, HMTD and H2O2 was 1-200 µM (r(2)=0.98-0.99) at both flow rates, while that for MEKP was 20-200 µM (r(2)=0.97) at 180 µL min(-1). The detection limits (LODs) obtained were 0.5 µM for TATP, HMTD and H2O2 and 10 µM for MEKP. The detection times varied from 1.5 to 3 min in this FIA-CL system. Whilst the LOD for H2O2 was comparable with those reported by other investigators, the LODs and analysis times for TATP and HMTD were superior, and significantly, this is the first time the detection of MEKP has been reported by FIA-CL.

  4. Oxidative cleavage of cycloalkanones by hydrogen peroxide

    SciTech Connect

    Starostin, E.K.; Aleksandrov, A.V.; Nikishin, G.I.

    1986-07-10

    The authors have studied the reaction of cyclopentanone, cyclohexanone, cycloheptanone, and cyclododecanone with aqueous hydrogen peroxide over the temperature range 110-150/sup 0/C. The effects of temperature, hydrogen peroxide concentration, and the molar proportions of the reagents on the composition and yields of the products have been examined in the case of cyclohexanone. Oxidation of cyclohexanone by aqueous hydrogen peroxide at 110-150/sup 0/C gives 1,10-decanedicarboxylic acid and hexanoic acid as the principal products. Cyclopentanone and cycloheptanone react with hydrogen peroxide similarly to cyclohexanone, giving sebacic and pentanoic acids, and 1,12-dodecanedicarboxylic acids, respectively.

  5. Hydrogen peroxide poisoning.

    PubMed

    Watt, Barbara E; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Hydrogen peroxide is an oxidising agent that is used in a number of household products, including general-purpose disinfectants, chlorine-free bleaches, fabric stain removers, contact lens disinfectants and hair dyes, and it is a component of some tooth whitening products. In industry, the principal use of hydrogen peroxide is as a bleaching agent in the manufacture of paper and pulp. Hydrogen peroxide has been employed medicinally for wound irrigation and for the sterilisation of ophthalmic and endoscopic instruments. Hydrogen peroxide causes toxicity via three main mechanisms: corrosive damage, oxygen gas formation and lipid peroxidation. Concentrated hydrogen peroxide is caustic and exposure may result in local tissue damage. Ingestion of concentrated (>35%) hydrogen peroxide can also result in the generation of substantial volumes of oxygen. Where the amount of oxygen evolved exceeds its maximum solubility in blood, venous or arterial gas embolism may occur. The mechanism of CNS damage is thought to be arterial gas embolisation with subsequent brain infarction. Rapid generation of oxygen in closed body cavities can also cause mechanical distension and there is potential for the rupture of the hollow viscus secondary to oxygen liberation. In addition, intravascular foaming following absorption can seriously impede right ventricular output and produce complete loss of cardiac output. Hydrogen peroxide can also exert a direct cytotoxic effect via lipid peroxidation. Ingestion of hydrogen peroxide may cause irritation of the gastrointestinal tract with nausea, vomiting, haematemesis and foaming at the mouth; the foam may obstruct the respiratory tract or result in pulmonary aspiration. Painful gastric distension and belching may be caused by the liberation of large volumes of oxygen in the stomach. Blistering of the mucosae and oropharyngeal burns are common following ingestion of concentrated solutions, and laryngospasm and haemorrhagic gastritis have been

  6. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    PubMed

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min.

  7. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    PubMed

    Putt, Karson S; Pugh, Randall B

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution. PMID:24260173

  8. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    PubMed

    Putt, Karson S; Pugh, Randall B

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.

  9. Distribution of Hydrogen Peroxide, Carbon Dioxide, and Sulfuric Acid in Europa's Icy Crust

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    2004-01-01

    Galileo's Near Infrared Mapping Spectrometer (NIMS) detected hydrogen peroxide, carbon dioxide and a hydrated material on Europa's surface, the latter interpreted as hydrated sulfuric acid (H2SO4*nH2O) or hydrated salts. Related compounds are molecular oxygen, sulfur dioxide, and two chromophores, one that is dark in the ultraviolet(UV) and concentrated on the trailing side, the other brighter in the UV and preferentially distributed in the leading hemisphere. The UV-dark material has been suggested to be sulfur.

  10. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  11. Hydroxy acetone and lactic acid synthesis from aqueous propylene glycol/hydrogen peroxide catalysis on Pd-black

    SciTech Connect

    Disselkamp, Robert S.; Harris, Benjamin D.; Hart, Todd R.

    2008-07-20

    The production of polyol chemicals is of increasing interest as they are obtained from the catalytic processing of biological feedstock materials, which also is becoming more prevalent. A case in point is glycerol production, formed as a byproduct in biodiesel catalytic processing. Here we report the reaction of a simple 1,2-diol, propylene glycol, with hydrogen peroxide and a Pd-black catalyst under reflux conditions at 368 K. The experiments were performed by either co-addition of hydrogen peroxide with air sparging, or addition of hydrogen peroxide alone, each yielding hydroxy acetone (HA) and acetic acid (AA) products, with a lesser amount of lactic acid (LA) formed. Product conversion data at near neutral pH versus hydrogen peroxide equivalents added relative to substrate is presented. Hydrogen peroxide addition without air sparging at 5 equivalents resulted in 65% conversion with an HA:AA molar ratio of 2:1. Conversely, hydrogen peroxide addition with air sparging at only 0.75 equivalents resulted in 40% conversion with an HA:AA ratio of 3:1. From this it is concluded that although the product distribution in these chemistries is somewhat unchanged by air sparging, it is surprising that the amount of reactive oxygen is greatly enhanced with co-addition of O2/H2O2. Additional studies have revealed the amount of LA formed can be enhanced under acidic conditions (pH=1.5 compared to pH=8.5), such that 26% of total product formation is LA. Since hydrogen peroxide is an environmentally clean reagent and becoming more cost effective to use, this work may guide future applied investigations into polyol chemical syntheses.

  12. From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide.

    PubMed

    van Bergen, Laura A H; Roos, Goedele; De Proft, Frank

    2014-08-01

    Hydrogen peroxide is a natural oxidant that can oxidize protein thiols (RSH) via sulfenic acid (RSOH) and sulfinic acid (RSO2H) to sulfonic acid (RSO3H). In this paper, we study the complete anionic and neutral oxidation pathway from thiol to sulfonic acid. Reaction barriers and reaction free energies for all three oxidation steps are computed, both for the isolated substrates and for the substrates in the presence of different model ligands (CH4, H2O, NH3) mimicking the enzymatic environment. We found for all three barriers that the anionic thiolate is more reactive than the neutral thiol. However, the assistance of the environment in the neutral pathway in a solvent-assisted proton-exchange (SAPE) mechanism can lower the reaction barrier noticeably. Polar ligands can decrease the reaction barriers, whereas apolar ligands do not influence the barrier heights. The same holds for the reaction energies: they decrease (become more negative) in the presence of polar ligands whereas apolar ligands do not have an influence. The consistently negative consecutive reaction energies for the oxidation in the anionic pathway when going from thiolate over sulfenic and sulfinic acid to sulfonic acid are in agreement with biological reversibility.

  13. Acid-catalyzed heterogeneous reaction of 3-methyl-2-buten-1-ol with hydrogen peroxide.

    PubMed

    Liu, Qifan; Wang, Weigang; Ge, Maofa

    2015-05-01

    Acid-catalyzed heterogeneous oxidation with hydrogen peroxide (H2O2) has been suggested to be a potential pathway for secondary organic aerosol (SOA) formation from isoprene and its oxidation products. However, knowledge of the chemical mechanism and kinetics for this process is still incomplete. 3-Methyl-2-buten-1-ol (MBO321), an aliphatic alcohol structurally similar to isoprene, is emitted by pine forests and widely used in the manufacturing industries. Herein the uptake of MBO321 into H2SO4-H2O2 mixed solution was investigated using a flow-tube reactor coupled to a mass spectrometer. The reactive uptake coefficients (γ) were acquired for the first time and were found to increase rapidly with increasing acid concentration. Corresponding aqueous-phase reactions were performed to further study the mechanism of this acid-catalyzed reaction. MBO321 could convert to 2-methyl-3-buten-2-ol (MBO232) and yield isoprene in acidic media. Organic hydroperoxides (ROOHs) were found to be generated through the acid-catalyzed route, which could undergo a rearrangement reaction and result in the formation of acetone and acetaldehyde. Organosulfates, which have been proposed to be SOA tracer compounds in the atmosphere, were also produced during the oxidation process. These results suggest that the heterogeneous acid-catalyzed reaction of MBO321 with H2O2 may contribute to SOA mass under certain atmospheric conditions.

  14. Manganese dioxide graphite composite electrodes: application to the electroanalysis of hydrogen peroxide, ascorbic acid and nitrite.

    PubMed

    Langley, Cathryn E; Sljukić, Biljana; Banks, Craig E; Compton, Richard G

    2007-02-01

    The modification of carbon powder with manganese dioxide using a wet impregnation procedure with electrochemical characterisation of the modified powder is described. The process involves saturation of the carbon powder with manganese(II) nitrate followed by thermal treatment at ca. 773 K leading to formation of manganese(IV) oxide on the surface of the carbon powder. The construction of composite electrodes based on manganese dioxide modified carbon powder and epoxy resin is also described, including optimisation of the percentage of the modified carbon powder. Composite electrodes showed attractive performances for electroanalytical applications, proving to be suitable for the electrochemical detection of hydrogen peroxide, ascorbic acid and nitrite ions with limits of detection comparable to the detection limits achieved by other analytical techniques. The results obtained for detection of these analytes, together with composite electrodes flexible design and low cost offers potential application of composite electrodes in biosensors.

  15. Electrodeposited Films from Aqueous Tungstic Acid-Hydrogen Peroxide Solutions for Electrochromic Display Devices

    NASA Astrophysics Data System (ADS)

    Yamanaka, Kazusuke

    1987-11-01

    Electrodeposited tungsten oxide films from aqueous tungstic acid-hydrogen peroxide solutions were investigated for applications to electrochromic devices. These films exhibited electrochromism in aprotic electrolyte solutions containing Li-salts. When the films were heat-treated for an hour at temperatures between 100 and 200°C, the electrochromic reactions were rich in reversibility. The coloring efficiency and response rate for the films were favorable and comparable to those for tungsten trioxide evaporated films. A cell life-test was performed on several clock-size cells by applying a 1.2-V, 1-Hz, continuous square wave. The typical amount of charge required for coloration was about 50 C / m2 and remained unchanged even after 107 coloration-bleaching cycles.

  16. Acetate induced enhancement of photocatalytic hydrogen peroxide production from oxalic acid and dioxygen.

    PubMed

    Yamada, Yusuke; Nomura, Akifumi; Miyahigashi, Takamitsu; Ohkubo, Kei; Fukuzumi, Shunichi

    2013-05-01

    The addition of acetate ion to an O2-saturated mixed solution of acetonitrile and water containing oxalic acid as a reductant and 2-phenyl-4-(1-naphthyl)quinolinium ion (QuPh(+)-NA) as a photocatalyst dramatically enhanced the turnover number of hydrogen peroxide (H2O2) production. In this photocatalytic H2O2 production, a base is required to facilitate deprotonation of oxalic acid forming oxalate dianion, which acts as an actual electron donor, whereas a Brønsted acid is also necessary to protonate O2(•-) for production of H2O2 by disproportionation. The addition of acetate ion to a reaction solution facilitates both the deprotonation of oxalic acid and the protonation of O2(•-) owing to a pH buffer effect. The quantum yield of the photocatalytic H2O2 production under photoirradiation (λ = 334 nm) of an O2-saturated acetonitrile-water mixed solution containing acetate ion, oxalic acid and QuPh(+)-NA was determined to be as high as 0.34, which is more than double the quantum yield obtained by using oxalate salt as an electron donor without acetate ion (0.14). In addition, the turnover number of QuPh(+)-NA reached more than 340. The reaction mechanism and the effect of solvent composition on the photocatalytic H2O2 production were scrutinized by using nanosecond laser flash photolysis.

  17. Direct, copper-catalyzed oxidation of aromatic C-H bonds with hydrogen peroxide under acid-free conditions.

    PubMed

    Conde, Ana; Díaz-Requejo, M Mar; Pérez, Pedro J

    2011-07-28

    The direct oxidation of benzene into phenol using hydrogen peroxide has been achieved in the absence of any acid with Tp(x)Cu(NCMe) complexes as the catalysts. In the case of anthracenes as the substrates, valuable anthraquinones have been quantitatively obtained in the same manner.

  18. Modeling of NO{sub x} absorption into nitric acid solutions containing hydrogen peroxide

    SciTech Connect

    Thomas, D.; Vanderschuren, J.

    1997-08-01

    A mathematical model was developed for the isothermal absorption of nitrogen oxides into nitric acid solutions containing hydrogen peroxide. This model, based on the two-film theory of absorption with chemical reactions, includes diffusive transport and equilibrium between species in the gas phase and simultaneous absorption of the NO{sub x} components with fast irreversible reactions in the liquid phase. Kinetic parameters relative to the absorption of the different NO{sub x} species were determined at increasing acidities and for a low concentration of H{sub 2}O{sub 2} from test runs performed in a small packed column at 20 C and atmospheric pressure for various NO{sub x} partial pressures up to 500 Pa and the whole range of NO{sub x} oxidation ratios. Only the parameter relative to trivalent NO{sub x} was found to increase with the HNO{sub 3} molarity, the other ones remaining constant. Interpretation of the experimental results according to the model showed that the hydrolysis is the main controlling step for tetravalent nitrogen oxides and that among the trivalent components nitrous acid is likely to be a major transporting species.

  19. Enhanced Sensitivity for Hydrogen Peroxide Detection: Polydiacetylene Vesicles with Phenylboronic Acid Head Group.

    PubMed

    Jia, Chen; Tang, Jie; Lu, Shengguo; Han, Yuwang; Huang, He

    2016-01-01

    It was recently reported that, besides UV irradiated polymerization, polymerization of diacetylene compounds could also been initiated by radicals generated from enzyme catalyzed hydrogen peroxide (H2O2) decomposition. A new optical sensing method for H2O2 was proposed based on this phenomenon. However, the sensitivity of this method is relatively lower than existed ones. In the present work, phenylboronic acid (PBA) functionalized 10, 12-pentacosadiynoic acid (PDA-PBA) was synthesized and its vesicles were formed successfully as colorimetric sensor for H2O2 detection. It was found that color change during the polymerization of vesicles composed of the PBA modified monomer is much stronger than that of the non-modified one. The response of PDA-PBA vesicles to H2O2 is 16 times more sensitive than that of the PDA. The absorption of PDA-PBA at 650 nm is linearly related to the concentration of H2O2 and a detection limit of ~5 μM could be achieved.

  20. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide

    PubMed Central

    Leggett, Mark J.; Schwarz, J. Spencer; Burke, Peter A.; McDonnell, Gerald; Denyer, Stephen P.

    2015-01-01

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. PMID:26637595

  1. Coal desulfurization in oxidative acid media using hydrogen peroxide and ozone: a kinetic and statistical approach

    SciTech Connect

    F.R. Carrillo-Pedroza; A. Davalos Sanchez; M. Soria-Aguilar; E.T. Pecina Trevino

    2009-07-15

    The removal of pyritic sulfur from a Mexican sub-bituminous coal in nitric, sulfuric, and hydrochloric acid solutions was investigated. The effect of the type and concentration of acid, in the presence of hydrogen peroxide and ozone as oxidants, in a temperature range of 20-60{sup o}C, was studied. The relevant factors in pyrite dissolution were determined by means of the statistical analysis of variance and optimized by the response surface method. Kinetic models were also evaluated, showing that the dissolution of pyritic sulfur follows the kinetic model of the shrinking core model, with diffusion through the solid product of the reaction as the controlling stage. The results of statistical analysis indicate that the use of ozone as an oxidant improves the pyrite dissolution because, at 0.25 M HNO{sub 3} or H{sub 2}SO{sub 4} at 20{sup o}C and 0.33 g/h O{sub 3}, the obtained dissolution is similar to that of 1 M H{sub 2}O{sub 2} and 1 M HNO{sub 3} or H{sub 2}SO{sub 4} at 40{sup o}C. 42 refs., 9 figs., 3 tabs.

  2. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide.

    PubMed

    Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2016-02-01

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. PMID:26637595

  3. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli.

    PubMed

    Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro

    2014-01-01

    Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production. PMID:24169950

  4. The effect of hydrogen peroxide concentration and solid loading on the fractionation of biomass in formic acid.

    PubMed

    Dussan, K; Girisuta, B; Haverty, D; Leahy, J J; Hayes, M H B

    2014-10-13

    This study investigated the fractionation of biomass using a decomposing mixture of hydrogen peroxide-formic acid as a pretreatment for the biorefining of Miscanthus × giganteus and of sugarcane bagasse. The main parameters investigated were the hydrogen peroxide concentration (2.5, 5.0 and 7.5 wt%) and biomass loading (5.0 and 10.0 wt%). At the highest hydrogen peroxide concentration used (7.5 wt%), the energy released by the decomposition of the H2O2 could heat the reaction mixture up to 180 °C in a short time (6-16 min). As a result, highly delignified pulps, with lignin removal as high as 92 wt%, were obtained. This delignification process also solubilised a significant amount of pentosan (82-98 wt%) from the initial biomass feedstock, and the resulting pulp had a high cellulosic content (92 wt%). The biomass loading only affected the reaction rate of hydrogen peroxide decomposition. Various analytical methods, including Fourier transform infrared spectroscopy, and thermogravimetric and elemental analyses, characterized the lignin obtained.

  5. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner.

    PubMed

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2(•-)). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2(•-) in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA.

  6. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  7. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No... distillation of the hydrogen peroxide formed; by decomposition of barium peroxide with sulfuric or...

  8. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No... distillation of the hydrogen peroxide formed; by decomposition of barium peroxide with sulfuric or...

  9. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No... distillation of the hydrogen peroxide formed; by decomposition of barium peroxide with sulfuric or...

  10. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No... distillation of the hydrogen peroxide formed; by decomposition of barium peroxide with sulfuric or...

  11. Effect of Molecular Structure on the Relative Hydrogen Peroxide Scavenging Ability of Some α-Keto Carboxylic Acids.

    PubMed

    Lopalco, Antonio; Stella, Valentino J

    2016-09-01

    The α-keto carboxylic acid, pyruvic acid (1) was found to be a very effective peroxide scavenger but is subject to an aldol-like self-condensation/polymerization reaction. The purpose of this study was to evaluate the hydrogen peroxide, H2O2, scavenging ability of 3-methyl-2-oxobutanoic acid (2), 4-methyl-2-oxopentanoic acid (3), and 2-oxo-2-phenylacetic acid (phenylglyoxylic acid, 4) in the pH range 2-9 at 25°C and the effect of molecular structure on the relative reactivity. The reaction with H2O2 was followed by UV spectrophotometry at 220 or 260 nm and high-performance liquid chromatography. Pseudo-first order, buffer-independent decarboxylation kinetics were observed in the presence of molar excess H2O2. The second-order rate constants for 2-4 followed a sigmoidal shape and mechanism similar to pyruvic acid. Pyruvic acid was a superior H2O2 scavenger to 2-4 over the pH range 2-9 but 4 was more reactive than 2 and 3 at pH values above 6. There was a qualitative correlation between the degree of keto-group hydration and reactivity of the acids in the pH range 4-6 while the data above pH 7 suggested that the intrinsic decarboxylation step for 4 was faster than for pyruvic acid. Differences in reactivity to molecular structure were analyzed.

  12. Sporocidal properties of peracetic acid and hydrogen peroxide, alone and in combination, in comparison with chlorine and formaldehyde for ultrafiltration membrane disinfection.

    PubMed

    Alasri, A; Valverde, M; Roques, C; Michel, G; Cabassud, C; Aptel, P

    1993-01-01

    The sporocidal properties of peracetic acid, hydrogen peroxide, chlorine, and formaldehyde were compared in vitro using a dilution-neutralization micromethod. A combination of peracetic acid and hydrogen peroxide was also tested to assess their interactions. The activities of these agents, which are widely used as disinfectants, were evaluated against Bacillus spore isolates found on stored membranes and collection cultures. Peracetic acid and chlorine exhibited an excellent antimicrobial activity, with a destruction of 10(5) spores/mL after 5 min of contact. Generally the effects of the biocides tested were time dependent. The sporocidal activities of hydrogen peroxide and formaldehyde were the lowest. The combination of peracetic acid and hydrogen peroxide, tested by a checkerboard micromethod, was found to be synergistic. The minimal sporocidal concentration (MSC) was established in terms of time for each biocide. The lowest MSC values for peracetic acid, hydrogen peroxide, chlorine, and formaldehyde were 168-336 ppm (1-2 h of contact), 5625-11250 ppm (5-7 h), 168-336 ppm (2-3 h), and 1875-3750 ppm (5-30 min), respectively. The MSC of a biocide combination of peracetic acid and hydrogen peroxide showed that synergy was maintained with increasing contact time and that the MSC could be reduced by two to eight times when compared with those of the biocides alone. Optimal concentrations and contact times of those chemicals that were promising in vitro were then tested for their ability to disinfect ultrafiltration membranes. The sporocidal activities of peroxide compounds and chlorine were confirmed and the synergism between peracetic acid and hydrogen peroxide was also maintained.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8439874

  13. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be... to exceed 0.001 percent by weight of the whey, providing that residual hydrogen peroxide is...

  14. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be... to exceed 0.001 percent by weight of the whey, providing that residual hydrogen peroxide is...

  15. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be... to exceed 0.001 percent by weight of the whey, providing that residual hydrogen peroxide is...

  16. Spectrophotometric determination of osmium based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide.

    PubMed

    Manzoori, J L; Sorouraddin, M H; Amjadi, M

    2000-10-01

    A highly sensitive spectrophotometric method is described for the determination of trace amounts of osmium(VIII), based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of carminic acid at 540 nm after 3 min of mixing the reagents. The optimum reaction conditions were 1x10(-4) mol l(-1) carminic acid, 0.013 mol l(-1) hydrogen peroxide and pH 10 at 25 degrees C. By using the recommended procedure, the calibration graph was linear from 0.1 to 1.5 ng ml(-1) of osmium; the detection limit was 0.02 ng ml(-1); the RSD for five replicate determinations of 0.2-1.4 ng ml(-1) was in the range of 1.8-4.7%. The influence of several foreign ions on osmium determination were studied and the effect of interfering ions were removed by extracting osmium into isobuthyl methyl ketone and back extracting into sodium hydroxide solution. PMID:18968089

  17. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide... group. Eggs: Some strains of rainbow trout eggs are sensitive to hydrogen peroxide treatment at a...

  18. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be safely used to treat food in accordance with..., providing that residual hydrogen peroxide is removed by appropriate chemical or physical means during...

  19. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide... group. Eggs: Some strains of rainbow trout eggs are sensitive to hydrogen peroxide treatment at a...

  20. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide... group. Eggs: Some strains of rainbow trout eggs are sensitive to hydrogen peroxide treatment at a...

  1. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide... group. Eggs: Some strains of rainbow trout eggs are sensitive to hydrogen peroxide treatment at a...

  2. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide... group. Eggs: Some strains of rainbow trout eggs are sensitive to hydrogen peroxide treatment at a...

  3. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  4. Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent.

    PubMed

    Wagner, Monika; Brumelis, Daina; Gehr, Ronald

    2002-01-01

    The Montreal Urban Community Wastewater Treatment Plant (MUCWTP) located in Montreal. Quebec, Canada, uses physicochemical treatment processes prior to discharging wastewater into the St. Lawrence River via an outfall tunnel of 2 hours retention time. Although chlorination facilities exist, they are not being used, and the MUCWTP is seeking alternative methods for disinfection to achieve a 2- to 3-log fecal coliform reduction. Liquid chemical disinfectants were attractive options because of their low capital costs. This led to an investigation of the feasibility of using hydrogen peroxide or peracetic acid. A method for measuring peroxycompounds (hydrogen peroxide or peracetic acid plus hydrogen peroxide) was developed using the peroxidase-based oxidation of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfuric acid) diammonium salt (ABTS) with hydrogen peroxide. The validity of the method was confirmed using effluent from the MUCWTP. Recovery was higher than 90% for peracetic acid levels as low as 1.0 mg/L. Quenching of hydrogen peroxide was achieved with 50-mg/L catalase; quenching of peracetic acid was achieved with 100 mg/L of sodium thiosulfate, followed by 50 mg/L of catalase. Batch disinfection tests were conducted on MUCWTP effluent. Hydrogen peroxide and peracetic acid in wastewater over time could be modeled as a second-order decay, with the decay "constant" being a function of the initial concentration of peroxycompounds. This function was the same for both hydrogen peroxide and peracetic acid, possibly indicating similar decomposition pathways in wastewater matrices. Disinfection was modeled using a modified Hom equation. Required doses of hydrogen peroxide to reach the target fecal coliform levels ranged from 106 to 285 mg/L, with the higher doses occurring when ferric chloride instead of alum was used as the coagulant. Hence, hydrogen peroxide was infeasible as a disinfectant for this application. On the other hand, the peracetic acid dose needed to

  5. Direct determination of peracetic acid, hydrogen peroxide, and acetic acid in disinfectant solutions by far-ultraviolet absorption spectroscopy.

    PubMed

    Higashi, Noboru; Yokota, Hiroshi; Hiraki, Satoru; Ozaki, Yukihiro

    2005-04-01

    In this paper we propose a rapid and highly selective far-ultraviolet (FUV) spectroscopic method for the simultaneous determination of peracetic acid (PAA), hydrogen peroxide, and acetic acid (AA). For this purpose we developed a novel FUV spectrometer that enables us to measure the spectra down to 180 nm. Direct determination of PAA, H(2)O(2), and AA, the three main species in disinfectant solutions, was carried out by using their absorption bands in the 180-220-nm region. The proposed method does not require any reagents or catalysts, a calibration standard, and a complicated procedure for the analysis. The only preparation procedure requested is a dilution of H(2)O(2) with pure water to a concentration range lower than 0.2 wt % in the sample solutions. Usually, the required concentration range can be obtained by the 10 times volume dilution of the actual disinfectant solutions. As the measured sample does not leave any impurity for the disinfection, it can be reused completely by using a circulation system. The detection limit for PAA of the new FUV spectrometer was evaluated to be 0.002 wt %, and the dynamic ranges of the measured concentrations were from 0 to 0.05 wt %, from 0 to 0.2 wt %, and from 0 to 0.2 wt % for PAA, H(2)O(2), and AA, respectively. The response time for the simultaneous determination of the three species is 30 s, and the analysis is applicable even to the flowing samples. This method may become a novel approach for the continuous monitoring of PAA in disinfectant solutions on the process of sterilization. PMID:15801764

  6. [Rasburicase therapy may cause hydrogen peroxide shock].

    PubMed

    Góth, László

    2008-08-24

    Hyperuricemia contributes to the pathomechanism of diseases such as renal failure, gout, tumor lysis syndrome and metabolic syndrome. Tumor lysis syndrome is a complication of malignancies caused by massive tumor cell lysis due to either spontaneous tumor cell lysis or to different therapies and it may cause hyperuricemia. Recently, for treatment of hyperuricemia the recombinant urate oxidase (rasburicase) therapy has been used. This enzyme converts uric acid with high affinity into soluble allantoin which is eliminated by the kidneys. In this reaction high concentration of hydrogen peroxide is generated. This hydrogen peroxide could cause hemolysis and especially methemoglobin formation, in case of glucose-6-phosphate-dehydrogenase and catalase deficiencies. Therefore it is recommended that these enzymes are determined before therapy. For monitoring of rasburicase therapy the determination of serum uric acid concentration is used. More than 95 per cent of Hungarian clinical laboratories are using the uricate oxidase/peroxidase reactions and hydrogen peroxide measurements in the uric acid assays. These assays may be interfered by ascorbic acid and hydrogen peroxide which is generated by rasburicase either in vivo or in vitro. PMID:18708312

  7. Progress toward hydrogen peroxide micropulsion

    SciTech Connect

    Whitehead, J C; Dittman, M D; Ledebuhr, A G

    1999-07-08

    A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.

  8. Control of Pseudomonas aeruginosa and Stenotrophomonas maltophilia contamination of microfiltered water dispensers with peracetic acid and hydrogen peroxide.

    PubMed

    Sacchetti, Rossella; De Luca, Giovanna; Zanetti, Franca

    2009-06-30

    The abilities of peracetic acid and hydrogen peroxide to remove or reduce Pseudomonas aeruginosa and Stenotrophomonas maltophilia in output water from microfiltered water dispensers (MWDs) were investigated. Two MWDs were inoculated with strains of P. aeruginosa and S. maltophilia isolated from water. Dispensers A and B were disinfected with 10% (v/v) peracetic acid (PAA) and 3% (v/v) hydrogen peroxide (HP) respectively. Each dispenser was disinfected three times at monthly intervals with contact times of 10, 30 and 40 min. Water dispensed by the MWDs was collected immediately before and after each treatment and then twice weekly for the remaining period. Once a week a sample of the tap water entering the dispensers was tested. P. aeruginosa and S. maltophilia were enumerated in the 90 samples collected during 6 months. In the output water from the dispensers before the first treatment, the number of the bacteria was 3 to 4 log cfu/100 mL. Treatment with PAA greatly reduced the numbers of P. aeruginosa and S. maltophilia in the dispensed water initially. However, by 2 days after treatment, the numbers increased and remained high. In the case of disinfection with HP for 40 min, P. aeruginosa was not detected in most of the samples (73.7%). Numbers of S. maltophilia decreased with increasing time after treatment.

  9. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    USGS Publications Warehouse

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  10. Mutagenic Effects of Perfluorooctanesulfonic Acid in gpt Delta Transgenic System Are Mediated by Hydrogen Peroxide.

    PubMed

    Wang, Yichen; Zhang, Xuefeng; Wang, Meimei; Cao, Yiyi; Wang, Xinan; Liu, Yun; Wang, Juan; Wang, Jing; Wu, Lijun; Hei, Tom K; Luan, Yang; Xu, An

    2015-05-19

    Perfluorooctane sulfate (PFOS), a persistent organic pollutant, has recently been closely linked with an increased risk of tumorigenesis. However, PFOS has yielded negative results in various tests of genotoxicity. The present study aimed to investigate the mutagenic response to PFOS in the gpt delta transgenic mouse mutation system and to illustrate the contribution of hydrogen peroxide (H2O2) to PFOS genotoxicity. Mutations at the redBA/gam loci were determined by Spi(-) assay both in vitro and in vivo. DNA damage was measured by phosphorylated histone H2AX (γ-H2AX) and mouse bone marrow micronucleus (MN) testing. Our data showed that PFOS induced concentration-dependent increases in γ-H2AX foci and in mutation frequencies at redBA/gam loci in transgenic mouse embryonic fibroblast cells, which were confirmed by the formation of MNs in the bone marrow and the observations of mutation induction in the livers of gpt delta transgenic mice. Concurrent treatment with catalase, an efficient H2O2 scavenger, significantly decreased the formation of γ-H2AX foci and the mutation yields induced by PFOS. In addition, the generation of H2O2 was found to be closely related to the abnormal peroxisomal β-oxidation caused by PFOS. These finding might provide new mechanistical information about genotoxic effects of PFOS. PMID:25875360

  11. Microbial production of low molecular weight hyaluronic acid by adding hydrogen peroxide and ascorbate in batch culture of Streptococcus zooepidemicus.

    PubMed

    Liu, Long; Du, Guocheng; Chen, Jian; Zhu, Yang; Wang, Miao; Sun, Jun

    2009-01-01

    Microbial production of low molecular weight hyaluronic acid (HA) by the addition of hydrogen peroxide and ascorbate during the batch culture of Streptococcus zooepidemicus was investigated. Hydrogen peroxide (1.0 mmol/g HA) and ascorbate (0.5 mmol/g HA) were added at 8h and 12h to degrade HA. With the redox depolymerization of HA, the HA molecular weight decreased from 1,300 kDa for the control to 80 kDa, and the average broth viscosity during 8-16 h decreased from 360 mPa s for the control to 290 mPa s. The average oxygen mass transfer coefficient K(L)a increased from 10h(-1) for the control to 35 h(-1) and the average dissolved oxygen level increased from 1% of air saturation in the control to 10%. HA production increased from 5.0 g/L for the control to 6.5 g/L, and contributed to the increased redox potential and energy charge. This novel process not only significantly enhanced production of low molecular weight HA, but also improved purification efficiency due to a decreased broth viscosity. Low molecular weight HA finds applications in biomedical and healthcare fields.

  12. Oxidative and Molecular Responses in Capsicum annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications

    PubMed Central

    Mejía-Teniente, Laura; de Dalia Durán-Flores, Flor; Chapa-Oliver, Angela María; Torres-Pacheco, Irineo; Cruz-Hernández, Andrés; González-Chavira, Mario M.; Ocampo-Velázquez, Rosalía V.; Guevara-González, Ramón G.

    2013-01-01

    Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress. PMID:23676352

  13. Improved dual flow aluminum hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart L.; Matthews, Donna

    1993-11-01

    A novel dual flow battery configuration is provided comprising an aqueous hydrogen peroxide catholyte, an aqueous anolyte, a porous solid electrocatalyst capable of reducing said hydrogen peroxide and separating said anolyte, and an aluminum anode positioned within said anolyte. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode.

  14. Improved dual flow aluminum hydrogen peroxide battery

    SciTech Connect

    Marsh, C.; Licht, S.L.; Matthews, D.

    1993-11-30

    A novel dual flow battery configuration is provided comprising an aqueous hydrogen peroxide catholyte, an aqueous anolyte, a porous solid electrocatalyst capable of reducing said hydrogen peroxide and separating said anolyte, and an aluminum anode positioned within said anolyte. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode.

  15. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  16. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  17. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  18. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  19. Sampling Stoichiometry: The Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Clift, Philip A.

    1992-01-01

    Describes a demonstration of the decomposition of hydrogen peroxide to provide an interesting, quantitative illustration of the stoichiometric relationship between the decomposition of hydrogen peroxide and the formation of oxygen gas. This 10-minute demonstration uses ordinary hydrogen peroxide and yeast that can be purchased in a supermarket.…

  20. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) (c) Limitations,...

  1. Evaluating the effects of galbanic acid on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes

    PubMed Central

    Shirani, Kobra; Behravan, Javad; Mosaffa, Fatemeh; Iranshahi, Mehrdad; Mehmankhah, Babak; Razavi-Azarkhiavi, Kamal; Karimi, Gholamreza

    2014-01-01

    Objective: Ferula szowitsiana has been widely used for medicinal purposes around the world. The anti-oxidant effect of F. szowitsiana had been proved. The current study aims to determine the protective effects of galbanic acid, a sesquiterpene coumarin from F. szowitsiana, against hydrogen peroxide (H2O2) - induced oxidative DNA damage in human lymphocytes. Materials and Methods: Human lymphocytes were incubated with H2O2 (0, 25, 50, 100, and 200 µM), galbanic acid (200 and 400 µM) and a combination of galbanic acid (200 and 400 µM) and H2O2 (25 µM) at 4 C for 30 minutes. Solvents of galbanic acid without H2O2 were used as negative controls. Results: The findings of this study demonstrated that H2O2 exposure leads to a significant concentration-dependent increase in DNA damage. Galbanic acid did not cause DNA damage compared with the control cells. Data showed that galbanic acid does not have a protective effect against H2O2-induced oxidative DNA damage in human lymphocytes. Conclusion: According to the results, it is concluded that the capability of F. szowitsiana in reducing reactive oxygen species and the anti-inflammatory property of its methanolic extract may be due to its other ingredients. PMID:25386396

  2. Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment.

    PubMed

    Song, Younho; Wi, Seung Gon; Kim, Ho Myeong; Bae, Hyeun-Jong

    2016-08-01

    Jerusalem artichoke (JA) is recognized as a suitable candidate biomass crop for bioethanol production because it has a rapid growth rate and high biomass productivity. In this study, hydrogen peroxide-acetic acid (HPAC) pretreatment was used to enhance the enzymatic hydrolysis and to effectively remove the lignin of JA. With optimized enzyme doses, synergy was observed from the combination of three different enzymes (RUT-C30, pectinase, and xylanase) which provided a conversion rate was approximately 30% higher than the rate with from treatment with RUT-C30 alone. Fermentation of the JA hydrolyzates by Saccharomyces cerevisiae produced a fermentation yield of approximately 84%. Therefore, Jerusalem artichoke has potential as a bioenergy crop for bioethanol production. PMID:27115748

  3. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  4. NASA Hydrogen Peroxide Propulsion Perspective

    NASA Technical Reports Server (NTRS)

    Unger, Ronald; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    This presentation is to provide the current status of NASA's efforts in the development of hydrogen peroxide in both mono-propellant and bi-propellant applications, consistent with the Space Launch Initiative goals of pursuing low toxicity and operationally simpler propellants for application in the architectures being considered for the 2nd Generation Reusable Launch Vehicle, also known as the Space Launch Initiative, or SLI.

  5. Involvement of lipoxygenase in lysophosphatidic acid-stimulated hydrogen peroxide release in human HaCaT keratinocytes.

    PubMed Central

    Sekharam, M; Cunnick, J M; Wu, J

    2000-01-01

    Although it is now recognized that low levels of reactive oxygen species (ROS) are required for the mitogenic response, mitogen-induced signalling pathways that regulate ROS generation in non-phagocytic cells remain largely uncharacterized. Using a real-time assay for measuring hydrogen peroxide (H(2)O(2)) formation, we analysed H(2)O(2) release in human HaCaT keratinocytes in response to lysophosphatidic acid (LPA), a mitogen for keratinocytes. LPA rapidly increased H(2)O(2) release in HaCaT cells. Unlike LPA-induced mitogen-activated protein (MAP) kinase activation, LPA-stimulated H(2)O(2) release was independent of the tyrosine kinase activity of the epidermal growth factor (EGF) receptor. Calcium chelators, phospholipase A(2) inhibitors, and lipoxygenase inhibitors effectively blocked LPA-stimulated H(2)O(2) release, whereas cyclooxygenase inhibitors were without effect. Addition of 5-lipoxygenase products 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene B(4), but not 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene C(4), restored LPA-stimulated H(2)O(2) release in cells treated with the lipoxygenase inhibitors nordihydroguaiaretic acid and Zileuton. These results suggest that the lipoxygenase products 5-HPETE and leukotriene B(4) are required for LPA-stimulated H(2)O(2) release in HaCaT cells. PMID:10698703

  6. The uptake of 2-methyl-3-buten-2-ol into aqueous mixed solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Ge, Maofa; Wang, Weigang; Yin, Shi; Tong, Shengrui

    2011-02-14

    Multiphase acid-catalyzed oxidation with hydrogen peroxide (H(2)O(2)) has been suggested recently to be a potential route to SOA formation from isoprene and its gas-phase oxidation products, the kinetics and chemical mechanism of this process have not been well-known yet. In this work, the uptake of 2-methyl-3-buten-2-ol (MBO), an important biogenic hydrocarbon and structurally similar to isoprene, into aqueous mixed solutions of H(2)O(2) and sulfuric acid (H(2)SO(4)) was performed using a rotated wetted-wall reactor coupled to a differentially pumped single-photon ionization time of flight mass spectrometer (RWW-SPI-TOFMS). The reactive uptake coefficients (γ) were acquired for the first time and the reaction pathways were deduced according to products information. The reactive uptake coefficients of MBO into H(2)SO(4)-H(2)O(2) mixed solutions are much greater than that into H(2)SO(4) solutions. Acetaldehyde, acetone and an on-line product, which transformed to isoprene readily in the duration of an off-line experiment, were suggested as products in this process. The further reactions of the carbonyl products can occur in acidic solution, which may play a role in SOA formation. Additionally, in real atmosphere the on-line product is apt to transform to isoprene, an acknowledged precursor of biogenic SOA. Thus, the multiphase acid-catalyzed oxidation of MBO with H(2)O(2) might be a potential contributor to SOA loading.

  7. [Uptake of 3-methyl-3-buten-1-ol into aqueous mixed solution of sulfuric acid and hydrogen peroxide].

    PubMed

    Wang, Tian-He; Liu, Ze; Ge, Mao-Fa; Wang, Wei-Gang

    2011-12-01

    Multiphase acid-catalyzed oxidation with hydrogen peroxide (H2O2) has been suggested recently to be a potential route to SOA formation, but the kinetics and chemical mechanism of this process have not been well-known yet. In this work, the uptake of 3-methyl-3-buten-1-ol (MBO331) into aqueous mixed solutions of H2O2, and sulfuric acid (H2SO4) was performed using a rotated wetted-wall reactor coupled to a VUV single-photon ionization time of flight mass spectrometer (VUV-SPI-TOFMS). The reactive uptake coefficients (gamma) were acquired for the first time and the reaction pathways were deduced according to products information. The uptake of MBO331 into H2SO4/H2O2 was fast, resulting in gamma reaching 2.52 x 10(-4)-1.05 x 10(-2) for 40%-60% H2SO4. Acetaldehyde, acetone and 3-methyl-3, 4-expoxybutane-1-ol were suggested as gas-phase products in this process. 3-methyl-3,4-expoxybutane-1-ol can transform into polyhydroxy compounds while the further reactions of the carbonyl products can occur in acidic solution, which may play a role in SOA formation. Thus, the heterogeneous acid-catalyzed oxidation of MBO331 with H2O2 might be a significant contributor to SOA loading.

  8. [Effects of exogenous nitric oxide, salicylic acid and hydrogen peroxide on free amino acid and soluble protein contents in tobacco leaves].

    PubMed

    Wei, Xiao-Hong; Wang, Li-Min; Long, Rui-Jun; Wang, Gen-Xuan

    2006-04-01

    The work focused on the effects of signal molecules of nitric oxide (NO), salicylic acid (SA) and hydrogen peroxide (H(2)O(2)) on compounds of nitric metabolites of free amino acid, soluble protein and proline in tobacco. The results indicated that NO, SA and H(2)O(2) were able to regulate the proline, free amino acid and soluble protein content in tobacco. Lower concentration of NO and H(2)O(2) raised the level of proline; while higher concentration of NO and H(2)O(2) lowered the proline, free amino acid content in tobacco. The above three signal molecules also showed similar effects on proline, free amino acid and soluble protein content in tobacco.

  9. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Zaidi, Z. H. Lee, K. B.; Qian, H.; Jiang, S.; Houston, P. A.; Guiney, I.; Wallis, D. J.; Humphreys, C. J.

    2014-12-28

    In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.

  10. Coating for components requiring hydrogen peroxide compatibility

    NASA Technical Reports Server (NTRS)

    Yousefiani, Ali (Inventor)

    2010-01-01

    The present invention provides a heretofore-unknown use for zirconium nitride as a hydrogen peroxide compatible protective coating that was discovered to be useful to protect components that catalyze the decomposition of hydrogen peroxide or corrode when exposed to hydrogen peroxide. A zirconium nitride coating of the invention may be applied to a variety of substrates (e.g., metals) using art-recognized techniques, such as plasma vapor deposition. The present invention further provides components and articles of manufacture having hydrogen peroxide compatibility, particularly components for use in aerospace and industrial manufacturing applications. The zirconium nitride barrier coating of the invention provides protection from corrosion by reaction with hydrogen peroxide, as well as prevention of hydrogen peroxide decomposition.

  11. Hydrogen peroxide on the surface of Europa.

    PubMed

    Carlson, R W; Anderson, M S; Johnson, R E; Smythe, W D; Hendrix, A R; Barth, C A; Soderblom, L A; Hansen, G B; McCord, T B; Dalton, J B; Clark, R N; Shirley, J H; Ocampo, A C; Matson, D L

    1999-03-26

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis. PMID:10092224

  12. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  13. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  14. Hydrogen peroxide on the surface of Europa

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Anderson, M. S.; Johnson, R. E.; Smythe, W. D.; Hendrix, A. R.; Barth, C. A.; Soderblom, L. A.; Hansen, G. B.; McCord, T. B.; Dalton, J. B.; Clark, R. N.; Shirley, J. H.; Ocampo, A. C.; Matson, D. L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  15. Hydrogen peroxide, from Wieland to Sies.

    PubMed

    Koppenol, Willem H

    2016-04-01

    A history of the formation of hydrogen peroxide in vivo is presented, starting with the discovery of catalase. The first hypothesis was formulated by Heinrich Wieland, who assumed that dioxygen reacted directly with organic molecules. This view was strongly criticised by Otto Warburg, Helmut Sies' academic grandfather. The involvement of hydrogen peroxide in physiological processes was investigated by Theodor Bücher, the "Doktorvater" of Helmut. Helmut's research made it possible to quantitate hydrogen peroxide in tissues.

  16. Hydrogen peroxide is a true first messenger.

    PubMed

    Holmquist, L; Stuchbury, G; Steele, M; Münch, G

    2007-01-01

    Hydrogen peroxide has been shown to act as a second messenger mediating intracellular redox-sensitive signal transduction. Here we show that hydrogen peroxide is also able to transmit pro-inflammatory signals from one cell to the other and that this action can be inhibited by extracellularly added catalase. If these data can be further substantiated, hydrogen peroxide might become as important as nitric oxide as a small molecule intercellular (first) messenger.

  17. Stimulation of hydrogen peroxide production by drinking water contaminants in HL-60 cells sensitized by retinoic acid.

    PubMed

    Yoshida, H; Inoue, S; Yoshida, K; Nakajima, O; Mizuno, S

    1998-07-01

    Chemical carcinogens, such as chloroform and trichloroethylene, are present in drinking water in Japan. As these contaminants are believed to have a role in carcinogenesis, we examined if chloroform and trichloroethylene, as well as methylene chloride, xylene, benzene, and ethanol, have the ability to generate hydrogen peroxide (H(2)O(2)) in human polymorphonuclear leukocytes (PMN) and human leukemia (HL-60) cells. Methylene chloride, benzene, xylene, trichloroethylene, and ethanol did not increase cellular H(2)O(2): production as measured by flow cytometry nor as observed by confocal laser microscopy. In PMN and RAuntreated HL-60 cells chloroform did not significantly affect H(2)O(2) levels. However, in HL-60 cells sensitized by pretreatment of 10 nM retinoic acid (RA) for 12 h, chloroform induced a significant increase in H(2)O(2), but the increase induced by trichloroethylene was not significant. The observed increase in fluorescence was confirmed using a confocal laser microscope. These results indicate that chloroform and trichloroethylene may stimulate H(2)O(2) production in HL60 cells sensitized by pretreatment of RA. Our method may be useful to test if weak stimulants can stimulate intracellular H(2)O(2) production.

  18. Hydrogen peroxide enteritis: the "snow white" sign.

    PubMed

    Bilotta, J J; Waye, J D

    1989-01-01

    Hydrogen peroxide is a useful disinfectant that has achieved widespread utility in varied clinical settings. We report an epidemic of hydrogen peroxide enteritis that developed in seven patients in our gastrointestinal endoscopy unit during a 2-week period in early 1988. During endoscopy, using recently sterilized endoscopes that were flushed with 3% hydrogen peroxide after the glutaraldehyde cycle, instantaneous blanching (the "snow white" sign) and effervescence were noted on the mucosal surfaces when the water button was depressed. No patient subsequently suffered morbidity or mortality associated with this peroxide enteritis, and the biopsy specimens revealed nonspecific inflammation. The toxicity of hydrogen peroxide when used in enema form is reviewed, as well as the pathogenesis of peroxide enteritis.

  19. Volatilization of iodine from nitric acid using peroxide

    DOEpatents

    Cathers, G.I.; Shipman, C.J.

    1975-10-21

    A method for removing radioactive iodine from nitric acid solution by adding hydrogen peroxide to the solution while concurrently holding the solution at the boiling point and distilling hydrogen iodide from the solution is reported.

  20. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  1. Molecular Association and Structure of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Giguere, Paul A.

    1983-01-01

    The statement is sometimes made in textbooks that liquid hydrogen peroxide is more strongly associated than water, evidenced by its higher boiling point and greater heat of vaporization. Discusses these and an additional factor (the nearly double molecular mass of the peroxide), focusing on hydrogen bonds and structure of the molecule. (JN)

  2. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  3. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  4. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  5. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  6. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the...

  7. Fundamentals of ISCO Using Hydrogen Peroxide

    EPA Science Inventory

    Hydrogen peroxide is a common oxidant that has been applied extensively with in situ chemical oxidation (ISCO). Because of its widespread use in this and other fields, it has been extensively researched. This research has revealed that hydrogen peroxide has very complex chemistry...

  8. One-pot hydrogen peroxide and hydrohalic acid induced ring closure and selective aromatic halogenation to give new ring-fused benzimidazoles.

    PubMed

    Gurry, Michael; Sweeney, Martin; McArdle, Patrick; Aldabbagh, Fawaz

    2015-06-01

    A new series of selectively dichlorinated and dibrominated five- to eight-membered-ring [1,2-a]-fused benzimidazoles and [1,4]oxazino[4,3-a]benzimidazoles are synthesized in mostly high yields of >80% using the reaction of hydrogen peroxide and hydrohalic acid with commercially available o-cyclic amine substituted anilines. Domestic bleach with HCl can also be used for a one-pot ring closure and chlorination.

  9. Vapor Hydrogen Peroxide Sterilization Certification

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  10. Electron paramagnetic resonance study of hydrogen peroxide/ascorbic acid ratio as initiator redox pair in the inulin-gallic acid molecular grafting reaction.

    PubMed

    Arizmendi-Cotero, Daniel; Gómez-Espinosa, Rosa María; Dublán García, Octavio; Gómez-Vidales, Virginia; Dominguez-Lopez, Aurelio

    2016-01-20

    Gallic acid (GA) was grafted onto inulin using the free radicals method, generated by the hydrogen peroxide/ascorbic acid (H2O2/AA) redox pair. Molar ratios of H2O2/AA at 9, 20, 39 and 49 were evaluated by Electron Paramagnetic Resonance in order to find the effect of the oxidation of the inulin and the efficiency in the inulin-gallic acid grafting (IGA). The highest concentration of the inulin macro-radical was obtained with H2O2/AA molar ratios of 20 and 49 with the removal of a hydrogen atom from a methyl group of the inulin fructose monomers. The highest grafting ratio (30.4 mg GA eq/g IGA) was obtained at 9 M of H2O2/AA. UV-Vis, FT-IR-ATR and XDR results confirmed a successful IGA grafting. The efficiency of the grafting reaction depends on the concentration of the macro-radical, it depends on the molar ratio of H2O2/AA, being affected by simultaneous reactions between components of the mixture (H2O2, AA, inulin, GA and eventually atmospheric oxygen) as well.

  11. The kinetics of iodide oxidation by hydrogen peroxide in acid solution

    NASA Astrophysics Data System (ADS)

    Milenković, M. C.; Stanisavljev, D. R.

    2011-12-01

    The kinetics of the complex reaction between I- and H2O2 in acid media was investigated. The particular attention was focused on the determination of the rate constant of the reaction between HIO and H2O2 involved in the investigated complex process. The examination of the whole kinetics was performed by simultaneously monitoring the evolution of O2 pressure, I{3/-} and I- concentrations. We modeled the behavior of experimentally followed components based on Liebhafsky's research. Our preliminary results suggest a significantly higher rate constant (3.5 × 107 M-1 s-1) of the reaction between HIO and H2O2 as those proposed in the literature.

  12. Nitric oxide and hydrogen peroxide are important signals mediating the allelopathic response of Arabidopsis to p-hydroxybenzoic acid.

    PubMed

    Guan, Yanlong; Lin, Huaming; Ma, Lan; Yang, Yongping; Hu, Xiangyang

    2014-10-01

    Both nitric oxide (NO) and hydrogen peroxide (H2 O2 ) are important signals that mediate plant response to environmental stimulation. Their role in plants' allelopathic interactions has also been reported, but the underlying mechanism remains little understood. p-Hydroxybenzoic acid (pHBA) has been proposed to be an allelopathic chemical. Here, we found that pHBA at 0.4 mM efficiently suppressed Arabidopsis growth. Meanwhile, pHBA rapidly induced the accumulation of NO and H2 O2 , where such effect could be reversed by NO or H2 O2 metabolism inhibitors or scavengers. Also, pHBA-induced NO and H2 O2 could be compromised in NO synthesis mutants noa1, nia1 and nia2, or H2 O2 metabolism mutant rbohD/F, but suppressing NO accumulation with a NO synthesis inhibitor or using NO synthesis-related mutants did not reduce pHBA-induced H2 O2 accumulation. Furthermore, we found that the effect of pHBA on allelopathic inhibition of growth was aggravated in NO/H2 O2 metabolism-related mutants or reducing NO/H2 O2 by different inhibitors, whereas the addition of an NO/H2 O2 donor could partly relieve the inhibitory effect of pHBA on the growth of wild type. However, adding only an NO donor, but not low concentration of H2 O2 as the donor, could relieve the inhibitory effect of pHBA on root growth in NO metabolism mutants. On the basis of these results, we propose that both NO and H2 O2 are important signals that mediate Arabidopsis response to the allelopathic chemical pHBA, where during this process H2 O2 may work upstream of the NO signal. PMID:24502504

  13. Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings.

    PubMed

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N'-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings.

  14. Ferulic acid renders protection to HEK293 cells against oxidative damage and apoptosis induced by hydrogen peroxide.

    PubMed

    Bian, Yuan-Yuan; Guo, Jia; Majeed, Hamid; Zhu, Ke-Xue; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming

    2015-08-01

    The application of antioxidants has been considered as an important and effective approach against conditions in which oxidative stress occurs. Especially, ferulic acid (FA) is an important antioxidant which exerts potency against cellular damage in the presence of oxidants. In the current study, the resistance effect of FA on hydrogen peroxide (H2O2)-stressed human embryonic kidney 293 cells (HEK293) in vitro was investigated. FA (1 mM) increased HEK293 cells' viability and significantly reduced H2O2-induced cellular apoptosis, which was confirmed with flow cytometry and morphological results. Cell cycle analysis indicated low percentage of sub-G0 population of FA-treated HEK293 cells that confirmed its resistance effect. The FA-treated HEK293 cells followed by H2O2 exposure resulted in decreased ROS levels compared to control (H2O2-treated only). The results indicated that pretreatment of FA on cell prior to H2O2 exposure could significantly improve cell survival and increase catalase (CAT) and superoxide dismutase (SOD) levels. On the other hand, reduction in the levels of MDA and ROS was obvious. It can be concluded that FA may protect HEK293 cells from injury induced by H2O2 through regulation of intracellular antioxidant enzyme activities and cell cycle distribution. The reduction in mitochondrial membrane potential was also inhibited by FA treatment. These results suggested the importance of naturally occurring antioxidants such as FA in therapeutic intervention methodology against oxidative stress-related diseases.

  15. Green tea constituents (-)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide.

    PubMed

    López-Lázaro, Miguel; Calderón-Montaño, José Manuel; Burgos-Morón, Estefanía; Austin, Caroline A

    2011-07-01

    Green tea and its major active constituent, (-)-epigallocatechin-3-gallate (EGCG), are in clinical trials for the prevention and treatment of several diseases such as cancer. DNA topoisomerase (topo) poisons are commonly prescribed anticancer drugs that kill cancer cells by inducing topo-DNA complexes. Using purified topoisomerases, previous in vitro studies have shown that EGCG induces the formation of topo-DNA complexes. Because the activity of a drug on purified topoisomerases does not always represent the activity in a cell, we have used an immunofluorescence technique that allows the visualisation of topo I- and topo II-DNA complexes produced in individual cells to evaluate the activity of EGCG on both enzymes. High levels of topo I- and topo II-DNA complexes were observed in K562 leukaemia cells exposed to EGCG. Similar levels of topo I- and topo II-DNA complexes were visualised in cells treated with gallic acid (GA) (the acid part of the EGCG ester). Pyrogallol (PG) also induced topo-DNA complexes with both enzymes, therefore suggesting that the activity of EGCG and GA is mediated by their PG moieties. Catalase prevented both the cytotoxicity and the formation of topo I- and topo II-DNA complexes induced by EGCG, GA, PG and myricetin (a PG-containing flavonoid recently shown to induce topo I- and topo II-DNA complexes in cells), indicating that hydrogen peroxide mediates these activities. Hydrogen peroxide induced topo I- and topo II (α and β)-DNA complexes in a time- and dose-dependent manner. The formation of topo I- and topo II-DNA complexes in cells exposed to hydrogen peroxide correlated well with the induction of apoptosis, suggesting that the topo-DNA complexes induced at long exposure times by the compounds tested in our study may be apoptotic topo-DNA complexes. Finally, we report results suggesting that PG-containing drugs may selectively kill tumour cells by generating hydrogen peroxide.

  16. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  17. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  18. Microcalorimetric Measurements of Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.; Hornung, Steven D.; Baker, Dave L.

    1999-01-01

    Recent interest in propellants with nontoxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because hydrogen peroxide is sensitive to contaminants and materials interactions, stability and shelf life are issues. A relatively new, ultrasensitive heat measurement technique, isothermal microcalorimetry, is being used at the White Sands Test Facility to monitor the decomposition of hydrogen peroxide at near ambient temperatures. Isothermal microcalorimetry measures the beat flow from a reaction vessel into a surrounding heat sink. In these applications, microcalorimetry is approximately 1,000 times more sensitive than accelerating rate calorimetry or differential scanning calorimetry for measuring thermal events. Experimental procedures have been developed for the microcalorimetric measurement of the ultra-small beat effects caused by incompatible interactions of hydrogen peroxide. The decomposition rates of hydrogen peroxide at the picomole/sec/gram level have been measured showing the effects of stabilizers and peroxide concentration. Typical measurements are carried out at 40 C over a 24-hour period, This paper describes a method for the conversion of the heat flow measurements to chemical reaction rates based on thermochemical considerations. The reaction rates are used in a study of the effects of stabilizer levels on the decomposition of propellant grade hydrogen peroxide.

  19. K Basin Sludge Conditioning Process Testing Fate of PCBs During K Basin Sludge Dissolution in Nitric Acid and with Hydrogen Peroxide Addition

    SciTech Connect

    GM Mong; AJ Schmidt; EW Hoppe; KH Pool; KL Silvers; BM Thornton

    1999-01-04

    The work described in this report is part of the studies being performed to address the fate of polychlorinated biphenyls (PCBs) in K Basin sludge before the sludge can be transferred to the Tank Waste Remediation System (TWRS) double shell tanks. One set of tests examined the effect of hydrogen peroxide on the disposition of PCBs in a simulated K Basin dissolver solution containing 0.5 M nitric acid/1 M Fe(NO{sub 3}){sub 3}. A second series of tests examined the disposition of PCBs in a much stronger ({approx}10 M) nitric acid solution, similar to that likely to be encountered in the dissolution of the sludge.

  20. Membrane transport of hydrogen peroxide.

    PubMed

    Bienert, Gerd P; Schjoerring, Jan K; Jahn, Thomas P

    2006-08-01

    Hydrogen peroxide (H2O2) belongs to the reactive oxygen species (ROS), known as oxidants that can react with various cellular targets thereby causing cell damage or even cell death. On the other hand, recent work has demonstrated that H2O2 also functions as a signalling molecule controlling different essential processes in plants and mammals. Because of these opposing functions the cellular level of H2O2 is likely to be subjected to tight regulation via processes involved in production, distribution and removal. Substantial progress has been made exploring the formation and scavenging of H2O2, whereas little is known about how this signal molecule is transported from its site of origin to the place of action or detoxification. From work in yeast and bacteria it is clear that the diffusion of H2O2 across membranes is limited. We have now obtained direct evidence that selected aquaporin homologues from plants and mammals have the capacity to channel H2O2 across membranes. The main focus of this review is (i) to summarize the most recent evidence for a signalling role of H2O2 in various pathways in plants and mammals and (ii) to discuss the relevance of specific transport of H2O2.

  1. Hydrogen peroxide treatment of TCE contaminated soil

    SciTech Connect

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-12-31

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil.

  2. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell

    PubMed Central

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells. PMID:23457415

  3. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    PubMed

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  4. The soft tissue response to contaminated and cleaned titanium surfaces using CO2 laser, citric acid and hydrogen peroxide. An experimental study in the rat abdominal wall.

    PubMed

    Mouhyi, J; Sennerby, L; Van Reck, J

    2000-04-01

    The soft tissue response to clinically retrieved and decontaminated cover screws was evaluated in a rat model. The cover screws were cleaned by using citric acid, sterile water, hydrogen peroxide and CO2 laser alone or with a combination of these. In addition, decontaminated but not cleaned and unused cover screws were used as negative and positive controls, respectively. After cleaning the cover screws were implanted in the abdominal wall of the rat for 6 weeks. The thickness of the fibrous capsule and the number of macrophages within the capsule were measured by means of light microscopical morphometry. As compared to the negative control, CO2 laser on dry surface, CO2 laser + hydrogen peroxide and the positive control had statistically significant thinner fibrous capsules. As compared to the positive, only laser alone resulted in a similar tissue response. It is concluded that CO2 laser used alone or in combination with hydrogen peroxide may be used clinically for sufficient decontamination of titanium surfaces.

  5. Use of hydrogen peroxide in combination with nisin, sodium lactate and citric acid for reducing transfer of bacterial pathogens from whole melon surfaces to fresh-cut pieces.

    PubMed

    Ukuku, Dike O; Bari, M L; Kawamoto, S; Isshiki, K

    2005-10-15

    Hydrogen peroxide (2.5%) alone or hydrogen peroxide (1%) in combination with nisin (25 microg/ml), sodium lactate (1%), and citric acid (0.5%) (HPLNC) were investigated as potential sanitizers for reducing Escherichia coli O157:H7 or Listeria monocytogenes populations on whole cantaloupe and honeydew melons. Whole cantaloupes inoculated with E. coli O157:H7 and L. monocytogenes at 5.27 and 4.07 log10 CFU/cm2, respectively, and whole honeydew melons inoculated with E. coli O157:H7 and L. monocytogenes at 3.45 and 3.05 log10 CFU/cm2, respectively, were stored at 5 degrees C for 7 days. Antimicrobial washing treatments were applied to inoculated whole melons on days 0 or 7 of storage and surviving bacterial populations and the numbers transferred to fresh-cut pieces were determined. At days 0 and 7 treatment with HPLNC significantly (p<0.05) reduced the numbers of both pathogens, by 3 to 4 log CFU/cm2 on both types of whole melon. Treatment with HPLNC was significantly (p<0.05) more effective than treatment with 2.5% hydrogen peroxide. While fresh-cut pieces prepared from stored whole melons were negative for the pathogens by both direct plating and by enrichment, fresh-cut pieces from cantaloupe melons treated with 2.5% hydrogen peroxide were positive for both pathogens and pieces from honeydew melons were positive for E. coli 0157:H7. The native microflora on fresh-cut melons were also substantially reduced by HPLNC treatment of whole melons. The results suggest that HPLNC could be used to decontaminate whole melon surfaces and so improve the microbial safety and quality of fresh-cut melons.

  6. Isothermal Decomposition of Hydrogen Peroxide Dihydrate

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Baragiola, R. A.

    2011-01-01

    We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.

  7. NASA Hydrogen Peroxide Propellant Hazards Technical Manual

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Greene, Ben; Frazier, Wayne

    2005-01-01

    The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.

  8. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  9. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in...)(1) of this section. (a) Identity. For the purpose of this section, hydrogen peroxide solution is...

  10. Generation of hydrogen peroxide in a shorted fuel cell

    SciTech Connect

    Webb, S.P.; McIntyre, J.A.

    1996-12-31

    Hydrogen peroxide is a {open_quotes}green{close_quotes} chemical with a well-assured future. As such, significant growth in demand is predicted for this material. To meet this growth, new technologies of manufacture are being contemplated to compete with the established Anthraquinone process. Some of these new methods seek the niche market of on-site generation of hydrogen peroxide. One good example of this is Dow`s caustic/peroxide generation scheme for the bleaching of paper pulp. Others rely on externally-supplied electrical power in an electrochemical reactor scheme, where peroxide may be generated additionally in neutral or acidic solution. It has long been realized that the chemical potential of the reactants themselves can be used in a controlled manner in an electrolytic cell. This is the basis of fuel cells (to generate electrical power) and has been extended to the synthesis of useful chemical species, either using solid polymer electrolytes or active oxygen transporting membranes. Use has also been made of the inherent chemical potential in H{sub 2}/O{sub 2} reactions to produce hydrogen peroxide. This reactor utilized a liquid phase cathode with dissolved air or oxygen to produce small concentrations of peroxide in a fixed volume. In fact, most schemes for the direct, electrochemical production of peroxide from hydrogen and oxygen yield low, millimolar peroxide concentrations. This paper describes the development of a scalable, segmented-flow, shorted fuel cell for the generation of greater than 1 w/o hydrogen peroxide. Three areas are of major importance in the development of a continuous, peroxide-forming reactor: the reactor design, catalyst choice and application, and the operating parameters for the reactor. The cathode catalyst is probably the single most important part. Operating parameters include such basics as temperature, pressure, gas flow rate, and liquid flow rate. Each of these topics will be discussed.

  11. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide.

    PubMed

    Yang, Shiying; Wang, Ping; Yang, Xin; Shan, Liang; Zhang, Wenyi; Shao, Xueting; Niu, Rui

    2010-07-15

    In this paper, the degradation of azo dye Acid Orange 7 (AO7) by three common peroxides (persulfate (PS), peroxymonosulfate (PMS) or hydrogen peroxide (H(2)O(2))) under various activation conditions, i.e., heat (25-80 degrees C), UV light (254 nm), or anions (SO(4)(2-), NO(3)(-), CO(3)(2-), HCO(3)(-), HPO(4)(2-), and Cl(-)), was investigated. The order of AO7 degradation efficiencies by heat activation is PS>PMS>H(2)O(2). PS oxidation activated by heat (>50 degrees C) is an effective degradation technology, while PMS and H(2)O(2) are hardly activated. When assisted by UV, peroxides could all be activated and degrade AO7 quickly. The order is PS>H(2)O(2)>PMS. We activated peroxides, for the first time, by using some anions and compared the subsequently degradation efficiencies of AO7. It was found that PMS could be activated by some anions, but PS and H(2)O(2) cannot. The activation efficiencies of PMS by SO(4)(2-) and NO(3)(-) are negligible, whereas remarkable by HCO(3)(-), HPO(4)(2-), Cl(-) and CO(3)(2-). For HCO(3)(-), HPO(4)(2-) and Cl(-), the activation efficiencies become higher with the increase of anion concentration. For CO(3)(2-), however, the activation efficiency is higher at lower concentration.

  12. Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse

    SciTech Connect

    Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

    1997-08-01

    Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

  13. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites.

    PubMed

    Razak, Nur Inani Abdul; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Rayung, Marwah; Saad, Wan Zuhainis

    2014-01-01

    Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid) (PLA) via a melt blending method. The mechanical (tensile, flexural and impact) performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM) morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix. PMID:24609017

  14. Effect of benzoic acid on the removal of 1,2-dichloroethane by a siderite-catalyzed hydrogen peroxide and persulfate system.

    PubMed

    Li, Shengpin; Li, Mengjiao; Luo, Ximing; Huang, Guoxin; Liu, Fei; Chen, Honghan

    2016-01-01

    Benzoic acid can affect the iron-oxide mineral dissolution and react with hydroxyl radical. This study investigated its effect on 1,2-dichloroethane removal process by siderite-catalyzed hydrogen peroxide and persulfate. The variation of benzoic acid concentrations can affect pH value and soluble iron concentrations; when benzoic acid varied from 0 to 0.5 mmol/L, pH increased while Fe(2+) and Fe(3+) concentrations decreased, resulting in 1,2-dichloroethane removal efficiency which decreased from 91.2 to 5.0%. However, when benzoic acid varied from 0.5 to 10 mmol/L, pH decreased while Fe(2+) and Fe(3+) concentrations increased, resulting in 1,2-dichloroethane removal efficiency which increased from 5.0 to 83.4%.

  15. Process for the production of hydrogen peroxide

    DOEpatents

    Datta, R.; Randhava, S.S.; Tsai, S.P.

    1997-09-02

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

  16. Process for the production of hydrogen peroxide

    DOEpatents

    Datta, Rathin; Randhava, Sarabjit S.; Tsai, Shih-Perng

    1997-01-01

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H.sub.2 O.sub.2 laden permeate.

  17. Different Modes of Hydrogen Peroxide Action During Seed Germination.

    PubMed

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging.

  18. Different Modes of Hydrogen Peroxide Action During Seed Germination.

    PubMed

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  19. Different Modes of Hydrogen Peroxide Action During Seed Germination

    PubMed Central

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  20. Comparison of the toxicity of the peracetic acid formulations Wofasteril(c) E400, E250 and Lspez to Daphnia magna with emphasis on the effect of hydrogen peroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial peracetic acid (PAA) formulations are acidic mixtures of PAA, hydrogen peroxide (H2O2), acetic acid (AA), H2O and stabilizers to maintain equilibrium of the concentrations. Different PAA formulations show diverse PAA/H2O2 ratios, leading to potentially different toxicities at the same con...

  1. Improvement of adventitious root formation in flax using hydrogen peroxide.

    PubMed

    Takáč, Tomáš; Obert, Bohuš; Rolčík, Jakub; Šamaj, Jozef

    2016-09-25

    Flax (Linum usitatissimum L.) is an important crop for the production of oil and fiber. In vitro manipulations of flax are used for genetic improvement and breeding while improvements in adventitious root formation are important for biotechnological programs focused on regeneration and vegetative propagation of genetically valuable plant material. Additionally, flax hypocotyl segments possess outstanding morphogenetic capacity, thus providing a useful model for the investigation of flax developmental processes. Here, we investigated the crosstalk between hydrogen peroxide and auxin with respect to reprogramming flax hypocotyl cells for root morphogenetic development. Exogenous auxin induced the robust formation of adventitious roots from flax hypocotyl segments while the addition of hydrogen peroxide further enhanced this process. The levels of endogenous auxin (indole-3-acetic acid; IAA) were positively correlated with increased root formation in response to exogenous auxin (1-Naphthaleneacetic acid; NAA). Histochemical staining of the hypocotyl segments revealed that hydrogen peroxide and peroxidase, but not superoxide, were positively correlated with root formation. Measurements of antioxidant enzyme activities showed that endogenous levels of hydrogen peroxide were controlled by peroxidases during root formation from hypocotyl segments. In conclusion, hydrogen peroxide positively affected flax adventitious root formation by regulating the endogenous auxin levels. Consequently, this agent can be applied to increase flax regeneration capacity for biotechnological purposes such as improved plant rooting. PMID:26921706

  2. Improvement of adventitious root formation in flax using hydrogen peroxide.

    PubMed

    Takáč, Tomáš; Obert, Bohuš; Rolčík, Jakub; Šamaj, Jozef

    2016-09-25

    Flax (Linum usitatissimum L.) is an important crop for the production of oil and fiber. In vitro manipulations of flax are used for genetic improvement and breeding while improvements in adventitious root formation are important for biotechnological programs focused on regeneration and vegetative propagation of genetically valuable plant material. Additionally, flax hypocotyl segments possess outstanding morphogenetic capacity, thus providing a useful model for the investigation of flax developmental processes. Here, we investigated the crosstalk between hydrogen peroxide and auxin with respect to reprogramming flax hypocotyl cells for root morphogenetic development. Exogenous auxin induced the robust formation of adventitious roots from flax hypocotyl segments while the addition of hydrogen peroxide further enhanced this process. The levels of endogenous auxin (indole-3-acetic acid; IAA) were positively correlated with increased root formation in response to exogenous auxin (1-Naphthaleneacetic acid; NAA). Histochemical staining of the hypocotyl segments revealed that hydrogen peroxide and peroxidase, but not superoxide, were positively correlated with root formation. Measurements of antioxidant enzyme activities showed that endogenous levels of hydrogen peroxide were controlled by peroxidases during root formation from hypocotyl segments. In conclusion, hydrogen peroxide positively affected flax adventitious root formation by regulating the endogenous auxin levels. Consequently, this agent can be applied to increase flax regeneration capacity for biotechnological purposes such as improved plant rooting.

  3. Oxidation of vanadium(III) by hydrogen peroxide and the oxomonoperoxo vanadium(V) ion in acidic aqueous solutions: a kinetics and simulation study.

    PubMed

    Du, Guodong; Espenson, James H

    2005-07-25

    The reaction between vanadium(III) and hydrogen peroxide in aqueous acidic solutions was investigated. The rate law shows first-order dependences on both vanadium(III) and hydrogen peroxide concentrations, with a rate constant, defined in terms of -d[H(2)O(2)]/dt, of 2.06 +/- 0.03 L mol(-)(1) s(-)(1) at 25 degrees C; the rate is independent of hydrogen ion concentration. The varying reaction stoichiometry, the appreciable evolution of dioxygen, the oxidation of 2-PrOH to acetone, and the inhibition of acetone formation by the hydroxyl radical scavengers, dimethyl sulfoxide and sodium benzoate, point to a Fenton mechanism as the predominant pathway in the reaction. Methyltrioxorhenium(VII) does not appear to catalyze this reaction. A second-order rate constant for the oxidation of V(3+) by OV(O(2))(+) was determined to be 11.3 +/- 0.3 L mol(-)(1) s(-)(1) at 25 degrees C. An overall reaction scheme consisting of over 20 reactions, in agreement with the experimental results and literature reports, was established by kinetic simulation studies.

  4. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide.

    PubMed

    Megarajan, Sengan; Ayaz Ahmed, Khan Behlol; Rajendra Kumar Reddy, G; Suresh Kumar, P; Anbazhagan, Veerappan

    2016-02-01

    Herein, we present a simple and green method for the synthesis of gold nanoparticles (AuNPs) using the phytoproteins of spinach leaves. Under ambient sunlight irradiation, the isolated phytoprotein complex from spinach leaves reduces the gold chloride aqueous solution and stabilizes the formed AuNPs. As prepared nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, zeta potential, transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The surface plasmon resonance (SPR) maximum for AuNPs was observed at 520 nm. The zeta potential value estimated for the AuNPs is -27.0 mV, indicating that the NPs are well separated. Transmission electron micrographs revealed that the particles are spherical in nature with the size range from 10 to 15 nm. AuNPs act as a catalyst in the degradation of an azo dye, methyl orange in an aqueous environment. The reduction rate was determined to be pseudo-first order. Electrocatalytic efficiency of the synthesized AuNPs via this green approach was studied by chronoamperometry using ascorbic acid and hydrogen peroxide as a model compound for oxidation and reduction, respectively. Electrocatalytic studies indicate that the gold nanoparticles can be used to detect ascorbic acid and hydrogen peroxide in micromolar concentrations with response time less than 3s.

  5. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide.

    PubMed

    Megarajan, Sengan; Ayaz Ahmed, Khan Behlol; Rajendra Kumar Reddy, G; Suresh Kumar, P; Anbazhagan, Veerappan

    2016-02-01

    Herein, we present a simple and green method for the synthesis of gold nanoparticles (AuNPs) using the phytoproteins of spinach leaves. Under ambient sunlight irradiation, the isolated phytoprotein complex from spinach leaves reduces the gold chloride aqueous solution and stabilizes the formed AuNPs. As prepared nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, zeta potential, transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The surface plasmon resonance (SPR) maximum for AuNPs was observed at 520 nm. The zeta potential value estimated for the AuNPs is -27.0 mV, indicating that the NPs are well separated. Transmission electron micrographs revealed that the particles are spherical in nature with the size range from 10 to 15 nm. AuNPs act as a catalyst in the degradation of an azo dye, methyl orange in an aqueous environment. The reduction rate was determined to be pseudo-first order. Electrocatalytic efficiency of the synthesized AuNPs via this green approach was studied by chronoamperometry using ascorbic acid and hydrogen peroxide as a model compound for oxidation and reduction, respectively. Electrocatalytic studies indicate that the gold nanoparticles can be used to detect ascorbic acid and hydrogen peroxide in micromolar concentrations with response time less than 3s. PMID:26722997

  6. Catalyst Development for Hydrogen Peroxide Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.

    1999-01-01

    The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.

  7. Mechanism of toxicity of hydrogen peroxide

    SciTech Connect

    Imlay, J.A.

    1987-01-01

    We examined the capacity of hydrogen peroxide to injure E. coli. Externally applied hydrogen peroxide rapidly permeates the bacterial cell and causes at least two classes of potentially lethal damage. These classes were initially distinguished by the kinetics of their production. Additional distinctions have been made regarding the chemistry of cell injury and the details of the cell response. One class of cell damage consists of DNA lesions; if unrepaired, mode one killing results. Hydrogen peroxide does not directly attack the DNA. Instead, ferrous iron reduces the peroxide to generate a hydroxyl-radical-like species, which acts as a DNA oxidant. The peculiar kinetics of mode-one killing may reflect an high reaction rate between this radical and peroxide itself. Interestingly, NADH may chemically reduce ferric iron in order to start and maintain the sequence of redox reactions. The target of the other class of cell damage is unknown. This damage, unlike that associated with mode-one killing, does not rely upon Fenton chemistry. Scavenging enzymes, such as catalase and superoxide dismutase, contribute to resisting oxidative stress. Increases in catalase titer accelerate detoxification of peroxide and are responsible for the protective effects of oxyR induction. When oxidants elude this defense and nick DNA, a variety of enzymes-exonuclease III, endonuclease IV, and DNA polymerase I-repair the damage.

  8. Hydrogen Peroxide - Material Compatibility Studied by Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Homung, Steven D.; Davis, Dennis D.; Baker, David; Popp, Christopher G.

    2003-01-01

    Environmental and toxicity concerns with current hypergolic propellants have led to a renewed interest in propellant grade hydrogen peroxide (HP) for propellant applications. Storability and stability has always been an issue with HP. Contamination or contact of HP with metallic surfaces may cause decomposition, which can result in the evolution of heat and gas leading to increased pressure or thermal hazards. The NASA Johnson Space Center White Sands Test Facility has developed a technique to monitor the decompositions of hydrogen peroxide at temperatures ranging from 25 to 60 C. Using isothermal microcalorimetry we have measured decomposition rates at the picomole/s/g level showing the catalytic effects of materials of construction. In this paper we will present the results of testing with Class 1 and 2 materials in 90 percent hydrogen peroxide.

  9. [Hydrogen peroxide inhibits acetylcholinesterase of myometrium sarcolemma].

    PubMed

    Danylovych, Iu V

    2009-01-01

    The action of hydrogen peroxide on acetylcholinesterase enzymatic activity in myometrium sarcolemma fraction is investigated. Hydrogen peroxide (0.1-26 microM), depending on the concentration, suppressed the activity. Acetylcholinesterase proved to be highly sensitive to the action of H2O2, making Ki = 2.4 +/- 0.4 microM, nH = 0.65 +/- 0.08 (n = 4-5). It is established, that hydrogen peroxide in the range of 1.6 - 6.4 microM essentially reduce V(0,max) and K(M). In the presence of dithiothreitole (a reducer of SH-groups of the membrane surface) the investigated substance effect considerably decreased.

  10. Hydrogen peroxide evolution during V-UV photolysis of water.

    PubMed

    Azrague, Kamal; Bonnefille, Eric; Pradines, Vincent; Pimienta, Véronique; Oliveros, Esther; Maurette, Marie-Thérèse; Benoit-Marquié, Florence

    2005-05-01

    Hydrogen peroxide evolution during the vacuum-ultraviolet (V-UV, 172 nm) photolysis of water is considerably affected by the presence of oxalic acid (employed as a model water pollutant) and striking differences are observed in the absence and in the presence of dioxygen.

  11. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rhodes, Christopher P. (Inventor); Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  12. Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide.

    PubMed

    Wu, Linglin; Dutta, Saikat; Mascal, Mark

    2015-04-13

    3-Hydroxypropanoic acid (HPA), a precursor to acrylic acid, can be produced in high yield by oxidation of the biomass-derived platform chemical levulinic acid. While treatment of levulinic acid with H2 O2 under acidic conditions gives predominantly succinic acid, a remarkable reversal of selectivity is observed under basic conditions, leading either directly to HPA or, under modified conditions, initially to 3-(hydroperoxy)propanoic acid, which can be quantitatively hydrogenated to HPA. PMID:25736835

  13. Protective effects of hydroxybenzoic acids and their esters on cell damage induced by hydroxyl radicals and hydrogen peroxides.

    PubMed

    Masaki, H; Okamoto, N; Sakaki, S; Sakurai, H

    1997-04-01

    The purpose of this study was to evaluate the hydroxyl radical scavenging activities of hydroxybenzoic acids and their esters from both chemical and biological aspects. These activities of hydroxybenzoic acids and their related compounds were estimated by ESR-spin trapping method, in which 3,4,5-trihydroxybenzoic acid and its ethyl and propyl esters showed the highest activities as estimated by IC50 value (50% inhibition concentration of hydroxyl radicals generated in the system): 78.04 +/- 11.23, 95.95 +/- 2.64, and 86.46 +/- 2.31 microM, respectively. In addition, 3,4,5-trihydroxybenzoic acid (gallic acid) at a concentration of 25 microM, protected against dermal fibroblast cell damage induced by H2O2, and enhanced the survival to 83.8 +/- 3.1%, in which the survival of control was 44.2 +/- 1.0%. Based on these results, the pretreatment effects of 3,4,5-trihydroxybenzoic acid n-alkyl esters on cell damage induced by H2O2 were examined. The survival of fibroblasts pretreated with the esters increased depending on the alkyl chain-length. Both C12 and C16 alkyl esters gave almost complete cell survival of 89.5 +/- 2.0% and 91.3 +/- 1.0%, respectively. The order of the protective effects of the compounds was in good agreement with that of their partition coefficients, suggesting that 3,4,5-trihydroxybenzoic acid alkyl esters are incorporated into fibroblasts, and thus prevent the cells from the toxicity caused by H2O2. In addition, an increase of intracellular peroxide formation in fibroblasts induced by UVA-irradiation, was suppressed to 2.27 +/- 0.41 nmol/10(4) cells by pretreatment with C16 alkyl ester at a concentration of 25 microM. Since 3,4,5-trihydroxybenzoic group has been demonstrated to possess a potent scavenging activity of hydroxyl radicals, this moiety was indicated to be important in preventing cell damage induced by UVA or H2O2: in turn, these produce hydroxyl radicals in the presence of trace metal ions such as iron and copper in cells.

  14. Systems and methods for generation of hydrogen peroxide vapor

    SciTech Connect

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  15. Aqueous-phase photolysis of biacetyl (An α-dicarbonyl compound): A sink for biacetyl, and a source of acetic acid, peroxyacetic acid, hydrogen peroxide, and the highly oxidizing acetylperoxyl radical in aqueous aerosols, fogs, and clouds

    NASA Astrophysics Data System (ADS)

    Faust, Bruce C.; Powell, Kendall; Rao, C. Janakiram; Anastasio, Cort

    Aqueous-phase photolysis of biacetyl represents a heretofore uncharacterized sink for biacetyl and source of organic acids and peroxides to aqueous aerosols, and fog and cloud drops. The photolysis half-life of aqueous-phase biacetyl is approximately 1.0-1.6 h for a solar zenith angle of 36° (midday equinox sunlight in Durham, NC). Major products of aqueous biacetyl photolysis are acetic acid, peroxyacetic acid, and hydrogen peroxide. Pyruvic acid and methylhydroperoxide are minor photoproducts. Common atmospheric reductants (H-atom donors), such as formate, formaldehyde, glyoxal, phenol (as a model for phenolic compounds) and α- D-glucose (as a model for carbohydrates), substantially increase the quantum yields of peroxyacetic acid Formate also significantly increases the quantum yields of hydrogen peroxide. The highly oxidizing acetylperoxyl radical is proposed as a key intermediate in the photolysis of aqueous biacetyl. The sources and reactions of acetylperoxyl radicals in aqueous aerosols, fogs, and clouds should be investigated in future studies of atmospheric water-drop chemistry.

  16. An upper limit for stratospheric hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1984-01-01

    It has been postulated that hydrogen peroxide is important in stratospheric chemistry as a reservoir and sink for odd hydrogen species, and for its ability to interconvert them. The present investigation is concerned with an altitude dependent upper limit curve for stratospheric hydrogen peroxide, taking into account an altitude range from 21.5 to 38.0 km for January 23, 1983. The data employed are from balloon flight No. 1316-P, launched from the National Scientific Balloon Facility (NSBF) in Palestine, Texas. The obtained upper limit curve lies substantially below the data reported by Waters et al. (1981), even though the results are from the same latitude and are both wintertime measurements.

  17. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric...

  18. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric...

  19. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric...

  20. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric...

  1. Novel mechanistic aspects on the reaction between low spin Fe(II) Schiff base amino acid complexes and hydrogen peroxide-spectrophotometric tracer of intraperoxo intermediate catalyzed reaction.

    PubMed

    Awad, Aida M; Shaker, Ali Mohamad; Zaki, Ahmad Borhan El-Din; Nassr, Lobna Abdel-Mohsen Ebaid

    2008-12-01

    The kinetics and mechanism of the reaction of hydrogen peroxide with some Fe(II) Schiff base complexes were investigated spectrophotometrically in aqueous solution at pH 8 and 35 degrees C under pseudo-first-order conditions. The used ligands were derived from salicylaldehyde or o-hydroxynaphthaldehyde and some amino acids (l-leucine, l-iso-leucine, l-serine, l-methionine and dl-tryptophan). It was found that the formation of the purple interaperoxo complex appears only above pH 7.5. The reaction consists of two steps. The first step involves reversible formation of the intraperoxo intermediate which renders irreversible at pH 8. The second step consists of inner-sphere electron transfer. The suggested scheme illustrated first-order kinetics at low [H(2)O(2)] and zero-order at high [H(2)O(2)]. Moreover, the activation parameters of the reaction were evaluated. PMID:18394952

  2. Kinetics of Mo, Ni, V and Al leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide.

    PubMed

    Szymczycha-Madeja, Anna

    2011-02-28

    The kinetics of molybdenum, nickel, vanadium and aluminium leaching from a spent hydrodesulphurization catalyst in a solution containing oxalic acid and hydrogen peroxide was investigated. The effects of temperature and particle size were examined. In addition, the reaction mechanism for the dissolution of the spent catalyst was discussed. The results of the kinetic analysis for various experimental conditions indicated that the reaction rate of leaching process is controlled by chemical reaction at the particle surface. The values of the activation energies of 31±2, 36±4, 30±4 and 57±3 kJ mol(-1) for Mo, Ni, V and Al, respectively, are characteristic for mechanism controlled by chemical reaction. PMID:21167639

  3. Experimental investigation of hydrogen peroxide RF plasmas

    NASA Astrophysics Data System (ADS)

    Barni, R.; Decina, A.; Zanini, S.; D'Orazio, A.; Riccardi, C.

    2016-04-01

    This work reports a detailed experimental study of the plasma properties in low pressure RF discharges in hydrogen peroxide and a comparison with argon under the same operating conditions. H2O2 plasmas have been proposed for sterilization purposes. Electrical properties of the discharge were shown to be similar, as for the RF and DC voltages of the driving electrode. Bulk plasma volume remains stable, concentrated in an almost cylindrical region between the two facing electrodes. It was found that the electron temperature is almost uniform across the plasma and independent of the power level. This is higher than in argon discharges: T e  =  4.6  ±  0.9 eV versus T e  =  3.3  ±  1.1 eV. The plasma density increases almost linearly with the power level and a substantial negative ion component has been ruled out in hydrogen peroxide. Dissociation in the plasma gas phase was revealed by atomic hydrogen and hydroxyl radical emission in the discharge spectra. Emission from hydroxyl and atomic oxygen demonstrates that oxidizing radicals are produced by hydrogen peroxide discharges, revealing its usefulness for plasma processing other than sterilization, for instance to increase polymer film surface energy. On the other hand, argon could be considered as a candidate for the sterilization purposes due to the intense production of UV radiation.

  4. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-02-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(O)OOH) is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  5. An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Gostowski, Rudy; Chianese, Silvio

    2003-01-01

    An experimental evaluation of decomposition and ignition delay of hydrogen peroxide at concentrations of 80% to 98% with combinations of hydrocarbon fuels, tertiary amines and transition metal chelates will be presented in the proposed paper. The results will be compared to hydrazine ignition delays with hydrogen peroxide and nitric acid mixtures using the same test apparatus.

  6. Materials Compatibility in High Test Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy

    1999-01-01

    Previous ratings of the compatibility of high test hydrogen peroxide (HTP) with materials are not adequate for current needs. The goal of this work was to develop a new scheme of evaluation of compatibility of HTP with various materials. Procedures were developed to enrich commercially available hydrogen peroxide to 90% concentration and to assay the product. Reactivity testing, accelerated aging of materials and calorimetry studies were done on HTP with representative metallic and non-metallic materials. It was found that accelerated aging followed by concentration determination using refractive index effectively discriminated between different Class 2 metallic materials. Preliminary experiments using Differential Scanning Calorimetry (DSC) suggest that a calorimetry experiment is the most sensitive means to assay the compatibility of HTP with materials.

  7. Asymmetric Epoxidation Using Hydrogen Peroxide as Oxidant.

    PubMed

    Wang, Chuan; Yamamoto, Hisashi

    2015-10-01

    Asymmetric epoxidation is one of the most important transformations in organic synthesis. Although tremendous progress was achieved in this field in the 1980s and 1990s, it is still desirable from both economical and ecological views to develop environmentally friendly catalytic epoxidation with a broad substrate scope. Hydrogen peroxide is a safe and cheap oxidant, which is easy to handle and generates water as the sole byproduct. Therefore, asymmetric epoxidation of olefins using hydrogen peroxide as oxidant has been a very active research field and has been investigated by many research groups in recent years. In this review, the exciting very recent developments of this rapidly growing area are surveyed and organized according to the catalyst systems.

  8. Vaporized hydrogen peroxide sterilization of freeze dryers.

    PubMed

    Johnson, J W; Arnold, J F; Nail, S L; Renzi, E

    1992-01-01

    The feasibility of using vapor hydrogen peroxide (VHP) as an alternative to steam sterilization has been examined using a pilot plant freeze dryer equipped with a prototype vapor generator. Specific objectives of the study discussed in this presentation were to: 1. Identify critical process variables affecting the lethality of VHP to Bacillus stearothermophilus spores, particularly within dead legs in the system. 2. Measure the efficacy of system degassing after sterilization. 3. Determine the effect of repeated sterilization cycles on the integrity of elastomeric components of the freeze dryer. Penetration of adequate concentrations of hydrogen peroxide vapor into small diameter piping, such as tubing connected to pressure gauges, is the most challenging aspect of VHP sterilization of freeze dryers. Prior to equipment modifications, spore strips placed within such dead legs remained positive irrespective of the number of gas/degas pulses and system pressure. Equipment modifications necessary to effect complete kill of biological indicators placed in system dead legs is discussed. Results of this study support the conclusion that vaporized hydrogen peroxide shows promise as an alternative sterilization method for freeze dryers. PMID:1474433

  9. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  10. Cr(VI) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: Cooperative interaction with organic acids in the biotransformation of Cr(VI).

    PubMed

    Romo-Rodríguez, Pamela; Acevedo-Aguilar, Francisco Javier; Lopez-Torres, Adolfo; Wrobel, Kazimierz; Wrobel, Katarzyna; Gutiérrez-Corona, J Félix

    2015-09-01

    The Cr(VI) reducing capability of growing cells of the environmental A. tubingensis Ed8 strain is remarkably efficient compared to reference strains A. niger FGSC322 and A. tubingensis NRRL593. Extracellular glucose oxidase (GOX) activity levels were clearly higher in colonies developed in solid medium and in concentrated extracts of the spent medium of liquid cultures of the Ed8 strain in comparison with the reference strains. In addition, concentrated extracts of the spent medium of A. tubingensis Ed8, but not those of the reference strains, exhibited the ability to reduce Cr(VI). In line with this observation, it was found that A. niger purified GOX is capable of mediating the conversion of Cr(VI) to Cr(III) in a reaction dependent on the presence of glucose that is stimulated by organic acids. Furthermore, it was found that a decrease in Cr(VI) may occur in the absence of the GOX enzyme, as long as the reaction products gluconolactone and hydrogen peroxide are present; this conversion of Cr(VI) is stimulated by organic acids in a reaction that generates hydroxyl radicals, which may involve the formation of an intermediate peroxichromate(V) complex. These findings indicated that fungal glucose oxidase acts an indirect chromate reductase through the formation of Cr(VI) reducing molecules, which interact cooperatively with other fungal metabolites in the biotransformation of Cr(VI).

  11. Comparison of UV/hydrogen peroxide and UV/peroxydisulfate processes for the degradation of humic acid in the presence of halide ions.

    PubMed

    Lou, Xiaoyi; Xiao, Dongxue; Fang, Changling; Wang, Zhaohui; Liu, Jianshe; Guo, Yaoguang; Lu, Shuyu

    2016-03-01

    This study compared the behaviors of two classic advanced oxidation processes (AOPs), hydroxyl radical-based AOPs ((•)OH-based AOPs) and sulfate radical-based AOPs (SO4 (•-)-based AOPs), represented by UV/ hydrogen peroxide (H2O2) and UV/peroxydisulfate (PDS) systems, respectively, to degrade humic acid (HA) in the presence of halide ions (Cl(-) and Br(-)). The effects of different operational parameters, such as oxidant dosages, halide ions concentration, and pH on HA degradation were investigated in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes. It was found that the oxidation capacity of H2O2 and PDS to HA degradation in the presence of halides was nearly in the same order. High dosage of peroxides would lead to an increase in HA removal while excess dosage would slightly inhibit the efficiency. Both Cl(-) and Br(-) would have depressing impact on the two AOPs, but the inhibiting effect of Br(-) was more obvious than that of Cl(-), even the concentration of Cl(-) was far above that of Br(-). The increasing pH would have an adverse effect on HA decomposition in UV/H2O2 system, whereas there was no significant impact of pH in UV/PDS process. Furthermore, infrared spectrometer was used to provide the information of degraded HA in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes, and halogenated byproducts were identified in using GC-MS analysis in the four processes. The present research might have significant technical implications on water treatment using advanced oxidation technologies.

  12. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  13. Spectrofluorometric determination of vanadium based on the formation of a ternary complex between vanadium, peroxides, and 2-alpha-pyridylthioquinaldinamide. Application to the determination of hydrogen peroxide and peroxy acids.

    PubMed

    Paleologos, E K; Giokas, D L; Tzouwara-Karayanni, S M; Karayannis, M I

    2002-01-01

    A selective and sensitive method for the determination of the total amount of vanadium in nutritional and biological substrates is proposed. The method is based on the reaction of vanadium with 2-alpha-pyridylthioquinaldinamide (PTQA) in the presence of H2O2. The product of this reaction emits constant fluorescence, in a sulfuric acid environment, at 490 nm, with the exciting radiation set at 340 nm. Various parameters such as acidity, flow rate, solvents, and temperature were studied. The presence of a surface-active agent was also considered in order to increase sensitivity. At the optimal conditions, a calibration curve was constructed, revealing a linear range of 2-100 microg L(-1) and a detection limit as low as 0.5 microg L(-1) while the RSD ranged in the area of 0.1-1.8%, depending on vanadium concentration. The method was successfully applied to the analysis of a wide variety of food samples, which are known to contribute to the dietary required amount of vanadium and to relevant biological matrixes. Reversing the conditions of the above reaction, the effect of the peroxy group on the vanadium-PTQA system was examined. The formation of a vanadyl complex was revealed which was suitable for the determination of hydrogen peroxide and peroxy acids. Linear calibration curves in the range of 0.2-50 microM for H2O2 and 0.1-2 microM for a respective peroxy acid were obtained, yielding detection limits of 0.05 and 0.03 microM, respectively.

  14. Hazard Assessment of Personal Protective Clothing for Hydrogen Peroxide Service

    NASA Technical Reports Server (NTRS)

    Greene, Ben; McClure, Mark B.; Johnson, Harry T.

    2004-01-01

    Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.

  15. [Carbamide peroxide as source of hydrogen peroxide for the luminol application at crime scenes].

    PubMed

    Schwarz, Lothar; Hermanowski, Mona-Lena

    2009-01-01

    The solution of hydrogen peroxide is a critical ingredient of the Weber luminol application for blood detection at the crime scene. An ideal alternative to the unstable hydrogen peroxide is a solid compound which is easy to transport, stable and quick to solve in water at the crime scene. Carbamide peroxide (urea peroxide) is one of these solid hydrogen peroxide carriers which is easy to obtain as one gram tablets. At dry conditions it is stable over a long period at room temperature and even for a short time at higher temperatures. But at 70 degrees C (180 degrees F) the tablets go out of shape and cake after one hour. In the application of luminol there are no differences between the use of hydrogen peroxide and carbamide peroxide.

  16. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Schoonen, Martin A. A.; Harrington, Andrea D.; Laffers, Richard; Strongin, Daniel R.

    2010-09-01

    Hydrogen peroxide and hydroxyl radical are readily formed during the oxidation of pyrite with molecular oxygen over a wide range of pH conditions. However, pretreatment of the pyrite surface influences how much of the intermediates are formed and their fate. Acid-washed pyrite produces significant amounts of hydrogen peroxide and hydroxyl radical when suspended in air-saturated water. However, the hydrogen peroxide concentration shows an exponential decrease with time. Suspensions made with partially oxidized pyrite yield significantly lower amounts of hydrogen peroxide product. The presence of Fe(III)-oxide or Fe(III)-hydroxide patches facilitates the conversion of hydrogen peroxide to oxygen and water. Hence, the degree to which a pyrite surface is covered with patches of Fe(III)-oxide or Fe(III)-hydroxide patches is an important control on the concentration of hydrogen peroxide in solution. Hydrogen peroxide appears to be an important intermediate in the four-electron transfer from pyrite to molecular oxygen. Addition of catalase, an enzyme that decomposes hydrogen peroxide to water and molecular oxygen, to a pyrite suspension reduces the oxidation rate by 40%. By contrast, hydroxyl radical does not appear to play a significant role in the oxidation mechanism. It is estimated on the basis of a molecular oxygen and sulfate mass balance that 5-6% of the molecular oxygen is consumed without forming sulfate.

  17. A Modified Demonstration of the Catalytic Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Trujillo, Carlos Alexander

    2005-06-01

    A safer and cheaper version of the popular catalyzed decomposition of hydrogen peroxide demonstration commonly called the “Elephants’ Toothpaste” is presented. Hydrogen peroxide is decomposed in the presence of a surfactant by the enzyme catalase producing foam. Catalase has a higher activity compared with the traditional iodide and permits the use of diluted hydrogen peroxide solutions. The demonstration can be made with household products with similar amazing effects.

  18. Salvianolic acid Y: a new protector of PC12 cells against hydrogen peroxide-induced injury from Salvia officinalis.

    PubMed

    Gong, Jun; Ju, Aichun; Zhou, Dazheng; Li, Dekun; Zhou, Wei; Geng, Wanli; Li, Bing; Li, Li; Liu, Yanjie; He, Ying; Song, Meizhen; Wang, Yunhua; Ye, Zhengliang; Lin, Ruichao

    2015-01-06

    Salvianolic acid Y (TSL 1), a new phenolic acid with the same planar structure as salvianolic acid B, was isolated from Salvia officinalis. The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods, including 1D, 2D-NMR (1H-1H COSY, HMQC and HMBC) and circular dichroism (CD) experiments. The biosynthesis pathway of salvianolic acid B and salvianolic acid Y (TSL 1) was proposed based on structural analysis. The protection of PC12 cells from injury induced by H2O2 was assessed in vitro using a cell viability assay. Salvianolic acid Y (TSL 1) protected cells from injury by 54.2%, which was significantly higher than salvianolic acid B (35.2%).

  19. Amperometric sensing of hydrogen peroxide vapor for security screening.

    PubMed

    Benedet, John; Lu, Donglai; Cizek, Karel; La Belle, Jeff; Wang, Joseph

    2009-09-01

    Rapid detection of the hydrogen peroxide precursor of peroxide explosives is required in numerous security screening applications. We describe a highly sensitive and selective amperometric detection of hydrogen peroxide vapor at an agarose-coated Prussian-blue (PB) modified thick-film carbon transducer. The sensor responds rapidly and reversibly to dynamic changes in the level of the peroxide vapor, with no apparent carry over and with a detection limit of 6 ppbv. The remarkable selectivity of the PB-based screen-printed electrode towards hydrogen peroxide leads to effective discrimination against common beverage samples. For example, blind tests have demonstrated the ability to selectively and non-invasively identify concealed hydrogen peroxide in drinking cups and bottles. The attractive performance of the new microfabricated PB-based amperometric peroxide vapor sensor indicates great potential for addressing a wide range of security screening and surveillance applications.

  20. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  1. Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2014-05-01

    Free radical reactions are an important degradation process for organic compounds within the aqueous atmospheric environment. Nevertheless, non-radical oxidants such as hydrogen peroxide and ozone also contribute to the degradation and conversion of these substances (Tilgner and Herrmann, 2010). In this work, kinetic investigations of non-radical reactions were conducted using UV / Vis spectroscopy (dual-beam spectrophotometer and stopped flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics to reactions of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acid as well as methacrolein (MACR) and methyl vinyl ketone (MVK) with H2O2 and ozone at 298 K. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH • ~109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated first-order conversion rate constants change the picture towards H2O2 reactions becoming more important, especially when compared to the nitrate radical. For some reactions mechanistic suggestions are also given.

  2. Kinetic measurements on the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Schöne, L.; Herrmann, H.

    2013-10-01

    Within the aqueous atmospheric environment free radical reactions are an important degradation process for organic compounds. Nevertheless, non-radical oxidants like hydrogen peroxide and ozone also contribute to the degradation and conversion of this substance group (Tilgner und Herrmann, 2010). In this work kinetic investigations of non-radical reactions were conducted using UV/Vis spectroscopy (dual-beam spectrophotometer and Stopped Flow technique) and a capillary electrophoresis system applying pseudo-first order kinetics of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acids as well as methacrolein (MACR) and methyl vinyl ketone (MVK) towards H2O2 and ozone. The measurements indicate rather small rate constants at room temperature of k2nd < 3 M-1 s-1 (except for the unsaturated compounds exposed to ozone). Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH· ~ 109 M-1 s-1). However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated turnovers change the picture to more important H2O2 reactions especially when compared to the nitrate radical. For some reactions also mechanistic suggestions are given.

  3. Atrazine photodegradation in aqueous solution induced by interaction of humic acids and iron: photoformation of iron(II) and hydrogen peroxide.

    PubMed

    Ou, Xiaoxia; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhang, Yaobin

    2007-10-17

    The photochemical formation of Fe(II) and hydrogen peroxide (H 2O 2) coupled with humic acids (HA) was studied to understand the significance of iron cycling in the photodegradation of atrazine under simulated sunlight. The presence of HA significantly enhanced the formation of Fe(II) and H 2O 2, and their subsequent product, hydroxyl radical ( (*)OH), was the main oxidant responsible for the atrazine photodegradation. During 60 h of irradiation, the fraction of iron presented as Fe(II) (Fe(II)/Fe(t)) decreased from 20-32% in the presence of the Fe(III)-HA complex to 10-22% after adding atrazine. The rate of atrazine photodegradation in solutions containing Fe(III) increased with increasing HA concentration, suggesting that the complexation of Fe(III) with HA accelerated the Fe(III)/Fe(II) cycling. Using fluorescence spectrometry, the quenching constant and the percentage of fluorophores participating in the complexation of HA with Fe(III) were estimated by the modified Stern-Volmer equation. Fourier transform infrared spectroscopy (FTIR) offered the direct evidence that Fe(III)-carboxylate complex could be formed by ligand exchange of HA with Fe(III). Based on all the information, a possible reaction mechanism was proposed.

  4. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation.

    PubMed

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT). Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs) and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2) accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation. PMID:26539205

  5. Hydrogen peroxide and hypochlorous acid influx through the major S. Typhimurium porin OmpD is affected by substitution of key residues of the channel.

    PubMed

    Aguayo, Daniel; Pacheco, Nicolás; Morales, Eduardo H; Collao, Bernardo; Luraschi, Roberto; Cabezas, Carolina; Calderón, Paulina; González-Nilo, Fernando; Gil, Fernando; Calderón, Iván L; Saavedra, Claudia P

    2015-02-15

    OmpD is the major Salmonella enterica serovar Typhimurium (S. Typhimurium) porin and mediates hydrogen peroxide (H2O2) influx. The results described herein extend this finding to hypochlorous acid (HOCl), another reactive oxygen species that is also part of the oxidative burst generated by the phagosome. S. Typhimurium cells lacking OmpD show decreased HOCl influx, and OmpD-reconstituted proteoliposomes show an increase in the uptake of the toxic compound. To understand this physiologically relevant process, we investigated the role of key OmpD residues in H2O2 and NaOCl transport. Using a theoretical approach, residue K16 was defined as a major contributor to the channel electrostatic properties, and E111 was shown to directly participate in the size-exclusion limit of the channel. Together, we provide theoretical, genetic, and biochemical evidence that OmpD mediates H2O2 and NaOCl uptake, and that key residues of the channel are implicated in this process.

  6. Optimization of strawberry disinfection by fogging of a mixture of peracetic acid and hydrogen peroxide based on microbial reduction, color and phytochemicals retention.

    PubMed

    Van de Velde, Franco; Vaccari, María Celia; Piagentini, Andrea Marcela; Pirovani, María Élida

    2016-09-01

    The fogging of strawberries using a environmentally friendly sanitizer mixture of peracetic acid (5%) and hydrogen peroxide (20%) was performed in a model chamber and modeled as a function of the concentration (3.4, 20.0, 60.0, 100.0 and 116.6 µL sanitizer L(-) (1) air chamber) and the treatment time (5.7, 15.0, 37.5, 60.0 and 69.3 min). The sanitizer fogging was adequate for reducing total mesophilic microbial and yeasts and moulds counts of fruits until seven days of storage at 2℃. However, sanitizer oxidant properties adversely affected the content of total anthocyanins, total phenolics, vitamin C, and antioxidant capacity to various degrees, with some deleterious changes in the fruits color, depending on the fogging conditions. A multiple numeric response optimization was developed based on 2.0 log microbiological reduction, maximum phytochemicals and antioxidant capacity retentions, with no changes in the fruits color, being the optimal fogging conditions achieved: 10.1 µL sanitizer L(-1) air chamber and 29.6 min. The fogging of strawberries at these conditions may represent a promising postharvest treatment option for extending their shelf-life without affecting their sensory quality and bioactive properties.

  7. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation.

    PubMed

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT). Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs) and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2) accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation.

  8. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    PubMed Central

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT). Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs) and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2) accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation. PMID:26539205

  9. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    PubMed Central

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-01-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10–80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59–83%, compared to 13–23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS. PMID:26565653

  10. Hydrogen peroxide and hypochlorous acid influx through the major S. Typhimurium porin OmpD is affected by substitution of key residues of the channel.

    PubMed

    Aguayo, Daniel; Pacheco, Nicolás; Morales, Eduardo H; Collao, Bernardo; Luraschi, Roberto; Cabezas, Carolina; Calderón, Paulina; González-Nilo, Fernando; Gil, Fernando; Calderón, Iván L; Saavedra, Claudia P

    2015-02-15

    OmpD is the major Salmonella enterica serovar Typhimurium (S. Typhimurium) porin and mediates hydrogen peroxide (H2O2) influx. The results described herein extend this finding to hypochlorous acid (HOCl), another reactive oxygen species that is also part of the oxidative burst generated by the phagosome. S. Typhimurium cells lacking OmpD show decreased HOCl influx, and OmpD-reconstituted proteoliposomes show an increase in the uptake of the toxic compound. To understand this physiologically relevant process, we investigated the role of key OmpD residues in H2O2 and NaOCl transport. Using a theoretical approach, residue K16 was defined as a major contributor to the channel electrostatic properties, and E111 was shown to directly participate in the size-exclusion limit of the channel. Together, we provide theoretical, genetic, and biochemical evidence that OmpD mediates H2O2 and NaOCl uptake, and that key residues of the channel are implicated in this process. PMID:25600570

  11. Optimization of strawberry disinfection by fogging of a mixture of peracetic acid and hydrogen peroxide based on microbial reduction, color and phytochemicals retention.

    PubMed

    Van de Velde, Franco; Vaccari, María Celia; Piagentini, Andrea Marcela; Pirovani, María Élida

    2016-09-01

    The fogging of strawberries using a environmentally friendly sanitizer mixture of peracetic acid (5%) and hydrogen peroxide (20%) was performed in a model chamber and modeled as a function of the concentration (3.4, 20.0, 60.0, 100.0 and 116.6 µL sanitizer L(-) (1) air chamber) and the treatment time (5.7, 15.0, 37.5, 60.0 and 69.3 min). The sanitizer fogging was adequate for reducing total mesophilic microbial and yeasts and moulds counts of fruits until seven days of storage at 2℃. However, sanitizer oxidant properties adversely affected the content of total anthocyanins, total phenolics, vitamin C, and antioxidant capacity to various degrees, with some deleterious changes in the fruits color, depending on the fogging conditions. A multiple numeric response optimization was developed based on 2.0 log microbiological reduction, maximum phytochemicals and antioxidant capacity retentions, with no changes in the fruits color, being the optimal fogging conditions achieved: 10.1 µL sanitizer L(-1) air chamber and 29.6 min. The fogging of strawberries at these conditions may represent a promising postharvest treatment option for extending their shelf-life without affecting their sensory quality and bioactive properties. PMID:26769132

  12. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection.

    PubMed

    Yang, Ya-Chun; Tseng, Wei-Lung

    2016-05-17

    Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples.

  13. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection.

    PubMed

    Yang, Ya-Chun; Tseng, Wei-Lung

    2016-05-17

    Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples. PMID:27091002

  14. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  15. PROPULSE 980: A Hydrogen Peroxide Enrichment System

    NASA Technical Reports Server (NTRS)

    Boxwell, Robert; Bromley, G.; Wanger, Robert; Pauls, Dan; Maynard, Bryon; McNeal, Curtis; Dumbacher, D. L. (Technical Monitor)

    2000-01-01

    The PROPULSE 980 unit is a transportable processing plant that enriches aerospace grade hydrogen peroxide from 90% to 98% final concentration. The unit was developed by Degussa-H Is, in cooperation with Orbital, NASA Marshall Space Center, and NASA Stennis Space Center. The system is a self-contained unit that houses all of the process equipment, instrumentation and controls to perform the concentration operation nearly autonomously. It is designed to produce non-bulk quantities of 98% hydrogen peroxide. The enrichment unit design also maintains system, personnel and environmental safety during all aspects of the enrichment process and final product storage. As part of the Propulse 980 checkout and final buyoff, it will be disassembled at the Degussa-H Is Corporation plant in Theodore, AL, transported to the Stennis Space Center, reassembled and subjected to a series of checkout tests to verify design objectives have been met. This paper will summarize the basic project elements and provide an update on the present status of the project.

  16. Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways.

    PubMed

    Alvarez-Vasco, Carlos; Zhang, Xiao

    2013-12-01

    This study investigated softwood hemicelluloses degradation pathways during alkaline hydrogen peroxide (AHP) pretreatment of Douglas fir. It was found that glucomannan is much more susceptible to alkaline pretreatment than xylan. Organic acids, including lactic, succinic, glycolic and formic acid are the predominant products from glucomannan degradation. At low treatment temperature (90°C), a small amount of formic acid is produced from glucomannan, whereas glucomannan degradation to lactic acid and succinic acid becomes the main reactions at 140°C and 180°C. The addition of H2O2 during alkaline pretreatment of D. fir led to a significant removal of lignin, which subsequently facilitated glucomannan solubilization. However, H2O2 has little direct effect on the glucomannan degradation reaction. The main degradation pathways involved in glucomannan conversion to organics acids are elucidated. The results from this study demonstrate the potential to optimize pretreatment conditions to maximize the value of biomass hemicellulose.

  17. Novel aqueous dual-channel aluminum-hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.

  18. Simple, field portable colorimetric detection device for organic peroxides and hydrogen peroxide

    SciTech Connect

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie; Reynolds, John G.; Nunes, Peter; Shields, Sharon J.

    2010-11-09

    A simple and effective system for the colorimetric determination of organic peroxides and hydrogen peroxide. A peroxide pen utilizing a swipe material attached to a polyethylene tube contains two crushable vials. The two crushable vials contain a colorimetric reagent separated into dry ingredients and liquid ingredients. After swiping a suspected substance or surface the vials are broken, the reagent is mixed thoroughly and the reagent is allowed to wick into the swipe material. The presence of organic peroxides or hydrogen peroxide is confirmed by a deep blue color.

  19. A highly sensitive hydrogen peroxide sensor based on (Ag-Au NPs)/poly[o-phenylenediamine] modified glassy carbon electrode.

    PubMed

    Shamsipur, Mojtaba; Karimi, Ziba; Amouzadeh Tabrizi, Mahmoud

    2015-11-01

    Herein, the poly(o-phenylenediamine) decorated with gold-silver nanoparticle (Ag-Au NPs) nanocomposite modified glassy carbon was used for the determination of hydrogen peroxide. Electrochemical experiments indicated that the proposed sensor possesses an excellent sensitivity toward the reduction of hydrogen peroxide. The resulting sensor exhibited a good response to hydrogen peroxide over linear range from 0.2 to 60.0μM with a limit of detection of 0.08μM, good reproducibility, long-term stability and negligible interference from ascorbic acid, uric acid and dopamine. The proposed sensor was successfully applied to the determination of hydrogen peroxide in human serum sample.

  20. Singlet oxygen-sensitized delayed emissions from hydrogen peroxide/gallic acid/potassium ferricyanide systems containing organic solvents

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroshi; Tsukino, Kazuo; Sekine, Masahiko; Nakata, Munetaka

    2009-06-01

    Fourier-transform chemiluminescence spectra of H 2O 2/gallic acid/K 3[Fe(CN) 6] systems containing organic solvents were measured. Emission bands with peaks around 530 and 700 nm were observed in systems containing solvents with a carbonyl group such as N, N-dimethylformamide, and those with a hydroxyl group such as methanol, respectively. The relative band intensities depended strongly on the concentration of these organic solvents. The emission species are attributed to gallic acid-ferricyanide complexes excited by energy transfer from singlet oxygen dimol, ( 1O 2) 2. The effects of organic solvents are interpreted in terms of intermolecular interactions of gallic acid-ferricyanide complexes, water molecules and organic solvents.

  1. The reaction of [Fe(pic)3] with hydrogen peroxide: a UV-visible and EPR spectroscopic study (Hpic = picolinic acid).

    PubMed

    Jain, Sneh L; Bhattacharyya, Pravat

    2005-08-21

    The Gif family of catalysts, based on an iron salt and O2 or H2O2 in pyridine, allows the oxygenation of cyclic saturated hydrocarbons to ketones and alcohols under mild conditions. The reaction between [Fe(pic)3] and hydrogen peroxide in pyridine under GoAgg(III)(Fe(III)/Hpic catalyst) conditions was investigated by UV-visible spectrophotometry. Reactions were monitored at 430 and 520 nm over periods ranging from a few minutes to several hours at 20 degrees C. A number of kinetically stable intermediates were detected, and their relevance to the processes involved in the assembly of the active GoAgg(III) catalyst was determined by measuring the kinetics in the presence and absence of cyclohexane. EPR measurements at 110 K using hydrogen peroxide and t-BuOOH as oxidants were used to further probe these intermediates. Our results indicate that in wet pyridine [Fe(pic)3] undergoes reversible dissociation of one picolinate ligand, establishing an equilibrium with [Fe(pic)2(py)(OH)]. Addition of aqueous hydrogen peroxide rapidly generates the high-spin complex [Fe(pic)2(py)(eta1-OOH)] from the labilised hydroxy species. Subsequently the hydroperoxy species undergoes homolysis of the Fe-O bond, generating HOO. and [Fe(pic)2(py)2], the active oxygenation catalyst.

  2. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase

    PubMed Central

    2014-01-01

    Background Cytochrome P450 OleTJE from Jeotgalicoccus sp. ATCC 8456, a new member of the CYP152 peroxygenase family, was recently found to catalyze the unusual decarboxylation of long-chain fatty acids to form α-alkenes using H2O2 as the sole electron and oxygen donor. Because aliphatic α-alkenes are important chemicals that can be used as biofuels to replace fossil fuels, or for making lubricants, polymers and detergents, studies on OleTJE fatty acid decarboxylase are significant and may lead to commercial production of biogenic α-alkenes in the future, which are renewable and more environmentally friendly than petroleum-derived equivalents. Results We report the H2O2-independent activity of OleTJE for the first time. In the presence of NADPH and O2, this P450 enzyme efficiently decarboxylates long-chain fatty acids (C12 to C20) in vitro when partnering with either the fused P450 reductase domain RhFRED from Rhodococcus sp. or the separate flavodoxin/flavodoxin reductase from Escherichia coli. In vivo, expression of OleTJE or OleTJE-RhFRED in different E. coli strains overproducing free fatty acids resulted in production of variant levels of multiple α-alkenes, with a highest total hydrocarbon titer of 97.6 mg·l-1. Conclusions The discovery of the H2O2-independent activity of OleTJE not only raises a number of fundamental questions on the monooxygenase-like mechanism of this peroxygenase, but also will direct the future metabolic engineering work toward improvement of O2/redox partner(s)/NADPH for overproduction of α-alkenes by OleTJE. PMID:24565055

  3. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Conklin, Alfred R. Jr.; Kessinger, Angela

    1996-01-01

    Describes a demonstration known as Elephant's Toothpaste in which the decomposition of hydrogen peroxide is catalyzed by iodide. Oxygen is released and soap bubbles are produced. The foam produced is measured, and results show a good relationship between the amount of foam and the concentration of the hydrogen peroxide. (DDR)

  4. Measurement of hydrogen peroxide from aircraft

    SciTech Connect

    Kok, G.L.

    1980-01-01

    Hydrogen peroxide (H/sub 2/O/sub 2/) is an important species in both the homogeneous and the heterogeneous chemistry of the troposphere. Measurement of H/sub 2/O/sub 2/ from aircraft provides information on the distribution of H/sub 2/O/sub 2/ in the troposphere and provides a great deal of additional information which cannot be obtained from ground-based measurements. Three analytical techniques for atmospheric H/sub 2/O/sub 2/ are available. Two of these are colorimetric methods involving the formation of a colored complex with titanium salt. In 1978, a chemiluminescent method for the determination of atmospheric H/sub 2/O/sub 2/ was introduced. This method involves the reaction of H/sub 2/O/sub 2/ with luminol in the presence of a copper catalyst, with the chemiluminescence serving as the basis of the analytical reaction.

  5. Locating bomb factories by detecting hydrogen peroxide.

    PubMed

    Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B

    2016-11-01

    The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared.

  6. Hydrogen Peroxide Storage in Small Sealed Tanks

    SciTech Connect

    Whitehead, J.

    1999-10-20

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

  7. Carbon fiber cloth supported Au nano-textile fabrics as an efficient catalyst for hydrogen peroxide electroreduction in acid medium

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-09-01

    The size-controlled hierarchical textile-like Au nanostructures supported carbon fiber cloth (Au NTs/CFC) is successfully fabricated through a simple low-cost electrochemical route. The electrodes are characterised by scanning electron microscopy equipped with an energy dispersive X-ray spectrometer, transmission electron microscopy and X-ray diffractometer. Without any conducting carbons and polymer binders, the 3D electrode with unique structure is directly used as the electrocatalyst for H2O2 reduction in acid solution and the catalytic performance is evaluated by voltammetry and chronoamperometry. The Au NTs/CFC electrode exhibits much higher catalytic activity and remarkably improved utilization of Au than Au nanoparticles (Au NPs/CFC) prepared by the same method owing to its unique structure. In the solution of 3.0 mol L-1 H2SO4 + 0.1 mol L-1 H2O2, with the reduction potential of 0 V, the current of -0.72 A cm-2 mg-1 can be obtained on Au NTs/CFC electrode and only a current of -0.09 A cm-2 mg-1 can be achieved on Au NPs/CFC electrode. All these results reveal that the novel Au NTs/CFC electrode exhibits excellent catalytic performance and superior stability for H2O2 electroreduction in acid medium, benefitting from the unique 3D structure which can ensure high utilization of catalyst.

  8. Bactericidal effect of hydrogen peroxide on spacecraft isolates

    NASA Technical Reports Server (NTRS)

    Wardle, M. D.; Renninger, G. M.

    1975-01-01

    Results are presented for an experimental study designed to assess the effect of hydrogen peroxide on both sporeforming and nonsporeforming spacecraft isolates as an initial step in determining its suitability for microbiological decontamination of certain United States spacecraft. Survivor data were obtained for eight bacterial isolates (six sporeformers and two nonsporeformers) recovered before launch Mariner 9 and exposed to concentrations of 3, 10, and 15% hydrogen peroxide. The effects of various concentrations of hydrogen peroxide on the spores are presented in tabular form, along with the percentage of survival of nonsporeformers exposed to hydrogen peroxide. No viable vegetative cells were recovered after a 10-min exposure time to any of the three concentration of hydrogen peroxide.

  9. The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus.

    PubMed

    Zhu, Honghui; Zhang, Ruiqin; Chen, Weili; Gu, Zhenhong; Xie, Xiaolin; Zhao, Haiquan; Yao, Qing

    2015-04-15

    Arbuscular mycorrhizal fungal (AMF) colonization can induce both the local and the systemic increase in phenolic accumulation in hosts. However, the signaling molecules responsible for the systemic induction is still unclear. In this study, a split-root rhizobox system was designed to explore these molecules, with one half of clover (Trifolium repense) roots colonized by AMF, Funneliformis mosseae (formerly known as Glomus mosseae), and the other not (NM/M). Plants with two halves both (M/M) or neither (NM/NM) inoculated were also established for comparison. The contents of phenols and the accumulation of salicylic acid (SA), hydrogen peroxide (H2O2) and nitric oxide (NO) in roots were monitored, the activities of L-phenylalanine ammonia-lyase (PAL) and nitric oxide synthase (NOS) in roots were assayed, and the expressions of pal and chs (gene encoding chalcone synthase) genes in roots were also quantified using qRT-PCR. Results indicated that when phenolic content in NM/NM plants was lower than that in M/M plants, AMF colonization systemically induced the increase in phenolic content in NM/M plants. Similarly, the accumulations of SA and H2O2 were increased by AMF both locally and systemically, while that of NO was only increased locally. Moreover, enzyme assay and qRT-PCR were in accordance with these results. These data suggest that AMF colonization can systemically increase the phenolic biosynthesis, and SA and H2O2 are possibly the signaling molecules involved. The role of MeSA, a signaling molecule capable of long distance transport in this process, is also discussed.

  10. Heterogeneous reactions of gaseous hydrogen peroxide on pristine and acidic gas-processed calcium carbonate particles: Effects of relative humidity and surface coverage of coating

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Chen, Zhongming; Shen, Xiaoli; Huang, Dao

    2013-03-01

    Atmospheric aging appears to alter physical and chemical properties of mineral dust aerosol and thus its role as reactive surface in the troposphere. Yet, previous studies in the atmosphere have mainly focused on the pristine surfaces of mineral dust aerosol, and the reactivity of aged mineral dust toward atmospheric trace gases is poorly recognized. This work presents the first laboratory investigation of heterogeneous reactions of gaseous hydrogen peroxide (H2O2), an important atmospheric oxidant, on the surfaces of HNO3 and SO2-processed calcium carbonate particles as surrogates of atmospheric mineral dust aged by acidic trace gases. It is found that the processing of the calcium carbonate particles with HNO3 and SO2 has a strong impact on their reactivity toward H2O2. On HNO3-processed particles, the presence of nitrate acts to either decrease or increase H2O2 uptake, greatly depending on RH and surface coverage of nitrate. On SO2-processed particles, the presence of surface sulfite appears to enhance the intrinsic reactivity of the mineral particles due to its affinity for H2O2, and the uptake of H2O2 increases significantly relative to the pristine particles, in particular at high RH. The mechanisms for heterogeneous reactions of H2O2 with these processed particles are discussed, as well as their potential implications on tropospheric chemistry. The results of our study suggest that the reactivity of mineral dust aerosol toward H2O2 and maybe other trace gases is markedly dependent on the chemical composition and coverage of the coatings as well as ambient RH, and thus will vary considerably in different polluted air masses.

  11. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  12. Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants.

    PubMed

    Li, Hao; Liu, Shan-Shan; Yi, Chang-Yu; Wang, Feng; Zhou, Jie; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2014-12-01

    Root-shoot communications play important roles in plant stress responses. Here, we examined the roles of root-sourced signals in the shoot response to heat in cucumber plants. Cucumber plants grafted onto their own roots and luffa roots were exposed to aerial and root-zone heat to examine their tolerance by assessing the levels of oxidative stress, PSII photoinhibition, accumulation of abscisic acid (ABA), H2 O2 and heat shock protein (HSP) 70 using immunoblotting, chlorophyll fluorescence, immunoassay, CeCl3 staining and Western blotting, respectively. Grafting onto the luffa rootstock enhanced the shoot tolerance to the heat. This enhanced tolerance was associated with increased accumulation of ABA and apoplastic H2 O2 , RBOH transcripts and HSP70 expression and a decrease in oxidative stress in the shoots. The increases in the ABA and H2 O2 concentrations in the shoots were attributed to an increase in ABA transport from roots and an increase in ABA biosynthesis in the shoots when the root-zone and shoots were heat stressed, respectively. Inhibition of H2 O2 accumulation compromised luffa rootstock-induced HSP70 expression and heat tolerance. These results suggest that, under heat stress, ABA triggers the expression of HSP70 in an apoplastic H2 O2 -dependent manner, implicating the role of an ABA-dependent H2 O2 -driven mechanism in a systemic response involving root-shoot communication.

  13. Development of a multichannel Fourier-transform spectrometer to measure weak chemiluminescence: Application to the emission of singlet-oxygen dimol in the decomposition of hydrogen peroxide with gallic acid and K 3[Fe(CN) 6

    NASA Astrophysics Data System (ADS)

    Tsukino, Kazuo; Satoh, Toshihiro; Ishii, Hiroshi; Nakata, Munetaka

    2008-05-01

    A Fourier-transform spectrometer equipped with a Savart-plate polarization interferometer was developed for observation of weak chemiluminescence and applied to a measurement of emission spectra in the decomposition of hydrogen peroxide with gallic acid and K 3[Fe(CN) 6]. The band appearing at ˜580 nm in the chemiluminescence spectrum was assigned to the emission of singlet-oxygen dimol, the peak wavelength being shifted from that observed in the reaction of hydrogen peroxide with sodium hypochlorite, ˜633 nm. The band intensity was increased with the increasing concentration of K 3[Fe(CN) 6] up to ˜100 mM, and thereafter the peak wavelength was shifted from 580 to 700 nm with a decrease in the intensity.

  14. Nickel hexacyanoferrate modified screen-printed carbon electrode for sensitive detection of ascorbic acid and hydrogen peroxide.

    PubMed

    Lin, Jie; Zhou, Dao Min; Hocevar, Samo B; McAdams, Eric T; Ogorevc, Bozidar; Zhang, Xueji

    2005-01-01

    Electrochemically modified screen-printed carbon electrode (SPCE) has been prepared by electrodepositing nickel hexacyanoferrate(III) (NiHCF) onto the electrode surface using cyclic voltammetry (CV). The performance of NiHCF-SPCE sensor was characterized and optimized by controlling several operational parameters. The NiHCF film has been proven to remain stable after CV scanning from 0 to +1.0 V vs. Ag/AgCl in the pH range of 3 to 10 and is re-useable. The most favourable supporting electrolyte solution exhibiting the optimum electroanalytical performance of the NiHCF-SPCE sensor was found to be 0.2 mol/L sodium nitrate. The electrochemical response toward ascorbic acid (AA) and H2O2 in 0.2 mol/L sodium nitrate solution was studied by using CV and the results showed that both analytes were electrocatalytically oxidized at approximately +0.4 V, while H2O2 also revealed a reduction signal at -0.8 V vs. Ag/AgCl. The NiHCF-SPCE sensor exhibited highly linear response for AA and H2O2 in the examined concentration range from 5.0x10-5 to 1.5x10-3 mol/L and from 2.0x10-5 to 1.0x10-3 mol/L (at +0.4 V), with the correlation coefficients of 0.999 and 0.998, respectively. The reproducibility of the NiHCF-SPCE sensor was followed for the determination of AA by using four individual electrodes, and the relative standard deviation of CV peak currents varied between 0.9 % and 2.2 %. The proposed NiHCF-SPCE has been shown to be a very attractive electrochemical sensor for AA and H2O2, also in a view of inexpensive mass production of disposable single-use sensors. The NiHCF-SPCE sensor was tested by measuring AA in multivitamin tablets, with recoveries obtained between 94.4 % and 108.2 % (n=5).

  15. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    SciTech Connect

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.

  16. Kohlrabi-based amperometric biosensor for hydrogen peroxide measurement

    SciTech Connect

    Lu Chen; Meng Shan Lin; Hara, Minoru; Rechnitz, G.A. )

    1991-01-01

    Hydrogen peroxide is a very important substance both in biological and environmental reactions. Hydrogen peroxide was determined amperometrically in a steady-state arrangement by utilizing a kohlrabi-ferrocene based carbon paste electrode. A very short response time (2.6 seconds) and a relatively large usable pH range (5.0-7.4) were obtained. Several important hydrogen donors were studied as possible interferences.

  17. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide.

    PubMed

    Edwards, Jennifer K; Freakley, Simon J; Carley, Albert F; Kiely, Christopher J; Hutchings, Graham J

    2014-03-18

    Hydrogen peroxide is a widely used chemical but is not very efficient to make in smaller than industrial scale. It is an important commodity chemical used for bleaching, disinfection, and chemical manufacture. At present, manufacturers use an indirect process in which anthraquinones are sequentially hydrogenated and oxidized in a manner that hydrogen and oxygen are never mixed. However, this process is only economic at a very large scale producing a concentrated product. For many years, the identification of a direct process has been a research goal because it could operate at the point of need, producing hydrogen peroxide at the required concentration for its applications. Research on this topic has been ongoing for about 100 years. Until the last 10 years, catalyst design was solely directed at using supported palladium nanoparticles. These catalysts require the use of bromide and acid to arrest peroxide decomposition, since palladium is a very active catalyst for hydrogen peroxide hydrogenation. Recently, chemists have shown that supported gold nanoparticles are active when gold is alloyed with palladium because this leads to a significant synergistic enhancement in activity and importantly selectivity. Crucially, bimetallic gold-based catalysts do not require the addition of bromide and acids, but with carbon dioxide as a diluent its solubility in the reaction media acts as an in situ acid promoter, which represents a greener approach for peroxide synthesis. The gold catalysts can operate under intrinsically safe conditions using dilute hydrogen and oxygen, yet these catalysts are so active that they can generate peroxide at commercially significant rates. The major problem associated with the direct synthesis of hydrogen peroxide concerns the selectivity of hydrogen usage, since in the indirect process this factor has been finely tuned over decades of operation. In this Account, we discuss how the gold-palladium bimetallic catalysts have active sites for the

  18. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  19. Hydrogen peroxide mechanosynthesis in siloxane-hydrogel contact lenses.

    PubMed

    Tavazzi, Silvia; Ferraro, Lorenzo; Cozza, Federica; Pastori, Valentina; Lecchi, Marzia; Farris, Stefano; Borghesi, Alessandro

    2014-11-26

    Drug-loaded contact lenses are emerging as the preferred treatment method for several ocular diseases, and efforts are being directed to promote extended and controlled delivery. One strategy is based on delivery induced by environmental triggers. One of these triggers can be hydrogen peroxide, since many platforms based on drug-loaded nanoparticles were demonstrated to be hydrogen-peroxide responsive. This is particularly interesting when hydrogen peroxide is the result of a specific pathophysiological condition. Otherwise, an alternative route to induce drug delivery is here proposed, namely the mechano-synthesis. The present work represents the proof-of-concept of the mechanosynthesis of hydrogen peroxide in siloxane-hydrogel contact lenses as a consequence of the cleavage of siloxane bonds at the interface between the polymer and water in aqueous phase. Their spongy morphology makes contact lenses promising systems for mechanical-to-chemical energy conversion, since the amount of hydrogen peroxide is expected to scale with the interfacial area between the polymer and water. The eyelid pressure during wear is sufficient to induce the hydrogen peroxide synthesis with concentrations which are biocompatible and suitable to trigger the drug release through hydrogen-peroxide-responsive platforms. For possible delivery on demand, the integration of piezoelectric polymers in the siloxane-hydrogel contact lenses could be designed, whose mechanical deformation could be induced by an applied wireless-controlled voltage.

  20. Abscisic acid and hydrogen peroxide induce modification of plasma membrane H(+)-ATPase from Cucumis sativus L. roots under heat shock.

    PubMed

    Janicka-Russak, Małgorzata; Kabała, Katarzyna

    2012-11-01

    We examined the effect of heat shock (HS), for 2 h at 48°C, on plasma membrane H(+)-ATPase (PM-H(+)-ATPase) measured as the hydrolytic and H(+)-pumping activity. Some of the plants were transferred after 2 h HS to control temperature for another 24 h, as post-stressed (PS) plants. A significant increase of PM-H(+)-ATPase in plants subjected to HS was observed. The stimulation of PM-H(+)-ATPase was higher in PS plants. Estimation of transcript levels of cucumber PM-H(+)-ATPase in roots indicated that the action of HS affected gene expression levels. Transcript levels of two isoforms, CsHA4 and CsHA8, in PS plants were elevated. The expression of PM-H(+)-ATPase genes was not affected in plants treated for 2 h with HS. HS elevated the endogenous level of abscisic acid (ABA) both in plants treated for 2 h with HS and in PS plants. Moreover, in PS plants, a distinctly higher level of H(2)O(2) was observed. It was also demonstrated that transcript levels of PM-H(+)-ATPase were elevated in cucumber roots after 24-h treatment of plants with ABA or H(2)O(2). Both of these compounds seem to play an important role in increasing ATPase activity during heat stress, because the use of the inhibitors tungstate and DPI restrained stimulation of PM-H(+)-ATPase activity by heat. Moreover, protein blot analysis with an antibody against phosphothreonine and 14-3-3 protein indicated that increased activity of PM-H(+)-ATPase under HS resulted from phosphorylation of the enzyme. Taken together, the data presented here suggest that, under post-heat stress conditions, abscisic acid and hydrogen peroxide are involved in PM-ATPase modification, through stimulation of gene expression of that PM proton pump. Moreover, heat treatment of cucumber plants results in increased phosphorylation of PM-ATPase and thus fast post-translational modification, leading to activation of the enzyme protein.

  1. Hydrogen peroxide generation from hydrated protein drink mixes.

    PubMed

    Boatright, William L

    2013-11-01

    Generation of oxygen radicals upon hydration of powdered protein products was examined using luminol-enhanced chemiluminescence. Among individual proteins powders examined oxidative bursts occurred almost immediately, and then rapidly declined in the 1st 5 min. Commercially available powdered protein drink mixes behaved differently, with an initial lag phase followed by a sustained increase in luminol-enhanced luminescence, lasting for an hour or beyond. The drink mix that produced the highest level of luminol-enhanced luminescence also contained 379 nM ascorbate radical when hydrated (28 nmole/g of powdered drink mix). The entire ascorbic acid content of this drink mix was oxidized to nondetectable levels (using HPLC-diode array detection) within 60 min of being hydrated. Treatment of the hydrated drink mixes with the enzyme catalase almost completely inhibited the luminol-enhanced luminescence from the hydrated drink mix demonstrating that hydrogen peroxide generated via a chemical reaction among the drink mixes' ingredients was a primary reactive oxygen species (ROS). This is the strongest oxidative capacity demonstrated in a food product as consumed (without any manipulation to increase ROS) and the 1st time that the ascrobate radical in a food product as been quantified. Generation of hydrogen peroxide in the hydrated drink mixes from metal catalyzed reactions involving oxygen and reducing equivalents from ascorbic acid is proposed.

  2. Fiber optic biosensors for hydrogen peroxide and L-lactate

    NASA Astrophysics Data System (ADS)

    Schubert, Florian; Rinneberg, Herbert H.; Wang, Fang

    1995-02-01

    An optical fiber biosensor for the selective determination of hydrogen peroxide has been developed as the base sensor for the construction of multienzyme optodes involving lactate converting enzymes for the analysis of lactic acid. The optode uses the H2O2 dependent oxidation of homovanillic acid by horseradish peroxidase (HRP) as the sensing reaction. The fluorescence of the dimeric product formed is used as the measuring signal related to the concentration of H2O2. HRP was immobilized on a membrane and combined with a bifurcated fiber optic probe. Under optimized conditions the sensor responds linearly to hydrogen peroxide between 1 micrometers ol/l and 0.12 mmol/l and exhibits a half life of 90 days. Using a lactate oxidase-HRP membrane, the sensor is suitable for lactate measurement with a linear range of 3 micrometers ol/l-0.2 mmol/l. To increase the sensitivity for lactate, lactate dehydrogenase was coimmobilized on the sensor membrane. In the presence of NADH the signal for lactate is amplified fourfold through the internal analyte recycling accomplished by the lactate-converting enzymes.

  3. Locating bomb factories by detecting hydrogen peroxide.

    PubMed

    Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B

    2016-11-01

    The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared. PMID:27591582

  4. Molecular evolution of hydrogen peroxide degrading enzymes.

    PubMed

    Zámocký, Marcel; Gasselhuber, Bernhard; Furtmüller, Paul G; Obinger, Christian

    2012-09-15

    For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three gene families. Ubiquitous typical (monofunctional) heme catalases are found in all domains of life showing a high structural conservation. Their evolution was directed from large subunit towards small subunit proteins and further to fused proteins where the catalase fold was retained but lost its original functionality. Bifunctional catalase-peroxidases were at the origin of one of the two main heme peroxidase superfamilies (i.e. peroxidase-catalase superfamily) and constitute a protein family predominantly present among eubacteria and archaea, but two evolutionary branches are also found in the eukaryotic world. Non-heme manganese catalases are a relatively small protein family with very old roots only present among bacteria and archaea. Phylogenetic analyses of the three protein families reveal features typical (i) for the evolution of whole genomes as well as (ii) for specific evolutionary events including horizontal gene transfer, paralog formation and gene fusion. As catalases have reached a striking diversity among prokaryotic and eukaryotic pathogens, understanding their phylogenetic and molecular relationship and function will contribute to drug design for prevention of diseases of humans, animals and plants. PMID:22330759

  5. Hydrogen peroxide diffusion dynamics in dental tissues.

    PubMed

    Ubaldini, A L M; Baesso, M L; Medina Neto, A; Sato, F; Bento, A C; Pascotto, R C

    2013-07-01

    The aim of this study was to investigate the diffusion dynamics of 25% hydrogen peroxide (H2O2) through enamel-dentin layers and to correlate it with dentin's structural alterations. Micro-Raman Spectroscopy (MRS) and Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) were used to measure the spectra of specimens before and during the bleaching procedure. H2O2 was applied to the outer surface of human enamel specimens for 60 minutes. MRS measurements were performed on the inner surface of enamel or on the subsurface dentin. In addition, H2O2 diffusion dynamics from outer enamel to dentin, passing through the dentin-enamel junction (DEJ) was obtained with Raman transverse scans. FTIR-PAS spectra were collected on the outer dentin. MRS findings revealed that H2O2 (O-O stretching µ-Raman band) crossed enamel, had a more marked concentration at DEJ, and accumulated in dentin. FTIR-PAS analysis showed that H2O2 modified dentin's organic compounds, observed by the decrease in amides I, II, and III absorption band intensities. In conclusion, H2O2 penetration was demonstrated to be not merely a physical passage through enamel interprismatic spaces into the dentinal tubules. H2O2 diffusion dynamics presented a concentration gradient determined by the chemical affinity of the H2O2 with each specific dental tissue.

  6. Materials Compatibility Testing in Concentrated Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)

    2000-01-01

    Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.

  7. Inactivation of rabies virus by hydrogen peroxide.

    PubMed

    Abd-Elghaffar, Asmaa A; Ali, Amal E; Boseila, Abeer A; Amin, Magdy A

    2016-02-01

    Development of safe and protective vaccines against infectious pathogens remains a challenge. Inactivation of rabies virus is a critical step in the production of vaccines and other research reagents. Beta-propiolactone (βPL); the currently used inactivating agent for rabies virus is expensive and proved to be carcinogenic in animals. This study aimed to investigate the ability of hydrogen peroxide (H2O2) to irreversibly inactivate rabies virus without affecting its antigenicity and immunogenicity in pursuit of finding safe, effective and inexpensive alternative inactivating agents. H2O2 3% rapidly inactivated a Vero cell adapted fixed rabies virus strain designated as FRV/K within 2h of exposure without affecting its antigenicity or immunogenicity. No residual infectious virus was detected and the H2O2-inactivated vaccine proved to be safe and effective when compared with the same virus harvest inactivated with the classical inactivating agent βPL. Mice immunized with H2O2-inactivated rabies virus produced sufficient level of antibodies and were protected when challenged with lethal CVS virus. These findings reinforce the idea that H2O2 can replace βPL as inactivating agent for rabies virus to reduce time and cost of inactivation process. PMID:26731189

  8. Inactivation of rabies virus by hydrogen peroxide.

    PubMed

    Abd-Elghaffar, Asmaa A; Ali, Amal E; Boseila, Abeer A; Amin, Magdy A

    2016-02-01

    Development of safe and protective vaccines against infectious pathogens remains a challenge. Inactivation of rabies virus is a critical step in the production of vaccines and other research reagents. Beta-propiolactone (βPL); the currently used inactivating agent for rabies virus is expensive and proved to be carcinogenic in animals. This study aimed to investigate the ability of hydrogen peroxide (H2O2) to irreversibly inactivate rabies virus without affecting its antigenicity and immunogenicity in pursuit of finding safe, effective and inexpensive alternative inactivating agents. H2O2 3% rapidly inactivated a Vero cell adapted fixed rabies virus strain designated as FRV/K within 2h of exposure without affecting its antigenicity or immunogenicity. No residual infectious virus was detected and the H2O2-inactivated vaccine proved to be safe and effective when compared with the same virus harvest inactivated with the classical inactivating agent βPL. Mice immunized with H2O2-inactivated rabies virus produced sufficient level of antibodies and were protected when challenged with lethal CVS virus. These findings reinforce the idea that H2O2 can replace βPL as inactivating agent for rabies virus to reduce time and cost of inactivation process.

  9. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  10. Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide.

    PubMed

    Abdel-Monaim, Montaser Fawzy

    2013-03-01

    Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the

  11. Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide

    PubMed Central

    2013-01-01

    Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the

  12. Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide.

    PubMed

    Abdel-Monaim, Montaser Fawzy

    2013-03-01

    Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the

  13. Electrochemical Visualization of Intracellular Hydrogen Peroxide at Single Cells.

    PubMed

    He, Ruiqin; Tang, Huifen; Jiang, Dechen; Chen, Hong-yuan

    2016-02-16

    In this Letter, the electrochemical visualization of hydrogen peroxide inside one cell was achieved first using a comprehensive Au-luminol-microelectrode and electrochemiluminescence. The capillary with a tip opening of 1-2 μm was filled with the mixture of chitosan and luminol, which was coated with the thin layers of polyvinyl chloride/nitrophenyloctyl ether (PVC/NPOE) and gold as the microelectrode. Upon contact with the aqueous hydrogen peroxide, hydrogen peroxide and luminol in contact with the gold layer were oxidized under the positive potential resulting in luminescence for the imaging. Due to the small diameter of the electrode, the microelectrode tip was inserted into one cell and the bright luminescence observed at the tip confirmed the visualization of intracellular hydrogen peroxide. The further coupling of oxidase on the electrode surface could open the field in the electrochemical imaging of intracellular biomolecules at single cells, which benefited the single cell electrochemical detection. PMID:26879364

  14. Electrochemical Visualization of Intracellular Hydrogen Peroxide at Single Cells.

    PubMed

    He, Ruiqin; Tang, Huifen; Jiang, Dechen; Chen, Hong-yuan

    2016-02-16

    In this Letter, the electrochemical visualization of hydrogen peroxide inside one cell was achieved first using a comprehensive Au-luminol-microelectrode and electrochemiluminescence. The capillary with a tip opening of 1-2 μm was filled with the mixture of chitosan and luminol, which was coated with the thin layers of polyvinyl chloride/nitrophenyloctyl ether (PVC/NPOE) and gold as the microelectrode. Upon contact with the aqueous hydrogen peroxide, hydrogen peroxide and luminol in contact with the gold layer were oxidized under the positive potential resulting in luminescence for the imaging. Due to the small diameter of the electrode, the microelectrode tip was inserted into one cell and the bright luminescence observed at the tip confirmed the visualization of intracellular hydrogen peroxide. The further coupling of oxidase on the electrode surface could open the field in the electrochemical imaging of intracellular biomolecules at single cells, which benefited the single cell electrochemical detection.

  15. [Accelerated senescence of fresh-cut Chinese water chestnut tissues in relation to hydrogen peroxide accumulation].

    PubMed

    Peng, Li-Tao; Jiang, Yue-Ming; Yang, Shu-Zhen; Pan, Si-Yi

    2005-10-01

    Accelerated senescence of fresh-cut Chinese water chestnut (CWC) tissues in relation to active oxygen species (AOS) metabolism was investigated. Fresh-cut CWC (2 mm thick) and intact CWC were stored at 4 degrees C in trays wrapped with plastic films. Changes in superoxide anion production rate, activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were monitored, while contents of hydrogen peroxide, ascorbic acid, MDA as well as electrolyte leakage were measured. Fresh-cutting of CWC induced activities of SOD, CAT and APX to a certain extent (Fig. 2B and Fig. 3), but simultaneously stimulated superoxide anion production markedly (Fig. 2A), enhanced hydrogen peroxide accumulation and accelerated loss in ascorbic acid (Figs. 4 and 5), which resulted in increased lipid peroxidation indicated by malondialdehyde (MDA) content and electrolyte leakage (Fig. 1). Statistics analysis indicated that there was a significantly positive correlation among hydrogen peroxide accumulation, MDA content and electrolyte leakage (Table 1). Histochemical detection with 3, 3'-diaminobenzidine further demonstrated that hydrogen peroxide accumulation increased in fresh-cut CWC during storage (Fig. 5). AOS production rate and activities of SOD, CAT and APX changed little while no obvious hydrogen peroxide accumulation was observed, in intact CWC during storage.

  16. Dissolution of ion exchange resin by hydrogen peroxide

    SciTech Connect

    Lee, S.C.

    1981-08-01

    The resin dissolution process was conducted successfully in full-scale equipment at the SRL Semiworks. A solution containing 0.001M Fe/sup 2 +/, or Fe/sup 3 +/, and 3 vol % H/sub 2/O/sub 2/ in 0.1M HNO/sub 3/ is sufficient to dissolve up to 40 vol % resin slurry (Dowex 50W-X8). Foaming and pressurization can be eliminated by maintaining the dissolution temperature below 99/sup 0/C. The recommended dissolution temperature range is 85 to 90/sup 0/C. Premixing hydrogen peroxide with all reactants will not create a safety hazard, but operating with a continual feed of hydrogen peroxide is recommended to control the dissolution rate. An air sparging rate of 1.0 to 1.5 scfm will provide sufficient mixing. Spent resin from chemical separation contains DTPA (diethylenetriaminepentaacetic acid) residue, and the resin must be washed with 0.1M NH/sub 4/ OH to remove excess DTPA before dissolution. Gamma irradiation of resin up to 4 kW-hr/L did not change the dissolution rate significantly.

  17. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  18. Prediction and assignment of the FIR spectrum of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Helminger, P.; Messer, J. K.; De Lucia, F. C.; Bowman, W. C.

    1984-01-01

    Millimeter and submillimeter microwave studies are used to predict and assign the FIR rotational-torsional spectrum of hydrogen peroxide. Special attention is given to the strong Q-branch features that have recently been used by Traub and Chance to place an upper limit on the atmospheric abundance of hydrogen peroxide. In addition, 67 new transitions are reported in the 400-1000 GHz region.

  19. [Hydrogen peroxide in the surgery of hydatid cyst].

    PubMed

    Djilali, G; Mahrour, A; Oussedik, T; Abad, M; Bouguerra, T; Nekrouf, G; Belkaid, M; Souilamas, F

    1983-01-29

    Discouraged by the dangers and drawbacks of the usual scolicidal agents (formalin or strongly hypertonic saline), the authors have tried and adopted hydrogen peroxide in surgery of hydatid cysts. Liberal applications of this product on the operative field seem to be devoid of harmful effects. This, together with constant and rapid effectiveness, easy handling, low cost and wide availability should recommend hydrogen peroxide as the sole scolicidal agent in general surgery units.

  20. Hydrogen peroxide deposition and decomposition in rain and dew waters

    NASA Astrophysics Data System (ADS)

    Ortiz, Vicky; Angélica Rubio, M.; Lissi, Eduardo A.

    Peroxides and hydrogen peroxide were determined by a fluorometric method in dew and rain collected in the atmosphere of Santiago of Chile city. The measured peroxides comprise hydrogen peroxide (the main component) and peroxides not decomposed by catalase. The collected natural peroxides readily decompose in the natural matrix, rendering difficult an estimation of the values present in real-time. In order to establish the kinetics of the process and the factors that condition their decomposition, the kinetics of the decay at several pHs and/or the presence of metal chelators were followed. The kinetics of hydrogen peroxide decomposition in the water matrix was evaluated employing the natural peroxides or hydrogen peroxide externally added. First-order kinetics was followed, with half decay times ranging from 80 to 2300 min. The addition of Fe(II) in the micromolar range increases the decomposition rate, while lowering the pH (<3) notably reduces the rate of the process. The contribution of metals to the decomposition of the peroxides in the natural waters was confirmed by the reduction in decomposition rate elicited by its treatment with Chelex-100. Dew and rain waters were collected in pre-acidified collectors, rendering values considerably higher than those measured in non-treated collectors. This indicates that acidification can be proposed as an easy procedure to stabilize the samples, reducing its decomposition during collection time and the time elapsed between collection and analysis. The weighted average concentration for total peroxides measured in pre-treated collectors was 5.4 μM in rains and 2.2 μM in dews.

  1. Acute toxicity of hydrogen peroxide treatments to selected lifestages of cold-, cool-, and warmwater fish

    USGS Publications Warehouse

    Gaikowski, Mark P.; Rach, Jeffery J.; Ramsay, Robert T.

    1999-01-01

    Hatchery personnel depend on therapeutant treatments to control diseases. Currently, hatchery managers in the United States are limited to one approved therapeutant (formalin) and three compounds of Low Regulatory Priority (sodium chloride, hydrogen peroxide, and acetic acid) to control external diseases of cultured fish. Hydrogen peroxide has been used to effectively control external columnaris and bacterial gill disease in rainbow trout, however, definitive safe treatment concentrations for hydrogen peroxide are lacking for a variety of species. We report the acute toxicity of hydrogen peroxide treatments to 11 species of fry and 13 species of fingerling freshwater fish. Most mortality occurred within the first 30 h after the first exposure to hydrogen peroxide with little change in the overall shape of survival curves over time. Our data predict that in an actual therapeutic application of hydrogen peroxide, most treatment-related mortalities would be observed shortly after the initial exposure. Coolwater species were more sensitive than coldwater species but were generally similar to warmwater species tested. Based on our mortality data, coldwater species and largemouth bass may be treated for 60 min at concentrations of ≤ 150 (μl/1 without harmful effects; all muskellunge, walleye, bluegill, channel catfish, yellow perch, pallid sturgeon fingerlings, fathead minnow fingerlings, white sucker fingerlings, and northern pike fry may be treated for 60 min at ≤ 100 μl/l; and northern pike fingerlings and white sucker, yellow perch and fathead minnow fry may be treated for 60 min at ≤ 50μl/l.

  2. Acute toxicity of hydrogen peroxide treatments to selected lifestages of cold-, cool-, and warmwater fish

    USGS Publications Warehouse

    Gaikowski, M.P.; Rach, J.J.; Ramsay, R.T.

    1999-01-01

    Hatchery personnel depend on therapeutant treatments to control diseases. Currently, hatchery managers in the United States are limited to one approved therapeutant (formalin) and three compounds of Low Regulatory Priority (sodium chloride, hydrogen peroxide, and acetic acid) to control external diseases of cultured fish. Hydrogen peroxide has been used to effectively control external columnaris and bacterial gill disease in rainbow trout, however, definitive safe treatment concentrations for hydrogen peroxide are lacking for a variety of species. We report the acute toxicity of hydrogen peroxide treatments to 11 species of fry and 13 species of fingerling freshwater fish. Most mortality occurred within the first 30 h after the first exposure to hydrogen peroxide with little change in the overall shape of survival curves over time. Our data predict that in an actual therapeutic application of hydrogen peroxide, most treatment-related mortalities would be observed shortly after the initial exposure. Coolwater species were more sensitive than coldwater species but were generally similar to warmwater species tested. Based on our mortality data, coldwater species and largemouth bass may be treated for 60 min at concentrations of ??? 150 ??l/l without harmful effects; all muskellunge, walleye, bluegill, channel catfish, yellow perch, pallid sturgeon fingerlings, fathead minnow fingerlings, white sucker fingerlings, and northern pike fry may be treated for 60 min at ??? 100 ??l/l; and northern pike fingerlings and white sucker, yellow perch and fathead minnow fry may be treated for 60 min at ??? 50 ??l/l.

  3. Atmospheric hydrogen peroxide and Eoarchean iron formations.

    PubMed

    Pecoits, E; Smith, M L; Catling, D C; Philippot, P; Kappler, A; Konhauser, K O

    2015-01-01

    It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF. PMID:25324177

  4. Atmospheric hydrogen peroxide and Eoarchean iron formations.

    PubMed

    Pecoits, E; Smith, M L; Catling, D C; Philippot, P; Kappler, A; Konhauser, K O

    2015-01-01

    It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and the precipitation of iron formations (IF) during the Late Archean-Early Paleoproterozoic (2.7-2.4 Ga). It is less clear whether microbes similarly caused the deposition of the oldest IF at ca. 3.8 Ga, which would imply photosynthesis having already evolved by that time. Abiological alternatives, such as the direct oxidation of dissolved Fe(II) by ultraviolet radiation may have occurred, but its importance has been discounted in environments where the injection of high concentrations of dissolved iron directly into the photic zone led to chemical precipitation reactions that overwhelmed photooxidation rates. However, an outstanding possibility remains with respect to photochemical reactions occurring in the atmosphere that might generate hydrogen peroxide (H2 O2 ), a recognized strong oxidant for ferrous iron. Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF.

  5. Hydrogen Peroxide in Groundwater at Rifle, Colorado

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Nico, P. S.; Williams, K. H.; Hobson, C.; Davis, J. A.

    2015-12-01

    Hydrogen peroxide (H2O2), as a reactive transient presenting ubiquitously in natural surface waters, can react with a large suite of biologically important and redox-sensitive trace elements. The dominant source of H2O2 in natural waters has long been thought to be photo-oxidation of chromophoric dissolved organic matter by molecular oxygen to produce superoxide radical, which then proceeds via dismutation to generate H2O2. However, recent studies have indicated that dark production of H2O2 in deep seawater, principally by biological production, is potentially on par with photochemical generation. Here, we present evidence for abiotic dark generation of H2O2 in groundwater in an alluvial aquifer adjacent to the Colorado River near Rifle, CO. Background H2O2 concentrations were determined in situ using a sensitive chemiluminescence-based method. Our results suggest H2O2 concentrations ranged from lower than the detection limit (1 nM) to 54 nM in different monitoring wells at the site, and the concentrations exhibited close correlations with profiles of dissolved oxygen and iron concentrations in the wells, indicating a possible metal redox cycling mechanism. In addition, dissolved natural organic matter, which could potentially coordinate the interconversion of ferric and ferrous species, might also play an important role in H2O2 formation. While biologically mediated activities have been recognized as the major sink of H2O2, the detected H2O2 pattern in groundwater suggests the existence of a balance between H2O2 source and decay, which potentially involves a cascade of biogeochemically significant processes, including the interconversion of ferrous/ferric species, the generation of more reactive oxygen species, such as hydroxyl radical, the depletion of dissolved oxygen and further transformation of natural organic matter and other chemical pollutants.

  6. Recent Development in Hydrogen Peroxide Pumped Propulsion

    SciTech Connect

    Ledebuhr, A G; Antelman, D R; Dobie, D W; Gorman, T S; Jones, M S; Kordas, J F; McMahon, D H; Ng, L C; Nielsen, D P; Ormsby, A E; Pittenger, L C; Robinson, J A; Skulina, K M; Taylor, W G; Urone, D A; Wilson, B A

    2004-03-22

    This paper describes the development of a lightweight high performance pump-fed divert and attitude control system (DACS). Increased kinetic Kill Vehicles (KV) capabilities (higher .v and acceleration capability) will especially be needed for boost phase engagements where a lower mass KV DACS enables smaller overall interceptors. To increase KV performance while reducing the total DACS dry mass (<10 kg), requires a design approach that more closely emulates those found in large launch vehicles, where pump-fed propulsion enables high propellant-mass-fraction systems. Miniaturized reciprocating pumps, on a scale compatible with KV applications, offer the potential of a lightweight DACS with both high {Delta}v and acceleration capability, while still enabling the rapid pulsing of the divert thrusters needed in the end-game fly-in. Pumped propulsion uses lightweight low-pressure propellant tanks, as the main vehicle structure and eliminates the need for high-pressure gas bottles, reducing mass and increasing the relative propellant load. Prior work used hydrazine and demonstrated a propellant mass fraction >0.8 and a vehicle propulsion dry mass of {approx}3 kg. Our current approach uses the non-toxic propellants 90% hydrogen peroxide and kerosene. This approach enables faster development at lower costs due to the ease of handling. In operational systems these non-toxic propellants can simplify the logistics for manned environments including shipboard applications. This DACS design configuration is expected to achieve sufficient mass flows to support divert thrusters in the 1200 N to 1330 N (270 lbf to 300 lbf) range. The DACS design incorporates two pairs of reciprocating differential piston pumps (oxidizer and fuel), a warm-gas drive system, compatible bi-propellant thrusters, lightweight valves, and lightweight low-pressure propellant tanks. This paper summarizes the current development status and plans.

  7. Localised hydrogen peroxide sensing for reproductive health

    NASA Astrophysics Data System (ADS)

    Purdey, Malcolm S.; Schartner, Erik P.; Sutton-McDowall, Melanie L.; Ritter, Lesley J.; Thompson, Jeremy G.; Monro, Tanya M.; Abell, Andrew D.

    2015-05-01

    The production of reactive oxygen species (ROS) is known to affect the developmental competence of embryos. Hydrogen peroxide (H2O2) an important reactive oxygen species, is also known to causes DNA damage and defective sperm function. Current techniques require incubating a developing embryo with an organic fluorophore which is potentially hazardous for the embryo. What we need is a localised ROS sensor which does not require fluorophores in solution and hence will allow continuous monitoring of H2O2 production without adversely affect the development of the embryo. Here we report studies on such a fibre-based sensor for the detection of H2O2 that uses a surface-bound aryl boronate fluorophore carboxyperoxyfluor-1(CPF1). Optical fibres present a unique platform due to desirable characteristics as dip sensors in biological solutions. Attempts to functionalise the fibre tips using polyelectrolyte layers and (3-aminopropyl)triethoxysilane (APTES) coatings resulted in a limited signal and poor fluorescent response to H2O2 due to a low tip surface density of the fluorophore. To increase the surface density, CPF1 was integrated into a polymer matrix formed on the fibre tip by a UV-catalysed polymerisation process of acrylamide onto a methacrylate silane layer. The polyacrylamide containing CPF1 gave a much higher surface density than previous surface attachment methods and the sensor was found to effectively detect H2O2. Using this method, biologically relevant concentrations of H2O2 were detected, enabling remote sensing studies into ROS releases from embryos throughout early development.

  8. Hydrogen peroxide release and acid-base status in exhaled breath condensate at rest and after maximal exercise in young, healthy subjects

    PubMed Central

    2009-01-01

    Objective Exhaled breath condensate (EBC) contains among a large number of mediators hydrogen peroxide (H2O2) as a marker of airway inflammation and oxidative stress. Similarly EBC pH also changes in respiratory diseases. It was the aim of our investigation to prove if hydrogen peroxide release and changes in pH of EBC changes with exercise. Methods EBC was collected from 100 litres exhaled air along with samples of arterialized blood of 16 healthy subjects (9 males, 7 females, age 23 ± 1 years). EBC hydrogen peroxide was analyzed with EcoCheck amperometer (FILT, Berlin). The rate of H2O2 release was calculated from the concentration and collection time. pH and PCO2 in blood and in EBC were measured with the Radiometer blood gas analyzer, EBC was equilibrated with a gas mixture (5% CO2 in O2). The bicarbonate concentration was calculated according to the law of mass action for CO2 and HCO3- (pK = 6.1). Results H2O2 concentration in EBC was 190 ± 109 nmol/l, and H2O2 release at rest was 31.0 ± 18.3 pmol/min. At maximal exercise, the H2O = concentration in EBC increased to 250 ± 120 nmol/l, and H2O2 release significantly increased at maximal exercise to 84.4 ± 39.9 pmol/min (P < 0.01). At rest pH of the CO2 equilibrated EBC was at 6.08 ± 0.23 and the [HCO3 -] was 1.03 ± 0.40 mmol/l. At maximum exercise, pH 6.18 ± 0.17 and [HCO3-] 1.23 ± 0.30 mmol/l remained almost unaltered. Conclusions The rate of H2O2 release in EBC increased during exhausting exercise (external load: 300 Watt) by a factor of 2, whereas the pH and the bicarbonate concentration of the EBC, equilibrated with 5% CO2 at 37°C were not significantly altered. It has to be proven by further experiments whether there is a linear relationship between the rates of H2O2 release in EBC in graded submaximal exercise. PMID:20156744

  9. Microbiologic evaluation of a hydrogen peroxide sterilization system.

    PubMed

    Wilkins, D L; Chung, P Y; Tsuchiya, P Y; Wessels, I F; Zuccarelli, A J

    1994-01-01

    The reliability of chemical sterilizers (acetone and/or 30-percent hydrogen peroxide at 25 degrees C and at 60 degrees C) was tested against Bacillus subtilis inoculated onto glass slides, commercial biological indicator discs (Bacillus stearothermophilus and B. subtilis), and B. subtilis spore survival. Acetone alone was not sporicidal. Hydrogen-peroxide-sterilized glass slides were sterile after 5 minutes. The indicator discs required 25 minutes at 25 degrees C, and less than 3 minutes at 60 degrees C (P < .0001). The D value of B. subtilis in 27-percent hydrogen peroxide at 25 degrees C is 2 minutes, with z values of 22 degrees C and 26 degrees C at 25 degrees C and 40 degrees C, respectively. For delicate instruments, a 30-percent peroxide solution followed by an acetone rinse provides an effective alternative to classic heat sterilization.

  10. Hydrogen peroxide as an endothelium-derived hyperpolarizing factor.

    PubMed

    Shimokawa, Hiroaki; Matoba, Tetsuya

    2004-06-01

    Vascular endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating factors, such as prostacyclin, nitric oxide (NO), and a yet unidentified endothelium-derived hyperpolarizing factor (EDHF). Possible candidates for EDHF include epoxyeicosatrienoic acids (EETs), endothelium-derived potassium ions (K(+)), and as we have recently identified, hydrogen peroxide (H2O2). Electrical communication between endothelial and smooth muscle cells through gap junctions has also been suggested to be involved in endothelium-dependent hyperpolarization. Among the above candidates, the H2O2 hypothesis well explains the pathophysiological interactions between NO and EDHF and re-highlights the physiological roles of the reactive oxygen species (ROS) in endothelium-dependent vascular responses. This brief review summarizes our current knowledge about H2O2 as an EDHF, with special reference to its production by the endothelium, its action on membrane potentials and its pathophysiological roles. PMID:15026032

  11. Baicalein Decreases Hydrogen Peroxide-Induced Damage to NG108-15 Cells via Upregulation of Nrf2.

    PubMed

    Yeh, Chao-Hung; Ma, Kuo-Hsing; Liu, Pei-Shan; Kuo, Jung-Kuei; Chueh, Sheau-Huei

    2015-08-01

    Baicalein is a flavonoid inhibitor of 12-lipoxygenase. Here, we investigated its effect on hydrogen peroxide-induced damage to NG108-15 cells. Hydrogen peroxide activated the mitochondrial apoptotic pathway, decreased Nrf2 expression, increased reactive oxygen species (ROS) levels, reduced viability, and increased cell death after 2-24 h treatment of NG108-15 cells. Co-treatment with hydrogen peroxide and baicalein completely suppressed the activation of mitochondrial apoptotic pathway by upregulating Nrf2 expression and reducing ROS stress and partially inhibited the effects on cell viability and cell death. Silencing of 12-lipoxygenase had a similar protective effect to baicalein on hydrogen peroxide-induced damage by blocking the hydrogen peroxide-induced decrease in Nrf2 expression and increase in ROS levels. Neither protective effect was altered by addition of 12-hydroxyeicosatetraenoic acid, the product of 12-lipoxygenase, suggesting that hydrogen peroxide induced damage via 12-lipoxygenase by another, as yet unknown, mechanism, rather than activating it. Co-treatment of cells with hydrogen peroxide and N-acetylcysteine or the Nrf2 inducer sulforaphane reduced hydrogen peroxide-induced damage in a similar fashion to baicalein, while the Nrf2 inhibitor retinoic acid blocked the protective effect of baicalein. Silencing Nrf2 also inhibited the protective effects of baicalein, sulforaphane, and N-acetylcysteine and resulted in high ROS levels, suggesting ROS elimination was mediated by Nrf2. Taken together our results suggest that baicalein protects cells from hydrogen peroxide-induced activation of the mitochondrial apoptotic pathway by upregulating Nrf2 and inhibiting 12-lipoxygenase to block the increase in ROS levels. Hydrogen peroxide also activates a second mitochondrial dysfunction independent death pathway which is resistant to baicalein.

  12. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  13. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract.

    PubMed

    Ajila, C M; Prasada Rao, U J S

    2008-01-01

    Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic and cytoprotective activities and other therapeutic properties. Mango peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids and others. In the present study, the protective effect of peel extracts of unripe and ripe mango fruits of two varieties namely, Raspuri and Badami on hydrogen peroxide induced hemolysis, lipid peroxidation, degradation of membrane proteins and its morphological changes are reported. The oxidative hemolysis of rat erythrocytes by hydrogen peroxide was inhibited by mango peel extract in a dose dependent manner. The IC(50) value for lipid peroxidation inhibition on erythrocyte ghost membrane was found to be in the range of 4.5-19.3 microg gallic acid equivalents. The mango peel extract showed protection against membrane protein degradation caused by hydrogen peroxide. Morphological changes to erythrocyte membrane caused by hydrogen peroxide were protected by mango peel extract. The results demonstrated that mango peel extracts protected erythrocytes against oxidative stress and may impart health benefits and it could be used as a valuable food ingredient or a nutraceutical product.

  14. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored... Responsibilities of a Licensee § 420.66 Separation distance requirements for storage of hydrogen peroxide... section for each explosive hazard facility storing: (1) Hydrogen peroxide in concentrations of...

  15. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored... Responsibilities of a Licensee § 420.66 Separation distance requirements for storage of hydrogen peroxide... section for each explosive hazard facility storing: (1) Hydrogen peroxide in concentrations of...

  16. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGES

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.« less

  17. Selective electrochemical generation of hydrogen peroxide from water oxidation

    SciTech Connect

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  18. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation.

    PubMed

    Viswanathan, Venkatasubramanian; Hansen, Heine A; Nørskov, Jens K

    2015-11-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

  19. Hydrogen peroxide sensor using laser grade dye Rhodamine B

    NASA Astrophysics Data System (ADS)

    Pattanaik, Amitansu; Sahare, P. D.; Nanda, Maitreyee

    2007-11-01

    Many chemical sensors based on fluorescence spectroscopy have been reported in applications, ranging from biomedical and environmental monitoring to industrial process control. In these diverse applications, the analyte can be probed directly, by measuring its intrinsic absorption, or by incorporating some transduction mechanism such as reagent chemistry to enhance sensitivity and selectivity. Hydrogen Peroxide is a colorless liquid. It is a common oxidizing and bleaching agent. It plays an important role in High Power Laser such as Chemical Oxygen Iodine Laser (COIL). As it is on the Hazardous substance list and on the special health hazard substance list, detection of Hydrogen Peroxide is of great importance. In the present study the detection of hydrogen Peroxide is by fluorescence quenching of laser grade dye Rhodamine B. Estimation of rate constant of the bimolecular quenching reaction is made.

  20. Oxidative desulfurization of Tufanbeyli coal by hydrogen peroxide solution

    SciTech Connect

    Guru, M.; Sarioz, B.V.; Cakanyildirim, C.

    2008-07-01

    It is becoming popular to use fossil fuels efficiently since the necessary energy is mostly supplied from fossil fuels. Altough there are high lignite reserves, high sulfur content limits the efficient use of them. In this article, we aimed to convert combustible sulfur in coal to non-combustible sulfate form in the ash by oxidizing it with a hydrogen peroxide solution. The parameters affecting the sulfur conversion were determined to be: hydrogen peroxide concentration, reaction time, mean particle size at constant room temperature and shaking rate. The maximum desulfurization efficiency reached was 74% of the original combustible sulfur with 15% (w/w) hydrogen peroxide solution, 12 hours of reaction time, and 0.25 mm mean particle size.

  1. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways.

    PubMed

    Mhamdi, Amna; Hager, Jutta; Chaouch, Sejir; Queval, Guillaume; Han, Yi; Taconnat, Ludivine; Saindrenan, Patrick; Gouia, Houda; Issakidis-Bourguet, Emmanuelle; Renou, Jean-Pierre; Noctor, Graham

    2010-07-01

    Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.

  2. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.

    PubMed

    Guinea, Elena; Arias, Conchita; Cabot, Pere Lluís; Garrido, José Antonio; Rodríguez, Rosa María; Centellas, Francesc; Brillas, Enric

    2008-01-01

    Solutions containing 164 mg L(-1) salicylic acid of pH 3.0 have been degraded by electrochemical advanced oxidation processes such as anodic oxidation, anodic oxidation with electrogenerated H(2)O(2), electro-Fenton, photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Their oxidation power has been comparatively studied in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and a graphite or O(2)-diffusion cathode. In the three latter procedures, 0.5mM Fe(2+) is added to the solution to form hydroxyl radical (()OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the O(2)-diffusion cathode. Total mineralization is attained for all methods with BDD and for photoelectro-Fenton and solar photoelectro-Fenton with Pt. The poor decontamination achieved in anodic oxidation and electro-Fenton with Pt is explained by the slow removal of most pollutants by ()OH formed from water oxidation at the Pt anode in comparison to their quick destruction with ()OH produced at BDD. ()OH generated from Fenton's reaction oxidizes rapidly all aromatic pollutants, but it cannot destroy final Fe(III)-oxalate complexes. Solar photoelectro-Fenton treatments always yield quicker degradation rate due to the very fast photodecarboxylation of these complexes by UVA irradiation supplied by solar light. The effect of current density on the degradation rate, efficiency and energy cost of all methods is examined. The salicylic acid decay always follows a pseudo-first-order kinetics. 2,3-Dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic, alpha-ketoglutaric, glycolic, glyoxylic, maleic, fumaric, malic, tartronic and oxalic acids are detected as oxidation products. A general reaction sequence for salicylic acid mineralization considering all these intermediates is proposed.

  3. Microwave-assisted oxidative digestion of lignin with hydrogen peroxide for TOC and color removal.

    PubMed

    Ouyang, Xinping; Huang, Xiangzhen; Ruan, Tao; Qiu, Xueqing

    2015-01-01

    Dilute lignin solution was successfully digested into colorless and clarified liquor under microwave-assisted oxidative digestion with hydrogen peroxide. High dosage of hydrogen peroxide is needed to effectively digest lignin, but excessive hydrogen peroxide may lead to recondensation of formed fragments in digested lignin. Microwave irradiation greatly facilitates the oxidative digestion of lignin. Compared with conventional heating technique, microwave-assisted digestion achieves the same or higher digestion rate within a shorter time and/or at lower temperature. After digestion, total organic carbon content of lignin solution decreases by 93.9%, and a small amount of aliphatic alkane, alcohol, acid and ester are formed via the cleavage of aromatic rings as well as the deprivation of side chains in original lignin. This work provides an alternative way to efficiently treat spent pulping liquor. PMID:25714638

  4. Microwave-assisted oxidative digestion of lignin with hydrogen peroxide for TOC and color removal.

    PubMed

    Ouyang, Xinping; Huang, Xiangzhen; Ruan, Tao; Qiu, Xueqing

    2015-01-01

    Dilute lignin solution was successfully digested into colorless and clarified liquor under microwave-assisted oxidative digestion with hydrogen peroxide. High dosage of hydrogen peroxide is needed to effectively digest lignin, but excessive hydrogen peroxide may lead to recondensation of formed fragments in digested lignin. Microwave irradiation greatly facilitates the oxidative digestion of lignin. Compared with conventional heating technique, microwave-assisted digestion achieves the same or higher digestion rate within a shorter time and/or at lower temperature. After digestion, total organic carbon content of lignin solution decreases by 93.9%, and a small amount of aliphatic alkane, alcohol, acid and ester are formed via the cleavage of aromatic rings as well as the deprivation of side chains in original lignin. This work provides an alternative way to efficiently treat spent pulping liquor.

  5. Hydrogen Peroxide Gas Generator Cycle with a Reciprocating Pump

    SciTech Connect

    Whitehead, J C

    2002-06-11

    A four-chamber piston pump is powered by decomposed 85% hydrogen peroxide. The performance envelope of the evolving 400 gram pump has been expanded to 172 cc/s water flow at discharge pressures near 5 MPa. A gas generator cycle system using the pump has been tested under similar conditions of pressure and flow. The powerhead gas is derived from a small fraction of the pumped hydrogen peroxide, and the system starts from tank pressures as low as 0.2 MPa. The effects of steam condensation on performance have been evaluated.

  6. The electrochemistry of SIMFUEL in dilute alkaline hydrogen peroxide solutions

    NASA Astrophysics Data System (ADS)

    Goldik, Jon

    The work described in this thesis is a study of the electrochemistry of SIMFUEL (SIMulated nuclear FUEL) in dilute, alkaline hydrogen peroxide solutions. In the first set of experiments, the reaction of H2O 2 on SIMFUEL electrodes was studied electrochemically and under open circuit conditions in 0.1 mol L-1 NaCl solutions at pH 9.8. The composition of the oxidized UO2 surface was determined by X-ray photoelectron spectroscopy. Hydrogen peroxide reduction was found to be catalyzed by the formation of a mixed UIV/UV (UO 2+x) surface layer, but to be blocked by the accumulation of UVI species (UO3· yH2O or adsorbed (UO2)2+) on the electrode surface. The formation of this UVI layer blocks both H2O2 reduction and oxidation, thereby inhibiting the potentially rapid H2O2 decomposition reaction to H2O and O2. Decomposition is found to proceed at a rate controlled by the desorption of the adsorbed (UO2)2+ or reduction of adsorbed O2 species. Reduction of (O2) ads is coupled to the slow oxidative dissolution of UO2 and formation of a corrosion product deposit of UO3· yH2O. In the second series of experiments, the electrochemical reduction of hydrogen peroxide on SIMFUEL was studied using the steady-state polarization technique. Kinetic parameters for the reaction, such as Tafel slopes and reaction orders, were determined. The results were interpreted in terms of a chemical-electrochemical mechanism involving UIV/UV donor-acceptor reduction sites. The large values of the Tafel slopes and the fractional reaction orders with respect to H2O2 can be understood in terms of the potential-dependent surface coverage of active sites, similar to that observed in the reduction of hydrogen peroxide on oxidized copper surfaces. The effects of pH over the range 10-13 were also investigated. The H2O 2 reduction currents were nearly independent of pH in the range 10-11, but were slowed at more alkaline values. The change in pH dependence appears to be related to the acid-base properties

  7. Study of use of different types of hydrogen peroxides (2006-2008).

    PubMed

    Vissers, Marc; Van Parys, Pieter; Audenaert, Joachim; Kerger, Pierrot; De Windt, Wim; Dick, Jan; Gobin, Bruno

    2009-01-01

    Hydrogen peroxides are commonly used in greenhouses for cleaning purposes and disinfection of irrigation water systems, i.e., to prevent clogging by duckweed (Lemna minor), algae and other (micro)organisms. This use contains a potential risk of involuntary contact to the plants, e.g., to roots through irrigation or to the plant leaves through accidental droplets (spraying mist). To help growers to maximize disinfection with minimal risks, the efficacy and plant safety of a variety of commercial available peroxide formulations were compared, i.e., pure peroxide products, peroxide products with additives: Ag, performic acid, peracetic acid and sorbitol. Starting from pure (clean and without fertilizers) irrigation water the peroxides with Ag-stabilisers were most stable and most effective for algae prevention. In screenings for the curative effect on algae, duckweed and bacteria the best results were obtained with peroxide formulations with performic acid. In plant safety tests on potted Ficus benjamina, sprays and irrigations above the plants gave no toxicity till 500 ppm a.i.; irrigations below the plants didn't show toxicity but the plant growth was reduced with weekly applications of 2000 ppm a.i. On the contrary several applications were risky on herbaceous plants, sometimes even with very low dosages (12.5 ppm peroxide).

  8. The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life.

    PubMed

    Ball, Rowena; Brindley, John

    2016-03-01

    It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.

  9. The Life Story of Hydrogen Peroxide III: Chirality and Physical Effects at the Dawn of Life

    NASA Astrophysics Data System (ADS)

    Ball, Rowena; Brindley, John

    2016-03-01

    It is a remarkable observed fact that all life on Earth is homochiral, its biology using exclusively the D-enantiomer of ribose, the sugar moiety of the ribonucleic acids, and the L-enantiomers of the chiral amino acids. Motivated by concurrent work that elaborates further the role of hydrogen peroxide in providing an oscillatory drive for the RNA world (Ball & Brindley 2015a, J. R. Soc. Interface 12, 20150366, and Ball & Brindley 2015b, this journal, in press), we reappraise the structure and physical properties of this small molecule within this context. Hydrogen peroxide is the smallest, simplest molecule to exist as a pair of non-superimposable mirror images, or enantiomers, a fact which leads us to develop the hypothesis that its enantiospecific interactions with ribonucleic acids led to enantioselective outcomes. We propose a mechanism by which these chiral interactions may have led to amplification of D-ribonucleic acids and extinction of L-ribonucleic acids.

  10. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  11. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  12. Polarographic study of hydrogen peroxide anodic current and its application to antioxidant activity determination.

    PubMed

    Sužnjević, Desanka Ž; Pastor, Ferenc T; Gorjanović, Stanislava Ž

    2011-09-15

    Behavior of hydrogen peroxide in alkaline medium has been studied by direct current (DC) polarography with dropping mercury electrode (DME) aiming to apply it in antioxidant (AO) activity determination. Development of a peroxide anodic current having form of a peak, instead of common polarographic wave, has been investigated. As a base for this investigation the interaction of H(2)O(2) with anodically dissolved mercury was followed. Formation of mercury complex [Hg(O(2)H)(OH)] has been confirmed. The relevant experimental conditions, such as temperature, concentration and pH dependence, as well as time stability of hydrogen peroxide anodic current, have been assessed. Development of an AO assay based on decrease of anodic current of hydrogen peroxide in the presence of antioxidants (AOs) has been described. Under optimized working conditions, a series of benzoic acids along with corresponding cinnamate analogues have been tested for hydrogen peroxide scavenging activity. In addition, the assay versatility has been confirmed on various complex samples.

  13. Solvothermal method to prepare graphene quantum dots by hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Tian, Renbing; Zhong, Suting; Wu, Juan; Jiang, Wei; Shen, Yewen; Jiang, Wei; Wang, Tianhe

    2016-10-01

    Graphene quantum dots (GQDs) have been synthesized by different chemical methods in recent years. For conventional chemical methods, it is inevitable to introduce a large amount of impurities in the preparation process. Long time of dialysis process increases the time cost extremely. Herein, we report a one-step solvothermal method for synthesizing GQDs with the application of hydrogen peroxide in N, N-Dimethylformamide (DMF) environment, which completely avoids the use of concentrated sulphuric acid and nitric acid to treat raw material and introduces no impurity in whole preparation process simultaneously for the first time. Pure GQDs can be obtained after evaporation/redissolution and filtration process with a strong blue emission at 15% quantum yield. This solvothermal method, not requiring dialysis process and complicated equipments, exhibits simple, eco-friendly and low time-cost properties. Besides high quantum yields, the as-prepared GQDs also show good photoluminescence stability in different pH conditions. The optical properties, morphology and structure of GQDs were studied by various equipments, implying potential application in biomedical fields and electronic device.

  14. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis

    PubMed Central

    Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Pavlides, Stephanos; Whitaker-Menezes, Diana; Pestell, Richard G; Howell, Anthony

    2011-01-01

    In 1889, Dr. Stephen Paget proposed the “seed and soil” hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary “fertilizer,” by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other antioxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism. PMID:21734470

  15. Hydrogen peroxide as a fungicide for fish culture

    USGS Publications Warehouse

    Dawson, V.K.; Rach, J.J.; Schreier, T.M.

    1994-01-01

    Antifungal agents are needed to maintain healthy stocks of fish in the intensive culture systems currently employed in fish hatcheries. Malachite green has been the most widely used antifungal agent; however, its potential for producing teratology in animals and fish precludes further use in fish culture. Preliminary studies at the National Fisheries Research Center, La Crosse, WI, USA (La Crosse Center) indicate that hydrogen peroxide is effective for control of Saprolegnia sp. fungus on incubating eggs of rainbow trout. It is also effective against a wide variety of other organisms such as bacteria, yeasts, viruses, and spores, and has been proposed as a treatment for sea lice on salmon. Hydrogen peroxide and its primary decomposition products, oxygen and water, are not systemic poisons and are considered environmentally compatible. In response to a petition from the La Crosse Center, the U.S. Food and Drug Administration (FDA) recently classified hydrogen peroxide as a 'low regulatory priority' when used for control of fungus on fish and fish eggs. Preliminary tests conducted at the La Crosse Center suggest that prophylactic treatments of 250 to 500 ppm (based on 100% active ingredient) for 15 minutes every other day will inhibit fungal infections on healthy rainbow trout (Oncorhynchus mykiss) eggs. This treatment regime also seems to inhibit fungal development and increase hatching success among infected eggs. Efficacy and safety of hydrogen peroxide as a fungicide for fish are currently being evaluated.

  16. Inactivation of penicillin G in milk using hydrogen peroxide.

    PubMed

    Hanway, W H; Hansen, A P; Anderson, K L; Lyman, R L; Rushing, J E

    2005-02-01

    Milk antibiotic residues have been a public concern in recent years. The Grade A Pasteurized Milk Ordinance mandates that raw Grade A milk will test negative for beta-lactam antibiotic residues before processing. The purpose of this research was to investigate the ability of various levels of peroxide and heat to inactivate penicillin G in raw milk. Whole milk spiked to a mean of 436 +/- 15.1 (standard error of the mean) ppb of potassium penicillin G was treated with hydrogen peroxide at levels of 0.0, 0.09, 0.17, and 0.34%. Samples at each peroxide level (n = 6 per treatment) were treated as follows: 1) incubated at 54.4 degrees C for 3 h, 2) pasteurized at 62.8 degrees C for 30 min, 3) incubated and pasteurized as in treatments 1 and 2, or 4) received no further treatment. A beta-lactam competitive microbial receptor assay was used for quantification of penicillin G. Concentrations of penicillin in selected samples were determined by HPLC for a comparison of test methods. Treatments were evaluated relative to their ability to reduce milk penicillin G levels to below the safe level of 5 ppb. The 0.09% hydrogen peroxide level was ineffective for all treatments. Hydrogen peroxide at 0.17% lowered the mean penicillin G (+/- SEM) from 436 +/- 15.1 to 6 +/- 1.49 ppb using the incubated and pasteurized heat treatment. The 0.34% concentration of hydrogen peroxide was the most effective, inactivating penicillin G to a level well below the safe level of 5 ppb with the pasteurized heat treatment, with or without incubation.

  17. Toxicity of hydrogen peroxide treatments to rainbow trout eggs

    USGS Publications Warehouse

    Gaikowski, M.P.; Rach, J.J.; Olson, J.J.; Ramsay, R.T.

    1998-01-01

    Hydrogen peroxide treatments of 0, 500, 1,000, and 3,000 I?L/L, concentrations that were multiples of the Low Regulatory Priority limit of 500 I?L/L, were administered for 15 min every weekday (Mondaya??Friday) to eggs of rainbow trout Oncorhynchus mykiss and steelhead (anadromous rainbow trout) to determine the margin of safety existing for standard egg treatments. All untreated and treated eggs remained free of fungal infection throughout incubation. Hydrogen peroxide treatment reduced the mean percent hatch of rainbow trout eggs by 1.4a??5.9% among those treated at 500 I?L/L, 6.8a??15.4% among those treated at 1,000 I?L/L, and 13.2a??25.3% among those treated at 3,000 I?L/L. Mean percent hatch of rainbow trout eggs treated at 1,000 I?L H2O2/L was 7% lower than that for eggs treated at 500 I?L H2O2/L. Mean percent hatch of Skamania strain steelhead was significantly reduced by hydrogen peroxide treatment, whereas the mean percent hatch of Ganaraska strain steelhead was similar to the mean percent hatch of rainbow trout eggs. Daily percent mortality of rainbow trout eggs increased significantly from day 6 to day 10 (78a??135 daily temperature units, DTUsA?C) of incubation. Discontinuing hydrogen peroxide treatments to Skamania strain steelhead eggs from day 7 to day 11 (78a??105 DTUsA?C) of incubation significantly increased the probability of eggs reaching the eyed egg stage. The mean percent hatch of rainbow trout eggs treated with hydrogen peroxide at concentrations up to 1,000 I?L/L may be increased if no treatments are administered between 70 and 140 DTUsA?C. Mortality of sac fry was not observed at hydrogen peroxide concentrations of 1,000 I?L/L or lower. Fish culturists should be aware that other species or strains may be more sensitive than rainbow trout. Other species and strains should be initially treated with hydrogen peroxide at 500 I?L/L until monitoring of egg mortality identifies the presence or absence of a sensitive period.

  18. Effect of hydrogen peroxide on ejection of cell nucleus from pigeon erythrocytes and state of membrane lipids.

    PubMed

    Devyatkin, A A; Revin, V V; Yudanov, M A; Kozlova, O V; Samuilov, V D

    2006-02-01

    The nuclei are ejected from the pigeon erythrocytes and apoptotic vesicles form in these cells in the presence of hydrogen peroxide. Hydrogen peroxide intensifies LPO processes and changes phospholipid content. The relative content of phosphatidylcholine, sphingomyelin, and phosphatidylserine decreased, while that of phosphatidylethanolamine and lisophosphatidylcholine increased. The content of unsaturated fatty acids also decreased under these conditions. Presumably, these changes in the lipid phase of the erythrocyte membrane are a mechanism preparing the cell to nucleus ejection and apoptosis.

  19. Flow injection determination of hydrogen peroxide using catalytic effect of cobalt(II) ion on a dye formation reaction.

    PubMed

    Kurihara, Makoto; Muramatsu, Miyuki; Yamada, Mari; Kitamura, Naoya

    2012-07-15

    A novel flow injection photometric method was developed for the determination of hydrogen peroxide in rainwater. This method is based on a cobalt(II)-catalyzed oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone (MBTH) with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (DAOS) as a modified Trinder's reagent to produce intensely colored dye (λ(max)=530nm) in the presence of hydrogen peroxide at pH 8.4. In this method, 1,2-dihydroxy-3,5-benzenedisulfonic acid (Tiron) acted as an activator for the cobalt(II)-catalyzed reaction and effectively increased the peak height for hydrogen peroxide. The linear calibration graphs were obtained in the hydrogen peroxide concentration range 5×10(-8) to 2.2×10(-6)mol dm(-3) at a sampling rate of 20h(-1). The relative standard deviations for ten determinations of 2.2×10(-6) and 2×10(-7)mol dm(-3) hydrogen peroxide were 1.1% and 3.7%, respectively. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater samples and the analytical results agreed fairly well with the results obtained by different two reference methods; peroxidase method and hydrogen peroxide electrode method.

  20. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  1. Contact Lens Solutions With Hydrogen Peroxide: To Avoid Injury, Follow All Instructions

    MedlinePlus

    ... For Consumers Consumer Updates Contact Lens Solutions With Hydrogen Peroxide: To Avoid Injury, Follow All Instructions Share Tweet ... Program . back to top Checklist for Solutions With Hydrogen Peroxide Talk to your eye-care provider before deciding ...

  2. 78 FR 73697 - New Animal Drugs; Hyaluronate Sodium; Hydrogen Peroxide; Imidacloprid and Moxidectin; Change of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ...; Hyaluronate Sodium; Hydrogen Peroxide; Imidacloprid and Moxidectin; Change of Sponsor AGENCY: Food and Drug... interest in, NADA 141-255 for PEROX-AID (hydrogen peroxide) 35% Solution to Western Chemical, Inc.,...

  3. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis

    PubMed Central

    Yang, Wan Seok; Kim, Katherine J.; Gaschler, Michael M.; Patel, Milesh; Shchepinov, Mikhail S.

    2016-01-01

    Ferroptosis is form of regulated nonapoptotic cell death that is involved in diverse disease contexts. Small molecules that inhibit glutathione peroxidase 4 (GPX4), a phospholipid peroxidase, cause lethal accumulation of lipid peroxides and induce ferroptotic cell death. Although ferroptosis has been suggested to involve accumulation of reactive oxygen species (ROS) in lipid environments, the mediators and substrates of ROS generation and the pharmacological mechanism of GPX4 inhibition that generates ROS in lipid environments are unknown. We report here the mechanism of lipid peroxidation during ferroptosis, which involves phosphorylase kinase G2 (PHKG2) regulation of iron availability to lipoxygenase enzymes, which in turn drive ferroptosis through peroxidation of polyunsaturated fatty acids (PUFAs) at the bis-allylic position; indeed, pretreating cells with PUFAs containing the heavy hydrogen isotope deuterium at the site of peroxidation (D-PUFA) prevented PUFA oxidation and blocked ferroptosis. We further found that ferroptosis inducers inhibit GPX4 by covalently targeting the active site selenocysteine, leading to accumulation of PUFA hydroperoxides. In summary, we found that PUFA oxidation by lipoxygenases via a PHKG2-dependent iron pool is necessary for ferroptosis and that the covalent inhibition of the catalytic selenocysteine in Gpx4 prevents elimination of PUFA hydroperoxides; these findings suggest new strategies for controlling ferroptosis in diverse contexts. PMID:27506793

  4. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.

    PubMed

    Yang, Wan Seok; Kim, Katherine J; Gaschler, Michael M; Patel, Milesh; Shchepinov, Mikhail S; Stockwell, Brent R

    2016-08-23

    Ferroptosis is form of regulated nonapoptotic cell death that is involved in diverse disease contexts. Small molecules that inhibit glutathione peroxidase 4 (GPX4), a phospholipid peroxidase, cause lethal accumulation of lipid peroxides and induce ferroptotic cell death. Although ferroptosis has been suggested to involve accumulation of reactive oxygen species (ROS) in lipid environments, the mediators and substrates of ROS generation and the pharmacological mechanism of GPX4 inhibition that generates ROS in lipid environments are unknown. We report here the mechanism of lipid peroxidation during ferroptosis, which involves phosphorylase kinase G2 (PHKG2) regulation of iron availability to lipoxygenase enzymes, which in turn drive ferroptosis through peroxidation of polyunsaturated fatty acids (PUFAs) at the bis-allylic position; indeed, pretreating cells with PUFAs containing the heavy hydrogen isotope deuterium at the site of peroxidation (D-PUFA) prevented PUFA oxidation and blocked ferroptosis. We further found that ferroptosis inducers inhibit GPX4 by covalently targeting the active site selenocysteine, leading to accumulation of PUFA hydroperoxides. In summary, we found that PUFA oxidation by lipoxygenases via a PHKG2-dependent iron pool is necessary for ferroptosis and that the covalent inhibition of the catalytic selenocysteine in Gpx4 prevents elimination of PUFA hydroperoxides; these findings suggest new strategies for controlling ferroptosis in diverse contexts. PMID:27506793

  5. Ternary Composite of Hemin, Gold Nanoparticles and Graphene for Highly Efficient Decomposition of Hydrogen Peroxide

    PubMed Central

    Lv, Xincong; Weng, Jian

    2013-01-01

    A ternary composite of hemin, gold nanoparticles and graphene is prepared by a two-step process. Firstly, graphene-hemin composite is synthesized through π-π interaction and then hydrogen tetracholoroauric acid is reduced in situ by ascorbic acid. This ternary composite shows a higher catalytic activity for decomposition of hydrogen peroxide than that of three components alone or the mixture of three components. The Michaelis constant of this composite is 5.82 times lower and the maximal reaction velocity is 1.81 times higher than those of horseradish peroxidase, respectively. This composite also shows lower apparent activation energy than that of other catalysts. The excellently catalytic performance could be attributed to the fast electron transfer on the surface of graphene and the synergistic interaction of three components, which is further confirmed by electrochemical characterization. The ternary composite has been used to determine hydrogen peroxide in three real water samples with satisfactory results. PMID:24257652

  6. Application of a newly developed hydrogen peroxide vapor phase sensor to HPV sterilizer.

    PubMed

    Taizo, I; Sinichi, A; Kawamura, K

    1998-01-01

    A new type of concentration sensor for hydrogen peroxide vapor has been developed by making use of a semiconductor. Output from the vapor sensor has been shown to have a good linear relationship with the logarithm of the concentration of hydrogen peroxide vapor. Concentration of hydrogen peroxide vapor introduced into the sterilization chamber could be kept constant by monitoring the concentration of the hydrogen peroxide vapor continuously and controlling the vapor supply. Temperature and humidity have also been kept constant. D-values for B. stearothermophilus ATCC 12980 at various concentrations of hydrogen peroxide vapor have been determined by using the combination system of the hydrogen peroxide vapor sensor, the hydrogen peroxide vapor supplier, thermosensor and humidity sensor. D-values at the temperature of 30 degrees C and the absolute humidity of 0.7 mg H2O/L thus obtained, were 0.2 minutes at hydrogen peroxide concentration of 600 ppm and 1.2 minutes at 200 ppm at the temperature of 30 degrees C and 0.7 mg/L absolute humidity. D-values for B. stearothermophilus ATCC 12980 at various temperatures, humidity and levels of hydrogen peroxide concentration have also been determined. These fundamental data indicate that the sterilization by hydrogen peroxide vapor can be validated as precisely as steam sterilization by measuring and controlling the concentration of hydrogen peroxide vapor using a combination of the hydrogen peroxide concentration sensor and the vapor generator. Influence of temperature and humidity have also been studied. The hydrogen peroxide sensor has been calibrated and standardized by using the standard hydrogen peroxide vapor whose concentration has been determined by calculating partial pressure of hydrogen peroxide over the water-hydrogen peroxide solution. PMID:9542409

  7. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  8. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely...

  9. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  10. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  11. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  12. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Silver nitrate and hydrogen peroxide solution. 172... Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used in accordance with the...

  13. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  14. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  15. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely...

  16. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on...

  17. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely...

  18. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely...

  19. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  20. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  1. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to...

  2. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    SciTech Connect

    Nyman, May D.; Hobbs, David T.

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  3. Fluorescence hydrogen peroxide probe based on a microstructured polymer optical fiber modified with a titanium dioxide film.

    PubMed

    Li, Dongdong; Wang, Lili

    2010-05-01

    A highly sensitive microstructured polymer optical fiber (MPOF) probe for hydrogen peroxide was made by forming a rhodamine 6G-doped titanium dioxide film on the side walls of array holes in an MPOF. It was found that hydrogen peroxide only has a response to the MPOF probe in a certain concentration of potassium iodide in sulfuric acid solution. The calibration graph of fluorescence intensity versus hydrogen peroxide concentration is linear in the range of 1.6 x 10(-7) mol/L to 9.6 x 10(-5) mol/L. The method, with high sensitivity and a wide linear range, has been applied to the determination of trace amounts of hydrogen peroxide in a few real samples, such as rain water and contact lens disinfectant, with satisfactory results.

  4. Effect of ultrasonic pre-treatment of thermomechanical pulp on hydrogen peroxide bleaching

    NASA Astrophysics Data System (ADS)

    Loranger, E.; Charles, A.; Daneault, C.

    2012-12-01

    Ultrasound pre-treatments of softwood TMP had been carried to evaluate its impact on the efficiency of hydrogen peroxide bleaching. The trials were performed after a factorial design of experiment using frequency, power and time as variables. The experiments were conducted in an ultrasonic bath and then bleached with hydrogen peroxide. Measurements such as brightness, L*A*B* color system coordinate, residual hydrogen peroxide and metal content were evaluated on bleached pulp. The results indicate that the effect of ultrasonic treatment on brightness was dependent on the ultrasound frequency used; the brightness increased slightly at 68 kHz and decreased at 40 and 170 kHz. These results were correlated to the ultrasound effect on the generation of transition metals (copper, iron and manganese) which are responsible for catalytic decomposition of hydrogen peroxide. The influence of metal interference was minimized by using a chelating agent such as diethylene triamine pentaacetic acid (DTPA). With the results obtained in this study we have identified a set of option conditions, e.g. 1000 W, 40 kHz, 1.5 % consistency and 0.2% addition of DTPA prior to the bleaching stage (after ultrasonic pre-treatment) who improve brightness by 2.5 %ISO.

  5. Heme degradation upon production of endogenous hydrogen peroxide via interaction of hemoglobin with sodium dodecyl sulfate.

    PubMed

    Salehi, N; Moosavi-Movahedi, A A; Fotouhi, L; Yousefinejad, S; Shourian, M; Hosseinzadeh, R; Sheibani, N; Habibi-Rezaei, M

    2014-04-01

    In this study the hemoglobin heme degradation upon interaction with sodium dodecyl sulfate (SDS) was investigated using UV-vis and fluorescence spectroscopy, multivariate curve resolution analysis, and chemiluminescence method. Our results showed that heme degradation occurred during interaction of hemoglobin with SDS producing three fluorescent components. We showed that the hydrogen peroxide, produced during this interaction, caused heme degradation. In addition, the endogenous hydrogen peroxide was more effective in hemoglobin heme degradation compared to exogenously added hydrogen peroxide. The endogenous form of hydrogen peroxide altered oxyHb to aquamethemoglobin and hemichrome at low concentration. In contrast, the exogenous hydrogen peroxide lacked this ability under same conditions.

  6. Quantification of peroxide ion passage in dentin, enamel, and cementum after internal bleaching with hydrogen peroxide.

    PubMed

    Palo, R M; Bonetti-Filho, I; Valera, M C; Camargo, C H R; Camargo, Sea; Moura-Netto, C; Pameijer, C

    2012-01-01

    The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 μL of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 μL of leuco-crystal violet and 50 μL of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (α=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (p<0.01). The GC group presented a significantly lower peroxide passage than did GD and GE (p<0.01). It can be concluded that the hydrogen peroxide placed into the pulp chamber passed through the

  7. Quantification of peroxide ion passage in dentin, enamel, and cementum after internal bleaching with hydrogen peroxide.

    PubMed

    Palo, R M; Bonetti-Filho, I; Valera, M C; Camargo, C H R; Camargo, Sea; Moura-Netto, C; Pameijer, C

    2012-01-01

    The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 μL of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 μL of leuco-crystal violet and 50 μL of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (α=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (p<0.01). The GC group presented a significantly lower peroxide passage than did GD and GE (p<0.01). It can be concluded that the hydrogen peroxide placed into the pulp chamber passed through the

  8. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  9. Ozonation of deciduous wood in the presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Kharlanov, A. N.; Fionov, A. V.; Lunin, V. V.

    2011-10-01

    The kinetic curves of the dependence of ozone specific absorption ( Q r, sp ) upon aspen wood ozonation in the presence and absence of hydrogen peroxide are obtained. It is established that the rate of ozone and Q r, sp absorption increase in the O3/H2O2 system. It is demonstrated by ESR, IR, and UV spectroscopy of diffuse reflection that wood ozonation in the O3/H2O2 system results in the destruction of lignin aromatic and quinoid structures. The ozonation process in the presence of H2O2 is accompanied by destruction of the carbohydrate component of the lignocarbohydrate complex. We conclude that O3/H2O2 can be used in the deep delignification of wood. It is shown that the presence of hydrogen peroxide upon ozonation increases the efficiency of the process, allowing its duration and total ozone consumption to be reduced.

  10. Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice.

    PubMed

    Ren, C G; Li, X; Liu, X L; Wei, X D; Dai, C C

    2014-01-01

    In this study, we investigated the photosynthetic physiological basis in 'PC' transgenic rice (Oryza sativa L.), showing high-level expression of the gene encoding C4 phosphoenolpyruvate carboxylase (pepc), by hydrogen peroxide (H2O2). The C4-PEPC gene (pepc) from maize in the transgenic rice plants was checked by PCR. Comparison of yield components and photosynthetic indices between PC and untransformed wild-type (WT) plants indicated that increased yield in PC was associated with higher net photosynthetic rate and higher activities of phosphoenolpyruvate carboxylase (PEPC). Both PC and WT plants were treated with 1 mmol L(-1) abscisic acid (ABA), 0.04% 1-butanol (BA), 2 mmol L(-1) neomycin (NS), or 2 mmol L(-1) diphenyleneiodonium chloride (DPI) to investigate the relationship between photosynthesis and levels of H2O2 and phosphatidic acid. In both PC and WT, ABA induced H2O2 generation and simultaneous decrease in stomatal conductance (g(s)). PC plants treated with BA showed decreased H2O2 content and strongly increased g(s) within 2 h of treatment. Similar results were observed in response to DPI treatment in PC. However, WT did not observe the decrease of H2O2 during the treatments of BA and DPI. The reduced H2O2 content in PC caused by BA treatment differed to that induced by DPI because BA did not inhibit NADPH oxidase activities. While BA induced a larger PEPC activity in PC, and higher catalase activity as well. These results indicated that the regulation of endogenous H2O2 metabolism of PC could be helpful for enhancing photosynthetic capability.

  11. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1)

    SciTech Connect

    Whitehead, J C

    1998-07-13

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable benchtop propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  12. SONEX-Hydrogen Peroxide, Methylhydroperoxide and Formaldehyde Measurements

    NASA Technical Reports Server (NTRS)

    Heikes, Brian

    1999-01-01

    We measured gas phase H2O2, CH3OOH, and CH2O on board the NASA DC-8 during the SONEX field mission, presented preliminary results at three scientific meetings, participated in two data workshops and contributed to joint publications of final results. The observations of peroxides and formaldehyde were instrumental in assessing odd-hydrogen radical chemistry, ozone chemistry, and in tracing meteorological transport paths.

  13. Ultraviolet absorption spectrum of hydrogen peroxide vapor. [for atmospheric abundances

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Schinke, S. D.; Molina, M. J.

    1977-01-01

    The ultraviolet absorption cross sections of hydrogen peroxide vapor have been determined over the wavelength range 210 to 350 nm at 296 K. At the longer wavelengths, the gas phase absorptivities are significantly larger than the corresponding values in condensed phase. The atmospheric H2O2 photodissociation rate for overhead sun at the earth's surface is estimated to be about 1.3 x 10 to the -5th/sec.

  14. Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide.

    PubMed

    Mehrdad, Abbas; Hashemzadeh, Robab

    2010-01-01

    In this research, degradation of Rodamine B in the presence of (hydrogen peroxide), (hydrogen peroxide+ultrasound), (hydrogen peroxide+aluminum oxide), (hydrogen peroxide+aluminum oxide+ultrasound with different ultrasound power), (hydrogen peroxide+iron oxide) and (hydrogen peroxide+iron oxide+ultrasound with different ultrasound power) were investigated at 25 degrees C. The apparent rate constants for the examined systems were calculated by pseudo-first-order kinetics. The results indicate that the rate of degradation was accelerated by ultrasound. The rate of degradation was increased by increasing power ultrasound. The efficiency of the (hydrogen peroxide+iron oxide+ultrasound) system for degradation of Rodamine B was higher than the others examined.

  15. Microsolvation of methyl hydrogen peroxide: Ab initio quantum chemical approach

    NASA Astrophysics Data System (ADS)

    Kulkarni, Anant D.; Rai, Dhurba; Bartolotti, Libero J.; Pathak, Rajeev K.

    2009-08-01

    Methyl hydrogen peroxide (MHP), one of the simplest organic hydroperoxides, is a strong oxidant, with enhanced activity in aqueous ambience. The present study investigates, at the molecular level, the role of hydrogen bonding that is conducive to cluster formation of MHP with water molecules from its peroxide end, with the methyl group remaining hydrophobic for up to five water molecules. Ab initio quantum chemical computations on MHP⋯(H2O)n, [n =1-5] are performed at second order Møller-Plesset (MP2) perturbation theory employing the basis sets 6-31G(d,p) and 6-311++G(2d,2p) to study the cluster formation of MHP with water molecules from its peroxide end and hydrophobic hydration due to the methyl group. Successive addition of water molecules alters the hydrogen bonding pattern, which leads to changes in overall cluster geometry and in turn to IR vibrational frequency shifts. Molecular co-operativity in these clusters is gauged directly through a detailed many-body interaction energy analysis. Molecular electrostatic potential maps are shown to have a bearing on predicting further growth of these clusters, which is duly corroborated through sample calculations for MHP⋯(H2O)8. Further, a continuum solvation model calculation for energetically stable clusters suggests that this study should serve as a precursor for pathways to aqueous solvation of MHP.

  16. A reaction-diffusion model of cytosolic hydrogen peroxide.

    PubMed

    Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D

    2016-01-01

    As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels.

  17. Lichen metabolites modulate hydrogen peroxide and nitric oxide in mouse macrophages.

    PubMed

    Carlos, Iracilda Z; Quilles, Marcela B; Carli, Camila B A; Maia, Danielle C G; Benzatti, Fernanda P; Lopes, Thiago I B; Gianini, Aline S; Brum, Rosenei L; Vilegas, Wagner; dos Santos, Lourdes C; Honda, Neli K

    2009-01-01

    The activities of perlatolic acid (1), atranorin (2), and lecanoric acid (3) and their derivatives, such as orsellinates and beta-methyl orsellinates obtained by alcoholysis, were assessed for stimulation of the release of hydrogen peroxide and nitric oxide in cultures of peritoneal macrophage cells from mice. The hydrogen peroxide production was estimated by oxidation of phenol red, while the Griess reagent was used to determine the nitric oxide production. 1 and 4-methoxy-ethyl orsellinate (XVII) were the compounds that induced the greatest release of H2O2, whereas n-pentyl orsellinate (IV), iso-propyl orsellinate (V), sec-butyl orsellinate (VI), and XVII induced a small release of NO. These results indicate that lichen products and their derivatives have potential immune-modulating activities. PMID:19957434

  18. Improving the hydrogen peroxide bleaching efficiency of aspen chemithermomechanical pulp by using chitosan.

    PubMed

    Li, Zongquan; Dou, Hongyan; Fu, Yingjuan; Qin, Menghua

    2015-11-01

    The presence of transition metals during the hydrogen peroxide bleaching of pulp results in the decomposition of hydrogen peroxide, which decreases the bleaching efficiency. In this study, chitosans were used as peroxide stabilizer in the alkaline hydrogen peroxide bleaching of aspen chemithermomechanical pulp (CTMP). The results showed that the brightness of the bleached CTMP increased 1.5% ISO by addition of 0.1% chitosan with 95% degree of deacetylation during peroxide bleaching. Transition metals in the form of ions or metal colloid particles, such as iron, copper and manganese, could be adsorbed by chitosans. Chitosans could inhibit the decomposition of hydrogen peroxide catalyzed by different transition metals under alkaline conditions. The ability of chitosans to inhibit peroxide decomposition depended on the type of transition metals, chitosan concentration and degree of deacetylation applied. The addition of chitosan slightly reduced the concentration of the hydroxyl radical formed during the hydrogen peroxide bleaching of aspen CTMP.

  19. Prostaglandins attenuate cardiac contractile dysfunction produced by free radical generation but not by hydrogen peroxide.

    PubMed

    Zimmer, K M; Karmazyn, M

    1997-11-01

    The aim of this study was to examine and compare the potential influence of cyclooxygenase or lipoxygenase derived metabolites of arachidonic acid on myocardial injury produced either by a free radical generating system consisting of purine plus xanthine oxidase or that produced by hydrogen peroxide. A free radical generating system consisting of purine (2.3 mM) and xanthine oxidase (10 U/L) as well as hydrogen peroxide (75 microM) produced significant functional changes in the absence of either significant deficits in high energy phosphates or ultrastructural damage. Prostaglandin F2 alpha (30 nM) significantly attenuated both the negative inotropic effect of purine plus xanthine oxidase as well as the ability of the free radical generator to elevate diastolic pressure. An identical concentration of prostaglandin 12 (prostacyclin) significantly reduced diastolic pressure elevation only and had no effect on contractile depression. The salutary effects of the two PGs occurred in the absence of any inhibitory influence on superoxide anion generation produced by the purine and xanthine oxidase reaction. None of prostaglandins modulated the response to hydrogen peroxide. In addition, neither prostaglandin E2 nor leukotrienes exerted any effect on changes produced by either type of oxidative stress. A 5 fold elevation in the concentrations of free radical generators or hydrogen peroxide produced extensive injury as characterized by a virtual total loss in contractility, 400% elevation in diastolic pressure, ultrastructural damage and significant depletions in high energy phosphate content. None of these effects were modulated by eicosanoid treatment. Our results therefore demonstrate a selective ability of both prostaglandin F2 alpha and to a lesser extent prostacyclin, to attenuate dysfunction produced by purine plus xanthine oxidase but not hydrogen peroxide. It is possible that these eicosanoids may represent endogenous protective factors under conditions of enhanced

  20. Oxidation of 2,4-dinitrophenol by hydrogen peroxide in the presence of basic oxygen furnace slag.

    PubMed

    Li, Y S; You, Y H; Lien, E T

    1999-11-01

    A treatment process was developed when basic oxygen furnace slag (BOF slag) and hydrogen peroxide were used to oxidize 2, 4-dinitrophenol from an aqueous solution. BOF slag, final waste slurry from steel making plants, contains about 12.5% by weight of ferrous oxide. In an acid solution, BOF slag can be dissociated to produce ferrous ions and react with hydrogen peroxide to produce hydroxyl radicals and oxidize 2,4-dinitrophenol. The results of the research demonstrated that the process had a significant capacity for oxidation of 2,4-dinitrophenol from the aqueous phase. Various factors critical to the oxidation of 2,4-dinitrophenol were studied, including hydrogen peroxide concentration, concentration of BOF slag, initial concentration of 2,4-dinitrophenol, and pH value of solution. Experimental results proved that 100 mg/L 2, 4-dinitrophenol and its oxidation intermediate could be totally decomposed within 60 min by 10 g/L BOF slag, 0.18 g/L hydrogen peroxide and pH 2.8 +/- 0.2. The optimum hydrogen peroxide concentration for degradation of 100 mg/L of 2,4-dinitrophenol is between 0.09 g/L and 0.18 g/L as 10 g/L BOF slag in the solution of pH 2.8 +/- 0.2. A hydrogen peroxide concentration higher than 0.18 g/L is disadvantageous to the oxidation process. The oxidation efficiency increased with the increase of BOF slag concentration at 0.18 g/L hydrogen peroxide dose. The best pH value of the solution is in the vicinity of 2.8. An oxidation reaction mechanism was proposed for predicting the concentration changes of 2, 4-dinitrophenol, ferrous ion, and hydrogen peroxide.http://link. springer-ny.com/link/service/journals/00244/bibs/37n4p427.++ +html

  1. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion. PMID:23370866

  2. Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles.

    PubMed

    Kitis, M; Kaplan, S S

    2007-08-01

    The oxidative removal of natural organic matter (NOM) from waters using hydrogen peroxide and iron-coated pumice particles as heterogeneous catalysts was investigated. Two NOM sources were tested: humic acid solution and a natural source water. Iron coated pumice removed about half of the dissolved organic carbon (DOC) concentration at a dose of 3000 mg l(-1) in 24 h by adsorption only. Original pumice and peroxide dosed together provided UV absorbance reductions as high as 49%, mainly due to the presence of metal oxides including Al(2)O(3), Fe(2)O(3) and TiO(2) in the natural pumice, which are known to catalyze the decomposition of peroxide forming strong oxidants. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. A strong linear correlation was found between iron contents of coated pumices and UV absorbance reductions. Peroxide consumption also correlated with UV absorbance reduction. Control experiments proved the effective coating and the stability of iron oxide species bound on pumice surfaces. Results overall indicated that in addition to adsorptive removal of NOM by metal oxides on pumice surfaces, surface reactions between iron oxides and peroxide result in the formation of strong oxidants, probably like hydroxyl radicals, which further oxidize both adsorbed NOM and remaining NOM in solution, similar to those in Fenton-like reactions.

  3. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  4. Pentachlorophenol (PCP) degradation using heme and hydrogen peroxide

    SciTech Connect

    Chen, S.T.

    1996-11-01

    Investigations of pentachlorophenol (PCP) degradation using both biotic and abiotic methods have been extensively studied. Due to the hydrophobic nature of PCP and its toxicity, the performance of the biotic treatments varies from site to site and is not satisfactory in most cases. An abiotic method for oxidative PCP degradation in soil under unsaturated conditions and a neutral pH was found. Hydrogen peroxide was used as an oxidant and heme as a catalyst. A mechanism was proposed to describe the possible reaction of heme and peroxide at the presence of PCP. In order to ensure that heme and peroxide are the most important factors during the reaction, two screening tests were run. In order to find the best conditions of PCP degradation using heme and peroxide, a statistical technique, so-called response surface methodology (RSM), was employed and the best conditions for PCP degradation in soil were determined. In order to examine the rate and extent of PCP degradation, kinetic studies were conducted and the results showed that about 70% of PCP was degraded within the first two hours and up to 80% of PCP was degraded within one day. Up to 17% of the PCP was mineralized to carbon dioxide as well. A scaled-up experiment was also studied to confirm the results in the laboratory. The result of the scaled-up experiment showed not much difference between the laboratory and the scaled-up experiments.

  5. Durability of bleaching results achieved with 15% carbamide peroxide and 38% hydrogen peroxide in vitro.

    PubMed

    Knösel, Michael; Reus, Monika; Rosenberger, Albert; Attin, Thomas; Ziebolz, Dirk

    2011-01-01

    The aim of this study was to assess the durability of bleaching results achieved with (1) 15% carbamide peroxide home bleaching and (2) 38% hydrogen peroxide in-office bleaching. A total of 231 extracted anterior teeth were randomly divided into three groups (n = 77 in each group) with comparable mean baseline L*-values (68.24 ± 0.8): a non-bleached control group A, a 15% carbamide peroxide group B (5 bleaching intervals of 8 hours), and a 38% hydrogen peroxide group C (3 intervals of 15 minutes). Durability of bleaching was assessed by comparing CIE-L*a*b* data after intervals of 2, 4, 12, and 26 weeks from baseline. Both bleaching regimes initially produced a highly significant increase in lightness parameter L*, with no significant difference between the respective bleaching regimes (B: 68.23 / 72.48; C: 68.32 / 73.25). Six months after starting the trial, L*-values for group B yielded no significant differences compared to baseline (69.55), whereas L*-values for group C were still significantly raised (69.91), despite a highly significant decrease when compared to initial bleaching results. In both treatment groups, there was a lasting response to bleaching in terms of CIE-a* and -b* value decreases. Results for both home- and in-practice regimes were found to be similar for about 12 weeks. However, in-office results were longer lasting, despite the shorter treatment intervals. Summarized bleaching effects, in terms of delta E values, revealed no significant differences between treatment groups and the control group after 6 months, indicating an abatement of the bleaching results achieved.

  6. Hydrogen peroxide in the western Mediterranean Sea: a tracer for vertical advection

    NASA Astrophysics Data System (ADS)

    Johnson, Kenneth S.; Willason, Stewart W.; Wiesenburg, Denis A.; Lohrenz, Steven E.; Arnone, Robert A.

    1989-02-01

    Hydrogen peroxide, micronutrients, chlorophyll, primary production and light were measured at a series of stations in the western Mediterranean Sea. Hydrogen peroxide concentrations greater than 100 nmol 1 -1 were found in this region. There was a significant relationship between hydrogen peroxide and primary production rates near the surface where the light intensity was high. This link between hydrogen peroxide and biological activity may have resulted from photochemically reactive organic compounds that were excreted during photosynthesis or from the direct biological production of hydrogen peroxide. Elevated concentrations were not found in the deep chlorophyll maximum however, which indicates that high light intensities are necessary for biogenic hydrogen peroxide production in this area. Hydrogen peroxide concentrations decreased much more slowly with depth than did light. The decoupling of light and hydrogen peroxide must have been due to a combination of a slow decay rate and rapid vertical transport. However, simple calculations indicate that eddy diffusion alone could not have transported enough hydrogen peroxide to produce the effects that were seen. Large anomalies in the concentration profiles that were detected in frontal regions indicate that hydrogen peroxide can be a useful tracer of vertical transport in the upper ocean. The size of the anomalies appears to be coupled to the salinity gradient across the front, which drives the frontal circulation.

  7. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight

    SciTech Connect

    Cooper, W.J.; Zika, R.G.

    1983-05-13

    A rapid increase in the concentration of hydrogen peroxide was observed when samples of natural surface and ground water from various locations in the United States were exposed to sunlight. The hydrogen peroxide is photochemically generated from organic constitutents present in the water; humic materials are believed to be the primary agent producing the peroxide. Studies with superoxide dismutase suggest that the superoxide anion is the precursor of the peroxide.

  8. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    NASA Astrophysics Data System (ADS)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  9. Efficacy of hydrogen peroxide for treating saprolegniasis in channel catfish

    USGS Publications Warehouse

    Howe, G.E.; Gingerich, W.H.; Dawson, V.K.; Olson, J.J.

    1999-01-01

    Hatchery-reared fish and their eggs are commonly afflicted with saprolegniasis, a fungal disease that can cause significant losses in production. Fish culturists need safe and effective fungicides to minimize losses and meet production demands. The efficacy of hydrogen peroxide was evaluated for preventing or controlling mortality associated with saprolegniasis in channel catfish Ictalurus punctatus. Saprolegniasis was systematically induced in channel catfish so various therapies could be evaluated in a controlled laboratory environment. Both prophylactic and therapeutic hydrogen peroxide bath treatments of 50, 100, and 150 ??L/L for 1 h were administered every other day for seven total treatments. All untreated positive control fish died of saprolegniasis during the prophylactic and therapeutic tests. Hydrogen peroxide treatments of 150 ??L/L were harmful (relative to lower concentrations) to test fish and resulted in 73-95% mortality. Mortality was attributed to a combination of abrasion, temperature, chemical treatment, and disease stressors. Treatments of 100 ??L/L were less harmful (relatively) but also appeared to contribute to mortality (60-79%). These treatments, however, significantly reduced the incidence of mortality and infection compared with those observed for fish of the positive control or 150-??L/L treatment groups. Overall, treatments of 50 ??L/L were found to be the most safe and effective of those tested. Mortality with this concentration ranged from 16% in therapeutic tests to 41% in prophylactic tests. The statistical model employed estimated that the optimum treatment concentration for preventing or controlling mortality, reducing the incidence of infections, and enhancing the recovery of infected fish was 75 ??L H2O2/L.

  10. Hydrogen peroxide as an effective disinfectant for Pasteurella multocida.

    PubMed

    Jung, In-Soo; Kim, Hyun-Jung; Jung, Won-Yong; Kim, Chan-Wha

    2014-07-01

    Pasteurella multocida (P. multocida) infections vary widely, from local infections resulting from animal bites and scratches to general infections. As of yet, no vaccine against P. multocida has been developed, and the most effective way to prevent pathogenic transmission is to clean the host environment using disinfectants. In this study, we identified which disinfectants most effectively inhibited environmental isolates of P. multocida. Three readily available disinfectants were compared: 3% hydrogen peroxide (HP), 70% isopropyl alcohol, and synthetic phenol. In suspension tests and zone inhibition tests, 3% HP was the most promising disinfectant against P. multocida.

  11. Hydrogen peroxide in inflammation: messenger, guide, and assassin.

    PubMed

    Wittmann, C; Chockley, P; Singh, S K; Pase, L; Lieschke, G J; Grabher, C

    2012-01-01

    Starting as a model for developmental genetics, embryology, and organogenesis, the zebrafish has become increasingly popular as a model organism for numerous areas of biology and biomedicine over the last decades. Within haematology, this includes studies on blood cell development and function and the intricate regulatory mechanisms within vertebrate immunity. Here, we review recent studies on the immediate mechanisms mounting an inflammatory response by in vivo analyses using the zebrafish. These recently revealed novel roles of the reactive oxygen species hydrogen peroxide that have changed our view on the initiation of a granulocytic inflammatory response. PMID:22737171

  12. Detection of hydrogen peroxide by lactoperoxidase-mediated dityrosine formation.

    PubMed

    Donkó, Agnes; Orient, Anna; Szabó, Pál T; Németh, Gábor; Vántus, Tibor; Kéri, György; Orfi, László; Hunyady, László; Buday, László; Geiszt, Miklós

    2009-05-01

    The aim of this work was to study the dityrosine-forming activity of lactoperoxidase (LPO) and its potential application for measuring hydrogen peroxide (H2O2). It was observed that LPO was able to form dityrosine at low H2O2 concentrations. Since dityrosine concentration could be measured in a simple fluorimetric reaction, this activity of the enzyme was utilized for the measurement of H2O2 production in different systems. These experiments successfully measured the activity of NADPH oxidase 4 (Nox4) by this method. It was concluded that LPO-mediated dityrosine formation offers a simple way for H2O2 measurement.

  13. Hydrogen peroxide as a signal controlling plant programmed cell death

    PubMed Central

    Gechev, Tsanko S.; Hille, Jacques

    2005-01-01

    Hydrogen peroxide (H2O2) has established itself as a key player in stress and programmed cell death responses, but little is known about the signaling pathways leading from H2O2 to programmed cell death in plants. Recently, identification of key regulatory mutants and near-full genome coverage microarray analysis of H2O2-induced cell death have begun to unravel the complexity of the H2O2 network. This review also describes a novel link between H2O2 and sphingolipids, two signals that can interplay and regulate plant cell death. PMID:15631987

  14. Hydrogen peroxide-based propulsion and power systems.

    SciTech Connect

    Melof, Brian Matthew; Keese, David L.; Ingram, Brian V.; Grubelich, Mark Charles; Ruffner, Judith Alison; Escapule, William Rusty

    2004-04-01

    Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

  15. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives

    NASA Astrophysics Data System (ADS)

    Manivannan, R.; Ramanathan, S.

    2009-01-01

    The effect of hydrogen peroxide in chemical mechanical planarization slurries for shallow trench isolation was investigated. The various abrasives used in this study were ceria, silica, alumina, zirconia, titania, silicon carbide, and silicon nitride. Hydrogen peroxide suppresses the polishing of silicon dioxide and silicon nitride surfaces by ceria abrasives. The polishing performances of other abrasives were either unaffected or enhanced slightly with the addition of hydrogen peroxide. The ceria abrasives were treated with hydrogen peroxide, and the polishing of the work surfaces with the treated abrasive shows that the inhibiting action of hydrogen peroxide is reversible. It was found that the effect of hydrogen peroxide as an additive is a strong function of the nature of the abrasive particle.

  16. Revisiting the mesosome as a novel site of hydrogen peroxide accumulation in Escherichia coli.

    PubMed

    Xin, Li; Lipeng, Yang; Jiaju, Qiao; Hanqing, Feng; Yunhong, Liu; Min, Zhang; Yuxian, Zhang; Hongyu, Li

    2014-10-01

    The major source of endogenous hydrogen peroxide is generally thought to be the respiratory chain of bacteria and mitochondria. In our previous works, mesosome structure was induced in cells during rifampicin effect, and the mesosome formation is always accompanied by excess hydrogen peroxide accumulation in bacterial cells. However, the underlying mechanisms of hydrogen peroxide production and the rationale behind it remain still unknown. Here we report that hydrogen peroxide can specifically accumulate in the mesosome in vitro. Mesosomes were interpreted earlier as artifacts of specific cells under stress through TEM preparation, while, in the current study, mesosomes were shown as intracellular compartments with specific roles and features by using quickly freezing preparation of TEM. Formation of hydrogen peroxide was observed in suspension of mesosomal vesicles by using either a fluorescence-based reporter assay or a histochemical method, respectively. Our investigation provides experimental evidence that mesosomes can be a novel site of hydrogen peroxide accumulation.

  17. APPARATUS AND METHOD FOR TREATING POLLUTANTS IN A GAS USING HYDROGEN PEROXIDE AND UV LIGHT

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clauseu, christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending there between. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  18. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  19. Resistance to Botrytis cinerea in sitiens, an Abscisic Acid-Deficient Tomato Mutant, Involves Timely Production of Hydrogen Peroxide and Cell Wall Modifications in the Epidermis1[C][W][OA

    PubMed Central

    Asselbergh, Bob; Curvers, Katrien; França, Soraya C.; Audenaert, Kris; Vuylsteke, Marnik; Van Breusegem, Frank; Höfte, Monica

    2007-01-01

    Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea, are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato (Solanum lycopersicum) mutant, which is highly resistant to B. cinerea, accumulation of hydrogen peroxide (H2O2) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens, H2O2 accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H2O2 started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H2O2-dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea. PMID:17573540

  20. One-pot assembly of metal/organic-acid sites on amine-functionalized ligands of MOFs for photocatalytic hydrogen peroxide splitting.

    PubMed

    Qin, Lei; Li, Zhaowen; Hu, Qiong; Xu, Zehai; Guo, Xinwen; Zhang, Guoliang

    2016-06-01

    A one-pot organic-acid-directed post-synthetic modification allows molecular iron/citric acid complexes to be anchored into amine-functionalized MOFs by a simple and rapid liquid spraying method. Amidation between organic acid and -NH2 groups of ligands can lead to more small nanoparticles (NPs) that are well-dispersed into MOFs and exhibit high activity for photocatalytic H2O2 splitting. PMID:27166081

  1. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    SciTech Connect

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-25

    Liquid natural rubber (LNR) with molecular weight of lower than 10{sup 5} and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA)

  2. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Liquid natural rubber (LNR) with molecular weight of lower than 105 and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA).

  3. Inhibitory effects of LPA1 on cell motile activities stimulated by hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone in fibroblast 3T3 cells.

    PubMed

    Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-11-01

    Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells.

  4. Hydrogen Peroxide Accidents and Incidents: What We Can Learn From History

    NASA Technical Reports Server (NTRS)

    Greene, Ben; Baker, David L.; Frazier, Wayne

    2005-01-01

    Historical accidents and incidents involving hydrogen peroxide are reviewed and presented. These hydrogen peroxide events are associated with storage, transportation, handling, and disposal and they include exposures, fires, and explosions. Understanding the causes and effects of these accident and incident examples may aid personnel currently working with hydrogen peroxide to mitigate and perhaps avoid similar situations. Lessons learned, best practices, and regulatory compliance information related to the cited accidents and incidents are also discussed.

  5. Time-course diffusion of hydrogen peroxide using modern technologies

    NASA Astrophysics Data System (ADS)

    Florez, F. L. E.; Vollet-Filho, J. D.; Oliveira-Junior, O. B.; Bagnato, V. S.

    2009-02-01

    The concern with the hydrogen penetration towards the pulp can be observed on the literature by the great number of papers published on this topic; Those measurements often uses chemical agents to quantify the concentration of the bleaching agent that cross the enamel and dentin. The objective of this work was the quantification of oxygen free radicals by fluorescence that are located in the interface between enamel and dentin. It was used to accomplish our objectives a Ruthenium probe (FOXY R - Ocean Optics) a 405nm LED, a bovine tooth and a portable diagnostic system (Science and support LAB - LAT - IFSC/USP). The fluorescence of the probe is suppressed in presence of oxygen free radicals in function of time. The obtained results clearly shows that the hydrogen peroxide when not catalyzed should be kept in contact with the tooth for longer periods of time.

  6. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action.

    PubMed

    Linley, Ezra; Denyer, Stephen P; McDonnell, Gerald; Simons, Claire; Maillard, Jean-Yves

    2012-07-01

    Hydrogen peroxide is extensively used as a biocide, particularly in applications where its decomposition into non-toxic by-products is important. Although increasing information on the biocidal efficacy of hydrogen peroxide is available, there is still little understanding of its biocidal mechanisms of action. This review aims to combine past and novel evidence of interactions between hydrogen peroxide and the microbial cell and its components, while reflecting on alternative applications that make use of gaseous hydrogen peroxide. It is currently believed that the Fenton reaction leading to the production of free hydroxyl radicals is the basis of hydrogen peroxide action and evidence exists for this reaction leading to oxidation of DNA, proteins and membrane lipids in vivo. Investigations of DNA oxidation suggest that the oxidizing radical is the ferryl radical formed from DNA-associated iron, not hydroxyl. Investigations of protein oxidation suggest that selective oxidation of certain proteins might occur, and that vapour-phase hydrogen peroxide is a more potent oxidizer of protein than liquid-phase hydrogen peroxide. Few studies have investigated membrane damage by hydrogen peroxide, though it is suggested that this is important for the biocidal mechanism. No studies have investigated damage to microbial cell components under conditions commonly used for sterilization. Despite extensive studies of hydrogen peroxide toxicity, the mechanism of its action as a biocide requires further investigation.

  7. Singlet oxygen generation from [bis(trifluoroacetoxy)iodo]benzene and hydrogen peroxide.

    PubMed

    Catir, Mustafa; Kilic, Hamdullah; Nardello-Rataj, Véronique; Aubry, Jean-Marie; Kazaz, Cavit

    2009-06-19

    Decomposition of hydrogen peroxide with a hypervalent iodine compound was examined. The results indicate that treatment of a hypervalent iodine compound with hydrogen peroxide produces singlet molecular oxygen ((1)O(2)). Convergent evidence for the production of singlet molecular oxygen ((1)O(2)) by decomposition of hydrogen peroxide with a hypervalent iodine compound comes from chemical trapping experiments and the specific chemiluminescence detection of (1)O(2) at 1270 nm. Substantial evidence demonstrates that hydroperoxyl radical produced from hydrogen peroxide with hypervalent iodine reacts via a tetraoxidane intermediate, decomposing to give singlet molecular oxygen. PMID:19449850

  8. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition

    NASA Astrophysics Data System (ADS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.

    2001-12-01

    Microelectromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of miniaturized spacecraft being designed by NASA and Department of Defense agencies. More commonly referred to as `nanosats', these spacecraft feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the paper focuses on the progress being made at NASA Goddard Space Flight Center toward the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high-concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a microscale converging/diverging supersonic nozzle, which produces the thrust vector; the targeted thrust level is approximately 500 µN with a specific impulse of 140-180 s. Macroscale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on the MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  9. MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition

    NASA Technical Reports Server (NTRS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  10. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    NASA Astrophysics Data System (ADS)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    The Jet Propulsion Laboratory in conjunction with the NASA Planetary Protection Officer has selected vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems The goal is to include this technique with appropriate specification in NPG8020 12C as a low temperature complementary technique to the dry heat sterilization process To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process This process could be the elevated temperature dry heat sterilization process 115C for 40 hours which was used to sterilize the Viking lander spacecraft However with utilization of highly sophisticated electronics and sensors in modern spacecraft this process presents significant materials challenges and is thus undesirable to design engineers to achieve bioburden reduction The objective of this work is to introduce vapor hydrogen peroxide VHP as an alternative to dry heat microbial reduction to meet planetary protection requirements The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices but high doses of VHP may degrade the performance of flight hardware or compromise material compatibility Our goal for this study is to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels A series of experiments were conducted to

  11. Hydrogen Peroxide and Sodium Transport in the Lung and Kidney.

    PubMed

    Shlyonsky, V; Boom, A; Mies, F

    2016-01-01

    Renal and lung epithelial cells are exposed to some significant concentrations of H2O2. In urine it may reach 100 μM, while in the epithelial lining fluid in the lung it is estimated to be in micromolar to tens-micromolar range. Hydrogen peroxide has a stimulatory action on the epithelial sodium channel (ENaC) single-channel activity. It also increases stability of the channel at the membrane and slows down the transcription of the ENaC subunits. The expression and the activity of the channel may be inhibited in some other, likely higher, oxidative states of the cell. This review discusses the role and the origin of H2O2 in the lung and kidney. Concentration-dependent effects of hydrogen peroxide on ENaC and the mechanisms of its action have been summarized. This review also describes outlooks for future investigations linking oxidative stress, epithelial sodium transport, and lung and kidney function. PMID:27073804

  12. Antifungal efficacy of hydrogen peroxide in dental unit waterline disinfection.

    PubMed

    Szymańska, Jolanta

    2006-01-01

    The concentration and composition of fungal flora in dental unit waterlines (DUWL) were evaluated. For this purpose, water samples from unit reservoirs and high-speed handpieces, and biofilm samples from the waterline walls from units were collected. Subsequently, analogous samples from DUWL were taken before and after disinfection using agent containing hydrogen peroxide. In the examined samples, the yeast-like fungi Candida albicans and Candida curvata were found. The following species of mould were also identified: Aspergillus amstelodami, Aspergillus fumigatus, Aspergillus glaucus group, Aspergillus (=Eurotium herbariorum) repens, Citromyces spp., Geotrichum candidum, Penicillium (glabrum) frequentans, Penicillium pusillum, Penicillium turolense and Sclerotium sclerotiorum (Sclerotinia sclerotiorum). Before disinfection, Candida curvata and Candida albicans constituted the greatest proportion of the total fungi in the reservoirs water; in the water of handpieces--Candida albicans and Aspergillus glaucus group; and in the biofilm samples--Aspergillus glaucus group and Candida albicans. After disinfection, in all 3 kinds of samples, Candida albicans prevailed, constituting from 31.2-85.7 % of the total fungi. The application of agent containing hydrogen peroxide caused a significant decrease both in the number of total fungi and individual fungal species, which confirms the product effectiveness in fungal decontamination of DUWL. PMID:17196007

  13. Hydrogen peroxide-dependent uptake of iodine by marine Flavobacteriaceae bacterium strain C-21.

    PubMed

    Amachi, Seigo; Kimura, Koh; Muramatsu, Yasuyuki; Shinoyama, Hirofumi; Fujii, Takaaki

    2007-12-01

    The cells of the marine bacterium strain C-21, which is phylogenetically closely related to Arenibacter troitsensis, accumulate iodine in the presence of glucose and iodide (I-). In this study, the detailed mechanism of iodine uptake by C-21 was determined using a radioactive iodide tracer, 125I-. In addition to glucose, oxygen and calcium ions were also required for the uptake of iodine. The uptake was not inhibited or was only partially inhibited by various metabolic inhibitors, whereas reducing agents and catalase strongly inhibited the uptake. When exogenous glucose oxidase was added to the cell suspension, enhanced uptake of iodine was observed. The uptake occurred even in the absence of glucose and oxygen if hydrogen peroxide was added to the cell suspension. Significant activity of glucose oxidase was found in the crude extracts of C-21, and it was located mainly in the membrane fraction. These findings indicate that hydrogen peroxide produced by glucose oxidase plays a key role in the uptake of iodine. Furthermore, enzymatic oxidation of iodide strongly stimulated iodine uptake in the absence of glucose. Based on these results, the mechanism was considered to consist of oxidation of iodide to hypoiodous acid by hydrogen peroxide, followed by passive translocation of this uncharged iodine species across the cell membrane. Interestingly, such a mechanism of iodine uptake is similar to that observed in iodine-accumulating marine algae.

  14. Concerning the electrosynthesis of hydrogen peroxide and peroxodisulfates. Section 2: Optimization of electrolysis cells using an electrolyzer for peroxodisulfuric acid as an example

    NASA Technical Reports Server (NTRS)

    Schleiff, M.; Thiele, W.; Matschiner, H.

    1986-01-01

    The model is presented of an electrolyzer for peroxodisulfuric acid, and it is analyzed mathematically. Its application for engineering and economic optimization is investigated in detail. The mathematical analysis leads to conclusions concerning the change in position of the optimum with respect to the various target functions due to changes of the individual design-caused and economic parameters.

  15. Radiographic findings following irrigation of chronic perineal drain with hydrogen peroxide

    PubMed Central

    Melin, Alyson A.; Heckman, Andrew M.; Hussain, Shahid; Thompson, Jon S.

    2014-01-01

    INTRODUCTION Hydrogen peroxide is a widely available agent used for irrigation and disinfecting. With misuse, significant side effects have been noted ranging from nausea to abdominal cramping to portal venous gas, air embolism and death. PRESENTATION OF CASE We present an 81 year old male who developed a rectovesicular fistula following radiation for metastatic prostate cancer. He had recurrent bleeding and infections and underwent a pelvic exenteration which was complicated by a persistent pelvic abscess requiring placement of a transperineal drainage catheter. After months of persistent drainage, he noted decreased output and irrigated the catheter with 3% hydrogen peroxide. He presented to the emergency room with fever, diarrhea and abdominal cramping but no rebound or guarding. CT depicted free air in the pre-sacral space extending into the retroperitoneum and diffusely throughout the peritoneum. Given his clinical exam and upon review of imaging, we assumed his radiographic findings were related to the direct instillation of hydrogen peroxide into his chronic pelvic cavity. DISCUSSION Hydrogen peroxide has been used therapeutically for over 100 years. Hydrogen peroxide exerts direct cytotoxicity by corrosion and lipid peroxidation and indirectly by oxygen gas formation. When the oxygen produced exceeds the solubility in the blood, arterial and venous gas embolism occur. It is this sequelae of hydrogen peroxide that is described most frequently in the literature. CONCLUSION Instillation of hydrogen peroxide into a chronic pelvic cavity resulted in a benign pneumoperitoneum. This effect of hydrogen peroxide is a significant and potentially treatment altering radiographic finding. PMID:25560055

  16. Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish

    USGS Publications Warehouse

    Rach, J.J.; Schreier, T.M.; Howe, G.E.; Redman, S.D.

    1997-01-01

    Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.

  17. Photoluminescence of MoS2 quantum dots quenched by hydrogen peroxide: A fluorescent sensor for hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Gan, Zhixing; Gui, Qingfeng; Shan, Yun; Pan, Pengfei; Zhang, Ning; Zhang, Lifa

    2016-09-01

    By cutting MoS2 microcrystals to quantum dots (QDs) of sizes below 10 nm, the photoluminescence (PL) at ca. 450 nm can be detected easily due to the quantum confinement effects across the 2D planes. The PL is stable under continuous irradiation of UV light but gradually quenches when treated with an increasing concentration of hydrogen peroxide. Time-resolved PL and Raman spectra imply that H2O2 causes the partial oxidation of MoS2 QDs. First-principles calculations reveal that the MoS2 QDs with oxygen impurity are of indirect bandgap structures showing no notable PL. And absorption spectra verify that the PL of MoS2 QDs quenched by H2O2 is attributed to the oxidation. The integrated PL intensity and H2O2 concentration show an exponential relationship in the range of 2-20 μM, suggesting that MoS2 QDs are potential fluorescent probes for hydrogen peroxide sensing in a physiological environment.

  18. pH dependence and structural interpretation of the reactions of Coprinus cinereus peroxidase with hydrogen peroxide, ferulic acid, and 2,2'-azinobis.

    PubMed

    Abelskov, A K; Smith, A T; Rasmussen, C B; Dunford, H B; Welinder, K G

    1997-08-01

    Steady-state and transient-state analysis of Coprinus cinereus peroxidase, CIP (identical to Arthromyces ramosus peroxidase), was used to characterize the kinetics of the three fundamental steps in heme peroxidase catalysis: compound I (cpd I) formation, cpd I reduction, and compound II (cpd II) reduction. The rate constant k1 for cpd I formation determined by transient-state analysis is (9.9 +/- 0.6) x 10(6) M-1 s-1. The k1 determined by steady-state analysis is (8.8 +/- 0.6) x 10(6) M-1 s-1 in the presence of ferulic acid and (6.7 +/- 0.2) x 10(6) M-1 s-1 in the presence of ABTS. The value of k1 is constant from pH 6 to 11. However, at low pH the value of k1 decreases, corresponding to titration of an enzyme group with a pKa of 5.0. Titration of this group is also detected from cyanide-binding kinetics. Furthermore, titration of this group is linked with marked spectroscopic changes unique to CIP. We ascribe these changes to protonation of proximal His183. A very low pKa is proposed for distal His55 in the resting state of CIP. The rate constants, k2 for cpd I and k3 for cpd II reduction, are very large for both ferulic acid and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). For ferulic acid, transient-state kinetic analysis shows that the values of k2 and k3 are identical at pH 5-6, and the ratio k2/k3 increases to 10 at pH 10. The similar magnitude of k2 and k3 is unusual for a peroxidase. Both k2 and k3 decrease with increasing pH, and both are influenced by two ionizations: one with a pKa value near 7, assumed to reflect the protonation of His55; and the other with pKa of 9.0 +/- 0.7 for k2 and 8.8 +/- 0.4 for k3, perhaps reflecting the phenol-linked deprotonation of ferulic acid. Steady-state analysis at pH 7.0 gave k2k3/(k2 + k3) = (2.2 +/- 0.1) x 10(7) M-1 s-1 for ferulic acid, and (2.0 +/- 0.7) x 10(7) M-1 s-1 for ABTS and revealed a unimolecular step with ku = 1500 s-1, ascribed to slow ABTS radical product release. From transient

  19. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid.

    PubMed

    Shah, Syed Niaz Ali; Li, Haifang; Lin, Jin-Ming

    2016-06-01

    A new sensitized chemiluminescence (CL) was developed to broaden the analytical application of KIO4-H2O2 system. The nitrogen doped carbon dots (N-CDs) dramatically boosted the CL intensity of KIO4-H2O2 system which was further enriched by basic medium. In light of EPR analysis, free radical scavenging studies and CL spectra the detail mechanism for the enhancement was conferred in the presence of N-CDs and NaOH. The results suggested that CL of KIO4-H2O2 system in the presence and absence of N-CDs and NaOH proceeds via radical pathway. The enhanced CL was used for the determination of pyrogallol and gallic acid in range of 1.0×10(-4)-1.0×10(-7)M with 4.6×10(-8) and 6.1×10(-8)M limit of detection respectively. The relative standard deviation (RSD) at a concentration of 10(-5) for gallic acid and pyrogallol was 1.4% and 2.3% respectively (n=11). The attained results unveil that the present method is sensitive, faster, simpler and less costly compared to other methods and could be applied to determine polyphenols in real samples.

  20. The fate of aniline after a photo-fenton reaction in an aqueous system containing iron(III), humic acid, and hydrogen peroxide

    SciTech Connect

    Fukushima, Masami; Tatsumi, Kenji; Morimoto, Kengo

    2000-05-15

    The degradation of aniline (ArNH{sub 2}) was facilitated by light irradiation ({lambda} > 370 nm) of an aqueous solution, which contained Fe(III), humic acid(HA), and H{sub 2}O{sub 2}. The consumption of H{sub 2}O{sub 2} and the reduction of Fe(III) to Fe(II) was consistent with the degradation of ArNH{sub 2} via the photo-Fenton reaction, accompanied by the generation of hydroxyl radicals (HO{sm_bullet}). HPLC analysis of the reaction mixture indicated the presence of p-aminophenol, p-hydroquinone, and maleic and fumaric acids and the simultaneous release of NH{sub 4}{sup +} ion. However, the sum of the product concentrations, as determined by HPLC after the reaction, was much smaller than the ArNH{sub 2} concentration added initially. This can be attributed to the majority of the ArNH{sub 2} being incorporated into the polymeric structure in the HA after the reaction. The {sup 15}N NMR and pyrolysis-GC/MS studies indicated that, after the reaction, ArNH{sub 2} formed covalent bonds with quinone and the vinyl carbons in the HA, to form anilino-compounds, such as anilinoquinone and enaminone.

  1. Reductions of Salmonella enterica on chicken breast by thymol, acetic acid, sodium dodecyl sulfate or hydrogen peroxide combinations as compared to chlorine wash.

    PubMed

    Lu, Y; Wu, C

    2012-01-01

    Poultry products are important vehicles for Salmonella transmission to humans and have been incriminated in several Salmonella outbreaks. Thymol (THY) from thyme oil has wide inhibitory effects against foodborne pathogens including Salmonella, and has shown great potential as a natural alternative to chlorine. In order to improve the cost-effectiveness of thymol-based washing solutions, formulas of THY with combination of organic acid or surfactant were developed and their efficacies to reduce Salmonella on chicken breast were investigated in the current study. Surface-inoculated chicken breasts were washed with the two thymol-based washing solutions: 0.2 mg/mL THY+5% (w/v) sodium dodecyl sulfate (SDS)+2 mg/mL acetic acid (AA) or 0.2 mg/mL THY+2 mg/mL AA for 2 min. Both solutions achieved around 2.2 log reductions of Salmonella on chicken breast and their efficacy was comparable to log reduction obtained by 200 ppm chlorine washing. Addition of SDS did not result in more log reduction of Salmonella on chicken meat samples. More than 3.3 log reduction in the used THY washing solutions was determined and it was similar to log reduction from the spent chlorine solution. None of these antimicrobial agents changed the pH and texture values of chicken breasts. Therefore, 0.2 mg/mL THY+2 mg/mL AA has great potential to be a natural alternative to chlorine-based washing solution for reducing Salmonella contamination on chicken breast meat. PMID:22030209

  2. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus.

    PubMed

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, Thomas; Valentová, Olga; Balesdent, Marie-HelEne; Rouxel, Thierry; Burketová, Lenka

    2016-08-01

    To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans. PMID:26575525

  3. Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress.

    PubMed

    Charkoudian, Louise K; Pham, David M; Kwon, Ashley M; Vangeloff, Abbey D; Franz, Katherine J

    2007-11-21

    Several new analogs of salicylaldehyde isonicotinoyl hydrazone (SIH) and salicylaldehyde benzoyl hydrazone (SBH) that contain an aryl boronic ester (BSIH, BSBH) or acid (BASIH) in place of an aryl hydroxide have been synthesized and characterized as masked metal ion chelators. These pro-chelators show negligible interaction with iron(III), although the boronic acid versions exhibit some interaction with copper(II), zinc(II) and nickel(II). Hydrogen peroxide oxidizes the aryl boronate to phenol, thus converting the pro-chelators to tridentate ligands with high affinity metal binding properties. An X-ray crystal structure of a bis-ligated iron(III) complex, [Fe(SBH(m-OMe)(3))(2)]NO(3), confirms the meridonal binding mode of these ligands. Modifications of the aroyl ring of the chelators tune their iron affinity, whereas modifications on the boron-containing ring of the pro-chelators attenuate their reaction rates with hydrogen peroxide. Thus, the methoxy derivative pro-chelator (p-OMe)BASIH reacts with hydrogen peroxide nearly 5 times faster than the chloro derivative (m-Cl)BASIH. Both the rate of pro-chelator to chelator conversion as well as the metal binding affinity of the chelator influence the overall ability of these molecules to inhibit hydroxyl radical formation catalyzed by iron or copper in the presence of hydrogen peroxide and ascorbic acid. This pro-chelator strategy has the potential to improve the efficacy of medicinal chelators for inhibiting metal-promoted oxidative stress. PMID:17992288

  4. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal.

    PubMed

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  5. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal

    PubMed Central

    Zhang, Yanzhou; Li, Xunhang; Hao, Zhikui; Xi, Ruchun; Cai, Yujie; Liao, Xiangru

    2016-01-01

    For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP. PMID:27362423

  6. [Acute ischemia of the hand, an unknown complication of the hydrogen peroxide irrigation. Case report].

    PubMed

    Zemirline, A; Loaëc, F; Hélaine, L; Richou, J; Le Nen, D

    2011-04-01

    We report a case of acute transitional ischemia of the hand with acute compartment syndrome of the forearm, following hydrogen peroxide irrigation of a wound. We discuss the physiopathology and management of this complication. Along with numerous related cases of gas embolism, this complication emphasizes the risks of using hydrogen peroxide under pressure, notably in hand surgery.

  7. Hydrogen peroxide and povidone-lodine solution--a dangerous combination.

    PubMed

    2011-02-01

    When mixed with povidone-iodine solution, hydrogen peroxide can release enough oxygen to cause sealed waste containers to burst open. Such risks can also result from using a sealed container to collect hydrogen peroxide that has mixed with body fluids (for instance, in a debridement procedure). Staff should be instructed to avoid both practices. PMID:23444560

  8. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  9. Development of vapor phase hydrogen peroxide sterilization process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Knight, J.; Quigley, M.; Forsberg, G.; Ganapathi, G.; Yarbrough, C.; Koukol, R.

    2001-01-01

    This paper will present test data and discussion on the work we are conducting at JPL to address the following issues: 1) efficacy of sterilization process; 2) diffusion of hydrogen peroxide under sterilization process conditions into hard to reach places; 3) materials and components compatibility with the sterilization process and 4) development of methodology to protect sensitive components from hydrogen peroxide vapor.

  10. Efficacy of Mouthwashes Containing Hydrogen Peroxide on Tooth Whitening.

    PubMed

    Karadas, Muhammet; Hatipoglu, Omer

    2015-01-01

    The aim of this study was to analyze the efficacy of mouthwashes containing hydrogen peroxide compared with 10% carbamide peroxide (CP) gel. Fifty enamel-dentin samples were obtained from bovine incisors and then stained in a tea solution. The stained samples were randomly divided into five groups according to the whitening product applied (n = 10): AS: no whitening (negative control), with the samples stored in artificial saliva; CR: Crest 3D White mouthwash; LS: Listerine Whitening mouthwash; SC: Scope White mouthwash; and OP group: 10% CP Opalescence PF (positive control). Color measurements were carried out with a spectrophotometer before staining, after staining, and on the 7th, 28th, and 56th day of the whitening period. The data were analyzed using two-way analysis of variance followed by a Tukey post hoc test. The color change (ΔE) was significantly greater in all the groups compared to that of the AS group. After 56 days, no significant differences were found among the mouthwash products with respect to color change (P > 0.05). The whiteness of the teeth treated with the mouthwashes increased significantly over time. Nevertheless, the color change achieved with the mouthwashes was significantly lower than that achieved with the 10% CP at-home bleaching gel.

  11. Efficacy of Mouthwashes Containing Hydrogen Peroxide on Tooth Whitening

    PubMed Central

    Karadas, Muhammet; Hatipoglu, Omer

    2015-01-01

    The aim of this study was to analyze the efficacy of mouthwashes containing hydrogen peroxide compared with 10% carbamide peroxide (CP) gel. Fifty enamel-dentin samples were obtained from bovine incisors and then stained in a tea solution. The stained samples were randomly divided into five groups according to the whitening product applied (n = 10): AS: no whitening (negative control), with the samples stored in artificial saliva; CR: Crest 3D White mouthwash; LS: Listerine Whitening mouthwash; SC: Scope White mouthwash; and OP group: 10% CP Opalescence PF (positive control). Color measurements were carried out with a spectrophotometer before staining, after staining, and on the 7th, 28th, and 56th day of the whitening period. The data were analyzed using two-way analysis of variance followed by a Tukey post hoc test. The color change (ΔE) was significantly greater in all the groups compared to that of the AS group. After 56 days, no significant differences were found among the mouthwash products with respect to color change (P > 0.05). The whiteness of the teeth treated with the mouthwashes increased significantly over time. Nevertheless, the color change achieved with the mouthwashes was significantly lower than that achieved with the 10% CP at-home bleaching gel. PMID:26295061

  12. Efficacy of Mouthwashes Containing Hydrogen Peroxide on Tooth Whitening.

    PubMed

    Karadas, Muhammet; Hatipoglu, Omer

    2015-01-01

    The aim of this study was to analyze the efficacy of mouthwashes containing hydrogen peroxide compared with 10% carbamide peroxide (CP) gel. Fifty enamel-dentin samples were obtained from bovine incisors and then stained in a tea solution. The stained samples were randomly divided into five groups according to the whitening product applied (n = 10): AS: no whitening (negative control), with the samples stored in artificial saliva; CR: Crest 3D White mouthwash; LS: Listerine Whitening mouthwash; SC: Scope White mouthwash; and OP group: 10% CP Opalescence PF (positive control). Color measurements were carried out with a spectrophotometer before staining, after staining, and on the 7th, 28th, and 56th day of the whitening period. The data were analyzed using two-way analysis of variance followed by a Tukey post hoc test. The color change (ΔE) was significantly greater in all the groups compared to that of the AS group. After 56 days, no significant differences were found among the mouthwash products with respect to color change (P > 0.05). The whiteness of the teeth treated with the mouthwashes increased significantly over time. Nevertheless, the color change achieved with the mouthwashes was significantly lower than that achieved with the 10% CP at-home bleaching gel. PMID:26295061

  13. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  14. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  15. Vapor Hydrogen Peroxide as Alternative to Dry Heat Microbial Reduction

    NASA Technical Reports Server (NTRS)

    Cash, Howard A.; Kern, Roger G.; Chung, Shirley Y.; Koukol, Robert C.; Barengoltz, Jack B.

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with appropriate specification, in NPG8020.12C as a low temperature complementary technique to the dry heat sterilization process. A series of experiments were conducted in vacuum to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. With this knowledge of D values, sensible margins can be applied in a planetary protection specification. The outcome of this study provided an optimization of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D value may be imposed, a process humidity range for which the worst case D value may be imposed, and robustness to selected spacecraft material substrates.

  16. Plasma Depolymerization of Chitosan in the Presence of Hydrogen Peroxide

    PubMed Central

    Ma, Fengming; Wang, Zhenyu; Zhao, Haitian; Tian, Shuangqi

    2012-01-01

    The depolymerization of chitosan by plasma in the presence of hydrogen peroxide (H2O2) was investigated. The efficiency of the depolymerization was demonstrated by means of determination of viscosity-average molecular weight and gel permeation chromatography (GPC). The structure of the depolymerized chitosan was characterized by Fourier-transform infrared spectra (FT-IR), ultraviolet spectra (UV) and X-ray diffraction (XRD). The results showed that chitosan can be effectively degradated by plasma in the presence of H2O2. The chemical structure of the depolymerized chitosan was not obviously modified. The combined plasma/H2O2 method is significantly efficient for scale-up manufacturing of low molecular weight chitosan. PMID:22837727

  17. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression. PMID:22565543

  18. What is the role of hydrogen peroxide in plant peroxisomes?

    PubMed

    Corpas, Francisco J

    2015-11-01

    Plant peroxisomes are unusual subcellular compartments with an apparent simple morphology but with complex metabolic activity. The presence of signal molecules, such as hydrogen peroxide (H(2)O(2)) and nitric oxide inside plant peroxisomes have added new functions in the cross-talk events among organelles and cells under physiological and stress conditions. Moreover, recent advances in proteomic analyses of plant peroxisomes have identified new protein candidates involved in several novel metabolic pathways. With all these new data, the present concise manuscript will focus on the relevance of the peroxisomal H(2)O(2) and its two main antioxidant enzymes, catalase and membrane-bound ascorbate peroxidase, which regulate its level and consequently its potential functions.

  19. Greywater disinfection with the environmentally friendly Hydrogen Peroxide Plus (HPP).

    PubMed

    Ronen, Zeev; Guerrero, Adriana; Gross, Amit

    2010-01-01

    Hydrogen Peroxide Plus (HPP) is a newly developed, stabilized-H(2)O(2)-based compound. This study was aimed at determining the disinfection efficiency of HPP in greywater (GW), assessing HPP dose requirements and evaluating the feasibility of its use in small-scale GW-treatment systems. Fecal coliforms were the most sensitive to treatment, followed by somatic coliphages and F+ bacteriophages. The calculated HPP dose required to reduce fecal coliform counts by 99% was 125mg H(2)O(2)L(-1), with a contact time of 35min. The use of HPP was found feasible and comparable to the use of chlorine for small systems with a flow rate of 5m(3)d(-1). HPP is suggested as an alternative for GW disinfection in small communities and private houses.

  20. Pd nanoparticle-modified electrodes for nonenzymatic hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Chen, Xue-jiao; Liao, Kai-ming; Wang, Guang-hou; Han, Min

    2015-08-01

    A hydrogen peroxide (H2O2) sensor based on Pd nanoparticles (NPs) and glassy carbon electrodes (GCEs) is fabricated. Pd NPs are deposited on GCEs by using a gas phase cluster beam deposition technique. The NP-deposited electrodes show enhanced electrocatalytic activity in reduction of H2O2. The electrode with an optimized NP coverage of 85 % has a high selective and stable nonenzymatic sensing ability of H2O2 with a low detection limit (3.4 × 10-7 M), high sensitivity (50.9 μA mM-1), and a wide linear range (from 1.0 × 10-6 to 6.0 × 10-3 M). The reduction peak potential of the electrode is close to -0.12 V, which enables high selective amperometric detection of H2O2 at a low applied potential.

  1. Development of hydrogen peroxide technique for bioburden reduction

    NASA Astrophysics Data System (ADS)

    Rohatgi, N.; Schwartz, L.; Stabekis, P.; Barengoltz, J.

    In order to meet the National Aeronautics and Space Administration (NASA) Planetary Protection microbial reduction requirements for Mars in-situ life detection and sample return missions, entire planetary spacecraft (including planetary entry probes and planetary landing capsules) may have to be exposed to a qualified sterilization process. Presently, dry heat is the only NASA approved sterilization technique available for spacecraft application. However, with the increasing use of various man-made materials, highly sophisticated electronic circuit boards, and sensors in a modern spacecraft, compatibility issues may render this process unacceptable to design engineers and thus impractical to achieve terminal sterilization of the entire spacecraft. An alternative vapor phase hydrogen peroxide sterilization process, which is currently used in various industries, has been selected for further development. Strategic Technology Enterprises, Incorporated (STE), a subsidiary of STERIS Corporation, under a contract from the Jet Propulsion Laboratory (JPL) is developing systems and methodologies to decontaminate spacecraft using vaporized hydrogen peroxide (VHP) technology. The VHP technology provides an effective, rapid and low temperature means for inactivation of spores, mycobacteria, fungi, viruses and other microorganisms. The VHP application is a dry process affording excellent material compatibility with many of the components found in spacecraft such as polymers, paints and electronic systems. Furthermore, the VHP process has innocuous residuals as it decomposes to water vapor and oxygen. This paper will discuss the approach that is being used to develop this technique and will present lethality data that have been collected to establish deep vacuum VHP sterilization cycles. In addition, the application of this technique to meet planetary protection requirements will be addressed.

  2. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity

    PubMed Central

    Cuypers, Ann; Hendrix, Sophie; Amaral dos Reis, Rafaela; De Smet, Stefanie; Deckers, Jana; Gielen, Heidi; Jozefczak, Marijke; Loix, Christophe; Vercampt, Hanne; Vangronsveld, Jaco; Keunen, Els

    2016-01-01

    Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide (O2•-), hydrogen peroxide (H2O2) and the hydroxyl radical (•OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils. PMID:27199999

  3. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues

    PubMed Central

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-01-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells. PMID:27482463

  4. Hydrogen peroxide detection with high specificity in living cells and inflamed tissues.

    PubMed

    Rong, Lei; Zhang, Chi; Lei, Qi; Hu, Ming-Ming; Feng, Jun; Shu, Hong-Bing; Liu, Yi; Zhang, Xian-Zheng

    2016-12-01

    Hydrogen peroxide (H2O2) detection in biological systems is of significant importance, which act as critical second messenger in fundamental biological processes. Here, we report on a chemoselective fluorescent naphthylimide peroxide probe (NPP) for the H2O2 detection in vitro and in vivo. NPP is a phenylboronic acid-caged chromophore that selectively responds to H2O2 through a self-immolate mechanism. NPP exhibited high sensitivity and selectivity to H2O2 with distinctive fluorescence change due to the excellent two-photon excitation property, which permits the facile detection of inflammation produced H2O2 and offers chance to monitor the inflammatory stages in diseased cells.

  5. Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy

    PubMed Central

    Chen, Rui; Zhang, Luzhong; Gao, Jian; Wu, Wei; Hu, Yong; Jiang, Xiqun

    2011-01-01

    Hydrogen peroxide is a signal molecule of the tumor, and its overproduction makes a higher concentration in tumor tissue compared to normal tissue. Based on the fact that peroxalates can make chemiluminescence with a high efficiency in the presence of hydrogen peroxide, we developed nanomicelles composed of peroxalate ester oligomers and fluorescent dyes, called peroxalate nanomicelles (POMs), which could image hydrogen peroxide with high sensitivity and stability. The potential application of the POMs in photodynamic therapy (PDT) for cancer was also investigated. It was found that the PDT-drug-loaded POMs were sensitive to hydrogen peroxide, and the PDT drug could be stimulated by the chemiluminescence from the reaction between POMs and hydrogen peroxide, which carried on a self-therapy of the tumor without the additional laser light resource. PMID:21765637

  6. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    SciTech Connect

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-15

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  7. In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice.

    PubMed

    Logan, Angela; Shabalina, Irina G; Prime, Tracy A; Rogatti, Sebastian; Kalinovich, Anastasia V; Hartley, Richard C; Budd, Ralph C; Cannon, Barbara; Murphy, Michael P

    2014-08-01

    In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria-targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro-apoptotic and pro-inflammatory redox signaling pathways.

  8. Spatially-resolved intracellular sensing of hydrogen peroxide in living cells.

    PubMed

    Warren, Emilie A K; Netterfield, Tatiana S; Sarkar, Saheli; Kemp, Melissa L; Payne, Christine K

    2015-11-20

    Understanding intracellular redox chemistry requires new tools for the site-specific visualization of intracellular oxidation. We have developed a spatially-resolved intracellular sensor of hydrogen peroxide, HyPer-Tau, for time-resolved imaging in live cells. This sensor consists of a hydrogen peroxide-sensing protein tethered to microtubules. We demonstrate the use of the HyPer-Tau sensor for three applications; dose-dependent response of human cells to exogenous hydrogen peroxide, a model immune response of mouse macrophages to stimulation by bacterial toxin, and a spatially-resolved response to localized delivery of hydrogen peroxide. These results demonstrate that HyPer-Tau can be used as an effective tool for tracking changes in spatially localized intracellular hydrogen peroxide and for future applications in redox signaling.

  9. Fluorometric method for the determination of gas-phase hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kok, Gregory L.; Lazrus, Allan L.

    1986-12-01

    The fluorometric gas-phase hydrogen peroxide procedure is based on the technique used by Lazrus et. al. for the determination of H2O2 in the liquid phase. The analytical method utilizes the reaction of H2O2 with horseradish peroxidase and p-hydroxphenylacetic acid (POPHA) to form the fluorescent dimer of POPHA. The analytical reaction responds stoichiometrically to both H2O2 and some organic hydroperoxides. To discriminate H2O2 from organic hydroperoxides, catalase is used to preferentially destroy H2O2. Using a dual-channel flow system the H2O2 concentration is determined by difference.

  10. Fluorometric method for the determination of gas-phase hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Kok, Gregory L.; Lazrus, Allan L.

    1986-01-01

    The fluorometric gas-phase hydrogen peroxide procedure is based on the technique used by Lazrus et. al. for the determination of H2O2 in the liquid phase. The analytical method utilizes the reaction of H2O2 with horseradish peroxidase and p-hydroxphenylacetic acid (POPHA) to form the fluorescent dimer of POPHA. The analytical reaction responds stoichiometrically to both H2O2 and some organic hydroperoxides. To discriminate H2O2 from organic hydroperoxides, catalase is used to preferentially destroy H2O2. Using a dual-channel flow system the H2O2 concentration is determined by difference.

  11. Electrochemical regeneration of basic hydrogen peroxide for chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Hano, Masami; Wakita, Syuhei; Uno, Masaharu; Takeda, Shuzaburo

    2005-03-01

    A 3.6M basic hydrogen peroxide solution is electrochemically regenerated. The apparatus was originally developed for electrolytic H2O2 production, generating dilute (<0.2M) BHP for paper manufacturing. To suppress decomposition by various mechanisms, they are identified and quantified. Both caffeine and peracetic acid are found effective to suppress autodecomposition. Theoretical prediction of the current efficiency is made to find an optimum operational condition. A BHP of 3.614M is regenerated to 3.657M with a current efficiency of 67%.

  12. Fluorescence ratiometric sensor for trace vapor detection of hydrogen peroxide.

    PubMed

    Xu, Miao; Han, Ji-Min; Wang, Chen; Yang, Xiaomei; Pei, Jian; Zang, Ling

    2014-06-11

    Trace vapor detection of hydrogen peroxide (H2O2) represents a practical approach to nondestructive detection of peroxide-based explosives, including liquid mixtures of H2O2 and fuels and energetic peroxide derivatives, such as triacetone triperoxide (TATP), diacetone diperoxide (DADP), and hexamethylene triperoxide diamine (HMTD). Development of a simple chemical sensor system that responds to H2O2 vapor with high reliability and sufficient sensitivity (reactivity) remains a challenge. We report a fluorescence ratiometric sensor molecule, diethyl 2,5-bis((((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)carbonyl)amino)terephthalate (DAT-B), for H2O2 that can be fabricated into an expedient, reliable, and sensitive sensor system suitable for trace vapor detection of H2O2. DAT-B is fluorescent in the blue region, with an emission maximum at 500 nm in the solid state. Upon reaction with H2O2, DAT-B is converted to an electronic "push-pull" structure, diethyl 2,5-diaminoterephthalate (DAT-N), which has an emission peak at a longer wavelength centered at 574 nm. Such H2O2-mediated oxidation of aryl boronates can be accelerated through the addition of an organic base such as tetrabutylammonium hydroxide (TBAH), resulting in a response time of less than 0.5 s under 1 ppm of H2O2 vapor. The strong overlap between the absorption band of DAT-N and the emission band of DAT-B enables efficient Förster resonance energy transfer (FRET), thus allowing further enhancement of the sensing efficiency of H2O2 vapor. The detection limit of a drop-cast DAT-B/TBAH film was projected to be 7.7 ppb. By combining high sensitivity and selectivity, the reported sensor system may find broad application in vapor detection of peroxide-based explosives and relevant chemical reagents through its fabrication into easy-to-use, cost-effective kits. PMID:24801730

  13. Propanal synthesis from aqueous propylene glycol/hydrogen peroxide on a Ru/alumina catalyst

    SciTech Connect

    Disselkamp, Robert S.; Harris, Benjamin D.; Patel, Jayshribe N.; Hart, Todd R.; Peden, Charles HF

    2008-05-01

    The conversion of polyol materials, including 1,2-diols, into higher commodity chemicals is actively being pursued by many researchers. Here we report the production of propanal from propylene glycol and hydrogen peroxide using a Ru/alumina catalyst. Experiments were conducted by adding up to four peroxide equivalents under steady-state reflux conditions at 371 K. The product propanal and its subsequent reaction product with substrate, 1,3-dioxolane-2-ethyl-4-methyl, was observed to be an intermediate achieving a maximum concentration of 3% of substrate. Buffering using Mg(OH)2 at pH~10 resulted in propanal formation, whereas buffering at similar pH using Na2HSO4 did not, from which we propose that magnesium acts as a promoter in the reaction. The mechanism appears to be a dehydration to enol, followed by rearrangement to product. Experiments utilizing Ru/carbon did not yield any propanol suggesting that the acidic sites of alumina aid the dehydration reaction. To our knowledge, this represents the first time hydrogen peroxide has been used in an alcohol dehydration reaction.

  14. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    PubMed Central

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M.; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A.; González, Maricruz; Lindahl, Anna M.; Cejudo, Francisco J.

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs), thiol-based peroxidases able to reduce hydrogen and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide. PMID:23967002

  15. Measurement of hydrogen peroxide in an advanced oxidation process using an automated biosensor.

    PubMed

    Modrzejewska, B; Guwy, A J; Dinsdale, R; Hawkes, D L

    2007-01-01

    A hydrogen peroxide biosensor was used to monitor hydrogen peroxide concentrations in a UV/hydrogen peroxide immobilised Fenton advanced oxidation process (AOP). The biosensor is based on gas phase monitoring and thus is more resistant to fouling from the liquid phase constituents of industrial processes. The biosensor is supplied with catalase continually, therefore overcoming any problems with enzyme degradation, which would occur in an immobilised enzyme biosensor. The biosensors response was linear within the experimental range 30-400mg H(2)O(2)l(-1) with a R(2) correlation of 0.99. The hydrogen peroxide monitor was used to monitor residual peroxide in an AOP, operated with a step overload of hydrogen peroxide, with correlation factors of 0.96-0.99 compared to offline hydrogen peroxide determinations by UV spectroscopy. Sparging the sample with nitrogen was found to be effective in reducing the interference from dissolved gases produced with the AOP itself. It is proposed that this biosensor could be used to improve the effectiveness of AOPs via hydrogen peroxide control.

  16. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide.

    PubMed

    Puerto-Galán, Leonor; Pérez-Ruiz, Juan M; Ferrández, Julia; Cano, Beatriz; Naranjo, Belén; Nájera, Victoria A; González, Maricruz; Lindahl, Anna M; Cejudo, Francisco J

    2013-01-01

    Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs), thiol-based peroxidases able to reduce hydrogen and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  17. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and L-lactate detection.

    PubMed

    Hu, Ai-Ling; Liu, Yin-Huan; Deng, Hao-Hua; Hong, Guo-Lin; Liu, Ai-Lin; Lin, Xin-Hua; Xia, Xing-Hua; Chen, Wei

    2014-11-15

    A novel fluorescent hydrogen peroxide sensor was developed based on the peroxidase-like activity of cupric oxide nanoparticles. Cupric oxide nanoparticles effectively catalyzed the decomposition of hydrogen peroxide into hydroxyl radicals. Then terephthalic acid was oxidized by hydroxyl radical to form a highly fluorescent product. The linear range of hydrogen peroxide estimated to be 5.0 × 10(-6)-2.0 × 10(-4)M with a detection limit of 3.4 × 10(-7)M. Moreover, this detection system enabled the sensing of analytes which can enzymatically generate hydrogen peroxide. By coupling the oxidation of glucose or L-lactate catalyzed by their corresponding oxidase enzymes with terephthalic acid oxidation catalyzed by cupric oxide nanoparticles, sensitive assays of glucose and l-lactate with detection limits of 1.0 × 10(-6) and 4.5 × 10(-8)M were realized. The successful applications of this approach in human serum samples have also been demonstrated.

  18. Effect of carbamide peroxide and hydrogen peroxide on enamel surface: an in vitro study.

    PubMed

    Abouassi, Thaer; Wolkewitz, Martin; Hahn, Petra

    2011-10-01

    The aim of the study was to investigate changes in the micromorphologyl and microhardness of the enamel surface after bleaching with two different concentrations of hydrogen peroxide (HP) and carbamide peroxide (CP). Bovine enamel samples were embedded in resin blocks, and polished. Specimens in the experimental groups (n = 10) were treated with bleaching gels containing 10% CP, 35% CP, 3.6% HP, and 10% HP, respectively, for 2 h every second day over a period of 2 weeks. The gels had the identical composition and pH and differed only in their HP or CP content. The roughness and morphology of the enamel surface were analyzed using laser profilometry and SEM. Microhardness was measured using a Knoop hardness tester. The data were evaluated statistically. Specimens in the 10% HP group showed significantly higher roughness after bleaching compared to the control group (ΔRa, p = 0.01). Bleaching with 35% CP showed only a tendency to increase roughness (ΔRa, p = 0.06). Application of 10% CP or 3.6% HP had no significant influence on Ra. Enamel microhardness was significantly higher after application of 10% HP compared to the control (ΔMic = 8 KHN, p = 0.0002) and 35% CP (ΔMic = 20KHN, p = 0.01) groups. In summary, application of CP and HP showed only small quantitative and qualitative differences. In addition, the influence of bleaching procedure on the morphology and hardness of the enamel surface depended on the concentration of the active ingredients.

  19. New cytotoxic cyclic peroxide acids from Plakortis sp. marine sponge

    PubMed Central

    Hoye, Thomas R.; Alarif, Walied M.; Basaif, Salim S.; Abo-Elkarm, Mohamed; Hamann, Mark T.; Wahba, Amir E.; Ayyad, Seif-Eldin N.

    2016-01-01

    Bioassay-guided fractionation of the extract of Jamaican marine sponge Plakortis sp. followed by preparative TLC and HPLC yielded several known methyl ester cyclic peroxides (1a, 2a, 3a, 4, 5), known plakortides (6,7), known bicyclic lactone (8) and new cyclic peroxide acids (1b, 2b, 3b). The chemical structures were elucidated by extensive interpretation of their spectroscopic data. These natural products showed remarkable in vitro cytotoxicity against several cancer cell lines. PMID:26835518

  20. Evaluation of Extraradicular Diffusion of Hydrogen Peroxide during Intracoronal Bleaching Using Different Bleaching Agents

    PubMed Central

    Rokaya, Mohammad E.; Beshr, Khaled; Hashem Mahram, Abeer; Samir Pedir, Samah; Baroudi, Kusai

    2015-01-01

    Objectives. Extra radicular diffusion of hydrogen peroxide associated with intracoronal teeth bleaching was evaluated. Methods. 108 intact single rooted extracted mandibular first premolars teeth were selected. The teeth were instrumented with WaveOne system and obturated with gutta percha and divided into four groups (n = 27) according to the bleaching materials used. Each main group was divided into three subgroups (n = 9) according to the time of extra radicular hydrogen peroxide diffusion measurements at 1, 7, and 14 days: group 1 (35% hydrogen peroxide), group 2 (35% carbamide peroxide), group 3 (sodium perborate-30% hydrogen peroxide mixture), and group 4 (sodium perborate-water mixture). Four cemental dentinal defects were prepared just below the CEJ on each root surface. The amount of hydrogen peroxide that leached out was evaluated after 1, 7, and 14 days by spectrophotometer analysis. The results were analyzed using the ANOVA and Tukey's test. Results. Group 1 showed highest extra radicular diffusion, followed by group 3 and group 2, while group 4 showed the lowest mean extra radicular diffusion. Conclusion. Carbamide peroxide and sodium perborate-water mixture are the most suitable bleaching materials used for internal bleaching due to their low extra radicular diffusion of hydrogen peroxide. PMID:26257782

  1. Reaction of Aplysia limacina metmyoglobin with hydrogen peroxide.

    PubMed

    Svistunenko, Dimitri A; Reeder, Brandon J; Wankasi, Mieebi M; Silaghi-Dumitrescu, Radu-Lucian; Cooper, Chris E; Rinaldo, Serena; Cutruzzolà, Francesca; Wilson, Michael T

    2007-02-28

    Myoglobin (Mb) from gastropod mollusc Aplysia limacina shows only 20% sequence homology to the 'prototype' sperm whale Mb but exhibits a typical Mb fold and can reversibly bind oxygen. An intriguing feature of aplysia Mb is that it lacks the distal histidine and displays a ligand stabilisation based on an arginine. Here we report the reaction of aplysia metMb with hydrogen peroxide studied by optical and electron paramagnetic resonance (EPR) spectroscopies. Two electron oxidation of the protein by H2O2 results in formation of two intermediates typical for this class of reactions, the oxoferryl haem state and a globin-bound free radical. An unusual characteristic of the aplysia Mb reaction is formation, prior to haem oxidation, of an optically distinct compound with an EPR spectrum typical of the low spin Fe3+ haem state. This compound is interpreted as the complex between H2O2 and the ferric haem state (Compound), formed prior to cleavage of the dioxygen bond. We conclude that H2O2 is singly deprotonated in Compound which can thus be notated as [Fe3+--OOH]. A new low spin ferric haem state has been observed over the period of Compound decay, and hypotheses have been formulated as to its identity and role. The location of the protein bound radical observed in aplysia Mb is discussed in light of the fact that the protein does not have any tyrosine residues, the most common site of free radical formation in the haem protein/peroxide systems. All intermediates of the reaction are kinetically characterised.

  2. Kinetic release of hydrogen peroxide from different whitening products.

    PubMed

    da Silva Marques, Duarte Nuno; Silveira, Joao Miguel; Marques, Joana Rita; Amaral, Joao Almeida; Guilherme, Nuno Marques; da Mata, António Duarte

    2012-01-01

    The objective of this in vitro study was to evaluate the kinetics of hydrogen peroxide (HP) release from five different bleaching products: VivaStyle® 10% fitted tray gel, VivaStyle® 30% in-office bleaching gel, VivaStyle® Paint-On Plus paint-on bleaching varnish, Opalescence PF® 10% carbamide peroxide gel and Trèswhite Supreme™ 10% HP gel. Each product was firstly titrated for its HP content by a described method. HP release kinetics was assessed by a modified spectrophotometric technique. One sample t test was performed to test for differences between the manufacturers' claimed HP concentrations and the titrated HP content in the whitening products. Analysis of variance plus Tamhane's post hoc tests and Pearson correlation analysis were used as appropriate. Values of P < 0.05 were taken as significant. Titrated HP revealed an increased content when compared to the manufacturer's specifications for all the products tested (P < 0.05), although only products from one manufacturer produced significantly higher results. All products presented a significant (P < 0.05) and sustained release of HP. However, the product with paint-on cellulose-based matrix resulted in significantly (P < 0.05) faster kinetics when compared to other products tested. These results are consistent with manufacturers' reduced recommended application times. The results of this study suggest that modifying the matrix composition may be a viable alternative to HP concentration increase, since this may result in faster release kinetics without exposure to high HP concentrations. PMID:22908081

  3. Hydrogen peroxide-induced necrotic cell death in cardiomyocytes is independent of matrix metalloproteinase-2.

    PubMed

    Ali, Mohammad A M; Kandasamy, Arulmozhi D; Fan, Xiaohu; Schulz, Richard

    2013-09-01

    Matrix metalloproteinase-2 (MMP-2) is well known to proteolyse both extracellular and intracellular proteins. Reactive oxygen species activate MMP-2 at both transcriptional and post-translational levels, thus MMP-2 activation is considered an early event in oxidative stress injury. Although hydrogen peroxide is widely used to trigger oxidative stress-induced cell death, the type of cell death (apoptosis vs. necrosis) in cardiomyocytes is still controversial depending on the concentration used and the exposure time. We carefully investigated the mode of cell death in neonatal rat cardiomyocytes induced by different concentrations (50-500 μM) of hydrogen peroxide at various time intervals after exposure and determined whether MMP-2 is implicated in hydrogen peroxide-induced cardiomyocyte death. Treating cardiomyocytes with hydrogen peroxide led to elevated MMP-2 level/activity with maximal effects seen at 200 μM. Hydrogen peroxide caused necrotic cell death by disrupting the plasmalemma as evidenced by the release of lactate dehydrogenase in a concentration- and time-dependent manner as well as the necrotic cleavage of PARP-1. The absence of both caspase-3 cleavage/activation and apoptotic cleavage of PARP-1 illustrated the weak contribution of apoptosis. Pre-treatment with selective MMP inhibitors did not protect against hydrogen peroxide-induced necrosis. In conclusion hydrogen peroxide increases MMP-2 level/activity in cardiomyocytes and induces necrotic cell death, however, the later effect is MMP-2 independent.

  4. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Mahmud, Maznah; Naziri, Muhammad Ihsan; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid

    2014-02-01

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%-5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  5. Development of biological and nonbiological explanations for the Viking label release data. [hydrogen peroxide theory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The plausibility that hydrogen peroxide, widely distributed within the Mars surface material, was responsible for the evocative response obtained by the Viking Labeled Release (LR) experiment on Mars was investigated. Although a mixture of gamma Fe2O3 and silica sand stimulated the LR nutrient reaction with hydrogen peroxide and reduced the rate of hydrogen decomposition under various storage conditions, the Mars analog soil prepared by the Viking Inorganic Analysis Team to match the Mars analytical data does not cause such effects. Nor is adequate resistance to UV irradiation shown. On the basis of the results and consideration presented while the hydrogen peroxide theory remains the most, if not only, attractive chemical explanation of the LR data, it remains unconvincing on critical points. Until problems concerning the formation and stabilization of hydrogen peroxide on the surface of Mars can be overcome, adhere to the scientific evidence requires serious consideration of the biological theory.

  6. Factors affecting the levels of hydrogen peroxide in rainwater

    NASA Astrophysics Data System (ADS)

    Deng, Yiwei; Zuo, Yuegang

    Measurements of hydrogen peroxide (H 2O 2) and several meteorological and chemical parameters were made for 34 rain events which occurred in Miami, Florida between April, 1995 and October, 1996. The measured H 2O 2 concentrations ranged from 0.3 to 38.6 μM with an average concentration of 6.9 μM. A strong seasonal dependence for H 2O 2 concentrations was observed during this period, with highest concentrations in the summer and lower levels in the winter, which corresponds to the stronger solar radiation and higher vaporization of volatile organic compounds (VOCs) in the summer and fall, and the weaker sunlight and lower vaporization in the winter and spring. Measurements also showed a significant increase trend of H 2O 2 with increasing ambient rainwater temperature. Rains that were out from lower latitude were exposed to higher solar irradiation and contained relatively higher levels of H 2O 2 than those from the north. All these observations indicate that photochemical reactions that involved volatile organic compounds are the predominant source of H 2O 2 observed in rainwater. During several individual rainstorms, H 2O 2 concentration was found to increase as a function of time due to electrical storm activities. This finding suggests that lightning could be an important factor that determines the level of H 2O 2 during thunderstorms. Statistical data showed that the highest concentrations of H 2O 2 were observed only in rains containing low levels of nonsea-salt sulfate (NSS), nitrate and hydrogen ion. H 2O 2 concentrations in continental originated rains were much lower than marine originated ones, indicating that air pollutants in continental rains could significantly deplete the H 2O 2 concentration in atmospheric gas-phase, clouds and rainwater.

  7. Gelation time, homogeneity, and rupture testing of alginate-calcium carbonate-hydrogen peroxide gels for use as wound dressings.

    PubMed

    Alexander, Brendan R; Murphy, Kathleen E; Gallagher, Joanne; Farrell, Garrett F; Taggart, Gertie

    2012-02-01

    The care of chronic wounds carries a heavy financial burden on the healthcare industry, with billons being spent annually on their treatment. This, coupled with a decreased quality of life for sufferers, has led to a real urgency in developing inexpensive wound dressings that promote wound healing. Alginate gels for application as wound dressings were formed by varying alginate (0%-6% w/v), calcium carbonate (0%-1% w/v), hydrogen peroxide (0%-3.75% v/v), and hyaluronic acid (0-1.25 mg/L) content. The aging effects on the physical properties of the gels over a 14-day period were also investigated. The results indicated that the concentration of calcium carbonate and hydrogen peroxide, as well as sample age, all had a significant effect on the rupture characteristics and gelation time of the gels. Increased calcium carbonate content caused an increase in rupture force and rupture energy values, whereas increased hydrogen peroxide content and sample age resulted in a decrease in rupture force and rupture energy measurements. Increased calcium carbonate and hydrogen peroxide content produced a decrease in the time required for gel formation. Statistical models were also produced to provide a means of estimating rupture characteristics and gelation times for gels containing other concentrations of these components.

  8. Effects of treating wheat straw with pH-regulated solutions of alkaline hydrogen peroxide on nutrient digestion by sheep.

    PubMed

    Kerley, M S; Fahey, G C; Berger, L L; Merchen, N R; Gould, J M

    1987-10-01

    An experiment using a 4 X 4 Latin square design was to determine effects of treating wheat straw with pH-regulated (pH = 11.5) solutions of hydrogen peroxide on site and extent of nutrient digestion in multiple-fistulated sheep. Regulating reaction pH at 11.5 prevented solubilization of some cell wall hemicelluloses, resulting in improved retention of DM. Diets fed to sheep contained 33 or 70% wheat straw either untreated or treated with alkaline hydrogen peroxide. Sheep fed diets of treated wheat straw digested more DM, NDF, ADF, and cellulose anterior to the duodenum and in the total tract than when fed diets of untreated wheat straw. Apparent CP digestion before the duodenum was highest when sheep were fed the treated 33% wheat straw diet and untreated 70% wheat straw diet. Treatments did not affect apparent nutrient digestibilities in the large intestine. Ruminal pH was lower when sheep were fed the alkaline hydrogen peroxide-treated or diets containing 33% wheat straw. Ruminal ammonia concentrations were highest when sheep were fed the untreated 70% wheat straw diet. Molar proportions of ruminal acetic and propionic acids were unaffected by diet. Alkaline hydrogen peroxide treatment substantially increased susceptibility of structural carbohydrates of wheat straw to microbial degradation in the gastrointestinal tract of sheep.

  9. Novel microencapsulation of potential drugs with low molecular weight and high hydrophilicity: hydrogen peroxide as a candidate compound.

    PubMed

    Ng, Sing-Muk; Choi, Jeong-Yeon; Han, Hyung-Soo; Huh, Jeung-Soo; Lim, Jeong Ok

    2010-01-15

    Microencapsulation of drugs into solid biodegradable polymeric microspheres via solvent evaporation technique remains challenging especially with those having low molecular weight and high hydrophilicity nature. This paper presents an efficient encapsulation protocol for this group of drugs, demonstrated using hydrogen peroxide as a model compound that is encapsulated into poly(lactic-co-glycolic acid) microspheres. Hydrogen peroxide can be employed as antiseptic agent or its decomposed form into oxygen can be useful in various pharmaceutical applications. The new encapsulation technique was developed based on the modification of conventional double emulsion and solvent evaporation protocol with a backward concentration gradient of hydrogen peroxide. This was achieved by adding and controlling the concentration of hydrogen peroxide at the continuous phase during the solidification stage of the microspheres. Parameters involved in the production and the formulation aspect were optimized to achieve the best protocol having controlled efficiency of encapsulation that is simple, safe, practical, and economical. Evaluation on the encapsulation efficiency and the release profile has been made indirectly by monitoring the dissolved oxygen level of the solution where the microspheres were incubated. Morphology of the microspheres was investigated using scanning electron microscopy. This proposed method has successfully used to prepare batches of microspheres having different encapsulation efficiencies and its potential applications have been demonstrated accordingly.

  10. Optimization of Hydrogen Peroxide Detection for a Methyl Mercaptan Biosensor

    PubMed Central

    Li, Zhan-Hong; Guedri, Houssemeddine; Viguier, Bruno; Sun, Shi-Gang; Marty, Jean-Louis

    2013-01-01

    Several kinds of modified carbon screen printed electrodes (CSPEs) for amperometric detection of hydrogen peroxide (H2O2) are presented in order to propose a methyl mercaptan (MM) biosensor. Unmodified, carbon nanotubes (CNTs), cobalt phthalocyanine (CoPC), Prussian blue (PB), and Os-wired HRP modified CSPE sensors were fabricated and tested to detect H2O2, applying a potential of +0.6 V, +0.6 V, +0.4 V, −0.2 V and −0.1 V (versus Ag/AgCl), respectively. The limits of detection of these electrodes for H2O2 were 3.1 μM, 1.3 μM, 71 nM, 1.3 μM, 13.7 nM, respectively. The results demonstrated that the Os-wired HRP modified CSPEs gives the lowest limit of detection (LOD) for H2O2 at a working potential as low as −0.1 V. Os-wired HRP is the optimum choice for establishment of a MM biosensor and gives a detection limit of 0.5 μM. PMID:23591963

  11. Nitric oxide formation from hydroxylamine by myoglobin and hydrogen peroxide.

    PubMed

    Taira, J; Misík, V; Riesz, P

    1997-10-20

    Hydroxylamine (HA), which is a natural product of mammalian cells, has been shown to possess vasodilatory properties in several model systems. In this study, HA and methyl-substituted hydroxylamines, N-methylhydroxylamine (NMHA) and N,N-dimethylhydroxylamine (NDMHA), have been tested for their ability to generate free diffusible nitric oxide (NO) in the presence of myoglobin (Mb) and hydrogen peroxide. A NO-specific conversion of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO) to 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl (carboxy-PTI), measured by electron spin resonance (ESR) spectroscopy, along with nitrite and nitrate production, was observed for HA but not for NMHA and NDMHA. ESR measurements at 77 K showed the formation of the ferrous nitrosyl myoglobin, Mb-NO, in the reaction mixtures containing Mb, H2O2 and HA. Our data also demonstrate that Mb-NO is an end product of the reaction pathway involving Mb, H2O2 and HA, rather than a reaction intermediate in the formation of NO. In summary, our results demonstrate a possible pathway of NO formation from HA, however, the significance of this mechanism for bioactivation of HA in vivo is unknown at the present time.

  12. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cells.

    PubMed

    Zhao, Xingyu; Jin, Lianhai; Shen, Nan; Xu, Bin; Zhang, Wei; Zhu, Hongli; Luo, Zhengli

    2013-01-01

    Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Herein, we investigated the protective effects of salidroside against hydrogen peroxide (H2O2)-induced oxidative damage in human endothelial cells (EVC-304). EVC-304 cells were incubated in the presence or absence of low steady states of H2O2 (3-4 µM) generated by glucose oxidase (GOX) with or without salidroside. 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) assays were performed, together with Hoechst 33258 staining and flow cytometric analysis using Annexin-V and propidium iodide (PI) label. The results indicated that salidroside pretreatment attenuated endogenous H2O2 induced apoptotic cell death in EVC-304 cells in a dose-dependent pattern. Furthermore, Western blot data revealed that salidroside inhibited activation of caspase-3, 9 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by endogenous H2O2. It also decreased the expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. All these results demonstrated that salidroside may present a potential therapy for oxidative stress in cardiovascular and cerebrovascular diseases.

  13. Graphene Oxide Based Fluorometric Detection of Hydrogen Peroxide in Milk.

    PubMed

    Nanda, Sitansu Sekhar; Yi, Dong Kee; Kim, Kwangmeyung

    2016-01-01

    We report a highly rapid, visual, precise, selective and sensitive analytical method for the determination of hydrogen peroxide (H₂O₂) in milk using Graphene oxide (GO) with 2',7'-dichlorfluorescein diacetate (DCFH-DA). A 1000 µL aliquots of 10-fold diluted samples (high and low-fat milk) directly onto the 100 µL of GO and 100 µL of 100 µM DCFH-DA produced green colour under Ultraviolet light at 365 nm. The analytical feature of our proposed method includes low detection limit (10 mmol mL⁻¹) and satisfactory recovery values for samples. The presence of H202 in milk is a major concern because it constitutes a public health hazard. Many milk indursties are using H₂O₂ as a preservative, but if the concentration increases then it causes so many health problems such as neurodegenerative disorders, cancer and diabetes. Present methods show an easy way for detecting H₂O₂ generally require considerable time and laboratory facilities. The chemical tests have sufficient sensitivity to detect wide linear range of H₂O₂ concentration. PMID:27398583

  14. An investigation of hydrogen-peroxide reduction and decomposition catalysts

    SciTech Connect

    Kicheev, A.G.; Kalmykova, S.B.; Kvashnin, Yu.A.; Maksimov, G.N.; Savel'eva, V.N.

    1986-01-01

    Silver and platinum metals are known as active catalysts for hydrogen peroxide reduction and decomposition. But their relative activities are not well known, and data are also lacking with respect to the relative rates of reduction and decomposition of H/sub 2/O/sub 2/ at different catalysts. It was the aim of this work to study the rates of H/sub 2/O/sub 2/ reduction and decomposition at different electrodes which are catalytically active in these reactions and relatively corrosion-resistant in alkaline solutions. The authors studied the metals Ag, Au, Pt, and Pd, the alloy Pd-Ru, the surface Raney-nickel catalyst Ni-SRC, as well as Ni-SRC coated with an electrolytic palladium deposit, Pd/Ni-SRC. In this work the potentiodynamic curves of H/sub 2/O/sub 2/ reduction were recorded with a scan rate of 40 mV/min at the electrodes being investigated.

  15. Activation of Store-Operated ICRAC by Hydrogen Peroxide

    PubMed Central

    Grupe, Morten; Myers, George; Penner, Reinhold; Fleig, Andrea

    2010-01-01

    SUMMARY Reactive oxygen species such as hydrogen peroxide (H2O2) play a role in both innate immunity as well as cellular injury. H2O2 induces changes in intracellular calcium ([Ca2+]i) in many cell types and this seems to be at least partially mediated by transient receptor potential melastatin 2 (TRPM2) in cells that express this channel. Here we show that low concentrations of H2O2 induce the activation of the Ca2+-release activated Ca2+ current ICRAC. This effect is not mediated by direct CRAC channel activation, since H2O2 does not activate heterologously expressed CRAC channels independently of stromal interaction molecule (STIM). Instead, ICRAC activation is partially mediated by store depletion through activation of inositol 1,4,5 trisphosphate receptors (IP3R), since pharmacological inhibition of IP3 receptors by heparin or molecular knock-out of all IP3 receptors in DT40 B cells strongly reduce H2O2-induced ICRAC. The remainder of H2O2-induced ICRAC activation is likely mediated by IP3R-independent store-depletion. Our data suggest that H2O2 can activate Ca2+ entry through TRPM2 as well as store-operated CRAC channels, thereby adding a new facet to ROS-induced Ca2+ signaling. PMID:20646759

  16. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.

    PubMed

    Bienert, Gerd P; Møller, Anders L B; Kristiansen, Kim A; Schulz, Alexander; Møller, Ian M; Schjoerring, Jan K; Jahn, Thomas P

    2007-01-12

    The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.

  17. Ab initio calculation of infrared intensities for hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Hillman, J. J.

    1982-01-01

    Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.

  18. Mononuclear Iron Enzymes Are Primary Targets of Hydrogen Peroxide Stress*

    PubMed Central

    Anjem, Adil; Imlay, James A.

    2012-01-01

    This study tested whether nonredox metalloenzymes are commonly charged with iron in vivo and are primary targets of oxidative stress because of it. Indeed, three sample mononuclear enzymes, peptide deformylase, threonine dehydrogenase, and cytosine deaminase, were rapidly damaged by micromolar hydrogen peroxide in vitro and in live Escherichia coli. The first two enzymes use a cysteine residue to coordinate the catalytic metal atom; it was quantitatively oxidized by the radical generated by the Fenton reaction. Because oxidized cysteine can be repaired by cellular reductants, the effect was to avoid irreversible damage to other active-site residues. Nevertheless, protracted H2O2 exposure gradually inactivated these enzymes, consistent with the overoxidation of the cysteine residue to sulfinic or sulfonic forms. During H2O2 stress, E. coli defended all three proteins by inducing MntH, a manganese importer, and Dps, an iron-sequestration protein. These proteins appeared to collaborate in replacing the iron atom with nonoxidizable manganese. The implication is that mononuclear metalloproteins are common targets of H2O2 and that both structural and metabolic arrangements exist to protect them. PMID:22411989

  19. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA.

    PubMed

    Vilas-Boas, Filipe; Bagulho, Ana; Tenente, Rita; Teixeira, Vitor H; Martins, Gabriel; da Costa, Gonçalo; Jerónimo, Ana; Cordeiro, Carlos; Machuqueiro, Miguel; Real, Carla

    2016-01-01

    To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment.

  20. The role of hydrogen peroxide in endothelial proliferative responses.

    PubMed

    Stone, James R; Collins, Tucker

    2002-01-01

    Hydrogen peroxide (H2O2) is a recently recognized second messenger regulating proliferation in mammalian cells. Endothelial cells possess NADPH oxidases, which produce the H202 precursor superoxide (.O2-) in response to receptor-mediated signaling. Multiple physiologic agents have been shown to stimulate endothelial cells to produce .O2-/H2O2, including growth factors, such as vascular endothelial growth factor and transforming growth factor-beta1, and alterations in biomechanical forces, such as shear stress and cyclic strain. Downstream effects of these stimuli can often be inhibited by scavenging H2O2. Low concentrations of H2O2 stimulate proliferation or enhanced survival in a wide variety of cell types. Also, low concentrations of H2O2 stimulate endothelial migration as well as tube formation in an in vitro model of angiogenesis. Although low concentrations of H2O2 have been shown to be involved in numerous signal transduction pathways and to independently stimulate mitogenesis, there has been little information presented on precisely how mammalian cells respond biochemically to these low concentrations of H2O2. Recently a functional proteomics approach has been utilized to identify proteins responsive to low concentrations of H2O2 in human endothelial cells.

  1. Hydrogen peroxide-induced chemotaxis of mouse peritoneal neutrophils.

    PubMed

    Klyubin, I V; Kirpichnikova, K M; Gamaley, I A

    1996-08-01

    Directed locomotion of mouse peritoneal neutrophils under agarose was studied, and activity of hydrogen peroxide (H2O2) as a chemoattractant was tested in its concentration range of 10(-6) to 10(-3) M. It has been found that H2O2 at low concentrations (about 10 microM) induces chemotactic activity. This activity was not affected by the presence of serum in the agarose medium. Use of bovine serum albumin instead of the heat-inactivated bovine serum in the medium had no effect on cell locomotion. The H2O2-induced chemotaxis was significantly reduced by catalase. Involvement of [Ca2+]i transients in the H2O2-induced chemotactic response was shown. These data indicate that H2O2 itself in small quantities can act as a chemoattractant without interacting with a plasma precursor to form a chemotactic factor. It has been suggested that H2O2 may form an important link similar to the second messenger in communication between the cells.

  2. Hydrogen Peroxide-Induced Akt Phosphorylation Regulates Bax Activation

    PubMed Central

    Sadidi, Mahdieh; Lentz, Stephen I.; Feldman, Eva L.

    2009-01-01

    Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences posttranslational modification of Bax and inactivate a key component of the cell death machinery. PMID:19278624

  3. Optimization of two methods for the analysis of hydrogen peroxide: high performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode.

    PubMed

    Tarvin, Megan; McCord, Bruce; Mount, Kelly; Sherlach, Katy; Miller, Mark L

    2010-11-26

    Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC-FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC-ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400 mV vs. hydrogen reference electrode (Pd/H(2)). Both methods were linear across the range of 15-300 μM, and the electrochemical method was linear across a wider range of 7.4-15,000 μM. The limit of detection for hydrogen peroxide was 6 μM by HPLC/FD, and 0.6 μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris.

  4. A HIGHLY EFFICIENT OXIDATION OF CYCLOHEXANE OVER VPO CATALYSTS USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An unprecedented and highly efficient oxidation of cyclohexane to cyclohexanol and cyclohexanone is accomplished over calcined vanadium phosphorus oxide (VPO) catalysts in a relatively mild condition using hydrogen peroxide under a nitrogen atmosphere.

  5. [The Clinical Application Status and Development Trends of Hydrogen Peroxide Low Temperature Plasma Sterilizers].

    PubMed

    Zhuang, Min; Zheng, Yunxin; Chen, Ying; Hou, Bin; Xu, Zitian

    2016-01-01

    The hydrogen peroxide low temperature plasma sterilization technology solved the problems of thermo-sensitive materials' disinfection and sterilization based on its development and unique characteristics. This paper introduced the researches of clinical application quality control, and showed the hydrogen peroxide low temperature plasma sterilizers were being widely used in hospitals and highly recognized. According to the clinical data and the literatures of the domestic equipment in preliminary application, it could be concluded that the technology maturity of domestic hydrogen peroxide low temperature plasma sterilizers was in a high level. The advantages of using domestic hydrogen peroxide low temperature plasma sterilizers to do disinfection and sterilization included lower cost, safer, faster and non-toxic, etc. Also the management system should be improved and the clinical staff should master the technical essentials, obey the procedures strictly, verify periodically and offer full monitoring to upgrade the quality of sterilization. PMID:27197500

  6. Effect of hydrogen peroxide treatment on the properties of wool fabric

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Shen, Xiaolin; Xu, Weilin

    2012-10-01

    In this study, hydrogen peroxide treatment was applied to improve the surface wettability, moisture transfer properties and other related properties of wool fabric. SEM images showed the tip of wool scale was smoothened and parts of the scale were peeled off after hydrogen peroxide treatment. The time for a water droplet to sink into the fabric could decrease to less than 1 s and the wicking properties of wool fabrics were dramatically improved after hydrogen peroxide treatment. Shrinkage and whiteness of the fabric were improved due to the modification of scale and the bleaching effect of hydrogen peroxide, respectively. The fabrics became weaker and ductile with less than 4% weight loss. This study would benefit further application of wool fiber in summer clothing in which the surface wettability and moisture transfer properties are essential and determinative.

  7. Treatment of Aroclor 1016 contaminated soil by hydrogen peroxide: laboratory column study.

    PubMed

    Viisimaa, Marika; Veressinina, Jelena; Goi, Anna

    2012-09-01

    The potential and feasibility of treating soil contaminated with electrical insulating oil, Aroclor 1016, containing polychlorinated biphenyls (PCBs) with stabilized hydrogen peroxide were evaluated using columns packed with soils of two different matrixes. The column experiments showed that PCBs degraded by the stabilized hydrogen peroxide treatment in both soil matrixes, although the efficacy of the treatment depended strongly on the soil characteristics. The removal of PCB-containing oil was higher in sandy silt soil than in sandy soil. While a higher iron content promoted hydrogen peroxide oxidation of the contaminant in sandy silt soil, lower permeability and higher organic matter content contributed to an oxidation decrease as a function of depth. Dehydrogenase activity measurements indicated no substantial changes in microbial activity during the treatment of both sandy and sandy silt soils, thus offering opportunities to apply the hydrogen peroxide treatment to the remediation of PCB-contaminated soil.

  8. [The Clinical Application Status and Development Trends of Hydrogen Peroxide Low Temperature Plasma Sterilizers].

    PubMed

    Zhuang, Min; Zheng, Yunxin; Chen, Ying; Hou, Bin; Xu, Zitian

    2016-01-01

    The hydrogen peroxide low temperature plasma sterilization technology solved the problems of thermo-sensitive materials' disinfection and sterilization based on its development and unique characteristics. This paper introduced the researches of clinical application quality control, and showed the hydrogen peroxide low temperature plasma sterilizers were being widely used in hospitals and highly recognized. According to the clinical data and the literatures of the domestic equipment in preliminary application, it could be concluded that the technology maturity of domestic hydrogen peroxide low temperature plasma sterilizers was in a high level. The advantages of using domestic hydrogen peroxide low temperature plasma sterilizers to do disinfection and sterilization included lower cost, safer, faster and non-toxic, etc. Also the management system should be improved and the clinical staff should master the technical essentials, obey the procedures strictly, verify periodically and offer full monitoring to upgrade the quality of sterilization.

  9. SnFe2 O4 Nanocrystals as Highly Efficient Catalysts for Hydrogen-Peroxide Sensing.

    PubMed

    Lee, Kuan-Ting; Liu, Dai-Ming; Lu, Shih-Yuan

    2016-07-25

    SnFe2 O4 nanocrystals (NC), prepared with a simple one-step carrier-solvent-assisted interfacial reaction process, were developed as highly efficient catalysts for hydrogen peroxide sensing. These NCs, with a size of around 7 nm, served as the sensing catalyst and were decorated onto the pore surfaces of a porous fluorine-doped tin oxide (PFTO) host electrode, prepared from commercial FTO glass with a simple anodic treatment, to form the sensing electrode for hydrogen peroxide. The SnFe2 O4 NCs-loaded PFTO electrode exhibited an ultra-high sensitivity of 1027 mA m(-1)  cm(-2) toward hydrogen peroxide, outperforming Pt NCs-loaded PFTO electrodes. The SnFe2 O4 NCs-loaded PFTO electrode proved a promising relatively low cost, high performance sensing electrode for hydrogen peroxide. PMID:27346720

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  11. Certification of vapor phase hydrogen peroxide sterilization process for spacecraft application

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Koukol, R.; Foster, T. L.; Stabekis, P. D.

    2002-01-01

    This paper describes the selection process and research activities JPL is planning to conduct for certification of hydrogen peroxide as a NASA approved technique for sterilization of various spacecraft parts/components and entire modern spacecraft.

  12. Development of technology of hydrogen peroxide water treatment with use of homogeneous or heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Gutenyev, V. V.; Azhgirevich, A. I.; Kiryanova, L. F.; Gutenyeva, Ye. N.

    2003-04-01

    A flow chart of water disinfection by hydrogen peroxide with the use, as a catalyst, of manganese dioxide and titanium dioxide, as well as of natural catalysts, such as hopcolite, pyrolusite, rutil. The analysis of collected data shows that combination of hydrogen peroxide with hopcolite powder appears to be the most effective. Another positive aspect of the mentioned combination is enabling (by hopcolite) the water treated by hydrogen peroxide to continuously resist secondary bacteriological contamination. This flow chart enables us to increase the effectiveness of disinfection of hydrogen peroxide, which reduces human impact on environment. In order to improve bactericidal effects of hopcolite we loaded the hopcolite powder with metallic silver particles. In a series of experiments held both with environmental water and with model solutions we found the ability to neutralize artificially introduced infection (102 cells per liter) in 1.5-2 days.

  13. HOMOGENEOUS CATALYSTS FOR THE PARTIAL-OXYGENATION OF SATURATED HYDROCARBONS WITH HYDROGEN PEROXIDE

    EPA Science Inventory

    The development of catalysts with the capacity to activate green oxidants, such as hydrogen peroxide and molecular oxygen, can offer an environmentally sound pathway for hydrocarbon oxidation. Furthermore, by including the concepts of green chemistry and pollution prevention one ...

  14. Hydrogen peroxide induces microvilli on human retinal pigment epithelial cells in culture.

    PubMed

    Reid, G G; Edwards, J G; Marshall, G E; Sutcliffe, R G; Lee, W R

    1995-02-01

    We have found that hydrogen peroxide (10(-4)-10(-2) M) rapidly induces microvilli on separate cells and confluent sheets of human retinal pigment epithelium in culture. t-butyl hydroperoxide and sodium arsenite do not induce microvilli. A role for hydrogen peroxide as an intercellular messenger has previously been proposed in the inflammatory response, in which hydrogen peroxide from phagocytes may signal to vascular endothelial cells. Our observations thus provide a second example of the induction of what may be a physiological response by this potentially toxic agent. In the retina, hydrogen peroxide released from illuminated photoreceptors may elongate the microvilli which extend into the spaces between them. Increased numbers of microvilli and their protrusion further into the photoreceptor layer may enhance various interactions between the two cell types, including the antioxidant functions of the epithelium.

  15. MICROWAVE-EXPEDITED OLEFIN EPOXIDATION OVER HYDROTALCITES USING HYDROGEN PEROXIDE AND ACETONITRILE

    EPA Science Inventory

    An efficient microwave-assisted expoxidation of olefins is described over hydrotalcite catalysts in the presence of hydrogen peroxide and acetonitrile. This general and selective protocol is extremely fast and is applicable to a wide variety of subtrates.

  16. ENHANCED BIOREMEDIATION UTILIZING HYDROGEN PEROXIDE AS A SUPPLEMENTAL SOURCE OF OXYGEN: A LABORATORY AND FIELD STUDY

    EPA Science Inventory

    Laboratory and field scale studies were conducted to investigate the feasibility of using hydrogen peroxide as a supplemental source of oxygen for bioremediation of an aviation gasoline fuel spill. Field samples of aviation gasoline contaminated aquifer material were artificially...

  17. An automated system for the measurement of hydrogen peroxide in industrial applications

    PubMed Central

    Westbroek, Philippe; Temmerman, Edward; Kiekens, Paul; Govaert, Filip

    1998-01-01

    An automated sensor system for the continuous and in-line measurement of hydrogen peroxide in industrial applications is described. The hydrogen peroxide concentration can be measured over the entire pH range, over a wide concentration range of hydrogen peroxide (10-3 70 g/l), from 0 to 70°C, and with high precision and accuracy (errors less than 1% ). The system consists of a bypass in which the necessary electrodes are positioned and electronically controlled. The sensor is very selective for hydrogen peroxide, easy to instal, and it is stable for at least two months after calibration. The calibration can be done in the process solution during a running process. PMID:18924833

  18. Developing Planetary Protection Technology: Recurrence of Hydrogen Peroxide Resistant Microbes from Spacecraft Assembly Facilities

    NASA Astrophysics Data System (ADS)

    Kempf, M. J.; Chen, F.; Quigley, M. S.; Pillai, S.; Kern, R.; Venkateswaran, K.

    2001-12-01

    Hydrogen peroxide vapor is currently the sterilant-of-choice for flight hardware because it is a low-heat sterilization process suitable for use with various spacecraft components. Hydrogen peroxide is a strong oxidizing agent that produces hydroxyl free radicals ( .OH) which attack essential cell components, including lipids, proteins, and DNA. Planetary protection research efforts at the Jet Propulsion Laboratory (JPL) are focused on developing cleaning and sterilization technologies for spacecraft preparation prior to launch. These efforts include research to assess the microbial diversity of spacecraft assembly areas and any extreme characteristics these microbes might possess. Previous studies have shown that some heat-tolerant Bacillus species isolated from the JPL Spacecraft Assembly Facility (SAF) are resistant to recommended hydrogen peroxide vapor sterilization exposures. A Bacillus species, which was related to a hydrogen peroxide resistant strain, was repeatedly isolated from various locations in the JPL-SAF. This species was found in both unclassified (entrance floors, ante-room, and air-lock) and classified (class 100K) (floors, cabinet tops, and air) areas. The phylogenetic affiliation of these strains was carried out using biochemical tests and 16S rDNA sequencing. The 16S rDNA analysis showed >99% sequence similarity to Bacillus pumilus. In order to understand the epidemiology of these strains, a more highly evolved gene (topoisomerase II β -subunit, gyrB) was also sequenced. Among 4 clades, one cluster, comprised of 3 strains isolated from the air-lock area, tightly aligned with the B. pumilus ATCC 7061 type strain (97%). The gyrB sequence similarity of this clade was only 91% with the 3 other clades. The genetic relatedness of these strains, as per pulse field gel electrophoresis patterns, will be presented. The vegetative cells and spores of a number of isolates were tested for their hydrogen peroxide resistance. Cells and spores were

  19. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco

    PubMed Central

    Vandenabeele, Steven; Van Der Kelen, Katrien; Dat, James; Gadjev, Ilya; Boonefaes, Tom; Morsa, Stijn; Rottiers, Pieter; Slooten, Luit; Van Montagu, Marc; Zabeau, Marc; Inzé, Dirk; Van Breusegem, Frank

    2003-01-01

    Hydrogen peroxide plays a central role in launching the defense response during stress in plants. To establish a molecular profile provoked by a sustained increase in hydrogen peroxide levels, catalase-deficient tobacco plants (CAT1AS) were exposed to high light (HL) intensities over a detailed time course. The expression kinetics of >14,000 genes were monitored by using transcript profiling technology based on cDNA-amplified fragment length polymorphism. Clustering and sequence analysis of 713 differentially expressed transcript fragments revealed a transcriptional response that mimicked that reported during both biotic and abiotic stresses, including the up-regulation of genes involved in the hypersensitive response, vesicular transport, posttranscriptional processes, biosynthesis of ethylene and jasmonic acid, proteolysis, mitochondrial metabolism, and cell death, and was accompanied by a very rapid up-regulation of several signal transduction components. Expression profiling corroborated by functional experiments showed that HL induced photoinhibition in CAT1AS plants and that a short-term HL exposure of CAT1AS plants triggered an increased tolerance against a subsequent severe oxidative stress. PMID:14671332

  20. Evaluation of cotton-fabric bleaching using hydrogen peroxide and Blue LED

    NASA Astrophysics Data System (ADS)

    de Oliveira, Bruno P.; Moriyama, Lilian T.; Bagnato, Vanderlei S.

    2015-06-01

    The raw cotton production requires multiple steps being one of them the removal of impurities acquired during previous processes. This procedure is widely used by textile industries around the world and is called bleaching. The raw cotton is composed by cellulosic and non-cellulosic materials like waxes, pectins and oils, which are responsible for its characteristic yellowish color. The bleaching process aims to remove the non-cellulosic materials concentration in the fabric, increasing its whiteness degree. The most used bleaching method utilizes a bath in an alkali solution of hydrogen peroxide, stabilizers and buffer solutions under high temperature. In the present study we evaluated the possibility of using a blue illumination for the bleaching process. We used blue LEDs (450 nm) to illuminate an acid hydrogen peroxide solution at room temperature. The samples treated by this method were compared with the conventional bleaching process through a colorimetric analysis and by a multiple comparison visual inspection by volunteers. The samples were also studied by a tensile test in order to verify the integrity of the cloth after bleaching. The results of fabric visual inspection and colorimetric analysis showed a small advantage for the sample treated by the standard method. The tensile test showed an increasing on the yield strength of the cloth after blue light bleaching. The presented method has great applicability potential due to the similar results compared to the standard method, with relative low cost and reduced production of chemical waste.

  1. Cerebral arterial gas embolism after pre-flight ingestion of hydrogen peroxide.

    PubMed

    Smedley, Ben L; Gault, Alan; Gawthrope, Ian C

    2016-06-01

    Cerebral arterial gas embolism (CAGE) is a feared complication of ambient depressurisation and can also be a complication of hydrogen peroxide ingestion. We present an unusual case of CAGE in a 57-year-old woman exposed to both of these risk factors. We describe her subsequent successful treatment with hyperbaric oxygen, despite a 72-hour delay in initial presentation and diagnosis, and discuss the safety of aero-medical transfer following hydrogen peroxide ingestions.

  2. Efficacy of hydrogen peroxide to control saprolegniasis on channel catfish (Ictalurus punctatus) eggs

    USGS Publications Warehouse

    Rach, J.J.; Valentine, J.J.; Schreier, T.M.; Gaikowski, M.P.; Crawford, T.G.

    2004-01-01

    The efficacy of hydrogen peroxide to control mortality associated with saprolegniasis in channel catfish (Ictalurus punctatus) eggs was evaluated at the Lost Valley State Fish Hatchery (Warsaw, MO). Two efficacy trials were conducted. In Trial 1, channel catfish eggs in their natural gelatinous matrix were treated with hydrogen peroxide at 0, 500, and 750 mg l(-1). Channel catfish eggs in Trial 2 had the gelatinous matrix removed before treatment with hydrogen peroxide at 0 and 500 mg l(-1). Each treatment regimen was tested in triplicate and each egg jar contained similar to 17,400 eggs. Hydrogen peroxide was administered as a 15-min flow-through treatment applied once daily for a total of six applications. Control jars were similarly treated with culture water. Samples of exposure water were collected during each treatment and analyzed to verify actual treatment concentrations. Hydrogen peroxide treatment efficacy was assessed by comparing the percent egg hatch in the treatment group to the untreated control group in each trial. Mean percent hatch in Trial I was 44% (control), 54% (500 mg l(-1)), and 69% (750 mg l(-1)). Hydrogen peroxide treatment at either 500 or 750 mg l(-1) significantly (P<0.01) increased the percent hatch compared to the untreated control group. In Trial 2, hydrogen peroxide treatment at 500 mg l(-1) significantly (P<0.01) increased the percent egg hatch (67%) relative to the untreated controls (57%). Hydrogen peroxide treatment reduced egg mortality and increased the percent hatch of channel catfish eggs regardless of whether eggs were incubated in the gelatinous matrix or without the matrix in comparison to the untreated control. (C) 2004 Elsevier B.V. All rights reserved.

  3. Cerebral arterial gas embolism after pre-flight ingestion of hydrogen peroxide.

    PubMed

    Smedley, Ben L; Gault, Alan; Gawthrope, Ian C

    2016-06-01

    Cerebral arterial gas embolism (CAGE) is a feared complication of ambient depressurisation and can also be a complication of hydrogen peroxide ingestion. We present an unusual case of CAGE in a 57-year-old woman exposed to both of these risk factors. We describe her subsequent successful treatment with hyperbaric oxygen, despite a 72-hour delay in initial presentation and diagnosis, and discuss the safety of aero-medical transfer following hydrogen peroxide ingestions. PMID:27335000

  4. Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide.

    PubMed

    Vogt, Carsten; Alfreider, Albin; Lorbeer, Helmut; Hoffmann, Doreen; Wuensche, Lothar; Babel, Wolfgang

    2004-01-01

    New in situ reactive barrier technologies were tested nearby a local aquifer in Bitterfeld, Saxonia-Anhalt, Germany, which is polluted mainly by chlorobenzene (CB), in concentrations up to 450 microM. A reactor filled with original aquifer sediment was designed for the microbiological remediation of the ground water by indigenous bacterial communities. Two remediation variants were examined: (a) the degradation of CB under anoxic conditions in the presence of nitrate; (b) the degradation of CB under mixed electron acceptor conditions (oxygen+nitrate) using hydrogen peroxide as the oxygen-releasing compound. Under anoxic conditions, no definite degradation of CB was observed. Adding hydrogen peroxide (2.94 mM) and nitrate (2 mM) led to the disappearance of CB (ca. 150 microM) in the lower part of the reactor, accompanied by a strong increase of the number of cultivable aerobic CB degrading bacteria in reactor water and sediment samples, indicating that CB was degraded mainly by productive bacterial metabolism. Several aerobic CB degrading bacteria, mostly belonging to the genera Pseudomonas and Rhodococcus, were isolated from reactor water and sediments. In laboratory experiments with reactor water, oxygen was rapidly released by hydrogen peroxide, whereas biotic-induced decomposition reactions of hydrogen peroxide were almost four times faster than abiotic-induced decomposition reactions. A clear chemical degradation of CB mediated by hydrogen peroxide was not observed. CB was also completely degraded in the reactor after reducing the hydrogen peroxide concentration to 880 microM. The CB degradation completely collapsed after reducing the hydrogen peroxide concentration to 440 microM. In the following, the hydrogen peroxide concentrations were increased again (to 880 microM, 2.94 mM, and 880 microM, respectively), but the oxygen demand for CB degradation was higher than observed before, indicating a shift in the bacterial population. During the whole experiment

  5. In situ oxidation remediation technologies: kinetic of hydrogen peroxide decomposition on soil organic matter.

    PubMed

    Romero, Arturo; Santos, Aurora; Vicente, Fernando; Rodriguez, Sergio; Lafuente, A Lopez

    2009-10-30

    Rates of hydrogen peroxide decomposition were investigated in soils slurries. The interaction soil-hydrogen peroxide was studied using a slurry system at 20 degrees C and pH 7. To determine the role of soil organic matter (SOM) in the decomposition of hydrogen peroxide, several experiments were carried out with two soils with different SOM content (S1=15.1%, S2=10%). The influence of the oxidant dosage ([H2O2](o) from 10 to 30 g L(-1) and soil weight to liquid phase volume ratio=500 g L(-1)) was investigated using the two calcareous loamy sand soil samples. The results showed a rate dependency on both SOM and hydrogen peroxide concentration being the H2O2 decomposition rate over soil surface described by a second-order kinetic expression r(H2O2) = -dn(H2O2) / W(SOM) dt = kC(H2O2) C(SOM). Thermogravimetric analysis (TGA) was used to evaluate the effect caused by the application of this oxidant on the SOM content. It was found a slightly increase of SOM content after treatment with hydrogen peroxide, probably due to the incorporation of oxygen from the oxidant (hydrogen peroxide).

  6. Boronate-based fluorescent probes: imaging hydrogen peroxide in living systems.

    PubMed

    Lin, Vivian S; Dickinson, Bryan C; Chang, Christopher J

    2013-01-01

    Hydrogen peroxide, a reactive oxygen species with unique chemical properties, is produced endogenously in living systems as a destructive oxidant to ward off pathogens or as a finely tuned second messenger in dynamic cellular signaling pathways. In order to understand the complex roles that hydrogen peroxide can play in biological systems, new tools to monitor hydrogen peroxide in its native settings, with high selectivity and sensitivity, are needed. Knowledge of organic synthetic reactivity provides the foundation for the molecular design of selective, functional hydrogen peroxide probes. A palette of fluorescent and luminescent probes that react chemoselectively with hydrogen peroxide has been developed, utilizing a boronate oxidation trigger. These indicators offer a variety of colors and in cellulo characteristics and have been used to examine hydrogen peroxide in a number of experimental setups, including in vitro fluorometry, confocal fluorescence microscopy, and flow cytometry. In this chapter, we provide an overview of the chemical features of these probes and information on their behavior to help researchers select the optimal probe and application.

  7. Co-operative inhibitory effects of hydrogen peroxide and iodine against bacterial and yeast species

    PubMed Central

    2013-01-01

    Background Hydrogen peroxide and iodine are powerful antimicrobials widely used as antiseptics and disinfectants. Their antimicrobial properties are known to be enhanced by combining them with other compounds. We studied co-operative inhibitory activities (synergism, additive effects and modes of growth inhibition) of hydrogen peroxide and iodine used concurrently against 3 bacterial and 16 yeast species. Results Synergistic or additive inhibitory effects were shown for hydrogen peroxide and iodine mixtures against all 19 species used in the study. Both biocides were mostly cidal individually and in mixtures against Pseudomonas aeruginosa and Staphylococcus aureus. Both compounds manifested static inhibitory effects individually, but their mixtures were synergistically cidal for Saccharomyces cerevisiae and Escherihia coli. Cells of S. cerevisiae treated with hydrogen peroxide and iodine-hydrogen peroxide mixture produced increased numbers of respiratory deficient mutants indicating genotoxic effects. Conclusion Iodine and hydrogen peroxide used concurrently interact synergistically or additively against a range of prokaryotic and eukaryotic microorganisms. The study provides an insight as to how these traditional antimicrobials could be used more effectively for disinfection and antisepsis. In addition, a simple approach is proposed for scoring genotoxicity of different biocides by using the budding yeast system. PMID:23856115

  8. Solid state and solution 43Ca NMR of calcium peroxides involved in the disproportionation of hydrogen peroxide by calcium hydroxide.

    PubMed

    Trokiner, Arlette; Bessière, Aurélie; Thouvenot, René; Hau, Damien; Marko, Jean; Nardello, Véronique; Pierlot, Christel; Aubry, Jean-Marie

    2004-06-01

    In order to get some insight into the mechanism of the disproportionation of hydrogen peroxide catalyzed by calcium hydroxide, 43Ca NMR spectra of enriched samples of calcium peroxides and of their precursors have been studied in both solution and solid state. This study demonstrates that no well-defined peroxidized calcium species are formed in solution, showing that the catalytic role of calcium is likely restricted to the solid state. Most of the calcium compounds that could be involved in the catalytic process have been investigated with solid state NMR. The shift and quadrupolar parameters of Ca(OH)2, CaO2.8H2O and CaO2.2H2O2 are reported for the first time. These parameters are different enough to allow the quantitative analysis of a complex mixture of these compounds by NMR.

  9. Impairment of phagocytic functions of alveolar macrophages by hydrogen peroxide

    SciTech Connect

    Oosting, R.S.; van Bree, L.; van Iwaarden, J.F.; van Golde, L.M.; Verhoef, J. )

    1990-08-01

    Hydrogen peroxide (H2O2) inhibited phagocytosis and superoxide anion production by rat alveolar macrophages. The inhibition was irreversible and concentration and exposure time dependent. The potential relationship between H2O2-induced biochemical perturbations and impaired alveolar macrophage phagocytic functions was investigated. Alveolar macrophage viability and Fc receptor binding capacity were not affected by H2O2. There was probably no correlation between a H2O2-induced rise in cytosolic (Ca2+) ((Ca2+)i) and the impairment of phagocytosis by alveolar macrophages, as was suggested by the following findings. First, the H2O2-induced rise in (Ca2+)i could be inhibited by chelation of extracellular Ca2+, whereas the H2O2-induced impairment of phagocytosis could not. Second, the H2O2-induced rise in (Ca2+)i was reversible, whereas the impairment of phagocytosis was not. And finally, a rise in (Ca2+)i by incubation of alveolar macrophages with the calcium ionophore A23187 did not affect phagocytosis. Various experiments suggested that ATP depletion may play an important role in the H2O2 toxicity for alveolar macrophages. Comparable concentrations of H2O2 caused an irreversible decrease both in cellular ATP and in phagocytosis and superoxide production by alveolar macrophages. In addition, time course of ATP depletion and induction of impaired alveolar macrophage function were similar. In view of the fact that the strong oxidant H2O2 may react with a large variety of biological substances, possible other toxic lesions may not be excluded as underlying mechanism for H2O2-induced inhibition of phagocytic functions of alveolar macrophages.

  10. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  11. Shock initiation studies on high concentration hydrogen peroxide

    SciTech Connect

    Sheffield, Stephen A; Dattelbaum, Dana M; Stahl, David B; Gibson, L. Lee; Bartram, Brian D.

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  12. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices.

  13. Effects of Hydrogen Peroxide on Coral Photosynthesis and Calcification

    NASA Astrophysics Data System (ADS)

    Higuchi, T.; Fujimura, H.; Arakaki, T.; Oomori, T.

    2007-12-01

    The widely-observed decline of coral reefs is considered to be caused by changes in the environment by natural and anthropogenic activities. As one important factor, the run-off of various matters from human activities to the coastal seawater poses stresses to the corals by degrading the quality of the seawater. In Okinawa, Japan, red- soil running off from the developed land has been a major environmental issue since 1980s. Hydrogen peroxide (HOOH), a strong active oxygen species, is one of the photochemically formed chemicals in the red-soil-polluted seawater. Recent photochemical studies of seawater showed that HOOH photo-formation was faster in the red- soil-polluted seawater than clean seawater. We studied the effects of HOOH on corals by studying the changes in coral carbon metabolisms such as photosynthesis and calcification, which are indicators of the physiological state of a coral colony. The corals were exposed to various concentrations of HOOH (0, 0.3, 3 μM). Two massive coral species of Porites sp. and Goniastrea aspera and one branch coral of Galaxea facicularis were used for the exposure experiments. The control experiments showed that when no HOOH was added, metabolisms of each coral colony were relatively stable. On the other hand, when HOOH was added to the seawater, we observed obvious changes in the coral metabolisms in all the coral species. When 0.3 μM HOOH was added, photosynthesis decreased by 14% and calcification decreased by 17% within 3 days, compared with the control. When 3 μM HOOH was added, photosynthesis decreased by 21% and calcification decreased by 41% within 3 days, compared with the control. Our study showed that higher concentrations of HOOH posed more stress to the coral colonies.

  14. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  15. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  16. Can an LED-laser hybrid light help to decrease hydrogen peroxide concentration while maintaining effectiveness in teeth bleaching?

    NASA Astrophysics Data System (ADS)

    Martín, J.; Ovies, N.; Cisternas, P.; Fernández, E.; Oliveira Junior, O. B.; de Andrade, M. F.; Moncada, G.; Vildósola, P.

    2015-02-01

    The aim of this study was to compare the bleaching efficacy of 35% hydrogen peroxide and 15% hydrogen peroxide with nitrogen-doped titanium dioxide catalysed by an LED-laser hybrid light. We studied 70 patients randomized to two groups. Tooth shade and pulpal sensitivity were registered. Group 1: 15% hydrogen peroxide with nitrogen-doped titanium dioxide. Group 2: 35% hydrogen peroxide. Both groups were activated by an LED-laser light. No significant differences were seen in shade change immediately, one week or one month after treatment (p > 0.05). Differences were seen in pulpal sensitivity (p < 0.05). The use of an LED-laser hybrid light to activate 15% hydrogen peroxide gel with N_TiO2 permits decreasing the peroxide concentration with similar aesthetic results and less pulpal sensitivity than using 35% hydrogen peroxide for bleaching teeth.

  17. Considerations for Storage of High Test Hydrogen Peroxide (HTP) Utilizing Non-Metal Containers

    NASA Technical Reports Server (NTRS)

    Moore, Robin E.; Scott, Joseph P.; Wise, Harry

    2005-01-01

    When working with high concentrations of hydrogen peroxide, it is critical that the storage container be constructed of the proper materials, those which will not degrade to the extent that container breakdown or dangerous decomposition occurs. It has been suggested that the only materials that will safely contain the peroxide for a significant period of time are metals of stainless steel construction or aluminum use as High Test Hydrogen Peroxide (HTP) Containers. The stability and decomposition of HTP will be also discussed as well as various means suggested in the literature to minimize these problems. The dangers of excess oxygen generation are also touched upon.

  18. Zinc dioxide nanoparticulates: a hydrogen peroxide source at moderate pH.

    PubMed

    Wolanov, Yitzhak; Prikhodchenko, Petr V; Medvedev, Alexander G; Pedahzur, Rami; Lev, Ovadia

    2013-08-01

    Solid peroxides are a convenient source of hydrogen peroxide, which once released can be readily converted to active oxygen species or to dissolved dioxygen. A zinc peroxide nanodispersion was synthesized and characterized, and its solubility was determined as a function of pH and temperature. We show that zinc peroxide is much more stable in aqueous solutions compared to calcium and magnesium peroxides and that it retains its peroxide content down to pH 6. At low pH conditions H2O2 release is thermodynamically controlled and its dissolution product, Zn(2+), is highly soluble, and thus, hydrogen peroxide release can be highly predictable. The Gibbs free energy of formation of zinc peroxide was found to be -242.0 ± 0.4 kJ/mol and the enthalpy of formation was -292.1 ± 0.7 kJ/mol, substantially higher than theoretically predicted before. The biocidal activity of zinc peroxide was determined by inactivation studies with Escherichia coli cultures, and the activity trend agrees well with the thermodynamic predictions. PMID:23829468

  19. Zinc dioxide nanoparticulates: a hydrogen peroxide source at moderate pH.

    PubMed

    Wolanov, Yitzhak; Prikhodchenko, Petr V; Medvedev, Alexander G; Pedahzur, Rami; Lev, Ovadia

    2013-08-01

    Solid peroxides are a convenient source of hydrogen peroxide, which once released can be readily converted to active oxygen species or to dissolved dioxygen. A zinc peroxide nanodispersion was synthesized and characterized, and its solubility was determined as a function of pH and temperature. We show that zinc peroxide is much more stable in aqueous solutions compared to calcium and magnesium peroxides and that it retains its peroxide content down to pH 6. At low pH conditions H2O2 release is thermodynamically controlled and its dissolution product, Zn(2+), is highly soluble, and thus, hydrogen peroxide release can be highly predictable. The Gibbs free energy of formation of zinc peroxide was found to be -242.0 ± 0.4 kJ/mol and the enthalpy of formation was -292.1 ± 0.7 kJ/mol, substantially higher than theoretically predicted before. The biocidal activity of zinc peroxide was determined by inactivation studies with Escherichia coli cultures, and the activity trend agrees well with the thermodynamic predictions.

  20. Studies of radiation induced peroxidation in fatty acid micelles

    SciTech Connect

    Patterson, L.K.

    1980-01-01

    Studies of irradiation induced lipid peroxidation in fatty acid micelles, both from our own lab and others, are briefly summarized. Steady state measurements have shown the dependence of hydroperoxide yield on the state of aggregation in the lipid and the degree to which the reactive sites are close packed. Chromatographic measurements obeyed the square root dependence of yield on dose rate confirming the proposed chain mechanism. Application to antioxidant studies have demonstrated the highly efficient blockage of the peroxidation chain by ..cap alpha..-tocopherol and the subsequent prooxidant effect of the product formed. Time resolved studies have been used to determine rate information for .OH-lipid interaction, radical transfer within the lipid, radical peroxidation, lipid radical movement across the micellar boundary, chain termination, and radical interaction with ..cap alpha..-tocopherol. Complimentary laser studies have demonstrated, in contrast to .OH behavior, the comparatively high degree of selectively exhibited by alkoxy radicals toward allylic lipid sites.

  1. Replacement of hydrogen peroxide cleaning with oxygen plasma

    NASA Astrophysics Data System (ADS)

    Adams, B. E.

    1992-03-01

    Comparison between the standard peroxide cleaning method and an oxygen plasma modified version was run on thin film bond monitors. The plasma modified version substituted oxygen plasma for the peroxide cleaning step in the process and reduced the DI rinse water temperature from 75 C to 25 C. A direct surface cleanliness comparison was made between the two cleaning methods using Auger spectroscopy. A beam lead and ribbon bonding experiment was also run on plasma-cleaned networks. Results of both experiments indicate that plasma cleaning is superior to peroxide cleaning and that reliable bonding can be done on plasma-cleaned thin film networks.

  2. Autocatalysis by the intermediate surface hydroxide formed during hydrogen peroxide reduction on silver electrodes

    NASA Astrophysics Data System (ADS)

    Doblhofer, K.; Flätgen, G.; Horswell, S.; Pettinger, B.; Wasle, S.; Weil, K. G.

    2009-06-01

    Recent electrochemical studies of the cathodic reduction of hydrogen peroxide (H 2O 2) on silver electrodes in acidic electrolyte (HClO 4) revealed a novel autocatalytic reaction path. Adsorbed hydroxyl groups, OH ad, were proposed to act as the catalyst. To gather further clarity about this mechanism, in particular about the presence and nature of the postulated adsorbate OH ad, in the present work surface science experiments on Ag(1 1 1) electrodes are evaluated. It is concluded that the species OH ad is identical with the surface AgOH formed in alkaline solution as a relatively stable intermediate in the anodic oxidation of OH - to surface-Ag 2O.

  3. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation.

    PubMed

    Charkoudian, Louise K; Pham, David M; Franz, Katherine J

    2006-09-27

    The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution.

  4. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation.

    PubMed

    Charkoudian, Louise K; Pham, David M; Franz, Katherine J

    2006-09-27

    The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution. PMID:16984186

  5. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans.

    PubMed

    Matoba, Tetsuya; Shimokawa, Hiroaki

    2003-05-01

    Vascular endothelium plays an important role in maintaining vascular homeostasis by synthesizing and releasing several vasodilating factors, such as prostacyclin, nitric oxide (NO), and a yet unidentified endothelium-derived hyperpolarizing factor (EDHF). Possible candidates for EDHF include epoxyeicosatrienoic acids, endothelium-derived K(+) ions, and as we have recently identified, hydrogen peroxide (H(2)O(2)). Electrical communication between endothelial and smooth muscle cells through gap junctions has also been suggested to be involved in endothelium-dependent hyperpolarization. Among the above candidates, the H(2)O(2) hypothesis well explains the pathophysiological interactions between NO and EDHF and re-highlights the physiological roles of the reactive oxygen species in endothelium-dependent vascular responses. This brief review summarizes our current knowledge about H(2)O(2) as an EDHF, with special reference to its production by the endothelium, its action on membrane potentials and its pathophysiological roles. PMID:12832848

  6. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis.

    PubMed

    Liu, Yongjun; Wang, Degao; Sun, Bing; Zhu, Xiaomei

    2010-09-15

    Liquid-phase decomposition of 4-nitrophenol (4-NP) and formation of hydrogen peroxide (H(2)O(2)) induced by contact glow discharge electrolysis (CGDE) were investigated. Experimental results showed that the decays of 4-NP and total organic carbon (TOC) obeyed the first-order and pseudo-first-order reaction kinetics, respectively. The major intermediate products were 4-nitrocatechol, hydroquinone, benzoquinone, hydroxyhydroquinone, organic acids and nitrite ion. The final products were carbon dioxide and nitrate ion. The initial formation rate of H(2)O(2) decreased linearly with increasing initial concentration of 4-NP. Addition of iron ions, especially ferric ion, to the solution significantly enhanced the 4-NP removal due to the additional hydroxyl radical formation through Fenton's reaction. A reaction pathway is proposed based on the degradation kinetics and the distribution of intermediate products.

  7. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis.

    PubMed

    Liu, Yongjun; Wang, Degao; Sun, Bing; Zhu, Xiaomei

    2010-09-15

    Liquid-phase decomposition of 4-nitrophenol (4-NP) and formation of hydrogen peroxide (H(2)O(2)) induced by contact glow discharge electrolysis (CGDE) were investigated. Experimental results showed that the decays of 4-NP and total organic carbon (TOC) obeyed the first-order and pseudo-first-order reaction kinetics, respectively. The major intermediate products were 4-nitrocatechol, hydroquinone, benzoquinone, hydroxyhydroquinone, organic acids and nitrite ion. The final products were carbon dioxide and nitrate ion. The initial formation rate of H(2)O(2) decreased linearly with increasing initial concentration of 4-NP. Addition of iron ions, especially ferric ion, to the solution significantly enhanced the 4-NP removal due to the additional hydroxyl radical formation through Fenton's reaction. A reaction pathway is proposed based on the degradation kinetics and the distribution of intermediate products. PMID:20576351

  8. Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide.

    PubMed

    Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi

    2016-09-01

    The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. PMID:27311789

  9. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators.

  10. Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions.

    PubMed

    Osovsky, Ruth; Kaplan, Doron; Nir, Ido; Rotter, Hadar; Elisha, Shmuel; Columbus, Ishay

    2014-09-16

    Mild treatment with hydrogen peroxide solutions (3-30%) efficiently decomposes adsorbed chemical warfare agents (CWAs) on microporous activated carbons used in protective garments and air filters. Better than 95% decomposition of adsorbed sulfur mustard (HD), sarin, and VX was achieved at ambient temperatures within 1-24 h, depending on the H2O2 concentration. HD was oxidized to the nontoxic HD-sulfoxide. The nerve agents were perhydrolyzed to the respective nontoxic methylphosphonic acids. The relative rapidity of the oxidation and perhydrolysis under these conditions is attributed to the microenvironment of the micropores. Apparently, the reactions are favored due to basic sites on the carbon surface. Our findings suggest a potential environmentally friendly route for decontamination of adsorbed CWAs, using H2O2 without the need of cosolvents or activators. PMID:25133545

  11. Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide.

    PubMed

    Phan, Duy The; Tan, Chung-Sung

    2014-09-01

    An innovative method for pretreatment of sugarcane bagasse using sequential combination of supercritical CO2 (scCO2) and alkaline hydrogen peroxide (H2O2) at mild conditions is proposed. This method was found to be superior to the individual pretreatment with scCO2, ultrasound, or H2O2 and the sequential combination of scCO2 and ultrasound regarding the yield of cellulose and hemicellulose, almost twice the yield was observed. Pretreatment with scCO2 could obtain higher amount of cellulose and hemicellulose but also acid-insoluble lignin. Pretreatment with ultrasound or H2O2 could partly depolymerize lignin, however, could not separate cellulose from lignin. The analysis of liquid products via enzymatic hydrolysis by HPLC and the characterization of the solid residues by SEM revealed strong synergetic effects in the sequential combination of scCO2 and H2O2.

  12. Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles

    SciTech Connect

    Rankin, Rees B.; Greeley, Jeffrey P.

    2012-10-19

    We present a comprehensive, Density Functional Theory-based analysis of the direct synthesis of hydrogen peroxide, H2O2, on twelve transition metal surfaces. We determine the full thermodynamics and selected kinetics of the reaction network on these metals, and we analyze these energetics with simple, microkinetically motivated rate theories to assess the activity and selectivity of hydrogen peroxide production on the surfaces of interest. By further exploiting Brønsted-Evans-Polanyi relationships and scaling relationships between the binding energies of different adsorbates, we express the results in the form of a two dimensional contour volcano plot, with the activity and selectivity being determined as functions of two independent descriptors, the atomic hydrogen and oxygen adsorption free energies. We identify both a region of maximum predicted catalytic activity, which is near Pt and Pd in descriptor space, and a region of selective hydrogen peroxide production, which includes Au. The optimal catalysts represent a compromise between activity and selectivity and are predicted to fall approximately between Au and Pd in descriptor space, providing a compact explanation for the experimentally known performance of Au-Pd alloys for hydrogen peroxide synthesis, and suggesting a target for future computational screening efforts to identify improved direct hydrogen peroxide synthesis catalysts. Related methods of combining activity and selectivity analysis into a single volcano plot may be applicable to, and useful for, other aqueous phase heterogeneous catalytic reactions where selectivity is a key catalytic criterion.

  13. Mechanical wounding-induced laticifer differentiation in rubber tree: An indicative role of dehydration, hydrogen peroxide, and jasmonates.

    PubMed

    Tian, Wei-Min; Yang, Shu-Guang; Shi, Min-Jing; Zhang, Shi-Xin; Wu, Ji-Lin

    2015-06-15

    The secondary laticifer in the secondary phloem of rubber tree are a specific tissue differentiating from vascular cambia. The number of the secondary laticifers is closely related to the rubber productivity of Hevea. Factors involved in the mechanical wounding-induced laticifer differentiation were analyzed by using paraffin section, gas chromatography-mass spectrometry (GC-MS), and Northern-blot techniques. Dehydration of the wounded bark tissues triggered a burst of hydrogen peroxide, abscisic acid, and jasmonates and up-regulated the expression of HbAOSa, which was associated with the secondary laticifer differentiation strictly limited to the wounded area. Application of exogenous hydrogen peroxide, methyl jasmonate, and polyethylene glycol 6000 (PEG6000) could induce the secondary laticifer differentiation, respectively. Moreover, 6-Benzylaminopurine, a synthetic cytokinin, enhanced the methyl jasmonate-induced secondary laticifer differentiation. However, the dehydration-induced secondary laticifer differentiation was inhibited by exogenous abscisic acid. Diphenyleneiodonium chloride (DPI), a specific inhibitor of NADPH oxidase, was effective in inhibiting the accumulation of hydrogen peroxide as well as of jasmonates upon dehydration. It blocked the dehydration-induced but not the methyl jasmonate-induced secondary laticifer differentiation. The results suggested a stress signal pathway mediating the wound-induced secondary laticifer differentiation in rubber tree.

  14. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  15. Responses of rabbit pulmonary arteries to hydrogen peroxide

    SciTech Connect

    Russell, J.A.; Gugino, S.F.; Giese, E.C. )

    1991-03-15

    The effects of hydrogen peroxide on isolated rabbit intrapulmonary arteries were investigated using tissue bath techniques. Exposure of resting vessels to 10{sup {minus}7}-10{sup {minus}5} M H{sub 2}O{sub 2} caused concentration-dependent contractions that were blocked by 10{sup {minus}5} M indomethacin, 3 {times} 10{sup {minus}6} M SQ 29548 or by removal of the endothelium. Addition of a single concentration of H{sub 2}O{sub 2} to resting vessels incubated with 3 {times} 10{sup {minus}6} M SQ 29548 caused slowly developing contractions that attained approximately 80% of the response to 118mM KCL. Late phase contractions were highly resistance to the inhibitory effects of 10{sup {minus}8}-10{sup {minus}5} M isoproterenol or 10{sup {minus}7}-10{sup {minus}5} M sodium nitroprusside and they persisted in calcium-free media, in vessels incubated with 5 {times} 10{sup {minus}5} M verapamil, and after removal of the endothelium. Pulmonary arteries incubated with 3 {times} 10{sup {minus}6} M SQ 29548 and contracted by 10{sup {minus}7} M phenylephrine relaxed in response to 10{sup {minus}7}-10{sup {minus}5} M H{sub 2}O{sub 2}. H{sub 2}O{sub 2}-induced relaxations were unaffected by 10{sup {minus}4} M N{omega}-nitro-L-arginine or 10{sup {minus}5}M indomethacin but were partially depressed by removal of the endothelium. The authors conclude that H{sub 2}O{sub 2} causes: an early phase contraction via release of thromboxane A2 from endothelial cells; a late-phase contraction that is endothelium-independent and probably results from the release of calcium from intracellular stores in smooth muscle cells; and an early phase relaxation that may be due to both endothelium-dependent and endothelium-independent mechanisms. The endothelium-derived relaxing factor does not appear to be nitric oxide or a dilator prostaglandin.

  16. Prediction of Severe Neonatal Hyperbilirubinemia Using Cord Blood Hydrogen Peroxide: A Prospective Study

    PubMed Central

    Chou, Hung-Chieh; Chien, Chiang-Ting; Tsao, Po-Nien; Hsieh, Wu-Shiun; Chen, Chien-Yi; Chang, Mei-Hwei

    2014-01-01

    Background We hypothesized that cord blood hydrogen peroxide (H2O2) could be utilized to predict the severity of neonatal hyperbilirubinemia. Methods We prospectively enrolled term or near-term healthy neonates. Cord blood and capillary blood at three days of age were measured for hydrogen peroxide and bilirubin concentrations. For newborns with hyperbilirubinemia, further blood samples were obtained at five and seven days of age. Newborns were divided into severe or less severe hyperbilirubinemic groups (peak bilirubin ≥17 mg/dL or not). The sensitivity, specificity, and negative predictive values were determined. Results There were 158 neonates enrolled. The incidence of neonatal hyperbilirubinemia was 30.5% for a concentration ≥15 mg/dl. The rising patterns were similar among bilirubin concentrations and hydrogen peroxide levels during the first few days of life. There was a strong positive correlation between bilirubin concentrations and hydrogen peroxide levels after correlation analysis. The rate of severe hyperbilirubinemia was 13.3%. It revealed that a cord blood hydrogen peroxide signal level of 2500 counts/10 seconds was an appropriate cut-off for predicting severe hyperbilirubinemia. Sensitivity and the negative predictive value were 76.2% and 93.3%, respectively. Conclusions Our findings confirm that hydrogen peroxide levels and bilirubin concentrations in cord and neonatal blood are closely related. A cord blood hydrogen peroxide level above 2500 counts/10 seconds associated with a high predictive value for severe hyperbilirubinemia. This method provides information about which neonate should be closely followed after discharge from the nursery. PMID:24466244

  17. Destruction of gel sulfonated cation-exchangers of the KU-2 type under the influence of hydrogen peroxide

    SciTech Connect

    Roginskaya, B.S.; Zavadovskaya, A.S.; Znamenskii, Yu.P.; Paskhina, N.A.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the mechanism of interaction of Soviet sulfonated cation-exchangers of the KU-2 type with hydrogen peroxide. It is shown that under the influence of hydrogen peroxide sulfonated cation-exchangers begin, after a certain induction period, to lose capacity and to release destruction products into water; the length of the induction period increases with the degree of cross-linking. In a given time of contact between the resin and the solution the degree of destruction falls with increase of cross-linking. The principal product of destruction of sulfonated cation-exchangers is an aromatic sulfonic acid containing oxidized groups in the side chains.

  18. High-throughput assays for superoxide and hydrogen peroxide: design of a screening workflow to identify inhibitors of NADPH oxidases.

    PubMed

    Zielonka, Jacek; Cheng, Gang; Zielonka, Monika; Ganesh, Thota; Sun, Aiming; Joseph, Joy; Michalski, Radosław; O'Brien, William J; Lambeth, J David; Kalyanaraman, Balaraman

    2014-06-01

    Recent progress characterizing the reaction mechanism(s) of fluorescent probes with reactive oxygen species has made it possible to rigorously analyze these reactive species in biological systems. We have developed rapid high throughput-compatible assays for monitoring cellular production of superoxide radical anion and hydrogen peroxide using hydropropidine and coumarin boronic acid probes, respectively. Coupling plate reader-based fluorescence measurements with HPLC-based simultaneous monitoring of superoxide radical anion and hydrogen peroxide provides the basis for the screening protocol for NADPH oxidase (Nox) inhibitors. Using this newly developed approach along with the medium-throughput plate reader-based oximetry and EPR spin trapping as confirmatory assays, it is now eminently feasible to rapidly and reliably identify Nox enzyme inhibitors with a markedly lower rate of false positives. These methodological advances provide an opportunity to discover selective inhibitors of Nox isozymes, through enhanced conceptual understanding of their basic mechanisms of action.

  19. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    SciTech Connect

    Mahmud, Maznah; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid; Naziri, Muhammad Ihsan

    2014-02-12

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H{sub 2}O{sub 2}), 1%–5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H{sub 2}O{sub 2} enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H{sub 2}O{sub 2}based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  20. Studies of Paroxysmal Nocturnal Hemoglobinuria Erythrocytes: Increased Lysis and Lipid Peroxide Formation by Hydrogen Peroxide*

    PubMed Central

    Mengel, Charles E.; Kann, Herbert E.; Meriwether, Wilhelm D.

    1967-01-01

    When paroxysmal nocturnal hemoglobinuria (PNH) erythrocytes were exposed to H2O2 they lysed excessively and formed greater than normal quantities of lipid peroxides when compared to red cells of normal subjects and patients with most types of hematologic disease. It was also shown that lytic sensitivity to acidified serum was related to the enhanced lytic sensitivity to H2O2. If the lipid of PNH cells was first extracted then exposed to ultraviolet radiation more lipid peroxides were formed than in extracts of normal red blood cells. The possible explanations for these findings and their relationship to the PNH hemolytic mechanism are discussed. Images PMID:6061745

  1. Oxidation of Disulfides to Thiolsulfinates with Hydrogen Peroxide and a Cyclic Seleninate Ester Catalyst.

    PubMed

    McNeil, Nicole M R; McDonnell, Ciara; Hambrook, Miranda; Back, Thomas G

    2015-06-11

    Cyclic seleninate esters function as mimetics of the antioxidant selenoenzyme glutathione peroxidase. They catalyze the reduction of harmful peroxides with thiols, which are converted to disulfides in the process. The possibility that the seleninate esters could also catalyze the further oxidation of disulfides to thiolsulfinates and other overoxidation products under these conditions was investigated. This has ramifications in potential medicinal applications of seleninate esters because of the possibility of catalyzing the unwanted oxidation of disulfide-containing spectator peptides and proteins. A variety of aryl and alkyl disulfides underwent facile oxidation with hydrogen peroxide in the presence of catalytic benzo-1,2-oxaselenolane Se-oxide affording the corresponding thiolsulfinates as the principal products. Unsymmetrical disulfides typically afforded mixtures of regioisomers. Lipoic acid and N,N'-dibenzoylcystine dimethyl ester were oxidized readily under similar conditions. Although isolated yields of the product thiolsulfinates were generally modest, these experiments demonstrate that the method nevertheless has preparative value because of its mild conditions. The results also confirm the possibility that cyclic seleninate esters could catalyze the further undesired oxidation of disulfides in vivo.

  2. Spatial, temporal, and quantitative manipulation of intracellular hydrogen peroxide in cultured cells.

    PubMed

    Alim, Ishraq; Haskew-Layton, Renee E; Aleyasin, Hossein; Guo, Hengchang; Ratan, Rajiv R

    2014-01-01

    Hydrogen peroxide (H2O2) is produced endogenously in a number of cellular compartments, including the mitochondria, the endoplasmic reticulum, peroxisomes, and at the plasma membrane, and can play divergent roles as a second messenger or a pathological toxin. It is assumed that the tuned production of H2O2 within neuronal and nonneuronal cells regulates a discreet balance between survival and death. However, a major challenge in understanding the physiological versus pathological role of H2O2 in cells has been the lack of validated methods that can spatially, temporally, and quantitatively modulate H2O2 production. A promising means of regulating endogenous H2O2 is through the expression of peroxide-producing enzyme d-amino acid oxidase (DAAO from Rhodotorula gracilis lacking a peroxisomal targeting sequence). Using viral vectors to express DAAO in distinct cell types and using targeting sequences to target DAAO to distinct subcellular sites, we can manipulate H2O2 production by applying the substrate d-alanine or permeable analogs of d-alanine. In this chapter, we describe the use of DAAO to produce H2O2 in culture models and the real-time visual validation of this technique using two-photon microscopy and chemoselective fluorescent probes.

  3. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses.

    PubMed

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death. PMID:27672389

  4. Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital.

    PubMed

    Chan, H-T; White, P; Sheorey, H; Cocks, J; Waters, M-J

    2011-10-01

    This study assessed the efficacy of a 'dry' hydrogen peroxide vapour decontamination in an Australian hospital via a two-armed study. The in vivo arm examined the baseline bacterial counts in high-touch zones within wards and evaluated the efficacy of cleaning with a neutral detergent followed by either hydrogen peroxide vapour decontamination, or a manual terminal clean with bleach or Det-Sol 500. The in vitro arm examined the efficacy of hydrogen peroxide vapour decontamination on a variety of different surfaces commonly found in the wards of an Australian hospital, deliberately seeded with a known concentration of vancomycin-resistant enterococci (VRE). All bacterial counts were evaluated by a protocol of contact plate method. In the in vivo arm, 33.3% of the high-touch areas assessed had aerobic bacterial count below the detection limit (i.e. no bacteria recoverable) post hydrogen peroxide decontamination, and in all circumstances the highest microbial density was ≤3 cfu/cm(2), while in the in vitro arm there was at least a reduction in bacterial load by a factor of 10 at all surfaces investigated. These results showed that dry hydrogen peroxide vapour room decontamination is highly effective on a range of surfaces, although the cleanliness data obtained by these methods cannot be easily compared among the different surfaces as recovery of organisms is affected by the nature of the surface.

  5. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses.

    PubMed

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.

  6. Low Concentrations of Hydrogen Peroxide Activate the Antioxidant Defense System in Human Sperm Cells.

    PubMed

    Evdokimov, V V; Barinova, K V; Turovetskii, V B; Muronetz, V I; Schmalhausen, E V

    2015-09-01

    The effect of low concentrations of hydrogen peroxide (10-100 µM) on sperm motility and on the activity of the sperm enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDS) was investigated. Incubation of semen samples with 10 and 100 µM hydrogen peroxide increased the content of spermatozoa with progressive motility by 20 and 18%, respectively, and enhanced the activity of GAPDS in the sperm cells by 27 and 20% compared to a semen sample incubated without additions. It was also found that incubation with 10 µM hydrogen peroxide increased the content of reduced glutathione (GSH) in sperm cells by 50% on average compared to that in the control samples. It is supposed that low concentrations of hydrogen peroxide activate the pentose phosphate pathway, resulting in NADPH synthesis and the reduction of the oxidized glutathione by glutathione reductase yielding GSH. The formed GSH reduces the oxidized cysteine residues of the GAPDS active site, increasing the activity of the enzyme, which in turn enhances the content of sperm cells with progressive motility. Thus, the increase in motile spermatozoa in the presence of low concentrations of hydrogen peroxide can serve as an indicator of normal functioning of the antioxidant defense system in sperm cells.

  7. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses

    PubMed Central

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.

  8. Light and hydrogen peroxide inhibit C. elegans Feeding through gustatory receptor orthologs and pharyngeal neurons.

    PubMed

    Bhatla, Nikhil; Horvitz, H Robert

    2015-02-18

    While gustatory sensing of the five primary flavors (sweet, salty, sour, bitter, and savory) has been extensively studied, pathways that detect non-canonical taste stimuli remain relatively unexplored. In particular, while reactive oxygen species cause generalized damage to biological systems, no gustatory mechanism to prevent ingestion of such material has been identified in any organism. We observed that light inhibits C. elegans feeding and used light as a tool to uncover molecular and neural mechanisms for gustation. Light can generate hydrogen peroxide, and we discovered that hydrogen peroxide similarly inhibits feeding. The gustatory receptor family members LITE-1 and GUR-3 are required for the inhibition of feeding by light and hydrogen peroxide. The I2 pharyngeal neurons increase calcium in response to light and hydrogen peroxide, and these responses require GUR-3 and a conserved antioxidant enzyme peroxiredoxin PRDX-2. Our results demonstrate a gustatory mechanism that mediates the detection and blocks ingestion of a non-canonical taste stimulus, hydrogen peroxide.

  9. Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound.

    PubMed

    González-García, José; Banks, Craig E; Sljukić, Biljana; Compton, Richard G

    2007-04-01

    The electrosynthesis of hydrogen peroxide using the oxygen reduction reaction has been studied in the absence and presence of power ultrasound in a non-optimized sono-electrochemical flow reactor (20 cm cathodic compartment length with 6.5 cm inner diameter) with reticulated vitreous glassy carbon electrode (30 x 40 x 10 mm, 10 ppi, 7 cm(2)cm(-3)) as the cathode. The effect of several electrochemical operational variables (pH, volumetric flow, potential) and of the sono-electrochemical parameters (ultrasound amplitude and horn-to-electrode distance) on the cumulative concentration of hydrogen peroxide and current efficiency of the electrosynthesis process have been explored. The application of power ultrasound was found to increase both the cumulative concentration of hydrogen peroxide and the current efficiency. The application of ultrasound is therefore a promising approach to the increased efficiency of production of hydrogen peroxide by electrosynthesis, even in the solutions of lower pH (<12). The results demonstrate the feasibility of at-site-of-use green synthesis of hydrogen peroxide.

  10. The hydrogen peroxide impact on larval settlement and metamorphosis of abalone Haliotis diversicolor supertexta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua

    2008-08-01

    Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.

  11. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses

    PubMed Central

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death. PMID:27672389

  12. Treatment of odorous sulphur compounds by chemical scrubbing with hydrogen peroxide--stabilisation of the scrubbing solution.

    PubMed

    Charron, Isabelle; Couvert, Annabelle; Laplanche, Alain; Renner, Christophe; Patria, Lucie; Requieme, Benoît

    2006-12-15

    To slow down the hydrogen peroxide decomposition in basic aqueous conditions, the addition of stabilizers and co-stabilizers in the scrubbing solution was investigated. Results found with sodium silicate (Na2SiO3) were quite promising but several problems still remained. Based on these observations, this study focused on the research of a better stabilizer. Several ways were investigated: the use of silicate solutions employed in pulp industries, the addition of co-stabilizers to sodium silicate, or the use of an another stabilizer (the poly-alpha-hydroxyacrylic acid). Experiments revealed that the poly-alpha-hydroxyacrylic acid is the best stabilizing compound.

  13. How Hydrogen Peroxide Is Metabolized by Oxidized Cytochrome c Oxidase

    PubMed Central

    2015-01-01

    In the absence of external electron donors, oxidized bovine cytochrome c oxidase (CcO) exhibits the ability to decompose excess H2O2. Depending on the concentration of peroxide, two mechanisms of degradation were identified. At submillimolar peroxide concentrations, decomposition proceeds with virtually no production of superoxide and oxygen. In contrast, in the millimolar H2O2 concentration range, CcO generates superoxide from peroxide. At submillimolar concentrations, the decomposition of H2O2 occurs at least at two sites. One is the catalytic heme a3–CuB center where H2O2 is reduced to water. During the interaction of the enzyme with H2O2, this center cycles back to oxidized CcO via the intermediate presence of two oxoferryl states. We show that at pH 8.0 two molecules of H2O2 react with the catalytic center accomplishing one cycle. In addition, the reactions at the heme a3–CuB center generate the surface-exposed lipid-based radical(s) that participates in the decomposition of peroxide. It is also found that the irreversible decline of the catalytic activity of the enzyme treated with submillimolar H2O2 concentrations results specifically from the decrease in the rate of electron transfer from heme a to the heme a3–CuB center during the reductive phase of the catalytic cycle. The rates of electron transfer from ferrocytochrome c to heme a and the kinetics of the oxidation of the fully reduced CcO with O2 were not affected in the peroxide-modified CcO. PMID:24840065

  14. How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase.

    PubMed

    Jancura, Daniel; Stanicova, Jana; Palmer, Graham; Fabian, Marian

    2014-06-10

    In the absence of external electron donors, oxidized bovine cytochrome c oxidase (CcO) exhibits the ability to decompose excess H2O2. Depending on the concentration of peroxide, two mechanisms of degradation were identified. At submillimolar peroxide concentrations, decomposition proceeds with virtually no production of superoxide and oxygen. In contrast, in the millimolar H2O2 concentration range, CcO generates superoxide from peroxide. At submillimolar concentrations, the decomposition of H2O2 occurs at least at two sites. One is the catalytic heme a3-CuB center where H2O2 is reduced to water. During the interaction of the enzyme with H2O2, this center cycles back to oxidized CcO via the intermediate presence of two oxoferryl states. We show that at pH 8.0 two molecules of H2O2 react with the catalytic center accomplishing one cycle. In addition, the reactions at the heme a3-CuB center generate the surface-exposed lipid-based radical(s) that participates in the decomposition of peroxide. It is also found that the irreversible decline of the catalytic activity of the enzyme treated with submillimolar H2O2 concentrations results specifically from the decrease in the rate of electron transfer from heme a to the heme a3-CuB center during the reductive phase of the catalytic cycle. The rates of electron transfer from ferrocytochrome c to heme a and the kinetics of the oxidation of the fully reduced CcO with O2 were not affected in the peroxide-modified CcO.

  15. Lipoxygenase-mediated hydrogen peroxide-dependent N-demethylation of N,N-dimethylaniline and related compounds.

    PubMed

    Hover, C G; Kulkarni, A P

    2000-02-01

    To date, studies of xenobiotic N-demethylation have focused on heme-proteins such as P450 and peroxidases. In this study we investigated the ability of non-heme iron proteins, namely soybean lipoxygenase (SLO) and human term placental lipoxygenase (HTPLO) to mediate N-demethylation of N,N-dimethylaniline (DMA) and related compounds in the presence of hydrogen peroxide. In addition to being hydrogen peroxide dependent, the reaction was also dependent on incubation time, concentration of enzyme and DMA and the pH of the medium. Using Nash reagent to estimate formaldehyde production, we determined the specific activity for SLO mediated N-demethylation of DMA to be 200 + 18 nmol HCHO/min per mg protein or 23 +/- 2 nmol/min per nmol of enzyme, while that of HTPLO was 33 +/- 4 nmol HCHO/min per mg protein. Nordihydroguaiaretic acid (NDGA), a classical inhibitor of lipoxygenase (LO), as well as antioxidants and free radical reducing agents, caused a marked reduction in the rate of production of formaldehyde from DMA by SLO. Besides N,N-dimethylaniline, N-methylaniline, N,N,N',N'-tetramethylbenzidine, N,N-dimethyl-p-phenylenediamine, N,N-dimethyl-3-nitroaniline and N,N-dimethyl-p-toluidine were also demethylated by SLO. The formation of a DMA N-oxide was not detected. Preliminary experiments suggested SLO-mediated hydrogen peroxide-dependent S-dealkylation of methiocarb or O-dealkylation of 4-nitroanisole does not occur.

  16. [Continuous Generation of Hydrogen Peroxide in Water Containing Very Low Concentrations of Unsymmetrical Dimethylhydrazine].

    PubMed

    Bruskov, V I; Yaguzhinsky, L S; Masalimov, Z K; Chernikov, A V; Emelyanenko, V I; Gudkov, S V

    2015-01-01

    Continuous generation of hydrogen peroxide catalyzed by low concentrations of 1,1-dimethylhydrazine (heptyl)--a rocket fuel component--in air saturated water was shown by the method of enhanced chemiluminescence in the system of luminol-p-iodophenol-peroxidase. The concentration dependence and the influence of heat and light on the formation of hydrogen peroxide in the water under the influence of dimethylhydrazine at concentrations considerably lower than maximum allowable concentrations were studied, and the physical-chemical mechanism of this process was considered. It is supposed that dimethylhydrazine at ultra-low concentrations is associated with air nanobubbles and represents a long-lived complex performing catalysis of hydrogen peroxide formation under the influence of heat and light. We put forward the new concept of.toxicity of dimethylhydrazine at very low concentrations due to violation of homeostasis of reactive oxygen species formation in aqueous solutions entering the body of humans and animals.

  17. Photopatternable and photoactive hydrogel for on-demand generation of hydrogen peroxide in cell culture.

    PubMed

    Garland, Shaun P; Wang, Royal Y; Raghunathan, Vijay Krishna; Lam, Kit S; Murphy, Christopher J; Russell, Paul; Sun, Gang; Pan, Tingrui

    2014-02-01

    Oxidative stress, largely mediated by reactive oxygen species (ROS), is a nearly ubiquitous component in complex biological processes such as aging and disease. Optimal in vitro methods used in elucidating disease mechanisms would deliver of low levels of hydrogen peroxide, emulating the in vivo pathological state, but current methods are limited by kinetic stability or accurate measurement of the dose administered. Here we present an in vitro platform that exploits anthraquinone catalysts for the photocatalytic production of hydrogen peroxide. This system can be dynamically tuned to provide constant generation of hydrogen peroxide at a desired physiologic rate over at least 14 days and is described using a kinetic model. Material characterization and stability is discussed along with a proof-of-concept in vitro study that assessed the viability of cells as they were oxidatively challenged over 24 h at different ROS generation rates.

  18. Gold-platinum alloy nanowires as highly sensitive materials for electrochemical detection of hydrogen peroxide.

    PubMed

    Zhou, Yibo; Yu, Gang; Chang, Fangfang; Hu, Bonian; Zhong, Chuan-Jian

    2012-12-13

    The exploitation of the unique electrical properties of nanowires requires an effective assembly of nanowires as functional materials on a signal transduction platform. This paper describes a new strategy to assemble gold-platinum alloy nanowires on microelectrode devices and demonstrates the sensing characteristics to hydrogen peroxide. The alloy nanowires have been controllably electrodeposited on microelectrodes by applying an alternating current. The composition, morphology and alloying structures of the nanowires were characterized, revealing a single-phase alloy characteristic, highly monodispersed morphology, and controllable bimetallic compositions. The alloy nanowires were shown to exhibit electrocatalytic response characteristics for the detection of hydrogen peroxide, exhibiting a high sensitivity, low detection limit, and fast response time. The nanowire's response mechanism to hydrogen peroxide is also discussed in terms of the synergistic activity of the bimetallic binding sites, which has important implications for a better design of functional nanowires as sensing materials for a wide range of applications.

  19. Degradation of medical-grade polyurethane elastomers: the effect of hydrogen peroxide in vitro.

    PubMed

    Meijs, G F; McCarthy, S J; Rizzardo, E; Chen, Y C; Chatelier, R C; Brandwood, A; Schindhelm, K

    1993-03-01

    Treatment of Pellethane 2363-80A--a medical-grade poly(tetramethylene oxide)-based polyurethane elastomer--with 25% (w/w) hydrogen peroxide at 100 degrees C for times ranging from 24 h to 336 h led to significant decreases in ultimate tensile properties and decreases in molecular weight, both at the surface and in the bulk. IR spectral changes were similar to those observed after degradation in vivo. Differential scanning calorimetry showed that hydrogen-peroxide-induced degradation was associated with greater order in the hard domain and greater mobility in the soft domain. Studies conducted with low-molecular-weight model compounds for the hard and soft segments confirmed that methylene groups adjacent to oxygen were susceptible toward oxidation. The extent of degradation of a series of commercial polyurethanes on treatment with hydrogen peroxide (25%, 24 h, 100 degrees C) correlated well with their reported susceptibility to environmental stress cracking in vivo. PMID:8360204

  20. A novel aqueous dual-channel aluminum-hydrogen peroxide battery

    SciTech Connect

    Marsh, C. . Electric Propulsion); Licht, S. . Dept. of Chemistry)

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarized losses of 0.9 mV cm[sup 2]/mA, and power densities of 1 W/cm[sup 2]. Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H[sub 2]O[sub 2] + 2 OH[sup [minus