Science.gov

Sample records for acidic intracellular compartments

  1. Intracellular potassium compartments in Nitella axillaris.

    PubMed

    DIAMOND, J M; SOLOMON, A K

    1959-05-20

    Three intracellular compartments for potassium exchange have been observed in intact cells of the giant-celled alga, Nitella axillaris. These compartments have been compared with the exchange properties of isolated subcellular structures. The smallest and fastest compartment (apparent half-time, 23 seconds) appears to involve passive absorption on the cell wall. The next largest (apparent half-time, 5 hours) may represent exchange with the cytoplasmic layer through the plasma membrane, the chloroplasts being in rapid equilibrium with the surrounding cytoplasm. The largest and slowest compartment (apparent half-time, 40 days) has been identified with the central vacuole. The vacuolar membrane and the plasma membrane have similar properties with respect to K permeability. Thus, the experimental data from the whole cell can be accounted for by a structural model of the compartments. Cyanide in concentrations up to 10(-3)M causes no net loss of K. The fastest compartment in Nitella and in higher plants is compared, and the ecological significance of the slow rate of potassium transport in Nitella is discussed.

  2. Targeting intracellular compartments by magnetic polymeric nanoparticles.

    PubMed

    Kocbek, Petra; Kralj, Slavko; Kreft, Mateja Erdani; Kristl, Julijana

    2013-09-27

    Superparamagnetic iron oxide nanoparticles (SPIONs) show a great promise for a wide specter of bioapplications, due to their characteristic magnetic properties exhibited only in the presence of magnetic field. Their advantages in the fields of magnetic drug targeting and imaging are well established and their safety is assumed, since iron oxide nanoparticles have already been approved for in vivo application, however, according to many literature reports the bare metal oxide nanoparticles may cause toxic effects on treated cells. Therefore, it is reasonable to prevent the direct interactions between metal oxide core and surrounding environment. In the current research ricinoleic acid coated maghemite nanoparticles were successfully synthesized, characterized and incorporated in the polymeric matrix, resulting in nanosized magnetic polymeric particles. The carrier system was shown to exhibit superparamagnetic properties and was therefore responsive towards external magnetic field. Bioevaluation using T47-D breast cancer cells confirmed internalization of magnetic polymeric nanoparticles (MNPs) and their intracellular localization in various subcellular compartments, depending on presence/absence of external magnetic field. However, the number of internalized MNPs observed by fluorescent and transmission electron microscopy was relatively low, making such way of targeting effective only for delivery of highly potent drugs. The scanning electron microscopy of treated cells revealed that MNPs influenced the cell adhesion, when external magnetic field was applied, and that treatment resulted in damaged apical plasma membrane right after exposure to the magnetic carrier. On the other hand, MNPs showed only reversibly reduced cellular metabolic activity in concentrations up to 200 μg/ml and, in the tested concentration the cell cycle distribution was within the normal range, indicating safety of the established magnetic carrier system for the treated cells.

  3. Facile Synthesis of pH-sensitive Germanium Nanocrystals with High Quantum Yield for Intracellular Acidic Compartment Imaging.

    PubMed

    Li, Feng; Wang, Jing; Sun, Shuqing; Wang, Hai; Tang, Zhiyong; Nie, Guangjun

    2015-04-24

    A green-light emitting germanium nanocrystal-based biosensor to monitor lysosomal pH changes is developed. The Ge nanocrystals are synthesized in an aqueous solution with a significantly enhanced photoluminescence quantum yield of 26%. This synthesis involves a facile solution based route which avoided the use of toxic or environmentally unfriendly agents. Importantly, the photoluminescence intensity of the synthesized Ge nanocrystals is particularly sensitive to changes in pH between 5 and 6. When incubated with cultured cells, the nanocrystals are internalized and subsequently translocated via the lysosomal pathway, and the Ge nanocrystals' fluorescence are greatly enhanced, even when the lysosomal pH is only slightly increased. These results reveal that the Ge nanocrystals possess high pH sensitivity compared to a commercially available dye, LysoSensor Green DND-189. The fluorescent properties of the Ge nanocrystals are demonstrated to be dependent on both the crystal form and their surface chemistry. The superior fluorescence properties and bioapplicability of the Ge nanocrystals makes them a promising intracellular bioimaging probe for monitoring various pH-sensitive processes in cells.

  4. N-Acetylated alpha-linked acidic dipeptidase expressed in rat adipocytes is localized in the insulin-responsive glucose transporter (GLUT4) intracellular compartments and involved in the insulin-stimulated GLUT4 recruitment.

    PubMed

    Park, Seung Y; Ha, Byoung G; Choi, Geum H; Lee, Wan

    2004-04-01

    The GLUT4-containing vesicles purified from rat adipocyte contain many protein species of unknown identity, some of which are likely to play a critical role in the trafficking of GLUT4. Presently, we describe an 85-kDa protein in GLUT4-vesicles of rat adipocytes as a potential GLUT4 traffic regulatory protein. MALDI-TOF MS, RT-PCR, gene cloning, protein sequence analysis, and immunoreactivity assay have identified this protein as N-acetylated alpha-linked acidic dipeptidase (NAALADase) expressed in rat adipocytes. NAALADase in rat adipocytes was mostly membrane-associated and colocalized in discrete GLUT4-compartments with enrichment in putative GLUT4-sorting endosomes (G4G(L)). Total cell lysates of adipocytes exhibited NAALADase activity. Next, we treated rat adipocytes with 2-[phosphonomethy]pentanedionic acid (2-PMPA), a potent NAALADase inhibitor, and studied its effect on the distribution of GLUT4 and 3-O-methyl glucose (3OMG) flux. In 2-PMPA-treated adipocytes, there was a significant reduction (by 40%) in the insulin-stimulated GLUT4 translocation to the plasma membrane. The 3OMG flux in insulin-stimulated adipocytes was also delayed (51% of control) by 2-PMPA treatment, indicating that 2-PMPA impairs insulin-stimulated GLUT4 recruitment and the uptake of glucose. It is suggested that NAALADase may function as a regulator required for the insulin-stimulated GLUT4 vesicle movement and/or its exocytosis, thus may regulate insulin-induced GLUT4 recruitment in rat adipocytes.

  5. Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell.

    PubMed Central

    Garcia-del Portillo, F; Stein, M A; Finlay, B B

    1997-01-01

    The biological effects of bacterial lipopolysaccharide (LPS) on eucaryotic cells have traditionally been characterized following extracellular challenge of LPS on susceptible cells. In this study, we report the capacity of Salmonella typhimurium to release LPS once it is located in the intracellular environment of cultured epithelial cells. LPS is liberated from vacuolar compartments, where intracellular bacteria reside, to vesicles present in the host cell cytosol. The vesicle-associated LPS is detected in infected cells from the time when invading bacteria enter the host cell. Release of LPS is restricted to S. typhimurium-infected cells, with no LPS observed in neighboring uninfected cells, suggesting that dissemination of LPS occurs entirely within the intracellular environment of the infected cell. The amount of LPS present in host vesicles reaches a maximum when intracellular S. typhimurium cells start to proliferate, a time at which the entire host cell cytosol is filled with numerous vesicles containing LPS. All these data support the concept that intracellular bacterial pathogens might signal the host cell from intracellular locations by releasing bioactive bacterial components such as LPS. PMID:8975888

  6. Intracellular trafficking of nucleic acids.

    PubMed

    Zhou, Rui; Geiger, R Christopher; Dean, David A

    2004-11-01

    Until recently, the attention of most researchers has focused on the first and last steps of gene transfer, namely delivery to the cell and transcription, in order to optimise transfection and gene therapy. However, over the past few years, researchers have realised that the intracellular trafficking of plasmids is more than just a "black box" and is actually one of the major barriers to effective gene delivery. After entering the cytoplasm, following direct delivery or endocytosis, plasmids or other vectors must travel relatively long distances through the mesh of cytoskeletal networks before reaching the nuclear envelope. Once at the nuclear envelope, the DNA must either wait until cell division, or be specifically transported through the nuclear pore complex, in order to reach the nucleoplasm where it can be transcribed. This review focuses on recent developments in the understanding of these intracellular trafficking events as they relate to gene delivery. Hopefully, by continuing to unravel the mechanisms by which plasmids and other gene delivery vectors move throughout the cell, and by understanding the cell biology of gene transfer, superior methods of transfection and gene therapy can be developed.

  7. Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment.

    PubMed

    Spanò, Stefania; Ugalde, Juan E; Galán, Jorge E

    2008-01-17

    Salmonella Typhi, an exclusive human pathogen and the cause of typhoid fever, expresses a functional cytolethal distending toxin for which only the active subunit, CdtB, has been identified. Here, we show that PltA and PltB, which are encoded in the same pathogenicity islet as cdtB, associate with CdtB to form a multipartite toxin. PltA and PltB are homologs of components of the pertussis toxin, including its ADP-ribosyl transferase subunit. We also show that PltA and PltB are required for the delivery of CdtB from an intracellular compartment to target cells via autocrine and paracrine pathways. We hypothesize that this toxin, which we have named "typhoid toxin," and its delivery mechanism may contribute to S. Typhi's unique virulence properties.

  8. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments

    NASA Astrophysics Data System (ADS)

    Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

  9. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments.

    PubMed

    Huber, Matthias C; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally 'program' the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials. PMID:25362355

  10. Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides.

    PubMed

    Bidwell, Gene L; Davis, Aisha N; Raucher, Drazen

    2009-04-01

    The therapeutic index of current anti-cancer chemotherapeutics can be improved by two major mechanisms: 1) developing drugs which are specifically toxic to the cancer cells and 2) developing methods to deliver drugs to the tumor site. In an attempt to combine these approaches, we developed a thermally responsive polypeptide inhibitor of c-Myc. This polypeptide is based on the thermally responsive Elastin-like polypeptide (ELP). When injected systemically, ELP-fused drugs will aggregate and accumulate at the tumor site where local hyperthermia is applied. ELP was fused to a peptide which blocks c-Myc/Max dimerization (H1), thereby inhibiting transcription activation by c-Myc (ELP-H1). In this study, the cellular uptake, intracellular distribution, and potency of the Pen, Tat and Bac cell penetrating peptides fused to ELP-H1 were evaluated. While Pen-ELP-H1 and Tat-ELP-H1 were localized in the cytoplasm, Bac-ELP-H1 localized to the nucleus in a subset of the cells and was the most potent inhibitor of MCF-7 cell proliferation. This data demonstrates that ELP can be targeted to the desired cellular compartment simply by choice of the CPP used, resulting in a more potent nuclear targeted c-Myc inhibitory polypeptide which may be beneficial in cancer therapy.

  11. Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana.

    PubMed

    Frontalini, Fabrizio; Curzi, Davide; Cesarini, Erica; Canonico, Barbara; Giordano, Francesco M; De Matteis, Rita; Bernhard, Joan M; Pieretti, Nadia; Gu, Baohua; Eskelsen, Jeremy R; Jubb, Aaron M; Zhao, Linduo; Pierce, Eric M; Gobbi, Pietro; Papa, Stefano; Coccioni, Rodolfo

    2016-01-01

    Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations. PMID:27603511

  12. Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana.

    PubMed

    Frontalini, Fabrizio; Curzi, Davide; Cesarini, Erica; Canonico, Barbara; Giordano, Francesco M; De Matteis, Rita; Bernhard, Joan M; Pieretti, Nadia; Gu, Baohua; Eskelsen, Jeremy R; Jubb, Aaron M; Zhao, Linduo; Pierce, Eric M; Gobbi, Pietro; Papa, Stefano; Coccioni, Rodolfo

    2016-01-01

    Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.

  13. Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana

    PubMed Central

    Curzi, Davide; Cesarini, Erica; Canonico, Barbara; Giordano, Francesco M.; De Matteis, Rita; Bernhard, Joan M.; Pieretti, Nadia; Gu, Baohua; Eskelsen, Jeremy R.; Jubb, Aaron M.; Zhao, Linduo; Pierce, Eric M.; Gobbi, Pietro; Papa, Stefano; Coccioni, Rodolfo

    2016-01-01

    Heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organelle where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations. PMID:27603511

  14. Mercury-pollution induction of intracellular lipid accumulation and lysosomal compartment amplification in the benthic foraminifer Ammonia parkinsoniana

    DOE PAGES

    Frontalini, Fabrizio; Curzi, Davide; Cesarini, Erica; Canonico, Barbara; Giordano, Francesco M.; De Matteis, Rita; Bernhard, Joan M.; Pieretti, Nadia; Gu, Baohua; Eskelsen, Jeremy R.; et al

    2016-09-07

    In this study, heavy metals such as mercury (Hg) pose a significant health hazard through bioaccumulation and biomagnification. By penetrating cell membranes, heavy metal ions may lead to pathological conditions. Here we examined the responses of Ammonia parkinsoniana, a benthic foraminiferan, to different concentrations of Hg in the artificial sea water. Confocal images of untreated and treated specimens using fluorescent probes (Nile Red and Acridine Orange) provided an opportunity for visualizing the intracellular lipid accumulation and acidic compartment regulation. With increased Hg over time, we observed an increased number of lipid droplets, which may have acted as a detoxifying organellemore » where Hg is sequestered and biologically inactivated. Further, Hg seems to promote the proliferation of lysosomes both in terms of number and dimension that, at the highest level of Hg, resulted in cell death. We report, for the first time, the presence of Hg within the foraminiferal cell: at the basal part of pores, in the organic linings of the foramen/septa, and as cytoplasmic accumulations.« less

  15. Assessment of cation trapping by cellular acidic compartments.

    PubMed

    Marceau, François; Roy, Caroline; Bouthillier, Johanne

    2014-01-01

    All nucleated cells, from yeast to animal cells, concentrate cationic chemicals (weak bases with a pKa~8-10) into acidic cell compartments (low retro-diffusion under a protonated form at low pH=ion trapping). The proton pump vacuolar (V)-ATPase is the driving force of this pseudotransport that concerns acidic organelles (mainly late endosomes and lysosomes). The latter rapidly become swollen (osmotic vacuolization) and macroautophagic. Cation concentration in cells is not proved to involve membrane transporters, but is prevented or reversed by inhibitors of V-ATPase, such as bafilomycin A1. Lipophilicity is a major determinant of the apparent affinity of this pseudotransport because simple diffusion of the uncharged form supports it. Quinacrine is a formerly used antiparasitic drug that is intensely fluorescent, lipophilic, and a tertiary amine. The drug, at micromolar concentrations, is proposed as a superior probe for assessing cation trapping by cellular acidic compartments, being readily quantified using fluorometry in cell extracts and analyzed using microscopy and cytofluorometry (fluorescence settings for fluorescein being applicable). Further, cells respond to micromolar levels of quinacrine by autophagic accumulation (e.g., accumulation of the activated macroautophagic effector LC3 II, immunoblots), an objective and universal response to sequestered amines.

  16. The contribution of TWIK-1 channels to astrocyte K+ current is limited by retention in intracellular compartments

    PubMed Central

    Wang, Wei; Putra, Adhytia; Schools, Gary P.; Ma, Baofeng; Chen, Haijun; Kaczmarek, Leonard K.; Barhanin, Jacques; Lesage, Florian; Zhou, Min

    2013-01-01

    TWIK-1 two-pore domain K+ channels are expressed abundantly in astrocytes. In the present study, we examined the extent to which TWIK-1 contributes to the linear current-voltage (I–V) relationship (passive) K+ membrane conductance, a dominant electrophysiological feature of mature hippocampal astrocytes. Astrocytes from TWIK-1 knockout mice have a more negative resting potential than those from wild type animals and a reduction in both inward rectification and Cs+ permeability. Nevertheless, the overall whole-cell passive conductance is not altered significantly in TWIK-1 knockout astrocytes. The expression of Kir4.1 and TREK-1, two other major astrocytic K+ channels, or of other two-pore K+ channels is not altered in TWIK-1 knockout mice, suggesting that the mild effect of TWIK-1 knockout does not result from compensation by these channels. Fractionation experiments showed that TWIK-1 is primarily localized in intracellular cytoplasmic fractions (55%) and mildly hydrophobic internal compartment fractions (41%), with only 5% in fractions containing plasma membranes. Our study revealed that TWIK-1 proteins are mainly located in the intracellular compartments of hippocampal astrocyte under physiological condition, therefore a minimal contribution of TWIK-1 channels to whole-cell currents is likely attributable to a relatively low level presence of channels in the plasma membrane. PMID:24368895

  17. Physiological Intracellular Crowdedness is Defined by the Perimeter-to-Area Ratio of Sub-Cellular Compartments

    PubMed Central

    Hiroi, Noriko; Okuhara, Takahiro; Kubojima, Takeshi; Iba, Keisuke; Tabira, Akito; Yamashita, Shuji; Okada, Yasunori; Kobayashi, Tetsuya J.; Funahashi, Akira

    2012-01-01

    The intracellular environment is known to be a crowded and inhomogeneous space. Such an in vivo environment differs from a well-diluted, homogeneous environment for biochemical reactions. However, the effects of both crowdedness and the inhomogeneity of environment on the behavior of a mobile particle have not yet been investigated sufficiently. As described in this paper, we constructed artificial reaction spaces with fractal models, which are assumed to be non-reactive solid obstacles in a reaction space with crevices that function as operating ranges for mobile particles threading the space. Because of the homogeneity of the structures of artificial reaction spaces, the models succeeded in reproducing the physiological fractal dimension of solid structures with a smaller number of non-reactive obstacles than in the physiological condition. This incomplete compatibility was mitigated when we chose a suitable condition of a perimeter-to-area ratio of the operating range to our model. Our results also show that a simulation space is partitioned into convenient reaction compartments as an in vivo environment with the exact amount of solid structures estimated from TEM images. The characteristics of these compartments engender larger mean square displacement of a mobile particle than that of particles in smaller compartments. Subsequently, the particles start to show confined particle-like behavior. These results are compatible with our previously presented results, which predicted that a physiological environment would produce quick response and slow exhaustion reactions. PMID:22936917

  18. Intracellular lumen formation in Drosophila proceeds via a novel subcellular compartment.

    PubMed

    Nikolova, Linda S; Metzstein, Mark M

    2015-11-15

    Cellular tubes have diverse morphologies, including multicellular, unicellular and subcellular architectures. Subcellular tubes are found prominently within the vertebrate vasculature, the insect breathing system and the nematode excretory apparatus, but how such tubes form is poorly understood. To characterize the cellular mechanisms of subcellular tube formation, we have refined methods of high pressure freezing/freeze substitution to prepare Drosophila larvae for transmission electron microscopic (TEM) analysis. Using our methods, we have found that subcellular tube formation may proceed through a previously undescribed multimembrane intermediate composed of vesicles bound within a novel subcellular compartment. We have also developed correlative light/TEM procedures to identify labeled cells in TEM-fixed larval samples. Using this technique, we have found that Vacuolar ATPase (V-ATPase) and the V-ATPase regulator Rabconnectin-3 are required for subcellular tube formation, probably in a step resolving the intermediate compartment into a mature lumen. In general, our ultrastructural analysis methods could be useful for a wide range of cellular investigations in Drosophila larvae.

  19. Intracellular lumen formation in Drosophila proceeds via a novel subcellular compartment.

    PubMed

    Nikolova, Linda S; Metzstein, Mark M

    2015-11-15

    Cellular tubes have diverse morphologies, including multicellular, unicellular and subcellular architectures. Subcellular tubes are found prominently within the vertebrate vasculature, the insect breathing system and the nematode excretory apparatus, but how such tubes form is poorly understood. To characterize the cellular mechanisms of subcellular tube formation, we have refined methods of high pressure freezing/freeze substitution to prepare Drosophila larvae for transmission electron microscopic (TEM) analysis. Using our methods, we have found that subcellular tube formation may proceed through a previously undescribed multimembrane intermediate composed of vesicles bound within a novel subcellular compartment. We have also developed correlative light/TEM procedures to identify labeled cells in TEM-fixed larval samples. Using this technique, we have found that Vacuolar ATPase (V-ATPase) and the V-ATPase regulator Rabconnectin-3 are required for subcellular tube formation, probably in a step resolving the intermediate compartment into a mature lumen. In general, our ultrastructural analysis methods could be useful for a wide range of cellular investigations in Drosophila larvae. PMID:26428009

  20. Role of host cell-derived amino acids in nutrition of intracellular Salmonella enterica.

    PubMed

    Popp, Jasmin; Noster, Janina; Busch, Kim; Kehl, Alexander; Zur Hellen, Gero; Hensel, Michael

    2015-12-01

    The facultative intracellular pathogen Salmonella enterica resides in a specific membrane-bound compartment termed the Salmonella-containing vacuole (SCV). Despite being segregated from access to metabolites in the host cell cytosol, Salmonella is able to efficiently proliferate within the SCV. We set out to unravel the nutritional supply of Salmonella in the SCV with focus on amino acids. We studied the availability of amino acids by the generation of auxotrophic strains for alanine, asparagine, aspartate, glutamine, and proline in a macrophage cell line (RAW264.7) and an epithelial cell line (HeLa) and examined access to extracellular nutrients for nutrition. Auxotrophies for alanine, asparagine, or proline attenuated intracellular replication in HeLa cells, while aspartate, asparagine, or proline auxotrophies attenuated intracellular replication in RAW264.7 macrophages. The different patterns of intracellular attenuation of alanine- or aspartate-auxotrophic strains support distinct nutritional conditions in HeLa cells and RAW264.7 macrophages. Supplementation of medium with individual amino acids restored the intracellular replication of mutant strains auxotrophic for asparagine, proline, or glutamine. Similarly, a mutant strain deficient in succinate dehydrogenase was complemented by the extracellular addition of succinate. Complementation of the intracellular replication of auxotrophic Salmonella by external amino acids was possible if bacteria were proficient in the induction of Salmonella-induced filaments (SIFs) but failed in a SIF-deficient background. We propose that the ability of intracellular Salmonella to redirect host cell vesicular transport provides access of amino acids to auxotrophic strains and, more generally, is essential to continuously supply bacteria within the SCV with nutrients.

  1. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    PubMed

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  2. Intracellular pH of acid-tolerant ruminal bacteria.

    PubMed Central

    Russell, J B

    1991-01-01

    Acid-tolerant ruminal bacteria (Bacteroides ruminicola B1(4), Selenomonas ruminantium HD4, Streptococcus bovis JB1, Megasphaera elsdenii B159, and strain F) allowed their intracellular pH to decline as a function of extracellular pH and did not generate a large pH gradient across the cell membrane until the extracellular pH was low (less than 5.2). This decline in intracellular pH prevented an accumulation of volatile fatty acid anions inside the cells. PMID:1781695

  3. Intracellular Nucleic Acid Sensors and Autoimmunity

    PubMed Central

    Kono, Dwight H.; Beutler, Bruce

    2011-01-01

    A collection of molecular sensors has been defined by studies in the last decade that can recognize a diverse array of pathogens and initiate protective immune and inflammatory responses. However, if the molecular signatures recognized are shared by both foreign and self-molecules, as is the case of nucleic acids, then the responses initiated by these sensors may have deleterious consequences. Notably, this adverse occurrence may be of primary importance in autoimmune disease pathogenesis. In this case, microbe-induced damage or mishandled physiologic processes could lead to the generation of microparticles containing self-nucleic acids. These particles may inappropriately gain access to the cytosol or endolysosomes and, hence, engage resident RNA and DNA sensors. Evidence, as reviewed here, strongly indicates that these sensors are primary contributors to autoimmune disease pathogenesis, spearheading efforts toward development of novel therapeutics for these disorders. PMID:22029446

  4. Intracellular alpha-keto acid quantification by fluorescence-HPLC.

    PubMed

    Fuchs, M; Engel, J; Campos, M; Matejec, R; Henrich, M; Harbach, H; Wolff, M; Weismüller, K; Menges, T; Heidt, M C; Welters, I D; Krüll, M; Hempelmann, G; Mühling, J

    2009-01-01

    Procedures for the analysis of free alpha-keto acids in human fluids (i.e. plasma, cerebrospinal fluid, urine, etc.) as well as for studying the dynamic free alpha-keto acid pools in differentiated tissues and organ cells have been the subject of growing clinical interest in the study of metabolic regulatory and pathophysiological phenomena. Due to the high instability and polarity of the alpha-keto acids being examined, the development of a quantitative and reproducible analysis of metabolically relevant intracellular alpha-keto acids still presents a substantial methodological challenge. The aim of small sample size, rapid, non-damaging and "metabolism-neutral" cell isolation, careful sample preparation and stability, as well as reproducible analytics technology is not often achieved. Only few of the methods described can satisfy the rigorous demands for an ultra-sensitive, comprehensive and rapid intracellular alpha-keto acid analysis.

  5. Bem3, a Cdc42 GTPase-activating protein, traffics to an intracellular compartment and recruits the secretory Rab GTPase Sec4 to endomembranes

    PubMed Central

    Mukherjee, Debarati; Sen, Arpita; Boettner, Douglas R.; Fairn, Gregory D.; Schlam, Daniel; Bonilla Valentin, Fernando J.; Michael McCaffery, J.; Hazbun, Tony; Staiger, Chris J.; Grinstein, Sergio; Lemmon, Sandra K.; Claudio Aguilar, R.

    2013-01-01

    Summary Cell polarity is essential for many cellular functions including division and cell-fate determination. Although RhoGTPase signaling and vesicle trafficking are both required for the establishment of cell polarity, the mechanisms by which they are coordinated are unclear. Here, we demonstrate that the yeast RhoGAP (GTPase activating protein), Bem3, is targeted to sites of polarized growth by the endocytic and recycling pathways. Specifically, deletion of SLA2 or RCY1 led to mislocalization of Bem3 to depolarized puncta and accumulation in intracellular compartments, respectively. Bem3 partitioned between the plasma membrane and an intracellular membrane-bound compartment. These Bem3-positive structures were polarized towards sites of bud emergence and were mostly observed during the pre-mitotic phase of apical growth. Cell biological and biochemical approaches demonstrated that this intracellular Bem3 compartment contained markers for both the endocytic and secretory pathways, which were reminiscent of the Spitzenkörper present in the hyphal tips of growing fungi. Importantly, Bem3 was not a passive cargo, but recruited the secretory Rab protein, Sec4, to the Bem3-containing compartments. Moreover, Bem3 deletion resulted in less efficient localization of Sec4 to bud tips during early stages of bud emergence. Surprisingly, these effects of Bem3 on Sec4 were independent of its GAP activity, but depended on its ability to efficiently bind endomembranes. This work unveils unsuspected and important details of the relationship between vesicle traffic and elements of the cell polarity machinery: (1) Bem3, a cell polarity and peripherally associated membrane protein, relies on vesicle trafficking to maintain its proper localization; and (2) in turn, Bem3 influences secretory vesicle trafficking. PMID:23943876

  6. Fatty Acid Signaling: The New Function of Intracellular Lipases

    PubMed Central

    Papackova, Zuzana; Cahova, Monika

    2015-01-01

    Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed. PMID:25674855

  7. Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle: evidence for an endosomal and an insulin-sensitive GLUT4 compartment.

    PubMed

    Aledo, J C; Lavoie, L; Volchuk, A; Keller, S R; Klip, A; Hundal, H S

    1997-08-01

    In skeletal muscle, acute insulin treatment results in the recruitment of the GLUT4 glucose transporter from intracellular vesicular structures to the plasma membrane. The precise nature of these intracellular GLUT4 stores has, however, remained poorly defined. Using an established skeletal-muscle fractionation procedure we present evidence for the existence of two distinct intracellular GLUT4 compartments. We have shown that after fractionation of crude muscle membranes on a discontinuous sucrose gradient the majority of the GLUT4 immunoreactivity was largely present in two sucrose fractions (30 and 35%, w/w, sucrose; denoted F30 and F35 respectively) containing intracellular membranes of different buoyant densities. Here we show that these fractions contained 44+/-6 and 49+/-7% of the crude membrane GLUT4 reactivity respectively, and could be further discriminated on the basis of their immunoreactivity against specific subcellular antigen markers. Membranes from the F30 fraction were highly enriched in transferrin receptor (TfR) and annexin II, two markers of the early endosome compartment, whereas they were significantly depleted of both GLUT1 and the alpha1-subunit of (Na++K+)-ATPase, two cell-surface markers. Insulin treatment resulted in a significant reduction in GLUT4 content in membranes from the F35 fraction, whereas the amount of GLUT4 in the less dense (F30) fraction remained unaffected by insulin. Immunoprecipitation of GLUT4-containing vesicles from both intracellular fractions revealed that TfR was present in GLUT4 vesicles isolated from membranes from the F30 fraction. In contrast, GLUT4 vesicles from the F35 fraction were devoid of TfR. The aminopeptidase, vp165, was present in GLUT4 vesicles from both F30 and F35; however, vesicles isolated from F30 contained over twice as much vp165 per unit of GLUT4 than those isolated from F35. The biochemical co-localization of vp165/GLUT4 was further substantiated by double-immunogold labelling of ultrathin

  8. Accumulation of properly folded human type III procollagen molecules in specific intracellular membranous compartments in the yeast Pichia pastoris.

    PubMed

    Keizer-Gunnink, I; Vuorela, A; Myllyharju, J; Pihlajaniemi, T; Kivirikko, K I; Veenhuis, M

    2000-02-01

    It was recently reported that co-expression of the proalpha1(III) chain of human type III procollagen with the subunits of human prolyl 4-hydroxylase in Pichia pastoris produces fully hydroxylated and properly folded recombinant type III procollagen molecules (Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T., Kivirikko, K.I., 1997. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J. 16, 6702-6712). These properly folded molecules accumulated inside the yeast cell, however, only approximately 10% were found in the culture medium. We report here that replacement of the authentic signal sequence of the human proalpha1(III) with the Saccharomyces cerevisiae alpha mating factor prepro sequence led only to a minor increase in the amount secreted. Immunoelectron microscopy studies indicated that the procollagen molecules accumulate in specific membranous vesicular compartments that are closely associated with the nuclear membrane. Prolyl 4-hydroxylase, an endoplasmic reticulum (ER) lumenal enzyme, was found to be located in the same compartments. Non-helical proalpha1(III) chains produced by expression without recombinant prolyl 4-hydroxylase likewise accumulated within these compartments. The data indicate that properly folded recombinant procollagen molecules accumulate within the ER and do not proceed further in the secretory pathway. This may be related to the large size of the procollagen molecule. PMID:10686423

  9. Model studies of intracellular acid-base temperature responses in ectotherms.

    PubMed

    Reeves, R B; Malan, A

    1976-10-01

    Measurements of intracellular pH (pHi) in air-breathing ectotherms have only been made in the steady state; these pHi indicate that protein charge state, measured as alpha imidazole (alphaIM), the fractional dissociation of protein histidine imidazole groups, is preserved when ectotherm tissues change temperature in vivo, with related changes in pHi and PCO2. In partial answer to the question of how such tissues are able to avoid disrupting transients to functions sensitive to protein charge states, model studies were carried out to assess the passive intracellular buffer system response to a combined change in body temperature and CO2 partial pressure as occurs in vivo in these species. The cell compartment was modeled as a closed volume of ternary buffer solution, containing protein imidazole (50 mM/1); phosphate (15 mM/1) and CO2-bicarbonate buffer components, permeable only to CO2 and permitted no change in buffer base. Excursions from a steady-state non-equilibrium pHi were computed to a step-change in temperature/PCO2. Computations for frog (Rana catesbeiana) striated muscle show that the calculated pHi response on the basis of estimated composition and concentration of cell buffer components, moves along the curve describing the steady-state temperature relationship. No transient away from steady-state alphaIM and carbon dioxide content need be postulated. Applications to turtle (Pseudemys scripta) striated muscle are also explored. These calculations show that ectotherm cells may be capable of responding without appreciable time for adaptation to intracellular acid-base state changes incurred by sudden alteration of body temperature in vivo, given the observed adjustments of blood PCO2 with temperature.

  10. Biosynthesis of the Escherichia coli K1 group 2 polysialic acid capsule occurs within a protected cytoplasmic compartment.

    PubMed

    Steenbergen, Susan M; Vimr, Eric R

    2008-06-01

    Capsular polysaccharides are important virulence determinants in a wide range of invasive infectious diseases. Although capsule synthesis has been extensively investigated, understanding polysaccharide export from the cytoplasm to the external environment has been more difficult. Here we present the results of a novel protection assay indicating that synthesis and export of the Escherichia coli K1 group 2 capsular polysialic acid (K1 antigen) occur within a protected subcellular compartment designated the sialisome. In addition to the polymerase encoded by neuS, localization and complementation analyses indicated that the sialisome includes the accessory membrane protein NeuE. The requirement for NeuE was suppressed by overproducing NeuS, suggesting that NeuE functions by stabilizing the polymerase or facilitating its assembly in the sialisome. Although an interaction between NeuE and NeuS could not be demonstrated with a bacterial two-hybrid system that reconstitutes an intracellular cell-signalling pathway, interactions between NeuS and KpsC as well as other sialisome components were detected. The combined results provide direct evidence for specific protein-protein interactions in the synthesis and export of group 2 capsular polysaccharides under in vivo conditions. The approaches developed here will facilitate further dissection of the sialisome, suggesting similar methodology for understanding the biosynthesis of other group 2 capsules.

  11. Intracellular boron accumulation in CHO-K1 cells using amino acid transport control.

    PubMed

    Sato, Eisuke; Yamamoto, Tetsuya; Shikano, Naoto; Ogura, Masato; Nakai, Kei; Yoshida, Fumiyo; Uemae, Yoji; Takada, Tomoya; Isobe, Tomonori; Matsumura, Akira

    2014-06-01

    BPA used in BNCT has a similar structure to some essential amino acids and is transported into tumor cells by amino acid transport systems. Previous study groups have tried various techniques of loading BPA to increase intracellular boron concentration. CHO-K1 cells demonstrate system L (LAT1) activity and are suitable for specifying the transport system of a neutral amino acid. In this study, we examined the intracellular accumulation of boron in CHO-K1 cells by amino acid transport control, which involves co-loading with L-type amino acid esters. Intracellular boron accumulation in CHO-K1 cells showed the greatest increased upon co-loading 1.0mM BPA, with 1.0mM l-Tyr-O-Et and incubating for 60min. This increase is caused by activation of a system L amino acid exchanger between BPA and l-Tyr. The amino acid esters are metabolized to amino acids by intracellular hydrolytic enzymes that increase the concentrations of intracellular amino acids and stimulate exchange transportation. We expect that this amino acid transport control will be useful for enhancing intracellular boron accumulation.

  12. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles.

    PubMed

    Bishop, Corey J; Kozielski, Kristen L; Green, Jordan J

    2015-12-10

    Intracellular nucleic acid delivery has the potential to treat many genetically-based diseases, however, gene delivery safety and efficacy remains a challenging obstacle. One promising approach is the use of polymers to form polymeric nanoparticles with nucleic acids that have led to exciting advances in non-viral gene delivery. Understanding the successes and failures of gene delivery polymers and structures is the key to engineering optimal polymers for gene delivery in the future. This article discusses the polymer structural features that enable effective intracellular delivery of DNA and RNA, including protection of nucleic acid cargo, cellular uptake, endosomal escape, vector unpacking, and delivery to the intracellular site of activity. The chemical properties that aid in each step of intracellular nucleic acid delivery are described and specific structures of note are highlighted. Understanding the chemical design parameters of polymeric nucleic acid delivery nanoparticles is important to achieving the goal of safe and effective non-viral genetic nanomedicine.

  13. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted. PMID:19836400

  14. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  15. A NOVEL PNYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT

    EPA Science Inventory

    A NOVEL PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR DIMETHYLARSINIC ACID (DMA): THE LUNG AS A STORAGE COMPARTMENT. Evans, M.V., Hughes, M.F., and Kenyon, E.M. USEPA, ORD, NHEERL, RTP, NC 27711

    DMA is the major methylated metabolite of inorganic arsenic, a kno...

  16. Appropriate sampling for intracellular amino acid analysis in five phylogenetically different yeasts.

    PubMed

    Bolten, Christoph J; Wittmann, Christoph

    2008-11-01

    Methanol quenching and fast filtration, the two most common sampling protocols in microbial metabolome analysis, were validated for intracellular amino acid analysis in phylogenetically different yeast strains comprising Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia pastoris, Schizosaccharomyces pombe and Zygosaccharomyces bailii. With only few exceptions for selected amino acids, all yeasts exhibited negligible metabolite leakage during quenching with 60% cold buffered methanol. Slightly higher leakage was observed with increasing methanol content in the quenching solution. Fast filtration resulted in identical levels for intracellular amino acids in all strains tested. The results clearly demonstrate the validity of both approaches for leakage-free sampling of amino acids in yeast.

  17. Intracellular Uptake and Trafficking of Difluoroboron Dibenzoylmethane-Poly(lactic acid) Nanoparticles in HeLa Cells

    PubMed Central

    Contreras, Janette; Xie, Jiansong; Chen, Yin Jie; Pei, Hua; Zhang, Guoqing; Fraser, Cassandra L.; Hamm-Alvarez, Sarah F.

    2010-01-01

    In this study, nanoparticles based on difluoroboron dibenzoylmethane-poly(lactic acid) (BF2dbmPLA) are prepared. Polylactic acid or polylactide is a commonly used degradable polymer, while the boron dye possesses a large extinction coefficient, high emission quantum yield, 2-photon absorption, and sensitivity to the surrounding environment. BF2dbmPLA exhibits molecular weight-dependent emission properties, and can be formulated as stable nanoparticles, suggesting that its unique optical properties may be useful in multiple contexts for probing intracellular environments. Here we show that BF2dbmPLA nanoparticles are internalized into cultured HeLa cells by endocytosis, and that within the cellular milieu they retain their fluorescence properties. BF2dbmPLA nanoparticles are photostable, resisting laser-induced photobleaching under conditions that destroy the fluorescence of a common photostable probe, LysoTracker™ blue. Their endocytosis is also lipid raft-dependent, as evidenced by their significant co-localization with cholera toxin B subunit in membrane compartments after uptake, and their sensitivity of uptake to methyl-β-cyclodextrin. Additionally, BF2dbmPLA nanoparticle endocytosis utilizes microtubules and actin filaments. Internalized BF2dbmPLA nanoparticles do not accumulate in acidic late endosomes and lysosomes, but within a perinuclear non-lysosomal compartment. These findings demonstrate the feasibility of using novel BF2dbmPLA nanoparticles exhibiting diverse emission properties for in situ, live cell imaging, and suggest that their endogenous uptake occurs through a lipid-raft dependent endocytosis mechanism. PMID:20420413

  18. Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs

    SciTech Connect

    Marceau, François; Bawolak, Marie-Thérèse; Lodge, Robert; Bouthillier, Johanne; Gagné-Henley, Angélique; Gaudreault, René C.; Morissette, Guillaume

    2012-02-15

    “Lysosomotropic” cationic drugs are known to concentrate in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping); they draw water by an osmotic mechanism, leading to a vacuolar response. Several aspects of this phenomenon were recently reexamined. (1) The proton pump vacuolar (V)-ATPase is the driving force of cationic drug uptake and ensuing vacuolization. In quantitative transport experiments, V-ATPase inhibitors, such as bafilomycin A1, greatly reduced the uptake of cationic drugs and released them in preloaded cells. (2) Pigmented or fluorescent amines are effectively present in a concentrated form in the large vacuoles. (3) Consistent with V-ATPase expression in trans-Golgi, lysosomes and endosomes, a fraction of the vacuoles is consistently labeled with trans-Golgi markers and protein secretion and endocytosis are often inhibited in vacuolar cells. (4) Macroautophagic signaling (accumulation of lipidated and membrane-bound LC3 II) and labeling of the large vacuoles by the autophagy effector LC3 were consistently observed in cells, precisely at incubation periods and amine concentrations that cause vacuolization. Vacuoles also exhibit late endosome/lysosome markers, because they may originate from such organelles or because macroautophagosomes fuse with lysosomes. Autophagosome persistence is likely due to the lack of resolution of autophagy, rather than to nutritional deprivation. (5) Increased lipophilicity decreases the threshold concentration for the vacuolar and autophagic cytopathology, because simple diffusion into cells is limiting. (6) A still unexplained mitotic arrest is consistently observed in cells loaded with amines. An extended recognition of relevant clinical situations is proposed for local or systemic drug administration.

  19. Intracellular proteoglycans.

    PubMed Central

    Kolset, Svein Olav; Prydz, Kristian; Pejler, Gunnar

    2004-01-01

    Proteoglycans (PGs) are proteins with glycosaminoglycan chains, are ubiquitously expressed and have a wide range of functions. PGs in the extracellular matrix and on the cell surface have been the subject of extensive structural and functional studies. Less attention has so far been given to PGs located in intracellular compartments, although several reports suggest that these have biological functions in storage granules, the nucleus and other intracellular organelles. The purpose of this review is, therefore, to present some of these studies and to discuss possible functions linked to PGs located in different intracellular compartments. Reference will be made to publications relevant for the topics we present. It is beyond the scope of this review to cover all publications on PGs in intracellular locations. PMID:14759226

  20. Fluorescent acid-fast microscopy for measuring phagocytosis of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum by Tetrahymena pyriformis and their intracellular growth.

    PubMed

    Strahl, E D; Gillaspy, G E; Falkinham, J O

    2001-10-01

    Fluorescent acid-fast microscopy (FAM) was used to enumerate intracellular Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum in the ciliated phagocytic protozoan Tetrahymena pyriformis. There was a linear relationship between FAM and colony counts of M. avium cells both from cultures and within protozoa. The Ziehl-Neelsen acid-fast stain could not be used to enumerate intracellular mycobacteria because uninfected protozoa contained acid-fast, bacterium-like particles. Starved, 7-day-old cultures of T. pyriformis transferred into fresh medium readily phagocytized M. avium, M. intracellulare, and M. scrofulaceum. Phagocytosis was rapid and reached a maximum in 30 min. M. avium, M. intracellulare, and M. scrofulaceum grew within T. pyriformis, increasing by factors of 4- to 40-fold after 5 days at 30 degrees C. Intracellular M. avium numbers remained constant over a 25-day period of growth (by transfer) of T. pyriformis. Intracellular M. avium cells also survived protozoan encystment and germination. The growth and viability of T. pyriformis were not affected by mycobacterial infection. The results suggest that free-living phagocytic protozoa may be natural hosts and reservoirs for M. avium, M. intracellulare, and M. scrofulaceum.

  1. Importance of Branched-Chain Amino Acid Utilization in Francisella Intracellular Adaptation

    PubMed Central

    Gesbert, Gael; Ramond, Elodie; Tros, Fabiola; Dairou, Julien; Frapy, Eric; Barel, Monique

    2014-01-01

    Intracellular bacterial pathogens have adapted their metabolism to optimally utilize the nutrients available in infected host cells. We recently reported the identification of an asparagine transporter required specifically for cytosolic multiplication of Francisella. In the present work, we characterized a new member of the major super family (MSF) of transporters, involved in isoleucine uptake. We show that this transporter (here designated IleP) plays a critical role in intracellular metabolic adaptation of Francisella. Inactivation of IleP severely impaired intracellular F. tularensis subsp. novicida multiplication in all cell types tested and reduced bacterial virulence in the mouse model. To further establish the importance of the ileP gene in F. tularensis pathogenesis, we constructed a chromosomal deletion mutant of ileP (ΔFTL_1803) in the F. tularensis subsp. holarctica live vaccine strain (LVS). Inactivation of IleP in the F. tularensis LVS provoked comparable intracellular growth defects, confirming the critical role of this transporter in isoleucine uptake. The data presented establish, for the first time, the importance of isoleucine utilization for efficient phagosomal escape and cytosolic multiplication of Francisella and suggest that virulent F. tularensis subspecies have lost their branched-chain amino acid biosynthetic pathways and rely exclusively on dedicated uptake systems. This loss of function is likely to reflect an evolution toward a predominantly intracellular life style of the pathogen. Amino acid transporters should be thus considered major players in the adaptation of intracellular pathogens. PMID:25332124

  2. Intracellular nucleic acid interactions facilitated by quantum dots: conceptualizing theranostics.

    PubMed

    Chong, Lori; Vannoy, Charles H; Noor, Muhammad Omair; Krull, Ulrich J

    2012-04-01

    The concept of theranostics arises from the unification of both diagnostic and therapeutic applications into a single package. The implementation of nanoparticles, such as semiconductor quantum dots (QDs), to achieve theranostic applications, offers great potential for development of methods that are suitable for personalized medicine. Researchers have taken advantage of the physiochemical properties of QDs to elicit novel bioconjugation techniques that enable the attachment of multifunctional moieties on the surface of QDs. In this review, the diagnostic and therapeutic applications of QDs that feature the use of nucleic acids are highlighted with a particular emphasis on the possibility of combinatorial applications. Nucleic acid research is of particular interest for gene therapy, and is relevant to the understanding of gene regulation pathways and gene expression dynamics. Recent toxicity studies featuring multifunctional QDs are also examined. Future perspectives discussing the expected development of this field conclude the article. PMID:22834078

  3. Pathogenic Yersinia Promotes Its Survival by Creating an Acidic Fluid-Accessible Compartment on the Macrophage Surface

    PubMed Central

    Bahnan, Wael; Boettner, Douglas R.; Westermark, Linda; Fällman, Maria; Schesser, Kurt

    2015-01-01

    Microbial pathogens and host immune cells each initiate events following their interaction in an attempt to drive the outcome to their respective advantage. Here we show that the bacterial pathogen Yersinia pseudotuberculosis sustains itself on the surface of a macrophage by forming acidic fluid-accessible compartments that are partially bounded by the host cell plasma membrane. These Yersinia-containing acidic compartments (YACs) are bereft of the early endosomal marker EEA1 and the lysosomal antigen LAMP1 and readily form on primary macrophages as well as macrophage-like cell lines. YAC formation requires the presence of the Yersinia virulence plasmid which encodes a type III secretion system. Unexpectedly, we found that the initial formation of YACs did not require translocation of the type III effectors into the host cell cytosol; however, the duration of YACs was markedly greater in infections using translocation-competent Y. pseudotuberculosis strains as well as strains expressing the effector YopJ. Furthermore, it was in this translocation- and YopJ-dependent phase of infection that the acidic environment was critical for Y. pseudotuberculosis survival during its interaction with macrophages. Our findings indicate that during its extracellular phase of infection Y. pseudotuberculosis initiates and then, by a separate mechanism, stabilizes the formation of a highly intricate structure on the surface of the macrophage that is disengaged from the endocytic pathway. PMID:26275291

  4. Hyaluronic Acid-Based Nanocarriers for Intracellular Targeting: Interfacial Interactions with Proteins in Cancer

    PubMed Central

    Choi, Ki Young; Saravanakumar, Gurusamy; Park, Jae Hyung; Park, Kinam

    2011-01-01

    The therapeutic efficacy of most drugs is greatly depends on their ability to cross the cellular barrier and reach their intracellular target sites. To transport the drugs effectively through the cellular membrane and to deliver them into the intracellular environment, several interesting smart carrier systems based on both synthetic or natural polymers have been designed and developed. In recent years, hyaluronic acid (HA) has emerged as a promising candidate for intracellular delivery of various therapeutic and imaging agents because of its innate ability to recognize specific cellular receptors that overexpressed on diseased cells. The aim of this review is to highlight the significance of HA in cancer, and to explore the recent advances of HA-based drug carriers towards cancer imaging and therapeutics. PMID:22079699

  5. Ursolic Acid Activates Intracellular Killing Effect of Macrophages During Mycobacterium tuberculosis Infection.

    PubMed

    Podder, Biswajit; Jang, Woong Sik; Nam, Kung-Woo; Lee, Byung-Eui; Song, Ho-Yeon

    2015-05-01

    Tuberculosis is one of the most threatening infectious diseases to public health all over the world, for which Mycobacterium tuberculosis (MTB) is the etiological agent of pathogenesis. Ursolic acid (UA) has immunomodulatory function and exhibits antimycobacterial activity. However, the intracellular killing effect of UA has yet to be elucidated. The aim of this study was to evaluate the intracellular killing effect of UA during mycobacterial infection. The intracellular killing activity of UA was evaluated in the macrophage cell line THP-1 by the MGIT 960 system as well as by CFU count. The production of reactive oxygen species (ROS) and the level of nitric oxide (NO) were measured using DCF-DA and Griess reagent, respectively. Phagocytosis was observed by a fluorescence-based staining method, and the colony forming units were enumerated on 7H11 agar medium following infection. In addition, MRP8 mRNA expression was measured by qRT-PCR. UA significantly decreased the number of intracellular Mycobacterium through generation of ROS and NO. In addition, it profoundly activated the phagocytosis process of THP-1 cells during MTB-infection. Furthermore, our data demonstrated that UA activated the phagocytosis process in human monocyte cells through MRP8 induction. These data suggest that UA firmly contributes to the intracellular killing effect of macrophages during mycobacterial infection.

  6. PepFects and NickFects for the Intracellular Delivery of Nucleic Acids.

    PubMed

    Arukuusk, Piret; Pärnaste, Ly; Hällbrink, Mattias; Langel, Ülo

    2015-01-01

    Nucleic acids can be utilized in gene therapy to restore, alter, or silence gene functions. In order to reveal the biological activity nucleic acids have to reach their intracellular targets by passing through the plasma membrane, which is impermeable for these large and negatively charged molecules. Cell-penetrating peptides (CPPs) condense nucleic acids into nanoparticles using non-covalent complexation strategy and mediate their delivery into the cell, whereas the physicochemical parameters of the nanoparticles determine the interactions with the membranes, uptake mechanism, and subsequent intracellular fate. The nanoparticles are mostly internalized by endocytosis that leads to the entrapment of them in endosomal vesicles. Therefore design of new CPPs that are applicable for non-covalent complex formation strategy and harness endosomolytic properties is highly vital. Here we demonstrate that PepFects and NickFects are efficient vectors for the intracellular delivery of various nucleic acids.This chapter describes how to form CPP/pDNA nanoparticles, evaluate stable nanoparticles formation, and assess gene delivery efficacy.

  7. Intracellular pH (pHin) and cytosolic calcium ([Ca2+]cyt) regulation via ATPases: studies in cell populations, single cells, and subcellular compartments

    NASA Astrophysics Data System (ADS)

    Rojas, Jose D.; Sanka, Shankar C.; Gyorke, Sandor; Wesson, Donald E.; Minta, Akwasi; Martinez-Zaguilan, Raul

    1999-07-01

    Changes in pHin and (Ca2+)cyt are important in the signal transduction mechanisms leading to many physiological responses including cell growth, motility, secretion/exocytosis, etc. The concentrations of these ions are regulated via primary and secondary ion transporting mechanisms. In diabetes, specific pH and Ca2+ regulatory mechanism might be altered. To study these ions, we employ fluorescence spectroscopy, and cell imagin spectroscopy/confocal microscopy. pH and Ca2+ indicators are loaded in the cytosol with acetoxymethyl ester forms of dyes, and in endosomal/lysosomal (E/L) compartments by overnight incubation of cells with dextran- conjugated ion fluorescent probes. We focus on specific pH and Ca2+ regulatory systems: plasmalemmal vacuolar- type H+-ATPases (pm V-ATPases) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA). As experimental models, we employ vascular smooth muscle (VSM) and microvascular endothelial cells. We have chosen these cells because they are important in blood flow regulation and in angiogenesis. These processes are altered in diabetes. In many cell types, ion transport processes are dependent on metabolism of glucose for maximal activity. Our main findings are: (a) glycolysis coupling the activity of SERCA is required for cytosolic Ca2+ homeostasis in both VSM and microvascular endothelial cells; (b) E/L compartments are important for pH and Ca2+ regulation via H+-ATPases and SERCA, respectively; and (c) pm-V- ATPases are important for pHin regulation in microvascular endothelial cells.

  8. Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host Salmonella.

    PubMed

    Spanò, Stefania; Liu, Xiaoyun; Galán, Jorge E

    2011-11-01

    Unlike broad-host Salmonella serovars, which cause self-limiting disease, Salmonella enterica serovar Typhi can infect only humans causing typhoid fever, a life-threatening systemic disease. The molecular bases for these differences are presently unknown. Here we show that the GTPase Rab29 (Rab7L1) distinguishes the intracellular vacuole of human-adapted and broad-host Salmonella serovars. A screen to identify host factors required for the export of typhoid toxin, which is exclusively encoded by the human-specific Salmonella enterica serovars Typhi (S. Typhi) and Paratyphi (S. Paratyphi) identified Rab29. We found that Rab29 is recruited to the S. Typhi-containing vacuole but not to vacuoles containing broad-host Salmonella. We observed that in cells infected with broad-host Salmonella Rab29 is specifically cleaved by the proteolytic activity of GtgE, a unique type III secretion effector protein that is absent from S. Typhi. An S. Typhi strain engineered to express GtgE and therefore able to cleave Rab29 exhibited increased intracellular replication in human macrophages. These findings indicate significant differences in the intracellular biology of human-adapted and broad-host Salmonella and show how subtle differences in the assortment of effector proteins encoded by highly related pathogens can have a major impact in their biology.

  9. Demand for Zn2+ in Acid-Secreting Gastric Mucosa and Its Requirement for Intracellular Ca2+

    PubMed Central

    Liu, JingJing; Kohler, Jonathan E.; Blass, Amy L.; Moncaster, Juliet A.; Mocofanescu, Anca; Marcus, Matthew A.; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Amarasiriwardena, Chitra; Casey, Noel

    2011-01-01

    Background and Aims Recent work has suggested that Zn2+ plays a critical role in regulating acidity within the secretory compartments of isolated gastric glands. Here, we investigate the content, distribution and demand for Zn2+ in gastric mucosa under baseline conditions and its regulation during secretory stimulation. Methods and Findings Content and distribution of zinc were evaluated in sections of whole gastric mucosa using X-ray fluorescence microscopy. Significant stores of Zn2+ were identified in neural elements of the muscularis, glandular areas enriched in parietal cells, and apical regions of the surface epithelium. In in vivo studies, extraction of the low abundance isotope, 70Zn2+, from the circulation was demonstrated in samples of mucosal tissue 24 hours or 72 hours after infusion (250 µg/kg). In in vitro studies, uptake of 70Zn2+ from media was demonstrated in isolated rabbit gastric glands following exposure to concentrations as low as 10 nM. In additional studies, demand of individual gastric parietal cells for Zn2+ was monitored using the fluorescent zinc reporter, fluozin-3, by measuring increases in free intracellular concentrations of Zn2+ {[Zn2+]i} during exposure to standard extracellular concentrations of Zn2+ (10 µM) for standard intervals of time. Under resting conditions, demand for extracellular Zn2+ increased with exposure to secretagogues (forskolin, carbachol/histamine) and under conditions associated with increased intracellular Ca2+ {[Ca2+]i}. Uptake of Zn2+ was abolished following removal of extracellular Ca2+ or depletion of intracellular Ca2+ stores, suggesting that demand for extracellular Zn2+ increases and depends on influx of extracellular Ca2+. Conclusions This study is the first to characterize the content and distribution of Zn2+ in an organ of the gastrointestinal tract. Our findings offer the novel interpretation, that Ca2+ integrates basolateral demand for Zn2+ with stimulation of secretion of HCl into the lumen of

  10. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    PubMed

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  11. Quantitative Intracellular Localization of Cationic Lipid-Nucleic Acid Nanoparticles with Fluorescence Microscopy.

    PubMed

    Majzoub, Ramsey N; Ewert, Kai K; Safinya, Cyrus R

    2016-01-01

    Current activity in developing synthetic carriers of nucleic acids (NA) and small molecule drugs for therapeutic applications is unprecedented. One promising class of synthetic vectors for the delivery of therapeutic NA is PEGylated cationic liposome (CL)-NA nanoparticles (NPs). Chemically modified PEG-lipids can be used to surface-functionalize lipid-NA nanoparticles, allowing researchers to design active nanoparticles that can overcome the various intracellular and extracellular barriers to efficient delivery. Optimization of these functionalized vectors requires a comprehensive understanding of their intracellular pathways. In this chapter we present two distinct methods for investigating the intracellular activity of PEGylated CL-NA NPs using quantitative analysis with fluorescence microscopy.The first method, spatial localization, describes how to prepare fluorescently labeled CL-NA NPs, perform fluorescence microscopy and properly analyze the data to measure the intracellular distribution of nanoparticles and fluorescent signal. We provide software which allows data from multiple cells to be averaged together and yield statistically significant results. The second method, fluorescence colocalization, describes how to label endocytic organelles via Rab-GFPs and generate micrographs for software-assisted NP-endocytic marker colocalization measurements. These tools will allow researchers to study the endosomal trafficking of CL-NA NPs which can guide their design and improve their efficiency. PMID:27436314

  12. Equine arteritis virus is delivered to an acidic compartment of host cells via clathrin-dependent endocytosis

    SciTech Connect

    Nitschke, Matthias; Korte, Thomas; Ter-Avetisyan, Gohar; Tuennemann, Gisela; Cardoso, M. Cristina; Veit, Michael Herrmann, Andreas

    2008-08-01

    Equine arteritis virus (EAV) is an enveloped, positive-stranded RNA virus belonging to the family Arteriviridae. Infection by EAV requires the release of the viral genome by fusion with the respective target membrane of the host cell. We have investigated the entry pathway of EAV into Baby Hamster Kindey cells (BHK). Infection of cells assessed by the plaque reduction assay was strongly inhibited by substances which interfere with clathrin-dependent endocytosis and by lysosomotropic compounds. Furthermore, infection of BHK cells was suppressed when clathrin-dependent endocytosis was inhibited by expression of antisense RNA of the clathrin-heavy chain before infection. These results strongly suggest that EAV is taken up via clathrin-dependent endocytosis and is delivered to acidic endosomal compartments.

  13. Compartment syndromes

    NASA Technical Reports Server (NTRS)

    Mubarak, S. J.; Pedowitz, R. A.; Hargens, A. R.

    1989-01-01

    The compartment syndrome is defined as a condition in which high pressure within a closed fascial space (muscle compartment) reduces capillary blood perfusion below the level necessary for tissue viability'. This condition occurs in acute and chronic (exertional) forms, and may be secondary to a variety of causes. The end-result of an extended period of elevated intramuscular pressure may be the development of irreversible tissue injury and Volkmann's contracture. The goal of treatment of the compartment syndrome is the reduction of intracompartmental pressure thus facilitating reperfusion of ischaemic tissue and this goal may be achieved by decompressive fasciotomy. Controversy exists regarding the critical pressure-time thresholds for surgical decompression and the optimal diagnostic methods of measuring intracompartmental pressures. This paper will update and review some current knowledge regarding the pathophysiology, aetiology, diagnosis, and treatment of the acute compartment syndrome.

  14. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon Metabolism Using Intracellular Free Amino Acids

    PubMed Central

    Okahashi, Nobuyuki; Kajihata, Shuichi; Furusawa, Chikara; Shimizu, Hiroshi

    2014-01-01

    13C metabolic flux analysis (MFA) is a tool of metabolic engineering for investigation of in vivo flux distribution. A direct 13C enrichment analysis of intracellular free amino acids (FAAs) is expected to reduce time for labeling experiments of the MFA. Measurable FAAs should, however, vary among the MFA experiments since the pool sizes of intracellular free metabolites depend on cellular metabolic conditions. In this study, minimal 13C enrichment data of FAAs was investigated to perform the FAAs-based MFA. An examination of a continuous culture of Escherichia coli using 13C-labeled glucose showed that the time required to reach an isotopically steady state for FAAs is rather faster than that for conventional method using proteinogenic amino acids (PAAs). Considering 95% confidence intervals, it was found that the metabolic flux distribution estimated using FAAs has a similar reliability to that of the PAAs-based method. The comparative analysis identified glutamate, aspartate, alanine and phenylalanine as the common amino acids observed in E. coli under different culture conditions. The results of MFA also demonstrated that the 13C enrichment data of the four amino acids is required for a reliable analysis of the flux distribution. PMID:24957033

  15. Drug resistance to paclitaxel is not only associated with ABCB1 mRNA expression but also with drug accumulation in intracellular compartments in human lung cancer cell lines.

    PubMed

    Shimomura, Masanori; Yaoi, Takeshi; Itoh, Kyoko; Kato, Daishiro; Terauchi, Kunihiko; Shimada, Junichi; Fushiki, Shinji

    2012-04-01

    In order to clarify the mechanisms of resistance to paclitaxel in lung cancer, three human lung cancer cell lines which exhibit different sensitivity to paclitaxel were investigated from the following viewpoints: overexpression of ATP-binding cassette, sub-family B, member 1 (ABCB1), mutations on paclitaxel binding site of β-tubulin genes, quantity of polymerized tubulin and the intracellular localization of paclitaxel. ABCB1 expression was evaluated by real-time RT-PCR. No correlations were noted between the ABCB1 expression in the sensitive and resistant cell lines at the mRNA level. No mutations on the paclitaxel binding site of the β-tubulin genes were detected in either the resistant or sensitive cells. Live cell images obtained by confocal laser microscopy revealed that the resistant cell line, RERF-LC-KJ, had more accumulation of Oregon Green® 488 conjugated paclitaxel in the lysosomal and extra-lysosomal compartments of cytoplasm than other cell lines. The results obtained in this study indicated that the changes in the subcellular localization could contribute to the production of paclitaxel resistance in lung cancer cell lines. Further studies should be conducted to elucidate the molecular mechanisms that differentiate the intracellular localization of paclitaxel. PMID:22179563

  16. Drug resistance to paclitaxel is not only associated with ABCB1 mRNA expression but also with drug accumulation in intracellular compartments in human lung cancer cell lines

    PubMed Central

    SHIMOMURA, MASANORI; YAOI, TAKESHI; ITOH, KYOKO; KATO, DAISHIRO; TERAUCHI, KUNIHIKO; SHIMADA, JUNICHI; FUSHIKI, SHINJI

    2012-01-01

    In order to clarify the mechanisms of resistance to paclitaxel in lung cancer, three human lung cancer cell lines which exhibit different sensitivity to paclitaxel were investigated from the following viewpoints: overexpression of ATP-binding cassette, sub-family B, member 1 (ABCB1), mutations on paclitaxel binding site of β-tubulin genes, quantity of polymerized tubulin and the intracellular localization of paclitaxel. ABCB1 expression was evaluated by real-time RT-PCR. No correlations were noted between the ABCB1 expression in the sensitive and resistant cell lines at the mRNA level. No mutations on the paclitaxel binding site of the β-tubulin genes were detected in either the resistant or sensitive cells. Live cell images obtained by confocal laser microscopy revealed that the resistant cell line, RERF-LC-KJ, had more accumulation of Oregon Green® 488 conjugated paclitaxel in the lysosomal and extra-lysosomal compartments of cytoplasm than other cell lines. The results obtained in this study indicated that the changes in the subcellular localization could contribute to the production of paclitaxel resistance in lung cancer cell lines. Further studies should be conducted to elucidate the molecular mechanisms that differentiate the intracellular localization of paclitaxel. PMID:22179563

  17. Distribution of omega-6 and omega-3 polyunsaturated fatty acids in the whole rat body and 25 compartments.

    PubMed

    Salem, N M; Lin, Y H; Moriguchi, T; Lim, S Y; Salem, N; Hibbeln, J R

    2015-09-01

    The steady state compositions of omega-6 and omega-3 polyunsaturated fatty acids (PUFA) throughout the various viscera and tissues within the whole body of rats have not previously been described in a comprehensive manner. Dams consumed diets containing 10wt% fat (15% linoleate and 3% α-linolenate). Male offspring (n=9) at 7-week of age were euthanized and dissected into 25 compartments. Total lipid fatty acids for each compartment were quantified by GC/FID and summed for the rat whole body; total n-6 PUFA was 12wt% and total n-3 PUFA was 2.1% of total fatty acids. 18:2n-6 accounted for 84% of the total n-6 PUFA, 20:4n-6 was 12%, 18:3n-3 was 59% of the total n-3 PUFA, 20:5n-3 was 2.1%, and 22:6n-3 was 32%. The white adipose tissue contained the greatest amounts of 18:2n-6 (1.5g) and 18:3n-3 (0.2g). 20:4n-6 was highest in muscle (60mg) and liver (57mg), while 22:6n-3 was greatest in muscle (46mg), followed by liver (27mg) and carcass (20mg). In terms of fatty acid composition expressed as a percentage, 18:2n-6 was the highest in the heart (13wt%), while 18:3n-3 was about 1.3wt% for skin, white adipose tissue and fur. 20:4n-6 was highest (21-25wt%) in the circulation, kidney, and spleen, while 22:6n-3 was highest in the brain (12wt%), followed by the heart (7.9wt%), liver (5.9wt%), and spinal cord (5.1wt%). Selectivity was greatest when comparing 22:6n-3 in brain (12%) to white adipose (0.08%) (68-fold) and 22:5n-6 in testes (15.6%) compared to white adipose (0.02%), 780-fold.

  18. Distribution of omega-6 and omega-3 polyunsaturated fatty acids in the whole rat body and 25 compartments.

    PubMed

    Salem, N M; Lin, Y H; Moriguchi, T; Lim, S Y; Salem, N; Hibbeln, J R

    2015-09-01

    The steady state compositions of omega-6 and omega-3 polyunsaturated fatty acids (PUFA) throughout the various viscera and tissues within the whole body of rats have not previously been described in a comprehensive manner. Dams consumed diets containing 10wt% fat (15% linoleate and 3% α-linolenate). Male offspring (n=9) at 7-week of age were euthanized and dissected into 25 compartments. Total lipid fatty acids for each compartment were quantified by GC/FID and summed for the rat whole body; total n-6 PUFA was 12wt% and total n-3 PUFA was 2.1% of total fatty acids. 18:2n-6 accounted for 84% of the total n-6 PUFA, 20:4n-6 was 12%, 18:3n-3 was 59% of the total n-3 PUFA, 20:5n-3 was 2.1%, and 22:6n-3 was 32%. The white adipose tissue contained the greatest amounts of 18:2n-6 (1.5g) and 18:3n-3 (0.2g). 20:4n-6 was highest in muscle (60mg) and liver (57mg), while 22:6n-3 was greatest in muscle (46mg), followed by liver (27mg) and carcass (20mg). In terms of fatty acid composition expressed as a percentage, 18:2n-6 was the highest in the heart (13wt%), while 18:3n-3 was about 1.3wt% for skin, white adipose tissue and fur. 20:4n-6 was highest (21-25wt%) in the circulation, kidney, and spleen, while 22:6n-3 was highest in the brain (12wt%), followed by the heart (7.9wt%), liver (5.9wt%), and spinal cord (5.1wt%). Selectivity was greatest when comparing 22:6n-3 in brain (12%) to white adipose (0.08%) (68-fold) and 22:5n-6 in testes (15.6%) compared to white adipose (0.02%), 780-fold. PMID:26120061

  19. Distribution of Omega-6 and Omega-3 Polyunsaturated Fatty Acids in the Whole Rat Body and 25 Compartments

    PubMed Central

    Salem, N.M.; Lin, Y.H.; Moriguchi, T.; Lim, S.Y.; Salem, N.; Hibbeln, J. R.

    2015-01-01

    The steady state compositions of omega-6 and omega-3 polyunsaturated fatty acids (PUFA) throughout the various viscera and tissues within the whole body of rats have not previously been described in a comprehensive manner. Dams consumed diets containing 10 wt% fat (15% linoleate and 3% α-linolenate). Male offspring (n=9) at 7-wks of age were euthanized and dissected into 25 compartments. Total lipid fatty acids for each compartment were quantified by GC/FID and summed for the rat whole body; total n-6 PUFA was 12 wt% and total n-3 PUFA was 2.1% of total fatty acids. 18:2n-6 accounted for 84% of the total n-6 PUFA, 20:4n-6 was 12%, 18:3n-3 was 59% of the total n-3 PUFA, 20:5n-3 was 2.1%, and 22:6n-3 was 32%. The white adipose tissue contained the greatest amounts of 18:2n-6 (1.5 g) and 18:3n-3 (0.2 g). 20:4n-6 was highest in muscle (60 mg) and liver (57 mg), while 22:6n-3 was greatest in muscle (46 mg), followed by liver (27 mg) and carcass (20 mg). In terms of fatty acid composition expressed as a percentage, 18:2n-6 was the highest in the heart (13 wt%), while 18:3n-3 was about 1.3 wt% for skin, white adipose tissue and fur. 20:4n-6 was highest (21–25 wt%) in the circulation, kidney, and spleen, while 22:6n-3 was highest in the brain (12 wt%), followed by the heart (7.9 wt%), liver (5.9 wt%), and spinal cord (5.1 wt%). Selectivity was greatest when comparing 22:6n-3 in brain (12%) to white adipose (0.08%) (68-fold) and 22:5n-6 in testes (15.6%) compared to white adipose (0.02%), 780-fold. PMID:26120061

  20. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    PubMed Central

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  1. Acid-base titration of streptococci and the physical states of intracellular ions.

    PubMed

    Marquis, R E; Porterfield, N; Matsumura, P

    1973-05-01

    Acid titrations of intact and butanol-treated cells of Streptococcus faecalis revealed that nearly all of the intracellular K(+) ions could diffuse into the suspending medium in association with small anions, including ribonucleic acid breakdown products, when the cell membrane was damaged. In contrast, nearly all of the intracellular Mg(2+) ions appeared to be firmly bound to stable internal cell components but could be displaced reversibly by hydronium ions. The cell membrane acted as a barrier to ion movements, and Mg(2+) displacement from intact cells required more acid conditions, by as much as 2.5 pH units, than did displacement from butanol-damaged cells. Some 15 to 20% of the cell magnesium appeared to be associated with surface structures in that it could be removed at pH 7 with ethylenediaminetetraacetic acid or displaced by Co(2+), Ni(2+), Sr(2+), or La(3+). Magnesium could be displaced from isolated cell walls and membranes by hydronium ions in the pH range from 5 to 3, over which carboxyl groups were titrated. Displacement of magnesium from ribosomes also took place between pH 5 and 3, but it was more difficult to identify the magnesium-releasing groups because both protein carboxyl groups and purine and pyrimidine ring nitrogens can become protonated in this pH range. Isolated protoplast membranes remained structurally intact when completely depleted of magnesium. Furthermore, protoplasts isolated from intact cells were found to have greatly enhanced resistance to osmotic shock in acid media, even when solute loss was not extensive. Osmotic resistance was lost when the protoplasts were again placed in neutral media, and this reversibility suggested that acidification caused changes in the physical properties of membranes as well as solute leakage from cells.

  2. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Shane, Michael W.; Stigter, Kyla; Fedosejevs, Eric T.; Plaxton, William C.

    2014-01-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native ‘extremophile’ plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors’ knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. PMID:25170100

  3. Disrupting protein expression with Peptide Nucleic Acids reduces infection by obligate intracellular Rickettsia.

    PubMed

    Pelc, Rebecca S; McClure, Jennifer C; Kaur, Simran J; Sears, Khandra T; Rahman, M Sayeedur; Ceraul, Shane M

    2015-01-01

    Peptide Nucleic Acids (PNAs) are single-stranded synthetic nucleic acids with a pseudopeptide backbone in lieu of the phosphodiester linked sugar and phosphate found in traditional oligos. PNA designed complementary to the bacterial Shine-Dalgarno or start codon regions of mRNA disrupts translation resulting in the transient reduction in protein expression. This study examines the use of PNA technology to interrupt protein expression in obligate intracellular Rickettsia sp. Their historically intractable genetic system limits characterization of protein function. We designed PNA targeting mRNA for rOmpB from Rickettsia typhi and rickA from Rickettsia montanensis, ubiquitous factors important for infection. Using an in vitro translation system and competitive binding assays, we determined that our PNAs bind target regions. Electroporation of R. typhi and R. montanensis with PNA specific to rOmpB and rickA, respectively, reduced the bacteria's ability to infect host cells. These studies open the possibility of using PNA to suppress protein synthesis in obligate intracellular bacteria.

  4. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization

    NASA Astrophysics Data System (ADS)

    Chiappini, C.; De Rosa, E.; Martinez, J. O.; Liu, X.; Steele, J.; Stevens, M. M.; Tasciotti, E.

    2015-05-01

    The controlled delivery of nucleic acids to selected tissues remains an inefficient process mired by low transfection efficacy, poor scalability because of varying efficiency with cell type and location, and questionable safety as a result of toxicity issues arising from the typical materials and procedures employed. High efficiency and minimal toxicity in vitro has been shown for intracellular delivery of nuclei acids by using nanoneedles, yet extending these characteristics to in vivo delivery has been difficult, as current interfacing strategies rely on complex equipment or active cell internalization through prolonged interfacing. Here, we show that a tunable array of biodegradable nanoneedles fabricated by metal-assisted chemical etching of silicon can access the cytosol to co-deliver DNA and siRNA with an efficiency greater than 90%, and that in vivo the nanoneedles transfect the VEGF-165 gene, inducing sustained neovascularization and a localized sixfold increase in blood perfusion in a target region of the muscle.

  5. Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel.

    PubMed

    Cheung, Man C; Evans, James G; McKenna, Brian; Ehrlich, Daniel J

    2011-11-01

    By using imaging spectrophotometry with paired images in the 200- to 280-nm wavelength range, we have directly mapped intracellular nucleic acid and protein distributions across a population of Chinese hamster ovary (CHO-K1) cells. A broadband 100× objective with a numerical aperture of 1.2 NA (glycerin immersion) and a novel laser-induced-plasma point source generated high-contrast images with short (∼100 ms) exposures and a lateral resolution nearing 200 nm that easily resolves internal organelles. In a population of 420 CHO-K1 cells and 477 nuclei, we found a G1 whole-cell nucleic acid peak at 26.6 pg, a nuclear-isolated total nucleic acid peak at 11.4 pg, and, as inferred by RNase treatment, a G1 total DNA mass of 7.4 pg. At the G1 peak, we found a whole-cell protein mass of 95.6 pg, and a nuclear-isolated protein mass of 39.3 pg. An algorithm for protein quantification that senses peptide-bond (220-nm) absorbance was found to have a higher signal-to-noise ratio and to provide more reliable nucleic acid and protein determinations when compared to more classical 280/260-nm algorithms when used for intracellular mass mapping. Using simultaneous imaging with common nuclear stains (Hoechst 33342, Syto-14, and Sytox Orange), we have compared staining patterns to deep-UV images of condensed chromatin and have confirmed bias of these common nuclear stains related to nuclear packaging. The approach allows absolute mass measurements with no special sample preparation or staining. It can be used in conjunction with normal fluorescence microscopy and with relatively modest modification of the microscope.

  6. Intracellular pH regulation by acid-base transporters in mammalian neurons

    PubMed Central

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  7. Biodegradable DNA-Brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agent-Free Intracellular Gene Regulation.

    PubMed

    Zhang, Chuan; Hao, Liangliang; Calabrese, Colin M; Zhou, Yu; Choi, Chung Hang J; Xing, Hang; Mirkin, Chad A

    2015-10-28

    By grafting multiple DNA strands onto one terminus of a polyester chain, a DNA-brush block copolymer that can assemble into micelle structure is constructed. These micelle spherical nucleic acids have a density of nucleic acids that is substantively higher than linear DNA block copolymer structures, which makes them effective cellular transfection and intracellular gene regulation agents.

  8. Cell nucleus targeting for living cell extraction of nucleic acid associated proteins with intracellular nanoprobes of magnetic carbon nanotubes.

    PubMed

    Zhang, Yi; Hu, Zhengyan; Qin, Hongqiang; Liu, Fangjie; Cheng, Kai; Wu, Ren'an; Zou, Hanfa

    2013-08-01

    Since nanoparticles could be ingested by cells naturally and target at a specific cellular location as designed, the extraction of intracellular proteins from living cells for large-scale analysis by nanoprobes seems to be ideally possible. Nucleic acid associated proteins (NAaP) take the crucial position during biological processes in maintaining and regulating gene structure and gene related behaviors, yet there are still challenges during the global investigation of intracellular NAaP, especially from living cells. In this work, a strategy to extract intracellular proteins from living cells with the magnetic carbon nanotube (oMWCNT@Fe3O4) as an intracellular probe is developed, to achieve the high throughput analysis of NAaP from living human hepatoma BEL-7402 cells with a mass spectrometry-based proteomic approach. Due to the specific intracellular localization of the magnetic carbon nanotubes around nuclei and its strong interaction with nucleic acids, the highly efficient extraction was realized for cellular NAaP from living cells, with the capability of identifying 2383 intracellular NAaP from only ca. 10,000 living cells. This method exhibited potential applications in dynamic and in situ analysis of intracellular proteins.

  9. The Weak Acid Preservative Sorbic Acid Inhibits Conidial Germination and Mycelial Growth of Aspergillus niger through Intracellular Acidification

    PubMed Central

    Plumridge, Andrew; Hesse, Stephan J. A.; Watson, Adrian J.; Lowe, Kenneth C.; Stratford, Malcolm; Archer, David B.

    2004-01-01

    The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 105/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using 31P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pHcyt) by more than 1 pH unit and a depression of vacuolar pH (pHvac) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pHcyt. NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth. PMID:15184150

  10. Acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

    PubMed

    Allam, Uday Sankar; Krishna, M Gopala; Sen, Minakshi; Thomas, Rony; Lahiri, Amit; Gnanadhas, Divya Prakash; Chakravortty, Dipshikha

    2012-01-01

    During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the ΔSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The ΔSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the ΔSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the ΔSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

  11. Hydrophilic trans-Cyclooctenylated Noncanonical Amino Acids for Fast Intracellular Protein Labeling.

    PubMed

    Kozma, Eszter; Nikić, Ivana; Varga, Balázs R; Aramburu, Iker Valle; Kang, Jun Hee; Fackler, Oliver T; Lemke, Edward A; Kele, Péter

    2016-08-17

    Introduction of bioorthogonal functionalities (e.g., trans-cyclooctene-TCO) into a protein of interest by site-specific genetic encoding of non-canonical amino acids (ncAAs) creates uniquely targetable platforms for fluorescent labeling schemes in combination with tetrazine-functionalized dyes. However, fluorescent labeling of an intracellular protein is usually compromised by high background, arising from the hydrophobicity of ncAAs; this is typically compensated for by hours-long washout to remove excess ncAAs from the cellular interior. To overcome these problems, we designed, synthesized, and tested new, hydrophilic TCO-ncAAs. One derivative, DOTCO-lysine was genetically incorporated into proteins with good yield. The increased hydrophilicity shortened the excess ncAA washout time from hours to minutes, thus permitting rapid labeling and subsequent fluorescence microscopy.

  12. Precursor-product relationship of intracellular and extracellular lipoteichoic acids of Streptococcus faecium.

    PubMed Central

    Kessler, R E; Shockman, G D

    1979-01-01

    Exponential biosynthesis and excretion of lipoteichoic acid (LTA) during the exponential phase of growth, and continued synthesis and excretion during valine starvation of Streptococcus faecium (S. faecalis ATCC 9790), were shown. During exponential growth, extracellular LTA (LTAx) accounted for approximately 13% of the total LTA in cultures, whereas during valine starvation, this percentage increased to approximately 60% within 4 h. LTAx was present in a low-molecular-weight, apparently deacylated form, whereas intracellular (LTAi) was present primarily in an apparently high-molecular-weight, acylated and micellar form. Experiments utilizing chases of either fully equilibrated or short pulses of [14C]- or [3H]glycerol were used to demonstrate that LTAx was derived directly from LTAi. PMID:106043

  13. The intracellular Ca(2+)-pump inhibitors thapsigargin and cyclopiazonic acid induce stress proteins in mammalian chondrocytes.

    PubMed

    Cheng, T C; Benton, H P

    1994-07-15

    Primary cultures of mammalian articular chondrocytes respond to treatment with the intracellular Ca(2+)-pump inhibitors thapsigargin (TG) and cyclopiazonic acid by specific changes in protein synthesis consistent with a stress response. Two-dimensional gel electrophoresis of newly synthesized proteins confirmed that the response was consistent with the induction of glucose-regulated proteins. The effects of low-dose TG (10 nM), measured by changes in [35S]methionine labelling of newly synthesized proteins, can first be observed by 10 h and are maximal by 24 h. The pattern of changes induced by TG is shared with cyclopiazonic acid, but effects of both perturbants differ significantly from changes induced by heat shock. Upon removal of TG, normal protein synthesis is restored by 48 h. Immunoblots showed increased concentrations of the stress proteins HSP90, HSP72/73 and HSP60 in chondrocytes treated with TG, but induction of newly synthesized heat-shock proteins by TG was not apparent on [35S]methionine-labelled gels. The alterations in protein synthesis induced by Ca(2+)-pump inhibitors were unaffected by BAPTA-AM loading, which clamped cytosolic Ca2+ at resting levels. We conclude that inhibition of intracellular Ca(2+)-pump activity can elicit a stress response, which has important implications for the interpretation of chronic use of Ca(2+)-pump inhibitors. In particular, the activation of the cellular shock response should be considered in interpreting the regulation of protein synthesis and cell survival by Ca(2+)-pump inhibitors such as TG. PMID:8043004

  14. Folic Acid and Trastuzumab Functionalized Redox Responsive Polymersomes for Intracellular Doxorubicin Delivery in Breast Cancer.

    PubMed

    Lale, Shantanu V; Kumar, Arun; Prasad, Shyam; Bharti, Alok C; Koul, Veena

    2015-06-01

    Redox responsive biodegradable polymersomes comprising of poly(ethylene glycol)-polylactic acid-poly(ethylene glycol) [PEG-s-s-PLA-s-s-PLA-s-s-PEG] triblock copolymer with multiple disulfide linkages were developed to improve intracellular delivery and to enhance chemotherapeutic efficacy of doxorubicin in breast cancer with minimal cardiotoxicity. Folic acid and trastuzumab functionalized monodispersed polymersomes of size ∼150 nm were prepared by nanoprecipitation method while achieving enhanced doxorubicin loading of ∼32% in the polymersomes. Multiple redox responsive disulfide linkages were incorporated in the polymer in order to achieve complete disintegration of polymersomes in redox rich environment of cancer cells resulting in enhanced doxorubicin release as observed in in vitro release studies, where ∼90% doxorubicin release was achieved in pH 5.0 in the presence of 10 mM glutathione (GSH) as compared to ∼20% drug release in pH 7.4. Folic acid and trastuzumab mediated active targeting resulted in improved cellular uptake and enhanced apoptosis in in vitro studies in breast cancer cell lines. In vivo studies in Ehrlich ascites tumor bearing Swiss albino mice showed enhanced antitumor efficacy and minimal cardiotoxicity of polymersomes with ∼90% tumor regression as compared to ∼38% tumor regression observed with free doxorubicin. The results highlight therapeutic potential of the polymersomes as doxorubicin delivery nanocarrier in breast cancer therapy with its superior antitumor efficacy and minimal cardiotoxicity.

  15. Effects of Fatty Acids on Intracellular [Ca2+], Mitochondrial Uncoupling and Apoptosis in Rat Pachytene Spermatocytes and Round Spermatids

    PubMed Central

    Paillamanque, Joaquín; Madrid, Cristian; Carmona, Emerson M.; Osses, Nelson; Moreno, Ricardo D.; Oresti, Gerardo M.; Pino, José A.

    2016-01-01

    The aim of this work was to explore the ability of free arachidonic acid, palmitic acid and the unsaturated fatty acids oleic acid and docosahexaenoic acid to modify calcium homeostasis and mitochondrial function in rat pachytene spermatocytes and round spermatids. In contrast to palmitic acid, unsaturated fatty acids produced significant increases in intracellular calcium concentrations ([Ca2+]i) in both cell types. Increases were fatty acid specific, dose-dependent and different for each cell type. The arachidonic acid effects on [Ca2+]i were higher in spermatids than in spermatocytes and persisted when residual extracellular Ca2+ was chelated by EGTA, indicating that the increase in [Ca2+]i originated from release of intracellular calcium stores. At the concentrations required for these increases, unsaturated fatty acids produced no significant changes in the plasma membrane potential of or non-specific permeability in spermatogenic cells. For the case of arachidonic acid, the [Ca2+]i increases were not caused by its metabolic conversion to eicosanoids or anandamide; thus we attribute this effect to the fatty acid itself. As estimated with fluorescent probes, unsaturated fatty acids did not affect the intracellular pH but were able to induce a progressive decrease in the mitochondrial membrane potential. The association of this decrease with reduced reactive oxygen species (ROS) production strongly suggests that unsaturated fatty acids induced mitochondrial uncoupling. This effect was stronger in spermatids than in spermatocytes. As a late event, arachidonic acid induced caspase 3 activation in a dose-dependent manner both in the absence and presence of external Ca2+. The concurrent but differential effects of unsaturated fatty acids on [Ca2+]i and mitochondrial functions are additional manifestations of the metabolic changes that germ cells undergo during their differentiation. PMID:27428262

  16. G protein coupled receptor signaled apoptosis is associated with activation of a cation insensitive acidic endonuclease and intracellular acidification.

    PubMed

    Sharma, K; Srikant, C B

    1998-01-01

    Apoptosis associated oligonucleosomal fragmentation of DNA can result from the activation of endonucleases that exhibit different pH optima and are either sensitive or insensitive to divalent cations. DNA fragmentation due to activation of cation sensitive endonucleases occurs in the absence of a change in intracellular pH whereas intracellular acidification is a feature of apoptosis characterized by activation of cation insensitive acidic endonuclease. We have reported earlier that somatostatin (SST) induced DNA fragmentation and apoptosis is signaled in a receptor subtype selective manner uniquely via human somatostatin receptor subtype 3 (hSSTR3). In the present study we investigated the pH dependence and cation sensitivity of endonuclease induced in hSSTR3 expressing CHO-K1 cells by the SST agonist octreotide (OCT) and its effect on intracellular pH. We show that OCT induced apoptosis is associated with selective stimulation of a divalent cation insensitive acidic endonuclease. The intracellular pH of of cells undergoing OCT induced apoptosis was 0.9 pH units lower than that of control cells. The effect of OCT on endonuclease and pH was inhibited by orthovanadate as well as by pretreatment with pertussis toxin, suggesting that hSSTR3 initiated cytotoxic signaling is protein tyrosine phosphatase mediated and is G protein dependent. These findings suggest that intracellular acidification and activation of acidic endonuclease mediate wild type p53 associated apoptosis signaled by hormones acting via G protein coupled receptors.

  17. Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression.

    PubMed

    Hsu, Charlie Yu Ming; Uludağ, Hasan

    2012-05-01

    The delivery of nucleic acid molecules into cells to alter physiological functions at the genetic level is a powerful approach to treat a wide range of inherited and acquired disorders. Biocompatible materials such as cationic polymers, lipids, and peptides are being explored as safer alternatives to viral gene carriers. However, the comparatively low efficiency of nonviral carriers currently hampers their translation into clinical settings. Controlling the size and stability of carrier/nucleic acid complexes is one of the primary hurdles as the physicochemical properties of the complexes can define the uptake pathways, which dictate intracellular routing, endosomal processing, and nucleocytoplasmic transport. In addition to nuclear import, subnuclear trafficking, posttranscriptional events, and immune responses can further limit transfection efficiency. Chemical moieties, reactive linkers or signal peptide have been conjugated to carriers to prevent aggregation, induce membrane destabilization and localize to subcellular compartments. Genetic elements can be inserted into the expression cassette to facilitate nuclear targeting, delimit expression to targeted tissue, and modulate transgene expression. The modular option afforded by both gene carriers and expression cassettes provides a two-tier multicomponent delivery system that can be optimized for targeted gene delivery in a variety of settings.

  18. Phosphatidic acid increases intracellular free Ca2+ and cardiac contractile force.

    PubMed

    Xu, Y J; Panagia, V; Shao, Q; Wang, X; Dhalla, N S

    1996-08-01

    Although phosphatidic acid (PA) is mainly formed due to the hydrolysis of phosphatidylcholine by myocardial phospholipase D, its functional significance in the heart is not fully understood. The present study was designed to determine the effects of PA on intracellular free Ca2+ level ([Ca2+]i) in freshly isolated adult rat cardiomyocytes by using fura 2-acextoxmethylester and free fura 2 technique. Addition of PA at concentrations of 1-200 microM produced a concentration-dependent increase in [Ca2+]i from the basal level of 117 +/- 8 nM; maximal increase in [Ca2+]i was 233 +/- 50 nM, whereas median effective concentration (EC50) for PA was 45 +/- 1.2 microM. This increase in [Ca2+]i was abolished by the removal of extracellular Ca2+ with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and was partially attenuated by Ca2+ channel blockers, verapamil or diltiazem. Preincubation of cardiomyocytes with cyclopiazonic acid and thapsigargin or with ryanodine [to deplete sarcoplasmic reticulum (SR) Ca2+] attenuated the PA-induced increase in [Ca2+]i by 66, 37, and 43%, respectively. Furthermore, the response of [Ca2+]i to PA was blunted by 2-nitro-4 carboxyphenylcarbonate, an inhibitor of phospholipase C, but was unaffected by staurosporine, a protein kinase C inhibitor. PA was also observed to induce Ca2+ efflux from the myocytes. In addition, an injection of PA (0.34 microgram/100 g body wt i.v.) in rats produced a significant increase of the left ventricular developed pressure as well as the maximum rates of cardiac contraction and relaxation within 5 min. These data suggest that the PA-induced increase in [Ca2+]i in cardiomyocytes is a consequence of both Ca2+ influx from the extracellular source and Ca2+ release from the intracellular SR stores. Furthermore, these in vitro data suggest the possibility that PA may regulate [Ca2+]i and contractile parameters in the heart.

  19. Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth.

    PubMed

    Li, Li; Wei, Lihui; Shen, Aling; Chu, Jianfeng; Lin, Jiumao; Peng, Jun

    2015-12-01

    Due to drug resistance and unacceptable cytotoxicity of most currently-used cancer chemotherapies, naturally occurring products have gained attention in the field of anticancer treatment. Oleanolic acid (OA) is a natural pentacyclic triterpenoic acid and a principal active compound in many medicinal herbs that have long been used to clinically treat various types of human malignancies. Using a colorectal cancer (CRC) mouse xenograft model and the cell line HT-29, we evaluated the effect of OA on tumor growth in vivo and in vitro, and investigated the underlying molecular mechanisms in the present study. We found that OA significantly inhibited tumor growth in volume and weight in CRC xenograft mice. In addition, OA treatment led to the induction of apoptosis and inhibition of cell proliferation. OA significantly reduced the expression of Bcl-2, Cyclin D1 and CKD4, whereas Bax and p21 expression was profoundly increased after OA treatment. Furthermore, OA significantly suppressed the activation of Akt, p70S6K and MAPK signalings, but promoted p53 pathway activation. Collectively, findings from this study suggest that OA possesses a broad range of anticancer effects via modulation of multiple intracellular targets. PMID:26459864

  20. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    NASA Astrophysics Data System (ADS)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  1. MALDI Mass Spectrometry Imaging of Lipids and Gene Expression Reveals Differences in Fatty Acid Metabolism between Follicular Compartments in Porcine Ovaries

    PubMed Central

    Uzbekova, Svetlana; Elis, Sebastien; Teixeira-Gomes, Ana-Paula; Desmarchais, Alice; Maillard, Virginie; Labas, Valerie

    2015-01-01

    In mammals, oocytes develop inside the ovarian follicles; this process is strongly supported by the surrounding follicular environment consisting of cumulus, granulosa and theca cells, and follicular fluid. In the antral follicle, the final stages of oogenesis require large amounts of energy that is produced by follicular cells from substrates including glucose, amino acids and fatty acids (FAs). Since lipid metabolism plays an important role in acquiring oocyte developmental competence, the aim of this study was to investigate site-specificity of lipid metabolism in ovaries by comparing lipid profiles and expression of FA metabolism-related genes in different ovarian compartments. Using MALDI Mass Spectrometry Imaging, images of porcine ovary sections were reconstructed from lipid ion signals for the first time. Cluster analysis of ion spectra revealed differences in spatial distribution of lipid species among ovarian compartments, notably between the follicles and interstitial tissue. Inside the follicles analysis differentiated follicular fluid, granulosa, theca and the oocyte-cumulus complex. Moreover, by transcript quantification using real time PCR, we showed that expression of five key genes in FA metabolism significantly varied between somatic follicular cells (theca, granulosa and cumulus) and the oocyte. In conclusion, lipid metabolism differs between ovarian and follicular compartments. PMID:25756245

  2. A novel glyceryl monoolein-bearing cubosomes for gambogenic acid: Preparation, cytotoxicity and intracellular uptake.

    PubMed

    Luo, Qing; Lin, Tongyuan; Zhang, Cai Yuan; Zhu, Tingting; Wang, Lei; Ji, Zhaojie; Jia, Buyun; Ge, Tao; Peng, Daiyin; Chen, Weidong

    2015-09-30

    Lyotropic cubic liquid crystalline nanoparticles, also known as 'cubosomes', have been tested as effective carriers for a variety of drugs due to their ability to enhance delivery efficiency and reduced drug side effects. Cubosomes are colloidal carriers composed of biodegradable Glyceryl monooleate and F127. Being composed of well tolerable and physiological materials, these carriers are well tolerated, compatible and non-toxic. In this study, therefore, we developed a novel, water-soluble, glyceryl monooleate and F127 based multiblock copolymer for Gambogenic acid (GNA) by emulsion-evaporation and low temperature-solidification technique. Physicochemical properties, in vitro cytotoxicity, cellular uptake and in vivo pharmacokinetic of GNA-loaded cubosomes (GNA-Cubs) were investigated. The results revealed that GNA-Cubs were spherical or ellipsoidal monocellular by dynamic light scattering, meanwhile, 150-250nm in mean size with narrow polydispersity indexas determined by transmission electron microscopy. Small angle X-ray scattering indicated that GNA-Cubs retain the Pn3m cubic symmetry. Compared with GNA solution, GNA-Cubs exhibited markedly prolonged inhibitory activity in SMMC-7721 cells, as well as time-dependent increases in intra-cellular uptake. Furthermore, in vivo pharmacokinetic study showed that the Cmax values and the AUC of GNA-Cubs were higher than GNA solution approximately 1.2-fold and 9.1-fold, respectively. In conclusion, the results showed that the cubic liquid crystalline nanoparticles could be a potentially nanocarrier in the delivery of GNA for cancer therapy. PMID:26209071

  3. Acidic intracellular pH shift during Caenorhabditis elegans larval development

    SciTech Connect

    Wadsworth, W.G.; Riddle, D.L. )

    1988-11-01

    During recovery from the developmentally arrested, nonfeeding dauer stage of the nemotode Caenorhabditis elegans, metabolic activation is accompanied by a decrease in intracellular pH (pH{sub i}). Phosphorus-31 nuclear magnetic resonance ({sup 31}P NMR) analyses of perchloric acid extracts show that inorganic phosphate predominates in dauer larvae, whereas ATP and other high-energy metabolites are abundant within 6 hr after dauer larvae have been placed in food to initiate development. Although metabolic activation has been associated with an alkaline pH{sub i} shift in other organisms, in vivo {sup 31}P NMR analysis of recovering dauer larvae shows a pH{sub i} decrease from {approx} 7.3 to {approx} 6.3 within 3 hr after the animals encounter food. This shift occurs before feeding begins, and it coincides with, or soon follows, the developmental commitment to recover from the dauer stage, suggesting that control of pH{sub i} may be important in the regulation of larval development in nematodes.

  4. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid.

    PubMed

    Kwak, Min-Kyu; Song, Sung-Hyun; Ku, MyungHee; Kang, Sa-Ouk

    2015-07-01

    Candida albicans D-erythroascorbate peroxidase (EAPX1), which can catalyze the oxidation of D-erythroascorbic acid (EASC) to water, was observed to be inducible in EAPX1-deficient and EAPX1-overexpressing cells via activity staining. EAPX1-deficient cells have remarkably increased intracellular reactive oxygen species and methylglyoxal independent of the intracellular EASC content. The increased methylglyoxal caused EAPX1-deficient cells to activate catalase-peroxidase and cytochrome c peroxidase, which led to defects in cell growth, viability, mitochondrial respiration, filamentation and virulence. These findings indicate that EAPX1 mediates cell differentiation and virulence by regulating intracellular methylglyoxal along with oxidative stresses, regardless of endogenous EASC biosynthesis or alternative oxidase expression. PMID:25957768

  5. pH-responsive biocompatible fluorescent polymer nanoparticles based on phenylboronic acid for intracellular imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Shengliang; Hu, Kelei; Cao, Weipeng; Sun, Yun; Sheng, Wang; Li, Feng; Wu, Yan; Liang, Xing-Jie

    2014-10-01

    To address current medical challenges, there is an urgent need to develop drug delivery systems with multiple functions, such as simultaneous stimuli-responsive drug release and real-time imaging. Biocompatible polymers have great potential for constructing smart multifunctional drug-delivery systems through grafting with other functional ligands. More importantly, novel biocompatible polymers with intrinsic fluorescence emission can work as theranostic nanomedicines for real-time imaging and drug delivery. Herein, we developed a highly fluorescent nanoparticle based on a phenylboronic acid-modified poly(lactic acid)-poly(ethyleneimine)(PLA-PEI) copolymer loaded with doxorubicin (Dox) for intracellular imaging and pH-responsive drug delivery. The nanoparticles exhibited superior fluorescence properties, such as fluorescence stability, no blinking and excitation-dependent fluorescence behavior. The Dox-loaded fluorescent nanoparticles showed pH-responsive drug release and were more effective in suppressing the proliferation of MCF-7 cells. In addition, the biocompatible fluorescent nanoparticles could be used as a tool for intracellular imaging and drug delivery, and the process of endosomal escape was traced by real-time imaging. These pH-responsive and biocompatible fluorescent polymer nanoparticles, based on phenylboronic acid, are promising tools for intracellular imaging and drug delivery.To address current medical challenges, there is an urgent need to develop drug delivery systems with multiple functions, such as simultaneous stimuli-responsive drug release and real-time imaging. Biocompatible polymers have great potential for constructing smart multifunctional drug-delivery systems through grafting with other functional ligands. More importantly, novel biocompatible polymers with intrinsic fluorescence emission can work as theranostic nanomedicines for real-time imaging and drug delivery. Herein, we developed a highly fluorescent nanoparticle based on a

  6. Amphipathic β2,2-Amino Acid Derivatives Suppress Infectivity and Disrupt the Intracellular Replication Cycle of Chlamydia pneumoniae

    PubMed Central

    Tiirola, Terttu M.; Strøm, Morten B.; Vuorela, Pia M.

    2016-01-01

    We demonstrate in the current work that small cationic antimicrobial β2,2-amino acid derivatives (Mw < 500 Da) are highly potent against Chlamydia pneumoniae at clinical relevant concentrations (< 5 μM, i.e. < 3.4 μg/mL). C. pneumoniae is an atypical respiratory pathogen associated with frequent treatment failures and persistent infections. This gram-negative bacterium has a biphasic life cycle as infectious elementary bodies and proliferating reticulate bodies, and efficient treatment is challenging because of its long and obligate intracellular replication cycle within specialized inclusion vacuoles. Chlamydicidal effect of the β2,2-amino acid derivatives in infected human epithelial cells was confirmed by transmission electron microscopy. Images of infected host cells treated with our lead derivative A2 revealed affected chlamydial inclusion vacuoles 24 hours post infection. Only remnants of elementary and reticulate bodies were detected at later time points. Neither the EM studies nor resazurin-based cell viability assays showed toxic effects on uninfected host cells or cell organelles after A2 treatment. Besides the effects on early intracellular inclusion vacuoles, the ability of these β2,2-amino acid derivatives to suppress Chlamydia pneumoniae infectivity upon treatment of elementary bodies suggested also a direct interaction with bacterial membranes. Synthetic β2,2-amino acid derivatives that target C. pneumoniae represent promising lead molecules for development of antimicrobial agents against this hard-to-treat intracellular pathogen. PMID:27280777

  7. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization

    PubMed Central

    Bates, Ryan C.; Fees, Colby P.; Holland, William L.; Winger, Courtney C.; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J.

    2014-01-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC- γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca]i). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 minute after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca]i and other fertilization events. As compared to 14 other lipids, PA strongly bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca]i, PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca]i release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca]i release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. PMID:24269904

  8. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism.

    PubMed

    Toledo, Daniel A M; Roque, Natália R; Teixeira, Lívia; Milán-Garcés, Erix A; Carneiro, Alan B; Almeida, Mariana R; Andrade, Gustavo F S; Martins, Jefferson S; Pinho, Roberto R; Freire-de-Lima, Célio G; Bozza, Patrícia T; D'Avila, Heloisa; Melo, Rossana C N

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  9. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    PubMed Central

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  10. A Revised Pathway Proposed for Staphylococcus aureus Wall Teichoic Acid Biosynthesis Based on In Vitro Reconstitution of the Intracellular Steps

    PubMed Central

    Brown, Stephanie; Zhang, Yu-Hui; Walker*, Suzanne

    2008-01-01

    Summary Resistance has emerged to every family of clinically used antibiotics, and there is a pressing need to explore novel antibacterial targets. Wall teichoic acids (WTAs) are anionic polymers that coat the cell walls of many Gram-positive bacteria. Because WTAs play an essential role in Staphylococcus aureus colonization and infection, the enzymes involved in WTA biosynthesis are proposed to be targets for antibiotic development. To facilitate the discovery of WTA inhibitors, we have reconstituted the intracellular steps of S. aureus WTA biosynthesis. We show that two intracellular steps in the biosynthetic pathway are different from what was proposed. The work reported here lays the foundation for the discovery and characterization of inhibitors of wall teichoic acid biosynthetic enzymes to assess their potential for treating bacterial infections. PMID:18215769

  11. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis.

    PubMed

    Anderson, Gregory G; Goller, Carlos C; Justice, Sheryl; Hultgren, Scott J; Seed, Patrick C

    2010-03-01

    Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). A murine UTI model has revealed an infection cascade whereby UPEC undergoes cycles of invasion of the bladder epithelium, intracellular proliferation in polysaccharide-containing biofilm-like masses called intracellular bacterial communities (IBC), and then dispersal into the bladder lumen to initiate further rounds of epithelial colonization and invasion. We predicted that the UPEC K1 polysaccharide capsule is a key constituent of the IBC matrix. Compared to prototypic E. coli K1 strain UTI89, a capsule assembly mutant had a fitness defect in functionally TLR4(+) and TLR4(-) mice, suggesting a protective role of capsule in inflamed and noninflamed hosts. K1 capsule assembly and synthesis mutants had dramatically reduced IBC formation, demonstrating the common requirement for K1 polysaccharide in IBC development. The capsule assembly mutant appeared dispersed in the cytoplasm of the bladder epithelial cells and failed to undergo high-density intracellular replication during later stages of infection, when the wild-type strain continued to form serial generations of IBC. Deletion of the sialic acid regulator gene nanR partially restored IBC formation in the capsule assembly mutant. These data suggest that capsule is necessary for efficient IBC formation and that aberrant sialic acid accumulation, resulting from disruption of K1 capsule assembly, produces a NanR-mediated defect in intracellular proliferation and IBC development. Together, these data demonstrate the complex but important roles of UPEC polysaccharide encapsulation and sialic acid signaling in multiple stages of UTI pathogenesis.

  12. N5-(1-carboxyethyl)-ornithine, a new amino acid from the intracellular pool of Streptococcus lactis.

    PubMed Central

    Thompson, J; Curtis, M A; Miller, S P

    1986-01-01

    Intracellular concentrations of amino acids were determined in cells of Streptococcus lactis 133 during growth in complex, spent, and chemically defined media. Glutamic and aspartic acids represented the major constituents of the amino acid pool. However, organisms grown in spent medium or in defined medium supplemented with ornithine also contained unusually high levels of two additional amino acids. One of these amino acids was ornithine. The second compound exhibited properties of a neutral amino acid by coelution with valine from the amino acid analyzer. The compound did not, however, comigrate with valine or any other standard amino acid by two-dimensional thin-layer chromatography. The unknown amino acid was purified by paper and thin-layer chromatography, and its molecular structure was determined by 1H and 13C nuclear magnetic resonance spectroscopy. This new amino acid was shown to be N5-(1-carboxyethyl)-ornithine. The 14C-labeled compound was formed by cells of S. lactis 133 during growth in spent medium or defined medium containing [14C]ornithine. Formation of the derivative by resting cells required ornithine and the presence of a metabolizable sugar. N5-(1-Carboxyethyl)-ornithine was synthesized chemically from both poly-S-ornithine and (2S)-N2-carbobenzyloxy-ornithine as a 1:1 mixture of two diastereomers. The physical and chemical properties of the amino acid purified from S. lactis 133 were identical to those of one of the synthetic diastereomers. The bis-N-trifluoroacetyl-di-n-butyl esters of the natural and synthetic compounds generated identical gas chromatography-mass spectrometry spectra. A mechanism is suggested for the in vivo synthesis of N5-(1-carboxyethyl)-ornithine, and the possible functions of this new amino acid are discussed. Images PMID:3090017

  13. Phytanic acid and pristanic acid, branched-chain fatty acids associated with Refsum disease and other inherited peroxisomal disorders, mediate intracellular Ca2+ signaling through activation of free fatty acid receptor GPR40.

    PubMed

    Kruska, Nicol; Reiser, Georg

    2011-08-01

    The accumulation of the two branched-chain fatty acids phytanic acid and pristanic acid is known to play an important role in several diseases with peroxisomal impairment, like Refsum disease, Zellweger syndrome and α-methylacyl-CoA racemase deficiency. Recent studies elucidated that the toxic activity of phytanic acid and pristanic acid is mediated by multiple mitochondrial dysfunctions, generation of reactive oxygen species and Ca2+ deregulation via the InsP3-Ca2+ signaling pathway in glial cells. However, the exact signaling mechanism through which both fatty acids mediate toxicity is still under debate. Here, we studied the ability of phytanic acid and pristanic acid to activate the free fatty acid receptor GPR40, a G-protein-coupled receptor, which was described to be involved in the Ca2+ signaling of fatty acids. We treated HEK 293 cells expressing the GPR40 receptor with phytanic acid or pristanic acid. This resulted in a significant increase in the intracellular Ca2+ level, similar to the effect seen after treatment with the synthetic GPR40 agonist GW9508. Furthermore, we demonstrate that the GPR40 activation might be due to an interaction of the carboxylate moiety of fatty acids with the receptor. Our findings indicate that the phytanic acid- and pristanic acid-mediated Ca2+ deregulation can involve the activation of GPR40. Therefore, we suppose that activation of GPR40 might be part of the signaling cascade of the toxicity of phytanic and pristanic acids.

  14. Acidic methanolysis v. alkaline saponification in gas chromatographic characterization of mycobacteria: differentiation between Mycobacterium avium-intracellulare and Mycobacterium gastri.

    PubMed

    Larsson, L

    1983-08-01

    Mycobacterium avium-intracellulare and M.gastri were analyzed with capillary gas chromatography after each strain had been subjected to acidic methanolysis or to alkaline saponification followed by methylation. Prominent peaks of myristic, palmitoleic, palmitic, oleic, stearic and tuberculostearic acids were found in the chromatograms of both species, whereas 2-octadecanol and 2-eicosanol were detected only in M. avium-intracellulare. In initial runs, both of the derivatization principles yielded virtually identical chromatograms for a given strain. After repeated injections of extracts from alkaline saponification, however, the alcohol peaks showed pronounced tailing and finally almost disappeared from the chromatograms. This disadvantage, which was not observed when only acid methanolysis was used, could be overcome with trifluoroacetylation. Restored peak shape of the underivatized alcohols could be achieved by washing the cross-linked stationary phase in the capillary tubing with organic solvents. The study demonstrated the importance of conditions which enable separation of 2-octadecanol and 2-eicosanol when gas chromatography is used for species identification of mycobacteria.

  15. Intracellular calcium puffs in osteoclasts.

    PubMed

    Radding, W; Jordan, S E; Hester, R B; Blair, H C

    1999-12-15

    We studied intracellular calcium ([Ca(2+)](i)) in acid-secreting bone-attached osteoclasts, which produce a high-calcium acidic extracellular compartment. Acid secretion and [Ca(2+)](i) were followed using H(+)-restricted dyes and fura-2 or fluo-3. Whole cell calcium of acid-secreting osteoclasts was approximately 100 nM, similar to cells on inert substrate that do not secrete acid. However, measurements in restricted areas of the cell showed [Ca(2+)](i) transients to 500-1000 nM consistent with calcium puffs, transient (millisecond) localized calcium elevations reported in other cells. Spot measurements at 50-ms intervals indicated that puffs were typically less than 400 ms. Transients did not propagate in waves across the cell in scanning confocal measurements. Calcium puffs occurred mainly over regions of acid secretion as determined using lysotracker red DND99 and occurred at irregular periods averaging 5-15 s in acid secreting cells, but were rare in lysotracker-negative nonsecretory cells. The calmodulin antagonist trifluoperazine, cell-surface calcium transport inhibitors lanthanum or barium, and the endoplasmic reticulum ATPase inhibitor thapsigargin had variable acute effects on the mean [Ca(2+)](i) and puff frequency. However, none of these agents prevented calcium puff activity, suggesting that the mechanism producing the puffs is independent of these processes. We conclude that [Ca(2+)](i) transients in osteoclasts are increased in acid-secreting osteoclasts, and that the puffs occur mainly near the acid-transporting membrane. Cell membrane acid transport requires calcium, suggesting that calcium puffs function to maintain acid secretion. However, membrane H(+)-ATPase activity was insensitive to calcium in the 100 nM-1 microM range. Thus, any effects of calcium puffs on osteoclastic acid transport must be indirect.

  16. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris.

  17. Metabolism of nC11 fatty acid fed to Trichoderma koningii and Penicillium janthinellum II: Production of intracellular and extracellular lipids.

    PubMed

    Monreal, Carlos M; Chahal, Amarpreet; Rowland, Owen; Smith, Myron; Schnitzer, Morris

    2014-01-01

    Little is known about the fungal metabolism of nC10 and nC11 fatty acids and their conversion into lipids. A mixed batch culture of soil fungi, T. koningii and P. janthinellum, was grown on undecanoic acid (UDA), a mixture of UDA and potato dextrose broth (UDA+PDB), and PDB alone to examine their metabolic conversion during growth. We quantified seven intracellular and extracellular lipid classes using Iatroscan thin-layer chromatography with flame ionization detection (TLC-FID). Gas chromatography with flame ionization detection (GC-FID) was used to quantify 42 individual fatty acids. Per 150 mL culture, the mixed fungal culture grown on UDA+PDB produced the highest amount of intracellular (531 mg) and extracellular (14.7 mg) lipids during the exponential phase. The content of total intracellular lipids represented 25% of the total biomass-carbon, or 10% of the total biomass dry weight produced. Fatty acids made up the largest class of intracellular lipids (457 mg/150 mL culture) and they were synthesized at a rate of 2.4 mg/h during the exponential phase, and decomposed at a rate of 1.8 mg/h during the stationary phase, when UDA+PDB was the carbon source. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2) and vaccenic acid (C18:1) accounted for >80% of the total intracellular fatty acids. During exponential growth on UDA+PDB, hydrocarbons were the largest pool of all extracellular lipids (6.5 mg), and intracellularly they were synthesized at a rate of 64 μg/h. The mixed fungal species culture of T. koningii and P. janthinellum produced many lipids for potential use as industrial feedstocks or bioproducts in biorefineries.

  18. Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic.

    PubMed

    Xu, Weiguo; Ding, Jianxun; Xiao, Chunsheng; Li, Lingyu; Zhuang, Xiuli; Chen, Xuesi

    2015-06-01

    Recently, chemotherapy has been one of the most important therapeutic approaches for malignant tumors. The tumor tissular or intracellular microenvironment-sensitive polymer-doxorubicin (DOX) conjugates demonstrate great potential for improved antitumor efficacy and reduced side effects. In this work, the acid-sensitive dextran-DOX conjugate (noted as Dex-O-DOX) was synthesized through the versatile efficient oximation reaction between the terminal aldehyde group of polysaccharide and the amino group in DOX in the buffer solution of sodium acetate/acetic acid. The insensitive one, i.e., Dex-b-DOX, was prepared similarly as Dex-O-DOX with a supplemented reduction reaction. The DOX release from Dex-O-DOX was pH-dependent and accelerated by the decreased pH. The efficient intracellular DOX release from Dex-O-DOX toward the human hepatoma HepG2 cells was further confirmed. Furthermore, Dex-O-DOX exhibited a closer antiproliferative activity to free DOX·HCl as the extension of time. More importantly, compared with Dex-b-DOX, Dex-O-DOX exhibited higher antitumor activity and lower toxicity, which were further confirmed by the systemic histological and immunohistochemical analyses. Hence, the facilely prepared smart polysaccharide-DOX conjugates, i.e., Dex-O-DOX, exhibited great potential in the clinical chemotherapy of malignancy.

  19. Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic.

    PubMed

    Xu, Weiguo; Ding, Jianxun; Xiao, Chunsheng; Li, Lingyu; Zhuang, Xiuli; Chen, Xuesi

    2015-06-01

    Recently, chemotherapy has been one of the most important therapeutic approaches for malignant tumors. The tumor tissular or intracellular microenvironment-sensitive polymer-doxorubicin (DOX) conjugates demonstrate great potential for improved antitumor efficacy and reduced side effects. In this work, the acid-sensitive dextran-DOX conjugate (noted as Dex-O-DOX) was synthesized through the versatile efficient oximation reaction between the terminal aldehyde group of polysaccharide and the amino group in DOX in the buffer solution of sodium acetate/acetic acid. The insensitive one, i.e., Dex-b-DOX, was prepared similarly as Dex-O-DOX with a supplemented reduction reaction. The DOX release from Dex-O-DOX was pH-dependent and accelerated by the decreased pH. The efficient intracellular DOX release from Dex-O-DOX toward the human hepatoma HepG2 cells was further confirmed. Furthermore, Dex-O-DOX exhibited a closer antiproliferative activity to free DOX·HCl as the extension of time. More importantly, compared with Dex-b-DOX, Dex-O-DOX exhibited higher antitumor activity and lower toxicity, which were further confirmed by the systemic histological and immunohistochemical analyses. Hence, the facilely prepared smart polysaccharide-DOX conjugates, i.e., Dex-O-DOX, exhibited great potential in the clinical chemotherapy of malignancy. PMID:25907041

  20. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    PubMed

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-01

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance. PMID:26806099

  1. Phospholipid End-Capped Acid-Degradable Polyurethane Micelles for Intracellular Delivery of Cancer Therapeutics.

    PubMed

    John, Johnson V; Thomas, Reju George; Lee, Hye Ri; Chen, Hongyu; Jeong, Yong Yeon; Kim, Il

    2016-08-01

    Nanoscale drug carriers fabricated by phospholipid end-capped polyurethane bearing acetal backbones that degrade in acidic conditions are fabricated. These micelles effectively allow drugs to enter the blood circulation, and then disintegrate in acidic endosomes and lysosomes for intelligent delivery of payloads. PMID:27245616

  2. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    PubMed

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  3. Delivery of nucleic acids for cancer gene therapy: overcoming extra- and intra-cellular barriers.

    PubMed

    McErlean, Emma M; McCrudden, Cian M; McCarthy, Helen O

    2016-09-01

    The therapeutic potential of cancer gene therapy has been limited by the difficulty of delivering genetic material to target sites. Various biological and molecular barriers exist which need to be overcome before effective nonviral delivery systems can be applied successfully in oncology. Herein, various barriers are described and strategies to circumvent such obstacles are discussed, considering both the extracellular and intracellular setting. Development of multifunctional delivery systems holds much promise for the progression of gene delivery, and a growing body of evidence supports this approach involving rational design of vectors, with a unique molecular architecture. In addition, the potential application of composite gene delivery platforms is highlighted which may provide an alternative delivery strategy to traditional systemic administration. PMID:27582234

  4. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  5. Amino acid sequence of an intracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells.

    PubMed

    Löffler, A; Glund, K; Irie, M

    1993-06-15

    The primary structure of an intracellular ribonuclease (RNase LX) from cultured tomato (Lycopersicon esculentum) cells has been determined. Previous studies have shown that the protein is located inside the tomato cells but outside the vacuoles and that its synthesis is induced after depleting the cells for phosphate [Löffler, A., Abel, S., Jost, W., Beintema, J. J., Glund, K. (1992) Plant Physiol. 98, 1472-1478]. Sequence analysis was carried out by analysis of peptides isolated after enzymatic and chemical cleavage of the protein. RNase LX consists of 213 amino acids and has a molecular mass of 24300 Da and an isoelectric point of 5.33. The enzyme contains 10 half-cystines and there are no potential N-glycosylation sites detectable in the sequence. RNase LX, as compared to an extracellular tomato RNase (RNase LE), which is also phosphate regulated and the amino acid sequence of which was recently established [Jost, W., Bak, H., Glund, K., Terpstra, P. & Beintema, J. J. (1991) Eur. J. Biochem. 198, 1-6] has 60% of all amino acids identical and in identical positions, revealing a high degree of similarity between both proteins. In contrast to RNase LE, RNase LX has a C-terminal extension of nine amino acids. The C-terminal tetrapeptide HDEF may be a retention signal of the protein in the endoplasmic reticulum. PMID:8319673

  6. Intracellular distribution of amino acids in an slp1 vacuole-deficient mutant of the yeast Saccharomyces cerevisiae.

    PubMed

    Gent, D P; Slaughter, J C

    1998-05-01

    Amino acid pools were compared in a constructed diploid strain of Saccharomyces cerevisiae, SKD1, and a closely related strain, SKD2, carrying the slp1 mutation characterized by low pools of lysine and lacking a central vacuole. Cells of SKD2 grew more poorly than SKD1 but took up the same total amount of amino acids from the medium per cell although the profile differed between the two strains. Initially, the total pool was much higher in SKD1 than in SKD2 but the overall relative distribution between cytosol and vacuole was identical and mainly cytosolic even though the composition differed between the two strains. At the end of growth the amino acid concentration had increased and become predominantly vacuolar. Two days later the total pool in SKD1 had declined to the starting level but the intracellular distribution remained identical to that at the end of fermentation. The total concentration of amino acids in SKD2 continued to increase, particularly in the cytosol. PMID:9674128

  7. Elaidate, an 18-Carbon Trans-monoenoic Fatty Acid, but not Physiological Fatty Acids Increases Intracellular Zn2+ in Human Macrophages

    PubMed Central

    Zacherl, Janelle R.; Tourkova, Irina; St Croix, Claudette M.; Robinson, Lisa J.; Peck Palmer, Octavia M.; Mihalik, Stephanie J.; Blair, Harry C.

    2015-01-01

    Artificial trans fatty acids promote atherosclerosis by blocking macrophage clearance of cell debris. Classical fatty-acid response mechanisms include TLR4-NF-κB activation, and Erk1/2 phosphorylation, but these may not indicate long-term mechanisms. Indeed, nuclear NF-κB was increased by 60 minute treatment by 30 μM of the 18 carbon trans unsaturated fatty acid elaidic acid (elaidate), the physiological cis-unsaturated fatty acid oleic acid (oleate), and the 18 or 16 carbon saturated fatty acids stearic and palmitic acid (stearate or palmitate). However, except for stearate, effects on related pathways were minimal at 44 hours. To determine longer term effects of trans fatty acids, we compared whole exome mRNA expression of (trans) elaidate to (cis) oleate, 30 μM, at 44 hours in human macrophages. We found that elaidate changed Zn2+-homeostasis gene mRNAs markedly. This might be important because Zn2+ is a major regulator of macrophage activity. Messenger RNAs of seven Zn2+-binding metallothioneins decreased 2–4 fold; the zinc importer SLC39A10 increased 2-fold, in elaidate relative to oleate-treated cells. Results were followed by quantitative PCR comparing cis, trans, and saturated fatty acid effects on Zn2+-homeostasis gene mRNAs. This confirmed that elaidate uniquely decreased metallothionein expression and increased SLC39A10 at 44 hours. Further, intracellular Zn2+ was measured using N-(carboxymethyl)-N-[2-[2-[2(carboxymethyl)amino]-5-(2,7,-difluoro-6-hydroxy-3-oxo-3H-xanthen-9-yl)-phenoxy]-ethoxy]-4-methoxyphenyl]glycine, acetoxymethyl ester (FluoZin-3-AM). This showed that, at 44 hours, only cells treated with elaidate had increased Zn2+. The durable effect of elaidate on Zn2+ activation is a novel and specific effect of trans fatty acids on peripheral macrophage metabolism. PMID:25358453

  8. Intracellular surface-enhanced Raman scattering probe based on gold nanorods functionalized with mercaptohexadecanoic acid with reduced cytotoxicity.

    PubMed

    Liu, Min; Wang, Zhuyuan; Zong, Shenfei; Zhang, Ruohu; Yang, Jing; Cui, Yiping

    2012-01-01

    A surface-enhanced Raman scattering (SERS) probe for intracellular detection was demonstrated by utilizing gold nanorods (GNRs) coated with p-aminothiophenol as the Raman reporters. In this probe, to reduce the cytotoxicity of GNRs, cetyltrimethylammonium bromide (CTAB) molecules adsorbed on the surfaces of GNRs as ligands were replaced by mercaptohexadecanoic acid via a "round-trip" phase change method. Such a ligand exchange can reduce the toxicity of the probe compared to the original CTAB-stabilized GNRs, which were confirmed by both 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bright field view of HeLa cells. Meanwhile, the transmission electron microscopy images indicated that there is no significant morphologic change of GNRs before and after the ligand exchange. Moreover, its SERS performance was adequately retained after the incorporation of the probe into living HeLa cells. This new type of SERS probe is expected to have great potential in intracellular imaging or sensing applications.

  9. Intracellular traffic of the lysine and glutamic acid rich protein KERP1 reveals features of endomembrane organization in Entamoeba histolytica.

    PubMed

    Perdomo, Doranda; Manich, Maria; Syan, Sylvie; Olivo-Marin, Jean-Christophe; Dufour, Alexandre C; Guillén, Nancy

    2016-08-01

    The development of amoebiasis is influenced by the expression of the lysine and glutamic acid rich protein 1 (KERP1), a virulence factor involved in Entamoeba histolytica adherence to human cells. Up to date, it is unknown how the protein transits the parasite cytoplasm towards the plasma membrane, specially because this organism lacks a well-defined endoplasmic reticulum (ER) and Golgi apparatus. In this work we demonstrate that KERP1 is present at the cell surface and in intracellular vesicles which traffic in a pathway that is independent of the ER-Golgi anterograde transport. The intracellular displacement of vesicles enriched in KERP1 relies on the actin-rich cytoskeleton activities. KERP1 is also present in externalized vesicles deposited on the surface of human cells. We further report the interactome of KERP1 with its association to endomembrane components and lipids. The model for KERP1 traffic here proposed hints for the first time elements of the endocytic and exocytic paths of E. histolytica. PMID:26857352

  10. Intracellular Self-Assembly of Cyclic d-Luciferin Nanoparticles for Persistent Bioluminescence Imaging of Fatty Acid Amide Hydrolase.

    PubMed

    Yuan, Yue; Wang, Fuqiang; Tang, Wei; Ding, Zhanling; Wang, Lin; Liang, Lili; Zheng, Zhen; Zhang, Huafeng; Liang, Gaolin

    2016-07-26

    Fatty acid amide hydrolase (FAAH) overexpression induces several disorder symptoms in nerve systems, and therefore long-term tracing of FAAH activity in vivo is of high importance but remains challenging. Current bioluminescence (BL) methods are limited in detecting FAAH activity within 5 h. Herein, by rational design of a latent BL probe (d-Cys-Lys-CBT)2 (1), we developed a "smart" method of intracellular reduction-controlled self-assembly and FAAH-directed disassembly of its cyclic d-luciferin-based nanoparticles (i.e., 1-NPs) for persistent BL imaging of FAAH activity in vitro, in cells, and in vivo. Using aminoluciferin methyl amide (AMA), Lys-amino-d-luciferin (Lys-Luc), and amino-d-luciferin (NH2-Luc) as control BL probes, we validated that the persistent BL of 1 from luciferase-expressing cells or tumors was controlled by the activity of intracellular FAAH. With the property of long-term tracing of FAAH activity in vivo of 1, we envision that our BL precursor 1 could probably be applied for in vivo screening of FAAH inhibitors and the diagnosis of their related diseases (or disorders) in the future. PMID:27348334

  11. Intracellular Self-Assembly of Cyclic d-Luciferin Nanoparticles for Persistent Bioluminescence Imaging of Fatty Acid Amide Hydrolase.

    PubMed

    Yuan, Yue; Wang, Fuqiang; Tang, Wei; Ding, Zhanling; Wang, Lin; Liang, Lili; Zheng, Zhen; Zhang, Huafeng; Liang, Gaolin

    2016-07-26

    Fatty acid amide hydrolase (FAAH) overexpression induces several disorder symptoms in nerve systems, and therefore long-term tracing of FAAH activity in vivo is of high importance but remains challenging. Current bioluminescence (BL) methods are limited in detecting FAAH activity within 5 h. Herein, by rational design of a latent BL probe (d-Cys-Lys-CBT)2 (1), we developed a "smart" method of intracellular reduction-controlled self-assembly and FAAH-directed disassembly of its cyclic d-luciferin-based nanoparticles (i.e., 1-NPs) for persistent BL imaging of FAAH activity in vitro, in cells, and in vivo. Using aminoluciferin methyl amide (AMA), Lys-amino-d-luciferin (Lys-Luc), and amino-d-luciferin (NH2-Luc) as control BL probes, we validated that the persistent BL of 1 from luciferase-expressing cells or tumors was controlled by the activity of intracellular FAAH. With the property of long-term tracing of FAAH activity in vivo of 1, we envision that our BL precursor 1 could probably be applied for in vivo screening of FAAH inhibitors and the diagnosis of their related diseases (or disorders) in the future.

  12. Selective autophagy against membranous compartments

    PubMed Central

    Pimentel-Muiños, Felipe X; Boada-Romero, Emilio

    2014-01-01

    Selective autophagic degradation of cellular components underlies many of the important physiological and pathological implications that autophagy has for mammalian cells. Cytoplasmic vesicles, just like other intracellular items, can be subjected to conventional autophagic events where double-membrane autophagosomes specifically isolate and deliver them for lysosomal destruction. However, intracellular membranes appear to constitute common platforms for unconventional versions of the autophagic pathway, a notion that has become apparent during the past few years. For instance, in many cases of autophagy directed against bacterial phagosomes, subversion of the process results in multimembrane vacuoles that promote bacterial replication instead of the usual degradative outcome. In a different atypical modality, single-membrane vesicles can be labeled with LC3 to direct their contents for lysosomal degradation. In fact, single-membrane compartments of various kinds often provide an assembly site for the autophagic machinery to perform unanticipated nondegradative activities that range from localized secretion of lysosomal contents to melanosome function. Interestingly, many of these unconventional processes seem to be initiated through engagement of relevant nodes of the autophagic signaling network that, once activated, promote LC3 decoration of the targeted membrane, and some cases of inducer/receptor proteins that specifically engage those important signaling hubs have recently been described. Here we review the available examples of all autophagic variants involving membranous compartments, with a main focus on the more recently discovered unconventional phenomena where the usual degradation purpose of autophagy or its canonical mechanistic features are not completely conserved. PMID:24419294

  13. RAB24 facilitates clearance of autophagic compartments during basal conditions

    PubMed Central

    Ylä-Anttila, Päivi; Mikkonen, Elisa; Happonen, Kaisa E; Holland, Petter; Ueno, Takashi; Simonsen, Anne; Eskelinen, Eeva-Liisa

    2015-01-01

    RAB24 belongs to a family of small GTPases and has been implicated to function in autophagy. Here we confirm the intracellular localization of RAB24 to autophagic vacuoles with immuno electron microscopy and cell fractionation, and show that prenylation and guanine nucleotide binding are necessary for the targeting of RAB24 to autophagic compartments. Further, we show that RAB24 plays a role in the maturation and/or clearance of autophagic compartments under nutrient-rich conditions, but not during short amino acid starvation. Quantitative electron microscopy shows an increase in the numbers of late autophagic compartments in cells silenced for RAB24, and mRFP-GFP-LC3 probe and autophagy flux experiments indicate that this is due to a hindrance in their clearance. Formation of autophagosomes is shown to be unaffected by RAB24-silencing with siRNA. A defect in aggregate clearance in the absence of RAB24 is also shown in cells forming polyglutamine aggregates. This study places RAB24 function in the termination of the autophagic process under nutrient-rich conditions. PMID:26325487

  14. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  15. The CovS/CovR Acid Response Regulator Is Required for Intracellular Survival of Group B Streptococcus in Macrophages

    PubMed Central

    Cumley, Nicola J.; Smith, Leanne M.; Anthony, Mark

    2012-01-01

    Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and septicemia. The ability of this organism to survive inside phagocytic cells is poorly understood but thought to be an important step for the establishment of disease in the host. Here, we demonstrate that GBS shows prolonged survival within J774 macrophages and that the capacity to survive is not significantly changed across a diverse range of strains representing different serotypes, multilocus sequence types (MLST), and sites of clinical isolation. Using staining for the lysosome-associated membrane protein (LAMP) and by pharmacological inhibition of phagosome acidification, we demonstrate that streptococci reside in a phagosome and that acidification of the phagosome is required for GBS to survive intracellularly. Moreover, we show that the GBS two-component system CovS/CovR, which is the major acid response regulator in this organism, is required for survival inside the phagosome. PMID:22331428

  16. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    PubMed

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-01

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders.

  17. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    PubMed

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-01

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. PMID:25666611

  18. Fatty Acid-binding Proteins (FABPs) Are Intracellular Carriers for Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD)*

    PubMed Central

    Elmes, Matthew W.; Kaczocha, Martin; Berger, William T.; Leung, KwanNok; Ralph, Brian P.; Wang, Liqun; Sweeney, Joseph M.; Miyauchi, Jeremy T.; Tsirka, Stella E.; Ojima, Iwao; Deutsch, Dale G.

    2015-01-01

    Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. PMID:25666611

  19. Volutin granules of Eimeria parasites are acidic compartments and have physiological and structural characteristics similar to acidocalcisomes

    PubMed Central

    Medeiros, Lia Carolina Soares; Gomes, Fabio; Maciel, Luis Renato Maia; Seabra, Sergio Henrique; Docampo, Roberto; Moreno, Silvia; Plattner, Helmut; Hentschel, Joachim; Kawazoe, Urara; Barrabin, Hector; de Souza, Wanderley; DaMatta, Renato Augusto; Miranda, Kildare

    2012-01-01

    The structural organization of parasites has been the subject of investigation by many groups and has lead to the identification of structures and metabolic pathways that may represent targets for anti-parasitic drugs. A specific group of organelles named acidocalcisomes has been identified in a number of organisms, including the apicomplexan parasites such as Toxoplasma and Plasmodium, where they have been shown to be involved in cation homeostasis, polyphosphate metabolism, and osmoregulation. Their structural counterparts in the apicomplexan parasite Eimeria have not been fully characterized. In this work, the ultrastructural and chemical properties of acidocalcisomes in Eimeria were characterized. Electron microscopy analysis of Eimeria parasites showed the dense organelles called volutin granules similar to acidocalcisomes. Immunolocalization of the vacuolar proton pyrophosphatase, considered as a marker for acidocalcisomes, showed labeling in vesicles of size and distribution similar to the dense organelles seen by electron microscopy. Spectrophotometric measurements of the kinetics of proton uptake showed a vacuolar proton pyrophosphatase activity. X-ray mapping revealed significant amounts of Na, Mg, P, K, Ca, and Zn in their matrix. The results suggest that volutin granules of Eimeria parasites are acidic, dense organelles and possess structural and chemical properties analogous to those of other acidocalcisomes, suggesting a similar functional role in these parasites. PMID:21699625

  20. Intracellular self-assembly based multi-labeling of key viral components: Envelope, capsid and nucleic acids.

    PubMed

    Wen, Li; Lin, Yi; Zhang, Zhi-Ling; Lu, Wen; Lv, Cheng; Chen, Zhi-Liang; Wang, Han-Zhong; Pang, Dai-Wen

    2016-08-01

    Envelope, capsid and nucleic acids are key viral components that are all involved in crucial events during virus infection. Thus simultaneous labeling of these key components is an indispensable prerequisite for monitoring comprehensive virus infection process and dissecting virus infection mechanism. Baculovirus was genetically tagged with biotin on its envelope protein GP64 and enhanced green fluorescent protein (EGFP) on its capsid protein VP39. Spodoptera frugiperda 9 (Sf9) cells were infected by the recombinant baculovirus and subsequently fed with streptavidin-conjugated quantum dots (SA-QDs) and cell-permeable nucleic acids dye SYTO 82. Just by genetic engineering and virus propagation, multi-labeling of envelope, capsid and nucleic acids was spontaneously accomplished during virus inherent self-assembly process, significantly simplifying the labeling process while maintaining virus infectivity. Intracellular dissociation and transportation of all the key viral components, which was barely reported previously, was real-time monitored based on the multi-labeling approach, offering opportunities for deeply understanding virus infection and developing anti-virus treatment.

  1. Identification of the nuclear export signals that regulate the intracellular localization of the mouse CMP-sialic acid synthetase

    SciTech Connect

    Fujita, Akiko; Sato, Chihiro; Kitajima, Ken. E-mail: kitajima@agr.nagoya-u.ac.jp

    2007-03-30

    The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.

  2. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts.

    PubMed

    Price, Daniel R G; Feng, Honglin; Baker, James D; Bavan, Selvan; Luetje, Charles W; Wilson, Alex C C

    2014-01-01

    Endosymbiotic associations have played a major role in evolution. However, the molecular basis for the biochemical interdependence of these associations remains poorly understood. The aphid-Buchnera endosymbiosis provides a powerful system to elucidate how these symbioses are regulated. In aphids, the supply of essential amino acids depends on an ancient nutritional symbiotic association with the gamma-proteobacterium Buchnera aphidicola. Buchnera cells are densely packed in specialized aphid bacteriocyte cells. Here we confirm that five putative amino acid transporters are highly expressed and/or highly enriched in Acyrthosiphon pisum bacteriocyte tissues. When expressed in Xenopus laevis oocytes, two bacteriocyte amino acid transporters displayed significant levels of glutamine uptake, with transporter ACYPI001018, LOC100159667 (named here as Acyrthosiphon pisum glutamine transporter 1, ApGLNT1) functioning as the most active glutamine transporter. Transporter ApGLNT1 has narrow substrate selectivity, with high glutamine and low arginine transport capacity. Notably, ApGLNT1 has high binding affinity for arginine, and arginine acts as a competitive inhibitor for glutamine transport. Using immunocytochemistry, we show that ApGLNT1 is localized predominantly to the bacteriocyte plasma membrane, a location consistent with the transport of glutamine from A. pisum hemolymph to the bacteriocyte cytoplasm. On the basis of functional transport data and localization, we propose a substrate feedback inhibition model in which the accumulation of the essential amino acid arginine in A. pisum hemolymph reduces the transport of the precursor glutamine into bacteriocytes, thereby regulating amino acid biosynthesis in the bacteriocyte. Structural similarities in the arrangement of hosts and symbionts across endosymbiotic systems suggest that substrate feedback inhibition may be mechanistically important in other endosymbioses.

  3. Impact of the oxaliplatin-5 fluorouracil-folinic acid combination on respective intracellular determinants of drug activity

    PubMed Central

    Fischel, J L; Formento, P; Ciccolini, J; Rostagno, P; Etienne, M C; Catalin, J; Milano, G

    2002-01-01

    -folinic acid upon mitochondrial membrane permeability change. The presence of oxaliplatin itself did not modify the intracellular concentration of total reduced folates. The fact that oxaliplatin may reduce 5-fluorouracil catabolism could be central in explaining the supra-additive interaction between these drugs. British Journal of Cancer (2002) 86, 1162–1168. DOI: 10.1038/sj/bjc/6600185 www.bjcancer.com © 2002 Cancer Research UK PMID:11953866

  4. Intracellular potassium as a possible inducer of amino acid transport across hamster jejunal enterocytes.

    PubMed Central

    Cremaschi, D; James, P S; Meyer, G; Rossetti, C; Smith, M W

    1986-01-01

    Brush border membrane potentials (Vm), intracellular K+ activity (aiK) and alanine uptake were measured in different parts of villi in mid-jejunal tissue taken from hamsters fed different amounts of food at high and low environmental temperatures. Basal villus enterocytes (Y cells) were found to have lower values for Vm and aiK than upper villus enterocytes (O cells). Alanine uptake was confined to O cells. The position on the villus where values for Vm and aiK changed, and where alanine uptake could first be seen to take place, depended on the energy intake and environmental temperature at which hamsters were kept. Na+-dependent alanine uptake and Vm were both higher in O cells of hamsters fed 10 kcal day-1 at 30 degrees C (10 k/30 degrees C) compared with animals fed 30 kcal day-1 at an environmental temperature of 12 degrees C (30 k/12 degrees C hamsters). The rates at which enterocytes migrated along the crypt-villus axis, measured separately in thymidine-labelling experiments, were 6.9 and 16.1 micron h-1 for 10 k/30 degrees C and 30 k/12 degrees C hamsters respectively. Both Vm and aiK were estimated, from these measurements, to have increased significantly by the time enterocytes became 30 h old. Alanine uptake began 15 h later. Neither of these parameters were influenced by previous adaptation conditions. The close temporal and variable positional relationship found between changes in aiK and onset of transport suggests that early changes in electrolyte composition might initiate a second phase of development enabling the enterocyte to absorb nutrients. The possibility that other ions besides K+ might also be involved in this aspect of regulation is also discussed. PMID:3795055

  5. Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues.

    PubMed

    Kim, Hwan Myung; Cho, Bong Rae

    2009-07-21

    Optical imaging with fluorescence microscopy is a vital tool in the study of living systems. The most common method for cell imaging, one-photon microscopy (OPM), uses a single photon of higher energy to excite the fluorophore. However, two-photon microscopy (TPM), which uses two photons of lower energy as the excitation source, is growing in popularity among biologists because of several distinct advantages. Using TPM, researchers can image intact tissue for a long period of time with minimum interference from tissue preparation artifacts, self-absorption, autofluorescence, photobleaching, and photodamage. However, to make TPM a more versatile tool in biology, researchers need a wider variety of two-photon probes for specific applications. In this Account, we describe a series of two-photon probes that we developed that can visualize the distribution of intracellular metal ions, acidic vesicles, and lipid rafts in living cells and tissues. The development of these probes requires a significant two-photon cross section for the bright image and receptors (sensing moieties) that triggers the emission of the two-photon excited fluorescence upon binding with the ions or membrane in the living system. These probes also must be sensitive to the polarity of the environment to allow selective detection of cytosolic and membrane-bound probes. In addition, they need to be cell-permeable, water-soluble for the staining of cells and tissues, and highly photostable for long-term imaging. The resulting probes-AMg1 (Mg(2+)), ACa1-ACa3 (Ca(2+)), AZn1 and AZn2 (Zn(2+)), AH1, AH2, and AL1 (acidic vesicles), and CL2 (membrane)-use 2-acetyl-6-aminonaphthalene as the fluorophore and receptors for the target ions or membrane. All of these two-photon turn-on probes can detect the intracellular free metal ions, acidic vesicles, and lipid rafts at 100-300 microm depth in live tissues. Moreover, with ACa1-AM, we could simultaneously visualize the spontaneous Ca(2+) waves in the somas of

  6. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  7. Intracellular pH modulates taste receptor cell volume and the phasic part of the chorda tympani response to acids.

    PubMed

    Lyall, Vijay; Pasley, Hampton; Phan, Tam-Hao T; Mummalaneni, Shobha; Heck, Gerard L; Vinnikova, Anna K; DeSimone, John A

    2006-01-01

    The relationship between cell volume and the neural response to acidic stimuli was investigated by simultaneous measurements of intracellular pH (pHi) and cell volume in polarized fungiform taste receptor cells (TRCs) using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) in vitro and by rat chorda tympani (CT) nerve recordings in vivo. CT responses to HCl and CO2 were recorded in the presence of 1 M mannitol and specific probes for filamentous (F) actin (phalloidin) and monomeric (G) actin (cytochalasin B) under lingual voltage clamp. Acidic stimuli reversibly decrease TRC pHi and cell volume. In isolated TRCs F-actin and G-actin were labeled with rhodamine phalloidin and bovine pancreatic deoxyribonuclease-1 conjugated with Alexa Fluor 488, respectively. A decrease in pHi shifted the equilibrium from F-actin to G-actin. Treatment with phalloidin or cytochalasin B attenuated the magnitude of the pHi-induced decrease in TRC volume. The phasic part of the CT response to HCl or CO2 was significantly decreased by preshrinking TRCs with hypertonic mannitol and lingual application of 1.2 mM phalloidin or 20 microM cytochalasin B with no effect on the tonic part of the CT response. In TRCs first treated with cytochalasin B, the decrease in the magnitude of the phasic response to acidic stimuli was reversed by phalloidin treatment. The pHi-induced decrease in TRC volume induced a flufenamic acid-sensitive nonselective basolateral cation conductance. Channel activity was enhanced at positive lingual clamp voltages. Lingual application of flufenamic acid decreased the magnitude of the phasic part of the CT response to HCl and CO2. Flufenamic acid and hypertonic mannitol were additive in inhibiting the phasic response. We conclude that a decrease in pHi induces TRC shrinkage through its effect on the actin cytoskeleton and activates a flufenamic acid-sensitive basolateral cation conductance that is involved in eliciting the phasic part of the CT response to

  8. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.

    PubMed

    Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

    2015-05-01

    The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids.

  9. Micelles Based on Acid Degradable Poly(acetal urethane): Preparation, pH-Sensitivity, and Triggered Intracellular Drug Release.

    PubMed

    Huang, Fushi; Cheng, Ru; Meng, Fenghua; Deng, Chao; Zhong, Zhiyuan

    2015-07-13

    Polyurethanes are a unique class of biomaterials that are widely used in medical devices. In spite of their easy synthesis and excellent biocompatibility, polyurethanes are less explored for controlled drug delivery due to their slow or lack of degradation. In this paper, we report the design and development of novel acid degradable poly(acetal urethane) (PAU) and corresponding triblock copolymer micelles for pH-triggered intracellular delivery of a model lipophilic anticancer drug, doxorubicin (DOX). PAU with Mn ranging from 4.3 to 12.3 kg/mol was conveniently prepared from polycondensation reaction of lysine diisocyanate (LDI) and a novel diacetal-containing diol, terephthalilidene-bis(trimethylolethane) (TPABTME) using dibutyltin dilaurate (DBTDL) as a catalyst in N,N-dimethylformamide (DMF). The thiol-ene click reaction of Allyl-PAU-Allyl with thiolated PEG (Mn = 5.0 kg/mol) afforded PEG-PAU-PEG triblock copolymers that readily formed micelles with average sizes of about 90-120 nm in water. The dynamic light scattering (DLS) measurements revealed fast swelling and disruption of micelles under acidic pH. UV/vis spectroscopy corroborated that acetal degradation was accelerated at pH 4.0 and 5.0. The in vitro release studies showed that doxorubicin (DOX) was released in a controlled and pH-dependent manner, in which ca. 96%, 73%, and 30% of drug was released within 48 h at pH 4.0, 5.0, and 7.4, respectively. Notably, MTT assays displayed that DOX-loaded PEG-PAU-PEG micelles had a high in vitro antitumor activity in both RAW 264.7 and drug-resistant MCF-7/ADR cells. The confocal microscopy and flow cytometry experiments demonstrated that PEG-PAU-PEG micelles mediated efficient cytoplasmic delivery of DOX. Importantly, blank PEG-PAU-PEG micelles were shown to be nontoxic to RAW 264.7 and MCF-7/ADR cells even at a high concentration of 1.5 mg/mL. Hence, micelles based on poly(acetal urethane) have appeared as a new class of biocompatible and acid

  10. Benzoxazolone Carboxamides: Potent and Systemically Active Inhibitors of Intracellular Acid Ceramidase**

    PubMed Central

    Pizzirani, Daniela; Bach, Anders; Realini, Natalia; Armirotti, Andrea; Mengatto, Luisa; Bauer, Inga; Girotto, Stefania; Pagliuca, Chiara; De Vivo, Marco; Summa, Maria; Ribeiro, Alison; Piomelli, Daniele

    2015-01-01

    The ceramides are a family of bioactive lipid-derived messengers involved in the control of cellular senescence, inflammation, and apoptosis. Ceramide hydrolysis by acid ceramidase (AC) stops the biological activity of these substances and influences survival and function of normal and neoplastic cells. Because of its central role in the ceramide metabolism, AC may offer a novel molecular target in disorders with dysfunctional ceramide-mediated signaling. Here, a class of benzoxazolone carboxamides is identified as the first potent and systemically active inhibitors of AC. Prototype members of this class inhibit AC with low nanomolar potency by covalent binding to the catalytic cysteine. Their metabolic stability and high in vivo efficacy suggest that these compounds may be used as probes to investigate the roles of ceramide in health and disease, and that this scaffold may represent a promising starting point for the development of novel therapeutic agents. PMID:25395373

  11. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications. PMID:24789252

  12. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications.

  13. Preparation, Characterization and Intracellular Imaging of 2,4-Dichlorophenoxyacetic Acid Conjugated Gold Nanorods.

    PubMed

    Jia, Jin-Liang; Jin, Xiao-Yong; Liu, Qing-Le; Liang, Wen-Long; Lin, Miao-Shan; Xu, Han-Hong

    2016-05-01

    Visualizing the biodistribution of pesticides inside living cells is great importance for enhancing targeting of pesticides. Here we reported for the first time that gold nanorods (Au NRs) with size of 39.4 nm x 11.3 nm could be used as a fluorescent tracer to examine the distribution of a typical herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), in tobacco bright yellow 2 (BY-2) cells. The nanostructures of hybrid materials were analyzed by using Raman spectra and X-ray photoelectron spectroscopy (XPS), including spectra assignments and electronic property. These data revealed 2,4-D has successfully conjugated MP-Au NRs according to Raman and XPS. The biodistribution of the conjugates inside BY-2 cells was directly examined at 12 and 24 h by the two-photon microscopy. The intensity of two-photon luminescence (TPL) inside cells demonstrated that the conjugates could be localized and excluded by BY-2 cells. Thus, this labeling approach opens up new avenues to the facile and efficient labeling of pesticides.

  14. Preparation, Characterization and Intracellular Imaging of 2,4-Dichlorophenoxyacetic Acid Conjugated Gold Nanorods.

    PubMed

    Jia, Jin-Liang; Jin, Xiao-Yong; Liu, Qing-Le; Liang, Wen-Long; Lin, Miao-Shan; Xu, Han-Hong

    2016-05-01

    Visualizing the biodistribution of pesticides inside living cells is great importance for enhancing targeting of pesticides. Here we reported for the first time that gold nanorods (Au NRs) with size of 39.4 nm x 11.3 nm could be used as a fluorescent tracer to examine the distribution of a typical herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), in tobacco bright yellow 2 (BY-2) cells. The nanostructures of hybrid materials were analyzed by using Raman spectra and X-ray photoelectron spectroscopy (XPS), including spectra assignments and electronic property. These data revealed 2,4-D has successfully conjugated MP-Au NRs according to Raman and XPS. The biodistribution of the conjugates inside BY-2 cells was directly examined at 12 and 24 h by the two-photon microscopy. The intensity of two-photon luminescence (TPL) inside cells demonstrated that the conjugates could be localized and excluded by BY-2 cells. Thus, this labeling approach opens up new avenues to the facile and efficient labeling of pesticides. PMID:27483849

  15. Internalized compartments encapsulated nanogels for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The

  16. Single compartment drug delivery

    PubMed Central

    Cima, Michael J.; Lee, Heejin; Daniel, Karen; Tanenbaum, Laura M.; Mantzavinou, Aikaterini; Spencer, Kevin C.; Ong, Qunya; Sy, Jay C.; Santini, John; Schoellhammer, Carl M.; Blankschtein, Daniel; Langer, Robert S.

    2014-01-01

    Drug design is built on the concept that key molecular targets of disease are isolated in the diseased tissue. Systemic drug administration would be sufficient for targeting in such a case. It is, however, common for enzymes or receptors that are integral to disease to be structurally similar or identical to those that play important biological roles in normal tissues of the body. Additionally, systemic administration may not lead to local drug concentrations high enough to yield disease modification because of rapid systemic metabolism or lack of sufficient partitioning into the diseased tissue compartment. This review focuses on drug delivery methods that physically target drugs to individual compartments of the body. Compartments such as the bladder, peritoneum, brain, eye and skin are often sites of disease and can sometimes be viewed as “privileged,” since they intrinsically hinder partitioning of systemically administered agents. These compartments have become the focus of a wide array of procedures and devices for direct administration of drugs. We discuss the rationale behind single compartment drug delivery for each of these compartments, and give an overview of examples at different development stages, from the lab bench to phase III clinical trials to clinical practice. We approach single compartment drug delivery from both a translational and a technological perspective. PMID:24798478

  17. Electroporation-based delivery of cell-penetrating peptide conjugates of peptide nucleic acids for antisense inhibition of intracellular bacteria.

    PubMed

    Ma, Sai; Schroeder, Betsy; Sun, Chen; Loufakis, Despina Nelie; Cao, Zhenning; Sriranganathan, Nammalwar; Lu, Chang

    2014-10-01

    Cell penetrating peptides (CPPs) have been used for a myriad of cellular delivery applications and were recently explored for delivery of antisense agents such as peptide nucleic acids (PNAs) for bacterial inhibition. Although these molecular systems (i.e. CPP-PNAs) have shown ability to inhibit growth of bacterial cultures in vitro, they show limited effectiveness in killing encapsulated intracellular bacteria in mammalian cells such as macrophages, presumably due to difficulty involved in the endosomal escape of the reagents. In this report, we show that electroporation delivery dramatically increases the bioavailability of CPP-PNAs to kill Salmonella enterica serovar Typhimurium LT2 inside macrophages. Electroporation delivers the molecules without involving endocytosis and greatly increases the antisense effect. The decrease in the average number of Salmonella per macrophage under a 1200 V cm(-1) and 5 ms pulse was a factor of 9 higher than that without electroporation (in an experiment with a multiplicity of infection of 2 : 1). Our results suggest that electroporation is an effective approach for a wide range of applications involving CPP-based delivery. The microfluidic format will allow convenient functional screening and testing of PNA-based reagents for antisense applications.

  18. Intracellular proton-mediated activation of TRPV3 channels accounts for the exfoliation effect of α-hydroxyl acids on keratinocytes.

    PubMed

    Cao, Xu; Yang, Fan; Zheng, Jie; Wang, Kewei

    2012-07-27

    α-Hydroxyl acids (AHAs) from natural sources act as proton donors and topical compounds that penetrate skin and are well known in the cosmetic industry for their use in chemical peels and improvement of the skin. However, little is known about how AHAs cause exfoliation to expose fresh skin cells. Here we report that the transient receptor potential vanilloid 3 (TRPV3) channel in keratinocytes is potently activated by intracellular acidification induced by glycolic acid. Patch clamp recordings and cell death assay of both human keratinocyte HaCaT cells and TRPV3-expressing HEK-293 cells confirmed that intracellular acidification led to direct activation of TRPV3 and promoted cell death. Site-directed mutagenesis revealed that an N-terminal histidine residue, His-426, known to be involved in 2-aminoethyl diphenylborinate-mediated TRPV3 activation, is critical for sensing intracellular proton levels. Taken together, our findings suggest that intracellular protons can strongly activate TRPV3, and TRPV3-mediated proton sensing and cell death in keratinocytes may serve as a molecular basis for the cosmetic use of AHAs and their therapeutic potential in acidic pH-related skin disorders.

  19. Acute extremity compartment syndrome.

    PubMed

    Tumbarello, C

    2000-01-01

    Acute Extremity Compartment Syndrome is a disorder, which can cause loss of limb if left untreated. Compartment syndrome develops when pressures within the fascial compartments become elevated, resulting in decreased perfusion to muscles and nerves. Left untreated, tissue death occurs. Rapid identification of clinical signs can decrease severity of symptoms. Diligent nursing assessment and monitoring of clinical signs, with communication to the physician, will facilitate rapid treatment by the physician. The primary treatment option is early identification and intervention through performance of a fasciotomy.

  20. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. PMID:27091863

  1. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general.

  2. Mutations of amino acids in the DNA-recognition domain of Epstein-Barr virus ZEBRA protein alter its sub-nuclear localization and affect formation of replication compartments

    SciTech Connect

    Park, Richard; Heston, Lee; Shedd, Duane; Delecluse, Henri-Jacques; Miller, George

    2008-12-20

    ZEBRA, a transcription factor and DNA replication protein encoded by the Epstein-Barr virus (EBV) BZLF1 gene, plays indispensable roles in the EBV lytic cycle. We recently described the phenotypes of 46 single amino acid substitutions introduced into the DNA-recognition region of ZEBRA [Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H.J., and Miller, G. 2006]. The 27 DNA-binding-proficient mutants exhibited distinct defects in their ability to activate expression of the kinetic classes of viral genes. Four phenotypic variants could be discerned: wild-type, defective at activating Rta, defective at activating early genes, and defective at activating late genes. Here we analyze the distribution of ZEBRA within the nucleus and the localization of EA-D (the viral DNA polymerase processivity factor), an indicator of the development of replication compartments, in representatives of each phenotypic group. Plasmids encoding wild-type (WT) and mutant ZEBRA were transfected into 293 cells containing EBV-bacmids. WT ZEBRA protein was diffusely and smoothly distributed throughout the nucleus, sparing nucleoli, and partially recruited to globular replication compartments. EA-D induced by WT ZEBRA was present diffusely in some cells and concentrated in globular replication compartments in other cells. The distribution of ZEBRA and EA-D proteins was identical to WT following transfection of K188R, a mutant with a conservative change. The distribution of S186A mutant ZEBRA protein, defective for activation of Rta and EA-D, was identical to WT, except that the mutant ZEBRA was never found in globular compartments. Co-expression of Rta with S186A mutant rescued diffuse EA-D but not globular replication compartments. The most striking observation was that several mutant ZEBRA proteins defective in activating EA-D (R179A, K181A and A185V) and defective in activating lytic viral DNA replication and late genes (Y180E and K188A) were localized to numerous punctate

  3. Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics II. Identification of endosomal and lysosomal compartments in HepG2 cells combining single-step subcellular fractionation with fluorescent imaging.

    PubMed

    Manunta, Maria; Izzo, Lorella; Duncan, Ruth; Jones, Arwyn Tomos

    2007-01-01

    As they are often designed for lysosomotropic, endosomotropic and/or transcellular delivery, an understanding of intracellular trafficking pathways is essential to enable optimised design of novel polymer therapeutics. Here, we describe a single-step density gradient subcellular fractionation method combined with fluorescent detection analysis that provides a new tool for characterisation of endocytic traffic of polymer therapeutics. Hepatoma (HepG2) cells were used as a model and cell breakage was optimised using a cell cracker to ensure assay of the whole cell population. After removal of unbroken cells and nuclei, the cell lysate as a post-nuclear supernatant (PNS) was layered onto an iodixanol (OptiPrep) density gradient optimised to 5-20%. Early endosomes, late endosomes and lysosomes were identified from gradient fractions by immunoblotting for marker proteins early endosome antigen 1 (EEA 1) and lysosomal associated membrane protein 1 (LAMP 1) using horseradish peroxidase or fluorescently-labelled secondary antibodies. Lysosomes were also detected using N-acetyl-beta-glucosamindase (Hex A) activity. In addition, cells were incubated with Texas-red labelled transferrin (TxR-Tf) for 5 min to specifically label early endosomes and this was directly detected from SDS-PAGE gels. Internalised macromolecules and colloidal particles can potentially alter vesicle buoyant density. To see if typical macromolecules of interest would alter vesicle density or perturb vesicle traffic, HepG2 cells were incubated with dextran or a polyethyleneglycol (PEG)-polyester dendron G4 (1 mg/ml for 24 h). The PEG-polyester dendron G4 caused a slight redistribution of endocytic structures to lower density fractions but immunofluorescence microscopy showed no obvious dendron effects. In conclusion, the combined subcellular fractionation with fluorescent imaging approach described here can be used as a tool for both fundamental cell biology research and/or the quantitative localisation

  4. THE RELATION BETWEEN THE INTRACELLULAR RIBONUCLEIC ACID DISTRIBUTION AND AMINO ACID INCORPORATION IN THE LIVER OF THE DEVELOPING CHICK EMBRYO

    PubMed Central

    Duck-Chong, Coral; Pollak, J. K.; North, R. J.

    1964-01-01

    The RNA-P and DNA-P content of the nucleus and the RNA-P content of the whole cell of the livers of 8- to 20-day chick embryos and of adult fowls have been determined. The DNA-P content of the liver nuclei was slightly higher in the 8- and 10-day embryo than in all the other stages examined. A significant decrease in the RNA content of the cell occurred during embryonic development. The RNA content of the adult cell was the same as that of the 14- to 16-day embryo. The proportion of the cellular RNA contributed by the nucleus also decreased during development. In respect to both nuclear RNA content and distribution of RNA between nucleus and cytoplasm, the adult resembled the 8- to 12-day embryo. Examination of the fine structure of the cell showed that, as development progressed, free ribosomes decreased in number and the rough membranes increased. Slices of 8-, 14-, and 20-day embryonic livers and of adult livers were incubated with 14C-leucine, and the amount of labeled amino acid incorporated into whole tissue protein and into the proteins of the subcellular fractions was measured. Embryonic liver incorporated 14C-leucine 15 to 30 times more rapidly than adult liver. The microsomal protein was always more highly labelled than the protein in any other subcellular fraction; however, in the 8-day embryonic and the adult liver the proportion of total counts found in the nuclear fraction was considerably higher than in the 14- or 20-day embryonic liver. The significance of an apparent correlation between the proportion of the cell's RNA contributed by the nucleus and the proportion of total counts in the nuclear fraction is discussed. PMID:14105214

  5. Chronic Exertional Compartment Syndrome.

    PubMed

    Braver, Richard T

    2016-04-01

    Increased tissue pressure within a fascial compartment may be the result from any increase in volume within its contents, or any decrease in size of the fascial covering or its distensibility. This may lead to symptoms of leg tightness, pain or numbness brought about by exercise. There are multiple differential diagnoses of exercise induced leg pain and the proper diagnoses of chronic exertional compartment syndrome (CECS) is made by a careful history and by exclusion of other maladies and confirmed by compartment syndrome testing as detailed in this text. Surgical fasciotomies for the anterior, lateral, superficial and deep posterior compartments are described in detail along with ancillary procedures for chronic shin splints that should allow the athlete to return to competitive activity.

  6. Comparing intracellular stability and targeting of sulfobetaine quantum dots with other surface chemistries in live cells.

    PubMed

    Muro, Eleonora; Fragola, Alexandra; Pons, Thomas; Lequeux, Nicolas; Ioannou, Andriani; Skourides, Paris; Dubertret, Benoit

    2012-04-10

    The in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been explored, but they have not yet been compared systematically with respect to the QD intracellular stability. In this work, the intracellular aggregation kinetics of QDs for three different surface chemistries based on ligand exchange or encapsulation with amphiphilic polymers are compared. For each surface chemistry, three delivery methods for bringing the nanoparticles into the cells are compared: electroporation, microinjection, and pinocytosis. It is concluded that the QD intracellular aggregation behavior is strongly dependent on the surface chemistry. QDs coated with dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands diffuse freely in cells for longer periods of time than for QDs in the other chemistries tested, and they can access all cytoplasmic compartments. Even when conjugated to streptavidin, these DHLA-SB QDs remain freely diffusing inside the cytoplasm and unaggregated, and they are able to reach a biotinylated target inside HeLa cells. Such labeling was more efficient when compared to commercial streptavidin-conjugated QDs, which may be due to the smaller size of DHLA-SB QDs and/or to their superior intracellular stability.

  7. Inhibitory effect of red ginseng acidic polysaccharide from Korean red ginseng on phagocytic activity and intracellular replication of Brucella abortus in RAW 264.7 cells.

    PubMed

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2016-09-30

    Korean red ginseng (KRG) has long been used in traditional Korean and Oriental medicine. However, the anti-bacterial mechanism and therapeutic efficiency of KGR for intracellular Brucella infection are still unclear. In this study, the bactericidal activity of Korean red ginseng acidic polysaccharide (RGAP) on Brucella (B.) abortus and its cytotoxic effects on RAW 264.7 cells were evaluated. In addition, B. abortus internalization and intracellular replication in macrophages were investigated after RGAP treatment. RGAP-incubated cells displayed a marked reduction in the adherence, internalization and intracellular growth of B. abortus in macrophages. Furthermore, decreased F-actin fluorescence was observed relative to untreated B. abortus-infected cells. Western blot analysis of intracellular signaling proteins revealed reduced ERK, JNK and p38α phosphorylation levels in B. abortus-infected RGAP-treated cells compared to the control. Moreover, elevated co-localization of B. abortus-containing phagosomes with lysosome-associated membrane protein 1 (LAMP-1) were observed in RGAP-treated cells compared with the control. Overall, the results of this study suggest that RGAP can disrupt phagocytic activity of B. abortus via suppression of mitogen-activated protein kinases (MAPKs) signaling proteins ERK, JNK and p38 levels and inhibit intracellular replication of B. abortus by enhancing phagolysosome fusion, which may provide an alternative control of brucellosis.

  8. Inhibitory effect of red ginseng acidic polysaccharide from Korean red ginseng on phagocytic activity and intracellular replication of Brucella abortus in RAW 264.7 cells

    PubMed Central

    Bernardo Reyes, Alisha Wehdnesday; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee

    2016-01-01

    Korean red ginseng (KRG) has long been used in traditional Korean and Oriental medicine. However, the anti-bacterial mechanism and therapeutic efficiency of KGR for intracellular Brucella infection are still unclear. In this study, the bactericidal activity of Korean red ginseng acidic polysaccharide (RGAP) on Brucella (B.) abortus and its cytotoxic effects on RAW 264.7 cells were evaluated. In addition, B. abortus internalization and intracellular replication in macrophages were investigated after RGAP treatment. RGAP-incubated cells displayed a marked reduction in the adherence, internalization and intracellular growth of B. abortus in macrophages. Furthermore, decreased F-actin fluorescence was observed relative to untreated B. abortus-infected cells. Western blot analysis of intracellular signaling proteins revealed reduced ERK, JNK and p38α phosphorylation levels in B. abortus-infected RGAP-treated cells compared to the control. Moreover, elevated co-localization of B. abortus-containing phagosomes with lysosome-associated membrane protein 1 (LAMP-1) were observed in RGAP-treated cells compared with the control. Overall, the results of this study suggest that RGAP can disrupt phagocytic activity of B. abortus via suppression of mitogen-activated protein kinases (MAPKs) signaling proteins ERK, JNK and p38 levels and inhibit intracellular replication of B. abortus by enhancing phagolysosome fusion, which may provide an alternative control of brucellosis. PMID:26726017

  9. Effect of the Fructus Ligustri Lucidi extract and its monomers quercetin and oleanolic acid on the adhesion and migration of melanocytes and intracellular actin

    PubMed Central

    WU, YANHUA; LI, QILIN; LI, XIANGJUN; HE, DANHUA; NIU, MU; LU, XIAOJUAN; LI, HUI

    2016-01-01

    The present study aimed to investigate the effects of the Fructus Ligustri Lucidi (FLL) extract and its monomers quercetin and oleanolic acid on the adhesion and migration of human epidermal melanocytes (MCs) and intracellular actin. The human epidermal MCs were cultured and identified. The cells were treated with different concentrations of FLL extract, quercetin and oleanolic acid. The adhesion and migration abilities of the cells were determined by the fibronectin-coated culture experiment and Transwell assay, respectively. The structure and distribution of intracellular actin were observed by confocal laser microscopy, with semi-quantitative analysis. Results showed that compared with the control group, 0.0375–0.3 mg/ml of the FLL extract and 40 µM quercetin significantly improved the adhesion rate of MCs (P<0.05). The numbers of MCs permeating the microporous membrane in the 0.15 mg/ml FLL extract and 12 µM oleanolic acid groups were 43.7 and 30.3, respectively, significantly higher compared to the control group (P<0.01). In the control group, the intracellular actin was less, and the stress fiber structure was not clear. In the 0.15 mg/ml FLL extract, 12 µM oleanolic acid and 40 µM quercetin groups, there were numerous bunched stress fibers, indicating the aggregation of filamentous fibrous actin. The mean optical densities of actin expression in the 0.15 mg/ml FLL extract, 12 µM oleanolic acid and 40 µM quercetin groups were significantly higher compared to the control group (P<0.05). The FLL extract has a significant stimulatory effect on the adhesion and migration of human epidermal MCs. The mechanism may be associated with the promotion of intracellular actin cytoskeleton aggregation. PMID:27123251

  10. Inhibitory effect of gallic acid and its esters on 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes.

    PubMed

    Ximenes, Valdecir F; Lopes, Mariana G; Petrônio, Maicon Segalla; Regasini, Luis Octavio; Silva, Dulce H Siqueira; da Fonseca, Luiz M

    2010-05-12

    The protective effect of gallic acid and its esters, methyl, propyl, and lauryl gallate, against 2,2'-azobis(2-amidinopropane)hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione (GSH) in erythrocytes was studied. The inhibition of hemolysis was dose-dependent, and the esters were significantly more effective than gallic acid. Gallic acid and its esters were compared with regard to their reactivity to free radicals, using the DPPH and AAPH/pyranine free-cell assays, and no significant difference was obtained. Gallic acid and its esters not only failed to inhibit the depletion of intracellular GSH in erythrocytes induced by AAPH but exacerbated it. Similarly, the oxidation of GSH by AAPH or horseradish peroxidase/H(2)O(2) in cell-free systems was exacerbated by gallic acid or gallates. This property could be involved in the recent findings on pro-apoptotic and pro-oxidant activities of gallates in tumor cells. We provide evidence that lipophilicity and not only radical scavenger potency is an important factor regarding the efficiency of antihemolytic substances.

  11. The intracellular parasite Toxoplasma gondii depends on the synthesis of long chain and very long-chain unsaturated fatty acids not supplied by the host cell

    PubMed Central

    Ramakrishnan, Srinivasan; Docampo, Melissa D.; MacRae, James I.; Ralton, Julie E.; Rupasinghe, Thusitha; McConville, Malcolm J.; Striepen, Boris

    2015-01-01

    SUMMARY Apicomplexa are parasitic protozoa that cause important human diseases including malaria, cryptosporidiosis and toxoplasmosis. The replication of these parasites within their target host cell is dependent on both salvage as well as de novo synthesis of fatty acids. In T. gondii, fatty acid synthesis via the apicoplast-localized FASII is essential for pathogenesis, while the role of two other fatty acid biosynthetic complexes remains unclear. Here we demonstrate that the ER-localized fatty acid elongation (ELO) is essential for parasite growth. Conditional knock-down of the non-redundant hydroxyacyl-CoA dehydratase and enoyl-CoA reductase enzymes in the ELO pathway severely repressed intracellular parasite growth. 13C-glucose and 13C-acetate labeling and comprehensive lipidomic analyses of these mutants showed a selective defect in synthesis of unsaturated long and very long chain fatty acids (LCFAs and VLCFAs) and depletion of phosphatidylinositol and phosphatidylethanolamine species containing unsaturated LCFAs and VLCFAs. This requirement for ELO pathway was by-passed by supplementing the media with specific fatty acids, indicating active, but inefficient import of host fatty acids. Our experiments highlight a gap between the fatty acid needs of the parasite and availability of specific fatty acids in the host cell that the parasite has to close using a dedicated synthesis and modification pathway. PMID:25825226

  12. Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects.

    PubMed

    Mallo, Natalia; Lamas, Jesús; de Felipe, Ana-Paula; Sueiro, Rosa-Ana; Fontenla, Francisco; Leiro, José-Manuel

    2016-10-01

    The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment.

  13. Role of H(+)-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: Physiological effects.

    PubMed

    Mallo, Natalia; Lamas, Jesús; de Felipe, Ana-Paula; Sueiro, Rosa-Ana; Fontenla, Francisco; Leiro, José-Manuel

    2016-10-01

    The scuticociliatosis is a very serious disease that affects the cultured turbot, and whose causal agent is the anphizoic and marine euryhaline ciliate Philasterides dicentrarchi. Several protozoans possess acidic organelles that contain high concentrations of pyrophosphate (PPi), Ca(2+) and other elements with essential roles in vesicular trafficking, pH homeostasis and osmoregulation. P. dicentrarchi possesses a pyrophosphatase (H(+)-PPase) that pumps H(+) through the membranes of vacuolar and alveolar sacs. These compartments share common features with the acidocalcisomes described in other parasitic protozoa (e.g. acid content and Ca(2+) storage). We evaluated the effects of Ca(2+) and ATP on H (+)-PPase activity in this ciliate and analyzed their role in maintaining intracellular pH homeostasis and osmoregulation, by the addition of PPi and inorganic molecules that affect osmolarity. Addition of PPi led to acidification of the intracellular compartments, while the addition of ATP, CaCl2 and bisphosphonates analogous of PPi and Ca(2+) metabolism regulators led to alkalinization and a decrease in H(+)-PPase expression in trophozoites. Addition of NaCl led to proton release, intracellular Ca(2+) accumulation and downregulation of H(+)-PPase expression. We conclude that the regulation of the acidification of intracellular compartments may be essential for maintaining the intracellular pH homeostasis necessary for survival of ciliates and their adaptation to salt stress, which they will presumably face during the endoparasitic phase, in which the salinity levels are lower than in their natural environment. PMID:27480055

  14. Energy metabolism and intracellular pH in boar spermatozoa.

    PubMed

    Kamp, G; Büsselmann, G; Jones, N; Wiesner, B; Lauterwein, J

    2003-10-01

    The effect of energy metabolism on intracellular pH was studied in boar spermatozoa using nuclear magnetic resonance (NMR) spectroscopy and confocal microscopy with the pH-sensitive dye seminaphthorhodafluor (SNARF-1). Freshly ejaculated spermatozoa had a high adenylate energy charge (AEC=0.8), which decreased to 0.6 under aerobic conditions and to 0.2 under anaerobic conditions. Correspondingly, no ATP resonances but high AMP resonance were visible in (31)P-NMR-spectra of the spermatozoa. When an artificial oxygen buffer (Fluosol) and a purpose-built air supply system were used during (31)P-NMR data acquisition, ATP resonances reappeared whereas the AMP resonance disappeared. Boar spermatozoa kept under aerobic conditions have intracellular compartments that differ markedly in pH, as demonstrated by both (31)P-NMR spectroscopy and confocal microscopy. Using confocal microscopy, the midpiece of the flagellum in which all mitochondria are located was identified as an acidic compartment (pH(i-mp) 6.7). The intracellular pH of both the head (pH(i-h)) and the long principal piece of the flagellum (pH(i-pp)) were 7.2 and, thus, only slightly below the extracellular pH (pH(e) 7.3). Storage of spermatozoa in a glucose-free medium at 15 degrees C when they are immotile slowly shifted the pH(i-mp) from 6.7 to 6.9 within 20 h, whereas pH(i-h) and pH(i-pp) remained unchanged (pH 7.1-7.2). When glucose was present in the medium, all visible compartments of the spermatozoa as well as the medium were acidified to pH 6.2 within 20 h. Under these conditions a resonance at 4.8 mg kg(-1) appeared representing glycerol 3-phosphate.

  15. Enhanced intracellular accumulation of a non-nucleoside anti-cancer agent via increased uptake of its valine ester prodrug through amino acid transporters.

    PubMed

    Kwak, Eun-Young; Shim, Won-Sik; Chang, Ji-Eun; Chong, Saeho; Kim, Dae-Duk; Chung, Suk-Jae; Shim, Chang-Koo

    2012-07-01

    The phenomenon known as multiple-drug resistance, whereby anti-cancer agents are expelled from cancer cells, makes it necessary to develop methods that will reliably increase the accumulation of anti-cancer agents within cancer cells. To accomplish this goal, a new model compound, Val-SN-38, was synthesized by introducing valine to SN-38, an active ingredient of irinotecan. Val-SN-38 improved intracellular accumulation approximately 5-fold in MCF7 cells, compared with SN-38, and rather than changes in membrane permeability, the amino acid transporter ATB(0,+) played a role, whereas the dipeptide transporter PEPT1 did not. Other sodium-dependent amino acid transporters, namely ATA1, ATA2, and ASCT2, were unexpectedly involved in the uptake of Val-SN-38 as well. The efflux of Val-SN-38 by major efflux transporters was variably changed, but not significantly. In summary, the enhanced accumulation of Val-SN-38 in cancer cells was due to augmented uptake via various amino acid transporters. The results of the present study make a compelling argument in favour of a prodrug concept that can improve intracellular accumulation and take advantage of amino acid transporters without significantly inducing multiple-drug resistance.

  16. Uptake and incorporation of an epitope-tagged sialic acid donor into intact rat liver Golgi compartments. Functional localization of sialyltransferase overlaps with beta-galactosyltransferase but not with sialic acid O-acetyltransferase.

    PubMed Central

    Chammas, R; McCaffery, J M; Klein, A; Ito, Y; Saucan, L; Palade, G; Farquhar, M G; Varki, A

    1996-01-01

    The transfer of sialic acids (Sia) from CMP-sialic acid (CMP-Sia) to N-linked sugar chains is thought to occur as a final step in their biosynthesis in the trans portion of the Golgi apparatus. In some cell types such Sia residues can have O-acetyl groups added to them. We demonstrate here that rat hepatocytes express 9-O-acetylated Sias mainly at the plasma membranes of both apical (bile canalicular) and basolateral (sinusoidal) domains. Golgi fractions also contain 9-O-acetylated Sias on similar N-linked glycoproteins, indicating that O-acetylation may take place in the Golgi. We show here that CMP-Sia-FITC (with a fluorescein group attached to the Sia) is taken up by isolated intact Golgi compartments. In these preparations, Sia-FITC is transferred to endogenous glycoprotein acceptors and can be immunochemically detected in situ. Addition of unlabeled UDP-Gal enhances Sia-FITC incorporation, indicating a substantial overlap of beta-galactosyltransferase and sialyltransferase machineries. Moreover, the same glycoproteins that incorporate Sia-FITC also accept [3H]galactose from the donor UDP-[3H]Gal. In contrast, we demonstrate with three different approaches (double-labeling, immunoelectron microscopy, and addition of a diffusible exogenous acceptor) that sialyltransferase and O-acetyltransferase machineries are much more separated from one another. Thus, 9-O-acetylation occurs after the last point of Sia addition in the trans-Golgi network. Indeed, we show that 9-O-acetylated sialoglycoproteins are preferentially segregated into a subset of vesicular carriers that concentrate membrane-bound, but not secretory, proteins. Images PMID:8930893

  17. Further characterization of [3H]gamma-aminobutyric acid release from isolated neuronal growth cones: role of intracellular Ca2+ stores.

    PubMed

    Lockerbie, R O; Gordon-Weeks, P R

    1986-04-01

    We have recently shown that growth cones isolated from neonatal rat forebrain possess uptake and release mechanisms for the neurotransmitter gamma-aminobutyric acid. About half of the K+-induced release of [3H]gamma-aminobutyric acid from isolated growth cones is dependent on extracellular Ca2+. The remaining component of the [3H]gamma-aminobutyric acid release is unaffected by removal of extracellular Ca2+ and is resistant to blockade by the voltage-sensitive Ca2+-channel blocker methoxyverapamil. In the present series of experiments we have used caffeine to assess the possible role of intracellular stores of Ca2+ in supporting that component of the K+-induced release of [3H]gamma-aminobutyric acid from isolated growth cones that is independent of extracellular Ca2+. We have chosen caffeine because of its well established effect of releasing Ca2+ from smooth endoplasmic reticulum in muscle. We found that caffeine can release [3H]gamma-aminobutyric acid from isolated growth cones. This effect persists in Ca2+-free medium, in the presence of methoxyverapamil and in the absence of Na+. Furthermore, isobutylmethylxanthine could not substitute for caffeine suggesting that the caffeine effect is not due to phosphodiesterase inhibition and the subsequent rise in intracellular cyclic nucleotides. A combination of the mitochondrial poisons, Antimycin A and sodium azide had no effect on the release of [3H]gamma-aminobutyric acid induced either by caffeine or by high K+. We conclude that caffeine causes the release of Ca2+ from a non-mitochondrial store within the growth cone and that this Ca2+ store supports that component of the K+-induced release of [3H]gamma-aminobutyric acid that is independent of extracellular Ca2+.

  18. Mycothiol protects Corynebacterium glutamicum against acid stress via maintaining intracellular pH homeostasis, scavenging ROS, and S-mycothiolating MetE.

    PubMed

    Liu, Yingbao; Yang, Xiaobing; Yin, Yajie; Lin, Jinshui; Chen, Can; Pan, Junfeng; Si, Meiru; Shen, Xihui

    2016-07-14

    Mycothiol (MSH) plays a major role in protecting cells against oxidative stress and detoxification from a broad range of exogenous toxic agents. In the present study, we reveal that intracellular MSH contributes significantly to the adaptation to acidic conditions in the model organism Corynebacterium glutamicum. We present evidence that MSH confers C. glutamicum with the ability to adapt to acidic conditions by maintaining pHi homeostasis, scavenging reactive oxygen species (ROS), and protecting methionine synthesis by the S-mycothiolation modification of methionine synthase (MetE). The role of MSH in acid adaptation was further confirmed by improving the acid tolerance of C. glutamicum by overexpressing the key MSH synthesis gene mshA. Hence, our work provides insights into a previously unknown, but important, aspect of the C. glutamicum cellular response to acid stress. The results reported here may help to understand acid tolerance mechanisms in acid sensitive bacteria and may open a new avenue for improving acid resistance in industry strains for the production of bio-based chemicals from renewable biomass. PMID:27250661

  19. The role of endocytosis in the uptake and intracellular trafficking of PepFect14-nucleic acid nanocomplexes via class A scavenger receptors.

    PubMed

    Juks, Carmen; Padari, Kärt; Margus, Helerin; Kriiska, Asko; Etverk, Indrek; Arukuusk, Piret; Koppel, Kaida; Ezzat, Kariem; Langel, Ülo; Pooga, Margus

    2015-12-01

    Cell penetrating peptides are efficient tools to deliver various bioactive cargos into cells, but their exact functioning mechanism is still debated. Recently, we showed that a delivery peptide PepFect14 condenses oligonucleotides (ON) into negatively charged nanocomplexes that are taken up by cells via class A scavenger receptors (SR-As). Here we unraveled the uptake mechanism and intracellular trafficking of PF14-ON nanocomplexes in HeLa cells. Macropinocytosis and caveolae-mediated endocytosis are responsible for the intracellular functionality of nucleic acids packed into nanocomplexes. However, only a negligible fraction of the complexes were trafficked to endoplasmic reticulum or Golgi apparatus - the common destinations of caveolar endocytosis. Neither were the PF14-SCO nanocomplexes routed to endo-lysosomal pathway, and they stayed in vesicles with slightly acidic pH, which were not marked with LysoSensor. "Naked" ON, in contrary, was rapidly targeted to acidic vesicles and lysosomes. The transmission electron microscopy analysis of interactions between SR-As and PF14-ON nanocomplexes on ultrastructural level revealed that nanocomplexes localized on the plasma membrane in close proximity to SR-As and their colocalization is retained in cells, suggesting that PF14-ON complexes associate with targeted receptors.

  20. Computer model of unstirred layer and intracellular pH changes. Determinants of unstirred layer pH.

    PubMed

    Marrannes, Roger

    2013-06-01

    Transmembrane acid-base fluxes affect the intracellular pH and unstirred layer pH around a superfused biological preparation. In this paper the factors influencing the unstirred layer pH and its gradient are studied. An analytical expression of the unstirred layer pH gradient in steady state is derived as a function of simultaneous transmembrane fluxes of (weak) acids and bases with the dehydration reaction of carbonic acid in equilibrium. Also a multicompartment computer model is described consisting of the extracellular bulk compartment, different unstirred layer compartments and the intracellular compartment. With this model also transient changes and the influence of carbonic anhydrase (CA) can be studied. The analytical expression and simulations with the multicompartment model demonstrate that in steady state the unstirred layer pH and its gradient are influenced by the size and type of transmembrane flux of acids and bases, their dissociation constant and diffusion coefficient, the concentration, diffusion coefficient and type of mobile buffers and the activity and location of CA. Similar principles contribute to the amplitude of the unstirred layer pH transients. According to these models an immobile buffer does not influence the steady-state pH, but reduces the amplitude of pH transients especially when these are fast. The unstirred layer pH provides useful information about transmembrane acid-base fluxes. This paper gives more insight how the unstirred layer pH and its transients can be interpreted. Methodological issues are discussed. PMID:23860924

  1. Computer model of unstirred layer and intracellular pH changes. Determinants of unstirred layer pH.

    PubMed

    Marrannes, Roger

    2013-06-01

    Transmembrane acid-base fluxes affect the intracellular pH and unstirred layer pH around a superfused biological preparation. In this paper the factors influencing the unstirred layer pH and its gradient are studied. An analytical expression of the unstirred layer pH gradient in steady state is derived as a function of simultaneous transmembrane fluxes of (weak) acids and bases with the dehydration reaction of carbonic acid in equilibrium. Also a multicompartment computer model is described consisting of the extracellular bulk compartment, different unstirred layer compartments and the intracellular compartment. With this model also transient changes and the influence of carbonic anhydrase (CA) can be studied. The analytical expression and simulations with the multicompartment model demonstrate that in steady state the unstirred layer pH and its gradient are influenced by the size and type of transmembrane flux of acids and bases, their dissociation constant and diffusion coefficient, the concentration, diffusion coefficient and type of mobile buffers and the activity and location of CA. Similar principles contribute to the amplitude of the unstirred layer pH transients. According to these models an immobile buffer does not influence the steady-state pH, but reduces the amplitude of pH transients especially when these are fast. The unstirred layer pH provides useful information about transmembrane acid-base fluxes. This paper gives more insight how the unstirred layer pH and its transients can be interpreted. Methodological issues are discussed.

  2. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  3. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.

    PubMed Central

    Russell, J B

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation. PMID:2036013

  4. Nanovehicular Intracellular Delivery Systems

    PubMed Central

    PROKOP, ALES; DAVIDSON, JEFFREY M.

    2013-01-01

    This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood–brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list “elementary” phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach. PMID:18200527

  5. Depollution potential of three macrophytes: exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations.

    PubMed

    Larue, Camille; Korboulewsky, Nathalie; Wang, Runying; Mévy, Jean-Philippe

    2010-10-01

    The aim of this study was to investigate the potential role of three macrophyte species (Iris pseudacorus, Typha latifolia and Phragmites australis) for detoxication of xenobiotics, and to study their variations with seasons or concentrations of sewage sludge from the food industry. For this purpose, some aspects of the green liver concept were explored through peroxidase measurements in three compartments in roots: intracellular, cell wall and extracellular. In addition, phenol concentrations were also measured in order to assess heavy metal detoxication potential. Enzyme activities and phenol concentrations were overall lower in winter according to the phenological stages and some sludge effects occurred. Results show that P. australis roots exuded and contained more peroxidase in all seasons: 17 U/g (1373 U/g protein), 0.8 U/g (613 U/g protein) and 4.8 U/g (1329 U/g protein) in intracellular compartments, cell wall and exudates, respectively. In contrast, the highest phenol concentration was found in I. pseudacorus roots: 3.58 mg eq. [corrected] gallic acid/g. Hence, in constructed wetlands, P. australis is suitable for organic waste water treatment, while I. pseudacorus should be used in the case of waters highly charged with heavy metals.

  6. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    PubMed

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS < 0.01). In carrots, this difference did not occur (average values of TF: PFOA 0.04, PFOS 0.04). Transfer of PFOS into the unpeeled cucumbers was low and comparable to that of peeled potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03).

  7. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    PubMed

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS < 0.01). In carrots, this difference did not occur (average values of TF: PFOA 0.04, PFOS 0.04). Transfer of PFOS into the unpeeled cucumbers was low and comparable to that of peeled potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03). PMID:21905714

  8. Transferrin receptor containing the SDYQRL motif of TGN38 causes a reorganization of the recycling compartment but is not targeted to the TGN.

    PubMed

    Johnson, A O; Ghosh, R N; Dunn, K W; Garippa, R; Park, J; Mayor, S; Maxfield, F R; McGraw, T E

    1996-12-01

    The SDYQRL motif of the cytoplasmic domain of TGN38 is involved in targeting TGN38 from endosomes to the TGN. To create a system for studying this pathway, we replaced the native transferrin receptor (TR) internalization motif (YTRF) with the SDYQRL TGN-targeting motif. The advantages of using TR as a reporter molecule include the ability to monitor trafficking, in both biochemical and microscopy experiments, using the natural ligand transferrin. When expressed in CHO cells, the SDYQRL-TR construct accumulated in juxtanuclear tubules and vesicles that are in the vicinity of the TGN. The SDYQRL-TR-containing structures, however, do not colocalize with TGN markers (e.g., NBD ceramide), and therefore the SDYQRL motif is not sufficient to target the TR to the TGN. The morphology of the SDYQRL-TR-containing juxtanuclear structures is different from the recycling compartment found in cells expressing the wild-type TR. In addition, the SDYQRL-TR-containing juxtanuclear compartment is more acidic than the recycling compartment in cells expressing the wild-type TR. The juxtanuclear compartment, however, is a bona fide recycling compartment since SDYQRL-TR was recycled back to the cell surface at a rate comparable to the wild-type TR, and sphingomyelin and cellubrevin, both of which label all compartments of the endocytic recycling pathway, colocalize with SDYQRL-TR in the juxtanuclear structures. These findings demonstrate that expression of the SDYQRL-TR construct alters the morphology and pH of endocytic recycling compartments rather than selectively affecting the intracellular trafficking pathway of the SDYQRL-TR construct. Therefore, the SDYQRL trafficking motif is not simply a molecular address that targets proteins to the TGN, but it can play an active role in determining the physical characteristics of endosomal compartments.

  9. Roles of N-Terminal Fatty Acid Acylations in Membrane Compartment Partitioning: Arabidopsis h-Type Thioredoxins as a Case Study[C][W

    PubMed Central

    Traverso, José A.; Micalella, Chiara; Martinez, Aude; Brown, Spencer C.; Satiat-Jeunemaître, Béatrice; Meinnel, Thierry; Giglione, Carmela

    2013-01-01

    N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX–green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane. PMID:23543785

  10. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study.

    PubMed

    Traverso, José A; Micalella, Chiara; Martinez, Aude; Brown, Spencer C; Satiat-Jeunemaître, Béatrice; Meinnel, Thierry; Giglione, Carmela

    2013-03-01

    N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX-green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane.

  11. Cellular delivery of quantum dot-bound hybridization probe for detection of intracellular pre-microRNA using chitosan/poly(γ-glutamic acid) complex as a carrier.

    PubMed

    Geng, Yao; Lin, Dajie; Shao, Lijia; Yan, Feng; Ju, Huangxian

    2013-01-01

    A quantum dot (QD)-bound hybridization probe was designed for detection of intracellular pre-miRNA using chitosan (CS)/poly(γ-glutamic acid) (γ-PGA) complex as a gene vector. The probe was prepared by assembling thiolated RNA to gold nanoparticle (Au NP) via Au-S bond and then binding 3'-end amine of the RNA to the carboxy group capped on quantum dot surface. The QD-RNA-Au NP probe was assembled on the vector by mixing with aqueous γ-PGA solution and then CS solution to construct a gene delivery system for highly effective cellular uptake and delivery. After the probe was released from CS/γ-PGA complex to the cytoplasm by electrostatic repulsion at intracellular pH, it hybridized with pre-miRNA precursor as target. The formed product was then cleaved by RNase III Dicer, leading to the separation of QDs from Au NPs and fluorescence emission of QDs, which could be detected by confocal microscopic imaging to monitor the amount of the intracellular pre-miRNA precursor. The in vitro assays revealed that the QD-RNA-Au NP was a robust, sensitive and selective probe for quantitative detection of target pre-miRNA. Using MDA-MB231 and MCF-7 breast cancer cells as models, the relative amount of pre-miRNA let-7a could be successfully compared. Since the amount of miRNA is related to the progress and prognosis of cancer, this strategy could be expected to hold promising application potential in medical research and clinical diagnostics.

  12. A peptide nucleic acid-functionalized carbon nitride nanosheet as a probe for in situ monitoring of intracellular microRNA.

    PubMed

    Liao, Xianjiu; Wang, Quanbo; Ju, Huangxian

    2015-06-21

    A novel probe for recognition of both cancer cells and intracellular microRNA (miRNA) is designed by functionalizing a carbon nitride nanosheet (f-CNNS) with a Cy5-labeled peptide nucleic acid (Cy5-PNA) and folate. The interaction between Cy5-PNA and CNNS quenches the fluorescence of Cy5, and the presence of folate endows the probe with good specificity to folate acceptor overexpressed cells. The probe can be specifically taken up by cancer cells with an incubation step. Upon the recognition of the PNA to complementary miRNA, the hybridization product is released from the CNNS surface, which leads to the fluorescence recovery and provides a specific method for sensing of miRNA. Thus, this probe can be used for cell-specific intracellular miRNA sensing with a confocal microscope. Using miRNA-18a as a target model, the dynamic changes of its expression level inside living cells can be monitored with the proposed method. This method possesses promising applications in the study of miRNA related bioprocesses and biomedicine.

  13. In vitro extracellular and intracellular activities of clavulanic acid and those of piperacillin and ceftriaxone alone and in combination with tazobactam against clinical isolates of Legionella species.

    PubMed Central

    Edelstein, P H; Edelstein, M A

    1994-01-01

    The activities of ceftriaxone, piperacillin, tazobactam, clavulanic acid, and combinations of ceftriaxone or piperacillin with tazobactam against 22 clinical Legionella isolates were measured by broth microdilution and macrodilution methods and in macrophages. The broth microdilution MICs that inhibited 90% of strains tested were 2 and 1 microgram/ml for ceftriaxone and tazobactam, respectively. Broth macrodilution MICs were 8 and 1 microgram/ml, respectively, for the two Legionella pneumophila strains tested with piperacillin and were 0.25 and 0.5 microgram/ml, respectively, for clavulanate. No significant intracellular anti-L. pneumophila activity was observed for ceftriaxone (32 micrograms/ml), piperacillin (32 micrograms/ml), tazobactam alone (16 micrograms/ml), clavulanate alone (2 micrograms/ml), or tazobactam in combination with ceftriaxone (ceftriaxone/tazobactam at 32/4 and 16/16 micrograms/ml) or piperacillin (32/4 micrograms/ml). Erythromycin (1 microgram/ml) was active against intracellular L. pneumophila in the same macrophage model of infection. It is very unlikely that tazobactam or clavulanate, alone or in combination with beta-lactam antimicrobial agents, will be effective for the treatment of Legionnaires' disease in humans. PMID:8192443

  14. Administration of Exogenous Growth Hormone Is Associated with Changes in Plasma and Intracellular Mammary Amino Acid Profiles and Abundance of the Mammary Gland Amino Acid Transporter SLC3A2 in Mid-Lactation Dairy Cows

    PubMed Central

    Sciascia, Quentin L.; Pacheco, David; McCoard, Susan A.

    2015-01-01

    The objectives of this study were to (1) identify changes in plasma and mammary intracellular amino acid (AA) profiles in dairy cows treated with growth hormone (GH), and (2) evaluate the expression of mammary gland genes involved in the transport of AA identified in (1). Eight non-pregnant (n = 4 per group) lactating dairy cows were treated with a single subcutaneous injection of either a slow-release formulation of commercially available GH (Lactotropin 500 mg) or physiological saline solution. Six days after treatment, cows were milked and blood collected from the jugular vein for the analysis of free AA in the plasma. Cows were euthanized and mammary tissue harvested. Treatment with GH increased milk, protein, fat and lactose yields, with no effect on dry matter intake. Plasma concentrations of lysine and group I AA decreased significantly, and arginine, methionine, tyrosine and arginine-family AA tended to decrease in GH-treated cows. Concentrations of intracellular glycine, serine and glutamate increased significantly, with a trend for decreased arginine observed in the mammary gland of GH-treated cows. A trend for increased concentrations of intracellular total AA, NEAA and arginine-family AA were observed in the mammary gland of GH-treated cows. Variance in the concentration of plasma methionine, tyrosine, valine, alanine, ornithine, BCAA, EAA was significantly different between treatments. Variance in the concentration of intracellular lysine, valine, glutamine, EAA and group II was significantly different between treatments. AA changes were associated with increased mRNA abundance of the mammary gland AA transporter SLC3A2. We propose that these changes occur to support increased milk protein and fatty acid production in the mammary gland of GH-treated cows via potential mTOR pathway signaling. PMID:26226162

  15. 5,5'-Dithio-bis(2-nitrobenzoic acid) modification of cysteine improves the crystal quality of human chloride intracellular channel protein 2

    SciTech Connect

    Mi Wei; Li Lanfen; Su Xiaodong

    2008-04-18

    Structural studies of human chloride intracellular channel protein 2 (CLIC2) had been hampered by the problem of generating suitable crystals primarily due to the protein containing exposed cysteines. Several chemical reagents were used to react with the cysteines on CLIC2 in order to modify the redox state of the protein. We have obtained high quality crystals that diffracted to better than 2.5 A at a home X-ray source by treating the protein with 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB). After solving the crystal structure of CLIC2, we found that the DTNB had reacted with the Cys{sup 114}, and made CLIC2 in a homogenous oxidized state. This study demonstrated that the DTNB modification drastically improved the crystallization of CLIC2, and it implied that this method may be useful for other proteins containing exposed cysteines in general.

  16. Retinoic acid receptor-α signalling antagonizes both intracellular and extracellular amyloid-β production and prevents neuronal cell death caused by amyloid-β.

    PubMed

    Jarvis, C I; Goncalves, M B; Clarke, E; Dogruel, M; Kalindjian, S B; Thomas, S A; Maden, M; Corcoran, J P T

    2010-10-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain, neuronal cell loss and cognitive decline. We show here that retinoic acid receptor (RAR)α signalling in vitro can prevent both intracellular and extracellular Aβ accumulation. RARα signalling increases the expression of a disintegrin and metalloprotease 10, an α-secretase that processes the amyloid precursor protein into the non-amyloidic pathway, thus reducing Aβ production. We also show that RARα agonists are neuroprotective, as they prevent Aβ-induced neuronal cell death in cortical cultures. If RARα agonists are given to the Tg2576 mouse, the normal Aβ production in their brains is suppressed. In contrast, neither RARβ nor γ-agonists affect Aβ production or Aβ-mediated neuronal cell death. Therefore, RARα agonists have therapeutic potential for the treatment of AD.

  17. Intracellular chromium reduction.

    PubMed

    Arslan, P; Beltrame, M; Tomasi, A

    1987-10-22

    Two steps are involved in the uptake of Cr(VI): (1) the diffusion of the anion CrO4(2-) through a facilitated transport system, presumably the non-specific anion carrier and (2) the intracellular reduction of Cr(VI) to Cr(III). The intracellular reduction of Cr(VI), keeping the cytoplasmic concentration of Cr(VI) low, facilitates accumulation of chromate from extracellular medium into the cell. In the present paper, a direct demonstration of intracellular chromium reduction is provided by means of electron paramagnetic (spin) resonance (EPR) spectroscopy. Incubation of metabolically active rat thymocytes with chromate originates a signal which can be attributed to a paramagnetic species of chromium, Cr(V) or Cr(III). The EPR signal is originated by intracellular reduction of chromium since: (1) it is observed only when cells are incubated with chromate, (2) it is present even after extensive washings of the cells in a chromium-free medium; (3) it is abolished when cells are incubated with drugs able to reduce the glutathione pool, i.e., diethylmaleate or phorone; and (4) it is abolished when cells are incubated in the presence of a specific inhibitor of the anion carrier, 4-acetamido-4'-isothiocyanatostilbene-2-2'-disulfonic acid. PMID:2820507

  18. Activation of ATP-sensitive potassium channels in rat pancreatic beta-cells by linoleic acid through both intracellular metabolites and membrane receptor signalling pathway.

    PubMed

    Zhao, Yu-Feng; Pei, Jianming; Chen, Chen

    2008-09-01

    ATP-sensitive potassium channels (K(ATP) channels) determine the excitability of pancreatic beta-cells and importantly regulate glucose-stimulated insulin secretion (GSIS). Long-chain free fatty acids (FFAs) decrease GSIS after long-term exposure to beta-cells, but the effects of exogenous FFAs on K(ATP) channels are not yet well clarified. In this study, the effects of linoleic acid (LA) on membrane potential (MP) and K(ATP) channels were observed in primary cultured rat pancreatic beta-cells. LA (20 microM) induced hyperpolarization of MP and opening of K(ATP) channels, which was totally reversed and inhibited by tolbutamide, a K(ATP) channel blocker. Inhibition of LA metabolism by acyl-CoA synthetase inhibitor, triacsin C (10 microM), partially inhibited LA-induced opening of K(ATP) channels by 64%. The non-FFA G protein-coupled receptor (GPR) 40 agonist, GW9508 (40 microM), induced an opening of K(ATP) channels, which was similar to that induced by LA under triacsin C treatment. Blockade of protein kinases A and C did not influence the opening of K(ATP) channels induced by LA and GW9508, indicating that these two protein kinase pathways are not involved in the action of LA on K(ATP) channels. The present study demonstrates that LA induces hyperpolarization of MP by activating K(ATP) channels via both intracellular metabolites and activation of GPR40. It indicates that not only intracellular metabolites of FFAs but also GPR40-mediated pathways take part in the inhibition of GSIS and beta-cell dysfunction induced by FFAs.

  19. [Abdominal compartment syndrome].

    PubMed

    Pottecher, T; Segura, P; Launoy, A

    2001-04-01

    French physicians dealing with abdominal emergencies are not very familiar with the abdominal compartment syndrome (ACS). Increased abdominal pressure has deleterious consequences on local (intestine, liver, kidney) circulation, leading to death in the absence of correct treatment. Abdominal trauma and ruptured aortic aneurism are the main causes of ACS. Clinical presentation may be misleading: respiratory failure, oliguria or circulatory symptoms are often predominant. Abdominal palpation is inefficient for evaluating intra-abdominal pressure (IAP); only measurement of cystic pressure allows precise evaluation of IAP. Abdominal decompression is the treatment of choice. It must be performed as soon as IAP exceeds 25 mmHg. The procedure may be risky with a high incidence of severe complications when ischaemic territories are reperfused. Recent data underline the importance of compensation of hypovolemia before decompression. Abdominal closure may necessitate various techniques (aponevrotomy, Bogota bags, etc.). At any rate, IAP must remain low at the end of the procedure. In case of suspicion of ACS, early measurement of IAP is mandatory. If pressure is over 25 mmHg, a decompressive procedure must be initiated. PMID:11340703

  20. COMPARTMENTED REACTOR FUEL ELEMENT

    DOEpatents

    Cain, F.M. Jr.

    1962-09-11

    A method of making a nuclear reactor fuel element of the elongated red type is given wherein the fissionable fuel material is enclosed within a tubular metal cladding. The method comprises coating the metal cladding tube on its inside wall with a brazing alloy, inserting groups of cylindrical pellets of fissionable fuel material into the tube with spacing members between adjacent groups of pellets, sealing the ends of the tubes to leave a void space therewithin, heating the tube and its contents to an elevated temperature to melt the brazing alloy and to expand the pellets to their maximum dimensions under predetermined operating conditions thereby automatically positioning the spacing members along the tube, and finally cooling the tube to room temperature whereby the spacing disks become permanently fixed at their edges in the brazing alloy and define a hermetically sealed compartment for each fl group of fuel pellets. Upon cooling, the pellets contract thus leaving a space to accommodate thermal expansion of the pellets when in use in a reactor. The spacing members also provide lateral support for the tubular cladding to prevent collapse thereof when subjected to a reactor environment. (AEC)

  1. Bile acid signaling through FXR induces intracellular adhesion molecule-1 expression in mouse liver and human hepatocytes.

    PubMed

    Qin, Pu; Borges-Marcucci, Lisa A; Evans, Mark J; Harnish, Douglas C

    2005-08-01

    Previous studies have demonstrated a dramatic induction of inflammatory gene expression in livers from mice fed a high-fat, high-cholesterol diet containing cholate after 3-5 wk. To determine the contribution of cholate in mediating these inductions, C57BL/6 mice were fed a chow diet supplemented with increasing concentrations of cholic acid (CA) for 5 days. A dose-dependent induction in the hepatic levels of TNF-alpha, VCAM-1, ICAM-1, and SAA-2 mRNA were observed. As positive controls, a dose-dependent repression of cholesterol 7alpha-hydroxylase and a dose-dependent induction of small heterodimer partner (SHP) expression were also observed, suggesting that farnesoid X receptor (FXR) was activated. In addition, ICAM-1 and SHP mRNA levels were also induced in primary human hepatocytes when treated with chenodeoxycholic acid or GW4064, a FXR-selective agonist. The involvement of FXR in CA-induced inflammatory gene expression was further investigated in the human hepatic cell line HepG2. Both ICAM-1 and SHP expression were induced in a dose- and time-dependent manner by treatment with the FXR-selective agonist GW4064. Moreover, the induction of ICAM-1 by GW4064 was inhibited by the FXR antagonist guggulsterone or with transfection of FXR siRNA. Finally, the activity of FXR was mapped to a retinoic acid response element (RARE) site containing an imbedded farnesoid X response element (FXRE) on the human ICAM-1 promoter and FXR and retinoid X receptor were demonstrated to bind to this site. Finally, FXR-mediated activation of ICAM-1 could be further enhanced by TNF-alpha cotreatment in hepatocytes, suggesting a potential cooperation between cytokine and bile acid-signaling pathways during hepatic inflammatory events.

  2. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes.

    PubMed

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Payne, H Ross; Kier, Ann B; Schroeder, Friedhelm

    2012-10-01

    The liver expresses high levels of two proteins with high affinity for long-chain fatty acids (LCFAs): liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2). Real-time confocal microscopy of cultured primary hepatocytes from gene-ablated (L-FABP, SCP-2/SCP-x, and L-FABP/SCP-2/SCP-x null) mice showed that the loss of L-FABP reduced cellular uptake of 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazo)-aminostearic acid (a fluorescent-saturated LCFA analog) by ∼50%. Importantly, nuclear targeting of the LCFA was enhanced when L-FABP was upregulated (SCP-2/SCP-x null) but was significantly reduced when L-FABP was ablated (L-FABP null), thus impacting LCFA nuclear targeting. These effects were not associated with a net decrease in expression of key membrane proteins involved in LCFA or glucose transport. Since hepatic LCFA uptake and metabolism are closely linked to glucose uptake, the effect of glucose on L-FABP-mediated LCFA uptake and nuclear targeting was examined. Increasing concentrations of glucose decreased cellular LCFA uptake and even more extensively decreased LCFA nuclear targeting. Loss of L-FABP exacerbated the decrease in LCFA nuclear targeting, while loss of SCP-2 reduced the glucose effect, resulting in enhanced LCFA nuclear targeting compared with control. Simply, ablation of L-FABP decreases LCFA uptake and even more extensively decreases its nuclear targeting.

  3. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    SciTech Connect

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik; Whittaker, Gary R.

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  4. Modification of intracellular free calcium in cultured A10 vascular smooth muscle cells by exogenous phosphatidic acid.

    PubMed

    Bhugra, Praveen; Xu, Yan-Jun; Rathi, Satyajeet; Dhalla, Naranjan S

    2003-06-15

    Exogenous phosphatidic acid (PA) was observed to produce a concentration-dependent increase in [Ca(2+)](i) in cultured A10 vascular smooth muscle cells. Preincubation of cells with sarcoplasmic reticulum Ca(2+)-ATPase inhibitors (cyclopiazonic acid and thapsigargin), a phospholipase C inhibitor (2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate), inositol 1,4,5-trisphosphate receptor antagonists (2-aminoethoxydiphenyl borate and xestospongin), and an activator of protein kinase C (PKC) (phorbol 12-myristate 13-acetate) depressed the PA-evoked increase in [Ca(2+)](i). Although EGTA, an extracellular Ca(2+) chelator, decreased the PA-induced increase in [Ca(2+)](i), sarcolemmal Ca(2+)-channel blockers (verapamil or diltiazem) did not alter the action of PA. On the other hand, inhibitors of PKC (bisindolylmaleimide I) and G(i)-protein (pertussis toxin) potentiated the increase in [Ca(2+)](i) evoked by PA significantly. These results suggest that the PA-induced increase in [Ca(2+)](i) in vascular smooth muscle cells may occur upon the activation of phospholipase C and the subsequent release of Ca(2+) from the inositol 1,4,5-trisphosphate-sensitive Ca(2+) pool in the sarcoplasmic reticulum. This action of PA may be mediated through the involvement of PKC. PMID:12787890

  5. Modification of intracellular free calcium in cultured A10 vascular smooth muscle cells by exogenous phosphatidic acid.

    PubMed

    Bhugra, Praveen; Xu, Yan-Jun; Rathi, Satyajeet; Dhalla, Naranjan S

    2003-06-15

    Exogenous phosphatidic acid (PA) was observed to produce a concentration-dependent increase in [Ca(2+)](i) in cultured A10 vascular smooth muscle cells. Preincubation of cells with sarcoplasmic reticulum Ca(2+)-ATPase inhibitors (cyclopiazonic acid and thapsigargin), a phospholipase C inhibitor (2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate), inositol 1,4,5-trisphosphate receptor antagonists (2-aminoethoxydiphenyl borate and xestospongin), and an activator of protein kinase C (PKC) (phorbol 12-myristate 13-acetate) depressed the PA-evoked increase in [Ca(2+)](i). Although EGTA, an extracellular Ca(2+) chelator, decreased the PA-induced increase in [Ca(2+)](i), sarcolemmal Ca(2+)-channel blockers (verapamil or diltiazem) did not alter the action of PA. On the other hand, inhibitors of PKC (bisindolylmaleimide I) and G(i)-protein (pertussis toxin) potentiated the increase in [Ca(2+)](i) evoked by PA significantly. These results suggest that the PA-induced increase in [Ca(2+)](i) in vascular smooth muscle cells may occur upon the activation of phospholipase C and the subsequent release of Ca(2+) from the inositol 1,4,5-trisphosphate-sensitive Ca(2+) pool in the sarcoplasmic reticulum. This action of PA may be mediated through the involvement of PKC.

  6. Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system.

    PubMed

    Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M

    2014-02-01

    Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol l(-1) CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol l(-1) . Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates.

  7. Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, Pterygoplichthys pardalis.

    PubMed

    Harter, T S; Shartau, R B; Baker, D W; Jackson, D C; Val, A L; Brauner, C J

    2014-08-01

    Preferential intracellular pH (pHi) regulation, where pHi is tightly regulated in the face of a blood acidosis, has been observed in a few species of fish, but only during elevated blood PCO2. To determine whether preferential pHi regulation may represent a general pattern for acid-base regulation during other pH disturbances we challenged the armoured catfish, Pterygoplichthys pardalis, with anoxia and exhaustive exercise, to induce a metabolic acidosis, and bicarbonate injections to induce a metabolic alkalosis. Fish were terminally sampled 2-3 h following the respective treatments and extracellular blood pH, pHi of red blood cells (RBC), brain, heart, liver and white muscle, and plasma lactate and total CO2 were measured. All treatments resulted in significant changes in extracellular pH and RBC pHi that likely cover a large portion of the pH tolerance limits of this species (pH 7.15-7.86). In all tissues other than RBC, pHi remained tightly regulated and did not differ significantly from control values, with the exception of a decrease in white muscle pHi after anoxia and an increase in liver pHi following a metabolic alkalosis. Thus preferential pHi regulation appears to be a general pattern for acid-base homeostasis in the armoured catfish and may be a common response in Amazonian fishes.

  8. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    PubMed

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. PMID:25046754

  9. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    PubMed

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS. PMID:26985864

  10. Bioreducible Polycations as Shuttles for Therapeutic Nucleic Acid and Protein Transfection

    PubMed Central

    Klein, Philipp M.

    2014-01-01

    Abstract Significance: Nucleic acids such as gene-encoding DNAs, gene-silencing small interfering RNAs, or recombinant proteins addressing intracellular molecular targets present a major new therapeutic modality, provided efficient solutions for intracellular delivery can be found. The different physiological redox environments inside and outside the cell can be utilized for optimizing the involved transport processes. Recent Advances: Intracellular delivery of nucleic acids or proteins requires dynamic carriers that discriminate between different cellular locations. Bioreducible cationic polymers can package their therapeutic cargo stably in the extracellular environment, but sense the reducing intracellular cytosolic environment. Based on disulfide cleavage, carriers are degraded into biocompatible fragments and release the cargo in functional form. Disulfide linkages between oligocations, between the carrier and the cargo, or spatial caging of complexed cargo by disulfides have been pursued, with polymers or precise sequence-defined peptides and oligomers. Critical Issues: A quantitative knowledge of the bioreductive capacities within different biological compartments and the involved cellular reduction processes would be greatly helpful for improved carriers with disulfides cleaved within the right compartment at the right time. Future Directions: Novel designs of multifunctional nanocarriers will incorporate macromolecular disulfide entry mechanisms previously optimized by natural evolution of toxins and viruses. In addition to extracellular stabilization and intracellular disassembly, tuned disulfides will contribute to deshielding at the cell surface, or translocation from intracellular compartments to the cytosol. Antioxid. Redox Signal. 21, 804–817. PMID:24219092

  11. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy.

    PubMed

    Gao, Lian-Yong; Laval, Francoise; Lawson, Elise H; Groger, Richard K; Woodruff, Andy; Morisaki, J Hiroshi; Cox, Jeffery S; Daffe, Mamadou; Brown, Eric J

    2003-09-01

    Mycobacterium tuberculosis infects one-third of the world's population and causes two million deaths annually. The unusually low permeability of its cell wall contributes to the ability of M. tuberculosis to grow within host macrophages, a property required for pathogenesis of infection. Mycobacterium marinum is an established model for discovering genes involved in mycobacterial infection. Mycobacterium marinum mutants with transposon insertions in the beta-ketoacyl-acyl carrier protein synthase B gene (kasB) grew poorly in macrophages, although growth in vitro was unaffected. Detailed analyses by thin-layer chromatography, nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, infrared spectroscopy, and chemical degradations showed that the kasB mutants synthesize mycolic acids that are 2-4 carbons shorter than wild type; the defect was localized to the proximal portion of the meromycolate chain. In addition, these mutants showed a significant (approximately 30%) reduction in the abundance of keto-mycolates, with a slight compensatory increase of both alpha- and methoxy-mycolates. Despite these small changes in mycolate length and composition, the kasB mutants exhibited strikingly altered cell wall permeability, leading to a marked increase in susceptibility to lipophilic antibiotics and the host antimicrobial molecules defensin and lysozyme. The abnormalities of the kasB mutants were fully complemented by expressing M. tuberculosis kasB, but not by the closely related gene kasA. These studies identify kasB as a novel target for therapeutic intervention in mycobacterial diseases. PMID:12950920

  12. Activated G Protein Gαs Samples Multiple Endomembrane Compartments.

    PubMed

    Martin, Brent R; Lambert, Nevin A

    2016-09-23

    Heterotrimeric G proteins are localized to the plasma membrane where they transduce extracellular signals to intracellular effectors. G proteins also act at intracellular locations, and can translocate between cellular compartments. For example, Gαs can leave the plasma membrane and move to the cell interior after activation. However, the mechanism of Gαs translocation and its intracellular destination are not known. Here we use bioluminescence resonance energy transfer (BRET) to show that after activation, Gαs rapidly associates with the endoplasmic reticulum, mitochondria, and endosomes, consistent with indiscriminate sampling of intracellular membranes from the cytosol rather than transport via a specific vesicular pathway. The primary source of Gαs for endosomal compartments is constitutive endocytosis rather than activity-dependent internalization. Recycling of Gαs to the plasma membrane is complete 25 min after stimulation is discontinued. We also show that an acylation-deacylation cycle is important for the steady-state localization of Gαs at the plasma membrane, but our results do not support a role for deacylation in activity-dependent Gαs internalization. PMID:27528603

  13. Dual-Compartment Inflatable Suitlock

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Guirgis, Peggy L.; Boyle, Robert M.

    2013-01-01

    There is a need for an improvement over current NASA Extravehicular Activity (EVA) technology. The technology must allow the capacity for quicker, more efficient egress/ingress, allow for shirtsleeve suit maintenance, be compact in transport, and be applicable to environments ranging from planetary surface (partial-g) to orbital or deep space zero-g environments. The technology must also be resistant to dust and other foreign contaminants that may be present on or around a planetary surface. The technology should be portable, and be capable of docking with a variety of habitats, ports, stations, vehicles, and other pressurized modules. The Dual-Compartment Inflatable Suitlock (DCIS) consists of three hard inline bulkheads, separating two cylindrical membrane-walled compartments. The Inner Bulkhead can be fitted with a variety of hatch types, docking flanges, and mating hardware, such as the Common Berthing Mechanism (CBM), for the purpose of mating with vehicles, habitats, and other pressurized modules. The Inner Bulkhead and Center Bulkhead function as the end walls of the Inner Compartment, which during operations, would stay pressurized, either matching the pressure of the habitat or acting as a lower-pressure transitional volume. The Inner Compartment contains donning/doffing fixtures and inner suit-port hatches. The Center Bulkhead has two integrated suit-ports along with a maintenance hatch. The Center Bulkhead and Outer Bulkhead function as the end walls of the Outer Compartment, which stays at vacuum during normal operations. This allows the crewmember to quickly don a suit, and egress the suitlock without waiting for the Outer Compartment to depressurize. The Outer Compartment can be pressurized infrequently for both nominal and off-nominal suit maintenance tasks, allowing shirtsleeve inspections and maintenance/repair of the environmental suits. The Outer Bulkhead has a pressure-assisted hatch door that stays open and stowed during EVA operations, but can

  14. Dual-Compartment Inflatable Suitlock

    NASA Technical Reports Server (NTRS)

    Howe, Scott; Kennedy, Kriss J.; Guirgis, Peggy L.

    2012-01-01

    A paper discusses a dual-compartment inflatable suitlock (DCIS) for Extra - vehicular Activity (EVA) that will allow for dust control, suit maintenance, and efficient EVA egress/ingress. The expandable (inflatable technologies) aspect of the design will allow the unit to stow in a compact package for transport. The DCIS consists of three hard, in line bulkheads, separating two cylindrical membrane-walled compartments. The inner bulkhead can be fitted with a variety of hatch types, docking flanges, and mating hardware, such as the common berthing mechanism (CBM), for the purpose of mating with vehicles, habitats, and other pressurized modules. The inner bulkhead and center bulkhead function as the end walls of the inner compartment, which, during operations, would stay pressurized, either matching the pressure of the habitat or acting as a lower-pressure transitional volume. The suited crewmember can quickly don a suit, and egress the suitlock without waiting for the compartment to depressurize. The outer compartment can be pressurized infrequently, when a long dwell time is expected prior to the next EVA, or during off-nominal suit maintenance tasks, allowing shirtsleeve inspections and maintenance of the space suits. The outer bulkhead has a pressure-assisted hatch door that stays open and stowed routinely, but can be closed for suit maintenance and pressurization as needed.

  15. Compartment syndrome following intraosseous infusion.

    PubMed

    Moen, Todd C; Sarwark, John F

    2008-08-01

    Intraosseous infusion is a valuable technique in the resuscitation of critically ill pediatric patients in whom vascular access has proved otherwise impossible. Although it is well established as a safe and reliable means of emergent access, intraosseous infusion is not without danger, nor complication. One of the rare yet most grave complications of intraosseous access is compartment syndrome. We report a case of compartment syndrome as a result of intraosseous infusion that serves to remind of the potential pitfalls of this technique. An otherwise healthy 6-year-old girl presented to our institution's pediatric intensive care unit following emergent resuscitation for a prolonged cardiac arrest. Approximately 1 hour following an uneventful soccer practice, without any antecedent cardiopulmonary symptoms or complaints, the patient collapsed and was unresponsive, not breathing, and pulseless. In the course of resuscitation, right and left tibial intraosseous lines were started. After 30 minutes of resuscitation, with multiple rounds of lidocaine and epinephrine infused through the intraosseous lines, a sustained perfusing rhythm was established. Acute compartment syndrome was diagnosed, and through anterolateral and posteromedial incisions, all 4 fascial compartments were released. While the condition of the patient's extremity improved, the overall clinical condition of the patient did not. This case highlights the fundamental principles regarding the use of intraosseous infusion and the diagnosis and management of compartment syndrome in critically ill patients. PMID:19292404

  16. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris.

  17. 14 CFR 25.853 - Compartment interiors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Compartment interiors. For each compartment occupied by the crew or passengers, the following apply: (a... and the cavity walls that are exposed when a full complement of such carts or containers is not... compartments, galleys, lavatories, crew rest quarters, cabinets and stowage compartments, need not meet...

  18. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate.

    PubMed

    Berguig, Geoffrey Y; Convertine, Anthony J; Shi, Julie; Palanca-Wessels, Maria Corinna; Duvall, Craig L; Pun, Suzie H; Press, Oliver W; Stayton, Patrick S

    2012-12-01

    Ratiometric fluorescence and cellular fractionation studies were employed to characterize the intracellular trafficking dynamics of antibody-poly(propylacrylic acid) (PPAA) conjugates in CD22+ RAMOS-AW cells. The HD39 monoclonal antibody (mAb) directs CD22-dependent, receptor-mediated uptake in human B-cell lymphoma cells, where it is rapidly trafficked to the lysosomal compartment. To characterize the intracellular-release dynamics of the polymer-mAb conjugates, HD39-streptavidin (HD39/SA) was dual-labeled with pH-insensitive Alexa Fluor 488 and pH-sensitive pHrodo fluorophores. The subcellular pH distribution of the HD39/SA-polymer conjugates was quantified as a function of time by live-cell fluorescence microscopy, and the average intracellular pH value experienced by the conjugates was also characterized as a function of time by flow cytometry. PPAA was shown to alter the intracellular trafficking kinetics strongly relative to HD39/SA alone or HD39/SA conjugates with a control polymer, poly(methacryclic acid) (PMAA). Subcellular trafficking studies revealed that after 6 h, only 11% of the HD39/SA-PPAA conjugates had been trafficked to acidic lysosomal compartments with values at or below pH 5.6. In contrast, the average intracellular pH of HD39/SA alone dropped from 6.7 ± 0.2 at 1 h to 5.6 ± 0.5 after 3 h and 4.7 ± 0.6 after 6 h. Conjugation of the control polymer PMAA to HD39/SA showed an average pH drop similar to that of HD39/SA. Subcellular fractionation studies with tritium-labeled HD39/SA demonstrated that after 6 h, 89% of HD39/SA was associated with endosomes (Rab5+) and lysosomes (Lamp2+), while 45% of HD39/SA-PPAA was translocated to the cytosol (lactate dehydrogenase+). These results demonstrate the endosomal-releasing properties of PPAA with antibody-polymer conjugates and detail their intracellular trafficking dynamics and subcellular compartmental distributions over time.

  19. Placental Hofbauer cells assemble and sequester HIV-1 in tetraspanin-positive compartments that are accessible to broadly neutralizing antibodies

    PubMed Central

    Johnson, Erica L; Chu, Hin; Byrareddy, Siddappa Nagadenahalli; Spearman, Paul; Chakraborty, Rana

    2015-01-01

    Introduction Within monocyte-derived macrophages, HIV-1 accumulates in intracellular virus-containing compartments (VCCs) that are inaccessible to the external environment, which implicate these cells as latently infected HIV-1 reservoirs. During mother-to-child transmission of HIV-1, human placental macrophages (Hofbauer cells (HCs)) are viral targets, and have been shown to be infected in vivo and sustain low levels of viral replication in vitro; however, the risk of in utero transmission is less than 7%. The role of these primary macrophages as viral reservoirs is largely undefined. The objective of this study is to define potential sites of viral assembly, accumulation and neutralization in HCs given the pivotal role of the placenta in preventing HIV-1 infection in the mother-infant dyad. Methods Term placentae from 20 HIV-1 seronegative women were obtained following caesarian section. VCCs were evaluated by 3D confocal and electron microscopy. Colocalization R values (Pearson's correlation) were quantified with colocalization module of Volocity 5.2.1. Replication kinetics and neutralization studies were evaluated using p24 ELISA. Results We demonstrate that primary HCs assemble and sequester HIV-1BaL in intracellular VCCs, which are enriched in endosomal/lysosomal markers, including CD9, CD81, CD63 and LAMP-1. Following infection, we observed HIV-1 accumulation in potentially acidic compartments, which stained intensely with Lysotracker-Red. Remarkably, these compartments are readily accessible via the cell surface and can be targeted by exogenously applied small molecules and HIV-1-specific broadly neutralizing antibodies. In addition, broadly neutralizing antibodies (4E10 and VRC01) limited viral replication by HIV-1-infected HCs, which may be mediated by FcγRI. Conclusions These findings suggest that placental HCs possess intrinsic adaptations facilitating unique sequestration of HIV-1, and may serve as a protective viral reservoir to permit viral

  20. Affibody-mediated retention of the epidermal growth factor receptor in the secretory compartments leads to inhibition of phosphorylation in the kinase domain.

    PubMed

    Vernet, Erik; Lundberg, Emma; Friedman, Mikaela; Rigamonti, Nicolò; Klausing, Sandra; Nygren, Per-Ake; Gräslund, Torbjörn

    2009-09-01

    Abnormal activity of the epidermal growth factor receptor (EGFR) is associated with various cancer-related processes and motivates the search for strategies that can selectively block EGFR signalling. In this study, functional knockdown of EGFR was achieved through expression of an affibody construct, (ZEGFR:1907)(2-)KDEL, with high affinity for EGFR and extended with the amino acids KDEL to make it resident in the secretory compartments. Expression of (ZEGFR:1907)(2-)KDEL resulted in 80% reduction ofthe cell surface level of EGFR, and fluorescent staining for EGFR and the (ZEGFR:1907)(2-)KDEL construct showed overlapping intracellular localisation. Immunocapture of EGFR from cell lysates showed that an intracellular complex between EGFR and the affibody construct had been formed, further indicating aspecific interaction between the affibody construct and EGFR. Surface depletion of EGFR led to a dramatic decrease in the amount of kinase domain phosphorylated EGFR, coincident with a significant decrease in the proliferation rate. PMID:19552886

  1. Uptake and intracellular trafficking of superantigens in dendritic cells.

    PubMed

    Ganem, María B; De Marzi, Mauricio C; Fernández-Lynch, María J; Jancic, Carolina; Vermeulen, Mónica; Geffner, Jorge; Mariuzza, Roy A; Fernández, Marisa M; Malchiodi, Emilio L

    2013-01-01

    Bacterial superantigens (SAgs) are exotoxins produced mainly by Staphylococcus aureus and Streptococcus pyogenes that can cause toxic shock syndrome (TSS). According to current paradigm, SAgs interact directly and simultaneously with T cell receptor (TCR) on the T cell and MHC class II (MHC-II) on the antigen-presenting cell (APC), thereby circumventing intracellular processing to trigger T cell activation. Dendritic cells (DCs) are professional APCs that coat nearly all body surfaces and are the most probable candidate to interact with SAgs. We demonstrate that SAgs are taken up by mouse DCs without triggering DC maturation. SAgs were found in intracellular acidic compartment of DCs as biologically active molecules. Moreover, SAgs co-localized with EEA1, RAB-7 and LAMP-2, at different times, and were then recycled to the cell membrane. DCs loaded with SAgs are capable of triggering in vitro lymphocyte proliferation and, injected into mice, stimulate T cells bearing the proper TCR in draining lymph nodes. Transportation and trafficking of SAgs in DCs might increase the local concentration of these exotoxins where they will produce the highest effect by promoting their encounter with both MHC-II and TCR in lymph nodes, and may explain how just a few SAg molecules can induce the severe pathology associated with TSS. PMID:23799083

  2. Uptake and Intracellular Trafficking of Superantigens in Dendritic Cells

    PubMed Central

    Fernández-Lynch, María J.; Jancic, Carolina; Vermeulen, Mónica; Geffner, Jorge; Mariuzza, Roy A.; Fernández, Marisa M.; Malchiodi, Emilio L.

    2013-01-01

    Bacterial superantigens (SAgs) are exotoxins produced mainly by Staphylococcus aureus and Streptococcus pyogenes that can cause toxic shock syndrome (TSS). According to current paradigm, SAgs interact directly and simultaneously with T cell receptor (TCR) on the T cell and MHC class II (MHC-II) on the antigen-presenting cell (APC), thereby circumventing intracellular processing to trigger T cell activation. Dendritic cells (DCs) are professional APCs that coat nearly all body surfaces and are the most probable candidate to interact with SAgs. We demonstrate that SAgs are taken up by mouse DCs without triggering DC maturation. SAgs were found in intracellular acidic compartment of DCs as biologically active molecules. Moreover, SAgs co-localized with EEA1, RAB-7 and LAMP-2, at different times, and were then recycled to the cell membrane. DCs loaded with SAgs are capable of triggering in vitro lymphocyte proliferation and, injected into mice, stimulate T cells bearing the proper TCR in draining lymph nodes. Transportation and trafficking of SAgs in DCs might increase the local concentration of these exotoxins where they will produce the highest effect by promoting their encounter with both MHC-II and TCR in lymph nodes, and may explain how just a few SAg molecules can induce the severe pathology associated with TSS. PMID:23799083

  3. Intracellular pH measurement in frog muscle by means of 31P-nuclear magnetic resonance.

    PubMed

    Yoshizaki, K; Nishikawa, H; Yamada, S; Morimoto, T; Watari, H

    1979-01-01

    The 31P-NMR technique was used for the monitoring of intracellular pH and studying its heterogeneity in the femoral biceps muscle of Rana catesbiana under anaerobic conditions. The value of intracellular pH of fresh muscle calculated from the chemical shift of intracellular inorganic phosphate (P1) was 7.3 on average and the line width of P1 was about 0.2 ppm. As the line width determined by the relaxation mechanism was 0.099 ppm, the P1 signal in fresh muscle was concluded to consist of overlapped narrow components, which indicated the heterogeneity of muscular pH (about 0.2 pH unit). Living muscle showed gradual acidification due to glycolysis and the decrease in heterogeneity. When glycolysis was suppressed by iodoacetic acid, slight alkalization due to the breakdown of creatine phosphate was observed. When the Lohmann reaction was suppressed by 2, 4-dinitro-1-fluorobenzene, rapid acidification accompanied by the appearance of a new acidic component was observed with the onset of ATP decrease. This new component was not detected in the muscle pretreated with glycerol to disrupt the transverse tubules. Therefore, it is likely that this new acidic component originates in the intracellular compartment, and not in the cellular difference. PMID:40052

  4. Brush border myosin-I truncated in the motor domain impairs the distribution and the function of endocytic compartments in an hepatoma cell line.

    PubMed Central

    Durrbach, A; Collins, K; Matsudaira, P; Louvard, D; Coudrier, E

    1996-01-01

    Myosins I, a ubiquitous monomeric class of myosins that exhibits actin-based motor properties, are associated with plasma and/or vesicular membranes and have been suggested as players for trafficking events between cell surface and intracellular membranous structures. To investigate the function of myosins 1, we have transfected a mouse hepatoma cell line (BWTG3) with cDNAs encoding the chicken brush border myosin-I (BBMI) and two variants truncated in the motor domain. One variant is deleted of the first 446 amino acids and thereby lacks the ATP binding site, whereas the other is deleted of the entire motor domain and lacks the ATP and actin binding sites. We have observed (i) that significant amounts of the truncated variants are recovered with membrane fractions after cell fractionation, (ii) that they codistribute with a compartment containing alpha2-macroglobulin internalized for 30 min as determined by fluorescent microscopy, (iii) that the production of BBMI-truncated variants impairs the distribution of the acidic compartment and ligands internalized for 30 min, and (iv) that the production of the truncated variant containing the actin binding site decreases the rate of alpha2-macroglobulin degradation whereas the production of the variant lacking the ATP binding site and the actin binding site increases the rate of a2-macroglobulin degradation. These observations indicate that the two truncated variants have a dominant negative effect on the distribution and the function of the endocytic compartments. We propose that an unidentified myosin-I might contribute to the distribution of endocytic compartments in a juxtanuclear position and/or to the regulation of the delivery of ligands to the degradative compartment in BWTG3 cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692943

  5. 2,4-Dichlorophenoxyacetic acid alters intracellular pH and ion transport in the outer mantle epithelium of the bivalve Anodonta cygnea.

    PubMed

    Alves, Marco G; Oliveira, Pedro F

    2014-09-01

    Bivalve molluscs, due to their sedentary mode of life and filter-feeding behavior, are very susceptible to pollutant bioaccumulation and used as sentinel organisms in the assessment of environment pollution. Herein we aimed to determine the in vivo, ex vivo and in vitro effects of 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide, in Anodonta cygnea shell growth mechanisms. For that, we evaluated the effect of 2,4-D (100 μM) exposure on the transepithelial short-circuit current (Isc), potential (Vt) and conductance (Gt), as well as on OME ion transport systems and intracellular pH (pHi). In vivo exposure to 2,4-D caused an increase of 50% on the Isc generated by OME and ex vivo addition of that compound to the apical side of OME also induced an Isc increase. Furthermore, 2,4-D was able to cause a pHi increase in isolated cells of OME. Noteworthy, when 2,4-D was added following the exposure to specific inhibitors of several membrane transporters identified as responsible for pHi maintenance in these cells, no significant effect was observed on pHi except when the V-type ATPase inhibitor was used, indicating an overlap with the effect of 2,4-D. Thus, we concluded that 2,4-D is able of enhancing the activity of the V-ATPases present on the OME of A. cygnea and that this effect seems to be due to a direct stimulation of those H(+) transporters present on the apical portion of the membrane of OME cells, which are vital for shell maintenance and growth. This study allows us to better understand the molecular mechanisms behind 2,4-D toxicity and its deleterious effect in aquatic ecosystems, with particular emphasis on those involved in shell formation of bivalves.

  6. Exploring Water-Tight Compartments.

    ERIC Educational Resources Information Center

    Fishman, Steve

    John Dewey employed the phrase "water-tight compartments" to mark deficiencies of integration within an individual's personality. For Dewey, the self is complex, but a strong personality integrates its various habits so that they reinforce rather than conflict with one another. Dewey's focus on this problem of personality has relevance for…

  7. A DNA-Device that Mediates Selective Endosomal Escape and Intracellular Delivery of Drugs and Biologicals

    PubMed Central

    Muro, Silvia

    2014-01-01

    Design of materials to aid intracellular delivery of agents can greatly improve medical treatments. While DNA is a molecule difficult to introduce into cells, DNA can be engineered into devices capable of intracellular delivery. Yet, transport mediated by DNA-devices void of other structural material, with size greater than that associated with non-specific penetration, and with targeting capacity enough to overcome non-specific pathways has not been achived. This study demonstrates that this is possible. Submicrometer (200-nm) dendrimers built of DNA (nucleodendrimers (NDs)) are coupled to antibodies against selected cell-surface receptors and compared to polymer nanoparticles (NPs). NDs and NPs bind specifically to cells expressing these targets and efficiently enter cells via the pathway associated with the selected receptor. While NPs traffic to perinuclear endo-lysosomes, NDs remain scattered throughout the cell, suggesting endosomal escape. This is confirmed in vitro, where NDs disrupt membranous vesicles at endosomal-like pH and in cell culture, where they: provide endosomal escape of model drugs, sugars, proteins, and nucleic acids; allow access to other intracellular compartments; result in measurable effects of cargoes; and do not cause cytotoxicity. Therefore, these DNA-nanodevices can be used to selectively overcome intracellular barriers, underscoring the growing range of applications of DNA materials. PMID:25018687

  8. A DNA-Device that Mediates Selective Endosomal Escape and Intracellular Delivery of Drugs and Biologicals.

    PubMed

    Muro, Silvia

    2014-05-21

    Design of materials to aid intracellular delivery of agents can greatly improve medical treatments. While DNA is a molecule difficult to introduce into cells, DNA can be engineered into devices capable of intracellular delivery. Yet, transport mediated by DNA-devices void of other structural material, with size greater than that associated with non-specific penetration, and with targeting capacity enough to overcome non-specific pathways has not been achived. This study demonstrates that this is possible. Submicrometer (200-nm) dendrimers built of DNA (nucleodendrimers (NDs)) are coupled to antibodies against selected cell-surface receptors and compared to polymer nanoparticles (NPs). NDs and NPs bind specifically to cells expressing these targets and efficiently enter cells via the pathway associated with the selected receptor. While NPs traffic to perinuclear endo-lysosomes, NDs remain scattered throughout the cell, suggesting endosomal escape. This is confirmed in vitro, where NDs disrupt membranous vesicles at endosomal-like pH and in cell culture, where they: provide endosomal escape of model drugs, sugars, proteins, and nucleic acids; allow access to other intracellular compartments; result in measurable effects of cargoes; and do not cause cytotoxicity. Therefore, these DNA-nanodevices can be used to selectively overcome intracellular barriers, underscoring the growing range of applications of DNA materials.

  9. Intracellular trafficking of silicon particles and logic-embedded vectors

    NASA Astrophysics Data System (ADS)

    Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.

    2010-08-01

    Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments.Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon

  10. Determination of intracellular nitrate.

    PubMed Central

    Romero, J M; Lara, C; Guerrero, M G

    1989-01-01

    A sensitive procedure has been developed for the determination of intracellular nitrate. The method includes: (i) preparation of cell lysates in 2 M-H3PO4 after separation of cells from the outer medium by rapid centrifugation through a layer of silicone oil, and (ii) subsequent nitrate analysis by ion-exchange h.p.l.c. with, as mobile phase, a solution containing 50 mM-H3PO4 and 2% (v/v) tetrahydrofuran, adjusted to pH 1.9 with NaOH. The determination of nitrate is subjected to interference by chloride and sulphate when present in the samples at high concentrations. Nitrite also interferes, but it is easily eliminated by treatment of the samples with sulphamic acid. The method has been successfully applied to the study of nitrate transport in the unicellular cyanobacterium Anacystis nidulans. PMID:2497740

  11. Intracellular parcel service: current issues in intracellular membrane trafficking.

    PubMed

    Herrmann, Johannes M; Spang, Anne

    2015-01-01

    Eukaryotic cells contain a multitude of membrane structures that are connected through a highly dynamic and complex exchange of their constituents. The vibrant instability of these structures challenges the classical view of defined, static compartments that are connected by different types of vesicles. Despite this astonishing complexity, proteins and lipids are accurately transported into the different intracellular membrane systems. Over the past few decades many factors have been identified that either mediate or regulate intracellular membrane trafficking. Like in a modern parcel sorting system of a logistics center, the cargo typically passes through several sequential sorting stations until it finally reaches the location that is specified by its individual address label. While each membrane system employs specific sets of factors, the transport processes typically operate on common principles. With the advent of genome- and proteome-wide screens, the availability of mutant collections, exciting new developments in microscope technology and sophisticated methods to study their dynamics, the future promises a broad and comprehensive picture of the processes by which eukaryotic cells sort their proteins.

  12. Toward Intracellular Targeted Delivery of Cancer Therapeutics

    PubMed Central

    Pandya, Hetal; Debinski, Waldemar

    2013-01-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells. PMID:22671766

  13. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism.

    PubMed

    Georgiou, Dimitra K; Dagnino-Acosta, Adan; Lee, Chang Seok; Griffin, Deric M; Wang, Hui; Lagor, William R; Pautler, Robia G; Dirksen, Robert T; Hamilton, Susan L

    2015-09-25

    Ca(2+) permeation and/or binding to the skeletal muscle L-type Ca(2+) channel (CaV1.1) facilitates activation of Ca(2+)/calmodulin kinase type II (CaMKII) and Ca(2+) store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca(2+) binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial β-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle.

  14. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism*

    PubMed Central

    Georgiou, Dimitra K.; Dagnino-Acosta, Adan; Lee, Chang Seok; Griffin, Deric M.; Wang, Hui; Lagor, William R.; Pautler, Robia G.; Dirksen, Robert T.; Hamilton, Susan L.

    2015-01-01

    Ca2+ permeation and/or binding to the skeletal muscle L-type Ca2+ channel (CaV1.1) facilitates activation of Ca2+/calmodulin kinase type II (CaMKII) and Ca2+ store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca2+ binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial β-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle. PMID:26245899

  15. Role of amino acid transporters in amino acid sensing1234

    PubMed Central

    2014-01-01

    Amino acid (AA) transporters may act as sensors, as well as carriers, of tissue nutrient supplies. This review considers recent advances in our understanding of the AA-sensing functions of AA transporters in both epithelial and nonepithelial cells. These transporters mediate AA exchanges between extracellular and intracellular fluid compartments, delivering substrates to intracellular AA sensors. AA transporters on endosomal (eg, lysosomal) membranes may themselves function as intracellular AA sensors. AA transporters at the cell surface, particularly those for large neutral AAs such as leucine, interact functionally with intracellular nutrient-signaling pathways that regulate metabolism: for example, the mammalian target of rapamycin complex 1 (mTORC1) pathway, which promotes cell growth, and the general control non-derepressible (GCN) pathway, which is activated by AA starvation. Under some circumstances, upregulation of AA transporter expression [notably a leucine transporter, solute carrier 7A5 (SLC7A5)] is required to initiate AA-dependent activation of the mTORC1 pathway. Certain AA transporters may have dual receptor-transporter functions, operating as “transceptors” to sense extracellular (or intracellular) AA availability upstream of intracellular signaling pathways. New opportunities for nutritional therapy may include targeting of AA transporters (or mechanisms that upregulate their expression) to promote protein-anabolic signals for retention or recovery of lean tissue mass. PMID:24284439

  16. Simultaneous pH measurement in endocytic and cytosolic compartments in living cells using confocal microscopy.

    PubMed

    Lucien, Fabrice; Harper, Kelly; Pelletier, Pierre-Paul; Volkov, Leonid; Dubois, Claire M

    2014-01-01

    Intracellular pH is tightly regulated and differences in pH between the cytoplasm and organelles have been reported(1). Regulation of cellular pH is crucial for homeostatic control of physiological processes that include: protein, DNA and RNA synthesis, vesicular trafficking, cell growth and cell division. Alterations in cellular pH homeostasis can lead to detrimental functional changes and promote progression of various diseases(2). Various methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of pH in the cytoplasm and in organelles. Here, we describe in detail a rapid and accurate method for the simultaneous measurement of cytoplasmic and organellar pH by using confocal microscopy on living cells(3). This goal is achieved with the use of two pH-sensing ratiometric dyes that possess selective cellular compartment partitioning. For instance, SNARF-1 is compartmentalized inside the cytoplasm whereas HPTS is compartmentalized inside endosomal/lysosomal organelles. Although HPTS is commonly used as a cytoplasmic pH indicator, this dye can specifically label vesicles along the endosomal-lysosomal pathway after being taken up by pinocytosis(3,4). Using these pH-sensing probes, it is possible to simultaneously measure pH within the endocytic and cytoplasmic compartments. The optimal excitation wavelength of HPTS varies depending on the pH while for SNARF-1, it is the optimal emission wavelength that varies. Following loading with SNARF-1 and HPTS, cells are cultured in different pH-calibrated solutions to construct a pH standard curve for each probe. Cell imaging by confocal microscopy allows elimination of artifacts and background noise. Because of the spectral properties of HPTS, this probe is better suited for measurement of the mildly acidic endosomal compartment or to demonstrate alkalinization of the endosomal/lysosomal organelles. This method simplifies data analysis, improves accuracy of pH measurements and can

  17. Simultaneous pH Measurement in Endocytic and Cytosolic Compartments in Living Cells using Confocal Microscopy

    PubMed Central

    Lucien, Fabrice; Harper, Kelly; Pelletier, Pierre-Paul; Volkov, Leonid; Dubois, Claire M.

    2014-01-01

    Intracellular pH is tightly regulated and differences in pH between the cytoplasm and organelles have been reported1. Regulation of cellular pH is crucial for homeostatic control of physiological processes that include: protein, DNA and RNA synthesis, vesicular trafficking, cell growth and cell division. Alterations in cellular pH homeostasis can lead to detrimental functional changes and promote progression of various diseases2. Various methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of pH in the cytoplasm and in organelles. Here, we describe in detail a rapid and accurate method for the simultaneous measurement of cytoplasmic and organellar pH by using confocal microscopy on living cells3. This goal is achieved with the use of two pH-sensing ratiometric dyes that possess selective cellular compartment partitioning. For instance, SNARF-1 is compartmentalized inside the cytoplasm whereas HPTS is compartmentalized inside endosomal/lysosomal organelles. Although HPTS is commonly used as a cytoplasmic pH indicator, this dye can specifically label vesicles along the endosomal-lysosomal pathway after being taken up by pinocytosis3,4. Using these pH-sensing probes, it is possible to simultaneously measure pH within the endocytic and cytoplasmic compartments. The optimal excitation wavelength of HPTS varies depending on the pH while for SNARF-1, it is the optimal emission wavelength that varies. Following loading with SNARF-1 and HPTS, cells are cultured in different pH-calibrated solutions to construct a pH standard curve for each probe. Cell imaging by confocal microscopy allows elimination of artifacts and background noise. Because of the spectral properties of HPTS, this probe is better suited for measurement of the mildly acidic endosomal compartment or to demonstrate alkalinization of the endosomal/lysosomal organelles. This method simplifies data analysis, improves accuracy of pH measurements and can be used

  18. The Orbital Workshop Shower Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This photograph shows technicians performing a checkout of the Metabolic Analyzer (center background) and the Ergometer (foreground) in the Orbital Workshop (OWS). The shower compartment is at right. The Ergometer (Skylab Experiment M171) evaluated man's metabolic effectiveness and cost of work in space environment. Located in the experiment and work area of the OWS, the shower compartment was a cylindrical cloth enclosure that was folded flat when not in use. The bottom ring of the shower was fastened to the floor and contained foot restraints. The upper ring contained the shower head and hose. To use the shower, the astronaut filled a pressurized portable bottle with heated water and attached the bottle to the ceiling. A flexible hose cornected the water bottle to a handheld shower head. The astronaut pulled the cylindrical shower wall up into position and bathed, using liquid soap. Both soap and water were carefully rationed, having been premeasured for economical use.

  19. The Orbital Workshop Shower Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    In this photograph, the Orbital Workshop shower compartment was unfolded by technicians for inspection. The shower compartment was a cylindrical cloth enclosure that was folded flat when not in use. The bottom ring of the shower was fastened to the floor and contained foot restraints. The upper ring contained the shower head and hose. To use the shower, the astronaut filled a pressurized portable bottle with heated water and attached the bottle to the ceiling. A flexible hose cornected the water bottle to a handheld shower head. The astronaut pulled the cylindrical shower wall up into position and bathed, using liquid soap. Both soap and water were carefully rationed, having been premeasured for economical use.

  20. 36 CFR 1192.127 - Sleeping compartments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Intercity Rail Cars and Systems § 1192.127 Sleeping compartments. (a) Sleeping compartments required to be... controls, call buttons, electrical outlets, etc.) shall be mounted no more than 48 inches, and no less...

  1. 36 CFR 1192.127 - Sleeping compartments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Intercity Rail Cars and Systems § 1192.127 Sleeping compartments. (a) Sleeping compartments required to be... controls, call buttons, electrical outlets, etc.) shall be mounted no more than 48 inches, and no less...

  2. 36 CFR 1192.127 - Sleeping compartments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Intercity Rail Cars and Systems § 1192.127 Sleeping compartments. (a) Sleeping compartments required to be... controls, call buttons, electrical outlets, etc.) shall be mounted no more than 48 inches, and no less...

  3. 36 CFR 1192.127 - Sleeping compartments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Intercity Rail Cars and Systems § 1192.127 Sleeping compartments. (a) Sleeping compartments required to be... controls, call buttons, electrical outlets, etc.) shall be mounted no more than 48 inches, and no less...

  4. Method and apparatus to assess compartment syndrome

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki (Inventor); Hargens, Alan R. (Inventor); Yost, William T. (Inventor)

    2008-01-01

    A method and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatile components on at least one compartment dimension. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring excess pressure in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the reflected imparted ultrasonic waves, and converting them to electrical signals, a pulsed phase-locked loop device for assessing a body compartment configuration and producing an output signal, and means for mathematically manipulating the output signal to thereby categorize pressure build-up in the body compartment from the mathematical manipulations.

  5. Orbiter Crew Compartment Integration-Stowage

    NASA Technical Reports Server (NTRS)

    Morgan, L. Gary

    2007-01-01

    This viewgraph presentation describes the Orbiter Crew Compartment Integration (CCI) stowage. The evolution of orbiter crew compartment stowage volume is also described, along with photographs presented of the on-orbit volume stowage capacity.

  6. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    PubMed

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-06-08

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  7. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    PubMed

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-01-01

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide. PMID:27338318

  8. Effects of dietary fats differing in n-6:n-3 ratio fed to high-yielding dairy cows on fatty acid composition of ovarian compartments, follicular status, and oocyte quality.

    PubMed

    Zachut, M; Dekel, I; Lehrer, H; Arieli, A; Arav, A; Livshitz, L; Yakoby, S; Moallem, U

    2010-02-01

    The objectives were to determine the incorporation of dietary encapsulated fats differing in n-6:n-3 ratio into milk fat, plasma, and various ovarian compartments and to examine the effects on ovarian follicular status, preovulatory follicle characteristics, and oocyte quality. Twenty-four multiparous Israeli Holstein cows, averaging 114 d in milk, were assigned to 1 of 3 treatment groups: 1) control (n=7), in which cows were fed a lactating cow diet; 2) E-FLAX (n=8), in which cows were fed a lactating cow diet that consisted of 1kg/d of encapsulated fat (3.8% of dry matter) containing 40.8% flaxseed oil, providing 242.2g of C18:3n-3 (low n-6:n-3 ratio); or 3) E-SUN (n=9), in which cows were fed a lactating cow diet that consisted of 1kg/d of encapsulated fat (3.8% of dry matter) containing 40.8% sunflower oil, providing 260.0g of C18:2n-6 (high n-6:n-3 ratio). Ovaries were monitored by ultrasonography for follicular status, and after synchronization, follicles >7mm were aspirated and evaluated. Ovum pickup was performed (19 sessions for the control and E-FLAX groups and 11 for the E-SUN group), and in vitro maturation and oocyte fertilization were conducted. The E-FLAX treatment increased the proportions of C18:3n-3 (5.8 fold), C20:5n-3, and C22:5n-3 (approximately 4-fold) in milk fat as compared with the other 2 treatments. The proportion of C18:3n-3 fatty acid in plasma increased dramatically with the E-FLAX treatment, from 1.43 and 1.49% in the control and E-SUN groups, respectively, to 7.98% in the E-FLAX group. Consequently, the n-6:n-3 ratio in plasma was reduced from approximately 42 in the control and E-SUN groups to 6.74 in the E-FLAX group. Proportions of C18:3n-3 in follicular fluid and granulosa cells were approximately 5-fold higher in the E-FLAX group than in the other 2 groups. The percentage of C18:2n-6 in cumulus-oocyte complexes of cows in the E-SUN group was 54% higher than that in the E-FLAX group and was 2.4-fold higher than that in the

  9. 36 CFR 1192.127 - Sleeping compartments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Sleeping compartments. 1192.127 Section 1192.127 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS... Intercity Rail Cars and Systems § 1192.127 Sleeping compartments. (a) Sleeping compartments required to...

  10. 49 CFR 38.127 - Sleeping compartments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Sleeping compartments. 38.127 Section 38.127... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a) Sleeping compartments required to be accessible shall be designed so as to allow a person using...

  11. 49 CFR 38.127 - Sleeping compartments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Sleeping compartments. 38.127 Section 38.127... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a) Sleeping compartments required to be accessible shall be designed so as to allow a person using...

  12. 49 CFR 38.127 - Sleeping compartments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Sleeping compartments. 38.127 Section 38.127... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a) Sleeping compartments required to be accessible shall be designed so as to allow a person using...

  13. 14 CFR 27.771 - Pilot compartment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment. 27.771 Section 27.771... Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b) If there is provision...

  14. 14 CFR 29.771 - Pilot compartment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment. 29.771 Section 29.771... Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b) If there is provision...

  15. 14 CFR 27.771 - Pilot compartment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment. 27.771 Section 27.771... Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b) If there is provision...

  16. 14 CFR 29.771 - Pilot compartment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment. 29.771 Section 29.771... Pilot compartment. For each pilot compartment— (a) The compartment and its equipment must allow each pilot to perform his duties without unreasonable concentration or fatigue; (b) If there is provision...

  17. 14 CFR 29.853 - Compartment interiors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Compartment interiors. For each compartment to be used by the crew or passengers— (a) The materials (including finishes or decorative surfaces applied to the materials) must meet the following test criteria as... walls, structural flooring, and materials used in the construction of stowage compartments (other...

  18. 14 CFR 29.853 - Compartment interiors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Compartment interiors. For each compartment to be used by the crew or passengers— (a) The materials (including finishes or decorative surfaces applied to the materials) must meet the following test criteria as... walls, structural flooring, and materials used in the construction of stowage compartments (other...

  19. Exertional compartment syndromes of the lower extremity.

    PubMed

    Schepsis, A A; Lynch, G

    1996-03-01

    Compartment syndromes may be acute or chronic secondary to exertion or exercise. The chronic or exertional type most commonly involves the lower extremity, particularly the anterior compartment of the lower leg, and is the subject of this review. Rarely, an exertional compartment syndrome may become acute. The diagnosis is based on history, physical examination, and compartment pressure measurements. The differential diagnosis of exertional leg pain includes stress fractures, stress reaction, periostitis, claudication, popliteal artery entrapment, and peripheral nerve entrapment. Unusual causes, such as a ganglion of the proximal tibiofibular joint causing an anterior compartment syndrome, have recently been reported.

  20. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli.

    PubMed

    Yang, Maiyun; Jalloh, Abubakar S; Wei, Wei; Zhao, Jing; Wu, Peng; Chen, Peng R

    2014-01-01

    Bioorthogonal reactions, especially the Cu(I)-catalysed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labelling within the cytoplasm of Escherichia coli, we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions. PMID:25236616

  1. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli.

    PubMed

    Yang, Maiyun; Jalloh, Abubakar S; Wei, Wei; Zhao, Jing; Wu, Peng; Chen, Peng R

    2014-09-19

    Bioorthogonal reactions, especially the Cu(I)-catalysed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labelling within the cytoplasm of Escherichia coli, we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions.

  2. Live cell imaging of intracellular Salmonella enterica.

    PubMed

    Kehl, Alexander; Hensel, Michael

    2015-01-01

    During the intracellular phase of the pathogenic lifestyle, Salmonella enterica massively alters the endosomal system of its host cells. Two hallmarks are the remodeling of phagosomes into the Salmonella-containing vacuole (SCV) as a replicative niche, and the formation of tubular structures, such as Salmonella-induced filaments (SIFs). To study the dynamics and the fate of these Salmonella-specific compartments, live cell imaging (LCI) is a method of choice. In this chapter, we compare currently used microscopy techniques and focus on considerations and requirements specific for LCI. Detailed protocols for LCI of Salmonella infection with either confocal laser scanning microscopy (CLSM) or spinning disk confocal microscopy (SDCM) are provided.

  3. Interactions of pathogen-containing compartments with the secretory pathway.

    PubMed

    Canton, Johnathan; Kima, Peter E

    2012-11-01

    A subgroup of intracellular pathogens reside and replicate within membrane-bound compartments often termed pathogen-containing compartments (PCC). PCCs navigate around a wide range of host cell vesicles and organelles. In light of the perils of engaging with vesicles of the endocytic pathway, most PCCs modulate their interactions with endocytic vesicles while a few avoid those interactions. The secretory pathway constitutes another important grouping of vesicles and organelles in host cells. Although the negative consequences of engaging with the secretory pathway are not known, there is evidence that PCCs interact differentially with vesicles and organelles in this pathway as well. In this review, we consider three prokaryote pathogens and two protozoan parasites for which there is information on the interactions of their PCCs with the secretory pathway. Current understandings of the molecular interactions as well as the metabolic benefits that accompany those interactions are discussed. Not unexpectedly, our understanding of the extent of these interactions is variable. An underlying theme that is brought to the fore is that PCCs establish preferential interactions with distinct compartments of the secretory pathway.

  4. Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette-Guérin.

    PubMed

    Yoshida, Aya; Matumoto, Makoto; Hshizume, Hiroyuki; Oba, Yoshiro; Tomishige, Tatuo; Inagawa, Hiroyuki; Kohchi, Chie; Hino, Mami; Ito, Fuminori; Tomoda, Keishiro; Nakajima, Takehisa; Makino, Kimiko; Terada, Hiroshi; Hori, Hitoshi; Soma, Gen-Ichiro

    2006-08-01

    Macrophages and their phagocytotic abilities play a dominant role for defense against infected organisms. However, Mycobacterium tuberculosis can survive in the phagosomes of macrophages. In this study, the effective delivery of a drug and the killing effect of tubercle bacilli within macrophages were investigated utilizing the phagocytotic uptake of rifampicin (RFP) that had been incorporated into poly(DL-lactic-co-glycolic) acid (PLGA) microspheres. The microspheres were composed of PLGA that had a monomer ratio (lactic acid/glycolic acid) of either 50/50 or 75/25. They had molecular weights from 5000 to 20,000, and diameters of 1.5, 3.5, 6.2 and 8.9 microm. The most significant factor for phagocytotic activity of macrophages was the diameter of the microspheres. By contrast, molecular weight and monomer ratio of PLGA did not influence phagocytosis. The amount of RFP delivered into cells was also investigated. RFP-PLGA microspheres composed of PLGA with a molecular weight of 20,000 and monomer ratio of 75/25 showed the highest amount of delivery (4 microg/1 x 10(6) cells). Fourteen days after infection, the survival rate of treated intracellular bacilli was 1% when compared with untreated cells. There was almost no killing effect of free RFP (4 or 15 microg/ml) on intracellular bacilli. In vivo efficacy of RFP-PLGA was also examined in rats infected with M. tuberculosis Kurono. Intratracheal administration of RFP-PLGA microspheres was shown to be superior to free RFP for killing of intracellular bacilli and preventing granuloma formation in some lobes. These results suggest that phagocytotic activity could be part of a new drug delivery system that selectively targeted macrophages.

  5. Intracellular Bacteria in Protozoa

    NASA Astrophysics Data System (ADS)

    Görtz, Hans-Dieter; Brigge, Theo

    Intracellular bacteria in humans are typically detrimental, and such infections are regarded by the patients as accidental and abnormal. In protozoa it seems obvious that many bacteria have coevolved with their hosts and are well adapted to the intracellular way of life. Manifold interactions between hosts and intracellular bacteria are found, and examples of antibacterial resistance of unknown mechanisms are observed. The wide diversity of intracellular bacteria in protozoa has become particularly obvious since they have begun to be classified by molecular techniques. Some of the bacteria are closely related to pathogens; others are responsible for the production of toxins.

  6. Visualization of Intracellular Tyrosinase Activity in vitro

    PubMed Central

    Setty, Subba Rao Gangi

    2016-01-01

    Melanocytes produce the melanin pigments in melanosomes and these organelles protect the skin against harmful ultraviolet rays. Tyrosinase is the key cuproenzyme which initiates the pigment synthesis using its substrate amino acid tyrosine or L-DOPA (L-3, 4-dihydroxyphenylalanine). Moreover, the activity of tyrosinase directly correlates to the cellular pigmentation. Defects in tyrosinase transport to melanosomes or mutations in the enzyme or reduced intracellular copper levels results in loss of tyrosinase activity in melanosomes, commonly observed in albinism. Here, we described a method to detect the intracellular activity of tyrosinase in mouse melanocytes. This protocol will visualize the active tyrosinase present in the intracellular vesicles or organelles including melanosomes. PMID:27231711

  7. Chronic compartment syndrome: diagnosis, management, and outcomes.

    PubMed

    Detmer, D E; Sharpe, K; Sufit, R L; Girdley, F M

    1985-01-01

    A consecutive operative series of 100 patients with chronic compartment syndrome involving 233 compartments is reported. Seven of every eight were athletes, and runners predominated. Exercise-induced symptoms of consistently recurring tightness, aching (in some, sharp pains) in anatomically defined compartments were pathognomonic. Mean months of symptoms prior to operation was 22; median age was 26 years. Bilaterality occurred in 82. The distribution of compartments was: anterior, 39%; lateral, 12%; and posterior, 48%. Incidental compartment pressures were elevated (mean = 23 mmHg). Fasciotomy using local anesthesia was performed on 70 outpatients. At a median of 4.5 months, over 90% were cured or significantly improved in symptoms and/or function. Median time to walking unassisted was 2 days, and to resumption of conditioned running 21 days. Fasciotomy can be a safe, effective, and economical treatment for chronic compartment syndrome.

  8. Endosomal escape: a bottleneck in intracellular delivery.

    PubMed

    Shete, Harshad K; Prabhu, Rashmi H; Patravale, Vandana B

    2014-01-01

    With advances in therapeutic science, apart from drugs, newer bioactive moieties like oligonucleotides, proteins, peptides, enzymes and antibodies are constantly being introduced for the betterment of therapeutic efficacy. These moieties have intracellular components of the cells like cytoplasm and nucleus as one of their pharmacological sites for exhibiting therapeutic activity. Despite their promising efficacy, their intracellular bioavailability has been critically hampered leading to failure in the treatment of numerous diseases and disorders. The endosomal uptake pathway is known to be a rate-limiting barrier for such systems. Bioactive molecules get trapped in the endosomal vesicles and degraded in the lysosomal compartment, necessitating the need for effective strategies that facilitate the endosomal escape and enhance the cytosolic bioavailability of bioactives. Microbes like viruses and bacteria have developed their innate mechanistic tactics to translocate their genome and toxins by efficiently penetrating the host cell membrane. Understanding this mechanism and exploring it further for intracellular delivery has opened new avenues to surmount the endosomal barrier. These strategies include membrane fusion, pore formation and proton sponge effects. On the other hand, progress in designing a novel smart polymeric carrier system that triggers endosomal escape by undergoing modulations in the intracellular milieu has further led to an improvement in intracellular delivery. These comprise pH, enzyme and temperature-induced modulators, synthetic cationic lipids and photo-induced physical disruption. Each of the aforementioned strategies has its own unique mechanism to escape the endosome. This review recapitulates the numerous strategies designed to surmount the bottleneck of endosomal escape and thereby achieve successful intracellular uptake of bioactives. PMID:24730275

  9. Acute lower-leg compartment syndrome.

    PubMed

    Mauser, Nathan; Gissel, Hannah; Henderson, Corey; Hao, Jiandong; Hak, David; Mauffrey, Cyril

    2013-08-01

    Acute compartment syndrome remains a challenging problem for orthopedic surgeons because its diagnosis is not always straightforward and it has a high risk of associated limb morbidity if left undiagnosed or untreated. Failure to diagnose and treat acute compartment syndrome is one of the most common causes of successful medical liability claims. The authors review the current literature concerning the diagnosis of acute compartment syndrome and discuss new non-invasive technologies that may allow for earlier and more accurate diagnosis of impending acute compartment syndrome.

  10. Compartment syndrome: A quantitative study of high-energy phosphorus compounds using sup 31 P-magnetic resonance spectroscopy

    SciTech Connect

    Heppenstall, R.B.; Sapega, A.A.; Izant, T.; Fallon, R.; Shenton, D.; Park, Y.S.; Chance, B. )

    1989-08-01

    The purpose of this study was to quantitate the intracellular high-energy phosphate compounds during 6 hours of tissue ischemia in the anterior tibial compartment of beagles subjected to an induced traumatized compartment syndrome. The goal of this work was to provide clinicians with objective criteria to augment clinical judgment regarding surgical intervention in the impending compartment syndrome. A beagle model was utilized in which the Delta pressure (difference between the mean arterial pressure and compartment pressure) could be controlled. The model, in conjunction with {sup 31}P-magnetic resonance spectroscopy (MRS), allowed a measure of high-energy phosphate compounds and pH in the compartment at various Delta pressures. The extent of ischemic metabolic insult in the compartment was then quantitated. Our data suggest the following: (1) lower Delta pressures result in a proportionally greater drop in the intracellular phosphocreatine ratio and pH; (2) at lower Delta pressures, there is proportionally greater decline in the percentage recovery post-fasciotomy; (3) blood pressure is extremely important and periods of hypotension may result in increased muscle damage at lower compartment pressures.

  11. The effect of intracellular pH on the regulation of the Rab 16A and the alpha-amylase 1/6-4 promoter by abscisic acid and gibberellia.

    PubMed

    Heimovaara-Dijkstra, S; Mundy, J; Wang, M

    1995-02-01

    Intracellular pH (pHi) of barley aleurone cells is known to be affected by hormones and plant growth conditions. The possible mechanisms by which these pHi shifts influence the actions of abscisic acid (ABA) or gibberellin (GA) is being investigated. Here we report an attempt to study the effect of pHi on hormone-induced gene expression. We used weak acids and weak bases to artificially mimic the pHi changes brought about by ABA and GA and found that chloramphenicol acetyltransferase (CAT) expression controlled by the Rab promoter was affected while the alpha-amylase promoter seemed insensitive. CAT fused to the 35S promoter was used as a control which is not inducible by ABA or GA3. The expression of this construct was not significantly affected by artificial pHi changes.

  12. Decorporation of Pu/Am Actinides by Chelation Therapy: New Arguments in Favor of an Intracellular Component of DTPA Action.

    PubMed

    Grémy, Olivier; Laurent, David; Coudert, Sylvie; Griffiths, Nina M; Miccoli, Laurent

    2016-06-01

    Diethylenetriaminepentaacetic acid (DTPA) is currently still the only known chelating drug that can be used for decorporation of internalized plutonium (Pu) and americium (Am). It is generally assumed that chelation occurs only in biological fluids, thus preventing Pu/Am deposition in target tissues. We postulate that actinide chelation may also occur inside cells by a mechanism called "intracellular chelation". To test this hypothesis, rats were given DTPA either prior to (termed "prophylactic" treatment) or belatedly after (termed "delayed" treatment) Pu/Am injection. DTPA decorporation efficacy was systematically tested for both plutonium and americium. Both prophylactic and delayed DTPA elicited marked decreases in liver Pu/Am. These results can be explained by chelation within subcellular compartments where DTPA efficacy increased as a function of a favorable intracellular DTPA-to-actinide molar ratio. The efficacy of intracellular chelation of liver actinides decreased with the delay of treatment. This is probably explained by progressive actinide binding to the high-affinity ligand ferritin followed by migration to lysosomes. Intracellular chelation was reduced as the gap between prophylactic treatment and contamination increased. This may be explained by the reduction of the intracellular DTPA pool, which declined exponentially with time. Skeletal Pu/Am was also reduced by prophylactic and delayed DTPA treatments. This decorporation of bone actinides may mainly result from extracellular chelation on bone surfaces. This work provides converging evidence for the involvement of an intracellular component of DTPA action in the decorporation process. These results may help to improve the interpretation of biological data from DTPA-treated contamination cases and could be useful to model DTPA therapy regimens.

  13. Decorporation of Pu/Am Actinides by Chelation Therapy: New Arguments in Favor of an Intracellular Component of DTPA Action.

    PubMed

    Grémy, Olivier; Laurent, David; Coudert, Sylvie; Griffiths, Nina M; Miccoli, Laurent

    2016-06-01

    Diethylenetriaminepentaacetic acid (DTPA) is currently still the only known chelating drug that can be used for decorporation of internalized plutonium (Pu) and americium (Am). It is generally assumed that chelation occurs only in biological fluids, thus preventing Pu/Am deposition in target tissues. We postulate that actinide chelation may also occur inside cells by a mechanism called "intracellular chelation". To test this hypothesis, rats were given DTPA either prior to (termed "prophylactic" treatment) or belatedly after (termed "delayed" treatment) Pu/Am injection. DTPA decorporation efficacy was systematically tested for both plutonium and americium. Both prophylactic and delayed DTPA elicited marked decreases in liver Pu/Am. These results can be explained by chelation within subcellular compartments where DTPA efficacy increased as a function of a favorable intracellular DTPA-to-actinide molar ratio. The efficacy of intracellular chelation of liver actinides decreased with the delay of treatment. This is probably explained by progressive actinide binding to the high-affinity ligand ferritin followed by migration to lysosomes. Intracellular chelation was reduced as the gap between prophylactic treatment and contamination increased. This may be explained by the reduction of the intracellular DTPA pool, which declined exponentially with time. Skeletal Pu/Am was also reduced by prophylactic and delayed DTPA treatments. This decorporation of bone actinides may mainly result from extracellular chelation on bone surfaces. This work provides converging evidence for the involvement of an intracellular component of DTPA action in the decorporation process. These results may help to improve the interpretation of biological data from DTPA-treated contamination cases and could be useful to model DTPA therapy regimens. PMID:27195610

  14. A tyrosine-based motif and a casein kinase II phosphorylation site regulate the intracellular trafficking of the varicella-zoster virus glycoprotein I, a protein localized in the trans-Golgi network.

    PubMed Central

    Alconada, A; Bauer, U; Hoflack, B

    1996-01-01

    We have studied the intracellular trafficking of the envelope glycoprotein I (gpI) of the varicella-zoster virus, a human herpes virus whose assembly is believed to occur in the trans-Golgi network (TGN) and/or in endocytic compartments. When expressed in HeLa cells in the absence of additional virally encoded factors, this type-I membrane protein localizes to the TGN and cycles between this compartment and the cell surface. The expression of gpI promotes the recruitment of the AP-1 Golgi-specific assembly proteins onto TGN membranes, strongly suggesting that gpI, like the mannose 6-phosphate receptors, can leave the TGN in clathrin-coated vesicles for subsequent transport to endosomes. Its return from the cell surface to the TGN also occurs through endosomes. The transfer of the gpI cytoplasmic domain onto a reporter molecule shows that this domain is sufficient to confer TGN localization. Mutational analysis of this domain indicates that proper subcellular localization and cycling of gpI depend on two different determinants, a tyrosine-containing tetrapeptide related to endocytosis sorting signals and a cluster of acidic amino acids containing casein kinase II phosphorylatable residues. Thus, the VZV gpI and the mannose 6-phosphate receptors, albeit localized in different intracellular compartments at steady-state, follow similar trafficking pathways and share similar sorting mechanisms. Images PMID:8947032

  15. Chronic exertional compartment syndrome of the superficial posterior compartment: Soleus syndrome

    PubMed Central

    Gross, Christopher E; Parekh, Bela J; Adams, Samuel B; Parekh, Selene G

    2015-01-01

    Chronic exertional compartment syndrome (CECS) represents the second most-common cause of exertional leg pain with incidence of 27-33%. CECS of the superficial posterior compartment, or soleus syndrome, is rare and has only been discussed briefly in the literature. We discuss the management of two patients with bilateral soleus syndrome or CECS of the superficial posterior compartment. PMID:26538766

  16. Modeling the effects of sodium chloride, acetic acid and intracellular pH on the survival of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primar...

  17. 14 CFR 25.787 - Stowage compartments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Stowage compartments. 25.787 Section 25.787 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... equipment (such as life rafts), and any other stowage compartment must be designed for its placarded...

  18. 14 CFR 25.787 - Stowage compartments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Stowage compartments. 25.787 Section 25.787 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... equipment (such as life rafts), and any other stowage compartment must be designed for its placarded...

  19. 14 CFR 25.787 - Stowage compartments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Stowage compartments. 25.787 Section 25.787 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.787 Stowage compartments. (a)...

  20. Cell communication compartments in molluscan embryos.

    PubMed

    Serras, F; Kühtreiber, W M; Krul, M R; van den Biggelaar, J A

    1985-08-01

    Early embryos of Patella vulgata have been injected with Lucifer Yellow. No restriction of dye spread was found. We show that later in the development, the larval trochophore stage present evidence of compartments of cell communication. These dye compartments coincide with different presumptive regions. PMID:4028198

  1. Compartmented mode workstation (CMW) comparisons

    SciTech Connect

    Tolliver, J.S.

    1995-12-31

    As the Compartmented Mode Workstation (CMW) market has matured, several vendors have released new versions of their CMW operating systems. These include a new version from SecureWare (CMW + Version 2.4), and Sun`s CMW 1.1 (also known as Trusted Solaris 1.1). EC is now shipping MLS+ 3.0 for DEC Alpha platforms. Relatively new entries in the market include Loral B1/CMW for IBM RS/6000 platforms and a SecureWare-based CMW for HP platforms (HP-UX 10.09). With all these choices it is time for a comparative analysis of the features offered by the various vendors. The authors have three of the above five CMW systems plus HP-UX BLS 9.09, which is a multilevel secure operating system (OS) targeted at the B1 level but not a CMW. Each is unique in sometimes obvious, sometimes subtle ways, a situation that requires knowing and keeping straight a variety of commands to do the same thing on each system. Some vendors offer extensive GUI tools for system administration; some require entering command-line commands for certain system administration tasks. They examine the differences in system installation, system administration, and system operating among the systems. They look at trusted networking among the various systems and differences in the network databases and label encodings files. They examine the user interface on the various systems from logging in to logging out.

  2. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms

    PubMed Central

    Mansilla Pareja, Maria Eugenia; Colombo, Maria I.

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance. PMID:24137567

  3. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    PubMed

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  4. Membrane contact sites between pathogen-containing compartments and host organelles.

    PubMed

    Dumoux, Maud; Hayward, Richard D

    2016-08-01

    Intracellular pathogens survive and replicate within specialised membrane-bound compartments that can be considered as pseudo-organelles. Using the obligate intracellular bacterium Chlamydia as an illustrative example, we consider the modes of lipid transport between pathogen-containing compartments and host organelles, including the formation of static membrane contact sites. We discuss how lipid scavenging can be mediated via the reprogramming of cellular transporters at these interfaces and describe recent data suggesting that pathogen effectors modulate the formation of specific membrane contacts. Further study of these emerging mechanisms is likely to yield new insights into the cell biology of lipid transport and organelle communication, which highlights potential new targets and strategies for future therapeutics. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26825687

  5. Cellular Exit Strategies of Intracellular Bacteria.

    PubMed

    Hybiske, Kevin; Stephens, Richard

    2015-12-01

    The coevolution of intracellular bacteria with their eukaryotic hosts has presented these pathogens with numerous challenges for their evolutionary progress and survival. Chief among these is the ability to exit from host cells, an event that is fundamentally linked to pathogen dissemination and transmission. Recent years have witnessed a major expansion of research in this area, and this chapter summarizes our current understanding of the spectrum of exit strategies that are exploited by intracellular pathogens. Clear themes regarding the mechanisms of microbial exit have emerged and are most easily conceptualized as (i) lysis of the host cell, (ii) nonlytic exit of free bacteria, and (iii) release of microorganisms into membrane-encased compartments. The adaptation of particular exit strategies is closely linked with additional themes in microbial pathogenesis, including host cell death, manipulation of host signaling pathways, and coincident activation of proinflammatory responses. This chapter will explore the molecular determinants used by intracellular pathogens to promote host cell escape and the infectious advantages each exit pathway may confer, and it will provide an evolutionary framework for the adaptation of these mechanisms. PMID:27337274

  6. Compartment syndrome complicating tibial tubercle avulsion.

    PubMed

    Pape, J M; Goulet, J A; Hensinger, R N

    1993-10-01

    Avulsion of the tibial tubercle is an uncommon physeal injury. Complications from this fracture are infrequent. Adolescent boys developed compartment syndrome after tibial tubercle avulsion. Injury to the soft tissue surrounding the tibial tubercle avulsion may be more extensive than is usually appreciated. The anatomy of the proximal tibia and the tibial tubercle with nearby branches of the anterior tibial recurrent artery suggest a predisposing factor for the development of compartment syndrome. Compartment syndrome should be added to the list of possible complications of tibial tubercle avulsion fractures.

  7. Protein kinase C mu is located at the Golgi compartment

    PubMed Central

    1996-01-01

    Protein kinase C mu (PKC mu) displays unusual structural features like a pleckstrin homology domain and an amino-terminal hydrophobic region with a putative leader peptide and transmembrane sequence. As a discrete location often is a direct clue to the potential biological function of a kinase, antibodies directed against unique amino- and carboxy-terminal domains of PKC mu were used to localize the protein within intracellular compartments in immunofluorescence and subcellular fractionation studies. Confocal laser scanning microscopy showed colocalization of PKC mu with the resident Golgi marker protein beta 1,4 galactosyltransferase in PKC mu transfectants and in the human hepatocellular carcinoma cell line HepG2, expressing endogenous PKC mu. Long-term treatment of cells with brefeldin A, which disintegrates the Golgi apparatus, disrupted PKC mu-specific staining. Cosegregation of PKC mu with beta 1,4 galactosyltransferase, but not with the endosomal marker rab5, upon density gradient fractionation and Western blot analysis of HepG2 cell extracts, provides independent evidence for a Golgi localization of PKC mu. Moreover, cellular sulfate uptake and Golgi-specific glycosaminoglycan sulfation was enhanced in PKC mu transfectants. Together, these data suggest that PKC mu is a resident protein kinase of the core Golgi compartment and is involved in basal transport processes. PMID:8830770

  8. How paramagnetic and diamagnetic LMOCs detect picric acid from surface water and the intracellular environment: a combined experimental and DFT-D3 study.

    PubMed

    Ghosh, Pritam; Banerjee, Priyabrata

    2016-08-17

    Diamagnetic and Paramagnetic Luminescent Metal Organic Complexes (LMOCs) have been reported for Explosive and Pollutant Nitro Aromatic (epNAC) recognition. The diamagnetic complex shows a highly intense AIE induced by NEt3H(+), which disappears after picric acid recognition and subsequently RET will quench the emission intensity. Radical stabilized paramagnetic LMOCs seem to be active but show lower sensing efficiency in comparison with diamagnetic LMOCs. Solution and solid state spectroscopy studies along with DFT-D3 have been executed to enlighten the host guest interaction. Limit of PA detection is ∼250 ppb with a binding constant of 1.2 × 10(5) M(-1). Time-stepping, i.e. intervening in the problem of picric acid recognition from surface water collected from several places of West Bengal, India, has been performed. Mutagenic picric acid has been successfully detected in an aqueous medium inside both prokaryotic and eukaryotic cells at a ppm level using fluorescence microscopy. PMID:27171212

  9. How paramagnetic and diamagnetic LMOCs detect picric acid from surface water and the intracellular environment: a combined experimental and DFT-D3 study.

    PubMed

    Ghosh, Pritam; Banerjee, Priyabrata

    2016-08-17

    Diamagnetic and Paramagnetic Luminescent Metal Organic Complexes (LMOCs) have been reported for Explosive and Pollutant Nitro Aromatic (epNAC) recognition. The diamagnetic complex shows a highly intense AIE induced by NEt3H(+), which disappears after picric acid recognition and subsequently RET will quench the emission intensity. Radical stabilized paramagnetic LMOCs seem to be active but show lower sensing efficiency in comparison with diamagnetic LMOCs. Solution and solid state spectroscopy studies along with DFT-D3 have been executed to enlighten the host guest interaction. Limit of PA detection is ∼250 ppb with a binding constant of 1.2 × 10(5) M(-1). Time-stepping, i.e. intervening in the problem of picric acid recognition from surface water collected from several places of West Bengal, India, has been performed. Mutagenic picric acid has been successfully detected in an aqueous medium inside both prokaryotic and eukaryotic cells at a ppm level using fluorescence microscopy.

  10. An Intracellular Nanotrap Redirects Proteins and Organelles in Live Bacteria

    PubMed Central

    Borg, Sarah; Popp, Felix; Hofmann, Julia; Leonhardt, Heinrich; Rothbauer, Ulrich

    2015-01-01

    ABSTRACT  Owing to their small size and enhanced stability, nanobodies derived from camelids have previously been used for the construction of intracellular “nanotraps,” which enable redirection and manipulation of green fluorescent protein (GFP)-tagged targets within living plant and animal cells. By taking advantage of intracellular compartmentalization in the magnetic bacterium Magnetospirillum gryphiswaldense, we demonstrate that proteins and even entire organelles can be retargeted also within prokaryotic cells by versatile nanotrap technology. Expression of multivalent GFP-binding nanobodies on magnetosomes ectopically recruited the chemotaxis protein CheW1-GFP from polar chemoreceptor clusters to the midcell, resulting in a gradual knockdown of aerotaxis. Conversely, entire magnetosome chains could be redirected from the midcell and tethered to one of the cell poles. Similar approaches could potentially be used for building synthetic cellular structures and targeted protein knockdowns in other bacteria. Importance   Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for

  11. The role of autophagy in intracellular pathogen nutrient acquisition

    PubMed Central

    Steele, Shaun; Brunton, Jason; Kawula, Thomas

    2015-01-01

    Following entry into host cells intracellular pathogens must simultaneously evade innate host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited intracellular environment. Most of the potential intracellular nutrient sources are stored within complex macromolecules that are not immediately accessible by intracellular pathogens. To obtain nutrients for proliferation, intracellular pathogens must compete with the host cell for newly-imported simple nutrients or degrade host nutrient storage structures into their constituent components (fatty acids, carbohydrates, and amino acids). It is becoming increasingly evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this task. One recurrent microbial strategy is to exploit host degradative processes that break down host macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset of bacterial, viral, and eukaryotic pathogens leverage the host process of autophagy to acquire nutrients that support their growth within infected cells. PMID:26106587

  12. Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides.

    PubMed

    Weng, Alexander; Manunta, Maria D I; Thakur, Mayank; Gilabert-Oriol, Roger; Tagalakis, Aristides D; Eddaoudi, Ayad; Munye, Mustafa M; Vink, Conrad A; Wiesner, Burkhard; Eichhorst, Jenny; Melzig, Matthias F; Hart, Stephen L

    2015-05-28

    Targeted nanocarriers undergo endocytosis upon binding to their membrane receptors and are transported into cellular compartments such as late endosomes and lysosomes. In gene delivery the genetic material has to escape from the cellular compartments into the cytosol. The process of endosomal escape is one of the most critical steps for successful gene delivery. For this reason synthetic lipids with fusogenic properties such as 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) are integrated into the nanocarriers. In this study we show that a natural, plant derived glycoside (SO1861) from Saponaria officinalis L. greatly improves the efficacy of lipid based as well as non-lipid based targeted nanoplexes consisting of a targeted K16 peptide with a nucleic acid binding domain and plasmid-DNA, minicircle-DNA or small interfering RNA (siRNA). By confocal live cell imaging and single cell analyses, we demonstrate that SO1861 augments the escape of the genetic cargo out of the intracellular compartments into the cytosol. Co-localisation experiments with fluorescence labelled dextran and transferrin indicate that SO1861 induces the release of the genetic cargo out of endosomes and lysosomes. However, the transduction efficacy of a lentivirus based gene delivery system was not augmented. In order to design receptor-targeted nanoplexes (LPD) with improved functional properties, SO1861 was integrated into the lipid matrix of the LPD. The SO1861 sensitized LPD (LPDS) were characterized by dynamic light scattering and transmission electron microscopy. Compared to their LPD counterparts the LPDS-nanoplexes showed a greatly improved gene delivery. As shown by differential scanning calorimetry SO1861 can be easily integrated into the lipid bilayer of glycerophospholipid model membranes. This underlines the great potential of SO1861 as a new transfection multiplier for non-viral gene delivery systems. PMID:25758332

  13. The propeptide of anglerfish preprosomatostatin-I rescues prosomatostatin-II from intracellular degradation.

    PubMed

    Chen, Y G; Danoff, A; Shields, D

    1995-08-01

    Polypeptide hormones and neuropeptides are initially synthesized as precursors possessing one or several domains that constitute the propeptide. Previous work from our laboratory demonstrated that expression of anglerfish prosomatostatin-I (proSRIF-I) in rat anterior pituitary GH3 cells resulted in efficient and accurate cleavage of the prohormone to generate the mature 14-amino acid peptide, SRIF-I. We also implicated the propeptide in mediating intracellular sorting to the trans Golgi network where proteolytic processing is initiated. In contrast, expression of a second form of the precursor, proSRIF-II in GH3 cells resulted in its intracellular degradation in an acidic, post-trans Golgi network compartment, most probably lysosomes. To further investigate the positive sorting signal present in proSRIF-I, we constructed a chimera comprising the signal peptide and proregion of SRIF-I fused to proSRIF-II and expressed the cDNA in GH3 cells. Here we demonstrate that the propeptide of SRIF-I rescued proSRIF-II from intracellular degradation quantitatively and diverted it to secretory vesicles. Furthermore, the chimera was processed to SRIF-28, an amino-terminally extended form of the hormone that is the physiological cleavage product of proSRIF-II processing in vivo. Most significantly, the SRIF-I propeptide functioned only in cis as part of the fusion protein and not in trans when expressed as a separate polypeptide. These data suggest that the SRIF-I propeptide may possess a sorting signal for sequestration into the secretory pathway rather than functioning as an intramolecular chaperone to promote protein folding. PMID:7629190

  14. 14 CFR 25.787 - Stowage compartments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... corresponding to the specified flight and ground load conditions, and to the emergency landing conditions of... to compartments located below, or forward, of all occupants in the airplane. If the airplane has...

  15. 14 CFR 25.787 - Stowage compartments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... corresponding to the specified flight and ground load conditions, and to the emergency landing conditions of... to compartments located below, or forward, of all occupants in the airplane. If the airplane has...

  16. 14 CFR 29.853 - Compartment interiors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and nondecorative coated fabrics, leather, trays and galley furnishings, electrical conduit, thermal and acoustical insulation and insulation covering, air ducting, joint and edge covering, cargo compartment liners, insulation blankets, cargo covers, and transparencies, molded and thermoformed parts,...

  17. 14 CFR 29.853 - Compartment interiors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and nondecorative coated fabrics, leather, trays and galley furnishings, electrical conduit, thermal and acoustical insulation and insulation covering, air ducting, joint and edge covering, cargo compartment liners, insulation blankets, cargo covers, and transparencies, molded and thermoformed parts,...

  18. 14 CFR 29.853 - Compartment interiors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and nondecorative coated fabrics, leather, trays and galley furnishings, electrical conduit, thermal and acoustical insulation and insulation covering, air ducting, joint and edge covering, cargo compartment liners, insulation blankets, cargo covers, and transparencies, molded and thermoformed parts,...

  19. 49 CFR 38.127 - Sleeping compartments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a...., heating and air conditioning controls, lighting controls, call buttons, electrical outlets, etc.) shall...

  20. 49 CFR 38.127 - Sleeping compartments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SPECIFICATIONS FOR TRANSPORTATION VEHICLES Intercity Rail Cars and Systems § 38.127 Sleeping compartments. (a...., heating and air conditioning controls, lighting controls, call buttons, electrical outlets, etc.) shall...

  1. Compartment syndrome after tibial plateau fracture☆

    PubMed Central

    Pitta, Guilherme Benjamin Brandão; dos Santos, Thays Fernanda Avelino; dos Santos, Fernanda Thaysa Avelino; da Costa Filho, Edelson Moreira

    2014-01-01

    Fractures of the tibial plateau are relatively rare, representing around 1.2% of all fractures. The tibia, due to its subcutaneous location and poor muscle coverage, is exposed and suffers large numbers of traumas, not only fractures, but also crush injuries and severe bruising, among others, which at any given moment, could lead compartment syndrome in the patient. The case is reported of a 58-year-old patient who, following a tibial plateau fracture, presented compartment syndrome of the leg and was submitted to decompressive fasciotomy of the four right compartments. After osteosynthesis with internal fixation of the tibial plateau using an L-plate, the patient again developed compartment syndrome. PMID:26229779

  2. Acute compartment syndrome of the upper extremity.

    PubMed

    Prasarn, Mark L; Ouellette, Elizabeth A

    2011-01-01

    Acute compartment syndrome occurs when pressure within a fibro-osseous space increases to a level that results in a decreased perfusion gradient across tissue capillary beds. Compartment syndromes of the hand, forearm, and upper arm can result in tissue necrosis, which can lead to devastating loss of function. The etiology of acute compartment syndrome in the upper extremity is diverse, and a high index of suspicion must be maintained. Pain out of proportion to injury is the most reliable early symptom of impending compartment syndrome. Diagnosis is particularly difficult in obtunded patients and in young children. Early recognition and expeditious surgical treatment are essential to obtain a good clinical outcome and prevent permanent disability.

  3. Chloride Channels of Intracellular Membranes

    PubMed Central

    Edwards, John C.; Kahl, Christina R.

    2010-01-01

    Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins. PMID:20100480

  4. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    PubMed

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  5. Aircraft Cargo Compartment Fire Test Simulation Program

    NASA Technical Reports Server (NTRS)

    Blumke, R. E.

    1977-01-01

    The objective of the test was to assess fire containment and fire extinguishment in the cargo by reducing the ventilation through the cargo compartment. Parameters which were measured included ignition time, burnthrough time, and physical damage to the cargo liner, composition of selected combustible gases, temperature-time histories, heat flux, and detector response. The ignitor load was made of a typical cargo consisting of filled cardboard cartons occupying 50% of the compartment volume.

  6. Multifunctional Mesoporous Silica Nanoparticles Based on Charge-Reversal Plug-Gate Nanovalves and Acid-Decomposable ZnO Quantum Dots for Intracellular Drug Delivery.

    PubMed

    Zhang, Jing; Wu, Dan; Li, Meng-Fei; Feng, Jie

    2015-12-01

    A novel type of pH-responsive multifunctional mesoporous silica nanoparticle (MSN) was developed for cancerous cells drug delivery and synergistic therapy of tumor. MSNs were covered with a kind of cell-penetrating peptide, deca-lysine sequence (K10), to enhance their escape from the endosomes. After K10's primary amines were reacted with citraconic anhydride to form acid-labile β-carboxylic amides, zinc oxide (ZnO) quantum dots (QDs) were introduced to cap MSNs via electrostatic interaction. The obtained ZnO@MSN drug-delivery system (DDS) achieves "zero-premature" drug release under a physiological environment. However, once the DDS is transferred to the cancerous cells' acidic endosome, ZnO QDs would rapidly dissolve and the acid-labile amides on the side chain of K10 would hydrolyze to regenerate primary amines, resulting in the uncapping of MSNs and exposure of the cell-penetrating peptide K10. The regenerated K10 could help the DDS escape from the endosome and efficiently release the loaded drugs inside the cells. At the meantime, because of the cytotoxicity of ZnO QDs at their destination, the ZnO@MSN DDS may achieve a synergistic antitumor effect to improve the therapeutic index. PMID:26553405

  7. Multifunctional Mesoporous Silica Nanoparticles Based on Charge-Reversal Plug-Gate Nanovalves and Acid-Decomposable ZnO Quantum Dots for Intracellular Drug Delivery.

    PubMed

    Zhang, Jing; Wu, Dan; Li, Meng-Fei; Feng, Jie

    2015-12-01

    A novel type of pH-responsive multifunctional mesoporous silica nanoparticle (MSN) was developed for cancerous cells drug delivery and synergistic therapy of tumor. MSNs were covered with a kind of cell-penetrating peptide, deca-lysine sequence (K10), to enhance their escape from the endosomes. After K10's primary amines were reacted with citraconic anhydride to form acid-labile β-carboxylic amides, zinc oxide (ZnO) quantum dots (QDs) were introduced to cap MSNs via electrostatic interaction. The obtained ZnO@MSN drug-delivery system (DDS) achieves "zero-premature" drug release under a physiological environment. However, once the DDS is transferred to the cancerous cells' acidic endosome, ZnO QDs would rapidly dissolve and the acid-labile amides on the side chain of K10 would hydrolyze to regenerate primary amines, resulting in the uncapping of MSNs and exposure of the cell-penetrating peptide K10. The regenerated K10 could help the DDS escape from the endosome and efficiently release the loaded drugs inside the cells. At the meantime, because of the cytotoxicity of ZnO QDs at their destination, the ZnO@MSN DDS may achieve a synergistic antitumor effect to improve the therapeutic index.

  8. Proteomic Analyses of Intracellular Salmonella enterica Serovar Typhimurium Reveal Extensive Bacterial Adaptations to Infected Host Epithelial Cells

    PubMed Central

    Liu, Yanhua; Zhang, Qiufeng; Hu, Mo; Yu, Kaiwen; Fu, Jiaqi; Zhou, Fan

    2015-01-01

    Salmonella species can gain access into nonphagocytic cells, where the bacterium proliferates in a unique membrane-bounded compartment. In order to reveal bacterial adaptations to their intracellular niche, here we conducted the first comprehensive proteomic survey of Salmonella isolated from infected epithelial cells. Among ∼3,300 identified bacterial proteins, we found that about 100 proteins were significantly altered at the onset of Salmonella intracellular replication. In addition to substantially increased iron-uptake capacities, bacterial high-affinity manganese and zinc transporters were also upregulated, suggesting an overall limitation of metal ions in host epithelial cells. We also found that Salmonella induced multiple phosphate utilization pathways. Furthermore, our data suggested upregulation of the two-component PhoPQ system as well as of many downstream virulence factors under its regulation. Our survey also revealed that intracellular Salmonella has increased needs for certain amino acids and biotin. In contrast, Salmonella downregulated glycerol and maltose utilization as well as chemotaxis pathways. PMID:25939512

  9. Restricted Location of PSEN2/γ-Secretase Determines Substrate Specificity and Generates an Intracellular Aβ Pool.

    PubMed

    Sannerud, Ragna; Esselens, Cary; Ejsmont, Paulina; Mattera, Rafael; Rochin, Leila; Tharkeshwar, Arun Kumar; De Baets, Greet; De Wever, Veerle; Habets, Roger; Baert, Veerle; Vermeire, Wendy; Michiels, Christine; Groot, Arjan J; Wouters, Rosanne; Dillen, Katleen; Vints, Katlijn; Baatsen, Pieter; Munck, Sebastian; Derua, Rita; Waelkens, Etienne; Basi, Guriqbal S; Mercken, Mark; Vooijs, Marc; Bollen, Mathieu; Schymkowitz, Joost; Rousseau, Frederic; Bonifacino, Juan S; Van Niel, Guillaume; De Strooper, Bart; Annaert, Wim

    2016-06-30

    γ-Secretases are a family of intramembrane-cleaving proteases involved in various signaling pathways and diseases, including Alzheimer's disease (AD). Cells co-express differing γ-secretase complexes, including two homologous presenilins (PSENs). We examined the significance of this heterogeneity and identified a unique motif in PSEN2 that directs this γ-secretase to late endosomes/lysosomes via a phosphorylation-dependent interaction with the AP-1 adaptor complex. Accordingly, PSEN2 selectively cleaves late endosomal/lysosomal localized substrates and generates the prominent pool of intracellular Aβ that contains longer Aβ; familial AD (FAD)-associated mutations in PSEN2 increased the levels of longer Aβ further. Moreover, a subset of FAD mutants in PSEN1, normally more broadly distributed in the cell, phenocopies PSEN2 and shifts its localization to late endosomes/lysosomes. Thus, localization of γ-secretases determines substrate specificity, while FAD-causing mutations strongly enhance accumulation of aggregation-prone Aβ42 in intracellular acidic compartments. The findings reveal potentially important roles for specific intracellular, localized reactions contributing to AD pathogenesis. PMID:27293189

  10. Analysis of the Proteome of Intracellular Shigella flexneri Reveals Pathways Important for Intracellular Growth

    PubMed Central

    Pieper, Rembert; Fisher, C. R.; Suh, Moo-Jin; Huang, S.-T.; Parmar, P.

    2013-01-01

    Global proteomic analysis was performed with Shigella flexneri strain 2457T in association with three distinct growth environments: S. flexneri growing in broth (in vitro), S. flexneri growing within epithelial cell cytoplasm (intracellular), and S. flexneri that were cultured with, but did not invade, Henle cells (extracellular). Compared to in vitro and extracellular bacteria, intracellular bacteria had increased levels of proteins required for invasion and cell-to-cell spread, including Ipa, Mxi, and Ics proteins. Changes in metabolic pathways in response to the intracellular environment also were evident. There was an increase in glycogen biosynthesis enzymes, altered expression of sugar transporters, and a reduced amount of the carbon storage regulator CsrA. Mixed acid fermentation enzymes were highly expressed intracellularly, while tricarboxylic acid (TCA) cycle oxidoreductive enzymes and most electron transport chain proteins, except CydAB, were markedly decreased. This suggested that fermentation and the CydAB system primarily sustain energy generation intracellularly. Elevated levels of PntAB, which is responsible for NADPH regeneration, suggested a shortage of reducing factors for ATP synthesis. These metabolic changes likely reflect changes in available carbon sources, oxygen levels, and iron availability. Intracellular bacteria showed strong evidence of iron starvation. Iron acquisition systems (Iut, Sit, FhuA, and Feo) and the iron starvation, stress-associated Fe-S cluster assembly (Suf) protein were markedly increased in abundance. Mutational analysis confirmed that the mixed-acid fermentation pathway was required for wild-type intracellular growth and spread of S. flexneri. Thus, iron stress and changes in carbon metabolism may be key factors in the S. flexneri transition from the extra- to the intracellular milieu. PMID:24101689

  11. Free Fatty Acids Increase Intracellular Lipid Accumulation and Oxidative Stress by Modulating PPARα and SREBP-1c in L-02 Cells.

    PubMed

    Qin, Shumin; Yin, Jinjin; Huang, Keer

    2016-07-01

    Excessive fat accumulation and increased oxidative stress contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying the development of steatosis are not entirely understood. The present study was undertaken to establish an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the effects of oxidative stress could be studied in L-02 cells. We investigated the effects of free fatty acids (FFA) (palmitate:oleate, 1:2) on lipid accumulation and oxidative stress and their possible mechanisms in L-02 cells. High concentrations of fatty acids significantly induced excessive lipid accumulation and oxidative stress in L-02 cells, which could only be reversed with 50 μΜ WY14643 (the PPARα agonist). Immunoblotting and qPCR analyses revealed that FFA downregulated the expression of proliferator-activated receptor alpha (PPARα), which contributed to the increased activation of sterol regulatory element binding protein-1c (SREBP-1c). These results suggest that FFA induce lipid accumulation and oxidative stress in L-02 cells by upregulating SREBP-1c expression through the suppression of PPARα. PMID:27270405

  12. INTRACELLULAR ANTIOXIDANT ACTIVITY OF A STREPTOMYCES SP. 8812 SECONDARY METABOLITE, 6,7-DIHYDROXY-3,4-DIHYDROISOQINO- LINE-3-CARBOXYLIC ACID, AND ITS SYNTHETIC DERIVATIVES.

    PubMed

    Guśpiel, Adam; Ziemska, Joanna; Cześcik, Agnieszka; Kawecki, Robert; Solecka, Jolanta

    2016-01-01

    The aim of this study was to determine the antioxidant properties of 6,7-dihydroxy-3,4-dihydroiso- quinoline-3-carboxylic acid (1) and its derivatives in living cells against reactive forms of oxygen and nitrogen, i.e., hydrogen peroxide and nitric oxide. Four of tested compounds scavenged the reactive form of nitrogen more efficiently or similarly to Trolox (EC50 = 55.80 µM). Two compounds exhibited antioxidant activity against reactive oxygen species better than Trolox (EC50 = 51.88 µM). The most active derivative of 1 was the compound containing an iodine atom at position 8 (6,7-dihydroxy-8-iodo-3,4-dihydroisoquinoline-3-carboxylic acid). Our studies showed that some of the derivatives had the ability to cross the cell membrane and scavenge free radicals inside living cells. Thus, they are able to protect DNA and other cellular structures from the dam- aging effects of reactive oxygen and nitrogen species. In addition, some molecular descriptors of the tested compounds were determined with the use of ICM Pro (Molsoft L.L.C.). PMID:27476282

  13. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.

    PubMed

    Zhao, Junqiang; Wang, Haiyang; Liu, Jinjian; Deng, Liandong; Liu, Jianfeng; Dong, Anjie; Zhang, Jianhua

    2013-11-11

    The pH-responsive micelles have enormous potential as nanosized drug carriers for cancer therapy due to their physicochemical changes in response to the tumor intracellular acidic microenvironment. Herein, a series of comb-like amphiphilic copolymers bearing acetal-functionalized backbone were developed based on poly[(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl) ethane methacrylate-co-poly(ethylene glycol) methyl ether methacrylate] [P(TTMA-co-mPEGMA)] as effective nanocarriers for intracellular curcumin (CUR) release. P(TTMA-co-mPEGMA) copolymers with different hydrophobic-hydrophilic ratios were prepared by one-step reversible addition fragmentation chain transfer (RAFT) copolymerization of TTMA and mPEGMA. Their molecular structures and chemical compositions were confirmed by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). P(TTMA-co-mPEGMA) copolymers could self-assemble into nanosized micelles in aqueous solution and displayed low critical micelle concentration (CMC). All P(TTMA-co-mPEGMA) micelles displayed excellent drug loading capacity, due to the strong π-π conjugate action and hydrophobic interaction between the PTTMA and CUR. Moreover, the hydrophobic PTTMA chain could be selectively hydrolyzed into a hydrophilic backbone in the mildly acidic environment, leading to significant swelling and final disassembly of the micelles. These morphological changes of P(TTMA-co-mPEGMA) micelles with time at pH 5.0 were determined by DLS and TEM. The in vitro CUR release from the micelles exhibited a pH-dependent behavior. The release rate of CUR was significantly accelerated at mildly acidic pH of 4.0 and 5.0 compared to that at pH 7.4. Toxicity test revealed that the P(TTMA-co-mPEGMA) copolymers exhibited low cytotoxicity, whereas the CUR-loaded micelles maintained high cytotoxicity for HepG-2 and EC-109 cells. The results indicated that the novel P(TTMA-co-mPEGMA) micelles with low CMC, small and tunable

  14. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: synthesis, cell compatibility, and intracellular anticancer drug delivery.

    PubMed

    Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2015-02-01

    A novel and versatile family of enzymatically and reductively degradable α-amino acid-based poly(ester amide)s (SS-PEAs) were developed from solution polycondensation of disulfide-containing di-p-toluenesulfonic acid salts of bis-l-phenylalanine diesters (SS-Phe-2TsOH) with di-p-nitrophenyl adipate (NA) in N,N-dimethylformamide (DMF). SS-PEAs with Mn ranging from 16.6 to 23.6 kg/mol were obtained, depending on NA/SS-Phe-2TsOH molar ratios. The chemical structures of SS-PEAs were confirmed by (1)H NMR and FTIR spectra. Thermal analyses showed that the obtained SS-PEAs were amorphous with a glass transition temperature (Tg) in the range of 35.2-39.5 °C. The in vitro degradation studies of SS-PEA films revealed that SS-PEAs underwent surface erosion in the presence of 0.1 mg/mL α-chymotrypsin and bulk degradation under a reductive environment containing 10 mM dithiothreitol (DTT). The preliminary cell culture studies displayed that SS-PEA films could well support adhesion and proliferation of L929 fibroblast cells, indicating that SS-PEAs have excellent cell compatibility. The nanoparticles prepared from SS-PEA with PVA as a surfactant had an average size of 167 nm in phosphate buffer (PB, 10 mM, pH 7.4). SS-PEA nanoparticles while stable under physiological environment undergo rapid disintegration under an enzymatic or reductive condition. The in vitro drug release studies showed that DOX release was accelerated in the presence of 0.1 mg/mL α-chymotrypsin or 10 mM DTT. Confocal microscopy observation displayed that SS-PEA nanoparticles effectively transported DOX into both drug-sensitive and -resistant MCF-7 cells. MTT assays revealed that DOX-loaded SS-PEA nanoparticles had a high antitumor activity approaching that of free DOX in drug-sensitive MCF-7 cells, while more than 10 times higher than free DOX in drug-resistant MCF-7/ADR cells. These enzymatically and reductively degradable α-amino acid-based poly(ester amide)s have provided an appealing platform for

  15. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor.

    PubMed

    Sharma, Saroj; Nag, Tapas C; Thakar, Alok; Bhardwaj, Daya N; Roy, Tara Sankar

    2014-03-01

    The human auditory system is highly susceptible to environmental and metabolic insults which further affect the biochemical and physiological milieu of the cells that may contribute to progressive, hearing loss with aging. The cochlear nucleus (CN) is populated by morphologically diverse types of neurons with discrete physiological and neurochemical properties. Between the dorsal and the ventral cochlear nucleus (DCN and VCN), the VCN is further sub-divided into the rostral (rVCN) and caudal (cVCN) sub-divisions. Although, information is available on the age related neurochemical changes in the mammalian CN similar reports on human CN is still sparse. The morphometry and semiquantitative analysis of intensity of expression of glial fibrillary acidic protein (GFAP), calcium binding proteins (calbindin, calretinin and parvalbumin), gamma amino butyric acid (GABA) and nicotinic acetyl choline receptor (nAchR) beta 2 immunostaining were carried out in all three sub-divisions of the human CN from birth to 90 years. There was increased GFAP immunoreactivity in decades 2 and 3 in comparison to decade 1 in the CN. But no change was observed in rVCN from decade 4 onwards, whereas intense staining was also observed in decades 5 and 6 in cVCN and DCN. All three calcium binding proteins were highly expressed in early to middle ages, whereas a significant reduction was found in later decades in the VCN. GABA and nAchR beta 2 expressions were unchanged throughout in all the decades. The middle age may represent a critical period of onset and progression of aging changes in the CN and these alterations may add to the deterioration of hearing responses in the old age.

  16. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor.

    PubMed

    Sharma, Saroj; Nag, Tapas C; Thakar, Alok; Bhardwaj, Daya N; Roy, Tara Sankar

    2014-03-01

    The human auditory system is highly susceptible to environmental and metabolic insults which further affect the biochemical and physiological milieu of the cells that may contribute to progressive, hearing loss with aging. The cochlear nucleus (CN) is populated by morphologically diverse types of neurons with discrete physiological and neurochemical properties. Between the dorsal and the ventral cochlear nucleus (DCN and VCN), the VCN is further sub-divided into the rostral (rVCN) and caudal (cVCN) sub-divisions. Although, information is available on the age related neurochemical changes in the mammalian CN similar reports on human CN is still sparse. The morphometry and semiquantitative analysis of intensity of expression of glial fibrillary acidic protein (GFAP), calcium binding proteins (calbindin, calretinin and parvalbumin), gamma amino butyric acid (GABA) and nicotinic acetyl choline receptor (nAchR) beta 2 immunostaining were carried out in all three sub-divisions of the human CN from birth to 90 years. There was increased GFAP immunoreactivity in decades 2 and 3 in comparison to decade 1 in the CN. But no change was observed in rVCN from decade 4 onwards, whereas intense staining was also observed in decades 5 and 6 in cVCN and DCN. All three calcium binding proteins were highly expressed in early to middle ages, whereas a significant reduction was found in later decades in the VCN. GABA and nAchR beta 2 expressions were unchanged throughout in all the decades. The middle age may represent a critical period of onset and progression of aging changes in the CN and these alterations may add to the deterioration of hearing responses in the old age. PMID:24412669

  17. Delayed Presentation of Acute Gluteal Compartment Syndrome

    PubMed Central

    Tasch, James J.; Misodi, Emmanuel O.

    2016-01-01

    Patient: Male, 23 Final Diagnosis: Acute gluteal compartment syndrome Symptoms: — Medication: — Clinical Procedure: Gluteal fasciotomy Specialty: Critical Care Medicine Objective: Unusual clinical course Background: Acute gluteal compartment syndrome is a rare condition that usually results from prolonged immobilization following a traumatic event, conventionally involving the presence of compounding factors such as alcohol or opioid intoxication. If delay in medical treatment is prolonged, severe rhabdomyolysis may ensue, leading to acute renal failure and potentially death. Case Report: We report the case of a 23-year-old male with a recent history of incarceration and recreational drug use, who presented with reports of severe right-sided buttock pain and profound right-sided neurological loss following a questionable history involving prolonged immobilization after a fall from a standing position. The patient required an emergent gluteal fasciotomy immediately upon admission and required temporary hemodialysis. After an extended hospital stay, he ultimately recovered with only mild deficits in muscular strength in the right lower extremity. Conclusions: This report demonstrates the importance of early recognition of gluteal compartment syndrome to prevent morbidity and mortality. Compartment syndrome presents in many unique ways, and healthcare practitioners must have a keen diagnostic sense to allow for early surgical intervention. Proper wick catheter measurements should be utilized more frequently, instead of relying on clinical symptomatology such as loss of peripheral pulses for diagnosis of compartment syndrome. PMID:27432320

  18. Exosomes: Tunable Nano Vehicles for Macromolecular Delivery of Transferrin and Lactoferrin to Specific Intracellular Compartment.

    PubMed

    Malhotra, Himanshu; Sheokand, Navdeep; Kumar, Santosh; Chauhan, Anoop S; Kumar, Manoj; Jakhar, Priyanka; Boradia, Vishant M; Raje, Chaaya I; Raje, Manoj

    2016-05-01

    Due to their abundant ubiquitous presence, rapid uptake and increased requirement in neoplastic tissue, the delivery of the iron carrier macromolecules transferrin (Tf) and lactoferrin (Lf) into mammalian cells is the subject of intense interest for delivery of drugs and other target molecules into cells. Utilizing exosomes obtained from cells of diverse origin we confirmed the presence of the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which has recently been characterized as a Tf and Lf receptor. Using a combination of biochemical, biophysical and imaging based methodologies, we demonstrate that GAPDH present in exosomes captures Tf and Lf and subsequently effectively delivers these proteins into mammalian cells. Exosome vesicles prepared had a size of 51.2 ± 23.7 nm. They were found to be stable in suspension with a zeta potential (ζ-potential) of -28.16 ± 1.15 mV. Loading of Tf/Lf did not significantly affect ζ-potential of the exosomes. The carrier protein loaded exosomes were able to enhance the delivery of Tf/Lf by 2 to 3 fold in a diverse panel of cell types. Ninety percent of the internalized cargo via this route was found to be specifically delivered into late endosome and lysosomes. We also found exosomes to be tunable nano vehicles for cargo delivery by varying the amount of GAPDH associated with exosome. The current study opens a new avenue of research for efficient delivery of these vital iron carriers into cells employing exosomes as a nano delivery vehicle. PMID:27305829

  19. Exosomes: Tunable Nano Vehicles for Macromolecular Delivery of Transferrin and Lactoferrin to Specific Intracellular Compartment.

    PubMed

    Malhotra, Himanshu; Sheokand, Navdeep; Kumar, Santosh; Chauhan, Anoop S; Kumar, Manoj; Jakhar, Priyanka; Boradia, Vishant M; Raje, Chaaya I; Raje, Manoj

    2016-05-01

    Due to their abundant ubiquitous presence, rapid uptake and increased requirement in neoplastic tissue, the delivery of the iron carrier macromolecules transferrin (Tf) and lactoferrin (Lf) into mammalian cells is the subject of intense interest for delivery of drugs and other target molecules into cells. Utilizing exosomes obtained from cells of diverse origin we confirmed the presence of the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which has recently been characterized as a Tf and Lf receptor. Using a combination of biochemical, biophysical and imaging based methodologies, we demonstrate that GAPDH present in exosomes captures Tf and Lf and subsequently effectively delivers these proteins into mammalian cells. Exosome vesicles prepared had a size of 51.2 ± 23.7 nm. They were found to be stable in suspension with a zeta potential (ζ-potential) of -28.16 ± 1.15 mV. Loading of Tf/Lf did not significantly affect ζ-potential of the exosomes. The carrier protein loaded exosomes were able to enhance the delivery of Tf/Lf by 2 to 3 fold in a diverse panel of cell types. Ninety percent of the internalized cargo via this route was found to be specifically delivered into late endosome and lysosomes. We also found exosomes to be tunable nano vehicles for cargo delivery by varying the amount of GAPDH associated with exosome. The current study opens a new avenue of research for efficient delivery of these vital iron carriers into cells employing exosomes as a nano delivery vehicle.

  20. Post-dialysis urea concentration: comparison between one- compartment model and two-compartment model

    NASA Astrophysics Data System (ADS)

    Tamrin, N. S. Ahmad; Ibrahim, N.

    2014-11-01

    The reduction of the urea concentration in blood can be numerically projected by using one-compartment model and two-compartment model with no variation in body fluid. This study aims to compare the simulated values of post-dialysis urea concentration for both models with the clinical data obtained from the hospital. The clinical assessment of adequacy of a treatment is based on the value of Kt/V. Further, direct calculation using clinical data and one-compartment model are presented in the form of ratio. It is found that the ratios of postdialysis urea concentration simulated using two-compartment model are higher compared to the ratios of post-dialysis urea concentration using one-compartment model. In addition, most values of post-dialysis urea concentration simulated using two-compartment model are much closer to the clinical data compared to values simulated using one-compartment model. Kt/V values calculated directly using clinical data are found to be higher than Kt/V values derived from one-compartment model.

  1. MEMRI and tumors: a method for the evaluation of the contribution of Mn(II) ions in the extracellular compartment.

    PubMed

    Gianolio, Eliana; Arena, Francesca; Di Gregorio, Enza; Pagliarin, Roberto; Delbianco, Martina; Baio, Gabriella; Aime, Silvio

    2015-09-01

    The purpose of the work was to set-up a simple method to evaluate the contribution of Mn(2+) ions in the intra- and extracellular tumor compartments in a MEMRI experiment. This task has been tackled by "silencing" the relaxation enhancement arising from Mn(2+) ions in the extracellular space. In vitro relaxometric measurements allowed assessment of the sequestering activity of DO2A (1,4,7,10-tetraazacyclododecane-1,7-diacetic acid) towards Mn(2+) ions, as the addition of Ca-DO2A to a solution of MnCl2 causes a drop of relaxivity upon the formation of the highly stable and low-relaxivity Mn-DO2A. It has been proved that the sequestering ability of DO2A towards Mn(2+) ions is also fully effective in the presence of serum albumin. Moreover, it has been shown that Mn-DO2A does not enter cell membranes, nor does the presence of Ca-DO2A in the extracellular space prompt migration of Mn ions from the intracellular compartment. On this basis the in vivo, instantaneous, drop in SE% (percent signal enhancement) in T1 -weighted images is taken as evidence of the sequestration of extracellular Mn(2+) ions upon addition of Ca-DO2A. By applying the method to B16F10 tumor bearing mice, T1 decrease is readily detected in the tumor region, whereas a negligible change in SE% is observed in kidneys, liver and muscle. The relaxometric MRI results have been validated by ICP-MS measurements.

  2. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  3. 14 CFR 29.855 - Cargo and baggage compartments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equipment is not required. (b) No compartment may contain any controls, wiring, lines, equipment, or... to contain compartment fires until a landing and safe evacuation can be made. (d) Each cargo and baggage compartment that is not sealed so as to contain cargo compartment fires completely...

  4. 14 CFR 25.855 - Cargo or baggage compartments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (e) No compartment may contain any controls, lines, equipment, or accessories whose damage or failure... protective features of the compartment. (g) Sources of heat within the compartment must be shielded and... fire contained in any other compartment, either during or after extinguishment, unless...

  5. Anterior compartment syndrome: a case report.

    PubMed

    Pearl, A J

    1981-01-01

    The chronic form of the anterior compartment syndrome can be overlooked if the symptoms of leg pain are attributed to shin splints. Herein is presented a case report which I feel represents an acute exacerbation of the chronic form of anterior compartment syndrome in a long-distance runner secondary to bleeding into the extensor digitorum longus muscle. Chronic anterior compartment syndrome can be a disabling injury which may require a fasciotomy, depending upon the severity and duration of the patient's symptoms and the intracompartmental pressures. The lay term "shin splints" should be separated from medical use, and a more reliable assessment of the etiology of the patient's symptoms should be made. The term shin splints should be utilized only for pain localized to the posterior medial border of the tibia at the origin of the posterior tibialis muscle.

  6. Chronic exertional compartment syndrome of the leg

    PubMed Central

    2010-01-01

    Chronic exertional compartment syndrome (CECS) is an underdiagnosed cause of chronic exertional leg pain. The syndrome most commonly occurs in young adult recreational runners, elite athletes, and military recruits. CECS is caused by increased intracompartmental pressure within a fascial space; however, the mechanism of why pain occurs is unknown. Symptoms are classically pain in the affected compartment at the same time, distance, or intensity of exercise. CECS is a clinical diagnosis; however, it is confirmed by intracompartmental pressure testing. Fasciotomy is the treatment of choice for athletes who would like to maintain the same level of activity. Athletes who have a release of the anterior and lateral compartments have a high success rate. PMID:21063498

  7. Exertional compartment syndrome of the upper extremity.

    PubMed

    Botte, M J; Fronek, J; Pedowitz, R A; Hoenecke, H R; Abrams, R A; Hamer, M L

    1998-08-01

    Exertional compartment syndrome is characterized by intracompartmental pressures that rise transiently following repetitive motion or exercise, thereby producing temporary, reversible ischemia, pain, weakness, and, occasionally, neurologic deficits. The exact cause or pathogenesis remains unclear; a disturbance of microvascular flow caused by elevated intramuscular pressure leads to tissue ischemia, depletion of high-energy phosphate stores, and cellular acidosis. Anatomic contributing factors may include a limited compartment size, increased intracompartmental volume, constricted fascia, loss of compartment elasticity, poor venous return, or increased muscle bulk. The diagnosis is suspected based on history and confirmed with physical examination and intramuscular pressure evaluation before and after exercise (stress test). Differential diagnosis includes claudication or other vascular abnormalities, myositis, tendinitis, periostitis, chronic strains or sprains, stress fracture, other compression or systemic neuropathies, and cardiac abnormalities with angina or referred extremity pain. Initial treatment includes activity modification; refractory symptoms can be managed with elective fasciotomy.

  8. Exercise-induced compartment syndrome: case report.

    PubMed

    Klodell, C T; Pokorny, R; Carrillo, E H; Heniford, B T

    1996-06-01

    Exercise-induced rhabdomyolysis is a frequent event occurring after severe forms of exercise. This is usually a short-lived, uncomplicated phenomenon that is seldom of any clinical significance. The rare progression of this muscle injury to compartment syndrome is, however, a limb- and life-threatening condition that typically presents in the anterior compartment of the lower leg. A case is reported of a young man who participated in physical activity well beyond his normal level of exertion and subsequently developed bilateral lower extremity compartment syndrome requiring surgical decompression. To our knowledge, this is the only description of this complication occurring in a multicompartment, bilateral distribution. The combination of the rarity and morbidity of this condition, as well as the multitude of very common benign injuries that present in the same manner as the problem discussed, make this insult especially dangerous.

  9. Macrophage defense mechanisms against intracellular bacteria

    PubMed Central

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  10. Macrophage defense mechanisms against intracellular bacteria.

    PubMed

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  11. Effects in vivo of decreased plasma and intracellular muscle glutamine concentration on whole-body and hindquarter protein kinetics in rats.

    PubMed

    Olde Damink, S W; de Blaauw, I; Deutz, N E; Soeters, P B

    1999-06-01

    Glutamine is considered to be a 'conditionally' essential amino acid. During situations of severe stress like sepsis or after trauma there is a fall in plasma glutamine levels, enhanced glutamine turnover and intracellular muscle glutamine depletion. Under these conditions, decreased intramuscular glutamine concentration correlates with reduced rates of protein synthesis. It has therefore been hypothesized that intracellular muscle glutamine levels have a regulatory role in muscle protein turnover rates. Administration of the glutamine synthetase inhibitor methionine sulphoximine (MSO) was used to decrease glutamine levels in male Wistar rats. Immediately after the MSO treatment (t=0 h), and at t=6 h and t=12 h, rats received intraperitoneal injections (10 ml/100 g body weight) with glutamine (200 mM) to test whether this attenuated the fall in plasma and intracellular muscle glutamine. Control animals received alanine and saline after MSO treatment, while saline was also given to a group of normal rats. At t=18 h rats received a primed constant infusion of L-[2,6-3H]phenylalanine. A three-pool compartment tracer model was used to measure whole-body protein turnover and muscle protein kinetics. Administration of MSO resulted in a 40% decrease in plasma glutamine and a 60% decrease in intracellular muscle glutamine, both of which were successfully attenuated by glutamine infusions. The decreased intracellular muscle glutamine levels had no effect on whole-body protein turnover or muscle protein kinetics. Also, glutamine supplementation did not alter these parameters. Alanine supplementation increased both hindquarter protein synthesis and breakdown but the net balance of phenylalanine remained unchanged. In conclusion, our results show that decreased plasma and muscle glutamine levels have no effect on whole-body protein turnover or muscle protein kinetics. Therefore, it is unlikely that, in vivo, the intracellular muscle concentration of glutamine is a major

  12. Measurement of the intracellular ph in human stomach cells: a novel approach to evaluate the gastric acid secretory potential of coffee beverages.

    PubMed

    Weiss, Carola; Rubach, Malte; Lang, Roman; Seebach, Elisabeth; Blumberg, Simone; Frank, Oliver; Hofmann, Thomas; Somoza, Veronika

    2010-02-10

    As the consumption of coffee beverages sometimes is reported to cause gastric irritation, for which an increased stomach acid secretion is one of the promoting factors, different processing technologies such as steam-treatment have been developed to reduce putative stomach irritating compounds. There is evidence-based data neither on the effect of detailed processing variations nor on individual coffee components affecting the proton secretory activity (PSA). This work aimed at developing a screening model suitable for investigating the effects of commercial coffee beverages and components thereof on human parietal cells. Human gastric cancer cells (HGT-1) were treated with reconstituted freeze-dried coffee beverages prepared from customary coffee products such as regular coffee (RC, n = 4), mild bean coffee (MBC, n = 5), stomach friendly coffee (SFC, n = 4), and SFC decaffeinated (SFCD, n = 3). PSA was analyzed by flow cytometry using the pH-sensitive dye SNARF-AM. Treatment of the cells with MBC did not result in a PSA different from RC treatment (p

  13. Intracellular pH in cold-blooded vertebrates as a function of body temperature.

    PubMed

    Malan, A; Wilson, T L; Reeves, R B

    1976-10-01

    Intracellular pH (pHi) was measured in vivo in tissue of frogs (Rana catesbeiana) and turtles (Pseudemys scripta) using the DMO technique. Animals were permitted 3-8 days to come to a new steady-state body temperature (Tb) which ranged 5-32 degrees C. Least squares regression equation for pHi data are: frog blood, 8.184-0.0206 Tb; frog striated muscle, 7.275-0.0152 Tb; turtle blood, 8.092-0.0207Tb; turtle muscle, 7.421-0.0186 Tb; turtle heart, 7.452-0.0122 Tb; turtle liver, 7.753-0.0233 Tb; turtle esophageal smooth muscle, 7.513-0.0141 Tb. Only turtle cardiac muscle deltapHi/deltaT was significantly different from deltapH/deltaT of blood. Results have been interpreted in terms of protein charge state alterations; in the physiological pH range, histidine residues of proteins are the principal dissociable groups (HPr+ = H+ + Pr) affected by pHi and Tb changes. Constancy of protein charge state can be assessed by monitoring alpha imidazole, alphaIM = Pr/(HPr+ + Pr). A uniform pKIM of 6.85 (20degreesC) and a deltaHO of 7 kcal/mol are assumed in calculating alphaIM. Intracellular alphaIM is preserved in the tissues studied as body temperature changes. These results indicate that ectotherm acid-base balance, alphastat control, regulates not only extracellular blood proteins, but also intracellular compartment proteins in such a way as to preserve functions dependent upon protein net charge states.

  14. [The perichromatin compartment of the cell nucleus].

    PubMed

    Bogoliubov, D S

    2014-01-01

    In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions. PMID:25696976

  15. [The perichromatin compartment of the cell nucleus].

    PubMed

    Bogoliubov, D S

    2014-01-01

    In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.

  16. Intracellular localization of the Menkes and Wilson's disease proteins and their role in intracellular copper transport.

    PubMed

    Suzuki, M; Gitlin, J D

    1999-08-01

    Copper is a heavy metal ion essential for the activity of a variety of enzymes in the body. In excess, copper is a very toxic ion and therefore efficient regulation of its metabolism is required. This is dramatically illustrated by the genetic disorders X-linked Menkes disease and autosomal recessive Wilson's disease. In 1993, both the Menkes and Wilson's genes were isolated and it was found that these genes encode homologous cation copper transporting P-type ATPase proteins. The Menkes protein (ATP7A) is expressed in most tissues, except liver. In contrast, the Wilson's protein (ATP7B) is abundantly expressed in liver. Intracellular localization of those proteins was investigated. Both ATP7A and ATP7B are localized in the trans-Golgi network and post-Golgi vesicular compartment (PGVC) in the cell. This intracellular localization was altered by the copper content present in the cell. This result may support the hypothesis that ATP7A and ATP7B are involved in cellular copper transport and those proteins could be suitable models for elucidating intracellular copper metabolism.

  17. Intracellular Drug Delivery: Mechanisms for Cell Entry.

    PubMed

    Garnacho, Carmen

    2016-01-01

    Over the last half century, the delivery of pharmacologically active substances, such as synthetic drugs, natural compounds, gene material and many other pharmaceutical products, has been widely studied. Understanding the interactions of drug carriers with cells and how these interactions influence the cellular uptake is of paramount importance, since targets for many therapeutic agents against several disorders are localized in the subcellular compartments. Besides, the route of drug carrier entry (direct or via endocytosis) often defines the efficiency, kinetics and final destination of the drug itself. Although classical endocytic pathways such as phagocytosis, macropinocytosis, clathrin-mediated and caveola-dependent pathways are well characterized, their control for pharmaceutical drug delivery applications is still a challenging issue. Also, better knowledge of non-classical endocytic pathways may help optimize targeted drug delivery systems for intracellular delivery. Therefore, this review focuses on mechanisms of intracellular delivery, including direct internalization and endocytosis, as well as factors such as targeting moiety, target receptor, and size, shape, and surface properties of the drug carrier that can influence uptake process. PMID:26675221

  18. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease.

    PubMed

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Amoroso, Salvatore; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  19. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease

    PubMed Central

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  20. Acute and chronic compartment syndromes: know when to act fast.

    PubMed

    McLaughlin, Nancy; Heard, Hank; Kelham, Steven

    2014-06-01

    Compartment syndrome is a fairly common condition noted in patients with fractures or crush injuries to the extremities (acute compartment syndrome) and in athletes (chronic compartment syndrome). Compartments bound by fascia are found in the extremities, buttocks, and abdomen; conditions that cause intracompartmental swelling and hypertension can lead to ischemia and limb loss. This article reviews diagnosis of the problem, monitoring of compartment pressure, and appropriate treatment.

  1. 24 CFR 3280.111 - Toilet compartments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Toilet compartments. 3280.111 Section 3280.111 Housing and Urban Development Regulations Relating to Housing and Urban Development... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Planning Considerations §...

  2. 24 CFR 3280.111 - Toilet compartments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Toilet compartments. 3280.111 Section 3280.111 Housing and Urban Development Regulations Relating to Housing and Urban Development... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Planning Considerations §...

  3. Gluteal Compartment Syndrome Secondary to Pelvic Trauma

    PubMed Central

    Taype Zamboni, Danilo E. R.; Carabelli, Guido S.; Barla, Jorge D.; Sancineto, Carlos F.

    2016-01-01

    Gluteal compartment syndrome (GCS) is extremely rare when compared to compartment syndrome in other anatomical regions, such as the forearm or the lower leg. It usually occurs in drug users following prolonged immobilization due to loss of consciousness. Another possible cause is trauma, which is rare and has only few reports in the literature. Physical examination may show tense and swollen buttocks and severe pain caused by passive range of motion. We present the case of a 70-year-old man who developed GCS after prolonged anterior-posterior pelvis compression. The physical examination revealed swelling, scrotal hematoma, and left ankle extension weakness. An unstable pelvic ring injury was diagnosed and the patient was taken to surgery. Measurement of the intracompartmental pressure was measured in the operating room, thereby confirming the diagnosis. Emergent fasciotomy was performed to decompress the three affected compartments. Trauma surgeons must be aware of the possibility of gluteal compartment syndrome in patients who have an acute pelvic trauma with buttock swelling and excessive pain of the gluteal region. Any delay in diagnosis or treatment can be devastating, causing permanent disability, irreversible loss of gluteal muscles, sciatic nerve palsy, kidney failure, or even death. PMID:27579205

  4. Gluteal Compartment Syndrome Secondary to Pelvic Trauma.

    PubMed

    Diaz Dilernia, Fernando; Zaidenberg, Ezequiel E; Gamsie, Sebastian; Taype Zamboni, Danilo E R; Carabelli, Guido S; Barla, Jorge D; Sancineto, Carlos F

    2016-01-01

    Gluteal compartment syndrome (GCS) is extremely rare when compared to compartment syndrome in other anatomical regions, such as the forearm or the lower leg. It usually occurs in drug users following prolonged immobilization due to loss of consciousness. Another possible cause is trauma, which is rare and has only few reports in the literature. Physical examination may show tense and swollen buttocks and severe pain caused by passive range of motion. We present the case of a 70-year-old man who developed GCS after prolonged anterior-posterior pelvis compression. The physical examination revealed swelling, scrotal hematoma, and left ankle extension weakness. An unstable pelvic ring injury was diagnosed and the patient was taken to surgery. Measurement of the intracompartmental pressure was measured in the operating room, thereby confirming the diagnosis. Emergent fasciotomy was performed to decompress the three affected compartments. Trauma surgeons must be aware of the possibility of gluteal compartment syndrome in patients who have an acute pelvic trauma with buttock swelling and excessive pain of the gluteal region. Any delay in diagnosis or treatment can be devastating, causing permanent disability, irreversible loss of gluteal muscles, sciatic nerve palsy, kidney failure, or even death. PMID:27579205

  5. 24 CFR 3280.111 - Toilet compartments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Planning Considerations § 3280.111... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Toilet compartments. 3280.111 Section 3280.111 Housing and Urban Development Regulations Relating to Housing and Urban...

  6. 24 CFR 3280.111 - Toilet compartments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Planning Considerations § 3280.111... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Toilet compartments. 3280.111 Section 3280.111 Housing and Urban Development Regulations Relating to Housing and Urban...

  7. Delayed Presentation of Acute Gluteal Compartment Syndrome.

    PubMed

    Tasch, James J; Misodi, Emmanuel O

    2016-01-01

    BACKGROUND Acute gluteal compartment syndrome is a rare condition that usually results from prolonged immobilization following a traumatic event, conventionally involving the presence of compounding factors such as alcohol or opioid intoxication. If delay in medical treatment is prolonged, severe rhabdomyolysis may ensue, leading to acute renal failure and potentially death. CASE REPORT We report the case of a 23-year-old male with a recent history of incarceration and recreational drug use, who presented with reports of severe right-sided buttock pain and profound right-sided neurological loss following a questionable history involving prolonged immobilization after a fall from a standing position. The patient required an emergent gluteal fasciotomy immediately upon admission and required temporary hemodialysis. After an extended hospital stay, he ultimately recovered with only mild deficits in muscular strength in the right lower extremity. CONCLUSIONS This report demonstrates the importance of early recognition of gluteal compartment syndrome to prevent morbidity and mortality. Compartment syndrome presents in many unique ways, and healthcare practitioners must have a keen diagnostic sense to allow for early surgical intervention. Proper wick catheter measurements should be utilized more frequently, instead of relying on clinical symptomatology such as loss of peripheral pulses for diagnosis of compartment syndrome.

  8. Acute bilateral spontaneous forearm compartment syndrome.

    PubMed

    Dalton, David M; Munigangaiah, Sudarshan; Subramaniam, Tava; McCabe, John P

    2014-01-01

    Acute spontaneous compartment syndrome of the forearm is rarely reported in the literature. It is typically associated with trauma or thromboembolism in the acute setting and repetitive exertional stress in the chronic setting. However it is rare for it to present bilaterally with no apparent underlying cause. We report the case of a young 31-year-old lady who presented to our Emergency Department with bilateral compartment syndrome of the forearm. Her presenting complaints included acute severe pain and swelling of the forearms bilaterally, with a decreased range of movement of the wrist and fingers. She also complained of numbness in all fingers. She had no history of recent trauma and ultrasound scans showed no evidence of vascular compromise. Past medical history was notable only for idiopathic hypertension and coeliac disease. The patient was taken to theatre urgently where flexor and extensor compartments and carpal tunnel were decompressed. Pronator Teres was found to be dusky initially but turned pink after decompression. All other muscles were normal. An interesting fact of this case was that combination of the high compartment pressures and anaesthetic related hypotension caused the forearm pulses to become impalpable at induction, these returned intra-operatively. The patient has been seen in the outpatient department following discharge. She is well apart from some mildly reduced grip strength in her right hand likely due to carpal tunnel decompression. No cause was found for the scenario after extensive medical investigation.

  9. Degradation of aggregated LDL occurs in complex extracellular sub-compartments of the lysosomal synapse.

    PubMed

    Singh, Rajesh K; Barbosa-Lorenzi, Valéria C; Lund, Frederik W; Grosheva, Inna; Maxfield, Frederick R; Haka, Abigail S

    2016-03-01

    Monocyte-derived cells use an extracellular, acidic, lytic compartment (a lysosomal synapse) for initial degradation of large objects or species bound to the extracellular matrix. Akin to osteoclast degradation of bone, extracellular catabolism is used by macrophages to degrade aggregates of low density lipoprotein (LDL) similar to those encountered during atherogenesis. However, unlike osteoclast catabolism, the lysosomal synapse is a highly dynamic and intricate structure. In this study, we use high resolution three dimensional imaging to visualize compartments formed by macrophages to catabolize aggregated LDL. We show that these compartments are topologically complex, have a convoluted structure and contain sub-regions that are acidified. These sub-regions are characterized by a close apposition of the macrophage plasma membrane and aggregates of LDL that are still connected to the extracellular space. Compartment formation is dependent on local actin polymerization. However, once formed, compartments are able to maintain a pH gradient when actin is depolymerized. These observations explain how compartments are able to maintain a proton gradient while remaining outside the boundaries of the plasma membrane. PMID:26801085

  10. Degradation of aggregated LDL occurs in complex extracellular sub-compartments of the lysosomal synapse

    PubMed Central

    Singh, Rajesh K.; Barbosa-Lorenzi, Valéria C.; Lund, Frederik W.; Grosheva, Inna; Maxfield, Frederick R.; Haka, Abigail S.

    2016-01-01

    ABSTRACT Monocyte-derived cells use an extracellular, acidic, lytic compartment (a lysosomal synapse) for initial degradation of large objects or species bound to the extracellular matrix. Akin to osteoclast degradation of bone, extracellular catabolism is used by macrophages to degrade aggregates of low density lipoprotein (LDL) similar to those encountered during atherogenesis. However, unlike osteoclast catabolism, the lysosomal synapse is a highly dynamic and intricate structure. In this study, we use high resolution three dimensional imaging to visualize compartments formed by macrophages to catabolize aggregated LDL. We show that these compartments are topologically complex, have a convoluted structure and contain sub-regions that are acidified. These sub-regions are characterized by a close apposition of the macrophage plasma membrane and aggregates of LDL that are still connected to the extracellular space. Compartment formation is dependent on local actin polymerization. However, once formed, compartments are able to maintain a pH gradient when actin is depolymerized. These observations explain how compartments are able to maintain a proton gradient while remaining outside the boundaries of the plasma membrane. PMID:26801085

  11. Extraocular Muscle Compartments in Superior Oblique Palsy

    PubMed Central

    Suh, Soh Youn; Clark, Robert A.; Le, Alan; Demer, Joseph L.

    2016-01-01

    Purpose To investigate changes in volumes of extraocular muscle (EOM) compartments in unilateral superior oblique (SO) palsy using magnetic resonance imaging (MRI). Methods High-resolution, surface-coil MRI was obtained in 19 patients with unilateral SO palsy and 19 age-matched orthotropic control subjects. Rectus EOMs and the SO were divided into two anatomic compartments for volume analysis in patients with unilateral SO palsy, allowing comparison of total compartmental volumes versus controls. Medial and lateral compartmental volumes of the SO muscle were compared in patients with isotropic (round shape) versus anisotropic (elongated shape) SO atrophy. Results The medial and lateral compartments of the ipsilesional SO muscles were equally atrophic in isotropic SO palsy, whereas the lateral compartment was significantly smaller than the medial in anisotropic SO palsy (P = 0.01). In contrast to the SO, there were no differential compartmental volume changes in rectus EOMs; however, there was significant total muscle hypertrophy in the ipsilesional inferior rectus (IR) and lateral rectus (LR) muscles and contralesional superior rectus (SR) muscles. Medial rectus (MR) volume was normal both ipsi- and contralesionally. Conclusions A subset of patients with SO palsy exhibit selective atrophy of the lateral, predominantly vertically acting SO compartment. Superior oblique atrophy is associated with whole-muscle volume changes in the ipsilesional IR, ipsilesional LR, and contralesional SR; however, SO muscle atrophy is not associated with compartmentally selective volume changes in the rectus EOMs. Selective compartmental SO pathology may provide an anatomic mechanism that explains some of the variability in clinical presentations of SO palsy. PMID:27768791

  12. SERS nanosensors that report pH of endocytic compartments during FcεRI transit

    PubMed Central

    Nowak-Lovato, K.L.; Wilson, Bridget S.; Rector, K.D.

    2011-01-01

    Recently, the development of an IgE receptor (FcεRI)-targeted, pH sensitive, surface-enhanced Raman spectroscopy (SERS) nanosensor has been demonstrated [1]. The targeted nanosensor enables spatial and temporal pH measurements as internalized receptors progress through endosomal compartments in live cells. Trafficking of receptor-bound nanosensors was compared at physiological temperature (37°C) versus room temperature (25°C). As expected, we observed markedly slower progression of receptors through low pH endocytic compartments at the lower temperature. We also demonstrate the utility of the nanosensors to measure directly changes in the pH of intracellular compartments after treatment with bafilomycin or amiloride. We report an increase in endosome compartment pH after treatment with bafilomycin, an H+ ATPase pump inhibitor. Decreased endosomal luminal pH was measured in cells treated with amiloride, an inhibitor of Na+/H+ exchange. The decrease in amiloride-treated cells was transient, followed by a recovery period of approximately 15–20 minutes to restore endosomal pH. These experiments demonstrate the novel application of Raman spectroscopy to monitor local pH environment in live cells with the use of targeted SERS nanosensors. PMID:20842349

  13. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    PubMed Central

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  14. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    PubMed Central

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  15. Assessment of Methods for the Intracellular Blockade of GABAA Receptors.

    PubMed

    Atherton, Laura A; Burnell, Erica S; Mellor, Jack R

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4'-dinitro-stilbene-2,2'-disulphonic acid (DNDS) and 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  16. Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites.

    PubMed Central

    Cater, Michael A; Forbes, John; La Fontaine, Sharon; Cox, Diane; Mercer, Julian F B

    2004-01-01

    The Wilson protein (ATP7B) is a copper-transporting CPx-type ATPase defective in the copper toxicity disorder Wilson disease. In hepatocytes, ATP7B delivers copper to apo-ceruloplasmin and mediates the excretion of excess copper into bile. These distinct functions require the protein to localize at two different subcellular compartments. At the trans-Golgi network, ATP7B transports copper for incorporation into apo-ceruloplasmin. When intracellular copper levels are increased, ATP7B traffics to post-Golgi vesicles in close proximity to the canalicular membrane to facilitate biliary copper excretion. In the present study, we investigated the role of the six N-terminal MBSs (metal-binding sites) in the trafficking process. Using site-directed mutagenesis, we mutated or deleted various combinations of the MBSs and assessed the effect of these changes on the localization and trafficking of ATP7B. Results show that the MBSs required for trafficking are the same as those previously found essential for the copper transport function. Either MBS 5 or MBS 6 alone was sufficient to support the redistribution of ATP7B to vesicular compartments. The first three N-terminal motifs were not required for copper-dependent intracellular trafficking and could not functionally replace sites 4-6 when placed in the same sequence position. Furthermore, the N-terminal region encompassing MBSs 1-5 (amino acids 64-540) was not essential for trafficking, with only one MBS close to the membrane channel, necessary and sufficient to support trafficking. Our findings were similar to those obtained for the closely related ATP7A protein, suggesting similar mechanisms for trafficking between copper-transporting CPx-type ATPases. PMID:14998371

  17. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    PubMed Central

    Repella, Tana L.; Ho, Mengfei; Chong, Tracy P. M.; Bannai, Yuka; Wilson, Brenda A.

    2011-01-01

    The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity. PMID:22053287

  18. Co-encapsulating the fusogenic peptide INF7 and molecular imaging probes in liposomes increases intracellular signal and probe retention.

    PubMed

    Burks, Scott R; Legenzov, Eric A; Martin, Erik W; Li, Changqing; Lu, Wuyuan; Kao, Joseph P Y

    2015-01-01

    Liposomes are promising vehicles to deliver diagnostic and therapeutic agents to cells in vivo. After uptake into cells by endocytosis, liposomes are degraded in the endolysosomal system. Consequently, the encapsulated cargo molecules frequently remain sequestered in endosomal compartments; this limits their usefulness in many applications (e.g. gene delivery). To overcome this, various fusogenic peptides have been developed to facilitate delivery of liposomally-encapsulated molecules into the cytosol. One such peptide is the pH-sensitive influenza-derived peptide INF7. Liposomal delivery of imaging agents is an attractive approach for enabling cell imaging and cell tracking in vivo, but can be hampered by inadequate intracellular accumulation and retention of probes caused by exocytosis (and possible degradation) of endosome-entrapped probes. Such signal loss could be minimized by facilitating escape of probe molecules from endolysosomal compartments into the cytosol. We investigated the ability of co-encapsulated INF7 to release liposomally-delivered rhodamine fluorophores into the cytosol after endosomal acidification/maturation. We co-encapsulated INF7 and fluorescent rhodamine derivatives having vastly different transport properties to show that after endocytosis by CV1 cells, the INF7 peptide is activated by acidic endosomal pH and facilitates efficient release of the fluorescent tracers into the cytosol. Furthermore, we show that INF7-facilitated escape from endosomes markedly enhanced retention of tracers that cannot be actively extruded from the cytosol. Minimizing loss of intracellular probes improves cellular imaging by increasing the signal-to-noise ratio of images and lengthening the time window that imaging can be performed. In particular, this will enhance in vivo electron paramagnetic resonance imaging, an emergent magnetic resonance imaging modality requires exogenous paramagnetic imaging agents and is highly promising for cellular and molecular

  19. Decompressive laparotomy for abdominal compartment syndrome

    PubMed Central

    Kimball, E.; Malbrain, M.; Nesbitt, I.; Cohen, J.; Kaloiani, V.; Ivatury, R.; Mone, M.; Debergh, D.; Björck, M.

    2016-01-01

    Background The effect of decompressive laparotomy on outcomes in patients with abdominal compartment syndrome has been poorly investigated. The aim of this prospective cohort study was to describe the effect of decompressive laparotomy for abdominal compartment syndrome on organ function and outcomes. Methods This was a prospective cohort study in adult patients who underwent decompressive laparotomy for abdominal compartment syndrome. The primary endpoints were 28‐day and 1‐year all‐cause mortality. Changes in intra‐abdominal pressure (IAP) and organ function, and laparotomy‐related morbidity were secondary endpoints. Results Thirty‐three patients were included in the study (20 men). Twenty‐seven patients were surgical admissions treated for abdominal conditions. The median (i.q.r.) Acute Physiology And Chronic Health Evaluation (APACHE) II score was 26 (20–32). Median IAP was 23 (21–27) mmHg before decompressive laparotomy, decreasing to 12 (9–15), 13 (8–17), 12 (9–15) and 12 (9–14) mmHg after 2, 6, 24 and 72 h. Decompressive laparotomy significantly improved oxygenation and urinary output. Survivors showed improvement in organ function scores, but non‐survivors did not. Fourteen complications related to the procedure developed in eight of the 33 patients. The abdomen could be closed primarily in 18 patients. The overall 28‐day mortality rate was 36 per cent (12 of 33), which increased to 55 per cent (18 patients) at 1 year. Non‐survivors were no different from survivors, except that they tended to be older and on mechanical ventilation. Conclusion Decompressive laparotomy reduced IAP and had an immediate effect on organ function. It should be considered in patients with abdominal compartment syndrome. PMID:26891380

  20. Actin: its cumbersome pilgrimage through cellular compartments.

    PubMed

    Schleicher, Michael; Jockusch, Brigitte M

    2008-06-01

    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days' knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin.

  1. [The anterior compartment syndrome of the leg].

    PubMed

    Parca, S; Tobaldi, F; Palego, E; Galante, V; Bonfili, G F

    1981-09-15

    The Authors define the compartment syndrome as a pathological condition collecting various clinical pictures constantly characterized by a rise of pressure in a restricted and inextensible not modifiable space, with circulatory difficulty and suffering of the tissues in this district. The only diagnosis is clinic. Functional and instrumental semiotics aren't of great aid. The quickly evolving clinical picture commands a timely diagnosis and a precocious intervention to reduce compartmental pressure by fasciotomy and eventual epimysiotomy effectual in the first twelve hours.

  2. Host metabolism regulates intracellular growth of Trypanosoma cruzi.

    PubMed

    Caradonna, Kacey L; Engel, Juan C; Jacobi, David; Lee, Chih-Hao; Burleigh, Barbara A

    2013-01-16

    Metabolic coupling of intracellular pathogens with host cells is essential for successful colonization of the host. Establishment of intracellular infection by the protozoan Trypanosoma cruzi leads to the development of human Chagas' disease, yet the functional contributions of the host cell toward the infection process remain poorly characterized. Here, a genome-scale functional screen identified interconnected metabolic networks centered around host energy production, nucleotide metabolism, pteridine biosynthesis, and fatty acid oxidation as key processes that fuel intracellular T. cruzi growth. Additionally, the host kinase Akt, which plays essential roles in various cellular processes, was critical for parasite replication. Targeted perturbations in these host metabolic pathways or Akt-dependent signaling pathways modulated the parasite's replicative capacity, highlighting the adaptability of this intracellular pathogen to changing conditions in the host. These findings identify key cellular process regulating intracellular T. cruzi growth and illuminate the potential to leverage host pathways to limit T. cruzi infection. PMID:23332160

  3. Host metabolism regulates intracellular growth of Trypanosoma cruzi

    PubMed Central

    Caradonna, Kacey L.; Engel, Juan C.; Jacobi, David; Lee, Chih-Hao; Burleigh, Barbara A.

    2012-01-01

    SUMMARY Metabolic coupling of intracellular pathogens with host cells is essential for successful colonization of the host. Establishment of intracellular infection by the protozoan Trypanosoma cruzi leads to the development of human Chagas disease, yet the functional contributions of the host cell toward the infection process remain poorly characterized. Here, a genome-scale functional screen identified interconnected metabolic networks centered around host energy production, nucleotide metabolism, pteridine biosynthesis, and fatty acid oxidation as key processes that fuel intracellular T. cruzi growth. Additionally, the host kinase Akt, which plays essential roles in various cellular processes, was critical for parasite replication. Targeted perturbations in these host metabolic pathways or Akt-dependent signaling pathways modulated the parasite’s replicative capacity, highlighting the adaptability of this intracellular pathogen to changing conditions in the host. These findings identify key cellular process regulating intracellular T. cruzi growth and illuminate the potential to leverage host pathways to limit T. cruzi infection. PMID:23332160

  4. Compartment-Specific Phosphorylation of Squid Neurofilaments.

    PubMed

    Grant, Philip; Pant, Harish C

    2016-01-01

    Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied.

  5. Bacterial translocation - impact on the adipocyte compartment.

    PubMed

    Kruis, Tassilo; Batra, Arvind; Siegmund, Britta

    2014-01-01

    Over the last decade it became broadly recognized that adipokines and thus the fat tissue compartment exert a regulatory function on the immune system. Our own group described the pro-inflammatory function of the adipokine leptin within intestinal inflammation in a variety of animal models. Following-up on this initial work, the aim was to reveal stimuli and mechanisms involved in the activation of the fat tissue compartment and the subsequent release of adipokines and other mediators paralleled by the infiltration of immune cells. This review will summarize the current literature on the possible role of the mesenteric fat tissue in intestinal inflammation with a focus on Crohn's disease (CD). CD is of particular interest in this context since the transmural intestinal inflammation has been associated with a characteristic hypertrophy of the mesenteric fat, a phenomenon called "creeping fat." The review will address three consecutive questions: (i) What is inducing adipocyte activation, (ii) which factors are released after activation and what are the consequences for the local fat tissue compartment and infiltrating cells; (iii) do the answers generated before allow for an explanation of the role of the mesenteric fat tissue within intestinal inflammation? With this review we will provide a working model indicating a close interaction in between bacterial translocation, activation of the adipocytes, and subsequent direction of the infiltrating immune cells. In summary, the models system mesenteric fat indicates a unique way how adipocytes can directly interact with the immune system.

  6. 46 CFR 174.075 - Compartments assumed flooded: general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Units § 174.075 Compartments assumed flooded: general. The individual flooding of each of the... § 174.065 (a). Simultaneous flooding of more than one compartment must be assumed only when indicated...

  7. 46 CFR 174.075 - Compartments assumed flooded: general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Units § 174.075 Compartments assumed flooded: general. The individual flooding of each of the... § 174.065 (a). Simultaneous flooding of more than one compartment must be assumed only when indicated...

  8. 46 CFR 174.075 - Compartments assumed flooded: general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Units § 174.075 Compartments assumed flooded: general. The individual flooding of each of the... § 174.065 (a). Simultaneous flooding of more than one compartment must be assumed only when indicated...

  9. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    PubMed

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection. PMID:25834094

  10. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    PubMed

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  11. Acute compartment syndrome of the thigh following total knee arthroplasty.

    PubMed

    Boonstra, R H; Haverkamp, D; Campo, M M; van der Vis, H M

    2012-03-01

    A 62year old man developed a compartment syndrome of the thigh after total knee arthroplasty. Twelve years previously he had a HTO of the same knee complicated by a compartment syndrome of the calf. The clinical diagnosis was confirmed with intracompartmental pressure measurement. Following fasciotomy pressures were normalized and further course was uncomplicated. Compartment syndrome of the thigh is a rare, but potentially devastating, complication following total knee arthroplasty. A previous compartment syndrome of the calf is identified as a risk factor.

  12. Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release.

    PubMed

    Wei, Rongran; Cheng, Liang; Zheng, Meng; Cheng, Ru; Meng, Fenghua; Deng, Chao; Zhong, Zhiyuan

    2012-08-13

    Reduction-sensitive reversibly core-cross-linked micelles were developed based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid (PEG-b-PHPMA-LA) conjugates and investigated for triggered doxorubicin (DOX) release. Water-soluble PEG-b-PHPMA block copolymers were obtained with M(n,PEG) of 5.0 kg/mol and M(n,HPMA) varying from 1.7 and 4.1 to 7.0 kg/mol by reversible addition-fragmentation chain transfer (RAFT) polymerization. The esterification of the hydroxyl groups in the PEG-b-PHPMA copolymers with lipoic acid (LA) gave amphiphilic PEG-b-PHPMA-LA conjugates with degrees of substitution (DS) of 71-86%, which formed monodispersed micelles with average sizes ranging from 85.3 to 142.5 nm, depending on PHPMA molecular weights, in phosphate buffer (PB, 10 mM, pH 7.4). These micelles were readily cross-linked with a catalytic amount of dithiothreitol (DTT). Notably, PEG-b-PHPMA(7.0k)-LA micelles displayed superior DOX loading content (21.3 wt %) and loading efficiency (90%). The in vitro release studies showed that only about 23.0% of DOX was released in 12 h from cross-linked micelles at 37 °C at a low micelle concentration of 40 μg/mL, whereas about 87.0% of DOX was released in the presence of 10 mM DTT under otherwise the same conditions. MTT assays showed that DOX-loaded core-cross-linked PEG-b-PHPMA-LA micelles exhibited high antitumor activity in HeLa and HepG2 cells with low IC(50) (half inhibitory concentration) of 6.7 and 12.8 μg DOX equiv/mL, respectively, following 48 h incubation, while blank micelles were practically nontoxic up to a tested concentration of 1.0 mg/mL. Confocal laser scanning microscope (CLSM) studies showed that DOX-loaded core-cross-linked micelles released DOX into the cell nuclei of HeLa cells in 12 h. These reduction-sensitive disassemblable core-cross-linked micelles with excellent biocompatibility, superior drug loading, high extracellular stability, and triggered intracellular drug release are promising

  13. 14 CFR 23.1192 - Engine accessory compartment diaphragm.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine accessory compartment diaphragm. 23... Powerplant Powerplant Fire Protection § 23.1192 Engine accessory compartment diaphragm. For aircooled radial... accessory compartment by a diaphragm that meets the firewall requirements of § 23.1191....

  14. 14 CFR 23.1192 - Engine accessory compartment diaphragm.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine accessory compartment diaphragm. 23... Powerplant Powerplant Fire Protection § 23.1192 Engine accessory compartment diaphragm. For aircooled radial... accessory compartment by a diaphragm that meets the firewall requirements of § 23.1191....

  15. 14 CFR 23.1192 - Engine accessory compartment diaphragm.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine accessory compartment diaphragm. 23... Powerplant Powerplant Fire Protection § 23.1192 Engine accessory compartment diaphragm. For aircooled radial... accessory compartment by a diaphragm that meets the firewall requirements of § 23.1191....

  16. 14 CFR 23.1192 - Engine accessory compartment diaphragm.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine accessory compartment diaphragm. 23... Powerplant Powerplant Fire Protection § 23.1192 Engine accessory compartment diaphragm. For aircooled radial... accessory compartment by a diaphragm that meets the firewall requirements of § 23.1191....

  17. Compartment Syndrome of the Hand: A Little Thought about Diagnosis

    PubMed Central

    Reichman, Eric F.

    2016-01-01

    Compartment syndrome of the forearm is a well described entity but there have been relatively few case reports in the emergency medicine literature of hand compartment syndromes (HCS). Prompt recognition and treatment of this potential limb threat are essential to minimize morbidity and mortality. Presented is a case of a documented hand compartment syndrome following a motor vehicle collision. PMID:27293917

  18. Chronic exertional compartment syndrome in adductor pollicis muscle: case report.

    PubMed

    Lee, Chang-Hun; Lee, Kwang-Hyun; Lee, Seung-Hun; Kim, Yee-Suk; Chung, Ung-Seo

    2012-11-01

    We report a case of chronic exertional compartment syndrome in the adductor pollicis that was confirmed by measuring elevated compartment pressure. Specific finding of magnetic resonance imaging, increased T2 signal intensity in the involved compartment, was also useful for the diagnosis. Pain was relieved by fasciotomy through a volar approach. PMID:23040640

  19. 14 CFR 27.773 - Pilot compartment view.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment view. 27.773 Section 27... § 27.773 Pilot compartment view. (a) Each pilot compartment must be free from glare and reflections that could interfere with the pilot's view, and designed so that— (1) Each pilot's view is...

  20. 14 CFR 25.772 - Pilot compartment doors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment doors. 25.772 Section 25... § 25.772 Pilot compartment doors. For an airplane that has a lockable door installed between the pilot... pilot compartment if the cockpit door becomes jammed. (c) There must be an emergency means to enable...

  1. 14 CFR 23.773 - Pilot compartment view.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pilot compartment view. 23.773 Section 23... Personnel and Cargo Accommodations § 23.773 Pilot compartment view. (a) Each pilot compartment must be— (1) Arranged with sufficiently extensive, clear and undistorted view to enable the pilot to safely...

  2. 14 CFR 27.773 - Pilot compartment view.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment view. 27.773 Section 27... § 27.773 Pilot compartment view. (a) Each pilot compartment must be free from glare and reflections that could interfere with the pilot's view, and designed so that— (1) Each pilot's view is...

  3. 14 CFR 23.773 - Pilot compartment view.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment view. 23.773 Section 23... Personnel and Cargo Accommodations § 23.773 Pilot compartment view. (a) Each pilot compartment must be— (1) Arranged with sufficiently extensive, clear and undistorted view to enable the pilot to safely...

  4. 14 CFR 29.773 - Pilot compartment view.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment view. 29.773 Section 29... Accommodations § 29.773 Pilot compartment view. (a) Nonprecipitation conditions. For nonprecipitation conditions, the following apply: (1) Each pilot compartment must be arranged to give the pilots a...

  5. 14 CFR 25.772 - Pilot compartment doors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pilot compartment doors. 25.772 Section 25... § 25.772 Pilot compartment doors. For an airplane that has a lockable door installed between the pilot... pilot compartment if the cockpit door becomes jammed. (c) There must be an emergency means to enable...

  6. Resolution of intracellular calcium metabolism in intact segments of rabbit aorta

    SciTech Connect

    Phair, R.D.; Hai, C.M.

    1986-07-01

    A new method, based on computer-assisted kinetic analysis of /sup 45/Ca efflux data, was used to measure calcium contents and fluxes for extracellular and intracellular compartments in intact segments of rabbit aorta. After a 1-hour loading period, efflux data were collected for 8 hours using a flow-through tissue chamber. These long-term effluxes were necessary because information on intracellular calcium metabolism was concentrated in the slow components of the efflux curves while earlier components appeared to be dominated by washout of extracellular calcium. Intracellular compartments were identified as those whose calcium contents were altered by 10 microM phenylephrine. This method complements previous approaches by providing simultaneous estimates of compartmental calcium contents and fluxes without requiring the assumption of isotopic equilibrium and without recourse to standard wash techniques for removal of extracellular calcium. In normal, calcium-containing, bicarbonate-buffered physiological salt solution these compartments contained a total of approximately 300 nmol Ca/g wet aorta. Of this total, 55 nmol/g were associated with the slowest resolvable compartment whose turnover time was 170 minutes and whose exchange flux was 0.32 nmol min-1g-1. Two other intracellular compartments had turnover times of 30 minutes. One of these was phenylephrine releasable and contained 145 nmol/g; it exchanged calcium at 4.9 nmol min-1g-1. In normal physiological salt solution the plasma membrane was, surprisingly, not rate limiting for Ca efflux; and in 10 microM phenylephrine the membrane Ca flux was even greater, increasing 3.5-fold compared to control.

  7. Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape

    PubMed Central

    Ramond, Elodie; Gesbert, Gael; Rigard, Mélanie; Dairou, Julien; Dupuis, Marion; Dubail, Iharilalao; Meibom, Karin; Henry, Thomas; Barel, Monique; Charbit, Alain

    2014-01-01

    Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle. PMID:24453979

  8. Two-compartment behavior during transport of folate compounds in L1210 cell plasma membrane vesicles

    SciTech Connect

    Yang, C.H.; Dembo, M.; Sirotnak, F.M.

    1982-01-01

    The transport of (/sup 3/H) 1,L 5-formyltetrahydrofolate, (/sup 3/H) folic acid, and (/sup 3/H)methotrexate by L1210 cell plasma membrane vesicles exhibited multicompartmental behavior. Two separate vesicular compartments (parallel relationship) of approximately equal volume were revealed during measurements of influx and efflux. Flux in one compartment was rapid, saturable, highly temperature-sensitive, and inhibited by pCMBS. Flux in the other compartment exhibited all of the characteristics of passive diffusion. These results imply that our plasma membrane vesicle preparations consist of a mixture of two functional species. Transport of folate into one of these species occurs by passive diffusion alone, whereas transport into the other kind of vesicle occurs by both passive diffusion and carrier-facilitated transport.

  9. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways.

    PubMed

    Mhamdi, Amna; Hager, Jutta; Chaouch, Sejir; Queval, Guillaume; Han, Yi; Taconnat, Ludivine; Saindrenan, Patrick; Gouia, Houda; Issakidis-Bourguet, Emmanuelle; Renou, Jean-Pierre; Noctor, Graham

    2010-07-01

    Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.

  10. Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila

    PubMed Central

    Fonseca, Maris V.; Swanson, Michele S.

    2014-01-01

    The Gram-negative bacterium Legionella pneumophila is ubiquitous in freshwater environments as a free-swimming organism, resident of biofilms, or parasite of protozoa. If the bacterium is aerosolized and inhaled by a susceptible human host, it can infect alveolar macrophages and cause a severe pneumonia known as Legionnaires' disease. A sophisticated cell differentiation program equips L. pneumophila to persist in both extracellular and intracellular niches. During its life cycle, L. pneumophila alternates between at least two distinct forms: a transmissive form equipped to infect host cells and evade lysosomal degradation, and a replicative form that multiplies within a phagosomal compartment that it has retooled to its advantage. The efficient changeover between transmissive and replicative states is fundamental to L. pneumophila's fitness as an intracellular pathogen. The transmission and replication programs of L. pneumophila are governed by a number of metabolic cues that signal whether conditions are favorable for replication or instead trigger escape from a spent host. Several lines of experimental evidence gathered over the past decade establish strong links between metabolism, cellular differentiation, and virulence of L. pneumophila. Herein, we focus on current knowledge of the metabolic components employed by intracellular L. pneumophila for cell differentiation, nutrient salvaging and utilization of host factors. Specifically, we highlight the metabolic cues that are coupled to bacterial differentiation, nutrient acquisition systems, and the strategies utilized by L. pneumophila to exploit host metabolites for intracellular replication. PMID:24575391

  11. Mechanisms of intracellular ice formation.

    PubMed Central

    Muldrew, K; McGann, L E

    1990-01-01

    The phenomenon of intracellular freezing in cells was investigated by designing experiments with cultured mouse fibroblasts on a cryomicroscope to critically assess the current hypotheses describing the genesis of intracellular ice: (a) intracellular freezing is a result of critical undercooling; (b) the cytoplasm is nucleated through aqueous pores in the plasma membrane; and (c) intracellular freezing is a result of membrane damage caused by electrical transients at the ice interface. The experimental data did not support any of these theories, but was consistent with the hypothesis that the plasma membrane is damaged at a critical gradient in osmotic pressure across the membrane, and intracellular freezing occurs as a result of this damage. An implication of this hypothesis is that mathematical models can be used to design protocols to avoid damaging gradients in osmotic pressure, allowing new approaches to the preservation of cells, tissues, and organs by rapid cooling. PMID:2306499

  12. Exercise induced compartment syndrome in a professional footballer.

    PubMed

    Cetinus, E; Uzel, M; Bilgiç, E; Karaoguz, A; Herdem, M

    2004-04-01

    Recurrent pain in the lower leg caused by exercise is a common problem in athletes. The main causes are exercise induced compartment syndrome, periostitis of the tibia, stress fracture, venous diseases, obliterative arterial diseases, and shin splints. Exercise induced compartment syndrome is the least common. A recurrent tightening or tense sensation and aching in anatomically defined compartments is pathognomonic. The symptoms are caused by abnormally high pressure in compartments of the leg during and after exercise. In this report, a case of exercise induced compartment syndrome in a professional footballer is described.

  13. Microspectroscopy of the photosynthetic compartment of algae.

    PubMed

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  14. Ultrasonic Apparatus and Method to Assess Compartment Syndrome

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Ueno, Toshiaki (Inventor); Hargens, Alan R. (Inventor)

    2009-01-01

    A process and apparatus for measuring pressure buildup in a body compartment that encases muscular tissue. The method includes assessing the body compartment configuration and identifying the effect of pulsatible components on compartment dimensions and muscle tissue characteristics. This process is used in preventing tissue necrosis, and in decisions of whether to perform surgery on the body compartment for prevention of Compartment Syndrome. An apparatus is used for measuring pressure build-up in the body compartment having components for imparting ultrasonic waves such as a transducer, placing the transducer to impart the ultrasonic waves, capturing the imparted ultrasonic waves, mathematically manipulating the captured ultrasonic waves and categorizing pressure build-up in the body compartment from the mathematical manipulations.

  15. Acute compartment syndrome of the leg: pressure measurement and fasciotomy.

    PubMed

    Masquelet, A-C

    2010-12-01

    Compartment syndrome involves a conflicting situation between an unyielding space, the compartment, and its increasing tissue content secondary to traumatic ischemia. Rapidly irreversible damages occur without treatment. Although the diagnosis approach to leg compartment syndrome is clinical in priority, pressure measurements should be systematically produced: first to confirm the presence of this condition and define optimal surgical strategies and second to provide the only objective available criteria in case of a debatable diagnosis. In practice, two schematic situations can be distinguished, which do not cover the many different cases: leg compartment syndrome without a fracture in which the four leg compartments are affected and which requires a fasciotomy using two surgical approaches, the lateral and the medial; leg compartment syndrome associated with a fracture: fasciotomy of the four compartments may be performed by a single lateral approach distant from the fracture site and its fixation hardware. It should be noted that this approach is easy, effective and safe.

  16. Ionic milieu controls the compartment-specific activation of pro-opiomelanocortin processing in AtT-20 cells.

    PubMed Central

    Schmidt, W K; Moore, H P

    1995-01-01

    Newly synthesized prohormones and their processing enzymes transit through the same compartments before being packaged into regulated secretory granules. Despite this coordinated intracellular transport, prohormone processing does not occur until late in the secretory pathway. In the mouse pituitary AtT-20 cell line, conversion of pro-opiomelanocortin (POMC) to mature adrenocorticotropic hormone involves the prohormone convertase PC1. The mechanism by which this proteolytic processing is restricted to late secretory compartments is unknown; PC1 activity could be regulated by compartment-specific activators/inhibitors, or through changes in the ionic milieu that influence its activity. By arresting transport in a semi-intact cell system, we have addressed whether metabolically labeled POMC trapped in early secretory compartments can be induced to undergo conversion if the ionic milieu in these compartments is experimentally manipulated. Prolonged incubation of labeled POMC trapped in the endoplasmic reticulum or Golgi/trans-Golgi network did not result in processing, thereby supporting the theory that processing is normally a post-Golgi/trans-Golgi network event. However, acidification of these compartments allowed effective processing of POMC to the intermediate and mature forms. The observed processing increased sharply at a pH below 6.0 and required millimolar calcium, regardless of the compartment in which labeled POMC resided. These conditions also resulted in the coordinate conversion of PC1 from the 84/87 kDa into the 74-kDa and 66-kDa forms. We propose that POMC processing is predominantly restricted to acidifying secretory granules, and that a change in pH within these granules is both necessary and sufficient to activate POMC processing. Images PMID:8573786

  17. Regulation of intracellular heme trafficking revealed by subcellular reporters.

    PubMed

    Yuan, Xiaojing; Rietzschel, Nicole; Kwon, Hanna; Walter Nuno, Ana Beatriz; Hanna, David A; Phillips, John D; Raven, Emma L; Reddi, Amit R; Hamza, Iqbal

    2016-08-30

    Heme is an essential prosthetic group in proteins that reside in virtually every subcellular compartment performing diverse biological functions. Irrespective of whether heme is synthesized in the mitochondria or imported from the environment, this hydrophobic and potentially toxic metalloporphyrin has to be trafficked across membrane barriers, a concept heretofore poorly understood. Here we show, using subcellular-targeted, genetically encoded hemoprotein peroxidase reporters, that both extracellular and endogenous heme contribute to cellular labile heme and that extracellular heme can be transported and used in toto by hemoproteins in all six subcellular compartments examined. The reporters are robust, show large signal-to-background ratio, and provide sufficient range to detect changes in intracellular labile heme. Restoration of reporter activity by heme is organelle-specific, with the Golgi and endoplasmic reticulum being important sites for both exogenous and endogenous heme trafficking. Expression of peroxidase reporters in Caenorhabditis elegans shows that environmental heme influences labile heme in a tissue-dependent manner; reporter activity in the intestine shows a linear increase compared with muscle or hypodermis, with the lowest heme threshold in neurons. Our results demonstrate that the trafficking pathways for exogenous and endogenous heme are distinct, with intrinsic preference for specific subcellular compartments. We anticipate our results will serve as a heuristic paradigm for more sophisticated studies on heme trafficking in cellular and whole-animal models.

  18. Regulation of intracellular heme trafficking revealed by subcellular reporters.

    PubMed

    Yuan, Xiaojing; Rietzschel, Nicole; Kwon, Hanna; Walter Nuno, Ana Beatriz; Hanna, David A; Phillips, John D; Raven, Emma L; Reddi, Amit R; Hamza, Iqbal

    2016-08-30

    Heme is an essential prosthetic group in proteins that reside in virtually every subcellular compartment performing diverse biological functions. Irrespective of whether heme is synthesized in the mitochondria or imported from the environment, this hydrophobic and potentially toxic metalloporphyrin has to be trafficked across membrane barriers, a concept heretofore poorly understood. Here we show, using subcellular-targeted, genetically encoded hemoprotein peroxidase reporters, that both extracellular and endogenous heme contribute to cellular labile heme and that extracellular heme can be transported and used in toto by hemoproteins in all six subcellular compartments examined. The reporters are robust, show large signal-to-background ratio, and provide sufficient range to detect changes in intracellular labile heme. Restoration of reporter activity by heme is organelle-specific, with the Golgi and endoplasmic reticulum being important sites for both exogenous and endogenous heme trafficking. Expression of peroxidase reporters in Caenorhabditis elegans shows that environmental heme influences labile heme in a tissue-dependent manner; reporter activity in the intestine shows a linear increase compared with muscle or hypodermis, with the lowest heme threshold in neurons. Our results demonstrate that the trafficking pathways for exogenous and endogenous heme are distinct, with intrinsic preference for specific subcellular compartments. We anticipate our results will serve as a heuristic paradigm for more sophisticated studies on heme trafficking in cellular and whole-animal models. PMID:27528661

  19. Intracellular events regulating cross-presentation

    PubMed Central

    Wagner, Claudia S.; Grotzke, Jeffrey E.; Cresswell, Peter

    2012-01-01

    Cross-presentation plays a fundamental role in the induction of CD8-T cell immunity. However, although more than three decades have passed since its discovery, surprisingly little is known about the exact mechanisms involved. Here we give an overview of the components involved at different stages of this process. First, antigens must be internalized into the cross-presenting cell. The involvement of different receptors, method of antigen uptake, and nature of the antigen can influence intracellular trafficking and access to the cross-presentation pathway. Once antigens access the endocytic system, different requirements for endosomal/phagosomal processing arise, such as proteolysis and reduction of disulfide bonds. The majority of cross-presented peptides are generated by proteasomal degradation. Therefore, antigens must cross a membrane barrier in a manner analogous to the fate of misfolded proteins in the endoplasmic reticulum (ER) that are retrotranslocated into the cytosol for degradation. Indeed, some components of the ER-associated degradation machinery have been implicated in cross-presentation. Further complicating the matter, endosomal and phagosomal compartments have been suggested as alternative sites to the ER for loading of peptides on major histocompatibility complex class I molecules. Finally, the antigen presenting cells involved, particularly dendritic cell subsets and their state of maturation, influence the efficiency of cross-presentation. PMID:22675326

  20. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    PubMed

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms. PMID:27055246

  1. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation

    PubMed Central

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G. John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg’) shows that cells with the lowest value of intracellular Tg’ survive the freezing process better than cells with a higher intracellular Tg’. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms. PMID:27055246

  2. Subcellular storage compartments of bacteriopheophorbide sensitizers

    NASA Astrophysics Data System (ADS)

    Moser, Joerg G.; Dembeck, U.; Hubert, M.; Spengler, Bernhard; Bayer, Rainer; Wagner, Birgit

    1994-03-01

    Fluorescence colocalization with the Golgi specific stain, NBD-ceramide, and the mitochondrial localizing stain, Rhodamine 123, confirmed the earlier assumption that the Golgi apparatus is one of the prominent storage compartments for bacteriopheophorbide esters in OAT 75 SCLC cells and several amelanotic melanoma cell lines (A375, Melur SP18, SkAMel 25). Furthermore, a diffuse staining of mitochondria, of non-structured cytoplasm, and an additional storage in melanine vesicles of the amelanotic melanoma cells suggests further storage compartments with quantitatively different contributions to the phototoxicity of bacteriochlorophyll-derived photosensitizers. Independent observations of early phototoxic effects on microfilamentous networks, enzymatic activities (succinate dehydrogenase, lactate dehydrogenase), and redistribution phenomena following primary uptake of the sensitizers let us assume that only a part of the 108 molecules taken up by a cell contribute directly to phototoxicity. Thus it may be asked if a proper subcellular positioning of only a few sensitizer molecules may have similar phototoxic effects as the huge amounts stored at apparently ineffective sites.

  3. Remote detection of pressure compartments. Topical report

    SciTech Connect

    Surdam, R.C.; Boyd, N.; Jiao, Z.; Maucione, D.; Kubicheck, S.

    1996-02-01

    A significant portion of the Cretaceous shale section in the Rocky Mountain Laramide Basins (RMLB) is anomalously pressured and gas saturated. The top of the anomalously pressured zone is identified by marked increases in sonic transit time, hydrocarbon production index (P.I.), clay diagenesis (smectite to illite), and vitrinite reflectance gradients. The driving mechanism of anomalous pressure development and compartmentalization is the generation and storage of liquid hydrocarbons that subsequently partially react to gas, converting the fluid-flow system to a multiphase regime in which capillarity controls permeability; the result is elevated displacement pressure within the shales. Sandstone reservoirs within this anomalously pressured shale section are subdivided stratigraphically and diagenetically into relatively small, isolated pressure or fluid-flow compartments. The saturation of these compartments with hydrocarbons and the subsequent oil-to-gas reaction causes explusion of a significant portion of the free water, resulting in anomalously pressured gas accumulations characterized by depletion drive. The determination of the position and configuration of the pressure boundary between normal and anomalously pressured regimes and the detection and delineation of porosity/permeability `sweet spots` below this boundary are the two most important elements in exploring for basin center gas in the RMLB.

  4. Analysis of body water compartments after a short sauna bath using bioelectric impedance analysis.

    PubMed

    Servidio, M-F; Mohamed, E I; Maiolo, C; Hereba, A T; Perrone, F; Garofano, P; Iacopino, L

    2003-10-01

    Studies have suggested that long-term sauna bathing may lower blood pressure in persons with hypertension by causing a direct loss of extracellular water and plasma minerals. The objective of the present study was to evaluate the effect of short-term sauna bathing on body water compartments as estimated by bioelectric impedance analysis (BIA). We recruited 15 men [mean age (+/-SD) of 23.93+/-5.12 years and mean body mass index (BMI) of 23.25+/-2.84 kg/m(2)] and 10 women matched for age and BMI. Total body resistance, reactance, and impedance were measured for all participants using BIA, at baseline, after a short sauna bath, and after a rest period. Total, extracellular, and intracellular water compartments were calculated using BIA formulae. There were no significant differences for any of the body water compartments when comparing the measurements taken before and after the sauna bath and after the rest period. However, it remains to be determined whether or not BIA is sensitive to rapid changes in water volume.

  5. Intracellular Toll-like receptor recruitment and cleavage in endosomal/lysosomal organelles.

    PubMed

    Tohmé, Mira; Manoury, Bénédicte

    2014-01-01

    Microbial pathogens are recognized through multiple, distinct receptors such as intracellular Toll-like receptors (TLRs 3, 7, 8, 9, and 13) which reside in the endosomes and lysosomes. TLRs are sensitive to chloroquine, a lysomotropic agent that neutralizes acidic compartments indicating a role for endo/lysosomal proteases for their signaling. Indeed, upon stimulation, full-length TLR7 and 9 are cleaved into a C-terminal fragment and this processing is highly dependent on a cysteine protease named asparagine endopeptidase (AEP) in dendritic cells. A recruitment and a boost in AEP activity, which was induced shortly after TLR7 and 9 stimulation, are shown to promote TLR7 and 9 cleavage and correlate with an increased acidification in endosomes and lysosomes. Moreover, mutating a putative AEP cleavage site in TLR7 or 9 strongly decreases their signaling in DCs, suggesting perhaps a direct cleavage of TLR7 and 9 by AEP. These results demonstrate that TLR7 and 9 require a proteolytic cleavage for their signaling and identified a key endocytic protease playing a critical role in this process. PMID:24377922

  6. ICP8 Filament Formation Is Essential for Replication Compartment Formation during Herpes Simplex Virus Infection

    PubMed Central

    Darwish, Anthar S.; Grady, Lorry M.; Bai, Ping

    2015-01-01

    single-stranded DNA binding protein ICP8 in the formation of prereplicative sites and replication compartments. We propose that ICP8 protein filaments generate a protein scaffold for other cellular and viral proteins, resulting in a structure that concentrates both viral DNA and replication proteins. Replication compartments may be similar to other types of cellular membraneless compartments thought to be formed by phase separations caused by low-affinity, multivalent interactions involving proteins and nucleic acids within cells. ICP8 scaffolds could facilitate the formation of replication compartments by mediating interactions with other components of the replication machinery. PMID:26676794

  7. Some thoughts about the intracellular location of nanoparticles and the resulting consequences.

    PubMed

    Rejman, Joanna; Nazarenus, Moritz; Jimenez de Aberasturi, Dorleta; Said, Alaa Hassan; Feliu, Neus; Parak, Wolfgang J

    2016-11-15

    It is qualitatively demonstrated that the intracellular localization of particles depends on the way they are administered, their basic physicochemical properties, as well as on incubation time. For this purpose cells were exposed to fluorescently-labelled particles of different size under different exposure scenarios including incubation, microinjection, electroporation, and sonoporation. After co-exposure to cells the intracellular distribution of different particles was imaged with multicolor fluorescence microscopy. Qualitative co-localization analysis demonstrates, that different particles to which cells have been exposed in different ways did not automatically reside in the same compartment. As intracellular particle localization may influence potential toxic effects of particles on cells, studies attempting to unravel molecular mechanisms of toxicity should involve the determination of the intracellular particle distribution. PMID:27572895

  8. ATP stimulates pannexin 1 internalization to endosomal compartments.

    PubMed

    Boyce, Andrew K J; Kim, Michelle S; Wicki-Stordeur, Leigh E; Swayne, Leigh Anne

    2015-09-15

    The ubiquitous pannexin 1 (Panx1) ion- and metabolite-permeable channel mediates the release of ATP, a potent signalling molecule. In the present study, we provide striking evidence that ATP, in turn, stimulates internalization of Panx1 to intracellular membranes. These findings hold important implications for understanding the regulation of Panx1 when extracellular ATP is elevated. In the nervous system, this includes phenomena such as synaptic plasticity, pain, precursor cell development and stroke; outside of the nervous system, this includes things like skeletal and smooth muscle activity and inflammation. Within 15 min, ATP led to significant Panx1-EGFP internalization. In a series of experiments, we determined that hydrolysable ATP is the most potent stimulator of Panx1 internalization. We identified two possible mechanisms for Panx1 internalization, including activation of ionotropic purinergic (P2X) receptors and involvement of a putative ATP-sensitive residue in the first extracellular loop of Panx1 (Trp(74)). Internalization was cholesterol-dependent, but clathrin, caveolin and dynamin independent. Detailed analysis of Panx1 at specific endosome sub-compartments confirmed that Panx1 is expressed in endosome membranes of the classical degradation pathway under basal conditions and that elevation of ATP levels diverts a sub-population to recycling endosomes. This is the first report detailing endosome localization of Panx1 under basal conditions and the potential for ATP regulation of its surface expression. Given the ubiquitous expression profile of Panx1 and the importance of ATP signalling, these findings are of critical importance for understanding the role of Panx1 in health and disease. PMID:26195825

  9. ATP stimulates pannexin 1 internalization to endosomal compartments.

    PubMed

    Boyce, Andrew K J; Kim, Michelle S; Wicki-Stordeur, Leigh E; Swayne, Leigh Anne

    2015-09-15

    The ubiquitous pannexin 1 (Panx1) ion- and metabolite-permeable channel mediates the release of ATP, a potent signalling molecule. In the present study, we provide striking evidence that ATP, in turn, stimulates internalization of Panx1 to intracellular membranes. These findings hold important implications for understanding the regulation of Panx1 when extracellular ATP is elevated. In the nervous system, this includes phenomena such as synaptic plasticity, pain, precursor cell development and stroke; outside of the nervous system, this includes things like skeletal and smooth muscle activity and inflammation. Within 15 min, ATP led to significant Panx1-EGFP internalization. In a series of experiments, we determined that hydrolysable ATP is the most potent stimulator of Panx1 internalization. We identified two possible mechanisms for Panx1 internalization, including activation of ionotropic purinergic (P2X) receptors and involvement of a putative ATP-sensitive residue in the first extracellular loop of Panx1 (Trp(74)). Internalization was cholesterol-dependent, but clathrin, caveolin and dynamin independent. Detailed analysis of Panx1 at specific endosome sub-compartments confirmed that Panx1 is expressed in endosome membranes of the classical degradation pathway under basal conditions and that elevation of ATP levels diverts a sub-population to recycling endosomes. This is the first report detailing endosome localization of Panx1 under basal conditions and the potential for ATP regulation of its surface expression. Given the ubiquitous expression profile of Panx1 and the importance of ATP signalling, these findings are of critical importance for understanding the role of Panx1 in health and disease.

  10. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  11. [Intestinal occlusion and abdominal compartment syndrome (ACS)].

    PubMed

    Stagnitti, Franco

    2009-01-01

    Intestinal occlusion is defined as an independent predictive factor of intra-abdominal hypertension (IAH) which represents an independent predictor of mortality. Baggot in 1951 classified patients operated with intestinal occlusion as being at risk for IAH ("abdominal blow-out"), recommending them for open abdomen surgery proposed by Ogilvie. Abdominal surgery provokes IAH in 44.7% of cases with mortality which, in emergency, triples with respect to elective surgery (21.9% vs 6.8%). In particular, IAH is present in 61.2% of ileus and bowel distension and is responsible for 52% of mortality (54.8% in cases with intra-abdominal infection). These patients present with an increasing intra-abdominal pressure (IAP) which, over 20-25 mmHg, triggers an Abdominal Compartment Syndrome (ACS) with altered functions in some organs arriving at Multiple Organ Dysfunction Syndrome (MODS). The intestine normally covers 58% of abdominal volume but when there is ileus distension, intestinal pneumatosis develops (third space) which can occupy up to 90% of the entire cavity. At this moment, Gastro Intestinal Failure (GIF) can appear, which is a specific independent risk factor of mortality, motor of "Organ Failure". The pathophysiological evolution has many factors in 45% of cases: intestinal pneumatosis is associated with mucosal and serous edema, capillary leakage with an increase in extra-cellular volume and peritoneal fluid collections (fourth space). The successive loss of the mucous barrier permits a bacterial translocation which includes bacteria, toxins, pro-inflammatory factors and oxygen free radicals facilitating the passage from an intra-abdominal to inter-systemic vicious cyrcle. IAH provokes the raising of the diaphragm, and vascular and visceral compressions which induce hypertension in the various spaces with compartmental characteristics. These trigger hypertension in the renal, hepatic, pelvic, thoracic, cardiac, intracranial, orbital and lower extremity areas, giving

  12. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth.

    PubMed

    Orij, Rick; Postmus, Jarne; Ter Beek, Alex; Brul, Stanley; Smits, Gertien J

    2009-01-01

    The specific pH values of cellular compartments affect virtually all biochemical processes, including enzyme activity, protein folding and redox state. Accurate, sensitive and compartment-specific measurements of intracellular pH (pHi) dynamics in living cells are therefore crucial to the understanding of stress response and adaptation. We used the pH-sensitive GFP derivative 'ratiometric pHluorin' expressed in the cytosol and in the mitochondrial matrix of growing Saccharomyces cerevisiae to assess the variation in cytosolic pH (pHcyt) and mitochondrial pH (pHmit) in response to nutrient availability, respiratory chain activity, shifts in environmental pH and stress induced by addition of sorbic acid. The in vivo measurement allowed accurate determination of organelle-specific pH, determining a constant pHcyt of 7.2 and a constant pHmit of 7.5 in cells exponentially growing on glucose. We show that pHcyt and pHmit are differentially regulated by carbon source and respiratory chain inhibitors. Upon glucose starvation or sorbic acid stress, pHi decrease coincided with growth stasis. Additionally, pHi and growth coincided similarly in recovery after addition of glucose to glucose-starved cultures or after recovery from a sorbic acid pulse. We suggest a relation between pHi and cellular energy generation, and therefore a relation between pHi and growth.

  13. Designing the Space Station Crew Compartment

    NASA Astrophysics Data System (ADS)

    Kitmacher, Gary

    2002-01-01

    Design of the crew compartment in the modules of the International Space Station began in the mid-1980s and was influenced by past experiences as well as new and innovative designs. This paper will trace some of the alternative configurations that were considered during the early Phase B studies and the trade studies, design and modeling activities which led to the configuration as it is being flown today. Design of the core systems, lofts, and rack-based modules will all be reviewed. Based upon crew feedback and experiences in the integration of space station missions over the years of operation, problems that have been experienced in planning and implementation will be reviewed.

  14. The Orbital Workshop Waste Management Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.

  15. cAMP signalling meets mitochondrial compartments.

    PubMed

    Lefkimmiatis, Konstantinos

    2014-04-01

    Mitochondria are highly dynamic organelles comprising at least three distinct areas, the OMM (outer mitochondrial membrane), the IMS (intermembrane space) and the mitochondrial matrix. Physical compartmentalization allows these organelles to host different functional domains and therefore participate in a variety of important cellular actions such as ATP synthesis and programmed cell death. In a surprising homology, it is now widely accepted that the ubiquitous second messenger cAMP uses the same stratagem, compartmentalization, in order to achieve the characteristic functional pleiotropy of its pathway. Accumulating evidence suggests that all the main mitochondrial compartments contain segregated cAMP cascades; however, the regulatory properties and functional significance of such domains are not fully understood and often remain controversial issues. The present mini-review discusses our current knowledge of how the marriage between mitochondrial and cAMP compartmentalization is achieved and its effects on the biology of the cell. PMID:24646228

  16. The extracellular compartments of frog skeletal muscle.

    PubMed Central

    Neville, M C; Mathias, R T

    1979-01-01

    1. Detailed studies of solute efflux from frog sartorius muscle and single muscle fibres were carried out in order to characterize a 'special region' (Harris, 1963) in the extracellular space of muscle and determine whether this 'special region' is the sarcoplasmic reticulum. 2. The efflux of radioactive Na, Cl, glusose, 3-O-methylglucose, xylose, glycine, leucine, cycloleucine, Rb, K, inulin (mol. wt. 5000) and dextran (mol. wt. 17,000) from previously loaded muscles was studied. In all cases except dextran the curve had three components, a rapid (A) component which could be equated with efflux from the extracellular space proper, a slow (C) component representing cellular solute and an intermediate (B) component. The distribution space for the B component was 8% of muscle volume in summer frogs and 12% in winter frogs and appeared to be equal for all compounds studied. We tested the hypothesis that the B component originated from the sarcoplasmic reticulum. 3. The C component was missing from the dextran curves. Both dextran and inulin entered the compartment of origin of the B component (compartment B) to the same extent as small molecules. 4. For all compounds studies, the efflux rate constant for the A component could be predicted from the diffusion coefficient. For the B component the efflux rate constant was 6--10 times slower than that for the A component but was still proportional to the diffusion coefficient for the solute in question. 5. When Na and sucrose efflux from single fibres was followed, a B component was usually observed. The average distribution space for this component was small, averaging 1.5% of fibre volume. There was no difference between the average efflux rate constants for Na and sucrose. 6. In an appendix, the constraints placed on the properties of a hypothetical channel between the sarcoplasmic reticulum and the T-system by the linear electrical parameters of frog skeletal muscle are derived. It is shown that the conductance of such

  17. Assessment of Methods for the Intracellular Blockade of GABAA Receptors

    PubMed Central

    Atherton, Laura A.; Burnell, Erica S.; Mellor, Jack R.

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  18. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  19. Vehicle hydraulic system that provides heat for passenger compartment

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

  20. Dynamic Compartments in the Imperative π-Calculus

    NASA Astrophysics Data System (ADS)

    John, Mathias; Lhoussaine, Cédric; Niehren, Joachim

    Dynamic compartments with mutable configurations and variable volumes are of basic interest for the stochastic modeling of biochemistry in cells. We propose a new language to express dynamic compartments that we call the imperative π -calculus. It is obtained from the attributed π -calculus by adding imperative assignment operations to a global store. Previous approaches to dynamic compartments are improved in flexibility or efficiency. This is illustrated by an appropriate model of osmosis and a correct encoding of bioambBioAmbients.

  1. Exertional compartment syndrome in covert mild hemophilia. A case report.

    PubMed

    Tountas, C P; Ferris, F O; Cobb, S W

    1992-07-01

    A 37-year-old white male experienced unexpected postoperative bleeding after fasciotomy and decompression for left pronator and compartment syndromes of the forearm. He was subsequently diagnosed with a mild form of hemophilia A. One year later, surgery was required for right pronator and compartment syndromes. Pre- and postoperative cryoprecipitate infusions controlled bleeding following the second operation until the patient discontinued his infusions, resulting in a wound hematoma. Covert mild hemophilia is implicated in the pathogenesis of his compartment syndromes.

  2. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... compartments shall be ventilated to maintain sanitary conditions, preclude the growth of mold and air borne bacterial contaminants, prevent undue condensation of water vapor and minimize or eliminate...

  3. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... compartments shall be ventilated to maintain sanitary conditions, preclude the growth of mold and air borne bacterial contaminants, prevent undue condensation of water vapor and minimize or eliminate...

  4. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... compartments shall be ventilated to maintain sanitary conditions, preclude the growth of mold and air borne bacterial contaminants, prevent undue condensation of water vapor and minimize or eliminate...

  5. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... compartments shall be ventilated to maintain sanitary conditions, preclude the growth of mold and air borne bacterial contaminants, prevent undue condensation of water vapor and minimize or eliminate...

  6. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... compartments shall be ventilated to maintain sanitary conditions, preclude the growth of mold and air borne bacterial contaminants, prevent undue condensation of water vapor and minimize or eliminate...

  7. Coping with the diagnostic complexities of the compartment syndrome

    NASA Technical Reports Server (NTRS)

    Mubarak, S. J.; Hargens, A. R.; Karkal, S. S.

    1988-01-01

    This review recognizes that, given the various complexities associated with the condition, no pat answers can be given to fit every patient with the compartment syndrome. The authors first give a definition of the syndrome, together with a brief account of how this self-perpetuating pathologic cycle is triggered. Next, they delineate specific anatomical features of compartments that are likely to be involved, and follow this with an inventory of symptoms and signs to look for in suspected cases. After sorting out the entities that can mimic the compartment syndrome, the authors describe three essential techniques of measuring tissue pressure, which can prove invaluable in diagnosing the compartment syndrome.

  8. Acute compartment syndrome in lower extremity musculoskeletal trauma.

    PubMed

    Olson, Steven A; Glasgow, Robert R

    2005-11-01

    Acute compartment syndrome is a potentially devastating condition in which the pressure within an osseofascial compartment rises to a level that decreases the perfusion gradient across tissue capillary beds, leading to cellular anoxia, muscle ischemia, and death. A variety of injuries and medical conditions may initiate acute compartment syndrome, including fractures, contusions, bleeding disorders, burns, trauma, postischemic swelling, and gunshot wounds. Diagnosis is primarily clinical, supplemented by compartment pressure measurements. Certain anesthetic techniques, such as nerve blocks and other forms of regional and epidural anesthesia, reportedly contribute to a delay in diagnosis. Basic science data suggest that the ischemic threshold of normal muscle is reached when pressure within the compartment is elevated to 20 mm Hg below the diastolic pressure or 30 mm Hg below the mean arterial blood pressure. On diagnosis of impending or true compartment syndrome, immediate measures must be taken. Complete fasciotomy of all compartments involved is required to reliably normalize compartment pressures and restore perfusion to the affected tissues. Recognizing compartment syndromes requires having and maintaining a high index of suspicion, performing serial examinations in patients at risk, and carefully documenting changes over time.

  9. Delayed onset thigh compartment syndrome secondary to contusion.

    PubMed

    Joglekar, Siddharth B; Rehman, Saqib

    2009-08-01

    While thigh compartment syndrome is relatively uncommon, it can occur in various situations. Multiple reports document thigh contusions as a cause of acute compartment syndrome; however, compartment syndrome of the thigh presenting primarily in a delayed fashion secondary to a contusion has not been described. This article reports a case of thigh compartment syndrome. A 39-year-old man sustained a left thigh contusion while playing basketball. He continued to play and also worked at the office over the next 2 days. Fifty-two hours postinjury, he developed severe pain in the thigh after a long walk. Increased swelling of the thigh followed, with numbness in the anterolateral thigh and pain with knee motion. He presented 60 hours postinjury with a compartment syndrome, and a lateral decompressive fasciotomy of the thigh was performed 62 hours postinjury. The wound was closed after 5 days. Three months postoperatively, the patient returned to playing basketball with no deficits. Treatment of established compartment syndrome in such cases is controversial, with some reports recommending nonoperative management. Contusion-related compartment syndromes are frequently associated with intramuscular bleeding in the involved compartment, which may accumulate slowly or worsen with further activity. Guidelines regarding return to sports need to be established in individuals sustaining severe contusions during sports-related activities to prevent compartment syndrome. Any individual sustaining such an injury should be under surveillance for delayed onset symptoms or signs of this potentially devastating syndrome.

  10. Acute exercise-induced bilateral thigh compartment syndrome.

    PubMed

    Boland, Michael R; Heck, Chris

    2009-03-01

    Acute compartment syndrome of the thigh is rare due to the space's ability to accommodate large volumes of fluid and, with the exception of the lateral septum, its thin compliant linings. This article describes a case of bilateral exercise-induced severe compartment syndrome treated with anterior and posterior fasciotomies. A 29-year-old man was admitted to intensive care with myoglobinuria. His left thigh was evaluated 18 hours later for compartment syndrome. The patient reported that 14 hours prior to initial presentation, he had participated in a 1-hour session of vigorous basketball. He gradually developed bilateral moderately severe thigh pain and tea-colored urine. Physical examination revealed pain secondary to passive stretch of both knees at 20 degrees flexion, plus firm anterior and posterior compartments to palpation. A handheld pressure monitor revealed the following compartment pressures: left anterior 80 mm Hg; left posterior 75 mm Hg; right anterior 45 mm Hg; and right posterior 50 mm Hg. Bilateral emergent anterior and posterior compartment fasciotomies were performed. The patient developed a significant severe distal motor and sensory neurological deficit on the left side, which recovered to 3/5 motor strength and protective sensation. At 6-month follow-up, he ambulated with the assistance of a left ankle foot orthosis. Acute severe compartment syndrome can occur following vigorous exercise. We recommend fasciotomies after exercise-induced acute compartment syndrome rather than initial observation because of the severity of morbidity associated with undertreated compartment syndrome.

  11. Processing and presentation of antigens derived from intracellular protozoan parasites

    PubMed Central

    Goldszmid, Romina S.; Sher, Alan

    2010-01-01

    Summary Control of parasitic protozoan infections requires the generation of efficient innate and adaptive immune responses, and in most cases both CD8 and CD4 T cells are necessary for host survival. Since intracellular protozoa remodel the vacuolar compartments in which they reside, it is not obvious how their antigens enter the MHC class I and class II pathways. Studies using genetically engineered parasites have shown that host cell targeting, intracellular compartmentalization, subcellular localization of antigen within the parasite and mechanism of invasion are important factors determining the presentation pathway utilized. The recent identification of endogenous parasite-derived CD8 T cell epitopes have helped confirm these concepts as well as provided new information on the processing pathways and the impact of parasite-stage specific antigen expression on the repertoire of responding T cells stimulated by infection. Elucidating the mechanisms governing antigen processing and presentation of intracellular protozoa may provide important insights needed for the rational design of effective vaccines. PMID:20153156

  12. Intracellular Macrophage Infections with E. coli under Nitrosative Stress

    PubMed Central

    Bateman, Stacey L.; Seed, Patrick

    2016-01-01

    Escherichia coli (E. coli) produces disseminated infections of the urinary tract, blood, and central nervous system where it encounters professional phagocytes such as macrophages, which utilize reactive nitrogen intermediates (RNI) to arrest bacteria. In vitro, extraintestinal pathogenic E. coli (ExPEC) can survive within bone marrow-derived macrophages for greater than 24 h post-infection within a LAMP1+ vesicular compartment, and ExPEC strains, in particular, are better adapted to intracellular macrophage survival than commensal strains (Bokil et al., 2011). This protocol details an intracellular murine macrophage-like cell infection, including modulation of the host nitrosative stress response, to model this host-pathogen interaction in vitro. To accomplish this, RAW 264.7 murine macrophage-like cells are pre-incubated with either L-arginine, an NO precursor, or IFNγ to yield a high nitric oxide (NO) physiological state, or L-NAME, an inducible NO synthase (iNOS)-specific inhibitor, to yield a low NO physiological state. This protocol has been successfully utilized to assess the contribution of a novel ExPEC regulator to intracellular survival and the nitrosative stress response during macrophage infections (Bateman and Seed, 2012), but can be adapted for use with a variety of E. coli strains or isogenic deletions.

  13. Intracellular sphingosine releases calcium from lysosomes.

    PubMed

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  14. Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells

    PubMed Central

    1995-01-01

    Dendritic cells (DC) represent potent antigen-presenting cells for the induction of T cell-dependent immune responses. Previous work on antigen uptake and presentation by human DC is based largely on studies of blood DC that have been cultured for various periods of time before analysis. These cultured cells may therefore have undergone a maturation process from precursors that have different capacities for antigen capture and presentation. We have now used immunoelectron microscopy and antigen presentation assays to compare freshly isolated DC (f-DC) and cultured DC (c-DC). f-DC display a round appearance, whereas c-DC display characteristic long processes. c-DC express much more cell surface major histocompatibility complex (MHC) class II than f-DC. The uptake of colloidal gold-labeled bovine serum albumin (BSA), however, is greater in f-DC, as is the presentation of 65-kD heat shock protein to T cell clones. The most striking discovery is that the majority of MHC class II molecules in both f-DC and c-DC occur in intracellular vacuoles with a complex shape (multivesicular and multilaminar). These MHC class II enriched compartments (MIIC) represent the site to which BSA is transported within 30 min. Although MIIC appear as more dense structures with less MHC class II molecules in f-DC than c-DC, the marker characteristics are very similar. The MIIC in both types of DC are acidic, contain invariant chain, and express the recently described HLA-DM molecule that can contribute to antigen presentation. CD19+ peripheral blood B cells have fewer MIIC and surface MHC class II expression than DCs, while monocytes had low levels of MIIC and surface MHC class II. These results demonstrate in dendritic cells the elaborate development of MIIC expressing several of the components that are required for efficient antigen presentation. PMID:7790816

  15. Methicillin-resistant Staphylococcus aureus infected gluteal compartment syndrome with rhabdomyolysis in a bodybuilder

    PubMed Central

    Woon, Colin YL; Patel, Kushal R; Goldberg, Benjamin A

    2016-01-01

    Gluteal compartment syndrome (GCS) is a rare condition. We present a case of gluteal muscle strain with hematoma formation, methicillin-resistant Staphylococcus aureus (MRSA) superinfection, leading to acute GCS, rhabdomyolysis and acute kidney injury. This combination of diagnoses has not been reported in the literature. A 36-year-old Caucasian male presented with buttock pain, swelling and fever after lifting weights. Gluteal compartment pressure was markedly elevated compared with the contralateral side. Investigations revealed elevated white blood cell, erythrocyte sedimentation rate, C-reactive protein, creatine kinase, creatinine and lactic acid. Urinalysis was consistent with myoglobinuria. Magnetic resonance imaging showed increased T2 signal in the gluteus maximus and a central hematoma. Cultures taken from the emergency debridement and fasciotomy revealed MRSA. He had repeat, debridement 2 d later, and delayed primary closure 3 d after. GCS is rare and must be suspected when patients present with pain and swelling after an inciting event. They are easily diagnosed with compartment pressure monitoring. The treatment of gluteal abscess and compartment syndrome is the same and involves rapid surgical debridement. PMID:27190761

  16. Birbeck Granules Are Subdomains of Endosomal Recycling Compartment in Human Epidermal Langerhans Cells, Which Form Where Langerin Accumulates

    PubMed Central

    Mc Dermott, Ray; Ziylan, Umit; Spehner, Danièle; Bausinger, Huguette; Lipsker, Dan; Mommaas, Mieke; Cazenave, Jean-Pierre; Raposo, Graça; Goud, Bruno; de la Salle, Henri; Salamero, Jean; Hanau, Daniel

    2002-01-01

    Birbeck granules are unusual rod-shaped structures specific to epidermal Langerhans cells, whose origin and function remain undetermined. We investigated the intracellular location and fate of Langerin, a protein implicated in Birbeck granule biogenesis, in human epidermal Langerhans cells. In the steady state, Langerin is predominantly found in the endosomal recycling compartment and in Birbeck granules. Langerin internalizes by classical receptor-mediated endocytosis and the first Birbeck granules accessible to endocytosed Langerin are those connected to recycling endosomes in the pericentriolar area, where Langerin accumulates. Drug-induced inhibition of endocytosis results in the appearance of abundant open-ended Birbeck granule-like structures appended to the plasma membrane, whereas inhibition of recycling induces Birbeck granules to merge with a tubular endosomal network. In mature Langerhans cells, Langerin traffic is abolished and the loss of internal Langerin is associated with a concomitant depletion of Birbeck granules. Our results demonstrate an exchange of Langerin between early endosomal compartments and the plasma membrane, with dynamic retention in the endosomal recycling compartment. They show that Birbeck granules are not endocytotic structures, rather they are subdomains of the endosomal recycling compartment that form where Langerin accumulates. Finally, our results implicate ADP-ribosylation factor proteins in Langerin trafficking and the exchange between Birbeck granules and other endosomal membranes. PMID:11809842

  17. 9 CFR 354.241 - Cleaning of rooms and compartments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION AND CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Maintenance of... compartments. Rooms, compartments, or other parts of the official plant shall be kept clean and in sanitary... light fixtures in the official plant shall be kept clean. (c) All docks and rooms shall be kept...

  18. 14 CFR 23.1192 - Engine accessory compartment diaphragm.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine accessory compartment diaphragm. 23... Powerplant Powerplant Fire Protection § 23.1192 Engine accessory compartment diaphragm. For aircooled radial engines, the engine power section and all portions of the exhaust sytem must be isolated from the...

  19. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  20. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  1. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  2. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel fuel tanks. 169.627 Section 169.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel...

  3. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Compartments containing diesel machinery. 169.625 Section 169.625 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel...

  4. 46 CFR 169.625 - Compartments containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Compartments containing diesel machinery. 169.625 Section 169.625 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel...

  5. 14 CFR 29.855 - Cargo and baggage compartments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cargo and baggage compartments. 29.855 Section 29.855 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire Protection § 29.855 Cargo and baggage compartments. (a)...

  6. 14 CFR 25.857 - Cargo compartment classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... control any fire that may start within the compartment. (d) (e) Class E. A Class E cargo compartment is... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... which— (1) The presence of a fire would be easily discovered by a crewmember while at his station;...

  7. Compartment syndrome presenting as ischemia following extravasation of contrast material

    PubMed Central

    Grand, Aaron; Yeager, Brian; Wollstein, Ronit

    2008-01-01

    A case of acute compartment syndrome of the forearm, resulting from contrast dye extravasation that presented as upper extremity ischemia, is described. Timely surgical intervention resulted in an excellent outcome. When extravasation of dye occurs, the patient should be evaluated for compartment syndrome despite the possible lack of typical symptoms. PMID:19721799

  8. 14 CFR 25.857 - Cargo compartment classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... (2) Each part of the compartment is easily accessible in flight. (b) Class B. A Class B cargo or baggage compartment is one in which— (1) There is sufficient access in flight to enable a crewmember...

  9. 14 CFR 25.857 - Cargo compartment classification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... (2) Each part of the compartment is easily accessible in flight. (b) Class B. A Class B cargo or baggage compartment is one in which— (1) There is sufficient access in flight to enable a crewmember...

  10. 49 CFR 179.220-9 - Compartment tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compartment tanks. 179.220-9 Section 179.220-9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-9 Compartment tanks....

  11. 49 CFR 179.200-9 - Compartment tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compartment tanks. 179.200-9 Section 179.200-9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-9 Compartment tanks....

  12. Spontaneous sequential compartment syndrome of the lower limbs.

    PubMed

    Abisi, Said; Yong, Yao Pey; Beech, Andrew; Oluwole, Akin; Tennant, William

    2013-10-01

    Spontaneous compartment syndrome is a rare condition and requires urgent surgical treatment to achieve favorable outcome. Several cases have been reported in the literature, and it has been associated with patients with diabetes. We present a case of acute spontaneous sequential compartment syndrome of the lower limbs in a patient with poorly controlled type 1 diabetes.

  13. Unrecognized acute exertional compartment syndrome of the leg and treatment.

    PubMed

    Popovic, Nebojsa; Bottoni, Craig; Cassidy, Charles

    2011-04-01

    Acute-on-chronic exertional compartment syndrome is rare and may be easily missed without a high degree of awareness and clinical suspicion. We report a case of unrecognized acute-on-chronic exertional compartment syndrome in a recreational soccer player. The late sequela of this condition, foot drop, was successfully treated with transfer of the peroneus longus tendon.

  14. Acute exertional compartment syndrome of the medial foot.

    PubMed

    Blacklidge, D K; Kurek, J B; Soto, A D; Kissel, C G

    1996-01-01

    A review of compartment syndrome, both acute and chronic, is presented. The pathophysiology, anatomy, diagnosis, and treatment are presented in relation to a unique case report. The case is one of acute exertional compartment syndrome of the medial foot treated by fasciotomy. This condition is uncommon in both its nature and location.

  15. Intracellular antioxidants: from chemical to biochemical mechanisms.

    PubMed

    Chaudière, J; Ferrari-Iliou, R

    1999-01-01

    Intracellular antioxidants include low molecular weight scavengers of oxidizing species, and enzymes which degrade superoxide and hydroperoxides. Such antioxidants systems prevent the uncontrolled formation of free radicals and activated oxygen species, or inhibit their reactions with biological structures. Hydrophilic scavengers are found in cytosolic, mitochondrial and nuclear compartments. Ascorbate and glutathione scavenge oxidizing free radicals in water by means of one-electron or hydrogen atom transfer. Similarly, ergothioneine scavenges hydroxyl radicals at very high rates, but it acts more specifically as a chemical scavenger of hypervalent ferryl complexes, halogenated oxidants and peroxynitrite-derived nitrating species, and as a physical quencher of singlet oxygen. Hydrophobic scavengers are found in cell membranes where they inhibit or interrupt chain reactions of lipid peroxidation. In animal cells, they include alpha-tocopherol (vitamin E) which is a primary scavenger of lipid peroxyl radicals, and carotenoids which are secondary scavengers of free radicals as well as physical quenchers of singlet oxygen. The main antioxidant enzymes include dismutases such as superoxide dismutases (SOD) and catalases, which do not consume cofactors, and peroxidases such as selenium-dependent glutathione peroxidases (GPx) in animals or ascorbate peroxidases (APx) in plants. The reducing coenzymes of peroxidases, and as a rule all reducing components of the antioxidant network, are regenerated at the expense of NAD(P)H produced in specific metabolic pathways. Synergistic and co-operative interactions of antioxidants rely on the sequential degradation of peroxides and free radicals as well as on mutual protections of enzymes. This antioxidant network can induce metabolic deviations and plays an important role in the regulation of protein expression and/or activity at the transcriptional or post-translational levels. Its biological significance is discussed in terms of

  16. A universal strategy for stable intracellular antibodies.

    PubMed

    Shaki-Loewenstein, Shelly; Zfania, Rahely; Hyland, Stephen; Wels, Winfried S; Benhar, Itai

    2005-08-01

    The expression of intracellular antibodies (intrabodies) in mammalian cells has provided a powerful tool to manipulate microbial and cellular signalling pathways in a highly precise manner. However, several technical hurdles have thus far restricted their more widespread use. In particular, single-chain antibodies (scFvs) have been reported to fold poorly in the reducing environment of the cytoplasm and as such there has been a reluctance to use scFv-phage libraries as a source of intrabodies unless a preselection step was applied to identify these rare scFvs that could fold properly in the absence of disulfide bonds. Recently, we reported that scFvs can be efficiently expressed within the cytoplasm of bacteria when fused at the C-terminus of the Escherichia coli maltose-binding protein (MBP). Here, we demonstrate that such MBP-scFvs are similarly stabilized when expressed in the mammalian cell cytoplasm as well as other compartments. This was demonstrated by comparing MBP-scFv fusions to the corresponding unfused scFvs that activate a defective beta-galactosidase enzyme, others that neutralize the wild-type beta-galactosidase enzyme, and an antibody that blocks the epidermal growth factor receptor. In all cases, the MBP-scFvs significantly outperformed their unfused counterparts. Our results suggest that fusion of scFvs to MBP, and possibly to other "chaperones in the context of a fusion protein", may provide a universal approach for efficient expression of intrabodies in the mammalian cell cytoplasm. This strategy should allow investigators to bypass much of the in vitro scFv characterization that is often not predictive of in vivo intrabody function and provide a more efficient use of large native and synthetic scFv-phage libraries already in existence to identify intrabodies that will be active in vivo.

  17. Abdominal Compartment Syndrome Secondary to Chronic Constipation

    PubMed Central

    Flageole, Helene; Ouahed, Jodie; Walton, J. Mark; Yousef, Yasmin

    2011-01-01

    Abdominal compartment syndrome (ACS) is defined as an elevated intraabdominal pressure with evidence of organ dysfunction. The majority of published reports of ACS are in neonates with abdominal wall defects and in adults following trauma or burns, but it is poorly described in children. We describe the unusual presentation of an 11-year-old boy with a long history of chronic constipation who developed acute ACS requiring resuscitative measures and emergent disimpaction. He presented with a 2-week history of increasing abdominal pain, nausea, diminished appetite and longstanding encopresis. On exam, he was emaciated with a massively distended abdomen with a palpable fecaloma. Abdominal XR confirmed these findings. Within 24 hours of presentation, he became tachycardic and oliguric with orthostatic hypotension. Following two enemas, he acutely deteriorated with severe hypotension, marked tachycardia, acute respiratory distress, and a declining mental status. Endotracheal intubation, fluid boluses, and vasopressors were commenced, followed by emergent surgical fecal disimpaction. This resulted in rapid improvement in vital signs. He has been thoroughly investigated and no other condition apart from functional constipation has been identified. Although ACS secondary to constipation is extremely unusual, this case illustrates the need to actively treat constipation and what can happen if it is not. PMID:22606517

  18. Plasma cell immunoglobulin M molecules. Their biosynthesis, assembly, and intracellular transport

    PubMed Central

    1979-01-01

    Immunoglobulin M (IgM)-secreting murine plasmablasts have been used to explore the cytologic site(s) of the successive modifications of the polypeptide H and L chains (steps of glycosylation, chain assembly, and polymerization) which occur during intracellular transport (ICT) and the interrelationships between these events. A combination of pulse- chase biosynthetic labeling protocols (using amino acids and sugars), subcellular fractionation, and electron microscope autoradiography was used in conjunction with inhibitors of glycosylation and agents (carboxyl cyanide m-chlorophenyl hydrazone [CCCP] and monensin) which block Ig exit from the rough endoplasmic reticulum (RER) or Golgi cisternae. The data are consistent with the following conclusions: (1) Sugar addition and modification occur in three main steps: (a) en bloc addition of core sugars to nascent H chains, (b) partial trimming of these oligosaccharide chains in the RER, (c) quasiconcerted addition of terminal sugars (galactose, fucose, and sialic acid) in a very distal compartment between monensin-sensitive Golgi cisternae and the cell surface. (2) H and L chain assembly occurs between nascent H chains and a pool of free light chains present in the RER, followed by interchain disulfide bonding and rapid assembly of monomers into J chain- containing pentamers in the RER. Small amounts of various apparently non-obligatory intermediates in polymerization are also formed. (3) Carbohydrate addition is not required for chain assembly, polymerization, and secretion since completely unglycosylated chains (synthesized in the presence of deoxyglucose or tunicamycin) undergo polymerization and are secreted (although at a reduced rate). (4) Surface 8s IgM molecules do not represent a step in the IgM secretory pathway. PMID:115892

  19. Compartment in vertical flow reactor for ferruginous mine water

    NASA Astrophysics Data System (ADS)

    Hur, Won; Cheong, Young-Wook; Yim, Gil-Jae; Ji, Sang-Woo; Hong, Ji-Hye

    2014-05-01

    Mine effluents contain varying concentrations of ferrous ion along with other metal ions. Fe(II) that quickly oxidizes to form precipitates in the presence of oxygen under net alkaline or neutral conditions. Thus, passive treatment methods are designed for the mine water to reside in an open containment area so as to allow simultaneous oxidation and precipitation of Fe(II), such as in a lagoon or an oxidation pond. A vertical flow reactor (VFR) was also suggested to remediate ferruginous mine drainage passing down through an accreting bed of ochre. However, VFR has a limited operation time until the system begins to overflow. It was also demonstrated that two-compartment VFR has a longer operation time than single compartment VFR of same size. In this study, a mathematical model was developed as a part of efforts to explore the operation of VFR, showing dynamic changes in head differences, ochre depth and Fe(II)/Fe(III) concentration in the effluent flow. The analysis shows that Fe(II) oxidation and ochre formation should be balanced with permeability of ochre bed to maximize VFR operation time and minimize residual Fe(II) in the effluent. The model demonstrates that two compartment VFR can have a longer operation time than a single-compartment VFR and that an optimum compartment ratio exists that maximize VFR operation time. Accelerated Fe(II) oxidation significantly affects the optimum ratio of compartment area and reduced residual Fe(II) in the effluent. VFR operation time can be significantly prolonged by increasing the rate of ochre formation not by accelerated Fe(II) oxidation. Taken together, ochre forms largely in the first compartment while overflowed mine water with reduced iron contents is efficiently filtered in the second compartment. These results provide us a better understanding of VFR operation and optimum design criteria for maximum operation time in a two-compartment VFR. Rapid ochre accretion in the first compartment maintains constant hydraulic

  20. Bilaterally Symmetrical Lower Extremity Compartment Syndrome following Massive Transfusion.

    PubMed

    Karaoren, Gulsah; Bakan, Nurten; Tomruk, Senay Goksu; Topaç, Zelin; Kurtulmuş, Tuhan; Irkören, Saime

    2016-01-01

    Compartment syndrome is a serious condition characterized by raised intracompartmental pressure, which develops following trauma. Well leg compartment syndrome (WLCS) is a term reserved for compartment syndrome in a nontraumatic setting, usually resulting from prolonged lithotomy position during surgery. In literature, 8 cases have been reported regarding well leg compartment syndrome in a supine position and bilateral symmetrical involvement was observed in only 2 cases. In WLCS etiology, lengthy surgery, lengthy hypotension, and extremity malpositioning have been held responsible but one of the factors with a role in the etiology may have been the tissue oedema and impaired microcirculation formed from the effect of vasoactive mediators expressed into the circulation associated with the massive blood transfusion. The case is presented here regarding symmetrical lower extremity compartment syndrome after surgery in which massive transfusion was made for gross haemorrhage from an abdominal injury. In conclusion, blood transfusion applied at the required time is life-saving but potential risks must always be considered.

  1. Multiple compartment syndrome in a pediatric patient with CML.

    PubMed

    Lee, Dong-Ki; Jeong, Woong-Kyo; Lee, Dae-Hee; Lee, Soon-Hyuck

    2011-12-01

    Compartment syndrome is a limb-threatening and life-threatening emergency resulting from elevated intracompartmental pressure. Prompt surgical intervention and treatment are necessary to prevent irreparable damage to muscle and nerve tissues. Leukemic infiltration of the muscle is an unusual cause of compartment syndrome and has been documented to occur secondary to hyperleukocytic leukemias, most commonly in acute myeloid leukemia. We present a rare case of multiple compartment syndrome in the buttock and thigh of an 11-year-old male patient with chronic myelomonocytic leukemia. The diagnosis of acute compartment syndrome was delayed, causing irreversible tissue damage. Physicians are generally unfamiliar with leukemia-induced complications and may not initially suspect leukemic compartment syndrome because of its rarity. Awareness of its clinical features is critical, because early diagnosis and prompt surgical debridement can prevent significant morbidity and even death.

  2. Acute compartment syndrome in children: contemporary diagnosis, treatment, and outcome.

    PubMed

    Bae, D S; Kadiyala, R K; Waters, P M

    2001-01-01

    Compartment syndrome can be difficult to diagnose in a child, with delays in diagnosis leading to disastrous outcomes. Thirty-six cases of compartment syndrome in 33 pediatric patients were treated at the authors' institution from January 1, 1992, to December 31, 1997. There were 27 boys and 6 girls, with nearly equal upper and lower extremity involvement. Approximately 75% of these patients developed compartment syndrome in the setting of fracture. Pain, pallor, paresthesia, paralysis, and pulselessness were relatively unreliable signs and symptoms of compartment syndrome in these children. An increasing analgesia requirement in combination with other clinical signs, however, was a more sensitive indicator of compartment syndrome: all 10 patients with access to patient-controlled or nurse-administered analgesia during their initial evaluation demonstrated an increasing requirement for pain medication. With early diagnosis and expeditious treatment, >90% of the patients studied achieved full restoration of function.

  3. A general mechanism for intracellular toxicity of metal-containing nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01234h Click here for additional data file.

    PubMed Central

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto

    2014-01-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment – where particles are abundantly internalized – is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a “lysosome-enhanced Trojan horse effect” since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. PMID:24842463

  4. Where is it and How Does it Get There – Intracellular Localization and Traffic of P-glycoprotein

    PubMed Central

    Fu, Dong

    2013-01-01

    P-glycoprotein (P-gp), an ATP-binding cassette, is able to transport structurally and chemically unrelated substrates. Over-expression of P-gp in cancer cells significantly decreases the intercellular amount of anticancer drugs, and results in multidrug resistance in cancer cells, a major obstacle in cancer chemotherapy. P-gp is mainly localized on the plasma membrane and functions as a drug efflux pump; however, P-gp is also localized in many intracellular compartments, such as endoplasmic reticulum, Golgi, endosomes, and lysosomes. P-gp moves between the intracellular compartments and the plasma membrane in a microtubule-actin dependent manner. This review highlights our current understanding of (1) the intracellular localization of P-gp; (2) the traffic and cycling pathways among the cellular compartments as well as between these compartments and the plasma membrane; and (3) the cellular factors regulating P-gp traffic and cycling. This review also presents a potential implication in overcoming P-gp-mediated multidrug resistance by targeting P-gp traffic and cycling pathways and impairing P-gp localization on the plasma membrane. PMID:24416721

  5. Medial Compartment Decompression by Fibular Osteotomy to Treat Medial Compartment Knee Osteoarthritis: A Pilot Study.

    PubMed

    Yang, Zong-You; Chen, Wei; Li, Cun-Xiang; Wang, Juan; Shao, De-Cheng; Hou, Zhi-Yong; Gao, Shi-Jun; Wang, Fei; Li, Ji-Dong; Hao, Jian-Dong; Chen, Bai-Cheng; Zhang, Ying-Ze

    2015-12-01

    Compared with high tibial osteotomy and total knee arthroplasty, the authors found a simpler surgical procedure, partial fibular osteotomy, could effectively relieve knee pain and also correct the varus deformity for patients with medial compartment knee osteoarthritis (OA). From January 1996 to April 2012, a total of 156 patients with medial compartment OA were treated by proximal fibular osteotomy in the authors' hospital. A 2-cm-long section of fibula was resected 6 to 10 cm below the fibular head. A total of 110 patients with follow-up of more than 2 years were included in the study, including 34 males and 76 females with an average age of 59.2 years. Anteroposterior and lateral weight-bearing radiographs, the femorotibial angle (FTA) and lateral joint space, and the American Knee Society Score (KSS) and the visual analog scale (VAS) score of the knee joint were evaluated preoperatively and at final follow-up, respectively. At final follow-up, mean FTA and lateral joint space were 179.4°±1.8° and 6.9±0.7 mm, respectively, which were significantly smaller than those measured preoperatively (182.7°±2.0° and 12.2±1.1 mm, respectively; both P<.001). Mean KSS at final follow-up was 92.3±31.7, significantly higher than the mean preoperative score of 45.0±21.3 (P<.001). Mean VAS score and interquartile range were 2.0 and 2.0, significantly lower than the preoperative data (7 and 1.0, respectively; P<.001). The authors found that proximal fibular osteotomy can significantly improve both the radiographic appearance and function of the affected knee joint and also achieve long-term pain relief. This procedure may be an alternative treatment option for medial compartment OA.

  6. Medial Compartment Decompression by Fibular Osteotomy to Treat Medial Compartment Knee Osteoarthritis: A Pilot Study.

    PubMed

    Yang, Zong-You; Chen, Wei; Li, Cun-Xiang; Wang, Juan; Shao, De-Cheng; Hou, Zhi-Yong; Gao, Shi-Jun; Wang, Fei; Li, Ji-Dong; Hao, Jian-Dong; Chen, Bai-Cheng; Zhang, Ying-Ze

    2015-12-01

    Compared with high tibial osteotomy and total knee arthroplasty, the authors found a simpler surgical procedure, partial fibular osteotomy, could effectively relieve knee pain and also correct the varus deformity for patients with medial compartment knee osteoarthritis (OA). From January 1996 to April 2012, a total of 156 patients with medial compartment OA were treated by proximal fibular osteotomy in the authors' hospital. A 2-cm-long section of fibula was resected 6 to 10 cm below the fibular head. A total of 110 patients with follow-up of more than 2 years were included in the study, including 34 males and 76 females with an average age of 59.2 years. Anteroposterior and lateral weight-bearing radiographs, the femorotibial angle (FTA) and lateral joint space, and the American Knee Society Score (KSS) and the visual analog scale (VAS) score of the knee joint were evaluated preoperatively and at final follow-up, respectively. At final follow-up, mean FTA and lateral joint space were 179.4°±1.8° and 6.9±0.7 mm, respectively, which were significantly smaller than those measured preoperatively (182.7°±2.0° and 12.2±1.1 mm, respectively; both P<.001). Mean KSS at final follow-up was 92.3±31.7, significantly higher than the mean preoperative score of 45.0±21.3 (P<.001). Mean VAS score and interquartile range were 2.0 and 2.0, significantly lower than the preoperative data (7 and 1.0, respectively; P<.001). The authors found that proximal fibular osteotomy can significantly improve both the radiographic appearance and function of the affected knee joint and also achieve long-term pain relief. This procedure may be an alternative treatment option for medial compartment OA. PMID:26652332

  7. [Deposition of exogenous and endogenously generated unsaturated fatty acids in lipid droplets triacylglycerol as a mechanism of its sequestration in epithelial cells].

    PubMed

    Fedorova, E V; Fok, E M; Bakhteeva, V T; Lavrova, E A; Parnova, R G

    2014-08-01

    Neutral lipids are deposited in intracellular compartments called lipid droplets, which are known to be critically implicated in regulation of cellular lipid metabolism. These organelles consist of a core of neutral lipids, mainly triacylglycerol (TAG) and cholesteryl esters, surrounded by phospholipid monolayer. Using Nile red lipid staining and [3H]-arachidonic and [3H]-oleic acids as precursors for lipid biosynthesis, we have evaluated the mechanisms of lipid body induction elicited by exogenous fatty acids within primary cultured epithelial cells from the frog urinary bladder. It was found that arachidonic and oleic acids at concentrations 10-50 tM stimulated lipid droplets formation accompanied by accumulation of TAG and by the significant increase of incorporation of fatty acids into TAG indicating an enhanced TAG biosynthesis. No changes of cholesteryl esters content were observed under these conditions. In cells, prelabelled with [3H]-oleic acids, etomoxir, an inhibitor of O-carnitine palmitroyltansferase 1, decreased oxidation of oleic acid and increased its incorporation into TAG leading to intracellular TAG accumulation. In cells, prelabelled with [3H]-arachidonic acid, diclofenac, an inhibitor of cyclooxygenase 1 and 2, led to significant decrease in cellular PGE2 production and to reesterification of free arachidonic acid to TAG but not to phospholipids. Taking together, these data evidence that in isolated frog urinary bladder epithelial cells, reacylation of unsaturated free fatty acids into TAG is a main route of their metabolic conversion under the conditions of the increased cytosolic level of free fatty acids.

  8. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles

    NASA Astrophysics Data System (ADS)

    Aumiller, William M.; Keating, Christine D.

    2016-02-01

    Biological cells are highly organized, with numerous subcellular compartments. Phosphorylation has been hypothesized as a means to control the assembly/disassembly of liquid-like RNA- and protein-rich intracellular bodies, or liquid organelles, that lack delimiting membranes. Here, we demonstrate that charge-mediated phase separation, or complex coacervation, of RNAs with cationic peptides can generate simple model liquid organelles capable of reversibly compartmentalizing biomolecules. Formation and dissolution of these liquid bodies was controlled by changes in peptide phosphorylation state using a kinase/phosphatase enzyme pair. The droplet-generating phase transition responded to modification of even a single serine residue. Electrostatic interactions between the short cationic peptides and the much longer polyanionic RNAs drove phase separation. Coacervates were also formed on silica beads, a primitive model for localization at specific intracellular sites. This work supports phosphoregulation of complex coacervation as a viable mechanism for dynamic intracellular compartmentalization in membraneless organelles.

  9. Fluorogenic Substrate Detection of Viable Intracellular and Extracellular Pathogenic Protozoa

    NASA Astrophysics Data System (ADS)

    Jackson, Peter R.; Pappas, Michael G.; Hansen, Brian D.

    1985-01-01

    Viable Leishmania promastigotes and amastigotes were detected by epifluorescence microscopy with fluorescein diacetate being used to mark living parasites and the nucleic acid-binding compound ethidium bromide to stain dead cells. This procedure is superior to other assays because it is faster and detects viable intracellular as well as extracellular Leishmania. Furthermore, destruction of intracellular pathogens by macrophages is more accurately determined with fluorescein diacetate than with other stains. The procedure may have applications in programs to develop drugs and vaccines against protozoa responsible for human and animal disease.

  10. Single cell measurements of vacuolar rupture caused by intracellular pathogens.

    PubMed

    Keller, Charlotte; Mellouk, Nora; Danckaert, Anne; Simeone, Roxane; Brosch, Roland; Enninga, Jost; Bobard, Alexandre

    2013-06-12

    Shigella flexneri are pathogenic bacteria that invade host cells entering into an endocytic vacuole. Subsequently, the rupture of this membrane-enclosed compartment allows bacteria to move within the cytosol, proliferate and further invade neighboring cells. Mycobacterium tuberculosis is phagocytosed by immune cells, and has recently been shown to rupture phagosomal membrane in macrophages. We developed a robust assay for tracking phagosomal membrane disruption after host cell entry of Shigella flexneri or Mycobacterium tuberculosis. The approach makes use of CCF4, a FRET reporter sensitive to β-lactamase that equilibrates in the cytosol of host cells. Upon invasion of host cells by bacterial pathogens, the probe remains intact as long as the bacteria reside in membrane-enclosed compartments. After disruption of the vacuole, β-lactamase activity on the surface of the intracellular pathogen cleaves CCF4 instantly leading to a loss of FRET signal and switching its emission spectrum. This robust ratiometric assay yields accurate information about the timing of vacuolar rupture induced by the invading bacteria, and it can be coupled to automated microscopy and image processing by specialized algorithms for the detection of the emission signals of the FRET donor and acceptor. Further, it allows investigating the dynamics of vacuolar disruption elicited by intracellular bacteria in real time in single cells. Finally, it is perfectly suited for high-throughput analysis with a spatio-temporal resolution exceeding previous methods. Here, we provide the experimental details of exemplary protocols for the CCF4 vacuolar rupture assay on HeLa cells and THP-1 macrophages for time-lapse experiments or end points experiments using Shigella flexneri as well as multiple mycobacterial strains such as Mycobacterium marinum, Mycobacterium bovis, and Mycobacterium tuberculosis.

  11. Intracellular accumulation of ethanol in yeast

    SciTech Connect

    Loueiro, V.; Ferreira, H.G.

    1983-09-01

    Ethanol produced in the course of a batch fermentation by Saccharomyces cerevisiae or added from the outside, affects adversely the specific rate of growth of the yeast population, its viability, its specific rate of fermentation, and the specific rates of the uptake of sugar and amino acids. The underlying mechanisms are many and include irreversible denaturation and hyperbolic noncompetitive inhibition of glycolytic enzymes, the exponential noncompetitive inhibition of glucose, maltose, and ammonium transport, the depression of the optimum and the maximum temperature for growth, the increase of the minimum temperature for growth, and the enhancement of thermal death and petite mutation. Nagodawithana and Steinkraus reported that added ethanol was less toxic for S. cerevisiae than ethanol produced by the yeast. The death rates were lower in the presence of added ethanol than those measured at similar external ethanol concentrations endogenously produced. They proposed that, due to an unbalance between the rates of production and the net outflux of ethanol, there would be an intracellular accumulation of ethanol which in turn would explain the apparently greater inhibitory potency of endogenously produced ethanol present in the medium. This hypothesis was supported by the findings of several authors who reported that the intracellular concentration of ethanol, in the course of batch fermentation, is much higher than its concentration in the extracellular medium. The present work is an attempt to clarify this matter. (Refs. 32).

  12. Insight into nanoparticle cellular uptake and intracellular targeting

    PubMed Central

    Yameen, Basit; Choi, Won Il; Vilos, Cristian; Swami, Archana; Shi, Jinjun; Farokhzad, Omid C.

    2014-01-01

    Collaborative efforts from the fields of biology, materials science, and engineering are leading to exciting progress in the development of nanomedicines. Since the targets of many therapeutic agents are localized in subcellular compartments, modulation of nanoparticle-cell interactions for an efficient cellular uptake through the plasma membrane, and the development of nanomedicines for precise delivery to subcellular compartments remain formidable challenges. The cellular internalization routes have a determining effect on the post-internalization fate and intracellular localization of nanoparticles. This review highlights the cellular uptake routes most relevant to the field of non-targeted nanomedicine, and presents an account of ligand targeted nanoparticles for receptor mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles. Ligand targeted nanoparticles have been the main impetus behind the progress of nanomedicines towards the clinic. This strategy has even resulted in a remarkable development towards effective oral delivery of nanomedicines that can overcome the intestinal epithelial cellular barrier. A detailed overview of the recent developments towards subcellular targeting that is emerging as a platform for the next generation organelle specific nanomedicines is also provided. Each section of the review includes prospect, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations. PMID:24984011

  13. Insight into nanoparticle cellular uptake and intracellular targeting.

    PubMed

    Yameen, Basit; Choi, Won Il; Vilos, Cristian; Swami, Archana; Shi, Jinjun; Farokhzad, Omid C

    2014-09-28

    Collaborative efforts from the fields of biology, materials science, and engineering are leading to exciting progress in the development of nanomedicines. Since the targets of many therapeutic agents are localized in subcellular compartments, modulation of nanoparticle-cell interactions for efficient cellular uptake through the plasma membrane and the development of nanomedicines for precise delivery to subcellular compartments remain formidable challenges. Cellular internalization routes determine the post-internalization fate and intracellular localization of nanoparticles. This review highlights the cellular uptake routes most relevant to the field of non-targeted nanomedicine and presents an account of ligand-targeted nanoparticles for receptor-mediated cellular internalization as a strategy for modulating the cellular uptake of nanoparticles. Ligand-targeted nanoparticles have been the main impetus behind the progress of nanomedicines towards the clinic. This strategy has already resulted in remarkable progress towards effective oral delivery of nanomedicines that can overcome the intestinal epithelial barrier. A detailed overview of the recent developments in subcellular targeting as a novel platform for next-generation organelle-specific nanomedicines is also provided. Each section of the review includes prospects, potential, and concrete expectations from the field of targeted nanomedicines and strategies to meet those expectations.

  14. Intracellular processing of the Newcastle disease virus fusion glycoprotein

    SciTech Connect

    Morrison, T.; Ward, L.J.; Semerjian, A.

    1985-03-01

    The fusion glycoprotein (Fo) of Newcastle disease virus is cleaved at an intracellular site into F1 and F2. This result was confirmed by comparing the transit time of the fusion protein to the cell surface with the time course of cleavage of Fo. The time required for cleavage of half of the pulse-labeled Fo protein is ca. 40 min faster than the half time of the transit of the fusion protein to the cell surface. To determine the cell compartment in which cleavage occurs, use was made of inhibitors which block glycoprotein migration at specific points and posttranslational modifications known to occur in specific cell membranes. Cleavage of Fo is inhibited by carbonyl cyanide m-chlorophenylhydrazone; thus, cleavage does not occur in the rough endoplasmic reticulum. Monensin blocks the incorporation of Newcastle disease virus glycoproteins into virions and blocks the cleavage of the fusion glycoprotein. However, Fo cannot be radioactively labeled with (/sup 3/H) fucose, whereas F1 is readily labeled. These results argue that cleavage occurs in the trans Golgi membranes or in a cell compartment occupied by glycoproteins quite soon after their transit through the trans Golgi membranes. The implications of the results presented for the transit times of the fusion protein between subcellular organelles are discussed.

  15. Steroid signaling activation and intracellular localization of sex steroid receptors.

    PubMed

    Giraldi, Tiziana; Giovannelli, Pia; Di Donato, Marzia; Castoria, Gabriella; Migliaccio, Antimo; Auricchio, Ferdinando

    2010-12-01

    In addition to stimulating gene transcription, sex steroids trigger rapid, non-genomic responses in the extra-nuclear compartment of target cells. These events take place within seconds or minutes after hormone administration and do not require transcriptional activity of sex steroid receptors. Depending on cell systems, activation of extra-nuclear signaling pathways by sex steroids fosters cell cycle progression, prevents apoptosis, leads to epigenetic modifications and increases cell migration through cytoskeleton changes. These findings have raised the question of intracellular localization of sex steroid receptors mediating these responses. During the past years, increasing evidence has shown that classical sex steroid receptors localized in the extra-nuclear compartment or close to membranes of target cells induce these events. The emerging picture is that a process of bidirectional control between signaling activation and sex steroid receptor localization regulates the outcome of hormonal responses in target cells. This mechanism ensures cell cycle progression in estradiol-treated breast cancer cells, and its derangement might occur in progression of human proliferative diseases. These findings will be reviewed here together with unexpected examples of the relationship between sex steroid receptor localization, signaling activation and biological responses in target cells. We apologize to scientists whose reports are not mentioned or extensively discussed owing to space limitations.

  16. Multiple ecto-nucleoside triphosphate diphosphohydrolases facilitate intracellular replication of Legionella pneumophila.

    PubMed

    Riedmaier, Patrice; Sansom, Fiona M; Sofian, Trifina; Beddoe, Travis; Schuelein, Ralf; Newton, Hayley J; Hartland, Elizabeth L

    2014-09-01

    Legionella pneumophila is an opportunistic pathogen that replicates within alveolar macrophages resulting in the onset of severe atypical pneumonia. Previously we have identified Lpg1905, a eukaryotic-type ecto-NTPDase (nucleoside triphosphate diphosphohydrolase) from L. pneumophila that was required for optimal intracellular replication and virulence in a mouse lung infection model. In the present study, we characterized the activity of a second eukaryotic-type NTPDase, Lpg0971, from L. pneumophila. We observed that recombinant Lpg0971 hydrolysed only ATP and exhibited divalent cation preference for manganese (II) ions. Similar to lpg1905, an lpg0971 mutant carrying the plasmid pMIP was attenuated in a mouse lung infection model and impaired for replication in human macrophages and amoebae. Increased trafficking of the LCV (Legionella-containing vacuole) to a LAMP-1 (lysosome-associated membrane protein-1)-positive compartment was observed for both the lpg1905 and lpg0971 mutants carrying pMIP. Complementation with either lpg1905 or lpg0971 restored intracellular replication, suggesting that a minimum level of ATPase activity was required for this function. A double lpg1905/0971 mutant was not more impaired for intracellular replication than the single mutants and complementation of the double mutant with lpg0971, but not lpg1905, restored intracellular replication. This suggested that although the NTPDases have overlapping activities they have distinct functions. Unlike many eukaryotic-type proteins from L. pneumophila, neither Lpg1905 nor Lpg0971 were translocated into the host cell by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IV secretion system. Overall our data suggest that the ability of L. pneumophila to replicate in eukaryotic cells relies in part on the ability of the pathogen to hydrolyse ATP within an intracellular compartment.

  17. Immunocytochemical identification of proteins involved in dopamine release from the somatodendritic compartment of nigral dopaminergic neurons

    PubMed Central

    Witkovsky, Paul; Patel, Jyoti C.; Lee, Christian R.; Rice, Margaret E.

    2010-01-01

    We examined the somatodendritic compartment of nigral dopaminergic neurons by immunocytochemistry and confocal microscopy, with the aim of identifying proteins that participate in dopamine packaging and release. Nigral dopaminergic neurons were identified by location, cellular features and tyrosine hydroxylase immunoreactivity. Immunoreactive puncta of vesicular monoamine transporter type 2 and proton ATPase, both involved in the packaging of dopamine for release, were located primarily in dopaminergic cell bodies, but were absent in distal dopaminergic dendrites. Many presynaptic proteins associated with transmitter release at fast synapses were absent in nigral dopaminergic neurons, including synaptotagmin 1, syntaxin1, synaptic vesicle proteins 2a and 2b, synaptophysin and synaptobrevin 1 (VAMP 1). On the other hand, syntaxin 3, synaptobrevin 2 (VAMP 2) and SNAP-25-immunoreactivities were found in dopaminergic somata and dendrites Our data imply that the storage and exocytosis of dopamine from the somatodendritic compartment of nigral dopaminergic neurons is mechanistically distinct from transmitter release at axon terminals utilizing amino acid neurotransmitters. PMID:19682556

  18. Stochastic Turing patterns: analysis of compartment-based approaches.

    PubMed

    Cao, Yang; Erban, Radek

    2014-12-01

    Turing patterns can be observed in reaction-diffusion systems where chemical species have different diffusion constants. In recent years, several studies investigated the effects of noise on Turing patterns and showed that the parameter regimes, for which stochastic Turing patterns are observed, can be larger than the parameter regimes predicted by deterministic models, which are written in terms of partial differential equations (PDEs) for species concentrations. A common stochastic reaction-diffusion approach is written in terms of compartment-based (lattice-based) models, where the domain of interest is divided into artificial compartments and the number of molecules in each compartment is simulated. In this paper, the dependence of stochastic Turing patterns on the compartment size is investigated. It has previously been shown (for relatively simpler systems) that a modeler should not choose compartment sizes which are too small or too large, and that the optimal compartment size depends on the diffusion constant. Taking these results into account, we propose and study a compartment-based model of Turing patterns where each chemical species is described using a different set of compartments. It is shown that the parameter regions where spatial patterns form are different from the regions obtained by classical deterministic PDE-based models, but they are also different from the results obtained for the stochastic reaction-diffusion models which use a single set of compartments for all chemical species. In particular, it is argued that some previously reported results on the effect of noise on Turing patterns in biological systems need to be reinterpreted.

  19. Metabolic coupling in urothelial bladder cancer compartments and its correlation to tumor aggressiveness.

    PubMed

    Afonso, Julieta; Santos, Lúcio L; Morais, António; Amaro, Teresina; Longatto-Filho, Adhemar; Baltazar, Fátima

    2016-01-01

    Monocarboxylate transporters (MCTs) are vital for intracellular pH homeostasis by extruding lactate from highly glycolytic cells. These molecules are key players of the metabolic reprogramming of cancer cells, and evidence indicates a potential contribution in urothelial bladder cancer (UBC) aggressiveness and chemoresistance. However, the specific role of MCTs in the metabolic compartmentalization within bladder tumors, namely their preponderance on the tumor stroma, remains to be elucidated. Thus, we evaluated the immunoexpression of MCTs in the different compartments of UBC tissue samples (n = 111), assessing the correlations among them and with the clinical and prognostic parameters. A significant decrease in positivity for MCT1 and MCT4 occurred from normoxic toward hypoxic regions. Significant associations were found between the expression of MCT4 in hypoxic tumor cells and in the tumor stroma. MCT1 staining in normoxic tumor areas, and MCT4 staining in hypoxic regions, in the tumor stroma and in the blood vessels were significantly associated with UBC aggressiveness. MCT4 concomitant positivity in hypoxic tumor cells and in the tumor stroma, as well as positivity in each of these regions concomitant with MCT1 positivity in normoxic tumor cells, was significantly associated with an unfavourable clinicopathological profile, and predicted lower overall survival rates among patients receiving platinum-based chemotherapy. Our results point to the existence of a multi-compartment metabolic model in UBC, providing evidence of a metabolic coupling between catabolic stromal and cancer cells' compartments, and the anabolic cancer cells. It is urgent to further explore the involvement of this metabolic coupling in UBC progression and chemoresistance. PMID:26636903

  20. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis.

    PubMed

    Natale, Gianfranco; Lenzi, Paola; Lazzeri, Gloria; Falleni, Alessandra; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a

  1. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis

    PubMed Central

    Natale, Gianfranco; Lenzi, Paola; Lazzeri, Gloria; Falleni, Alessandra; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a

  2. Lateral compartment cartilage changes and lateral elbow pain.

    PubMed

    Rajeev, Aysha; Pooley, Joseph

    2009-02-01

    The aim of our study is to document the arthroscopic findings in resistant lateral elbow pain. We have reviewed the findings in a consecutive series of 117 elbow arthroscopies performed on patients with lateral elbow pain resistant to conservative treatment. We found established degenerative changes involving articular cartilage in 68 patients (59%). In 60 of these 68 patients (88%) the degenerative changes were confined to the lateral compartment and contrasted with a normal appearance of the articular cartilage of the medial compartment. Primary lateral compartment arthritis is more common than previously thought, it mostly affects a young population and could easily be misdiagnosed as lateral epicondylitis.

  3. Current thinking about acute compartment syndrome of the lower extremity.

    PubMed

    Shadgan, Babak; Menon, Matthew; Sanders, David; Berry, Gregg; Martin, Claude; Duffy, Paul; Stephen, David; O'Brien, Peter J

    2010-10-01

    Acute compartment syndrome of the lower extremity is a clinical condition that, although uncommon, is seen fairly regularly in modern orthopedic practice. The pathophysiology of the disorder has been extensively described and is well known to physicians who care for patients with musculoskeletal injuries. The diagnosis, however, is often difficult to make. In this article, we review the clinical risk factors of acute compartment syndrome of the lower extremity, identify the current concepts of diagnosis and discuss appropriate treatment plans. We also describe the Canadian medicolegal environment in regard to compartment syndrome of the lower extremity.

  4. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses.

    PubMed

    Heidrich, Katharina; Wirthmueller, Lennart; Tasset, Céline; Pouzet, Cécile; Deslandes, Laurent; Parker, Jane E

    2011-12-01

    Pathogen effectors are intercepted by plant intracellular nucleotide binding-leucine-rich repeat (NB-LRR) receptors. However, processes linking receptor activation to downstream defenses remain obscure. Nucleo-cytoplasmic basal resistance regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) is indispensible for immunity mediated by TIR (Toll-interleukin-1 receptor)-NB-LRR receptors. We show that Arabidopsis EDS1 molecularly connects TIR-NB-LRR disease resistance protein RPS4 recognition of bacterial effector AvrRps4 to defense pathways. RPS4-EDS1 and AvrRps4-EDS1 complexes are detected inside nuclei of living tobacco cells after transient coexpression and in Arabidopsis soluble leaf extracts after resistance activation. Forced AvrRps4 localization to the host cytoplasm or nucleus reveals cell compartment-specific RPS4-EDS1 defense branches. Although nuclear processes restrict bacterial growth, programmed cell death and transcriptional resistance reinforcement require nucleo-cytoplasmic coordination. Thus, EDS1 behaves as an effector target and activated TIR-NB-LRR signal transducer for defenses across cell compartments.

  5. Glycosaminoglycans: Sorting determinants in intracellular protein traffic.

    PubMed

    Mihov, Deyan; Spiess, Martin

    2015-11-01

    Intracellular transport of proteins to their appropriate destinations is crucial for the maintenance of cellular integrity and function. Sorting information is contained either directly in the amino acid sequence or in a protein's post-translational modifications. Glycosaminoglycans (GAGs) are characteristic modifications of proteoglycans. GAGs are long unbranched polysaccharide chains with unique structural and functional properties also contributing to protein sorting in various ways. By deletion or insertion of GAG attachment sites it has been shown that GAGs affect polarized sorting in epithelial cells, targeting to and storage in secretory granules, and endocytosis. Most recently, the role of GAGs as signals for rapid trans-Golgi-to-cell surface transport, dominant over the cytosolic sorting motifs in the core protein, was demonstrated. Here, we provide an overview on existing data on the roles of GAGs on protein and proteoglycan trafficking.

  6. Botulinum neurotoxin A and an engineered derivate targeted secretion inhibitor (TSI) A enter cells via different vesicular compartments.

    PubMed

    Fonfria, Elena; Donald, Sarah; Cadd, Verity A

    2016-01-01

    Botulinum neurotoxins (BoNTs) are highly potent multi-domain proteins, responsible for botulism in animals and humans. The modular structural organization of BoNTs has led to the development of novel engineered bio-therapeutic proteins called targeted secretion inhibitors (TSIs). We report here that botulinum neurotoxin A (BoNT/A) and a TSI/A in which the neuronal binding domain of BoNT/A has been substituted by an epidermal growth factor (EGF) ligand, named EGFR-targeted TSI/A, exploit different routes to gain entry in the same in vitro neuroblastoma cell system, SiMa cells. We found that the EGF ligand conferred the affinity to the EGFR-targeted TSI/A at the EGF receptor when compared to an untargeted TSI/A and also the ability to internalize into the cells and cleave its cytosolic target protein SNAP-25. Using high content analysis we found that both BoNT/A and the EGFR-targeted TSI/A enter the cell in a concentration-dependent manner and in compartments which are able to translocate the proteins into the cytosol within 4 h. The EGFR-targeted TSI/A internalized into a compartment which gave a punctate staining pattern by immunofluorescence and partially overlapped with structures positive for the early endosomal marker EAA1; whereas BoNT/A did not internalize into a punctate compartment but did so in an acidifying compartment consistent with local synaptic vesicle recycling. These findings show that the BoNT/A translocation domain, common to both BoNT/A and the EGFR-targeted TSI/A, is a versatile tool for cytosolic delivery from distinct intracellular vesicular compartments. PMID:26329879

  7. Toward intracellular targeted delivery of cancer therapeutics: progress and clinical outlook for brain tumor therapy.

    PubMed

    Pandya, Hetal; Debinski, Waldemar

    2012-08-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells.

  8. Intracellular targeting of antigens internalized by membrane immunoglobulin in B lymphocytes.

    PubMed

    Mitchell, R N; Barnes, K A; Grupp, S A; Sanchez, M; Misulovin, Z; Nussenzweig, M C; Abbas, A K

    1995-05-01

    An important function of membrane immunoglobulin (mIg), the B cell antigen receptor, is to endocytose limiting quantities of antigen for efficient presentation to class II-restricted T cells. We have used a panel of mIg mutants to analyze the mechanism of mIg-mediated antigen presentation, and specifically to explore the ability of mIg to target internalized antigen to intracellular processing compartments. Transfected mIgs carrying substitutions for the transmembrane Tyr587 residue fail to efficiently present specifically bound antigen. However, these mutants internalize antigen normally, and their defect cannot be attributed to a lack of mIg-associated Ig alpha/Ig beta molecules. A novel functional assay for detecting antigenic peptides in subcellular fractions shows that wild-type mIg transfectants generate class II-peptide complexes intracellularly, whereas only free antigenic peptides are detectable in the mutant mIg transfectants. Furthermore, an antigen competition assay reveals that antigen internalized by the mutant mIgs fails to enter the intracellular processing compartment accessed by wild-type mIg. Therefore, mIg specifically targets bound and endocytosed antigen to the intracellular compartment where processed peptides associate with class II molecules, and the transmembrane Tyr587 residue plays an obligatory role in this process. Targeting of internalized antigen may be mediated by receptor-associated chaperones, and may be a general mechanism for optimizing the presentation of specifically bound and endocytosed antigens in b lymphocytes and other antigen-presenting cells.

  9. Magnetic tweezers for intracellular applications

    NASA Astrophysics Data System (ADS)

    Hosu, Basarab G.; Jakab, Károly; Bánki, Péter; Tóth, Ferenc I.; Forgacs, Gabor

    2003-09-01

    We have designed and constructed a versatile magnetic tweezer primarily for intracellular investigations. The micromanipulator uses only two coils to simultaneously magnetize to saturation micron-size superparamagnetic particles and generate high magnitude constant field gradients over cellular dimensions. The apparatus resembles a miniaturized Faraday balance, an industrial device used to measure magnetic susceptibility. The device operates in both continuous and pulse modes. Due to its compact size, the tweezers can conveniently be mounted on the stage of an inverted microscope and used for intracellular manipulations. A built-in temperature control unit maintains the sample at physiological temperatures. The operation of the tweezers was tested by moving 1.28 μm diameter magnetic beads inside macrophages with forces near 500 pN.

  10. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    PubMed

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown. PMID:17264222

  11. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  12. Characterization of intracellular pteroylpolyglutamate hydrolase (PPH) from human intestinal mucosa

    SciTech Connect

    Wang, T.T.Y.; Chandler, C.J.; Halsted, C.H.

    1986-03-01

    There are two forms of pteroylpolyglutamate hydrolase (PPH) in the human intestinal mucosa, one in the brush border membrane and the other intracellular; brush border PPH is an exopeptidase with optimal activity at pH 6.5 and a requirement for zinc. The presence study characterized human intracellular PPH and compared its properties to those of brush border PPH. Intracellular PPH was purified 30-fold. The enzyme had a MW of 75,000 by gel filtration, was optimally active at pH 4.5, and had an isoelectric point at pH 8.0. In contrast to brush border PPH, intracellular PPH was unstable at increasing temperatures, was unaffected by dialysis against chelating agents and showed no requirement for Zn/sup 2 +/. Using PteGlu/sub 2/(/sup 14/C)Glu as substrate, they demonstrated a K/sub m/ of 1.2 ..mu..M and increasing affinity for folates with longer glutamate chains. Intracellular PPH required the complete folic acid (PteGlu) moiety and a ..gamma..-glutamyl linkage for activity. Using ion exchange chromatography and an HPLC method to determine the hydrolytic products of the reaction, they found intracellular PPH could cleave both internal and terminal ..gamma..-glutamyl linkages, with PteGlu as an end product. After subcellular fractionation of the mucosa, PPH was found in the lysosomes. In summary, the distinct characteristics of brush border and intracellular PPH suggest that the two hydrolases serve different roles in folate metabolism.

  13. Biogenesis of lysosomal enzymes in the alpha-glucosidase II-deficient modA mutant of Dictyostelium discoideum: retention of alpha-1,3-linked glucose on N-linked oligosaccharides delays intracellular transport but does not alter sorting of alpha-mannosidase or beta-glucosidase.

    PubMed

    Ebert, D L; Bush, J M; Dimond, R L; Cardelli, J A

    1989-09-01

    The endoplasmic reticulum-localized enzyme alpha-glucosidase II is responsible for removing the two alpha-1,3-linked glucose residues from N-linked oligosaccharides of glycoproteins. This activity is missing in the modA mutant strain, M31, of Dictyostelium discoideum. Results from both radiolabeled pulse-chase and subcellular fractionation experiments indicate that this deficiency did not prevent intracellular transport and proteolytic processing of the lysosomal enzymes, alpha-mannosidase and beta-glucosidase. However, the rate at which the glucosylated precursors left the rough endoplasmic reticulum was several-fold slower than the rate at which the wild-type precursors left this compartment. Retention of glucose residues did not disrupt the binding of the precursor forms of the enzymes with intracellular membranes, indicating that the delay in movement of proteins from the ER did not result from lack of association with membranes. However, the mutant alpha-mannosidase precursor contained more trypsin-sensitive sites than did the wild-type precursor, suggesting that improper folding of precursor molecules might account for the slow rate of transport to the Golgi complex. Percoll density gradient fractionation of extracts prepared from M31 cells indicated that the proteolytically processed mature forms of alpha-mannosidase and beta-glucosidase were localized to lysosomes. Finally, the mutation in M31 may have other, more dramatic, effects on the lysosomal system since two enzymes, N-acetylglucosaminidase and acid phosphatase, were secreted much less efficiently from lysosomal compartments by the mutant strain.

  14. Intracellular calcium channels in protozoa.

    PubMed

    Docampo, Roberto; Moreno, Silvia N J; Plattner, Helmut

    2014-09-15

    Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in six subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa.

  15. Stochastic models of intracellular transport

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  16. Intracellular Calcium Channels in Protozoa

    PubMed Central

    Docampo, Roberto; Moreno, Silvia N.J.; Plattner, Helmut

    2014-01-01

    Ca2+-signaling pathways and intracellular Ca2+ channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in 6 subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca2+ signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca2+ channels (TRPCs) and intracellular mechanosensitive Ca2+-channels in Paramecium and in parasitic protozoa. PMID:24291099

  17. 3. INCLINE PLANE CAR INTERIOR, UPPER COMPARTMENT. Monongahela Incline ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INCLINE PLANE CAR INTERIOR, UPPER COMPARTMENT. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  18. 11. Interior view of communications compartment. View toward rear of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view of communications compartment. View toward rear of aircraft. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  19. 10. Interior view of communications compartment. View toward front of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view of communications compartment. View toward front of aircraft. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  20. 9. Interior view of electronics compartment. View toward rear of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view of electronics compartment. View toward rear of aircraft. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  1. 14 CFR 23.787 - Baggage and cargo compartments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... critical load distributions at the appropriate maximum load factors corresponding to the flight and ground... any compartment, located aft of the occupants and separated by structure, when the ultimate...

  2. 14 CFR 23.787 - Baggage and cargo compartments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... critical load distributions at the appropriate maximum load factors corresponding to the flight and ground... any compartment, located aft of the occupants and separated by structure, when the ultimate...

  3. 14 CFR 23.787 - Baggage and cargo compartments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... critical load distributions at the appropriate maximum load factors corresponding to the flight and ground... any compartment, located aft of the occupants and separated by structure, when the ultimate...

  4. 14 CFR 23.853 - Passenger and crew compartment interiors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... fabrics, leather, trays and galley furnishings, electrical conduit, thermal and acoustical insulation and insulation covering, air ducting, joint and edge covering, cargo compartment liners, insulation blankets... cable insulation, and for small parts (such as knobs, handles, rollers, fasteners, clips, grommets,...

  5. 113. INTERIOR COMMUNICATIONS COMPARTMENT PORT LOOKING TO STARBOARD SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. INTERIOR COMMUNICATIONS COMPARTMENT - PORT LOOKING TO STARBOARD SHOWING MASTER GYRO AND INTERIOR COMMUNICATIONS SWITCHBOARD. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  6. FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE 3, LARGE GUN POSITION, SHOWING MULTIPLE COMPARTMENTS, VIEW FACING SOUTH. - Naval Air Station Barbers Point, Anti-Aircraft Battery Complex-Large Gun Position, East of Coral Sea Road, northwest of Hamilton Road, Ewa, Honolulu County, HI

  7. 19 CFR 123.24 - Sealing of conveyances or compartments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; DEPARTMENT OF THE TREASURY CUSTOMS RELATIONS WITH CANADA AND MEXICO Shipments in Transit Through Canada or Mexico § 123.24 Sealing of conveyances or compartments. (a) Sealing required. Merchandise in...

  8. Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology

    NASA Technical Reports Server (NTRS)

    Hebert, Leonard J.

    2006-01-01

    This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.

  9. 2. INTERIOR, SOUTHWEST VIEW (STORAGE COMPARTMENTS). Vanadium Corporation of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INTERIOR, SOUTHWEST VIEW (STORAGE COMPARTMENTS). - Vanadium Corporation of America (VCA) Naturita Mill, Mine Warehouse, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  10. Two clinical tests for assessing lateral compartment arthritis.

    PubMed

    Shakespeare, David

    2006-08-01

    Two clinical tests, the valgus tap test and the valgus skid test, are described which detect bone contact in the lateral compartment of the knee. They are useful in planning surgical intervention. PMID:16632364

  11. Dynamics of the Establishment of Multinucleate Compartments in Fusarium oxysporum

    PubMed Central

    Shahi, Shermineh; Beerens, Bas; Manders, Erik M. M.

    2014-01-01

    Nuclear dynamics can vary widely between fungal species and between stages of development of fungal colonies. Here we compared nuclear dynamics and mitotic patterns between germlings and mature hyphae in Fusarium oxysporum. Using fluorescently labeled nuclei and live-cell imaging, we show that F. oxysporum is subject to a developmental transition from a uninucleate to a multinucleate state after completion of colony initiation. We observed a special type of hypha that exhibits a higher growth rate, possibly acting as a nutrient scout. The higher growth rate is associated with a higher nuclear count and mitotic waves involving 2 to 6 nuclei in the apical compartment. Further, we found that dormant nuclei of intercalary compartments can reenter the mitotic cycle, resulting in multinucleate compartments with up to 18 nuclei in a single compartment. PMID:25398376

  12. Compartment syndrome: a complication of acute extremity trauma.

    PubMed

    Mabee, J R

    1994-01-01

    Compartment syndrome is a serious potential complication of trauma to the extremities. Fractures, crush injuries, burns, and arterial injuries, among others, can result in increased tissue pressure within closed osseofascial or compartmental spaces. Prolonged exposure to elevated pressure can result in nerve and muscle necrosis. Extreme pain unrelieved with analgesia, subjective complaint of pressure, pain with passive muscle stretching, paresis, paresthesia, and intact pulses, in the presence of a physically tight compartment, should alert the physician to the presence of a compartment syndrome. The diagnosis is a clinical one, but it may be aided by measurements of intracompartmental tissue pressures. Compartment syndrome is a surgical emergency requiring prompt treatment by fasciotomy. Time is a critical factor; the longer the duration of elevated tissue pressure, the greater the potential for disastrous sequelae. Emergency medicine providers must be cognizant of this clinical syndrome so that early emergent surgical consultation can be obtained to avoid complications.

  13. Diagnosis and treatment of acute extremity compartment syndrome.

    PubMed

    von Keudell, Arvind G; Weaver, Michael J; Appleton, Paul T; Appelton, Paul T; Bae, Donald S; Dyer, George S M; Heng, Marilyn; Jupiter, Jesse B; Vrahas, Mark S

    2015-09-26

    Acute compartment syndrome of the extremities is well known, but diagnosis can be challenging. Ineffective treatment can have devastating consequences, such as permanent dysaesthesia, ischaemic contractures, muscle dysfunction, loss of limb, and even loss of life. Despite many studies, there is no consensus about the way in which acute extremity compartment syndromes should be diagnosed. Many surgeons suggest continuous monitoring of intracompartmental pressure for all patients who have high-risk extremity injuries, whereas others suggest aggressive surgical intervention if acute compartment syndrome is even suspected. Although surgical fasciotomy might reduce intracompartmental pressure, this procedure also carries the risk of long-term complications. In this paper in The Lancet Series about emergency surgery we summarise the available data on acute extremity compartment syndrome of the upper and lower extremities in adults and children, discuss the underlying pathophysiology, and propose a clinical guideline based on the available data.

  14. Propofol extravasation: a rare cause of compartment syndrome.

    PubMed

    Kalraiya, Ashish Jain; Madanipour, Suroosh; Colaco, Henry; Cobiella, Carlos

    2015-01-01

    We detail a rare cause of forearm compartment syndrome that occurred in an 18-year-old patient who presented with a Glasgow Coma Scale of 13/15 after a mixed drug overdose and subsequently required intubation. She suffered extravasation of her propofol infusion, which resulted in intrinsic compression within her forearm muscle compartments. Fortunately, the diagnosis of compartment syndrome was made swiftly and the patient was taken to theatre within 3 h where she underwent an emergency forearm fasciotomy. She made an uneventful recovery and at follow-up her wounds had healed well with no associated morbidity or loss of function. The learning points of this study highlight the importance of thoroughly understanding the signs and symptoms of compartment syndrome while maintaining a high index of suspicion. In addition to a thorough history and examination, consideration of the potential underlying causes allows for a swifter diagnosis and a quicker transition to theatre.

  15. Cellular oxygen sensing: Importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2

    SciTech Connect

    Steinhoff, Amrei; Pientka, Friederike Katharina; Moeckel, Sylvia; Kettelhake, Antje; Hartmann, Enno; Koehler, Matthias; Depping, Reinhard

    2009-10-02

    Hypoxia-inducible factors are crucial in the regulatory process of oxygen homeostasis of vertebrate cells. Inhibition of prolyl hydroxylation of HIF-{alpha} subunits by prolyl-hydroxylases (PHD1, PHD2 and PHD3) leads to transcription of a greater number of hypoxia responsive genes. We have investigated the subcellular distribution and the molecular mechanisms regulating the intracellular allocation of PHD1 and PHD2. As reported earlier we find PHD1 located exclusively in the nucleus. We demonstrate that nuclear import of PHD1 occurs importin {alpha}/{beta} dependently and relies on a nuclear localisation signal (NLS). By contrast PHD2 is cycling between nucleus and cytoplasm, and nuclear import seems to be independent of 'classical' importin {alpha}/{beta} receptors. Furthermore, we reveal that the exit of PHD2 from the nucleus requires CRM1 and the N-terminal 100 amino acids of the protein. Our findings provide new insights into the mechanisms of the regulation of the oxygen sensor cascade of PHDs in different cellular compartments.

  16. Intracellular transport of fat-soluble vitamins A and E.

    PubMed

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E.

  17. Work-Related Pain in Extrinsic Finger Extensor Musculature of Instrumentalists Is Associated with Intracellular pH Compartmentation during Exercise

    PubMed Central

    Moreno-Torres, Angel; Rosset-Llobet, Jaume; Pujol, Jesus; Fàbregas, Sílvia; Gonzalez-de-Suso, Jose-Manuel

    2010-01-01

    Background Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy (31P-MRS). We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism. Methodology/Principal Findings We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls). We used 31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr), inorganic phosphate (Pi), Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in 31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition. Conclusions/Significance Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by 31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself. PMID:20161738

  18. Cystatins--Extra- and intracellular cysteine protease inhibitors: High-level secretion and uptake of cystatin C in human neuroblastoma cells.

    PubMed

    Wallin, Hanna; Bjarnadottir, Maria; Vogel, Lotte K; Wassélius, Johan; Ekström, Ulf; Abrahamson, Magnus

    2010-11-01

    Cystatins are present in mammals, birds, fish, insects, plants, fungi and protozoa and constitute a large protein family, with most members sharing a cysteine protease inhibitory function. In humans 12 functional cystatins exist, forming three groups based on molecular organisation and distribution in the organism. The type 1 cystatins (A and B) are known as intracellular, type 2 cystatins (C, D, E/M, F, G, S, SN and SA) extracellular and type 3 cystatins (L- and H-kininogen) intravascular proteins. The present paper is focused on the human cystatins and especially those of type 2, which are directed (with signal peptides) for cellular export following translation. Results indicating existence of systems for significant internalisation of type 2 cystatins from the extracellular to intracellular compartments are reviewed. Data showing that human neuroblastoma cell lines generally secrete high levels, but also contain high amounts of cystatin C are presented. Culturing of these cells in medium containing cystatin C at concentrations found in body fluids resulted in increased intracellular cystatin C, as a result of an uptake process. At immunofluorescence cytochemistry a pronounced vesicular cystatin C staining was observed. The simplistic denotation of the type 2 cystatins as extracellular inhibitors is thus challenged, and possible biological functions of the internalised cystatins are discussed. To illustrate the special case of high cellular cystatin content seen in cells of patients with hereditary cystatin C amyloid angiopathy, expression vectors for wild-type and L68Q mutated cystatin C were used to transfect SK-N-BE(2) cells. Clones overexpressing the two variants showed increased secreted levels of cystatin C. Within the cells the L68Q variant appeared to mainly localise to the endoplasmic reticulum rather than to acidic vesicular organelles, indicating limitations in the transport out from the cell rather than increased uptake as explanation for the

  19. Abdominal Compartment Syndrome: Risk Factors, Diagnosis, and Current Therapy

    PubMed Central

    Luckianow, Gina M.; Ellis, Matthew; Governale, Deborah; Kaplan, Lewis J.

    2012-01-01

    Abdominal compartment syndrome's manifestations are difficult to definitively detect on physical examination alone. Therefore, objective criteria have been articulated that aid the bedside clinician in detecting intra-abdominal hypertension as well as the abdominal compartment syndrome to initiate prompt and potentially life-saving intervention. At-risk patient populations should be routinely monitored and tiered interventions should be undertaken as a team approach to management. PMID:22720147

  20. Acute pediatric leg compartment syndrome in chronic myeloid leukemia.

    PubMed

    Cohen, Eric; Truntzer, Jeremy; Trunzter, Jeremy; Klinge, Steve; Schwartz, Kevin; Schiller, Jonathan

    2014-11-01

    Acute compartment syndrome is an orthopedic surgical emergency and may result in devastating complications in the setting of delayed or missed diagnosis. Compartment syndrome has a variety of causes, including posttraumatic or postoperative swelling, external compression, burns, bleeding disorders, and ischemia-reperfusion injury. Rare cases of pediatric acute compartment syndrome in the setting of acute myeloid leukemia and, even less commonly, chronic myeloid leukemia have been reported. The authors report the first known case of pediatric acute compartment syndrome in a patient without a previously known diagnosis of chronic myeloid leukemia. On initial examination, an 11-year-old boy presented with a 2-week history of progressive left calf pain and swelling after playing soccer. Magnetic resonance imaging scan showed a hematoma in the left superficial posterior compartment. The patient had unrelenting pain, intermittent lateral foot parethesias, and inability to bear weight. Subsequently, he was diagnosed with acute compartment syndrome and underwent fasciotomy and evacuation of a hematoma. Laboratory results showed an abnormal white blood cell count of 440×10(9)/L (normal, 4.4-11×10(9)) and international normalized ratio of 1.3 (normal, 0.8-1.2). Further testing included the BCR-ABL1 fusion gene located on the Philadelphia chromosome, leading to a diagnosis of chronic myeloid leukemia. Monotherapy with imatinib mesylate (Gleevec) was initiated. This report adds another unique case to the growing literature on compartment syndrome in the pediatric population and reinforces the need to consider compartment syndrome, even in unlikely clinical scenarios. PMID:25361367