Science.gov

Sample records for acidic media ph

  1. Influence of pH, type of acid and recovery media on the thermal inactivation of Listeria innocua.

    PubMed

    Miller, Fátima A; Ramos, Bárbara; Gil, Maria M; Brandão, Teresa R S; Teixeira, Paula; Silva, Cristina L M

    2009-07-31

    Acidification of foods with organic acids, either by fermentation or by intentional addition, is an important and common mechanism for controlling foodborne pathogens in a diversity of food products. The objective of this work was to study thermal inactivation of Listeria innocua, an acid tolerant microorganism, at 52.5, 60.0 and 65.0 degrees C, at different pH values (4.5, 6.0 and 7.5), using three types of acid (lactic, acetic and hydrochloric) and three different plating media (Tryptic Soy Agar with 0.6% yeast extract-TSAYE; TSAYE plus 5% NaCl-TSAYE+5%NaCl; and Palcam Agar with selective supplement-Palcam Agar), according to a 3(4) factorial experimental design. Survival data experimentally obtained were fitted with a Gompertz-inspired model and kinetic parameters (shoulder, maximum inactivation rate-k(max), and tail) were estimated for all conditions considered. The influence of temperature, pH, type of acid and enumeration media on kinetic parameters was assessed. Results showed that, with the exception of the type of acid, all the remaining factors and their combinations significantly affected the shoulder period and k(max). In relation to tail, temperature and recovery media were the affectable factors. It was concluded that the survival of this bacteria is higher when combining low temperature with neutral pH, and when TSAYE is the enumeration medium. Bigelow-inspired models were successfully developed and describe accurately the temperature and pH effects on the kinetic parameters.

  2. Humic Acid Effects on the Transport of Colloidal Particles in Unsaturated Porous Media: Humic Acid Dosage, pH, and Ionic Strength Dependence

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Gao, B.; Steenhuis, T. S.

    2008-12-01

    Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column

  3. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    EPA Science Inventory

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  4. Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes.

    PubMed

    Meier, Jutta; Piva, Angela; Fortin, Danielle

    2012-01-01

    Acid mine drainage sites are extreme environments with high acidity and metal ion concentrations. Under anoxic conditions, microbial sulfate reduction may trigger the formation of secondary minerals as a result of H2S production and pH increase. This process was studied in batch experiments with enrichment cultures from acidic sediments of a pit lake using growth media set at different pH values and containing elevated concentrations of Fe²⁺ and Al³⁺. At initial pH values of 5 and 6, sulfate reduction occurred shortly after inoculation. Sulfate- reducing bacteria affiliated to the genus Desulfosporosinus predominated the microbial communities as shown by 16S rRNA gene analysis performed at the end of the incubation. At initial pH values of 3 and 4, sulfate reduction and cell growth occurred only after an extended lag phase, however, at a higher rate than in the less acidic assays. At the end of the growth phase, enrichments were dominated by Thermodesulfobium spp. suggesting that these sulfate reducers were better adapted to acidic conditions. Iron sulfides in the bulk phase were common in all assays, but specific aluminum precipitates formed in close association with cell surfaces and may function as a detoxification mechanism of dissolved Al species at low pH.

  5. Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

    2013-11-01

    This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

  6. Acid loading test (pH)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  7. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  8. Effects of pH on nitrogen transformations in media-based aquaponics.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Guimbaud, Christophe; Fang, Yingke

    2016-06-01

    To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed.

  9. Effects of pH on nitrogen transformations in media-based aquaponics.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Guimbaud, Christophe; Fang, Yingke

    2016-06-01

    To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed. PMID:26783143

  10. Volatile buffers can override the "pH memory" of subtilisin catalysis in organic media.

    PubMed

    Zacharis, E; Halling, P J; Rees, D G

    1999-02-16

    The protonation state and activity of enzymes in low-water media are affected by the aqueous pH before drying ("pH memory"). However, both protonation and activity will change if buffer ions can be removed as volatile or organic-extractable weak acids or bases. With NH4OOCH buffers, in which both ions can be removed, pH memory disappears completely for subtilisin-catalyzed transesterification in hexane. Only weak pH memory is found with buffers having one volatile component, NH4-phosphate and NaOOCH. The changes in ionization state result from proton exchanges like Protein-COO-NH4+ --> Protein-COOH + NH3 (g) and Protein-NH3+HCOO- --> Protein-NH2 + HOOCH (g). An equivalent, complementary picture is that net charges on the protein and buffer ions must remain equal and opposite. With NaOOCH buffers, loss of some HCOO- ions gives a more negative net charge on the protein, balanced by the excess Na+. With NH4-phosphate buffers, loss of NH3 gives protein with a more positive net charge. The resulting catalytic activities were high and low, respectively, similar to those after drying from Na-phosphate buffers of optimal (8.5) and acid pH. All of the above effects have been demonstrated for both covalently immobilized subtilisin and the lyophilized free enzyme. Subtilisin lyophilized from NH4OOCH buffers gave pH approximately 4 after redissolution in water, probably because removal of HCOO- counterions remains incomplete. The resulting catalytic activity was low. The effects are discussed in relation to the possible locations, in low-dielectric media, of the positive charge that balances the net negative catalytic triad in active subtilisin. PMID:9990001

  11. Dual effect of organic acids as a function of external pH in Oenococcus oeni.

    PubMed

    Augagneur, Yoann; Ritt, Jean-François; Linares, Daniel M; Remize, Fabienne; Tourdot-Maréchal, Raphaëlle; Garmyn, Dominique; Guzzo, Jean

    2007-08-01

    In this study we analyzed under various pH conditions including low pH, the effects of L-malic acid and citric acid, combined or not, on the growth, the proton motive force components and the transcription level of selected genes of the heterolactic bacterium Oenococcus oeni. It is shown here that L-malate enhanced the growth yield at pH equal or below 4.5 while the presence of citrate in media led to a complete and unexpected inhibition of the growth at pH 3.2. Nevertheless, whatever the growth conditions, both L-malate and citrate participated in the enhancement of the transmembrane pH gradient, whereas the membrane potential decreased with the pH. These results suggested that it was not citrate that was directly responsible for the inhibition observed in cultures done at low pH, but probably its end products. This was confirmed since, in media containing L-malate, the addition of acetate substantially impaired the growth rate of the bacterium and slightly the membrane potential and pH gradient. Finally, study of the expression of genes involved in the metabolism of organic acids showed that at pH 4.5 and 3.2 the presence of L-malate led to an increased amount of mRNA of mleP encoding a malate transporter.

  12. Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2015-08-01

    We investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling, we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also differences in the dilution of the distinct ions plumes up to 28% and 45% in experiment 1 and 2, respectively, were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between the transported ions in the flow-through system. The results of purely forward simulations show a very good agreement with the high-resolution measurements performed at the outlet of the flow-through setup and confirms the importance of charge effects on pH transport in

  13. pH [Measure of Acidity].

    ERIC Educational Resources Information Center

    Henderson, Paula

    This autoinstructional program deals with the study of the pH of given substances by using litmus and hydrion papers. It is a learning activity directed toward low achievers involved in the study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for further pH testing). The equipment…

  14. Intracellular pH of acid-tolerant ruminal bacteria.

    PubMed Central

    Russell, J B

    1991-01-01

    Acid-tolerant ruminal bacteria (Bacteroides ruminicola B1(4), Selenomonas ruminantium HD4, Streptococcus bovis JB1, Megasphaera elsdenii B159, and strain F) allowed their intracellular pH to decline as a function of extracellular pH and did not generate a large pH gradient across the cell membrane until the extracellular pH was low (less than 5.2). This decline in intracellular pH prevented an accumulation of volatile fatty acid anions inside the cells. PMID:1781695

  15. Heterocyclics as corrosion inhibitors for acid media

    SciTech Connect

    Ajmal, M.; Khan, M.A.W.; Ahmad, S.; Quraishi, M.A.

    1996-12-01

    The available literature on the use of heterocyclic compounds as corrosion inhibitors in acid media has been reviewed. It has been noted that the workers in this field have either used sulfur or nitrogen containing heterocyclic compounds for studying inhibition action. The authors have synthesized compounds containing sulfur and nitrogen both in the same ring and studied their inhibition action in acid media. These compounds were found to be better inhibitors than those containing either atoms alone.

  16. Rapid sodium cyanide depletion in cell culture media: outgassing of hydrogen cyanide at physiological pH.

    PubMed

    Arun, Peethambaran; Moffett, John R; Ives, John A; Todorov, Todor I; Centeno, Jose A; Namboodiri, M A Aryan; Jonas, Wayne B

    2005-04-15

    During the course of in vitro studies on cyanide exposure with SH-SY5Y human neuroblastoma cells, we found that sodium cyanide (NaCN) up to a concentration of 10 mM had no significant toxic effect under our culture conditions. Further investigation of this apparent cyanide resistance revealed that the sodium cyanide was being rapidly depleted from the cell culture medium. Cyanide was interacting with constituents of the cell culture medium and was somehow being detoxified or removed from solution. The reaction of cyanide with cell culture media in 96-well culture plates reduced cyanide concentrations rapidly (80-90% in 2 h at 37 degrees C). Running the same reaction in capped tubes significantly reduced cyanide loss from solution. Incubation of cyanide with individual constituents of the cell culture medium in solution showed that glucose, phenol red, and amino acids all acted to detoxify or remove cyanide from solution. When amino acids or buffers were incubated with sodium cyanide in aqueous solution at pH 7.4, hydrogen cyanide (HCN) was found to degas from the solutions. We compared HCN outgassing over a range of pH values. As expected, HCN remained very soluble at high pH, but as the pH was reduced to 7.0, the rate of HCN formation and outgassing increased dramatically. Acid-base reactions involving cyanide and proton donors, such as amino acids and other cell culture media constituents, at physiological pH result in rapid HCN outgassing from solution at 37 degrees C. These results indicate that previous in vitro cyanide toxicity studies done in standard culture media with prolonged incubation times using gas-exchanging culture containers might have to be reevaluated in light of the fact that the effective cyanide concentrations in the culture media were significantly lower than reported.

  17. Acid tolerance of rhizobium trifolii in culture media

    SciTech Connect

    Thornton, F.C.; Davey, C.B.

    1983-01-01

    Tolerance to acidity (pH 4.2 to 4.6), low P (1 to 6 ..mu..M) and high Al (15 to 40..mu..M) for 100 strains of Rhizobium trifolii was assessed in liquid culture media in the laboratory. Response to acidity and Al varied among strains as evidenced by lower maximum cell densities and reduced growth rates, most preceded by a lag phase. Tolerance to acidity did not imply tolerance to Al in all cases. Strains were capable of tolerating higher levels of Al if acidity was reduced. Limitations in rhizobial growth due to low P concentrations were not as severe a stress as high acidity or high Al concentration.

  18. Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-04-01

    Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also significant differences in the dilution of the distinct ionic plumes, quantified using the flux-related dilution index at the laboratory bench scale [5], were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between

  19. Titratable acidity of beverages influences salivary pH recovery.

    PubMed

    Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido

    2015-01-01

    A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  20. Effect of pH and biological media on polyvinylpyrrolidone-capped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lau, Chew Ping; Abdul-Wahab, Mohd Firdaus; Jaafar, Jafariah; Chan, Giek Far; Rashid, Noor Aini Abdul

    2016-07-01

    Toxicity and mobility of silver nanoparticles (AgNPs) vary in different surrounding environments. Surface coatings or functionalization, temperature, pH, dissolved oxygen concentration, nanoparticle concentration, the presence of organic matter, and ionic strength are factors which dictate the transformation of AgNPs in terms of aggregation and stabilization. Thus, the purpose of this study is to investigate the behavior of polyvinylpyrrolidone (PVP)-capped AgNPs at different pHs (pH 2 to 10) and in different biological media (0.1 M phosphate buffer, nutrient broth, P5 and modified P5 media) analyzed using UV-Vis spectroscopy and zeta potential analyzer. The PVP-capped AgNPs changed its behavior in the presence of varying media, after 24 h incubation with shaking at 200 rpm at 30°C. No aggregation was observed at pH 4 to 10, but distinctive at very low pH of 2. Low pH further destabilized PVP-capped AgNPs after 24 h of incubation. High ionic strength 0.1 M phosphate buffer also resulted in slow aggregation and eventually destabilized the nanoparticles. Biological media (nutrient broth, P5 and modified P5 media) containing organic components caused aggregation of the PVP-capped AgNPs. The increase in glucose and nutrient broth concentrations led to increased aggregation. However, PVP-capped AgNPs stabilized after 24 h incubation in media containing a high concentration of glucose and nutrient broth. The results demonstrate that low pH value, high ionic strength and the content of the biological media can influence the stability of AgNPs. This provides information on the aggregation behavior of PVP-capped AgNPs and can possibly further predict the fate, transport as well as the toxicity of silver nanoparticles after being released into the aquatic environment.

  1. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media.

    PubMed

    Ameri, Shideh Kabiri; Singh, Pramod K; Sonkusale, Sameer R

    2016-08-31

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation.

  2. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media.

    PubMed

    Ameri, Shideh Kabiri; Singh, Pramod K; Sonkusale, Sameer R

    2016-08-31

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. PMID:27506362

  3. Production of Retrovirus-Based Vectors in Mildly Acidic pH Conditions.

    PubMed

    Holic, Nathalie; Fenard, David

    2016-01-01

    Gene transfer vectors based on retroviridae are increasingly becoming a tool of choice for biomedical research and for the development of biotherapies in rare diseases or cancers. To meet the challenges of preclinical and clinical production, different steps of the production process of self-inactivating γ-retroviral (RVs) and lentiviral vectors (LVs) have been improved (e.g., transfection, media optimization, cell culture conditions). However, the increasing need for mass production of such vectors is still a challenge and could hamper their availability for therapeutic use. Recently, we observed that the use of a neutral pH during vector production is not optimal. The use of mildly acidic pH conditions (pH 6) can increase by two- to threefold the production of RVs and LVs pseudotyped with the vesicular stomatitis virus G (VSV-G) or gibbon ape leukemia virus (GALV) glycoproteins. Here, we describe the production protocol in mildly acidic pH conditions of GALVTR- and VSV-G-pseudotyped LVs using the transient transfection of HEK293T cells and the production protocol of GALV-pseudotyped RVs produced from a murine producer cell line. These protocols should help to achieve higher titers of vectors, thereby facilitating experimental research and therapeutic applications. PMID:27317171

  4. Development and validation of dissolution testings in acidic media for rabeprazole sodium delayed-release capsules.

    PubMed

    Tan, Yinhe; Si, Xiaoqing; Zhong, Lulu; Feng, Xin; Yang, Xinmin; Huang, Min; Wu, Chuanbin

    2016-10-01

    Rabeprazole sodium (RAB) dissolved in acidic media is accompanied by its degradation in the course of dissolution testing. To develop and establish the accumulative release profiles of ACIPHEX(®) Sprinkle (RAB) delayed-release capsules (ACIPHEX(®) Sprinkle) in acidic media using USP apparatus 2 (paddle apparatus) as a dissolution tester, the issues of determination of accumulative release amount of RAB in these acidic media and interference of hydroxypropylmethyl cellulose phthalate were solved by adding appropriate hydrochloric acid (HCl) into dissolution samples coupled with centrifugation so as to remove the interference and form a solution of degradation products of RAB, which is of a considerably stable ultraviolet (UV) absorbance at the wavelength of 298 nm within 2.0 h. Therefore, the accumulative release amount of RAB in dissolution samples at each sample time points could be determined by UV-spectrophotometry, and the accumulative release profiles of ACIPHEX(®) Sprinkle in the media of pH 1.0, pH 6.0, and pH 6.8 could be established. The method was validated per as the ICH Q2 (R1) guidelines and demonstrated to be adequate for quality control of ACIPHEX(®) Sprinkle and the accumulative release profiles can be used as a tool to guide the formulation development and quality control of a generic drug for ACIPHEX(®) Sprinkle. PMID:27066697

  5. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    PubMed

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products.

  6. Synthesis of Au nanorods in a low pH solution via seed-media method

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Feng, Jin-Yang; You, Fang-Fang; Ma, Juan; Zhao, Xiu-Jian; Wang, Moo-Chin

    2014-08-01

    The gold (Au) nanorods with various aspect ratios are obtained by a seed-media method in low pH growth solution. Transmission electron microscopy (TEM) and UV-visible spectrophotometry are utilized to characterize the Au nanorods, and the longitudinal absorption peak positions of Au nanorods show different shifting trends of the growth evolutions in various low pH (1~3) solutions. Other influential factors on the shape of Au nanorod are also systematically studied under low pH reaction condition. The positions of longitudinal peak shift between 600 nm and 900 nm, with the aspect ratios of Au nanorods varying from 2 to 5 both in the simulation and experimental results. The simulation results are in agreement with experimental ones.

  7. Human saliva and taste responses to acids varying in anions, titratable acidity, and pH.

    PubMed

    Norris, M B; Noble, A C; Pangborn, R M

    1984-02-01

    Twenty subjects recorded perceived sourness of solutions of citric + fumaric and of citric + tartaric acids, at pH 3.5 and titratable acidity (TiA) of 4.0 g/l on a moving chart, while parotid saliva flow was recorded via a sialometer . Sourness intensity and flow were greater when citric was the minor acid than when it was dominant. Subjects varied widely in calculated volume of saliva reservoir, but not flow rate (time to 2/3 reservoir vol.). In tartaric-fumaric acid mixtures varying in pH (3.0-3.75) at a constant TiA of 4.0 g/l, and varying in TiA (3.7-4.6 g/l) at a constant pH of 3.5, sourness intensity and parotid flow increased with acidity and decreased with pH. However, eight subjects with a high flow (HF = 1.2 +/- 0.28 g/2 min) and nine subjects with a low flow (LF = 0.43 +/- 0.11 g/2 min) differed widely: (a) In response to variation in stimulus pH and TiA, HF demonstrated marked alteration in flow, but little change in sourness ; LF responded at a lower absolute level, but showed marked changes in sourness and little change in flow; (b) Salivary pH was higher and Na+ was three times greater for the HF than for the LF subjects; and (c) Salivary Ca++ showed a direct relationship with flow and pH among the HF, but an inverse relationship for the LF subjects.

  8. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts. II: Salicylic acid, theophylline, and benzoic acid.

    PubMed

    Serajuddin, A T; Jarowski, C I

    1985-02-01

    The pH-solubility profiles of salicylic acid and theophylline, as determined by the addition of HCl or NaOH to their aqueous suspensions, were identical with those of their sodium salts except during phase transitions from acid to salt or vice versa. Supersaturated solutions were formed during phase transitions. Unlike the solubility profiles, the pH-intrinsic dissolution rate profiles of an acid and its salt differed greatly. Good conformity with the Noyes-Whitney equation was demonstrated when the solubility values under pH conditions as the diffusion layer thickness, h, approaches zero (Cs,h = 0) were used rather than solubilities under pH conditions of the bulk media (Cs). The pH when h approaches zero (pHh = 0) was estimated by equilibration of a dissolution medium with an excess of material. Good correlation was shown between the pHh = 0 values of benzoic acid estimated according to this method and the pHh = 0 values reported in the literature. The intrinsic dissolution rate constant, the ratio of the diffusion coefficient to the diffusion layer thickness (D/h), may be assumed constant when comparing the dissolution rates of salicylic acid, theophylline and sodium theophylline. On the other hand, D/h decreased significantly during dissolution of sodium salicylate due to a large increase in Cs,h = 0 and the consequent increase in viscosity in the diffusion layer. A simple method of predicting the dissolution rate of an acid or a salt at different pH values has been developed.

  9. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria.

    PubMed

    Kimura, Sakurako; Hallberg, Kevin B; Johnson, D Barrie

    2006-03-01

    A defined mixed bacterial culture was established which catalyzed dissimilatory sulfate reduction, using glycerol as electron donor, at pH 3.8-4.2. The bacterial consortium comprised a endospore-forming sulfate reducing bacterium (isolate M1) that had been isolated from acidic sediment in a geothermal area of Montserrat (West Indies) and which had 94% sequence identity (of its 16S rRNA gene) to the Gram-positive neutrophile Desulfosporosinus orientis, and a Gram-negative (non sulfate-reducing) acidophile (isolate PFBC) that shared 99% gene identity with Acidocella aromatica. Whilst M1 was an obligate anaerobe, isolate PFBC, as other Acidocella spp., only grew in pure culture in aerobic media. Analysis of microbial communities, using a combination of total bacterial counts and fluorescent in situ hybridization, confirmed that concurrent growth of both bacteria occurred during sulfidogenesis under strictly anoxic conditions in a pH-controlled fermenter. In pure culture, M1 oxidized glycerol incompletely, producing stoichiometric amounts of acetic acid. In mixed culture with PFBC, however, acetic acid was present only in small concentrations and its occurrence was transient. Since M1 did not oxidize acetic acid, it was inferred that this metabolite was catabolized by Acidocella PFBC which, unlike glycerol, was shown to support the growth of this acidophile under aerobic conditions. In fermenter cultures maintained at pH 3.8-4.2, sulfidogenesis resulted in the removal of soluble zinc (as solid phase ZnS) whilst ferrous iron remained in solution. Potential syntrophic interactions, involving hydrogen transfer between M1 and PFBC, are discussed, as is the potential of sulfidogenesis in acidic liquors for the selective recovery of heavy metals from wastewaters. PMID:16456614

  10. Effect of systemic pH on pH sub i and lactic acid generation in exhaustive forearm exercise

    SciTech Connect

    Hood, V.L.; Schubert, C.; Keller, U.; Mueller, S. Univ. of Vermont College of Medicine, Burlington )

    1988-09-01

    To investigate whether changes in systemic pH affect intracellular pH (pH{sub i}), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH{sub 4}Cl (acidosis; A) or NaHCO{sub 3} (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pH{sub i} and phosphocreatine (PCr) content were measured with {sup 31}P-nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis than alkalosis and intermediate in control. Lactic acid output during recovery was less with A than B and intermediate in C. PCr utilization and resynthesis were not affected by extracellular pH changes. pH{sub i} did not differ before exercise or at its end. Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability.

  11. Disruption of the transmembrane pH gradient--a possible mechanism for the antibacterial action of azelaic acid in Propionibacterium acnes and Staphylococcus epidermidis.

    PubMed

    Bojar, R A; Cunliffe, W J; Holland, K T

    1994-09-01

    The effect of the topical acne treatment azelaic acid on the transmembrane proton gradient (delta pH) of Propionibacterium acnes and Staphylococcus epidermidis was studied in vitro at external pH values found on human skin (pH 4.0-6.0). Bacteria were grown in defined media using continuous culture and delta pH was estimated by measuring the accumulation of [14C] benzoic by the cells using flow dialysis. In both P. acnes and S. epidermidis the addition of 30 mM azelaic acid and the membrane active inhibitors nigericin (150 microM) and CCCP (150 microM) resulted in a rapid release of [14C] label into the dialysate indicating the dissipation of delta pH between external pH values of 4.0-6.0. The addition of 60 mM NaCl as an iso-osmotic control and 150 microM valinomycin did not induce the release of [14C] label. The addition of 30 mM azelaic acid reduced the delta pH of P. acnes by 44% at external pH 4.0 and 28% at external pH 6.0. In S. epidermidis 30 mM azelaic acid reduced delta pH by 88% at external pH 5.0 and 20% at external pH 6.0. Rapid loss of viability occurred in suspensions of P. acnes and S. epidermidis containing 30 mM azelaic acid at pH 4.0 with no viable cells recovered after 60 min incubation. At pH 6.0 little change in viable numbers of P. acnes and S. epidermidis were observed over a 2 h incubation period. The results indicate that the antibacterial activity of azelaic acid is associated with the perturbation of intracellular pH.

  12. Disruption of the transmembrane pH gradient--a possible mechanism for the antibacterial action of azelaic acid in Propionibacterium acnes and Staphylococcus epidermidis.

    PubMed

    Bojar, R A; Cunliffe, W J; Holland, K T

    1994-09-01

    The effect of the topical acne treatment azelaic acid on the transmembrane proton gradient (delta pH) of Propionibacterium acnes and Staphylococcus epidermidis was studied in vitro at external pH values found on human skin (pH 4.0-6.0). Bacteria were grown in defined media using continuous culture and delta pH was estimated by measuring the accumulation of [14C] benzoic by the cells using flow dialysis. In both P. acnes and S. epidermidis the addition of 30 mM azelaic acid and the membrane active inhibitors nigericin (150 microM) and CCCP (150 microM) resulted in a rapid release of [14C] label into the dialysate indicating the dissipation of delta pH between external pH values of 4.0-6.0. The addition of 60 mM NaCl as an iso-osmotic control and 150 microM valinomycin did not induce the release of [14C] label. The addition of 30 mM azelaic acid reduced the delta pH of P. acnes by 44% at external pH 4.0 and 28% at external pH 6.0. In S. epidermidis 30 mM azelaic acid reduced delta pH by 88% at external pH 5.0 and 20% at external pH 6.0. Rapid loss of viability occurred in suspensions of P. acnes and S. epidermidis containing 30 mM azelaic acid at pH 4.0 with no viable cells recovered after 60 min incubation. At pH 6.0 little change in viable numbers of P. acnes and S. epidermidis were observed over a 2 h incubation period. The results indicate that the antibacterial activity of azelaic acid is associated with the perturbation of intracellular pH. PMID:7829407

  13. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  14. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  15. [Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values].

    PubMed

    Zhu, Peng; Miao, Xiao-lei; Chen, Yong

    2016-01-01

    The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA. PMID:27405173

  16. Effect of acidity on the polarization sensitivity of azo-indicator based recording media*

    NASA Astrophysics Data System (ADS)

    Shaverdova, V. G.; Petrova, S. S.; Purtseladze, A. L.; Tarasashvili, V. I.; Obolashvili, N. Z.

    2013-01-01

    This is an experimental study of the photoanisotropic gyrotropic properties of recording media based on azoindicators — homologs (five dyes) of methyl orange-- introduced into the polymer matrix. Samples were prepared by a technology we have developed employing solvents with different acidities (pH 1.68-12.48). The samples were exposed to actinic radiation (λ = 488 nm) from an argon laser, and the photoinduced anisotropy measured in real time. The circular dichroism and circular birefringence in the layers under study are calculated for a neutral medium and at different pH levels.

  17. The PH gene determines fruit acidity and contributes to the evolution of sweet melons.

    PubMed

    Cohen, Shahar; Itkin, Maxim; Yeselson, Yelena; Tzuri, Galil; Portnoy, Vitaly; Harel-Baja, Rotem; Lev, Shery; Sa'ar, Uzi; Davidovitz-Rikanati, Rachel; Baranes, Nadine; Bar, Einat; Wolf, Dalia; Petreikov, Marina; Shen, Shmuel; Ben-Dor, Shifra; Rogachev, Ilana; Aharoni, Asaph; Ast, Tslil; Schuldiner, Maya; Belausov, Eduard; Eshed, Ravit; Ophir, Ron; Sherman, Amir; Frei, Benedikt; Neuhaus, H Ekkehard; Xu, Yimin; Fei, Zhangjun; Giovannoni, Jim; Lewinsohn, Efraim; Tadmor, Yaakov; Paris, Harry S; Katzir, Nurit; Burger, Yosef; Schaffer, Arthur A

    2014-06-05

    Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.

  18. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus

    PubMed Central

    Dvorak, Katerina; Payne, Claire M; Chavarria, Melissa; Ramsey, Lois; Dvorakova, Barbora; Bernstein, Harris; Holubec, Hana; Sampliner, Richard E; Guy, Naihsuan; Condon, Amanda; Bernstein, Carol; Green, Sylvan B; Prasad, Anil; Garewal, Harinder S

    2007-01-01

    Background Barrett's oesophagus is a premalignant condition associated with an increased risk for the development of oesophageal adenocarcinoma (ADCA). Previous studies indicated that oxidative damage contributes to the development of ADCA. Objective To test the hypothesis that bile acids and gastric acid, two components of refluxate, can induce oxidative stress and oxidative DNA damage. Methods Oxidative stress was evaluated by staining Barrett's oesophagus tissues with different degrees of dysplasia with 8‐hydroxy‐deoxyguanosine (8‐OH‐dG) antibody. The levels of 8‐OH‐dG were also evaluated ex vivo in Barrett's oesophagus tissues incubated for 10 min with control medium and medium acidified to pH 4 and supplemented with 0.5 mM bile acid cocktail. Furthermore, three oesophageal cell lines (Seg‐1 cells, Barrett's oesophagus cells and HET‐1A cells) were exposed to control media, media containing 0.1 mM bile acid cocktail, media acidified to pH 4, and media at pH 4 supplemented with 0.1 mM bile acid cocktail, and evaluated for induction of reactive oxygen species (ROS). Results Immunohistochemical analysis showed that 8‐OH‐dG is formed mainly in the epithelial cells in dysplastic Barrett's oesophagus. Importantly, incubation of Barrett's oesophagus tissues with the combination of bile acid cocktail and acid leads to increased formation of 8‐OH‐dG. An increase in ROS in oesophageal cells was detected after exposure to pH 4 and bile acid cocktail. Conclusions Oxidative stress and oxidative DNA damage can be induced in oesophageal tissues and cells by short exposures to bile acids and low pH. These alterations may underlie the development of Barrett's oesophagus and tumour progression. PMID:17145738

  19. Influence of pH on colloidal properties and surface activity of polyglycerol fatty acid ester vesicles.

    PubMed

    Duerr-Auster, N; Eisele, T; Wepf, R; Gunde, R; Windhab, E J

    2008-11-15

    Certain polyglycerol esters of fatty acids (PGE) form dispersions of uni- or multilamellar vesicles in dilute aqueous solution. These self-assembled aggregates reduce the surface-activity of PGE monomers such that interfacial films may take several hours to form. This is undesirable for processes, which rely on rapid surfactant adsorption, for example foaming. In the present work, we study the effect of pH on the colloidal (size distribution, morphology, surface charge) and interfacial (adsorption kinetics) properties of a commercial, non-purified PGE. Using dynamic light scattering, zeta-potential measurements and cryo-SEM, we show that changing the pH of the dispersion media can cause agglomeration and eventually osmotic rupture of PGE vesicles. The change in dispersion state also impacts the adsorption behavior at the water surface. Direct evidence that destabilized vesicle dispersion are more surface-active is provided by comparing the dynamic surface tension of solutions of different pH. The faster adsorption kinetics at low pH correlate with a remarkably increased foaming power. We suggest that an osmotic shock induced by changes in pH causes vesicles to deform and partially open, so that their hydrocarbon core is exposed to the dispersion media. This energetically unfavorable condition promotes the hydrophobically driven adsorption of surfactant monomers at surfaces and hence stimulates the foaming ability.

  20. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media.

    PubMed

    Das, Probir; Thaher, Mahmoud Ibrahim; Abdul Hakim, Mohammed Abdul Quadir Mohd; Al-Jabri, Hareb Mohammed S J; Alghasal, Ghamza Saed H S

    2016-09-01

    Coagulation-flocculation can be considered as one of the least energy intensive microalgae biomass harvesting processes. However, cost of the coagulant and biomass contamination are two critical issues that need to be considered. In this study, ferric chloride (72-96mg/L) was used to effectively harvest Scenedesmus sp. (530mg/L) - grown in BG-11 media and wastewater. Reducing the culture pH below 6.5, greatly improved the harvesting efficiency. Acidic solution (pH 1.0) was very effective to recover (almost 90%) the associated iron from the harvested biomass. Scenedesmus sp. was able to grow in the supernatant and utilize the residual iron in it. Iron extracted solution, with a supplementation of 9.8mg/L ferric chloride, was able to achieve similar harvesting efficiency. The potential recovery of iron from the harvested biomass and its reuse in the harvesting can improve the biomass quality for subsequent downstream processing while reducing the cost. PMID:27318160

  1. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media.

    PubMed

    Gao, Wei; Uygun, Aysegul; Wang, Joseph

    2012-01-18

    Tubular polyaniline (PANI)/Zn microrockets are described that display effective autonomous motion in extreme acidic environments, without any additional chemical fuel. These acid-driven hydrogen-bubble-propelled microrockets have been electrosynthesized using the conical polycarbonate template. The effective propulsion in acidic media reflects the continuous thrust of hydrogen bubbles generated by the spontaneous redox reaction occurring at the inner Zn surface. The propulsion characteristics of PANI/Zn microrockets in different acids and in human serum are described. The observed speed-pH dependence holds promise for sensitive pH measurements in extreme acidic environments. The new microrockets display an ultrafast propulsion (as high as 100 body lengths/s) along with attractive capabilities including guided movement and directed cargo transport. Such acid-driven microtubular rockets offer considerable potential for diverse biomedical and industrial applications. PMID:22188367

  2. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.

    PubMed

    Grant-Preece, Paris; Schmidtke, Leigh M; Barril, Celia; Clark, Andrew C

    2017-01-15

    Glyoxylic acid is a tartaric acid degradation product formed in model wine solutions containing iron and its production is greatly increased by exposure to UV-visible light. In this study, the combined effect of sulfur dioxide, caffeic acid, pH and temperature on the light-induced (⩾300nm) production of glyoxylic acid in model wine containing tartaric acid and iron was investigated using a Box-Behnken experimental design and response surface methodology (RSM). Glyoxylic acid produced in the irradiated model wine was present in free and hydrogen sulfite adduct forms and the measured total, free and percentage free glyoxylic acid values were modeled using RSM. Sulfur dioxide significantly decreased the total amount of glyoxylic acid produced, but could not prevent its production, while caffeic acid showed no significant impact. The interaction between pH and temperature was significant, with low pH values and low temperatures giving rise to higher levels of total glyoxylic acid.

  3. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  4. pH and solute concentration of suspension media affect the outcome of high hydrostatic pressure treatment of Listeria monocytogenes.

    PubMed

    Koseki, Shigenobu; Yamamoto, Kazutaka

    2006-09-01

    The effect of pH and solute concentration of suspension media on high hydrostatic pressure (HHP) induced inactivation of Listeria monocytogenes (approximate 10(8) CFU/ml) was investigated by the using treatment between 300 MPa and 600 MPa at 25 degrees C for 10 min. The suspension media used in this study represented different concentrations (0.1% to 10%) of buffered peptone water (BPW) with an adjusted pH of 4 to 7. An increase in the concentration of BPW resulted in a decreased HHP-induced inactivation of L. monocytogenes that was dependent on the pH of the medium. HHP-treatment at 300 MPa showed no bactericidal effect at neutral pH regardless of the BPW concentration. When the pH of BPW (0.1% to 5%) was reduced to 4, L. monocytogenes was completely inactivated (more than an 8 log cycle reduction) with a HHP-treatment of at least 300 MPa. HHP-treatment above 400 MPa completely inactivated L. monocytogenes in a relatively dilute BPW (0.1% and 1%) with an adjusted pH below 6. While only a 2 log cycle reduction was observed in 10% BPW at the pH ranging from 5 to 7 after treatment with 600 MPa, L. monocytogenes in 10% BPW at pH 4 was completely inactivated. Even though a significant bactericidal effect of HHP-treatment was not observed when applied with a low pressure such as 300 MPa or suspended in higher BPW at neutral pH, a reduction of the pH greatly affected the HHP-induced inactivation of L. monocytogenes. These results indicated that information concerning the pH of food or media would greatly assist an optimization of HHP-treatment for the inactivation of bacteria.

  5. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain.

    PubMed

    Senouci-Rezkallah, Khadidja; Schmitt, Philippe; Jobin, Michel P

    2011-05-01

    This study investigated the involvement of glutamate-, arginine- and lysine-dependent systems in the Acid Tolerance Response (ATR) of Bacillus cereus ATCC14579 strain. Cells were grown in a chemostat at external pH (pH(e)) 7.0 and 5.5. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted) compared with cells grown at pH 7.0 (unadapted), indicating that B. cereus cells grown at low pH(e) were able to induce a marked ATR. Glutamate, arginine and lysine enhanced the resistance of unadapted cells to pH 4.0 acid shock of 1-log or 2-log populations, respectively. Amino acids had no detectable effect on acid resistance in acid-adapted cells. An acid shock at pH 4.0 resulted in a marked drop in internal pH (pH(i)) in unadapted cells compared with acid-adapted cells. When acid shock was achieved in the presence of glutamate, arginine or lysine, pH(i) was maintained at higher values (6.31, 6.69 or 6.99, respectively) compared with pH(i) in the absence of amino acids (4.88). Acid-adapted cells maintained their pH(i) at around 6.4 whatever the condition. Agmatine (a competitive inhibitor of arginine decarboxylase) had a negative effect on the ability of B. cereus cells to survive and maintain their pH(i) during acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. This adaptation depends on pH(i) homeostasis and is enhanced in the presence of glutamate, arginine and lysine. Hence evaluations of the pathogenicity of B. cereus must take into account its ability to adapt to acid stress.

  6. Selective production of lactic acid in continuous anaerobic acidogenesis by extremely low pH operation.

    PubMed

    Itoh, Yuya; Tada, Kiyoshi; Kanno, Tohru; Horiuchi, Jun-Ichi

    2012-11-01

    The selective production of lactic acid by anaerobic acidogenesis with low pH control was examined using a chemostat culture. By decreasing culture pH to 3.5 in a chemostat culture containing mixed microbial populations for anaerobic acidogenesis, heterolactic fermentation became dominant, resulting in the selective production of lactic acid and ethanol. This phenomenon was reversible between the acidic and neutral conditions, and was not affected by the dilution rate. The extremely low pH operation was effective for selective lactic acid production in anaerobic acidogenesis.

  7. Rhizosphere pH responses to simulated acid rain as measured with glass microelectrodes

    SciTech Connect

    Conkling, B.L.

    1988-01-01

    The objectives of this study were to develop a useful experimental system for studying the rhizosphere of growing roots, and to investigate the effects of bulk soil pH and foliar acid rain application on the rhizosphere pH of alfalfa, corn and soybeans. First, a study was done to compare soil pH measurements made with a standard glass pH electrode with those made using an antimony (Sb) microelectrode. Because of uncertainty with the Sb microelectrodes' response, glass pH-sensitive microelectrodes were made and tested for rhizosphere pH measurements. The influence of soil water pressure gradients in the range of {minus}10 to {minus}1500 kPa in the proximity of the pH and reference electrodes on pH measurements made with microelectrodes was studied. The effect of foliar acid rain application on the rhizosphere pH of alfalfa, corn, and soybean as a function of soil pH were studied. Alfalfa, corn, and soybean were grown into minirhizotrons containing reformed samples of both Seymour A and Bt soil horizons, and the rhizosphere pH measured. The measured in situ bulk soil pH ranged from 4.9 to 6.2 in the A horizon and from 4.0 to 5.7 in the Bt horizon. Plants received acid or non-acid foliar rain applications. Rhizosphere pH was measured using a glass pH-sensitive microelectrode. Acid rain applications caused foliar damage, but had little effect on the rhizosphere pH. The general trend was for the lateral root pH values to be slightly higher than the main root values.

  8. The Influence of High Drug Loading in Xanthan Tablets and Media with Different Physiological pH and Ionic Strength on Swelling and Release.

    PubMed

    Mikac, Urša; Sepe, Ana; Baumgartner, Saša; Kristl, Julijana

    2016-03-01

    The formation of a gel coat around xanthan (Xan) tablets, empty or loaded with pentoxifylline (PF), and its release in media differing in pH and ionic strength by NMR, MR imaging, and two release methods were studied. The T1 and T2 NMR relaxation times in gels depend predominantly on Xan concentration; the presence of PF has negligible influence on them. It is interesting that the matrix swelling is primarily regulated by Xan despite high drug loading (25%, 50%). The gastric pH and high ionic strength of the media do not influence the position of the penetration and swelling fronts but do affect the erosion front and gel thickness. The different release profiles obtained in mixing and nonmixing in vitro methods are the consequence of matrix hydration level and erosion at the surface. In water and in diluted acid medium with low ionic strength, the main release mechanism is erosion, whereas in other media (pH 1.2, μ ≥ 0.20 M), anomalous transport dominates as was found out by fitting of measured data with theoretical model. Besides the in vitro investigation that mimics gastric conditions, mathematical modeling makes the product development more successful.

  9. The influence of pH and media composition on the uptake of inorganic selenium by Chlamydomonas reinhardtii

    SciTech Connect

    Riedel, G.F.; Sanders, J.G.

    1996-09-01

    The uptake of inorganic selenium species, selenate and selenite, by the green alga Chlamydomonas reinhardtii Dang was examined as a function of pH over the range 5 to 9 and in media with varying concentrations of major ions and nutrients using {sup 75}Se as a radiotracer. Little difference was noted in the uptake of selenate as a function of pH, with the maximum uptake occurring at pH 8; however, selenite uptake increased substantially at the lower pH values. Selenate uptake was significantly decreased by higher sulfate concentrations and increased significantly by calcium, magnesium, and ammonium. Selenite uptake was significantly increased when the phosphate concentrations in the media were reduced. The results of these experiments demonstrate that varying water chemistry may significantly affect the uptake of inorganic selenium by phytoplankton and the subsequent transfer of the selenium to higher trophic levels.

  10. Negative pH and extremely acidic mine waters from Iron Mountain, California

    SciTech Connect

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-15

    Extremely acidic mine waters with pH values as low as {minus}3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as {minus}4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  11. Negative pH and extremely acidic mine waters from Iron Mountain, California

    USGS Publications Warehouse

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-01

    Extremely acidic mine waters with pH values as low as -3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as -4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  12. Amino Acids Profiles in Biological Media

    SciTech Connect

    Iordache, A.; Horj, E.; Morar, S.; Cozar, O.; Culea, M.; Ani, A. R.; Mesaros, C.

    2010-08-04

    An accurate analytical method was developed to determine amino acids in some biological specimens by GC/MS technique. Stable isotopes provide useful tools for a variety of studies, offering ideal internal standards in quantitative information. Isotopic dilution gas chromatography--mass spectrometry (ID-GC/MS) is the techniques used for quantitative analysis of compounds labeled with stable isotopes. A Trace DSQ Thermo Finnigan quadrupole mass spectrometer coupled with a Trace GC was used. Amino acids were separated on a Rtx-5 MS capillary column, 30 mx0.25 mm, 0.25 {mu}m film thickness, using a temperature program from 50 deg. C, 1 min, 6 deg. C/min at 100 deg. C, 4 deg. C/min at 200 deg. C, 20 deg. C/min at 300 deg. C, (3 min). The transfer line temperature was 250 deg. C, the injector temperature 200 deg. C and ion source temperature 250 deg. C; splitter: 10:1. Electron energy was 70 eV and emission current, 100 {mu}A. The amino acids were purified on a Dowex 50W-W8 exchange resin and were derivatized in a procedure following two steps to obtain trifluoroacetyl butyl esters. The identification of amino acids was obtained by using NIST library but also by using amino acid standards.

  13. Amino Acids Profiles in Biological Media

    NASA Astrophysics Data System (ADS)

    Iordache, A.; Horj, E.; Ani, A. R.; Mesaros, C.; Morar, S.; Cozar, O.; Culea, M.

    2010-08-01

    An accurate analytical method was developed to determine amino acids in some biological specimens by GC/MS technique. Stable isotopes provide useful tools for a variety of studies, offering ideal internal standards in quantitative information. Isotopic dilution gas chromatography—mass spectrometry (ID-GC/MS) is the techniques used for quantitative analysis of compounds labeled with stable isotopes. A Trace DSQ Thermo Finnigan quadrupole mass spectrometer coupled with a Trace GC was used. Amino acids were separated on a Rtx-5 MS capillary column, 30 m×0.25 mm, 0.25 μm film thickness, using a temperature program from 50 °C, 1 min, 6 °C/min at 100 °C, 4 °C/min at 200 °C, 20 °C/min at 300 °C, (3 min). The transfer line temperature was 250 °C, the injector temperature 200 °C and ion source temperature 250 °C; splitter: 10:1. Electron energy was 70 eV and emission current, 100 μA. The amino acids were purified on a Dowex 50W-W8 exchange resin and were derivatized in a procedure following two steps to obtain trifluoroacetyl butyl esters. The identification of amino acids was obtained by using NIST library but also by using amino acid standards.

  14. Tolerance of the nematode Caenorhabditis elegans to pH, salinity, and hardness in aquatic media.

    PubMed

    Khanna, N; Cressman, C P; Tatara, C P; Williams, P L

    1997-01-01

    The toxicity of many chemicals depends on the physical conditions of the test environment, and any change or adjustment made to the tests can alter the results. Therefore it is important to establish the sensitivity of the test organism over a range of test conditions to determine when it is necessary to make adjustment and to what extent. In this study, we established the tolerance range of the nematode Caenorhabditis elegans for pH, salinity and hardness using 24- (without food source) and 96-h (with food source) aquatic toxicity tests. The tests were performed in two media: K-medium and moderately hard reconstituted water (MHRW). C.elegans has high tolerance under these test conditions. In K-medium worms survived a pH range of 3.1 to 11.9 for 24 h and 3.2 to 11.8 for 96 h without significant (p > 0.05) lethality. In MHRW the pH range was 3. 4 to 11.9 for 24 h and 3.4 to 11.7 for 96 h. Salinity tolerance tests were approximated with NaCl and KCl individually. Up to 15.46 g/L NaCl and 11.51 g/L KCl were tolerated by C. elegans in K-medium without significant lethality (p> 0.05). In MHRW higher salt concentrations were tolerated; about 20.5 g/L NaCl and 18.85 g/L KCl did not show any adverse effect compared to control. Hardness tolerance was tested by adding NaHCO3. The nematode could tolerate 0. 236 to 0.246 g/L of NaHCO3. The high tolerance of C. elegans to these test conditions (pH, salinity, and hardness) allows more versatility than other organisms commonly used in aquatic toxicity tests. It also allows the monitoring of effluents and receiving waters from freshwater or estuarine sources without dilution or adjustment. PMID:9002442

  15. Effect of pH on corrosion inhibition of steel by polyaspartic acid

    SciTech Connect

    Silverman, D.C.; Kalota, D.J.; Stover, F.S.

    1995-10-01

    Polyaspartic acid, a polymeric form of aspartic acid has been examined as a corrosion inhibitor for steel as a function of pH, temperature, and hydrodynamic conditions. The temperature ranged from 25 C to 95 C and the concentration ranged from less than 1% to about 10% by weight. Experimental procedures included electrochemical impedance spectroscopy, the rotating cylinder electrode, and coupon immersion. At low to neutral pH values, polyaspartic acid increases the corrosion rate of steel. At high pH above about 10, polyaspartic acid is a reasonably robust corrosion inhibitor. Between a pH of 7 and 10, corrosion in the presence of polyaspartic acid is a complex function of temperature, concentration, water quality, and hydrodynamic conditions. By combining corrosion potential measurements with speciation diagrams as obtained by titration, a reasonably cohesive explanation of the behavior has been developed.

  16. Effect of pH on corrosion inhibition of steel by polyaspartic acid

    SciTech Connect

    Silverman, D.C.; Kalota, D.J.; Stover, F.S.

    1995-11-01

    Polyaspartic acid, a polymeric form of aspartic acid (C{sub 4}H{sub 7}NO{sub 4}), was examined as a corrosion inhibitor for steel as a function of pH, temperature, and hydrodynamic conditions. The temperature ranged from 25 C to 95 C, and the concentration ranged from < 1 wt% to {approximately} 10 wt%. Experimental procedures included electrochemical impedance spectroscopy (EIS), the rotating cylinder electrode (RCE), and coupon immersion. At low to neutral pH values, polyaspartic acid increased the corrosion rate of steel. At high pH (< {approximately} 10), polyaspartic acid was a reasonably robust corrosion inhibitor. Between pH 7 and 10, corrosion in the presence of polyaspartic acid was a complex function of temperature concentration, water quality, and hydrodynamic conditions. By combining corrosion potential measurements with speciation diagrams obtained by titration, a reasonably cohesive explanation of the behavior was developed.

  17. Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid.

    PubMed

    Qu, Yan; Zhang, Chao-Jie; Chen, Pei; Zhou, Qi; Zhang, Wei-Xian

    2014-07-01

    The effects of initial solution pH on the decomposition of perfluorooctanoic acid (PFOA) with hydrated electrons as reductant were investigated. The reductive decomposition of PFOA depends strongly on the solution pH. In the pH range of 5.0-10.0, the decomposition and defluorination rates of PFOA increased with the increase of the initial solution pH. The rate constant was 0.0295 min(-1) at pH 10.0, which was more than 49.0 times higher than that at pH 5.0. Higher pH also inhibits the generation of toxic intermediates during the PFOA decomposition. For example, the short-chain PFCAs reached a lower maximum concentration in shorter reaction time as pH increasing. The peak areas of accumulated fluorinated and iodinated hydrocarbons detected by GC/MS under acidic conditions were nearly 10-100 times more than those under alkaline conditions. In short, alkaline conditions were more favorable for photo-induced reduction of PFOA as high pH promoted the decomposition of PFOA and inhibited the accumulation of intermediate products. The concentration of hydrated electron, detected by laser flash photolysis, increased with the increase of the initial pH. This was the main reason why the decomposition of PFOA in the UV-KI system depended strongly on the initial pH.

  18. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.

    PubMed

    Ňancucheo, Ivan; Rowe, Owen F; Hedrich, Sabrina; Johnson, D Barrie

    2016-05-01

    Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors.

  19. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    PubMed Central

    2012-01-01

    Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i) non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii) specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The

  20. Heterogeneous reactions of epoxides in acidic media.

    PubMed

    Lal, Vinita; Khalizov, Alexei F; Lin, Yun; Galvan, Maria D; Connell, Brian T; Zhang, Renyi

    2012-06-21

    Epoxides have recently been identified as important intermediates in the gas phase oxidation of hydrocarbons, and their hydrolysis products have been observed in ambient aerosols. To evaluate the role of epoxides in the formation of secondary organic aerosols (SOA), the kinetics and mechanism of heterogeneous reactions of two model epoxides, isoprene oxide and α-pinene oxide, with sulfuric acid, ammonium bisulfate, and ammonium sulfate have been investigated using complementary experimental techniques. Kinetic experiments using a fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS) show a fast irreversible loss of the epoxides with the uptake coefficients (γ) of (1.7 ± 0.1) × 10(-2) and (4.6 ± 0.3) × 10(-2) for isoprene oxide and α-pinene oxide, respectively, for 90 wt % H(2)SO(4) and at room temperature. Experiments using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) reveal that diols are the major products in ammonium bisulfate and dilute H(2)SO(4) (<25 wt %) solutions for both epoxides. In concentrated H(2)SO(4) (>65 wt %), acetals are formed from isoprene oxide, whereas organosulfates are produced from α-pinene oxide. The reaction of the epoxides with ammonium sulfate is slow and no products are observed. The epoxide reactions using bulk samples and Nuclear Magnetic Resonance (NMR) spectroscopy reveal the presence of diols as the major products for isoprene oxide, accompanied by aldehyde formation. For α-pinene oxide, organosulfate formation is observed with a yield increasing with the acidity. Large yields of organosulfates in all NMR experiments with α-pinene oxide are attributed to the kinetic isotope effect (KIE) from the use of deuterated sulfuric acid and water. Our results suggest that acid-catalyzed hydrolysis of epoxides results in the formation of a wide range of products, and some of the products have low volatility and contribute to SOA growth under ambient conditions

  1. Zeolite molecular sieves have dramatic acid-base effects on enzymes in nonaqueous media.

    PubMed

    Fontes, Nuno; Partridge, Johann; Halling, Peter J; Barreiros, Susana

    2002-02-01

    Zeolite molecular sieves very commonly are used as in situ drying agents in reaction mixtures of enzymes in nonaqueous media. They often affect enzyme behavior, and this has been interpreted in terms of altered hydration. Here, we show that zeolites can also have dramatic acid-base effects on enzymes in low water media, resulting from their cation-exchange ability. Initial rates of transesterification catalyzed by cross-linked crystals of subtilisin were compared in supercritical ethane, hexane, and acetonitrile with water activity fixed by pre-equilibration. Addition of zeolite NaA (4 A powder) still caused remarkable rate enhancements (up to 20-fold), despite the separate control of hydration. In the presence of excess of an alternative solid-state acid-base buffer, however, zeolite addition had no effect. The more commonly used Merck molecular sieves (type 3 A beads) had similar but somewhat smaller effects. All zeolites have ion-exchange ability and can exchange H+ for cations such as Na+ and K+. These exchanges will tend to affect the protonation state of acidic groups in the protein and, hence, enzymatic activity. Zeolites pre-equilibrated in aqueous suspensions of varying pH-pNa gave very different enzyme activities. Their differing basicities were demonstrated directly by equilibration with an indicator dissolved in toluene. The potential of zeolites as acid-base buffers for low-water media is discussed, and their ability to overcome pH memory is demonstrated.

  2. Impact of a Glycolic Acid-Containing pH 4 Water-in-Oil Emulsion on Skin pH.

    PubMed

    Behm, Barbara; Kemper, Michael; Babilas, Philipp; Abels, Christoph; Schreml, Stephan

    2015-01-01

    The skin pH is crucial for physiological skin functions. A decline in stratum corneum acidity, as observed in aged or diseased skin, may negatively affect physiological skin functions. Therefore, glycolic acid-containing water-in-oil (W/O) emulsions adjusted to pH 4 were investigated regarding their effect on normal or increased skin pH. A pH 4 W/O emulsion was applied on three areas with pathologically increased skin surface pH in diabetics (n = 10). Further, a 28-day half-side trial (n = 30) was performed to test the long-term efficacy and safety of a pH 4 W/O emulsion (n = 30). In summary, the application of a pH 4 W/O emulsion reduced the skin pH in healthy, elderly and diabetic subjects, which may improve epidermal barrier functions.

  3. Molecular Dynamics Simulations Capture the Misfolding of the Bovine Prion Protein at Acidic pH

    PubMed Central

    Cheng, Chin Jung; Daggett, Valerie

    2014-01-01

    Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process. PMID:24970211

  4. The cell transmembrane pH gradient in tumors enhances cytotoxicity of specific weak acid chemotherapeutics.

    PubMed

    Kozin, S V; Shkarin, P; Gerweck, L E

    2001-06-15

    The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor while its intracellular pH, evaluated by (31)P magnetic resonance spectroscopy, remained virtually unchanged. The resulting increase in the average cell pH gradient caused a parallel increase in tumor growth delay by the weak acid chlorambucil (CHL). Regardless of glucose administration, the effect of CHL was significantly greater in tumors preirradiated with a large dose of ionizing radiation. This suggests that CHL was especially pronounced in radioresistant hypoxic cells possessing a larger transmembrane pH gradient. These results indicate that the naturally occurring cell pH gradient difference between tumor and normal tissue is a major and exploitable determinant of the uptake of weak acids in the complex tumor microenvironment. The use of such drugs may be especially effective in combination with radiation.

  5. Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH.

    PubMed

    Cheng, Chin Jung; Daggett, Valerie

    2014-01-01

    Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process. PMID:24970211

  6. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate.

    PubMed

    Obukhova, Elena N; Mchedlov-Petrossyan, Nikolay O; Vodolazkaya, Natalya A; Patsenker, Leonid D; Doroshenko, Andrey O; Marynin, Andriy I; Krasovitskii, Boris M

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR(+)⇄R+H(+)) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R(±). The indices of apparent ionization constants of fifteen rhodamine cations HR(+) with different substituents in the xanthene moiety vary within the range of pKa(app)=5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  7. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate.

    PubMed

    Obukhova, Elena N; Mchedlov-Petrossyan, Nikolay O; Vodolazkaya, Natalya A; Patsenker, Leonid D; Doroshenko, Andrey O; Marynin, Andriy I; Krasovitskii, Boris M

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR(+)⇄R+H(+)) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R(±). The indices of apparent ionization constants of fifteen rhodamine cations HR(+) with different substituents in the xanthene moiety vary within the range of pKa(app)=5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators. PMID:27423469

  8. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine

    PubMed Central

    Pellegrini, Paola; Strambi, Angela; Zipoli, Chiara; Hägg-Olofsson, Maria; Buoncervello, Maria; Linder, Stig; De Milito, Angelo

    2014-01-01

    Acidic pH is an important feature of tumor microenvironment and a major determinant of tumor progression. We reported that cancer cells upregulate autophagy as a survival mechanism to acidic stress. Inhibition of autophagy by administration of chloroquine (CQ) in combination anticancer therapies is currently evaluated in clinical trials. We observed in 3 different human cancer cell lines cultured at acidic pH that autophagic flux is not blocked by CQ. This was consistent with a complete resistance to CQ toxicity in cells cultured in acidic conditions. Conversely, the autophagy-inhibiting activity of Lys-01, a novel CQ derivative, was still detectable at low pH. The lack of CQ activity was likely dependent on a dramatically reduced cellular uptake at acidic pH. Using cell lines stably adapted to chronic acidosis we could confirm that CQ lack of activity was merely caused by acidic pH. Moreover, unlike CQ, Lys-01 was able to kill low pH-adapted cell lines, although higher concentrations were required as compared with cells cultured at normal pH conditions. Notably, buffering medium pH in low pH-adapted cell lines reverted CQ resistance. In vivo analysis of tumors treated with CQ showed that accumulation of strong LC3 signals was observed only in normoxic areas but not in hypoxic/acidic regions. Our observations suggest that targeting autophagy in the tumor environment by CQ may be limited to well-perfused regions but not achieved in acidic regions, predicting possible limitations in efficacy of CQ in antitumor therapies. PMID:24492472

  9. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry. PMID:3681570

  10. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  11. The absorption of acetylsalicylic acid from the stomach in relation to intragastric pH.

    PubMed

    Dotevall, G; Ekenved, G

    1976-01-01

    A comparative study on the effect of a buffered (pH 6.5) and an unbuffered (pH 2.9) solution of acetylsalicylic acid (ASA) on gastric pH, gastric emptying, and gastric absorption of ASA was performed in 10 healthy volunteers. Gastric pH was recorded using radiotelemetry. Gastric emptying and gastric absorption was studied with an aspiration technique and phenol red as nonabsorbable marker. Administration of the unbuffered solution to the fasting subjects resulted in a gastric pH of about 2 and absorption of ASA from the stomach was found to occur. The buffered solution of ASA increased gastric pH to above 5 and gastric absorption of ASA was found to be significantly less than after the unbuffered solution. The buffered solution was emptied from the stomach more rapidly than the unbuffered one. PMID:12558

  12. Adaptive enhancement of amino acid uptake and exodus by thymic lymphocytes: influence of pH.

    PubMed

    Peck, W A; Rockwell, L H; Lichtman, M A

    1976-11-01

    Entry of certain free amino acids (alpha aminoisobutyric acid (AIB), alanine and proline), but not of leucine into rat thymic lymphocytes increased progressively when the cells were incubated in amino acid deficient medium. Actinomycin D, cycloheximide, or a high concentration of AIB abolished the time-related increase in AIB accumulation, whereas exposure to a high concentration of leucine had no effect. This phenomenon could not be attributed to a progressive alteration in the nature of the incubation medium nor to reduced transinhibition of AIB uptake. The exodus of AIB also increased with time, but to a smaller degree than AIB entry. Initial rates of AIB entry and exodus increased with increases in the pH of the incubation medium over the range 6.5-8.0. The effects of pH on entry and exodus were time-related, increasing progressively oveb nullified the magnified time related increments in AIB transport caused by prolonged incubation at pH 8.0. The influence of a given pH on transport of AIB decreased rapidly when the cells were transferred to medium of another pH, but this tendency diminished the longer the cells were exposed to the initial pH. pH influenced the entry of alanine and proline in the same fashion as that of AIB, but did not affect leucine entry. These results indicate that thymic lymphocytes exhibit adaptive enhancement in the accumulation of free amino acids that are transported largley by the A or alanine-preferring system, and that the adaptive process involves both entry and exodus. Moreover, alterations in pH modify entry and exodus of these same amino acids, profoundly affect the magnitude of time-released increases, and may induce fundamental changes in the mechanism(s) serving amino acid transport.

  13. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.

    PubMed

    Grant-Preece, Paris; Schmidtke, Leigh M; Barril, Celia; Clark, Andrew C

    2017-01-15

    Glyoxylic acid is a tartaric acid degradation product formed in model wine solutions containing iron and its production is greatly increased by exposure to UV-visible light. In this study, the combined effect of sulfur dioxide, caffeic acid, pH and temperature on the light-induced (⩾300nm) production of glyoxylic acid in model wine containing tartaric acid and iron was investigated using a Box-Behnken experimental design and response surface methodology (RSM). Glyoxylic acid produced in the irradiated model wine was present in free and hydrogen sulfite adduct forms and the measured total, free and percentage free glyoxylic acid values were modeled using RSM. Sulfur dioxide significantly decreased the total amount of glyoxylic acid produced, but could not prevent its production, while caffeic acid showed no significant impact. The interaction between pH and temperature was significant, with low pH values and low temperatures giving rise to higher levels of total glyoxylic acid. PMID:27542478

  14. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism. PMID:21887891

  15. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  16. Acidic pH promotes oligomerization and membrane insertion of the BclXL apoptotic repressor.

    PubMed

    Bhat, Vikas; Kurouski, Dmitry; Olenick, Max B; McDonald, Caleb B; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2012-12-01

    Solution pH is believed to serve as an intricate regulatory switch in the induction of apoptosis central to embryonic development and cellular homeostasis. Herein, using an array of biophysical techniques, we provide evidence that acidic pH promotes the assembly of BclXL apoptotic repressor into a megadalton oligomer with a plume-like appearance and harboring structural features characteristic of a molten globule. Strikingly, our data reveal that pH tightly modulates not only oligomerization but also ligand binding and membrane insertion of BclXL in a highly subtle manner. Thus, while oligomerization and the accompanying molten globular content of BclXL is least favorable at pH 6, both of these structural features become more pronounced under acidic and alkaline conditions. However, membrane insertion of BclXL appears to be predominantly favored under acidic conditions. In a remarkable contrast, while ligand binding to BclXL optimally occurs at pH 6, it is diminished by an order of magnitude at lower and higher pH. This reciprocal relationship between BclXL oligomerization and ligand binding lends new insights into how pH modulates functional versatility of a key apoptotic regulator and strongly argues that the molten globule may serve as an intermediate primed for membrane insertion in response to apoptotic cues. PMID:22960132

  17. Microbial degradation of isosaccharinic acid at high pH

    PubMed Central

    Bassil, Naji M; Bryan, Nicholas; Lloyd, Jonathan R

    2015-01-01

    Intermediate-level radioactive waste (ILW), which dominates the radioactive waste inventory in the United Kingdom on a volumetric basis, is proposed to be disposed of via a multibarrier deep geological disposal facility (GDF). ILW is a heterogeneous wasteform that contains substantial amounts of cellulosic material encased in concrete. Upon resaturation of the facility with groundwater, alkali conditions will dominate and will lead to the chemical degradation of cellulose, producing a substantial amount of organic co-contaminants, particularly isosaccharinic acid (ISA). ISA can form soluble complexes with radionuclides, thereby mobilising them and posing a potential threat to the surrounding environment or ‘far field'. Alkaliphilic microorganisms sampled from a legacy lime working site, which is an analogue for an ILW-GDF, were able to degrade ISA and couple this degradation to the reduction of electron acceptors that will dominate as the GDF progresses from an aerobic ‘open phase' through nitrate- and Fe(III)-reducing conditions post closure. Furthermore, pyrosequencing analyses showed that bacterial diversity declined as the reduction potential of the electron acceptor decreased and that more specialised organisms dominated under anaerobic conditions. These results imply that the microbial attenuation of ISA and comparable organic complexants, initially present or formed in situ, may play a role in reducing the mobility of radionuclides from an ILW-GDF, facilitating the reduction of undue pessimism in the long-term performance assessment of such facilities. PMID:25062127

  18. Microbial degradation of isosaccharinic acid at high pH.

    PubMed

    Bassil, Naji M; Bryan, Nicholas; Lloyd, Jonathan R

    2015-02-01

    Intermediate-level radioactive waste (ILW), which dominates the radioactive waste inventory in the United Kingdom on a volumetric basis, is proposed to be disposed of via a multibarrier deep geological disposal facility (GDF). ILW is a heterogeneous wasteform that contains substantial amounts of cellulosic material encased in concrete. Upon resaturation of the facility with groundwater, alkali conditions will dominate and will lead to the chemical degradation of cellulose, producing a substantial amount of organic co-contaminants, particularly isosaccharinic acid (ISA). ISA can form soluble complexes with radionuclides, thereby mobilising them and posing a potential threat to the surrounding environment or 'far field'. Alkaliphilic microorganisms sampled from a legacy lime working site, which is an analogue for an ILW-GDF, were able to degrade ISA and couple this degradation to the reduction of electron acceptors that will dominate as the GDF progresses from an aerobic 'open phase' through nitrate- and Fe(III)-reducing conditions post closure. Furthermore, pyrosequencing analyses showed that bacterial diversity declined as the reduction potential of the electron acceptor decreased and that more specialised organisms dominated under anaerobic conditions. These results imply that the microbial attenuation of ISA and comparable organic complexants, initially present or formed in situ, may play a role in reducing the mobility of radionuclides from an ILW-GDF, facilitating the reduction of undue pessimism in the long-term performance assessment of such facilities. PMID:25062127

  19. 2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge.

    PubMed

    Vivijs, Bram; Moons, Pieter; Geeraerd, Annemie H; Aertsen, Abram; Michiels, Chris W

    2014-04-01

    The mechanisms by which Enterobacteriaceae can survive or grow at low pH are of interest because members of this family are increasingly linked to problems of spoilage and foodborne infection related to mildly acidic foods. In this work, we investigated the contribution of the 2,3-butanediol fermentation pathway in coping with specific forms of acid stress in Serratia plymuthica RVH1. This pathway consumes intracellular protons, similar to the amino acid decarboxylases which are involved in acid resistance in Enterobacteriaceae. While its role in preventing excessive acidification in media with an initial neutral pH but containing fermentable sugars has been established, we here addressed the question whether it supports survival of severe acid challenge (pH2.5-3.5) and/or enhances the ability to initiate growth at moderately low pH (pH4.0-5.0) in acidified LB medium and in tomato juice. Using a budAB::cat mutant, deficient in 2,3-butanediol fermentation, we showed that the pathway did not influence survival in simulated gastric fluid and is not involved in the acid tolerance response (ATR) in S. plymuthica RVH1. On the other hand, the pathway promoted growth at moderately low pH. In acidified LB medium, the mutant stopped growing at a lower final cell density than the wild-type strain. In tomato juice, additionally, the minimal pH at which the mutant could grow (pH4.20-4.30) was increased compared to that of the wild-type (pH4.10). Growth of the wild-type strain was often accompanied by a pH increase, in contrast to the budAB::cat mutant, where the opposite was observed. However, the differences in growth between the wild-type and budAB::cat mutant could not only be explained by external pH, suggesting that the 2,3-butanediol fermentation contributed to intracellular pH homeostasis. Based on these data, we propose the contribution to growth at low pH as a novel biological function of 2,3-butanediol fermentation in Enterobacteriaceae.

  20. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids.

    PubMed

    Neta, E R D; Johanningsmeier, S D; Drake, M A; McFeeters, R F

    2009-01-01

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on sour taste of equimolar protonated organic acid solutions and to investigate the potential roles of organic anions and sodium ions on sour taste perception. Despite equal concentrations of protonated acid species, sour taste intensity decreased significantly with increased pH for acetic, lactic, malic, and citric acids (P < 0.05). Total organic anion concentration did not explain the suppression of sour taste in solutions containing a blend of 3 organic acids with constant concentration of protonated organic acid species and hydrogen ions and variable organic anion concentrations (R(2)= 0.480, P = 0.12). Sour taste suppression in these solutions seemed to be more closely related to sodium ions added in the form of NaOH (R(2)= 0.861, P = 0.007). Addition of 20 mM NaCl to acid solutions resulted in significant suppression of sour taste (P = 0.016). However, sour taste did not decrease with further addition of NaCl up to 80 mM. Presence of sodium ions was clearly shown to decrease sour taste of organic acid solutions. Nonetheless, suppression of sour taste in pH adjusted single acid solutions was greater than what would be expected based on the sodium ion concentration alone, indicating an additional suppression mechanism may be involved.

  1. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard.

  2. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  3. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  4. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  5. Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

    PubMed Central

    Hiatt, A. J.

    1967-01-01

    Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506

  6. Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling.

    PubMed

    Nadtochiy, Sergiy M; Schafer, Xenia; Fu, Dragony; Nehrke, Keith; Munger, Joshua; Brookes, Paul S

    2016-09-16

    2-Hydroxyglutarate (2-HG) is an important epigenetic regulator, with potential roles in cancer and stem cell biology. The d-(R)-enantiomer (d-2-HG) is an oncometabolite generated from α-ketoglutarate (α-KG) by mutant isocitrate dehydrogenase, whereas l-(S)-2-HG is generated by lactate dehydrogenase and malate dehydrogenase in response to hypoxia. Because acidic pH is a common feature of hypoxia, as well as tumor and stem cell microenvironments, we hypothesized that pH may regulate cellular 2-HG levels. Herein we report that cytosolic acidification under normoxia moderately elevated 2-HG in cells, and boosting endogenous substrate α-KG levels further stimulated this elevation. Studies with isolated lactate dehydrogenase-1 and malate dehydrogenase-2 revealed that generation of 2-HG by both enzymes was stimulated severalfold at acidic pH, relative to normal physiologic pH. In addition, acidic pH was found to inhibit the activity of the mitochondrial l-2-HG removal enzyme l-2-HG dehydrogenase and to stimulate the reverse reaction of isocitrate dehydrogenase (carboxylation of α-KG to isocitrate). Furthermore, because acidic pH is known to stabilize hypoxia-inducible factor (HIF) and 2-HG is a known inhibitor of HIF prolyl hydroxylases, we hypothesized that 2-HG may be required for acid-induced HIF stabilization. Accordingly, cells stably overexpressing l-2-HG dehydrogenase exhibited a blunted HIF response to acid. Together, these results suggest that acidosis is an important and previously overlooked regulator of 2-HG accumulation and other oncometabolic events, with implications for HIF signaling.

  7. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGES

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominatedmore » community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).« less

  8. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  9. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  10. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). PMID:25333313

  11. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers.

  12. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers. PMID:15961743

  13. Effects of saliva on starch-thickened drinks with acidic and neutral pH.

    PubMed

    Hanson, Ben; Cox, Ben; Kaliviotis, Efstathios; Smith, Christina H

    2012-09-01

    Powdered maize starch thickeners are used to modify drink consistency in the clinical management of dysphagia. Amylase is a digestive enzyme found in saliva which breaks down starch. This action is dependent on pH, which varies in practice depending on the particular drink. This study measured the effects of human saliva on the viscosity of drinks thickened with a widely used starch-based thickener. Experiments simulated a possible clinical scenario whereby saliva enters a cup and contaminates a drink. Citric acid (E330) was added to water to produce a controlled range of pH from 3.0 to 7.0, and several commercially available drinks with naturally low pH were investigated. When saliva was added to thickened water, viscosity was reduced to less than 1% of its original value after 10-15 min. However, lowering pH systematically slowed the reduction in viscosity attributable to saliva. At pH 3.5 and below, saliva was found to have no significant effect on viscosity. The pH of drinks in this study ranged from 2.6 for Coca Cola to 6.2 for black coffee. Again, low pH slowed the effect of saliva. For many popular drinks, having pH of 3.6 or less, viscosity was not significantly affected by the addition of saliva. PMID:22210234

  14. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  15. Optimization of pH values to formulate the bireagent kit for serum uric acid assay.

    PubMed

    Huang, Ya; Chen, Yuanxiang; Yang, Xiaolan; Zhao, Hua; Hu, Xiaolei; Pu, Jun; Liao, Juan; Long, Gaobo; Liao, Fei

    2015-01-01

    A new formulation of the bireagent kit for serum uric acid assay was developed based on the effects of pH on enzyme stability. At 4 °C, half-lives of uricases from Bacillus fastidious and Arthrobacter globiforms were longer than 15 months at pH 9.2, but became shorter at pH below 8.0; half-lives of ascorbate oxidase and peroxidase were comparable at pH 6.5 and 7.0, but became much shorter at pH higher than 7.4. In the new formulation of the bireagent kit, Reagent A contained peroxidase, 4-aminoantipyrine, and ascorbate oxidase in 50 mM phosphate buffer at pH 6.5; Reagent B contained B. fastidious or A. globiforms uricase in 50 mM sodium borate buffer at pH 9.2; Reagents A and B were mixed at 4:1 to produce a final pH from 7.2 to 7.6 for developing a stable color. The new bireagent kit consumed smaller quantities of three enzymes for the same shelf life. With the new bireagent kit, there were linear responses of absorbance at 546 nm to uric acid up to 34 mM in reaction mixtures and a good correlation of uric acid levels in clinical sera with those by a commercial kit, but stronger resistance to ascorbate. Therefore, the new formulation was advantageous.

  16. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    PubMed

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  17. Uric acid plasma level and urine pH in rats treated with ambroxol.

    PubMed

    Drewa, Tomasz; Wolski, Zbigniew; Gruszka, Marzena; Misterek, Bartosz; Lysik, Joanna

    2007-01-01

    It was a chance discovery that ambroxol parenteral administration led to urinary bladder stone formation in rats. This study was undertaken to examine the serum uric acid levels and urine pH in rats after ambroxol parenteral treatment. Ambroxol influence on the uric acid level was measured in 5 rats (Rattus sp.) treated with 60 mg/kg (dissolved in injection water, sc, daily) during 2 weeks. Ambroxol influence on urine pH was examined on 45 rats divided into 3 groups. Rats from the 1st and 2nd group received 30 and 60 mg/kg/24h ambroxol, respectively. Urine was collected once daily and measured with strip kit. All values were presented as the means with standard deviations. The Student t test was used to compare the means, p < 0.05 was considered as significant. Dynamics of pH changes was measured in 4 rats treated with 60 mg/kg/24h of ambroxol. Controls received 1 mL of injection water sc. Serum uric acid level increased up to 8.7 +/- 1.0 mg/dL vs. 5.7 +/- 1.0 mg/dL in control (p < 0.002). In the 1st and 2nd group urine pH increased up to 7.5 +/- 0.5 and 7.6 +/- 0.5 vs. 6.7 +/- 0.4 (p < 0.05). Ambroxol withdrawal resulted in sequential urine pH decrease. 11 days after interruption of ambroxol therapy pH reached the starting value. Urine pH changes and possible disturbances in uric acid metabolic pathway may influence on the stone formation in rats after ambroxol parenteral treatment. The influence of ambroxol on urinary tract GAG layer and the balance between xanthine and CaOx in the urine should be checked.

  18. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    PubMed Central

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  19. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  20. Metal Interactions with Microbial Biofilms in Acidic and Neutral pH Environments

    PubMed Central

    Ferris, F. G.; Schultze, S.; Witten, T. C.; Fyfe, W. S.; Beveridge, T. J.

    1989-01-01

    Microbial biofilms were grown on strips of epoxy-impregnated filter paper submerged at four sites in water contaminated with metals from mine wastes. At two sample stations, the water was acidic (pH 3.1); the other sites were in a lake restored to a near neutral pH level by application of a crushed limestone slurry. During a 17-week study period, planktonic bacterial counts increased from 101 to 103 CFU/ml at all sites. Biofilm counts increased rapidly over the first 5 weeks and then leveled to 104 CFU/cm2 in the neutral pH system and 103 CFU/cm2 at the acidic sites. In each case, the biofilms bound Mn, Fe, Ni, and Cu in excess of the amounts adsorbed by control strips covered with nylon filters (pore size, 0.22 μm) to exclude microbial growth; Co bound under neutral conditions but not under acidic conditions. Conditional adsorption capacity constants, obtained graphically from the data, showed that biofilm metal uptake at a neutral pH level was enhanced by up to 12 orders of magnitude over acidic conditions. Similarly, adsorption strength values were usually higher at elevated pH levels. In thin sections of the biofilms, encapsulated bacterial cells were commonly found enmeshed together in microcolonies. The extracellular polymers often contained iron oxide precipitates which generated weak electron diffraction patterns with characteristic reflections for ferrihydrite (Fe2O3 · H2O) at d equaling 0.15 and 0.25 nm. At neutral pH levels, these deposits incorporated trace amounts of Si and exhibited a granular morphology, whereas acicular crystalloids containing S developed under acidic conditions. Images PMID:16347914

  1. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Gao, Bin; Li, Hui; Ma, Lena Q.

    2011-09-01

    Many antibiotics regarded as emerging contaminants have been frequently detected in soils and groundwater; however, their transport behaviors in soils remain largely unknown. This study examined the transport of two antibiotics, sulfamethoxazole (SMZ) and ciprofloxacin (CIP), in saturated porous media. Laboratory columns packed with quartz sand was used to test the effects of solution pH and ionic strength (IS) on their retention and transport. The results showed that these two antibiotics behaved differently in the saturated sand columns. In general, SMZ manifested a much higher mobility than CIP for all experimental conditions tested. Almost all SMZ transported through the columns within one pore volume in deionized water (i.e., pH = 5.6, IS = 0), but no CIP was detected in the effluents under the same condition after extended column flushing. Perturbations in solution pH (5.6 and 9.5) and IS (0 and 0.1 M) showed no effect on SMZ transport in the saturated columns. When pH increased to 9.5, however, ~ 93% of CIP was eluted from the sand columns. Increase of IS from 0 to 0.1 M also slightly changed the distribution of adsorbed CIP within the sand column at pH 5.6, but still no CIP was detected in the effluents. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions successfully simulated the transport of the antibiotics in water-saturated porous media with R2 = 0.99.

  2. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  3. [Effects of temperature and PH on dissolution kinetics of methotrexate in aqueous media].

    PubMed

    Houngbossa, K; Guenzet, J; Bourin, M

    1996-01-01

    In vitro dissolution kinetics of Methotrexate have been analysed at different temperatures in water at pH 1.5. After giving rise to the dissolution reaction, it has been possible to follow up the kinetic of dissolution and calculate energy activation. The pH variation allows us also to appreciate the constant behaviour of dissolution at temperature 310 K (37 degrees). Weilbull equation is valid with success for dissolution reaction as well during temperature variation and different values of pH. In both cases the Weibull constant b has been calculated and compared to constant dissolution K.

  4. Growth at high pH and sodium and potassium tolerance in media above the cytoplasmic pH depend on ENA ATPases in Ustilago maydis.

    PubMed

    Benito, Begoña; Garciadeblás, Blanca; Pérez-Martín, José; Rodríguez-Navarro, Alonso

    2009-06-01

    Potassium and Na(+) effluxes across the plasma membrane are crucial processes for the ionic homeostasis of cells. In fungal cells, these effluxes are mediated by cation/H(+) antiporters and ENA ATPases. We have cloned and studied the functions of the two ENA ATPases of Ustilago maydis, U. maydis Ena1 (UmEna1) and UmEna2. UmEna1 is a typical K(+) or Na(+) efflux ATPase whose function is indispensable for growth at pH 9.0 and for even modest Na(+) or K(+) tolerances above pH 8.0. UmEna1 locates to the plasma membrane and has the characteristics of the low-Na(+)/K(+)-discrimination ENA ATPases. However, it still protects U. maydis cells in high-Na(+) media because Na(+) showed a low cytoplasmic toxicity. The UmEna2 ATPase is phylogenetically distant from UmEna1 and is located mainly at the endoplasmic reticulum. The function of UmEna2 is not clear, but we found that it shares several similarities with Neurospora crassa ENA2, which suggests that endomembrane ENA ATPases may exist in many fungi. The expression of ena1 and ena2 transcripts in U. maydis was enhanced at high pH and at high K(+) and Na(+) concentrations. We discuss that there are two modes of Na(+) tolerance in fungi: the high-Na(+)-content mode, involving ENA ATPases with low Na(+)/K(+) discrimination, as described here for U. maydis, and the low-Na(+)-content mode, involving Na(+)-specific ENA ATPases, as in Neurospora crassa.

  5. Effect of pH and Sodium Chloride on Growth of Bacillus cereus in Laboratory Media and Certain Foods

    PubMed Central

    Raevuori, Marrku; Genigeorgis, Constantin

    1975-01-01

    The effects of NaCl concentration, pH, and water activity (aw) on the ability of vegetative cells of Bacillus cereus to initiate aerobic growth in brain heart infusion broth at 30 C were studied in a factorial design experiment. By using multiple regression techniques, equations were derived which related the decimal reduction of the bacterial population to the concentration of NaCl and pH of broth to which the population was exposed. From these equations, the percentage of inoculated cells capable of initiating growth could be calculated. The reliability of these equations in foods was tested in laboratory-processed meat and rice media. The foods were less inhibitory than the broths, so that accurate prediction of growth initiation in foods was not possible by using the developed formulas. The impact of this type of quantitative study on the development of specific microbial standards for foods is discussed. When the NaCl concentration is increased, the aw is decreased and, with increased deviation of pH from optimum, more concentrated inoculum of B. cereus cells is needed to assure initiation of growth in culture media and foods. PMID:234158

  6. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    PubMed

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  7. The pH at the First Equivalence Point in the Titration of a Diprotic Acid

    NASA Astrophysics Data System (ADS)

    Ault, Addison

    2003-12-01

    Some readers will note a similarity between this approach and the one I took in a paper entitled “Do pH in Your Head” (2). In an example in that article the isoelectric pH of glycine (the pH at which the average charge of a glycine molecule is zero), has the value of 6.0, which is exactly half-way between 2.4, the pKa of the carboxyl group of glycine, and 9.6, the pKa of the ammonium group of glycine. This is what one would expect when realizing that a solution of neutral glycine right out of the bottle is equivalent to glycine obtained by titration of the conjugate acid of glycine to the first equivalence point. Those who are interested might want to consider why the isoelectric pH of an “acidic” amino acid, such as alanine, is exactly half-way between the pKa values of the two carboxyl groups, and why the isoelectric pH of a “basic” amino acid such as lysine is exactly half-way between the pKa values of the two ammonium groups.

  8. Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles.

    PubMed

    Chen, Irene A; Szostak, Jack W

    2004-05-25

    Electrochemical proton gradients are the basis of energy transduction in modern cells, and may have played important roles in even the earliest cell-like structures. We have investigated the conditions under which pH gradients are maintained across the membranes of fatty acid vesicles, a model of early cell membranes. We show that pH gradients across such membranes decay rapidly in the presence of alkali-metal cations, but can be maintained in the absence of permeable cations. Under such conditions, when fatty acid vesicles grow through the incorporation of additional fatty acid, a transmembrane pH gradient is spontaneously generated. The formation of this pH gradient captures some of the energy released during membrane growth, but also opposes and limits further membrane area increase. The coupling of membrane growth to energy storage could have provided a growth advantage to early cells, once the membrane composition had evolved to allow the maintenance of stable pH gradients.

  9. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-06-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive

  10. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  11. Acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

    PubMed

    Allam, Uday Sankar; Krishna, M Gopala; Sen, Minakshi; Thomas, Rony; Lahiri, Amit; Gnanadhas, Divya Prakash; Chakravortty, Dipshikha

    2012-01-01

    During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the ΔSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The ΔSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the ΔSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the ΔSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

  12. Similar bacterial community composition in acidic mining lakes with different pH and lake chemistry.

    PubMed

    Kampe, Heike; Dziallas, Claudia; Grossart, Hans-Peter; Kamjunke, Norbert

    2010-10-01

    As extreme environmental conditions strongly affect bacterial community composition (BCC), we examined whether differences in pH-even at low pH-and in iron and sulfate concentrations lead to changes in BCC of acidic mining lakes. Thereby, we tested the following hypotheses: (1) diversity of the bacterial community in acidic lakes decreases with reducing pH, (2) BCC differs between epilimnion and hypolimnion, and (3) BCC in extremely acidic environments does not vary much over time. Therefore, we investigated the BCC of three acidic lakes with different pH values (2.3, 2.7, and 3.2) by denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of DGGE bands as well as catalyzed reporter deposition-FISH (CARD-FISH). BCC did not significantly vary among the studied lakes nor differ much between water layers. In contrast, BCC significantly changed over time, which is contradictory to our hypotheses. Bacterial communities were dominated by Alpha-, Beta-, and Gammaproteobacteria, whereas Actino- and Acidobacteria rarely occurred. Cell numbers of both free and attached bacteria were positively related to DOC concentration. Overall, low pH and extreme chemical conditions of the studied lakes led to similar assemblages of bacteria with pronounced temporal differences. This notion indicates that temporal changes in environmental conditions including food web structure also affect unique communities of bacteria thriving at low pH.

  13. Structural and thermotropic properties of calcium-dimyristoylphosphatidic acid complexes at acidic and neutral pH conditions.

    PubMed Central

    Takahashi, H.; Yasue, T.; Ohki, K.; Hatta, I.

    1995-01-01

    Two kinds of calcium-dimyristoylphosphatidic acid (DMPA) complexes at acidic and neutral pH conditions were prepared in the following ways. The complex at pH 4 was obtained by adding Ca2+ to DMPA dispersion in pure water. On the other hand, the complex at pH 7.4 was obtained by adding Ca2+ to DMPA dispersion in the presence of NaOH. The stoichiometries of Ca2+ ion to DMPA molecule are 0.5-0.67 and approximately 1 for the complexes at pH 4 and 7.4, respectively. Static x-ray diffraction shows that the hydrocarbon chains of the Ca(2+)-DMPA complex at pH 4 at 20 degrees C are more tightly packed than those of the complex at pH 7.4 at 20 degrees C. Furthermore, the complex at pH 4 at 20 degrees C gives rise to several reflections that might be related to the ordered arrangement of the Ca2+ ions. These results indicate that the structure of the complex at pH 4 is crystalline-like. In the differential scanning calorimetry (DSC) thermogram, the complex at pH 7.4 undergoes no phase transition in a temperature range between 30 and 80 degrees C. On the other hand, in the DSC thermogram for the complex at pH 4, a peak appears at 65.8 degrees C in the first heating scan. In the successive second heating scan, a transition peak appears at 63.5 degrees C. In connection with the DSC results, the structural changes associated with these phase transitions were studied with temperature-scan x-ray diffraction. In the first heating scan, although a peak appears at 65.80C in the DSC thermogram, the hydrocarbon chain packing gradually converts from an orthorhombic lattice to a hexagonal lattice near 52 degree C, and successively the chain melting phase transition occurs near 670C. In the second heating scan, the hydrocarbon chains are packed in a hexagonal lattice over the whole temperature range and the chain melting phase transition occurs near 63.5 degree C. Therefore,the Ca2+-DMPA complex at pH 4 has a metastable state. The metastable state transforms to a stable state by

  14. Mobility of acid-treated carbon nanotubes in water-saturated porous media.

    PubMed

    Peng, X J; Du, C J; Liang, Z; Wang, J; Luan, Z K; Li, W J

    2011-01-01

    The production, use, and disposal of nanomaterials may inevitably lead to their appearance in water. With the development of new industries around nanomaterials, it seems necessary to be concerned about the transport of nanomaterials in the environment. In this paper, the transport of acid-treated carbon nanotubes (CNTs) in porous media was investigated. Before the mobility investigation, the stability of acid-treated CNT dispersions was studied using ultraviolet-visible spectra and it was indicated that, under the chemical conditions employed in this work, there was no apparent aggregation. The mobility investigation showed that transport of acid-treated CNTs increased with treatment time due to increase in particle zeta potential. Carbon nanotubes treated with nitric acid for 2, 6, and 12 h possessed measured zeta potentials of -30.0, -43.0, and -48.5 mV, respectively. Utilizing clean-bed filtration theory, we showed that acid-treated CNTs have the potential to migrate 3.28, 5.67, and 7.69 m in saturated glass beads, respectively. We showed that solution ionic strength and pH have important effects on the mobility of acid-treated CNTs. Increasing the pH from 6.0 to 7.9 resulted in an increase in migration potential from 2.96 to 10.86 m. Increasing the ionic strength from 0.005 to 0.020 M resulted in a decrease in CNT migration potential from 5.67 to 1.42 m.

  15. Autoinducer-2 detection among commensal oral streptococci is dependent on pH and boric acid.

    PubMed

    Cuadra, Giancarlo A; Frantellizzi, Ashley J; Gaesser, Kimberly M; Tammariello, Steven P; Ahmed, Anika

    2016-07-01

    Autoinducer-2, considered a universal signaling molecule, is produced by many species of bacteria; including oral strains. Structurally, autoinducer-2 can exist bound to boron (borated autoinducer-2). Functionally, autoinducer-2 has been linked to important bacterial processes such as virulence and biofilm formation. In order to test production of autoinducer-2 by a given bacterial strain, a bioassay using marine bioluminescent bacteria Vibrio harveyi as a reporter for autoinducer-2 has been designed. We hypothesize that pH adjustment and addition of boron are required for optimal bioluminescence and accurate autoinducer-2 detection. Using this reporter strain we tested autoinducer-2 activity from two oral commensal species, Streptococcus gordonii DL1 and Streptococcus oralis 34. Spent broth was collected and adjusted to pH 7.5 and supplemented with boric acid prior to measuring autoinducer- 2 activity. Results show that low pH inhibits bioluminescence of the reporter strain, but pH 7.5 allows for bioluminescence induction and proper readings of autoinducer-2 activity. Addition of boric acid also has a positive effect on bioluminescence allowing for a more sensitive detection of autoinducer-2 activity. Our data suggests that although autoinducer-2 is present in spent broth, low pH and/or low levels of boric acid become an obstacle for proper autoinducer-2 detection. For proper autoinducer-2 detection, we propose a protocol using this bioassay to include pH adjustment and boric acid addition to spent broth. Studies on autoinducer-2 activity in several bacteria species represent an important area of study as this universal signaling molecule is involved in critical bacterial phenotypes such as virulence and biofilm formation.

  16. Autoinducer-2 detection among commensal oral streptococci is dependent on pH and boric acid.

    PubMed

    Cuadra, Giancarlo A; Frantellizzi, Ashley J; Gaesser, Kimberly M; Tammariello, Steven P; Ahmed, Anika

    2016-07-01

    Autoinducer-2, considered a universal signaling molecule, is produced by many species of bacteria; including oral strains. Structurally, autoinducer-2 can exist bound to boron (borated autoinducer-2). Functionally, autoinducer-2 has been linked to important bacterial processes such as virulence and biofilm formation. In order to test production of autoinducer-2 by a given bacterial strain, a bioassay using marine bioluminescent bacteria Vibrio harveyi as a reporter for autoinducer-2 has been designed. We hypothesize that pH adjustment and addition of boron are required for optimal bioluminescence and accurate autoinducer-2 detection. Using this reporter strain we tested autoinducer-2 activity from two oral commensal species, Streptococcus gordonii DL1 and Streptococcus oralis 34. Spent broth was collected and adjusted to pH 7.5 and supplemented with boric acid prior to measuring autoinducer- 2 activity. Results show that low pH inhibits bioluminescence of the reporter strain, but pH 7.5 allows for bioluminescence induction and proper readings of autoinducer-2 activity. Addition of boric acid also has a positive effect on bioluminescence allowing for a more sensitive detection of autoinducer-2 activity. Our data suggests that although autoinducer-2 is present in spent broth, low pH and/or low levels of boric acid become an obstacle for proper autoinducer-2 detection. For proper autoinducer-2 detection, we propose a protocol using this bioassay to include pH adjustment and boric acid addition to spent broth. Studies on autoinducer-2 activity in several bacteria species represent an important area of study as this universal signaling molecule is involved in critical bacterial phenotypes such as virulence and biofilm formation. PMID:27350615

  17. Sensitization of Listeria monocytogenes to Low pH, Organic Acids, and Osmotic Stress by Ethanol

    PubMed Central

    Barker, Clive; Park, Simon F.

    2001-01-01

    The killing of Listeria monocytogenes following exposure to low pH, organic acids, and osmotic stress was enhanced by the addition of 5% (vol/vol) ethanol. At pH 3, for example, the presence of this agent stimulated killing by more than 3 log units in 40 min of exposure. The rate of cell death at pH 3.0 was dependent on the concentration of ethanol. Thus, while the presence 10% (vol/vol) ethanol at pH 3.0 stimulated killing by more than 3 log units in just 5 min, addition of 1.25% (vol/vol) ethanol resulted in less than 1 log unit of killing in 10 min. The ability of 5% (vol/vol) ethanol to stimulate killing at low pH and at elevated osmolarity was also dependent on the amplitude of the imposed stress, and an increase in the pH from 3.0 to 4.0 or a decrease in the sodium chloride concentration from 25 to 2.5% led to a marked reduction in the effectiveness of 5% (vol/vol) ethanol as an augmentative agent. Combinations of organic acids, low pH, and ethanol proved to be particularly effective bactericidal treatments; the most potent combination was pH 3.0, 50 mM formate, and 5 % (vol/vol) ethanol, which resulted in 5 log units of killing in just 4 min. Ethanol-enhanced killing correlated with damage to the bacterial cytoplasmic membrane. PMID:11282610

  18. Bilayers and wormlike micelles at high pH in fatty acid soap systems.

    PubMed

    Xu, Wenlong; Liu, Huizhong; Song, Aixin; Hao, Jingcheng

    2016-03-01

    Bilayers at high pH in the fatty acid systems of palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O and stearic acid/CsOH/H2O can form spontaneously (Xu et al., 2014, 2015). In this work, the bilayers can still be observed at 25°C with an increase of the concentration of fatty acids. We found that wormlike micelles can also be prepared in the fatty acid soap systems at high pH, even though the temperature was increased to be 50°C. The viscoelasticity, apparent viscosity, yield stress of the bilayers were determined by the rheological measurements. Wormlike micelles were identified by cryogenic transmission electron microscopy (cryo-TEM) and emphasized by the rheological characterizations, which are in accordance with the Maxwell fluids with good fit of Cole-Cole plots. The phase transition temperature was determined by differential scanning calorimetry (DSC) and the transition process was recorded. The regulating role of counterions of fatty acids were discussed by (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) as comparison, concluding that counterions with appropriate hydrated radius were the vital factor in the formation wormlike micelles.

  19. REE Sorption Study of Sieved -50 +100 mesh Media #1 in Brine #1 with Different Starting pH's at 70C

    SciTech Connect

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  20. Recovery of carboxylic acids at pH greater than pK{sub a}

    SciTech Connect

    Tung, L.A.

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pK{sub a} and regenerability depend on sorbent basicity; apparent pK{sub a} and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  1. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  2. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    SciTech Connect

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-09-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H/sub 2/S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H/sub 2/S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by (/sup 14/C)glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake.

  3. Preparation of acidic and alkaline macrocapsules for pH control.

    PubMed

    Flora, Joseph R V; Baker, Benjamin; Wybenga, Daniel; Zhu, Huiying; Aelion, C Marjorie

    2008-01-01

    A series of experiments was performed to prepare acidic macroencapsulated buffers composed of 20% Ca(H2PO4)(2) and 80% Eudragit S 100 polymer and alkaline macrocapsules composed of 65% K2HPO4 and 35% Eudragit E PO polymer (the powdered form of Eudragit E 100). Eudragit S 100 was shown to be soluble at a pH greater than 7.0, while Eudragit E 100 was soluble at a pH less than 7.0. Both polymers did not impart significant biochemical oxygen demand. The Eudragit E PO polymer solution showed low toxicity (EC50=91%) based on the Microtox Acute Toxicity Test compared to the 0.1mM background phosphate buffer solution (EC50=100%) while the Eudragit S 100 polymer solution showed higher toxicity (EC50=53%). Batch tests showed that the acidic macrocapsules reduced the pH of a 0.1mM phosphate solution from 11 to neutral, while the alkaline macrocapsules increased the pH of a 0.1mM phosphate solution from 3 to neutral. The macrocapsules could potentially be used as an in situ proportional pH controller for groundwater remediation.

  4. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors1

    PubMed Central

    Schornack, Paul A; Gillies, Robert J

    2003-01-01

    Abstract The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, and not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines. PMID:12659686

  5. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media

    PubMed Central

    2013-01-01

    Background Lack of accounting for proton uptake and secretion has confounded interpretation of the stoichiometry of photosynthetic growth of algae. This is also problematic for achieving growth of microalgae to high cell concentrations which is necessary to improve productivity and the economic feasibility of commercial-scale chemical production systems. Since microalgae are capable of consuming both nitrate and ammonium, this represents an opportunity to balance culture pH based on a nitrogen feeding strategy that does not utilize gas-phase CO2 buffering. Stoichiometry suggests that approximately 36 weight%N-NH4+ (balance nitrogen as NO3-) would minimize the proton imbalance and permit high-density photoautotrophic growth as it does in higher plant tissue culture. However, algal media almost exclusively utilize nitrate, and ammonium is often viewed as ‘toxic’ to algae. Results The microalgae Chlorella vulgaris and Chlamydomonas reinhardtii exclusively utilize ammonium when both ammonium and nitrate are provided during growth on excess CO2. The resulting proton imbalance from preferential ammonium utilization causes the pH to drop too low to sustain further growth when ammonium was only 9% of the total nitrogen (0.027 gN-NH4+/L). However, providing smaller amounts of ammonium sequentially in the presence of nitrate maintained the pH of a Chlorella vulgaris culture for improved growth on 0.3 gN/L to 5 gDW/L under 5% CO2 gas-phase supplementation. Bioreactor pH dynamics are shown to be predictable based on simple nitrogen assimilation as long as there is sufficient CO2 availability. Conclusions This work provides both a media formulation and a feeding strategy with a focus on nitrogen metabolism and regulation to support high-density algal culture without buffering. The instability in culture pH that is observed in microalgal cultures in the absence of buffers can be overcome through alternating utilization of ammonium and nitrate. Despite the highly regulated

  6. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.

    PubMed

    Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R

    2015-07-01

    Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.

  7. [Effects of thiourea on pH and availability of metal ions in acid red soil].

    PubMed

    Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong

    2014-03-01

    Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.

  8. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Doulgeris, Charalampos; McCarthy, Alan J.; Rooks, Dave J.; Loughnane, J. Paul; Laws, Andrew P.; Humphreys, Paul N.

    2015-01-01

    One design concept for the long-term management of the UK’s intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  9. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    PubMed

    Rout, Simon P; Charles, Christopher J; Doulgeris, Charalampos; McCarthy, Alan J; Rooks, Dave J; Loughnane, J Paul; Laws, Andrew P; Humphreys, Paul N

    2015-01-01

    One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  10. Agar media that indicate acid production from sorbitol by oral microorganisms.

    PubMed

    Kalfas, S; Edwardsson, S

    1985-12-01

    Two varieties of agar medium (Trypticase [BBL Microbiology Systems]-serum-sorbitol-bromcresol purple agar [TSSB] and Trypticase-blood-sorbitol-CaCO3 agar [TBSCa]) indicating microbial acid production from sorbitol were tested. The media were devised for use in studies on the prevalence of sorbitol-fermenting human oral microorganisms incubated in an anaerobic or microaerophilic atmosphere containing 5 to 6% CO2. TSSB contains bromcresol purple as the pH indicator and NaHCO3 as the main buffering salt. TBSCa contains CaCO3 as both the buffering salt and the indicator of acid production. The growth yield of pure cultures of oral microorganisms on TBSCa was shown to equal that on blood agar incubated under similar conditions. TSSB inhibited the growth of several bacteria to various extents. The recovery of sorbitol-fermenting microorganisms from oral specimens was the greatest when the specimens were assayed with TBSCa. The poorer results obtained with TSSB were mainly due to the decoloration of the pH indicator in this medium and the presence of greater numbers of sorbitol false-positive colonies.

  11. Synthesis and characterization of a pH responsive folic acid functionalized polymeric drug delivery system.

    PubMed

    Li, Xia; McTaggart, Matt; Malardier-Jugroot, Cecile

    2016-01-01

    We report the computational analysis, synthesis and characterization of folate functionalized poly(styrene-alt-maleic anhydride), PSMA for drug delivery purpose. The selection of the proper linker between the polymer and the folic acid group was performed before conducting the synthesis using Density Functional Theory (DFT). The computational results showed the bio-degradable linker 2, 4-diaminobutyric acid, DABA as a good candidate allowing flexibility of the folic acid group while maintaining the pH sensitivity of PSMA, used as a trigger for drug release. The synthesis was subsequently carried out in multi-step experimental procedures. The functionalized polymer was characterized using InfraRed spectroscopy, Nuclear Magnetic Resonance and Dynamic Light Scattering confirming both the chemical structure and the pH responsiveness of PSMA-DABA-Folate polymers. This study provides an excellent example of how computational chemistry can be used in selection process for the functional materials and product characterization. The pH sensitive polymers are expected to be used in delivering anti-cancer drugs to solid tumors with overly expressed folic acid receptors. PMID:27183249

  12. Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids.

    PubMed

    Sowalsky, R A; Noble, A C

    1998-06-01

    The separate effects of concentration, pH and anion species on intensity of sourness and astringency of organic acids were evaluated. Judges rated sourness and astringency intensity of lactic, malic, tartaric and citric acid solutions at three levels of constant pH varying in normality and at three levels of constant concentration varying in pH. To assess the comparative sourness and astringency of the organic acid anions of study, binary acid solutions matched in pH and titratable acidity were also rated. As pH was decreased in equinormal solutions, both sourness and astringency increased significantly (P < 0.001). By contrast, as the normality of the equi-pH solutions was increased, only sourness demonstrated significant increases (P < 0.001) while astringency remained constant or decreased slightly. At the lowest normality tested, all solutions were more astringent than sour (P < 0.05). Although lactic acid was found to be significantly more sour than citric acid (P < 0.05), no other sourness or astringency differences among the organic acid anions were noted. This study demonstrates for the first time that astringency elicited by acids is a function of pH and not concentration or anion species, and confirms that sourness is independently influenced by concentration, pH and anion species of the acid.

  13. Determination of dissociation parameters of weak acids in different media according to the isohydric method.

    PubMed

    Michałowski, Tadeusz; Pilarski, Bogusław; Asuero, Agustin G; Dobkowska, Agnieszka; Wybraniec, Sławomir

    2011-10-30

    The isohydricity (pH constancy) principle is referred to the pair of solutions: weak acid (HL, C(0)mol/L) and strong acid (HB, C mol/L) when mixed e.g., according to titrimetric mode. Such a case takes place if the relation C(0)=C+C(2) × 10(pK(1)) is valid, where pK(1)=-log K(1), K(1) - dissociation constant for a weak monoprotic acid HL. This principle, outlined and formulated in earlier paper (Michałowski et al., Talanta 82 (2010) 1965), is the basis for a sensitive method of pK(1) determination, confirmed for a series of weak acids in presence of basal electrolytes or in water+organic solvent (dimethyl sulphoxide, methanol, isopropanol) media. The results of titrations were elaborated according to principles of regression analysis, with use of least squares method. A new criterion for precision of the results obtained according to this method is formulated. The pK(1) values obtained are comparable with ones found in literature.

  14. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.

  15. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  16. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils

    SciTech Connect

    Fu, Minhong.

    1989-01-01

    The effect of pH (4, 6, and 8) on nitrogen mineralization was evaluated in three Iowa surface soils treated with crop residues (corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and sorghum (Sorghum vulgare Pers.), or alfalfa (Medicago sativa L.)) and incubated in leaching columns under aerobic conditions at 30C for 20 weeks. In general, N mineralization was significantly depressed at soil pH 4, compared with pH 6 or 8. The types of crop residues added influenced the pattern and amount of N mineralization. A study on the effect of 19 trace elements on the nitrate red activity of four Iowa surface soils showed that most trace elements inhibited this enzyme in acid and neutral soils. The trace elements Ag(I), Cd(II), Se(IV), As(V), and W(VI) were the most effective inhibitors, with >75% inhibition. Mn(II) was the least effective inhibitor, with <10% inhibition. Other trace elements included Cu(I), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), Al(III), As(III), Cr(III), Fe(III), V(IV), Mo(VI), and Se(VI). The application of high-performance liquid chromatography (HPLC) showed that, when coupled to a refractive index detector, it is a rapid, sensitive, and accurate method for determining organic acids in soils. Three organic acids, acetic (2-20 mM), propionic (0-3 mM), and n-butyric (0-1.4 mM), were identified with HPLC and confirmed by gas chromatography in crop-residue-treated soils incubated under waterlogged conditions at 25C for 72 h. No organic acids were detected under aerobic conditions. Four mineral acids and 29 organic acids were studied for their effect on N mineralization and metal dissolution in soils incubated under waterlogged conditions at 30C for 10 days.

  17. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation.

  18. Degradation of CYANEX 301 in Contact with Nitric Acid Media

    SciTech Connect

    Philippe Marc; Radu Custelcean; Gary S. Groenewold; John R. Klaehn; Dean R. Peterman; Laetitia H. Delmau

    2012-10-01

    The nature of the degradation product obtained upon contacting CYANEX 301 (bis(2,4,4-trimethylpentyl)dithiophosphinic acid) with nitric acid has been elucidated and found to be a disulfide derivative. The first step to the degradation of CYANEX 301 in toluene has been studied using 31P{1H} NMR after being contacted with nitric acid media. The spectrum of the degradation product exhibits a complex multiplet around dP = 80 ppm. A succession of purifications of CYANEX 301 has resulted in single crystals of the acidic form and the corresponding ammonium salt. Unlike the original CYANEX 301, which consists of a complex diastereomeric mixture displaying all possible combinations of chiral orientations at the 2-methyl positions, the purified crystals were shown by single-crystal X-ray diffraction to be racemates, containing 50:50 mixtures of the [R;R] and [S;S] diastereomers. The comparison between the 31P {1H} NMR spectra of the degradation products resulting from the diastereomerically pure CYANEX 301 and the original diastereomeric mixture has elucidated the influence of the isomeric composition on the multiplicity of the 31P {1H} NMR peak. These NMR data indicate the initial degradation leads to a disulfide-bridged condensation product displaying multiple resonances due to phosphorus–phosphorus coupling, which is caused by the inequivalence of the two P atoms as a result of their different chirality. A total of nine different NMR resonances, six of which display phosphorus–phosphorus coupling, could be assigned, and the identity of the peaks corresponding to phosphorus atoms coupled to each other was confirmed by 31P {1H} homodecoupled NMR analysis.

  19. Flocculation and Membrane Binding of Outer Membrane Protein F, Porin, at Acidic pH

    NASA Astrophysics Data System (ADS)

    Suzuki, Keiko; Nakae, Taiji; Mitaku, Shigeki

    1998-04-01

    Outer membrane protein F (OmpF), porin, of Escherichia coli is an intrinsic membrane protein made of a β-sheet barrel, the amino acid sequence being as hydrophilic as many soluble proteins in spite of its location in the hydrophobic region of membrane. The binding of porin molecules with a lipid membrane and the flocculation of the protein were studied at various pH, using the combination of centrifugation and intrinsic fluorescence measurements. The binding of porin with the lipid membrane occurred in the pH range below 7, whereas the flocculation of porin in the absence of the membrane was observed only at pH below 5. Porin molecules in the pH range between 5 and 7 were stable as a colloid but spontaneously bound with the lipid membrane soon after the addition of lipid vesicles. The possible mechanism of the structural formation of porin in the outer membrane was discussed based on the pH dependence of the membrane binding ability of this protein.

  20. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.

    PubMed

    Akaighe, Nelson; Depner, Sean W; Banerjee, Sarbajit; Sohn, Mary

    2013-07-01

    The transport and deposition of silver nanoparticles (AgNPs) formed from Ag(+) reduction by Suwannee River Humic Acid (SRHA) and Suwannee River Natural Organic Matter (SRNOM) utilizing a silica matrix is reported. The morphology and stability of the AgNPs was analyzed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. The percentage conversion of the initial [Ag(+)] to [AgNPs] was determined from a combination of atomic absorption (AAS) and UV-Vis spectroscopy, and centrifugation techniques. The results indicate higher AgNP transport and consequently low deposition in the porous media at basic pH conditions and low ionic strength. However, at low acidic pH and high ionic strength, especially with the divalent metallic cations, the mobility of the AgNPs in the porous media was very low, most likely due to NP aggregation. Overall, the results suggest the potential for AgNP contamination of subsurface soils and groundwater aquifers is mostly dependent on their aggregation state, controlled by the soil water and sediment ionic strength and pH.

  1. Optimization of media composition for D-amino acid oxidase production by Trigonopsis variabilis using biostatistical analysis.

    PubMed

    Gupta, Neeraj; Gundampati, Ravi Kumar; Debnath, M

    2012-08-01

    D-amino acid oxidase (DAAO) is biotechnologically relevant enzyme that is used in various food and pharmaceutical industries. DAAO from the yeast Trigonopsis variabilis is an important agent for use in commercial applications because of its high activity with cephalosporin C and is reasonable resistant to the oxidants O2 and H2O2 byproducts of reaction. In this study, response surface methodology (RSM) in shake flask culture was used to enhance the production of DAAO from T. variabilis by optimization of fermentation media composition. The effects of six factors (DL-alanine, glucose, pH, ZnSO4, (NH4)2SO4 and temperature) were evaluated on DAAO production. Results of Placket-Burman design showed that DL-alanine, pH, glucose and ZnSO4 were significant factors for DAAO production (P<0.05). The optimum values of media components as predicted by the central composite design were inducer (DL-alanine) concentration 3 g/L, pH 7.7, glucose 17 g/L and ZnSO4 34 mg/L. At these optimum values of media composition, maximum production of DAAO was 153 U/g yeast dry weight. Two-fold increase in DAAO production was achieved after optimization of the physical parameters by RSM.

  2. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.

    PubMed

    Hu, Xingyun; He, Mengchang; Li, Sisi

    2015-03-01

    Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62×10(4) mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9×10(3) mg/kg) was 3000 times that in uncontaminated soils (2.7±1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions.

  3. Influence of temperature and humidity on rumen pH and fatty acids in dairy cows.

    PubMed

    Gianesella, M; Piccione, G; Cannizzo, C; Casella, S; Morgante, M

    2012-11-01

    The aim of this study was to investigate the variations of rumen pH and fatty acids (acetic acid, propionic acid, iso-butyric acid, n-butyric acid, iso-valerianic acid, n-valerianic, caproic acid and total fatty acids) in 245 early lactating dairy cows under different temperature and humidity conditions. The animals were divided into six groups and rumen fluid was collected by rumenocentesis on 22 dairy cows in April (Group A), 33 in May (Group B), 43 in June (Group C), 48 in July (Group D), 36 in September (Group E) and 60 in October (Group F). One-way analysis of variance (ANOVA), followed by the Bonferroni's test, showed a significant effect of environmental variations on all studied parameters (P < 0.0001). Changes in studied parameters can be explained in relation to the microbial population and shift in the optima for rumen conditions associated with variations of environmental conditions. We can affirm that the microbial assemblages that underlie energy and protein supply to wild ruminant are evident especially in relation to temperature and humidity conditions.

  4. REE Sorption Study on sieved -50 +100 mesh fraction of Media #1 in Brine #1 with Different Starting pH's at 70C

    DOE Data Explorer

    Gary Garland

    2015-09-29

    This is a continuation of the REE sorption study for shaker bath tests on 2g media #1 in 150mL brine #1 with different starting pH's at 70C. In a previous submission we reported data for shaker bath tests for brine #1 with starting pH's of 3.5, 4.5 and 5.5. In this submission we these pH's compared to starting brine #1 pH's of 6, and 7.

  5. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.

    PubMed

    Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K

    2013-05-17

    Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.

  6. Investigation of pH Influence on Skin Permeation Behavior of Weak Acids Using Nonsteroidal Anti-Inflammatory Drugs.

    PubMed

    Chantasart, Doungdaw; Chootanasoontorn, Siriwan; Suksiriworapong, Jiraphong; Li, S Kevin

    2015-10-01

    As a continuing effort to understand the skin permeation behavior of weak acids and bases, the objectives of the present study were to evaluate skin permeation of nonsteroidal anti-inflammatory drugs (NSAIDs) under the influence of pH, investigate the mechanism of pH effect, and examine a previous hypothesis that the effective skin pH for drug permeation is different from donor solution pH. In vitro permeability experiments were performed in side-by-side diffusion cells with diclofenac, ibuprofen, flurbiprofen, ketoprofen, and naproxen and human skin. The donor solution pH significantly affected skin permeation of NSAIDs, whereas no effect of the receiver pH was observed. Similar to previous observations, the apparent permeability coefficient versus donor solution pH relationships deviated from the predictions (fractions of unionized NSAIDs) according to the acid/base theory. The influences of the viable epidermis barrier, polar pathway transport, ion permeation across skin, and effective skin pH were investigated. The effective pH values for skin permeation determined using the NSAIDs (weak acids) in this study were different from those obtained previously with a weak base at the same donor solution pH conditions, suggesting that the observed permeability-pH relationships could not be explained solely by possible pH differences between skin and donor solution.

  7. Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, Pterygoplichthys pardalis.

    PubMed

    Harter, T S; Shartau, R B; Baker, D W; Jackson, D C; Val, A L; Brauner, C J

    2014-08-01

    Preferential intracellular pH (pHi) regulation, where pHi is tightly regulated in the face of a blood acidosis, has been observed in a few species of fish, but only during elevated blood PCO2. To determine whether preferential pHi regulation may represent a general pattern for acid-base regulation during other pH disturbances we challenged the armoured catfish, Pterygoplichthys pardalis, with anoxia and exhaustive exercise, to induce a metabolic acidosis, and bicarbonate injections to induce a metabolic alkalosis. Fish were terminally sampled 2-3 h following the respective treatments and extracellular blood pH, pHi of red blood cells (RBC), brain, heart, liver and white muscle, and plasma lactate and total CO2 were measured. All treatments resulted in significant changes in extracellular pH and RBC pHi that likely cover a large portion of the pH tolerance limits of this species (pH 7.15-7.86). In all tissues other than RBC, pHi remained tightly regulated and did not differ significantly from control values, with the exception of a decrease in white muscle pHi after anoxia and an increase in liver pHi following a metabolic alkalosis. Thus preferential pHi regulation appears to be a general pattern for acid-base homeostasis in the armoured catfish and may be a common response in Amazonian fishes.

  8. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

    PubMed

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín

    2015-11-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.

  9. [Short-term changes of pH value and Al activity in acid soils after urea fertilization].

    PubMed

    Zeng, Qingru; Liao, Bohan; Jiang, Zhaohui; Zhou, Xihong; Tang, Can; Zhong, Ning

    2005-02-01

    Acidic soils are widely distributed in South China, and their acidity is the major environmental stress factor limiting the growth of most crops. It is well known that soil Al solubilized at low pH is a main toxic factor for plant growth. Our study with three acidic soils showed that soil pH increased quickly, while soil exchangeable Al decreased sharply with the increasing concentrations of applied urea. The time-course experiment revealed that the increase of soil pH was short-lived, with a subsequently slow drop after reached its maximum. Urea fertilization caused a drastic change of soil pH during 2-4 weeks of the experimental period. There was a negative relationship between soil pH and soil exchangeable Al. Biological toxicity test demonstrated that applying urea to acidic soils could obviously decrease the aluminum toxicity of maize in a short-term period.

  10. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  11. Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns.

    PubMed

    McKenzie, Erica R; Siegrist, Robert L; McCray, John E; Higgins, Christopher P

    2015-02-01

    In situ chemical oxidation (ISCO) is a remediation approach that is often used to remediate soil and groundwater contaminated with fuels and chlorinated solvents. At many aqueous film-forming foam-impacted sites, perfluoroalkyl acids (PFAAs) can also be present at concentrations warranting concern. Laboratory experiments were completed using flow-through one-dimensional columns to improve our understanding of how ISCO (i.e., activated persulfate, permanganate, or catalyzed hydrogen peroxide) could affect the fate and transport of PFAAs in saturated porous media. While the resultant data suggest that standard ISCO is not a viable remediation strategy for PFAA decomposition, substantial changes in PFAA transport were observed upon and following the application of ISCO. In general, activated persulfate decreased PFAA transport, while permanganate and catalyzed hydrogen peroxide increased PFAA transport. PFAA sorption increased in the presence of increased aqueous polyvalent cation concentrations or decreased pH. The changes in contaminant mobility were greater than what would be predicted on the basis of aqueous chemistry considerations alone, suggesting that the application of ISCO results in changes to the porous media matrix (e.g., soil organic matter quality) that also influence transport. The application of ISCO is likely to result in changes in PFAA transport, where the direction (increased or decreased transport) and magnitude are dependent on PFAA characteristics, oxidant characteristics, and site-specific factors. PMID:25621878

  12. Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns.

    PubMed

    McKenzie, Erica R; Siegrist, Robert L; McCray, John E; Higgins, Christopher P

    2015-02-01

    In situ chemical oxidation (ISCO) is a remediation approach that is often used to remediate soil and groundwater contaminated with fuels and chlorinated solvents. At many aqueous film-forming foam-impacted sites, perfluoroalkyl acids (PFAAs) can also be present at concentrations warranting concern. Laboratory experiments were completed using flow-through one-dimensional columns to improve our understanding of how ISCO (i.e., activated persulfate, permanganate, or catalyzed hydrogen peroxide) could affect the fate and transport of PFAAs in saturated porous media. While the resultant data suggest that standard ISCO is not a viable remediation strategy for PFAA decomposition, substantial changes in PFAA transport were observed upon and following the application of ISCO. In general, activated persulfate decreased PFAA transport, while permanganate and catalyzed hydrogen peroxide increased PFAA transport. PFAA sorption increased in the presence of increased aqueous polyvalent cation concentrations or decreased pH. The changes in contaminant mobility were greater than what would be predicted on the basis of aqueous chemistry considerations alone, suggesting that the application of ISCO results in changes to the porous media matrix (e.g., soil organic matter quality) that also influence transport. The application of ISCO is likely to result in changes in PFAA transport, where the direction (increased or decreased transport) and magnitude are dependent on PFAA characteristics, oxidant characteristics, and site-specific factors.

  13. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    NASA Technical Reports Server (NTRS)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  14. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    PubMed

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility.

  15. Acid-induced folding of yeast alcohol dehydrogenase under low pH conditions.

    PubMed

    Le, W P; Yan, S X; Zhang, Y X; Zhou, H M

    1996-04-01

    Under conditions of low pH, the conformational states of holo-YADH and apo-YADH were examined by protein intrinsic fluorescence, ANS fluorescence, and far-UV CD measurements. The results obtained show that a low ionic strength, with the addition of HCl, the holo- and apo- YADH denatured gradually to reach the ultimate unfolded conformation in the vicinity of pH 2.0 and 2.5, respectively. With the decrease of pH from 7.0 to 2.0, the fluorescence emission decreased markedly, with its emission maximum red-shifting from 335 to 355 nm, indicating complete exposure of the buried tryptophan residues to the solvent. The far-UV CD spectra show the loss of the arrayed secondary structure, though the acid-denatured enzyme still maintained a partially arrayed secondary structure. A further decrease in pH by increasing the concentration of HClO4 induced a cooperative folding of the denatured enzyme to a compact conformation with the properties of a molten globule, described previously by Goto et al. [Proc. Natl. Acad. Sci. USA 87, 573-577 (1990)]. More extensive studies showed that although apo-YADH and holo-YADH exhibited similar behavior, the folding cooperative ability of apo-YADH was lower than that of the holo-enzyme. From the above results, it is suggested that the zinc ion plays an important role in the proper folding of YADH and in stabilizing its native conformation.

  16. Spontaneous aggregation of humic acid observed with AFM at different pH.

    PubMed

    Colombo, Claudio; Palumbo, Giuseppe; Angelico, Ruggero; Cho, Hyen Goo; Francioso, Ornella; Ertani, Andrea; Nardi, Serenella

    2015-11-01

    Atomic force microscopy in contact (AFM-C) mode was used to investigate the molecular dynamics of leonardite humic acid (HA) aggregate formed at different pH values. HA nanoparticles dispersed at pH values ranging from 2 to 12 were observed on a mica surface under dry conditions. The most clearly resolved and well-resulted AFM images of single particle were obtained at pH 5, where HA appeared as supramolecular particles with a conic shape and a hole in the centre. Those observations suggested that HA formed under these conditions exhibited a pseudo-amphiphilic nature, with secluded hydrophobic domains and polar subunits in direct contact with hydrophilic mica surface. Based on molecular simulation methods, a lignin-carbohydrate complex (LCC) model was proposed to explain the HA ring-like morphology. The LCC model optimized the parameters of β-O-4 linkages between 14 units of 1-4 phenyl propanoid, and resulted in an optimized structure comprising 45-50 linear helical molecules looped spirally around a central cavity. Those results added new insights on the adsorption mechanism of HA on polar surfaces as a function of pH, which was relevant from the point of view of natural aggregation in soil environment. PMID:26295541

  17. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  18. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.

    PubMed Central

    Russell, J B

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation. PMID:2036013

  19. Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to Daphnia magna.

    PubMed

    Seitz, Frank; Rosenfeldt, Ricki R; Storm, Katharina; Metreveli, George; Schaumann, Gabriele E; Schulz, Ralf; Bundschuh, Mirco

    2015-01-01

    Studies assessing the acute and chronic toxicity of silver nanoparticle (nAg) materials rarely consider potential implications of environmental variables. In order to increase our understanding in this respect, we investigated the acute and chronic effects of various nAg materials on Daphnia magna. Thereby, different nanoparticle size classes with a citrate coating (20-, ~30-, 60- as well as 100-nm nAg) and one size class without any coating (140 nm) were tested, considering at the same time two pH levels (6.5 and 8.0) as well as the absence or presence of dissolved organic matter (DOM; <0.1 or 8.0 mg total organic carbon/L). Results display a reduced toxicity of nAg in media with higher pH and the presence of DOM as well as increasing initial particle size, if similarly coated. This suggests that the associated fraction of Ag species <2 nm (including Ag(+)) is driving the nAg toxicity. This hypothesis is supported by normalizing the 48-h EC50-values to Ag species <2 nm, which displays comparable toxicity estimates for the majority of the nAg materials assessed. It may therefore be concluded that a combination of both the particle characteristics, i.e. its initial size and surface coating, and environmental factors trigger the toxicity of ion-releasing nanoparticles.

  20. pH-Sensitive Polymeric Micelle-based pH Probe for Detecting and Imaging Acidic Biological Environments

    PubMed Central

    Lee, Young Ju; Kang, Han Chang; Hu, Jun; Nichols, Joseph W.; Jeon, Yong Sun; Bae, You Han

    2012-01-01

    To overcome the limitations of monomeric pH probes for acidic tumor environments, this study designed a mixed micelle pH probe composed of polyethylene glycol (PEG)-b- poly(L-histidine) (PHis) and PEG-b-poly(L-lactic acid) (PLLA), which is well-known as an effective antitumor drug carrier. Unlike monomeric histidine and PHis derivatives, the mixed micelles can be structurally destabilized by changes in pH, leading to a better pH sensing system in nuclear magnetic resonance (NMR) techniques. The acidic pH-induced transformation of the mixed micelles allowed pH detection and pH mapping of 0.2–0.3 pH unit differences by pH-induced “on/off”-like sensing of NMR and magnetic resonance spectroscopy (MRS). The micellar pH probes sensed pH differences in non-biological phosphate buffer and biological buffers such as cell culture medium and rat whole blood. In addition, the pH-sensing ability of the mixed micelles was not compromised by loaded doxorubicin. In conclusion, PHis-based micelles could have potential as a tool to simultaneously treat and map the pH of solid tumors in vivo. PMID:22861824

  1. A novel "off-on" colorimetric and fluorescent rhodamine-based pH chemosensor for extreme acidity

    NASA Astrophysics Data System (ADS)

    Tan, Jia-Lian; Zhang, Mu-Xue; Zhang, Fang; Yang, Ting-Ting; Liu, Yu; Li, Zhu-Bo; Zuo, Hua

    2015-04-01

    A novel "off-on" colorimetric and fluorescent rhodamine analogue was synthesized and characterized, and used to monitor extreme acidity (below pH 3.5) via the photophysical response to pH. The colorless spirocyclic structure at high pH (pH ⩾ 7.0) opened to the colored and highly fluorescent form at very low pH (pH < 3.0). This sensitive pH probe was characterized with short response time, good reversibility and no interaction with interfering metal ions, and the quantitative relationship between the fluorescence intensity and pH value was consistent with the equilibrium equation pH = pKa - log[(Imax - I)/(I - Imin)]. The fluorescent response to strong acidity was further verified by fluorescent imaging of bacteria, Escherichia coli, which contributed to the development of more useful colorimetric and fluorescent sensors based on the rhodamine platform for measuring intracellular pH in extremely acidic conditions.

  2. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.

    PubMed

    Del Rio, Beatriz; Linares, Daniel; Ladero, Victor; Redruello, Begoña; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2016-11-01

    Lactococcus lactis subsp. cremoris CECT 8666 is a lactic acid bacterium that synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The AGDI genes cluster includes aguR. This encodes a transmembrane protein that functions as a one-component signal transduction system, the job of which is to sense the agmatine concentration of the medium and accordingly regulate the transcription of the catabolic operon aguBDAC. The latter encodes the proteins necessary for agmatine uptake and its conversion into putrescine. This work reports the effect of extracellular pH on putrescine biosynthesis and on the genetic regulation of the AGDI pathway. Increased putrescine biosynthesis was detected at acidic pH (pH5) compared to neutral pH. Acidic pH induced the transcription of the catabolic operon via the activation of the aguBDAC promoter PaguB. However, the external pH had no significant effect on the activity of the aguR promoter PaguR, or on the transcription of the aguR gene. The transcriptional activation of the AGDI pathway was also found to require a lower agmatine concentration at pH5 than at neutral pH. Finally, the following of the AGDI pathway counteracted the acidification of the cytoplasm under acidic external conditions, suggesting it to provide protection against acid stress.

  3. Rational Design of a Colorimetric pH Sensor from a Soluble Retinoic Acid Chaperone

    PubMed Central

    Berbasova, Tetyana; Nosrati, Meisam; Vasileiou, Chrysoula; Wang, Wenjing; Lee, Kin Sing Stephen; Yapici, Ipek; Geiger, James H.; Borhan, Babak

    2014-01-01

    Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474–640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor. PMID:24059243

  4. Rational design of a colorimetric pH sensor from a soluble retinoic acid chaperone.

    PubMed

    Berbasova, Tetyana; Nosrati, Meisam; Vasileiou, Chrysoula; Wang, Wenjing; Lee, Kin Sing Stephen; Yapici, Ipek; Geiger, James H; Borhan, Babak

    2013-10-30

    Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474-640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor. PMID:24059243

  5. Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes.

    PubMed

    Toyomizu, Masaaki; Okamoto, Katsuyuki; Akiba, Yukio; Nakatsu, Tetsuo; Konishi, Tetsuya

    2002-01-01

    We have previously shown that anacardic acid has an uncoupling effect on oxidative phosphorylation in rat liver mitochondria using succinate as a substrate (Life Sci. 66 (2000) 229-234). In the present study, for clarification of the physicochemical characteristics of anacardic acid, we used a cyanine dye (DiS-C3(5)) and 9-aminoacridine (9-AA) to determine changes of membrane potential (DeltaPsi) and pH difference (DeltapH), respectively, in a liposome suspension in response to the addition of anacardic acid to the suspension. The anacardic acid quenched DiS-C3(5) fluorescence at concentrations higher than 300 nM, with the degree of quenching being dependent on the log concentration of the acid. Furthermore, the K(+) diffusion potential generated by the addition of valinomycin to the suspension decreased for each increase in anacardic acid concentration used over 300 nM, but the sum of the anacardic acid- and valinomycin-mediated quenching was additively increasing. This indicates that the anacardic acid-mediated quenching was not due simply to increments in the K(+) permeability of the membrane. Addition of anacardic acid in the micromolar range to the liposomes with DeltaPsi formed by valinomycin-K(+) did not significantly alter 9-AA fluorescence, but unexpectedly dissipated DeltaPsi. The DeltaPsi preformed by valinomycin-K(+) decreased gradually following the addition of increasing concentrations of anacardic acid. The DeltaPsi dissipation rate was dependent on the pre-existing magnitude of DeltaPsi, and was correlated with the logarithmic concentration of anacardic acid. Furthermore, the initial rate of DeltapH dissipation increased with logarithmic increases in anacardic acid concentration. These results provide the evidence for a unique function of anacardic acid, dissimilar to carbonylcyanide p-trifluoromethoxyphenylhydrazone or valinomycin, in that anacardic acid behaves as both an electrogenic (negative) charge carrier driven by DeltaPsi, and a 'proton

  6. Mycorrhizal Response to Experimental pH and P Manipulation in Acidic Hardwood Forests

    PubMed Central

    Kluber, Laurel A.; Carrino-Kyker, Sarah R.; Coyle, Kaitlin P.; DeForest, Jared L.; Hewins, Charlotte R.; Shaw, Alanna N.; Smemo, Kurt A.; Burke, David J.

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  7. Disruption of bovine oocytes and preimplantation embryos by urea and acidic pH.

    PubMed

    Ocon, O M; Hansen, P J

    2003-04-01

    Feeding cattle diets high in degradable crude protein (CP) or in excess of requirements can reduce fertility and lower uterine pH. Objectives were to determine direct effects of urea and acidic pH during oocyte maturation and embryonic development. For experiment 1, oocytes were matured in medium containing 0, 5, 7.5, or 10 mM urea (0, 14, 21, or 28 mg/dl urea nitrogen, respectively). Cleavage rate was not reduced by any concentration of urea. However, the proportion of oocytes developing to the blastocyst stage at d 8 after insemination was reduced by 7.5 mM urea. In addition, the proportion of cleaved oocytes becoming blastocysts was decreased by 5 and 7.5 mM urea. For experiment 2, putative zygotes were collected -9 h after insemination and cultured in modified Potassium Simplex Optimized Medium (KSOM). Urea did not reduce the proportion of oocytes developing to the blastocyst stage, although 10 mM urea reduced cleavage rate slightly. For experiment 3, dimethadione (DMD), a weak nonmetabolizable acid, was used to decrease culture medium pH. Putative zygotes were cultured in modified KSOM containing 0, 10, 15, or 20 mM DMD for 8 d. DMD reduced cleavage rate at 15 and 20 mM and development to the blastocyst stage at all concentrations. Results support the idea that feeding diets rich in highly degradable CP compromises fertility through direct actions of urea on the oocyte and through diet-induced alterations in uterine pH.

  8. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    PubMed Central

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  9. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  10. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  11. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. PMID:27032508

  12. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration.

  13. Effects of organic phase, fermentation media, and operating conditions on lactic Acid extraction.

    PubMed

    Hossain, Md Monwar; Maisuria, J L

    2008-01-01

    Lactic acid has extensive uses in the food, pharmaceutical, cosmetic and chemical industry. Lately, its use in producing biodegradable polymeric materials (polylactate) makes the production of lactic acid from fermentation broths very important. The major part of the production cost accounts for the cost of separation from very dilute reaction media where productivity is low as a result of the inhibitory nature of lactic acid. The current method of extraction/separation is both expensive and unsustainable. Therefore, there is great scope for development of alternative technology that will offer efficiency, economic, and environmental benefits. One of the promising technologies for recovery of lactic acid from fermentation broth is reactive liquid-liquid extraction. In this paper the extraction and recovery of lactic acid based on reactive processes is examined and the performance of a hydrophobic microporous hollow-fiber membrane module (HFMM) is evaluated. First, equilibrium experiments were conducted using organic solutions consisting of Aliquat 336/trioctylamine (as a carrier) and tri-butyl phosphate (TBP)/sunflower oil (as a solvent) The values of the distribution coefficient were obtained as a function of feed pH, composition of the organic phase (ratio of carrier to solvent), and temperature (range 8-40 degrees C). The optimum extraction was obtained with the organic phase consisting of a mixture of 15 wt % tri-octylamine (TOA) and 15% Aliquat 336 and 70% solvent. The organic phase with TBP performed best but is less suitable because of its damaging properties (toxicity and environmental impact) and cost. Sunflower oil, which performed moderately, can be regarded as a better option as it has many desirable characteristics (nontoxic, environment- and operator-friendly) and it costs much less. The percentage extraction was approximately 33% at pH 6 and at room temperature (can be enhanced by operating at higher temperatures) at a feed flow rate of 15-20 L

  14. Leaching of organic acids from irradiated EVA plastic as a function of solution pH and polarity.

    PubMed

    Jenke, Dennis; Zietlow, David; Sadain, Salma

    2004-01-01

    The leaching of several target organic acids from an irradiated ethylene vinyl acetate material, such as those used as a solution product container, is examined as a function of solution pH and polarity. The targeted compounds included highly soluble weak acids such as acetic and formic acids, and larger, more lipophillic acids such as myristic, palmitic, and stearic acids. The leaching of these compounds was examined over a pH range of 3 to 11 and in various ethanol/water proportions. While pH and solution polarity had only a modest impact on the accumulation of the acetic and formic acids, the accumulation of the fatty acids was greatly affected by both factors. It is suggested that the accumulation of these leachables at high pH is influenced by two processes. The first process, partitioning, the speciation of the acidic leachables (protonated versus dissociated form) contributes to the pH trends observed. In this case, entities that already exist in the plastic partition themselves between the plastic and solution via migration. A second, more important, contributor to the leaching of these acids is a pH-dependent increase in their availability arising from an unspecified reactive process.

  15. Intracellular pH regulation by acid-base transporters in mammalian neurons

    PubMed Central

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  16. Rapid 3D Patterning of Poly(acrylic acid) Ionic Hydrogel for Miniature pH Sensors.

    PubMed

    Yin, Ming-Jie; Yao, Mian; Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Wai, Ping-Kong A

    2016-02-17

    Poly(acrylic acid) (PAA), as a highly ionic conductive hydrogel, can reversibly swell/deswell according to the surrounding pH conditions. An optical maskless -stereolithography technology is presented to rapidly 3D pattern PAA for device fabrication. A highly sensitive miniature pH sensor is demonstrated by in situ printing of periodic PAA micropads on a tapered optical microfiber.

  17. Influence of five neutralizing products on intra-oral pH after rinsing with simulated gastric acid.

    PubMed

    Lindquist, Birgitta; Lingström, Peter; Fändriks, Lars; Birkhed, Dowen

    2011-08-01

    The aetiology of dental erosion may be of both extrinsic and intrinsic origin. The aim of the present study was to test the ability of various neutralizing products to raise the low intra-oral pH after an erosive exposure, in this case to gastric acid, which was simulated using hydrochloric acid (HCl). Eleven adults participated. They rinsed with 10 ml of 10 mM HCl (pH 2) or 10 ml of 100 mM HCl (pH 1) for 1 min, after which the pH was measured intra-orally for up to 30 min at four sites (two approximal, one buccal, and the dorsum of the tongue). After rinsing with the two acid solutions (pH 1 and pH 2), the following products were used: (i) antacid tablet; (ii) gum arabic lozenge; (iii) mineral water; (iv) milk; and (v) tap water (positive control). The negative control was no product use. The five test products were used for 2 min after the erosive challenge. All the products produced an initially higher pH compared with the negative control. The antacid tablet resulted in the greatest and most rapid increase in pH, followed by the lozenge. In dental practice, the use of any of the neutralizing products tested, especially the antacid tablet, could be recommended in order to increase the intra-oral pH after an erosive challenge. PMID:21726291

  18. pH dependence of methyl phosphonic acid, dipicolinic acid, and cyanide by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.

    2004-03-01

    U.S. and Coalition forces fighting terrorism in Afghanistan and Iraq must consider a wide range of attack scenarios in addition to car bombings. Among these is the intentional poisoning of water supplies to obstruct military operations. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of methyl phosphonic acid and cyanide as a function of pH, an important factor affecting quantitation measurements, which to our knowledge has not been examined. In addition, dipicolinic acid, a chemical signature associated with anthrax-causing spores, is also presented.

  19. Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media

    SciTech Connect

    Román-Leshkov, Yuriy; Davis, Mark E.

    2011-09-28

    Current interest in reacting carbonyl-containing molecules in aqueous media is primarily due to the growing emphasis on conversion of biomass to fuels and chemicals. Recently, solid Lewis acids have been shown to perform catalytic reactions with carbonyl-containing molecules such as sugars in aqueous media. Here, catalysis mediated by Lewis acids is briefly discussed, Lewis acid solids that perform catalysis in aqueous media are then described, and the review is concluded with a few comments on the outlook for the future.

  20. The role of low molecular weight organic acids on controlling pH in coastal sea water

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-12-01

    Series investigation of the Jiaozhou Bay, China, observed existences of three low molecular weight organic acids (LMWOAs), including lactic acid, acetic acid and formic acid, with high concentration in the sea water. Generally, their amount accounted for about 20% of DOC in the sea water of the bay. Human activities around the bay were considered as the major source of the LMWOAs. Also, long term detection showed that the pH value in the Jiaozhou Bay was lower than that in the adjacent Yellow Sea. On average, the difference of pH values between the bay and the Yellow was about 0.2. Due to higher concentrations of the LMWOAs, their contribution to lower pH value of the bay should not be ignored. To validate the effect of LMWOAs on the pH value of the bay, a new software was developed to calculate the pH value in the sea water samples based on alkalinity by adding three items of the three organic acids in the expression. Compared to the traditional pH calculating software, the new software could improve the calculating results significantly. Our results confirmed that LMWOAs was an important control factor to adjust pH values in coastal area.

  1. Basis of antimalarial action: non-weak base effects of chloroquine on acid vesicle pH

    SciTech Connect

    Krogstad, D.J.; Schlesinger, P.H.

    1987-03-01

    Biologically active concentrations of chloroquine increase the pH of the parasite's acid vesicles within 3-5 min. This increase in pH results from two mechanisms, one of which is markedly reduced in chloroquine-resistant parasites. Because chloroquine is a weak base, it increases vesicle pH by that mechanism in chloroquine-susceptible and resistant parasites and mammalian cells (based on its two pKs and on the delta pH between the acid vesicle and the extracellular environment). In chloroquine-susceptible parasites, but not resistant parasites or mammalian cells, chloroquine increases the pH of acid vesicles 700- to 800-fold more than can be accounted for by its properties as a weak base. The increase in acid vesicle pH caused by these non-weak base effects of nanomolar chloroquine in susceptible parasites suggests that chloroquine acts by interfering with acid vesicle functions in the parasite such as the endocytosis and proteolysis of hemoglobin, and the intracellular targeting of lysosomal enzymes. The non-weak base effects of nanomolar chloroquine on parasite vesicle pH are also responsible for its safety because these chloroquine concentrations do not affect mammalian cells.

  2. Ratiometric emission fluorescent pH probe for imaging of living cells in extreme acidity.

    PubMed

    Niu, Weifen; Fan, Li; Nan, Ming; Li, Zengbo; Lu, Dongtao; Wong, Man Shing; Shuang, Shaomin; Dong, Chuan

    2015-03-01

    A novel ratiometric emission fluorescent probe, 1,1-dimethyl-2-[2-(quinolin-4-yl)vinyl]-1H-benzo[e]indole (QVBI), is facilely synthesized via ethylene bridging of benzoindole and quinoline. The probe exhibits ratiometric fluorescence emission (F(522nm)/F(630nm)) characteristics with pKa 3.27 and linear response to extreme-acidity range of 3.8-2.0. Also, its high fluorescence quantum yield (Φ = 0.89) and large Stokes shift (110 nm) are favorable. Moreover, QVBI possesses highly selective response to H(+) over metal ions and some bioactive molecules, good photostability, and excellent reversibility. The probe has excellent cell membrane permeability and is further applied successfully to monitor pH fluctuations in live cells and imaging extreme acidity in Escherichia coli cells without influence of autofluorescence and native cellular species in biological systems. PMID:25664606

  3. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    PubMed

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-01

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy.

  4. Implications of pH manipulation methods for metal toxicity: not all acidic environments are created equal.

    PubMed

    Esbaugh, A J; Mager, E M; Brix, K V; Santore, R; Grosell, M

    2013-04-15

    The toxicity of many metals is impacted by environmental pH, through both competition and complexation by hydroxide and carbonate ions. To establish safe environmental regulation it is important to properly define the relationship between pH and metal toxicity, a process that involves manipulating the pH of test water in the lab. The current study compares the effects of the three most common pH manipulation methods (carbon dioxide, acid-base addition, and chemical buffers) on acute Pb toxicity of a model fish species, Pimephales promelas. Acidification of test water revealed that the Pb and Pb(2+) LC50 values were impacted by the pH manipulation method, with the following order of effects: HClpH was alkalinized using MOPS or NaOH. The different impacts of pH manipulation methods on Pb toxicity are likely due to different physiological stresses resulting from the respective methods; the physiological implications of each method are discussed. The results suggest that when studying the impacts of pH on metal toxicity it is important to properly replicate the ambient conditions of interest as artificial buffering using CO2 environments or organic buffers significantly affects the physiology of the test organisms above and beyond what is expected from pH alone. Thus, using CO2 and organic buffers overestimates the impact of acid pH on Pb toxicity.

  5. A new method for determining gastric acid output using a wireless ph sensing capsule

    PubMed Central

    Weinstein, D.H.; deRijke, S.; Chow, C. C.; Foruraghi, L.; Zhao, X.; Wright, E.C.; Whatley, M.; Maass-Moreno, R.; Chen, C. C.; Wank, S. A.

    2013-01-01

    BACKGROUND Gastroesophageal reflux disease (GERD) and gastric acid hypersecretion respond well to suppression of gastric acid secretion. However, clinical management and research in diseases of acid secretion have been hindered by the lack of a non-invasive, accurate and reproducible tool to measure gastric acid output (GAO). Thus, symptoms or, in refractory cases, invasive testing may guide acid suppression therapy. AIM To present and validate a novel, non-invasive method of GAO analysis in healthy subjects using a wireless pH sensor, SmartPill® (SP) (SmartPill® Corporation, Buffalo, NY). METHODS Twenty healthy subjects underwent conventional GAO studies with a nasogastric tube. Variables impacting liquid meal-stimulated GAO analysis were assessed by modeling and in vitro verification. Buffering capacity of Ensure Plus® was empirically determined. SP GAO was calculated using the rate of acidification of the Ensure Plus® meal. Gastric emptying scintigraphy and GAO studies with radiolabeled Ensure Plus® and SP assessed emptying time, acidification rate and mixing. Twelve subjects had a second SP GAO study to assess reproducibility. RESULTS Meal stimulated SP GAO analysis was dependent on acid secretion rate and meal buffering capacity but not on gastric emptying time. On repeated studies, SP GAO strongly correlated with conventional BAO (r=0.51, P=0.02), MAO (r=0.72, P=0.0004) and PAO; (r=0.60, P=0.006). The SP sampled the stomach well during meal acidification. CONCLUSIONS SP GAO analysis is a non-invasive, accurate and reproducible method for the quantitative measurement of GAO in healthy subjects. SP GAO analysis could facilitate research and clinical management of GERD and other disorders of gastric acid secretion. PMID:23639004

  6. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    SciTech Connect

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J.; Purdue

    2010-07-27

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

  7. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~ 4 and ~ 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH ~ 14 and brown at pH ~ 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH ~ 14 and Forms "A", "D", and "P" at pH ~ 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH ~ 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at ~ 1548 cm- 1 in NRS while in the SERS window this appears at ~ 1580 cm- 1. Similar observation was also made for CZA at pH ~ 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at ~ 447 cm- 1 in the SERS spectrum as well as other bands at ~ 850, ~ 1067 and ~ 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH ~ 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH ~ 14). The DFT

  8. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these

  9. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. PMID:24240104

  10. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  11. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. PMID:26116387

  12. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  13. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  14. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  15. Is it possible to produce succinic acid at a low pH?

    PubMed

    Yuzbashev, Tigran V; Yuzbasheva, Evgeniya Y; Laptev, Ivan A; Sobolevskaya, Tatiana I; Vybornaya, Tatiana V; Larina, Anna S; Gvilava, Ilia T; Antonova, Svetlana V; Sineoky, Sergey P

    2011-01-01

    Bio-based succinate is still a matter of special emphasis in biotechnology and adjacent research areas. The vast majority of natural and engineered producers are bacterial strains that accumulate succinate under anaerobic conditions. Recently, we succeeded in obtaining an aerobic yeast strain capable of producing succinic acid at low pH. Herein, we discuss some difficulties and advantages of microbial pathways producing "succinic acid" rather than "succinate." It was concluded that the peculiar properties of the constructed yeast strain could be clarified in view of a distorted energy balance. There is evidence that in an acidic environment, the majority of the cellular energy available as ATP will be spent for proton and anion efflux. The decreased ATP:ADP ratio could essentially reduce the growth rate or even completely inhibit growth. In the same way, the preference of this elaborated strain for certain carbon sources could be explained in terms of energy balance. Nevertheless, the opportunity to exclude alkali and mineral acid waste from microbial succinate production seems environmentally friendly and cost-effective.

  16. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ∆G o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  17. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    PubMed

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  18. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  19. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system. PMID:19968099

  20. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin. PMID:6124639

  1. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  2. Faecal pH, bile acid and sterol concentrations in premenopausal Indian and white vegetarians compared with white omnivores.

    PubMed

    Reddy, S; Sanders, T A; Owen, R W; Thompson, M H

    1998-06-01

    Faecal bulk, pH, water content, the concentrations of neutral sterols and bile acids and dietary intakes were measured in twenty-two Indian vegetarian, twenty-two white omnivorous and eighteen white vegetarian premenopausal women. Faecal bulk and water content were greater and pH lower in the Indian vegetarians. Total faecal animal sterol and coprostanol concentrations expressed on a dry-weight basis were lower in the vegetarians compared with the omnivores. The faecal sterol concentrations were correlated with dietary cholesterol intake. Primary bile acids were detected in six Indian vegetarians, two white vegetarians and two white omnivores; secondary bile acids were detected in all the white omnivores and vegetarian subjects but not in two of the Indian vegetarians. Total faecal free bile acid and conjugated bile acid concentrations were lower in the white vegetarians compared with the omnivores. Faecal lithocholic acid concentrations were lower in both Indian and white vegetarians. The lithocholic: deoxycholic acid ratio and coprostanol: total animal sterols ratio were significantly lower in the Indian vegetarians compared with the omnivores. Both ratios were positively correlated with faecal pH. Stepwise multiple regression analyses were undertaken in order to identify which nutrients influenced faecal pH, lithocholic and deoxycholic acid concentrations. The intakes of starch and dietary fibre were negatively associated with faecal concentrations of lithocholic and deoxycholic acid. Starch intake alone was negatively associated with faecal pH. The results of this study confirm that diets high in dietary fibre decrease faecal bile acid concentrations and suggest that the complex carbohydrates present in Indian vegetarian diets influence faecal pH and inhibit the degradation of faecal steroids.

  3. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies.

    PubMed

    Pellegrini, Paola; Strambi, Angela; Zipoli, Chiara; Hägg-Olofsson, Maria; Buoncervello, Maria; Linder, Stig; De Milito, Angelo

    2014-04-01

    Acidic pH is an important feature of tumor microenvironment and a major determinant of tumor progression. We reported that cancer cells upregulate autophagy as a survival mechanism to acidic stress. Inhibition of autophagy by administration of chloroquine (CQ) in combination anticancer therapies is currently evaluated in clinical trials. We observed in 3 different human cancer cell lines cultured at acidic pH that autophagic flux is not blocked by CQ. This was consistent with a complete resistance to CQ toxicity in cells cultured in acidic conditions. Conversely, the autophagy-inhibiting activity of Lys-01, a novel CQ derivative, was still detectable at low pH. The lack of CQ activity was likely dependent on a dramatically reduced cellular uptake at acidic pH. Using cell lines stably adapted to chronic acidosis we could confirm that CQ lack of activity was merely caused by acidic pH. Moreover, unlike CQ, Lys-01 was able to kill low pH-adapted cell lines, although higher concentrations were required as compared with cells cultured at normal pH conditions. Notably, buffering medium pH in low pH-adapted cell lines reverted CQ resistance. In vivo analysis of tumors treated with CQ showed that accumulation of strong LC3 signals was observed only in normoxic areas but not in hypoxic/acidic regions. Our observations suggest that targeting autophagy in the tumor environment by CQ may be limited to well-perfused regions but not achieved in acidic regions, predicting possible limitations in efficacy of CQ in antitumor therapies. PMID:24492472

  4. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    PubMed

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity.

  5. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  6. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  7. Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH.

    PubMed

    Droghetti, Enrica; Sumithran, Suganya; Sono, Masanori; Antalík, Marián; Fedurco, Milan; Dawson, John H; Smulevich, Giulietta

    2009-09-01

    The heme iron coordination of ferric myoglobin (Mb) in the presence of 9.0M urea and 8.0M acetic acid at acidic pH values has been probed by electronic absorption, magnetic circular dichroism and resonance Raman spectroscopic techniques. Unlike Mb at pH 2.0, where heme is not released from the protein despite the acid denaturation and the loss of the axial ligand, upon increasing the concentration of either urea or acetic acid, a spin state change is observed, and a novel, non-native six-coordinated high-spin species prevails, where heme is released from the protein.

  8. Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH

    PubMed Central

    Droghetti, Enrica; Sumithran, Suganya; Sono, Masanori; Antalík, Marián; Fedurco, Milan; Dawson, John H.; Smulevich, Giulietta

    2009-01-01

    The heme iron coordination of ferric myoglobin (Mb) in the presence of 9.0 M urea and 8.0 M acetic acid at acidic pH values has been probed by electronic absorption, magnetic circular dichroism and resonance Raman spectroscopic techniques. Unlike Mb at pH 2.0, where heme is not released from the protein despite the acid denaturation and the loss of the axial ligand, upon increasing the concentration of either urea or acetic acid, a spin state change is observed, and a novel, non-native six-coordinated high spin species prevails, where heme is released from the protein. PMID:19622342

  9. Measurement of luminal pH of acidic stores as a readout for NAADP action.

    PubMed

    Galione, Antony; Chuang, Kai-Ting; Funnell, Tim M; Davis, Lianne C; Morgan, Anthony J; Ruas, Margarida; Parrington, John; Churchill, Grant C

    2014-10-01

    In addition to mobilizing Ca²⁺, NAADP plays a role in modulating the luminal pH (pHL) of acidic stores of the endolysosomal system. The effects of NAADP on pHL have been most extensively studied in the sea urchin egg, both in the intact egg and in egg homogenates. Related observations have also been made in mammalian systems (e.g., guinea pig atrial myocytes and pancreatic acinar cells). Although the connection between Ca²⁺ mobilization and increase in pHL is not understood, pHL can be a useful parameter to measure when studying NAADP-mediated signaling. This protocol describes the fluorescent measurement of pHL of acidic stores. It relies on the use of acridine orange (AO), a standard dye for pHL. AO selectively accumulates to high concentrations in the lumen of organelles as a function of acidity; at these high concentrations it self-quenches. When pHL increases, some AO is lost from the vesicle. As a result, the lower luminal AO concentration relieves the quenching and fluorescence increases in the lumen.

  10. L-ascorbic acid quenching of singlet delta molecular oxygen in aqueous media: generalized antioxidant property of vitamin C

    SciTech Connect

    Chou, P.T.; Khan, A.U.

    1983-09-30

    L-ascorbic acid quenches singlet (/sup 1/..delta../sub g/) molecular oxygen in aqueous media (pH 6.8 for (/sup 1/H)H/sub 2/O and pD 7.2 for (/sup 2/H)D/sub 2/O) as measured directly by monitoring (0,0) /sup 1/..delta../sub g/ ..-->.. /sup 3/..sigma../sub g//sup -/ emission at 1.28 micron. Singlet oxygen was generated at room temperature in the solutions via photosensitization of sodium chrysene sulfonate; this sulfonated polycyclic hydrocarbon was synthesized to provide a water soluble chromophore inert to usual dye-ascorbate photobleaching. A marked isotope effect is found; k/sub Q//sup H/sub 2/O/ is 3.3 times faster than k/sub Q//sup D/sub 2/O/, suggesting ascorbic acid is chemically quenching singlet oxygen.

  11. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  12. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria.

    PubMed

    Süle, Judit; Kõrösi, Tímea; Hucker, Attila; Varga, László

    2014-01-01

    The purpose of this study was to test the suitability of Transgalactosylated oligosaccharides-mupirocin lithium salt (TOS-MUP) and MRS-clindamycin-ciprofloxacin (MRS-CC) agars, along with several other culture media, for selectively enumerating bifidobacteria and lactic acid bacteria (LAB) species commonly used to make fermented milks. Pure culture suspensions of a total of 13 dairy bacteria strains, belonging to eight species and five genera, were tested for growth capability under various incubation conditions. TOS-MUP agar was successfully used for the selective enumeration of both Bifidobacterium animalis subsp. lactis BB-12 and B. breve M-16 V. MRS-CC agar showed relatively good selectivity for Lactobacillus acidophilus, however, it also promoted the growth of Lb. casei strains. For this reason, MRS-CC agar can only be used as a selective medium for the enumeration of Lb. acidophilus if Lb. casei is not present in a product at levels similar to or exceeding those of Lb. acidophilus. Unlike bifidobacteria and coccus-shaped LAB, all the lactobacilli strains involved in this work were found to grow well in MRS pH 5.4 agar incubated under anaerobiosis at 37 °C for 72 h. Therefore, this method proved to be particularly suitable for the selective enumeration of Lactobacillus spp.

  13. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    PubMed

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries.

  14. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    PubMed

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  15. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  16. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    PubMed

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-01

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy. PMID:25412478

  17. Boronate-Phenolic Network Capsules with Dual Response to Acidic pH and cis-Diols.

    PubMed

    Guo, Junling; Sun, Huanli; Alt, Karen; Tardy, Blaise L; Richardson, Joseph J; Suma, Tomoya; Ejima, Hirotaka; Cui, Jiwei; Hagemeyer, Christoph E; Caruso, Frank

    2015-08-26

    Dual-responsive boronate-phenolic network (BPN) capsules are fabricated by the complexation of phenylborate and phenolic materials. The BPN capsules are stable in the presence of competing carbohydrates, but dissociate at acidic pH or in the presence of competing cis-diols at physiological pH. This engineered capsule system provides a platform for a wide range of biological and biomedical applications.

  18. First-principles calculation of thermodynamic stability of acids and bases under pH environment: A microscopic pH theory

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Kwiseon; Zhang, S. B.

    2012-04-01

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H+, OH-, NH3, NH4+, HCOOH, and HCOO- in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH3 and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  19. First-Principles Calculation of Thermodynamic Stability of Acids and Bases under pH Environment: A Microscopic pH Theory

    SciTech Connect

    Kim, Y. H.; Kim, K.; Zhang, S. B.

    2012-04-07

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H{sup +}, OH{sup -}, NH{sub 3}, NH{sub 4}{sup +}, HCOOH, and HCOO{sup -} in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH{sub 3} and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  20. First-principles calculation of thermodynamic stability of acids and bases under pH environment: a microscopic pH theory.

    PubMed

    Kim, Yong-Hyun; Kim, Kwiseon; Zhang, S B

    2012-04-01

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H(+), OH(-), NH(3), NH(4)(+), HCOOH, and HCOO(-) in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH(3) and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability. PMID:22482545

  1. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    PubMed

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor.

  2. Acid-active neuraminidases in the growth media from cultures of pathogenic Naegleria fowleri and in sonicates of rabbit alveolar macrophages.

    PubMed

    Eisen, D; Franson, R C

    1987-05-19

    Using bovine mucin and isolated human myelin as sources of sialic acid, we demonstrate the presence of neuraminidase activities in the growth media of pathogenic, but not nonpathogenic, Naegleria sp. and in sonicates of rabbit alveolar macrophages. Neuraminidase activity was maximal at pH 4.5 and 5.0, and the specific activity for sialic acid release was up to 13-fold greater with mucin than with human myelin. Activity in the growth media from cultures of pathogenic Naegleria fowleri was ion-independent, while that of macrophage sonicates required divalent cation; optimal activity was noted with 2.5 mM Zn2+, while Mg2+ and Mn2+ supported activity to a lesser extent. Such acid-active neuraminidases may contribute to the reported glycolipid alterations associated with demyelinating diseases.

  3. Temperature and pH responsiveness of poly-(DMAA-co-unsaturated carboxylic acid) hydrogels synthesized by UV-irradiation

    NASA Astrophysics Data System (ADS)

    Kakinoki, Sachiro; Kaetsu, Isao; Nakayama, Masashi; Sutani, Kouichi; Uchida, Kumao; Yukutake, Kouji

    2003-07-01

    Stimuli-responsive polyampholyte hydrogels were synthesized by the copolymerization of dimethylaminoethyl methacrylate (DMAA) and acrylic acid (AAc) or itaconic acid (IAc) by UV-irradiation. Temperature and pH responsiveness of these hydrogels were studied. The temperature responsiveness of poly-(DMAA-co-AAc, IAc) hydrogels shown in change of water content became dull compared to that of DMAA homo-polymer hydrogel. The water content of the poly-(DMAA-co-AAc, IAc) hydrogels showed a minimum at pH 8, and increased in more acidic and alkaline regions. This fact can be attributed to the coexistence of anions and cations in the poly-(DMAA-co-AAc, IAc) hydrogels. The poly-(DMAA-co-AAc, IAc) hydrogels were polyampholyte having both temperature responsiveness and pH responsiveness.

  4. Media.

    ERIC Educational Resources Information Center

    Allen, Lee E., Ed.

    1974-01-01

    Intended for secondary English teachers, the materials and ideas presented here suggest ways to use media in the classroom in teaching visual and auditory discrimination while enlivening classes and motivating students. Contents include "Media Specialists Need Not Apply," which discusses the need for preparation of media educators with…

  5. X-ray absorption and resonance raman spectroscopy of human myeloperoxidase at neutral and acid pH.

    PubMed

    Yue, K T; Taylor, K L; Kinkade, J M; Sinclair, R B; Powers, L S

    1997-04-01

    Myeloperoxidase (MPO), an important enzyme in the oxygen-dependent host defense system of human polymorphonuclear leukocytes, utilizes hydrogen peroxide to catalyze the production of hypochlorous acid, an oxidizing bactericidal agent. While MPO shows significant sequence homology with other peroxidases and this homology is particularly striking among the active-site residues, MPO exhibits unusual spectral features and the unique ability to catalyze the oxidation of chloride ions. We have investigated the MPO active-site with X-ray absorption (XAS) and resonance Raman (RRS) spectroscopies at neutral pH and also at the physiological acidic pH (pH approximately 3) and have compared these results with those of horseradish peroxidase (HRP). At pH 7.5, XAS results show that the iron heme active site is 6-coordinate where the distal ligand is likely nitrogen or oxygen, but not sulfur. The heme is distorted compared to HRP, other peroxidases, and heme compounds, but at pH approximately 3, the distal ligand is lost and the heme is less distorted. RRS results under identical pH conditions show that the skeletal core-size sensitive modes and v3 are shifted to higher frequency at pH approximately 3 indicating a 6- to 5-coordination change of high spin ferric heme. In addition, a new band at 270 cm(-1) is observed at pH approximately 3 which is consistent with the loss of the sixth ligand. The higher symmetry of the heme at pH approximately 3 is reflected by a single v4 mode in the (RRS) spectrum. HRP also loses its loosely associated distal water at this pH, but little change in heme distortion is observed. This change suggests that loss of the distal ligand in MPO releases stress on the heme which may facilitate binding of chloride ion.

  6. Conformational stability of human erythrocyte transglutaminase. Patterns of thermal unfolding at acid and alkaline pH.

    PubMed

    Bergamini, C M; Dean, M; Matteucci, G; Hanau, S; Tanfani, F; Ferrari, C; Boggian, M; Scatturin, A

    1999-12-01

    Tissue-type transglutaminase is irreversibly inactivated during heat treatment. The rate of inactivation is low at pH 7.5; it increases slightly at acid pH (6.1) but much more at alkaline pH (9.0-9.5), suggesting that specific effects take place in the alkaline range, possibly in relation to decreased stability of the transition-state intermediate as pH is raised above 9.0. Differential scanning calorimetry experiments indicate that thermal unfolding of the protein occurs with two separate transitions, involving independent regions of the enzyme. They are assigned to domains 1 and 2 and domains 3 and 4, respectively, by a combination of calorimetric and spectroscopic techniques. When considering the effects of pH, we noted that transglutaminase was unfolded via different pathways at the different pH values considered. At acid pH, the whole structure of the protein was lost irreversibly, with massive aggregation. At neutral and, even more so, at alkaline pH, aggregation was absent (or very limited at high protein concentration) and the loss of secondary structure was dependent on the ionization state of crucial lysine residues. Unfolding at pH 9.5 apparently chiefly involved the N-terminal region, as testified by changes in protein intrinsic fluorescence. In addition, the C-terminal region was destabilized at each pH value tested during thermal unfolding, as shown by digestion with V8 proteinase, which is inactive on the native protein. Evidence was obtained that the N-terminal and C-terminal regions interact with each other in determining the structure of the native protein. PMID:10561600

  7. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  8. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  9. Development of On-Line Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes

    SciTech Connect

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.; Levitskaia, Tatiana G.; Peterson, James M.; Smith, Frances N.; Bryan, Samuel A.

    2015-05-19

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.

  10. Acid-extrusion from tissue: the interplay between membrane transporters and pH buffers.

    PubMed

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2012-01-01

    The acid-base balance of cells is related to the concentration of free H⁺ ions. These are highly reactive, and their intracellular concentration must be regulated to avoid detrimental effects to the cell. H⁺ ion dynamics are influenced by binding to chelator substances ('buffering'), and by the production, diffusion and membrane-transport of free H⁺ ions or of the H⁺-bound chelators. Intracellular pH (pHi) regulation aims to balance this system of diffusion-reaction-transport processes at a favourable steady-state pHi. The ability of cells to regulate pHi may set a limit to tissue growth and can be subject to selection pressures. Cancer cells have been postulated to respond favourably to such selection pressures by evolving a better means of pHi regulation. A particularly important feature of tumour pHi regulation is acid-extrusion, which involves H⁺-extrusion and HCO₃⁻-uptake by membrane-bound transporter-proteins. Extracellular CO₂/HCO₃⁻ buffer facilitates these membrane-transport processes. As a mobile pH-buffer, CO₂/HCO₃⁻ protects the extracellular space from excessive acidification that could otherwise inhibit further acid-extrusion. CO₂/HCO₃⁻ also provides substrate for HCO₃⁻-transporters. However, the inherently slow reaction kinetics of CO₂/HCO₃⁻ can be rate-limiting for acid-extrusion. To circumvent this, cells can express extracellular-facing carbonic anhydrase enzymes to accelerate the attainment of equilibrium between CO₂, HCO₃⁻ and H⁺. The acid-extrusion apparatus has been proposed as a target for anti-cancer therapy. The major targets include H⁺ pumps, Na⁺/H⁺ exchangers and carbonic anhydrases. The effectiveness of such therapy will depend on the correct identification of rate-limiting steps in pHi regulation in a specific type of cancer. PMID:22360560

  11. Modeling the combined effects of pH, temperature and ascorbic acid concentration on the heat resistance of Alicyclobacillus acidoterrestis.

    PubMed

    Bahçeci, K Savaş; Acar, Jale

    2007-12-15

    In this study, thermal inactivation parameters (D- and z-values) of Alicyclobacillus acidoterrestris spores in McIlvaine buffers at different pH, apple juice and apple nectar produced with and without ascorbic acid addition were determined. The effects of pH, temperature and ascorbic acid concentration on D-values of A. acidoterrestris spores were also investigated using response surface methodology. A second order polynomial equation was used to describe the relationship between pH, temperature, ascorbic acid concentration and the D-values of A. acidoterrestris spores. Temperature was the most important factor on D-values, and its effect was three times higher than those of pH. Although the statistically significant, heat resistance of A. acidoterrestris spores was not so influenced from the ascorbic acid within the concentration studied. D-values in apple juice and apple nectars were higher than those in buffers as heating medium at similar pH. The D-values ranged from 11.1 (90 degrees C) to 0.7 min (100 degrees C) in apple juice, 14.1 (90 degrees C) to 1.0 min (100 degrees C) in apple nectar produced with ascorbic acid addition, and 14.4 (90 degrees C) to 1.2 min (100 degrees C) in apple nectar produced without ascorbic acid addition. However, no significant difference in z-values was observed among spores in the juices and buffers at different pH, and it was between 8.2 and 9.2 degrees C. The results indicated that the spores of A. acidoterrestris may survive in fruit juices and nectars after pasteurization treatment commonly applied in the food industry.

  12. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. PMID:25710573

  13. On the Mechanism by which Alkaline pH Prevents Expression of an Acid-Expressed Gene

    PubMed Central

    Espeso, Eduardo A.; Arst, Herbert N.

    2000-01-01

    Previous work has shown that zinc finger transcription factor PacC mediates the regulation of gene expression by ambient pH in the fungus Aspergillus nidulans. This regulation ensures that the syntheses of molecules functioning in the external environment, such as permeases, secreted enzymes, and exported metabolites, are tailored to the pH of the growth environment. A direct role for PacC in activating the expression of an alkaline-expressed gene has previously been demonstrated, but the mechanism by which alkaline ambient pH prevents the expression of any eukaryotic acid-expressed gene has never been reported. Here we show that a double PacC binding site in the promoter of the acid-expressed gabA gene, encoding γ-aminobutyrate (GABA) permease, overlaps the binding site for the transcriptional activator IntA, which mediates ω-amino acid induction. Using bacterially expressed fusion proteins, we have shown that PacC competes with IntA for DNA binding in vitro at this site. Thus, PacC repression of GABA permease synthesis is direct and occurs by blocking induction. A swap of IntA sites between promoters for gabA and amdS, a gene not subject to pH regulation, makes gabA expression pH independent and amdS acid expressed. PMID:10779325

  14. Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage

    SciTech Connect

    Senko, J.M.; Zhang, G.X.; McDonough, J.T.; Bruns, M.A.; Burgos, W.D.

    2009-07-01

    We isolated an acid-tolerant sulfate-reducing bacterium, GBSRB4.2, from coal mine-derived acidic mine drainage (AMD)-derived sediments. Sequence analysis of partial 16S rRNA gene of GBSRB4.2 revealed that it was affiliated with the genus Desulfosporosinus. GBSRB4.2 reduced sulfate, Fe(III) (hydr)oxide, Mn(IV) oxide, and U(VI) in acidic solutions (pH 4.2). Sulfate, Fe(III), and Mn(IV) but not U(VI) bioreduction led to an increase in the pH of acidic solutions and concurrent hydrolysis and precipitation of dissolved Al{sup 3+}. Reduction of Fe(III), Mn(IV), and U(VI) in sulfate-free solutions revealed that these metals are enzymatically reduced by GBSRB4.2. GBSRB4.2 reduced U(VI) in groundwater from a radionuclide-contaminated aquifer more rapidly at pH 4.4 than at pH 7.1, possibly due to the formation of poorly bioreducible Ca-U(VI)-CO{sub 3} complexes in the pH 7.1 groundwater.

  15. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence

    PubMed Central

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-01-01

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQW104C-A128C is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQW104C-A128C Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence. DOI: http://dx.doi.org/10.7554/eLife.06792.001 PMID:26002083

  16. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  17. Buffer Standards for the Biochemical pH of 3-(N-morpholino)-2-hydroxypropanesulfonic Acid from (278.15 to 328.15) K

    PubMed Central

    Roy, Lakshmi N.; Roy, Rabindra N.; Denton, Cole E.; LeNoue, Sean R.; Roy, Chandra N.; Ashkenazi, Shahaf; Fuge, Michael S.; Wollen, Joshua T.; Stegner, Jessica M.; Allen, Kathleen A.; Harmon, Meagan A.

    2009-01-01

    The values of the second dissociation constant pK2 and related thermodynamic quantities of the ampholyte 3-(N-morpholino)-2-hydroxypropanesulfonic acid (MOPSO) have been previously determined at temperatures from (278.15 to 328.15) K. In this study, the pH values of two buffer solutions without NaCl and three buffer solutions with NaCl having ionic strengths (I = 0.16 mol·kg−1) similar to those in blood plasma, have been evaluated at 12 temperatures from (278.15 to 328.15) K using an extended form of the Debye-Hückel equation, since the Bates-Guggenheim convention is valid up to I = 0.1 mol·kg−1. The liquid junction potentials (Ej) between the buffer solutions of MOPSO and saturated KCl solution of the calomel electrode at (298.15 and 310.15) K have been estimated by measurement with a flowing junction cell. These values of Ej have been used to ascertain the operational pH values at (298.15 and 310.15) K. Three buffer solutions of MOPSO are recommended as useful reference solutions for pH measurements in saline media of ionic strength I = 0.16 mol·kg−1. PMID:20160876

  18. Buffer Standards for the Biochemical pH of 3-(N-morpholino)-2-hydroxypropanesulfonic Acid from (278.15 to 328.15) K.

    PubMed

    Roy, Lakshmi N; Roy, Rabindra N; Denton, Cole E; Lenoue, Sean R; Roy, Chandra N; Ashkenazi, Shahaf; Fuge, Michael S; Wollen, Joshua T; Stegner, Jessica M; Allen, Kathleen A; Harmon, Meagan A

    2009-06-11

    The values of the second dissociation constant pK(2) and related thermodynamic quantities of the ampholyte 3-(N-morpholino)-2-hydroxypropanesulfonic acid (MOPSO) have been previously determined at temperatures from (278.15 to 328.15) K. In this study, the pH values of two buffer solutions without NaCl and three buffer solutions with NaCl having ionic strengths (I = 0.16 mol·kg(-1)) similar to those in blood plasma, have been evaluated at 12 temperatures from (278.15 to 328.15) K using an extended form of the Debye-Hückel equation, since the Bates-Guggenheim convention is valid up to I = 0.1 mol·kg(-1). The liquid junction potentials (E(j)) between the buffer solutions of MOPSO and saturated KCl solution of the calomel electrode at (298.15 and 310.15) K have been estimated by measurement with a flowing junction cell. These values of E(j) have been used to ascertain the operational pH values at (298.15 and 310.15) K. Three buffer solutions of MOPSO are recommended as useful reference solutions for pH measurements in saline media of ionic strength I = 0.16 mol·kg(-1).

  19. Suitability of peracetic acid for sterilization of media for mycoplasma cultures.

    PubMed Central

    Wutzler, P; Sprössig, M; Peterseim, H

    1975-01-01

    The utility of peracetic acid for sterilization of serum and yeast extract additions to mycoplasma medium was studied by culturing six Mycoplasma species. Culture media containing additions that had been sterilized with peracetic acid proved to be as good as filtered components. The use of 0.05 to 0.1% peracetic acid is recommended to sterilize the serum and yeast extract additions since savings in time and equipment can be accomplished. PMID:1100656

  20. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure.

  1. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    PubMed

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE. PMID:27434592

  2. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. PMID:24637445

  3. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  4. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core-hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  5. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.

    PubMed

    Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert

    2014-12-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media.

  6. Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes.

    PubMed

    Badugu, Ramachandram; Lakowicz, Joseph R; Geddes, Chris D

    2005-04-30

    We describe the pH response of a set of isomeric water-soluble fluorescent probes based on both the 6-aminoquinolinium and boronic acid moieties. These probes show spectral shifts and intensity changes with pH, in a wavelength-ratiometric and colorimetric manner. Subsequently, changes in pH can readily be determined around the physiological level. Although boronic acid containing probes are known to exhibit pH sensitivity along with an ability for saccharide binding/chelating, the new probes reported here are considered to be unique and show an unperturbed pH response, even in the presence of high concentrations of background saccharide, such as with glucose and fructose, allowing for the predominant pH sensitivity. The response of the probes is based on the ability of the boronic acid group to interact with strong bases like OH(-), changing from the neutral form of the boronic acid group, R-B(OH)(2), to the anionic ester, R-B(-)(OH)(3), form, which is an electron donating group. The presence of an electron deficient quaternary heterocyclic nitrogen center and a strong electron donating amino group in the 6-position of the quinolinium backbone, provides for the spectral changes observed upon OH(-) complexation. In addition, by comparing the results obtained with systems separately incorporating 6-methoxy or 6-methyl substituents, the suppressed response towards monosaccharides, such as with glucose and fructose, can clearly be observed for these systems. Finally we compare our results to those of a control compound, BAQ, which does not contain the boronic acid group, allowing a rationale of the spectral changes to be made.

  7. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    NASA Astrophysics Data System (ADS)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  8. Inactivation kinetics of pulsed electric field-resistant strains of Listeria monocytogenes and Staphylococcus aureus in media of different pH.

    PubMed

    Saldaña, G; Puértolas, E; Condón, S; Alvarez, I; Raso, J

    2010-06-01

    A study of the effect of pulsed electric fields (PEF) on the inactivation of Listeria monocytogenes STCC 5672 and Staphylococcus aureus STCC 4459 in McIlvaine buffer covering a range from pH 3.5 to 7.0 was conducted. Mathematical models based on the Weibull distribution were developed to describe the influence of the electric field strength, treatment time and pH of the treatment medium on the lethality of both Gram positive pathogenic bacteria after PEF treatments. Both microorganisms were more sensitive to PEF in media of low pH, although the influence of the pH on the PEF resistance was more significant in S. aureus. In the best cases scenario, the highest inactivation levels achieved were 3.3 and 6.1 log(10) cycles for L. monocytogenes and S. aureus respectively in pH 3.5 after 500 micros of 35 kV/cm. Based on these results and those observed in literature, L. monocytogenes STCC 5672 at any pH investigated has been shown as one of the most PEF resistant microorganism. Therefore, this microorganism should be considered as a possible target microorganism to define process criterion for PEF pasteurization. PMID:20417406

  9. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  10. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  11. Solid-phase microextraction with pH adjustment for the determination of aromatic acids and bases in water.

    PubMed

    van Doorn, H; Grabanski, C B; Miller, D J; Hawthorne, S B

    1998-12-31

    Adjusting the pH of water samples before performing solid-phase microextraction (SPME) analysis can be used to selectively extract organic acids (at pH 2) and bases (at pH 12). Sorption behavior of test organics is predictable based on the acid dissociation constant in water. In general, polyacrylate (PA) and Carbowax-divinylbenzene (CW-DVB) show substantially higher fiber/water sorption coefficients (Kd values) than a polydimethylsiloxane (PDMS) coated fiber. Gas chromatography-flame ionization detection (GC-FID) detection limits with the CW-DVB sorbent are approximately 0.5 to 10 ng/ml in a 2-ml water sample for a variety of aromatic amines, phenols, and chlorinated phenols, and are approximately 1 to 50 ng/ml for the same solutes using the PA sorbent. However, the PA fiber is more selective (depending on the water pH) for the acid or base components than the CW-DVB fiber. With proper pH adjustment, the recovery of spiked aromatic amines and phenols from a surface wetlands water ranged from 73 to 118% of the known values, with a precision (R.S.D.) of approximately 5 to 20%. SPME quantitation of phenols in a coal gasification wastewater using a PA fiber also gave excellent agreement with conventional methylene chloride extraction, although continued use of a single fiber with this wastewater led to poorer precision.

  12. Benzimidazole-based ratiometric two-photon fluorescent probes for acidic pH in live cells and tissues.

    PubMed

    Kim, Hyung Joong; Heo, Cheol Ho; Kim, Hwan Myung

    2013-11-27

    Many aspects of cell metabolism are controlled by acidic pH. We report a new family of small molecule and ratiometric two photon (TP) probes derived from benzimidazole (BH1-3 and BH1L) for monitoring acidic pH values. These probes are characterized by a strong two-photon excited fluorescence, a marked blue-to-green emission color change in response to pH, pKa values ranging from 4.9 to 6.1, a distinctive isoemissive point, negligible cytotoxicity, and high photostability, thereby allowing quantitative analysis of acidic pH. Moreover, we show that BH1L optimized as a lysosomal-targeted probe allows for direct, real-time estimation of the pH values inside lysosomal compartments in live cells as well as in living mouse brain tissues through the use of two-photon microscopy. These findings demonstrate that these probes will find useful applications in biomedical research.

  13. Why Not Replace pH and pOH by Just One Real Acidity Grade, AG?

    NASA Astrophysics Data System (ADS)

    van Lubeck, Henk

    1999-07-01

    The definition of pH according to Sörensen (1909) as pH = -log [H+] offers some striking disadvantages to beginning students in a chemistry course, especially those with no knowledge of logarithms. They will face some puzzling consequences of this definition such as (i) pH of a neutral solution equals 7.0, a value which changes with temperature, and (ii) pH of an acidic solution will rise after dilution. The corresponding disadvantages hold good for pOH in alkaline solutions. These disadvantages disappear after replacing pH and pOH by AG, the acidity grade: AG = log [H+]/[OH-]. AG of neutral solutions equals 0 at all temperatures, whereas AG of acidic solutions is positive and of alkaline solutions, negative. AG offers some other minor advantages as well. Anybody using AG in calculations needs some knowledge of chemical equilibrium, in particular the reversible heterolytic dissociation of water. However, breaking with a long tradition appears to be the major obstacle to an introduction of AG.

  14. Iridium-based double perovskites for efficient water oxidation in acid media

    NASA Astrophysics Data System (ADS)

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-08-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2.

  15. Iridium-based double perovskites for efficient water oxidation in acid media

    PubMed Central

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J.; Wezendonk, Tim; Gascon, Jorge; Fu, W. T.; Koper, Marc T. M.

    2016-01-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2. PMID:27498694

  16. Iridium-based double perovskites for efficient water oxidation in acid media.

    PubMed

    Diaz-Morales, Oscar; Raaijman, Stefan; Kortlever, Ruud; Kooyman, Patricia J; Wezendonk, Tim; Gascon, Jorge; Fu, W T; Koper, Marc T M

    2016-01-01

    The development of active, cost-effective and stable oxygen-evolving catalysts is one of the major challenges for solar-to-fuel conversion towards sustainable energy generation. Iridium oxide exhibits the best available compromise between catalytic activity and stability in acid media, but it is prohibitively expensive for large-scale applications. Therefore, preparing oxygen-evolving catalysts with lower amounts of the scarce but active and stable iridium is an attractive avenue to overcome this economical constraint. Here we report on a class of oxygen-evolving catalysts based on iridium double perovskites which contain 32 wt% less iridium than IrO2 and yet exhibit a more than threefold higher activity in acid media. According to recently suggested benchmarking criteria, the iridium double perovskites are the most active catalysts for oxygen evolution in acid media reported until now, to the best of our knowledge, and exhibit similar stability to IrO2. PMID:27498694

  17. Acidic intracellular pH shift during Caenorhabditis elegans larval development

    SciTech Connect

    Wadsworth, W.G.; Riddle, D.L. )

    1988-11-01

    During recovery from the developmentally arrested, nonfeeding dauer stage of the nemotode Caenorhabditis elegans, metabolic activation is accompanied by a decrease in intracellular pH (pH{sub i}). Phosphorus-31 nuclear magnetic resonance ({sup 31}P NMR) analyses of perchloric acid extracts show that inorganic phosphate predominates in dauer larvae, whereas ATP and other high-energy metabolites are abundant within 6 hr after dauer larvae have been placed in food to initiate development. Although metabolic activation has been associated with an alkaline pH{sub i} shift in other organisms, in vivo {sup 31}P NMR analysis of recovering dauer larvae shows a pH{sub i} decrease from {approx} 7.3 to {approx} 6.3 within 3 hr after the animals encounter food. This shift occurs before feeding begins, and it coincides with, or soon follows, the developmental commitment to recover from the dauer stage, suggesting that control of pH{sub i} may be important in the regulation of larval development in nematodes.

  18. On the use of dimensionless parameters in acid-base theory. IV. The pH of water solutions of acids, bases, and simple ampholytes.

    PubMed

    Rilbe, H

    1993-10-01

    Exact relations between pH and concentrations of water solutions of acids, bases, and simple ampholytes are presented in the form of computer-created curves. These are mathematically analysed with respect to linearity and inflexion points. The extreme invariance of pH in the immediate vicinity of the isoelectric points of ampholytes is demonstrated in curves of the logarithm of molarity as a function of the logarithm of magnitude of pH-pI magnitude of. These considerations include a discussion of the suitability of ampholytes as pH standards. PMID:8125066

  19. On the use of dimensionless parameters in acid-base theory. IV. The pH of water solutions of acids, bases, and simple ampholytes.

    PubMed

    Rilbe, H

    1993-10-01

    Exact relations between pH and concentrations of water solutions of acids, bases, and simple ampholytes are presented in the form of computer-created curves. These are mathematically analysed with respect to linearity and inflexion points. The extreme invariance of pH in the immediate vicinity of the isoelectric points of ampholytes is demonstrated in curves of the logarithm of molarity as a function of the logarithm of magnitude of pH-pI magnitude of. These considerations include a discussion of the suitability of ampholytes as pH standards.

  20. Effect of pH on acid production from sorbitol in washed cell suspensions of oral bacteria.

    PubMed

    Kalfas, S; Maki, Y; Birkhed, D; Edwardsson, S

    1990-01-01

    The acid production from sorbitol and glucose was studied under anaerobic conditions in resting cell suspensions of bacteria from the predominant sorbitol-fermenting human dental plaque flora, belonging to the genera Streptococcus, Lactobacillus and Actinomyces. The acid production activity of the bacterial cells was followed by titration with alkali, at environmental pH 7.0, 6.0 and 5.0 after addition of carbohydrate solution. The metabolic end products formed in the suspensions were analyzed thereafter by isotachophoretic and enzymatic methods. The results showed that sorbitol was fermented at a slower rate than glucose. Lowering the environmental pH decreased the acid production activity from the two carbohydrates. Compared with glucose, the catabolism of sorbitol was affected to greater extent by the pH conditions. The total amount of acids formed from sorbitol was considerably less than from glucose. Lactic acid, which was the major end product in glucose-challenged suspensions, was produced only in low concentrations from sorbitol by all strains tested. The ratio strong (formic + lactic)/weak acids was moreover lower for sorbitol than for glucose. The present results further illustrate some of the mechanisms behind the low cariogenic potential of this sugar substitute.

  1. Acid-coated Textiles (pH 5.5-6.5)--a New Therapeutic Strategy for Atopic Eczema?

    PubMed

    Jaeger, Teresa; Rothmaier, Markus; Zander, Holger; Ring, Johannes; Gutermuth, Jan; Anliker, Mark D

    2015-07-01

    Increased transepidermal water loss (TEWL) and decreased skin capacitance are characteristic features of the disturbed epidermal barrier in atopic eczema (AE). The "acid mantle", which is a slightly acidic film on the surface of the skin has led to the development of acidic emollients for skin care. In this context, the effect of citric acid-coated textiles on atopic skin has not been examined to date. A textile carrier composed of cellulose fibres was coated with a citric acid surface layer by esterification, ensuring a constant pH of 5.5-6.5. Twenty patients with AE or atopic diathesis were enrolled in the study. In a double-blind, half-side experiment, patients had to wear these textiles for 12 h a day for 14 days. On day 0 (baseline), 7 and 14, tolerability (erythema, pruritus, eczema, wearing comfort) and efficacy on skin barrier were assessed by TEWL skin hydration (corneometry/capacitance), pH and clinical scoring of eczema (SCORAD). Citric acid-coated textiles were well tolerated and improved eczema and objective parameters of skin physiology, including barrier function and a reduced skin surface pH, with potential lower pathogenic microbial colonisation.

  2. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  3. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  4. Rat epididymal luminal fluid acid beta-D-galactosidase optimally hydrolyses glycoprotein substrate at neutral pH.

    PubMed Central

    Skudlarek, M D; Tulsiani, D R; Orgebin-Crist, M C

    1992-01-01

    Several glycosidases, purified and characterized from mammalian tissues, have been shown to be optimally active under acidic conditions when p-nitrophenyl (PNP) or 4-methylumbelliferyl glycosides are used as substrates. Although high levels of the glycosidases are present in the epididymal lumen, their physiological role remains uncertain. To be functional, the glycosidases are expected to be enzymatically active at or near the physiological pH of luminal fluid. In this report, we demonstrate that the rat epididymal luminal fluid beta-D-galactosidase, optimally active toward PNP beta-D-galactoside at pH 3.5, shows maximum activity towards a glycoprotein substrate ([Gal-3H]fetuin) at neutral pH. Several lines of evidence, including immunoprecipitation studies using antibody to the acid beta-D-galactosidase, and substrate competition studies, indicate that PNP galactosidase and [3H]Gal galactosidase activities are caused by a single enzyme, and that the two substrates are probably cleaved by the same catalytic site(s). Competition studies with various disaccharides indicate that this enzyme is capable of cleaving a variety of galactose linkages found in both O- and N-linked oligosaccharides. Molecular-sieve column chromatography of the beta-D-galactosidase of luminal fluid under several conditions of buffer and pH show that, whereas the enzyme eluted as a tetramer (apparent M(r) 320,000) under acidic conditions (pH 3.5-4.3), only dimers and monomers (apparent M(r) 180,000 and 92,000 respectively) were observed in neutral conditions (pH 6.8). This aggregation/dissociation phenomenon is reversible. These studies indicate that beta-D-galactosidase is present in the luminal fluid in dissociated forms, and is therefore optimally active towards glycoprotein substrates at physiological pH. The potential role of the enzyme in modification of sperm surface glycoproteins is discussed. PMID:1417750

  5. Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells.

    PubMed

    Khajah, Maitham A; Mathew, Princy M; Alam-Eldin, Nada S; Luqmani, Yunus A

    2015-04-01

    De novo and acquired resistance to endocrine-based therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER- breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER- or ER+ breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin. PMID:25672508

  6. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity. PMID:20069869

  7. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity.

  8. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. PMID:27091863

  9. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general.

  10. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus

    NASA Astrophysics Data System (ADS)

    Sang, Min; Wang, Ming; Liu, Jianhui; Zhang, Chengwu; Li, Aifen

    2012-06-01

    The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20°C with the temperature being set at 20, 24, and 28°C. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100 μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.

  11. Monitoring the Rate Solvolytic Decomposition of Benzenediazonium Tetrafluoroborate in Aqueous Media Using a pH Electrode

    ERIC Educational Resources Information Center

    Wiseman, Floyd L.

    2005-01-01

    A lab rotary experiment using the pH measurements of an aqueous solution to monitor the course of a solvolytic reaction was conducted. This experiment allowed the students to gain experience in taking precise pH measurement, to use nonlinear analysis techniques for analyzing kinetic data and to use the Arrhenius equation for determination of…

  12. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  13. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  14. Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media.

    PubMed

    Papanikolaou, Seraphim; Galiotou-Panayotou, Maria; Fakas, Stylianos; Komaitis, Michael; Aggelis, George

    2008-05-01

    Yarrowia lipolytica ACA-DC 50109 cultivated on olive-mill wastewater (O.M.W.)-based media, enriched with commercial-industrial glucose, presented an efficient cell growth. Parameters of growth were unaffected by the presence of O.M.Ws in the growth medium. In diluted O.M.Ws enriched with high glucose amounts (initial sugar concentration, 65 g l(-1)), a notable quantity of total citric acid was produced (28.9 g l(-1)). O.M.W.-based media had a noteworthy stimulating effect on the production of citric acid, since both final citric acid concentration and conversion yield of citric acid produced per unit of sugar consumed were higher when compared with the respective parameters obtained from trials without added O.M.W. Adaptation of the strain in O.M.W.-based media favoured the biosynthesis of cellular unsaturated fatty acids (principally of oleic and palmitoleic acids). Additionally, a non-negligible decrease of the phenolic compounds in the growth medium [up to 15% (wt/wt)], a slight decrease of the phyto-toxicity, and a remarkable decolourisation of the O.M.W. were observed. All these results suggest the potentiality of O.M.Ws utilisation in the fermentation process of citric acid production.

  15. Production of Leuconostoc oenos Biomass under pH Control †

    PubMed Central

    Champagne, Claude P.; Gardner, Nancy; Doyon, Gilles

    1989-01-01

    Leuconostoc oenos was grown on apple juice-based media. The effect of pH control on metabolism and biomass production was studied. Without pH control, L. oenos acidified the apple juice media to approximately pH 3.6. More than 75% of the malic acid was used under these conditions, but less than half of the carbohydrates was assimilated. Under pH control, biomass yields increased by 60%; most of the malic acid was used, but high levels of unfermented carbohydrates remained. The addition of tomato juice, vitamins, nucleotides, Mn+, and malic acid did not permit further increases in the cell counts; however, malic acid did induce further acidification. Growth without pH control favored a more homofermentative metabolism. Biomass production was higher in filter-sterilized apple juice media compared with that in the autoclaved media. PMID:16348025

  16. Extraction of protactinium from mineral acid-alcohol media.

    PubMed

    Alian, A; Sanad, W; Shabana, R

    1968-07-01

    The extraction of protactinium with organic solvents has been investigated in the presence of water-miscible alcohols and acetone. These additives were found to increase considerably the extraction of protactinium in the cases of trilaurylamine, tributyl phosphate and isobutyl methyl ketone. The influence was less in the case of thenoyltrifluoroacetone. In mixtures of an acid with various alcohols, the influence depended on the alcohol concentration, the acidity and on the chain lengths and dielectric constants of the alcohol introduced into the extraction system.

  17. Extraction of protactinium from mineral acid-alcohol media.

    PubMed

    Alian, A; Sanad, W; Shabana, R

    1968-07-01

    The extraction of protactinium with organic solvents has been investigated in the presence of water-miscible alcohols and acetone. These additives were found to increase considerably the extraction of protactinium in the cases of trilaurylamine, tributyl phosphate and isobutyl methyl ketone. The influence was less in the case of thenoyltrifluoroacetone. In mixtures of an acid with various alcohols, the influence depended on the alcohol concentration, the acidity and on the chain lengths and dielectric constants of the alcohol introduced into the extraction system. PMID:18960346

  18. Effect of the eluent pH and acidic modifiers in high-performance liquid chromatography retention of basic analytes.

    PubMed

    LoBrutto, R; Jones, A; Kazakevich, Y V; McNair, H M

    2001-04-13

    The retention of ionogenic bases in liquid chromatography is strongly dependent upon the pH of the mobile phase. Chromatographic behavior of a series of substituted aniline and pyridine basic compounds has been studied on C18 bonded silica using acetonitrile-water (10:90) as the eluent with different pHs and at various concentrations of the acidic modifier counter anions. The effect of different acidic modifiers on solute retention over a pH range from 1.3 to 8.6 was studied. Ionized basic compounds showed increased retention with a decrease of the mobile phase pH. This increase in retention was attributed to the interaction with counter anions of the acidic modifiers. The increase in retention is dependent on the nature of the counter anion and its concentration in the mobile phase. It was shown that altering the concentration of counter anion of the acidic modifier allows the optimization of the selectivity between basic compounds as well as for neutral and acidic compounds. PMID:11355811

  19. Function of aspartic acid residues in optimum pH control of L-arabinose isomerase from Lactobacillus fermentum.

    PubMed

    Xu, Zheng; Li, Sha; Feng, Xiaohai; Zhan, Yijing; Xu, Hong

    2014-05-01

    L-Arabinose isomerase (L-AI) catalyzes the isomerization of L-arabinose to L-ribulose and D-galactose to D-tagatose. Most reported L-AIs exhibit neutral or alkaline optimum pH, which is less beneficial than acidophilic ones in industrial D-tagatose production. Lactobacillus fermentum L-AI (LFAI) is a thermostable enzyme that can achieve a high conversion rate for D-galactose isomerization. However, its biocatalytic activity at acidic conditions can still be further improved. In this study, we report the single- and multiple-site mutagenesis on LFAI targeting three aspartic acid residues (D268, D269, and D299). Some of the lysine mutants, especially D268K/D269K/D299K, exhibited significant optimum pH shifts (from 6.5 to 5.0) and enhancement of pH stability (half-life time increased from 30 to 62 h at pH 6.0), which are more favorable for industrial applications. With the addition of borate, D-galactose was isomerized into D-tagatose by D268K/D269K/D299K at pH 5.0, resulting in a high conversion rate of 62 %. Based on the obtained 3.2-Å crystal structure of LFAI, the three aspartic acid residues were found to be distant from the active site and possibly did not participate in substrate catalysis. However, they were proven to possess similar optimum pH control ability in other L-AI, such as that derived from Escherichia coli. This study sheds light on the essential residues of L-AIs that can be modified for desired optimum pH and better pH stability, which are useful in D-tagatose bioproduction.

  20. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2.

    PubMed Central

    Carbonnaux, C.; Ries-Kautt, M.; Ducruix, A.

    1995-01-01

    The effects of various anions on decreasing the solubility of acidic Hypoderma lineatum collagenase at pH 7.2 and 18 degrees C were qualitatively defined by replacing the crystallizing agent of known crystallization conditions by various ammonium salts. The solubility curves measured in the presence of the sulfate, phosphate, citrate, and chloride ammonium salts gave the following ranking of anions: HPO4(2-)/H2PO4- > SO4(2-) > citrate 3-/citrate2- >> Cl-. This order is in agreement with the Hofmeister series. In a previous study on the solubility at pH 4.5 of lysozyme, a basic protein, the effectiveness of anions in decreasing the solubility was found to be in the reverse order. This suggests that the effectiveness of anions in the crystallization of proteins is dependent on the net charge of the protein, i.e., depending on whether a basic protein is crystallized at acidic pH or an acidic protein at basic pH. PMID:8535249

  1. [Effects of solution pH and simulated acid rain on the behavior of two sulfonylurea herbicides in soil].

    PubMed

    Zhang, Wei; Wang, Jin-Jun

    2007-03-01

    By the methods of batch equilibration and leaching, this paper studied the effects of solution pH and simulated acid rain on the behavior of bensulfuron-methyl and metsulfuron-methyl in soil. The results showed that the adsorption isotherms of these two herbicides fitted Freundlich equation well, and their adsorbed amounts reduced obviously with the increasing pH of water-soil system, which in turn promoted the translocation of the herbicides in soil. The adsorption coefficient (Kf) was positively correlated with soil organic matter and clay contents, while negatively correlated with soil pH. The higher pH of simulated acid rain had a greater contribution on the leaching of the two sulfonylurea herbicides, and their leached amount was increased with increasing acid rain. There was a close relationship between the leaching of the herbicides and the properties of soil. The soils with higher contents of organic matter and clay had a greater retention capability to the herbicides. PMID:17552202

  2. [Effects of solution pH and simulated acid rain on the behavior of two sulfonylurea herbicides in soil].

    PubMed

    Zhang, Wei; Wang, Jin-Jun

    2007-03-01

    By the methods of batch equilibration and leaching, this paper studied the effects of solution pH and simulated acid rain on the behavior of bensulfuron-methyl and metsulfuron-methyl in soil. The results showed that the adsorption isotherms of these two herbicides fitted Freundlich equation well, and their adsorbed amounts reduced obviously with the increasing pH of water-soil system, which in turn promoted the translocation of the herbicides in soil. The adsorption coefficient (Kf) was positively correlated with soil organic matter and clay contents, while negatively correlated with soil pH. The higher pH of simulated acid rain had a greater contribution on the leaching of the two sulfonylurea herbicides, and their leached amount was increased with increasing acid rain. There was a close relationship between the leaching of the herbicides and the properties of soil. The soils with higher contents of organic matter and clay had a greater retention capability to the herbicides.

  3. Potentiometric pH Measurements of Acidity Are Approximations, Some More Useful than Others

    ERIC Educational Resources Information Center

    de Levie, Robert

    2010-01-01

    A recent article by McCarty and Vitz "demonstrating that it is not true that pH = -log[H+]" is examined critically. Then, the focus shifts to underlying problems with the IUPAC definition of pH. It is shown how the potentiometric method can provide "estimates" of both the IUPAC-defined hydrogen activity "and" the hydrogen ion concentration, using…

  4. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    PubMed

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils.

  5. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    SciTech Connect

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

  6. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH.

    PubMed

    Wang, Kun; Yin, Jun; Shen, Dongsheng; Li, Na

    2014-06-01

    Food waste anaerobic fermentation was carried out under acidic conditions using inocula based on aerobic activated sludge (Inoculum AE) or anaerobic activated sludge (Inoculum AN) for volatile fatty acids (VFAs) production. The results showed that food waste hydrolysis increased obviously when Inoculum AN was used relative to Inoculum AE at any pH investigated. Hydrolysis at pH 4.0 and uncontrolled pH was higher than that at other pHs when either inoculum was used. Additionally, VFAs production at pH 6.0 was the highest, regardless of the inoculum used. The optimum VFA yields were 0.482g/gVSSremoval with Inoculum AE and 0.918g/gVSSremoval with Inoculum AN, which were observed after 4d and 20d of fermentation, respectively. VFAs composition analysis showed that butyrate acid was the prevalent acid at pH 6.0, followed by acetate acid and propionic acid.

  7. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased

  8. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids.

    PubMed

    Eick, M J; Grossl, P R; Golden, D C; Sparks, D L; Ming, D W

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased

  9. Using acid-washed waste tire rubber in soilless media for tomato production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Cerasiforne’ tomato (Lycopersicon esculentum Mill.) was grown in soilless potting media contained different substrate formulas including 25:25:50 volume ratio of acid-washed (AWR) or non-washed shredded rubber (NAWR): vermiculite or zeolite: perlite. Additionally, plants were grown in a peat: perli...

  10. Bile acids and pH values in total feces and in fecal water from habitually omnivorous and vegetarian subjects.

    PubMed

    van Faassen, A; Hazen, M J; van den Brandt, P A; van den Bogaard, A E; Hermus, R J; Janknegt, R A

    1993-12-01

    Twenty habitually omnivorous subjects and 19 habitually lactoovovegetarian subjects aged 59-65 y collected feces during 4 consecutive days. The concentrations of bile acids in total feces did not differ between the omnivores and vegetarians, but the bile acid concentrations in fecal water were significantly lower in the vegetarians. The concentration of the colorectal cancer-predicting bile acid deoxycholic acid in fecal water was explained by the intake of saturated fat and the daily fecal wet weight (r2 = 0.50). Fecal pH did not differ between the omnivores and vegetarians. This variable was significantly (P < 0.05) explained by the intake of calcium (r2 = 0.30); 24-h fecal wet weight and defecation frequency were significantly higher in the vegetarians. In conclusion, our vegetarian subjects had a lower concentration of deoxycholic acid in fecal water, higher fecal wet weight, and higher defecation frequency than the omnivorous subjects.

  11. Aerobic growth of campylobacter in media supplemented with a-ketoglutaric, lactic, and/or fumaric acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to examine the ability of Campylobacter spp. to grow aerobically in media supplemented with selected organic acids. Basal broth media composed of tryptose, yeast extract, and a mineral-vitamin solution was supplemented with a-ketoglutaric, lactic, and/or fumaric acids. The fina...

  12. Monitoring of the fermentation media of citric acid by the trimethylsilyl derivatives of the organic acids formed.

    PubMed

    Ghassempour, Alireza; Nojavan, Saeed; Talebpour, Zahra; Amiri, Ali Asghar; Najafi, Nahid Mashkouri

    2004-10-20

    In this approach, a derivatization method is described for monitoring of organic acids in fermentation media without any separation step. The aqueous phase of fermentation media was evaporated and heated in a silylation reagent to form trimethylsilyl (TMS) derivatives. The silylated compounds are analyzed by 29Si nuclear magnetic resonance (29Si NMR) and gas chromatography-mass spectrometry (GC-MS). 29Si NMR can qualitatively monitor the components produced in the Krebs cycle. Quantification of these compounds is investigated by using selected ion monitoring mode of mass spectrometry. In this mode, mass to charge (m/z) values of their [M - 15]+ ions, which are 465, 275, 247, 221, 335, 251, and 313 of TMS derivatives of citric, alpha-ketoglutaric, succinic, fumaric, l-malic, oxaloacetic, and palmitic (as an internal standard), acids, respectively, are used. The limit of detection and the linear working range for derivatized citric acid were found to be 0.1 mg L(-1) and 10-3 x 10(4) mg L(-1). The relative standard deviation of the method for five replicates was 2.1%. The average recovery efficiency for citric acid added to culture media was approximately 97.2%. Quantitative results of GC-MS are compared with those obtained by an ultraviolet-visible method.

  13. Three-dimensional nuclear magnetic resonance structures of mouse epidermal growth factor in acidic and physiological pH solutions.

    PubMed

    Kohda, D; Inagaki, F

    1992-12-01

    The three-dimensional structures of epidermal growth factors (EGF) previously reported were all in acidic solutions (pH 2.0-3.2), at which pHs EGF cannot bind to the receptor. Here we studied the structure of mouse EGF at pH 6.8, where EGF is physiologically active, and compared it with the structure at pH 2.0 by CD and NMR. From pH dependence of CD spectra and a comparison between the chemical shifts of the proton resonances at pH 6.8 and 2.0, the conformations at two pHs were found to be nearly identical except for the C-terminal tail region. The three-dimensional structures at pH 6.8 and 2.0 were determined independently by a combination of two-dimensional 1H NMR and stimulated annealing calculations using the program XPLOR. The calculations were based on 261 distance constraints at pH 6.8 and 355 distance and 24 torsion angle constraints at pH 2.0. The conformational difference of the C-terminal domain (residues 33-50) was detected between the two structures, which were supported by CD and the chemical shift comparison. The positions of the side chains of Leu47, Arg48, Trp49, and Trp50 are changed probably by the effect of the deprotonation of Asp46. Considering the fact that Leu47 is essential in EGF binding to the receptor, this conformational difference may be important in receptor recognition.

  14. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-01

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred.

  15. Influence of nitric acid treatment in different media on X-ray structural parameters of coal

    SciTech Connect

    Sudip Maity; Ashim Choudhury

    2008-11-15

    The treatment of coal with nitric acid in aqueous and non-aqueous media introduces changes in the chemical and spatial structure of the organic mass. Four coals of different rank have been treated with nitric acid in aqueous and glacial acetic acid media for assessing the changes in the structural parameters by the X-ray diffraction (XRD) technique. Slow-scan XRD has been performed for the raw and treated coals, and X-ray structural parameters (d002, Lc, and Nc) and aromaticity (fa) have been determined by profile-fitting software. Considerable variation of the structural parameters has been observed with respect to the raw coals. The d002 values have decreased in aqueous medium but increased in acetic acid medium; however, Lc, Nc, and fa values have increased in aqueous medium but decreased in acetic acid medium. It is also observed that considerable oxidation takes place during nitric acid treatment in aqueous medium, but nitration is the predominant phenomenon in acetic acid medium. Disordering of the coal structure increases in acetic acid medium, but a reverse trend is observed in the aqueous medium. As a result, structurally modified coals (SMCs) are derived as new coal-derived substances. 15 refs., 6 figs., 3 tabs.

  16. Thallium Transfer from Hydrochloric Acid Media into Pure Ionic Liquids.

    PubMed

    Tereshatov, Evgeny E; Boltoeva, Maria Yu; Mazan, Valerie; Volia, Merinda F; Folden, Charles M

    2016-03-10

    Pure hydrophobic ionic liquids are known to extract metallic species from aqueous solutions. In this work we have systematically investigated thallium (Tl) extraction from aqueous hydrochloric acid (HCl) solutions into six pure fluorinated ionic liquids, namely imidazolium- and pyrrolidinium-based ionic liquids with bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)-imide anions. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. Tl concentrations were on the order of picomolar (analyzed using radioactive tracers) and millimolar (analyzed using inductively coupled plasma mass spectrometry). The extraction of the cationic thallium species Tl(+) is higher for ionic liquids with more hydrophilic cations, while for the TlX(z)(3-z) anionic species (where X = Cl(-) and/or Br(-)), the extraction efficiency is greater for ionic liquids with more hydrophobic cations. The highest distribution value of Tl(III) was approximately 2000. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the coextraction of two different anionic species, and the relative contributions of each mechanism have been determined. PMID:26769597

  17. pH effect of coagulation bath on the characteristics of poly(acrylic acid)-grafted and poly(4-vinylpyridine)-grafted poly(vinylidene fluoride) microfiltration membranes.

    PubMed

    Ying, Lei; Zhai, Guangqun; Winata, A Y; Kang, E T; Neoh, K G

    2003-09-15

    The poly(acrylic acid)-graft-poly(vinylidene fluoride) (PAAc-g-PVDF) and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride) (P4VP-g-PVDF) copolymers were obtained by thermally induced molecular graft copolymerization of acrylic acid (AAc) and 4-vinylpyridine (4VP), respectively, with the ozone-pretreated poly(vinylidene fluoride) (PVDF) in N-methyl-2-pyrrolidone (NMP) solution. Microfiltration (MF) membranes were prepared from the respective copolymers by phase inversion in aqueous media. The effects of pH of the coagulation bath on the physicochemical and morphological characteristics of the membranes were investigated. The surface compositions of the membranes were determined by X-ray photoelectron spectroscopy (XPS). The surface graft concentration of the AAc polymer for the PAAc-g-PVDF MF membrane increased with decreasing pH value of the coagulation bath. Completely opposite pH-dependent behavior was observed for the surface graft concentration of the 4VP polymer in the P4VP-g-PVDF MF membranes. A substantial increase in mean pore size was observed for the PAAc-g-PVDF MF membranes cast in basic coagulation baths of increasing pH. In the case of the P4VP-g-PVDF MF membranes, a substantial increase in mean pore size was observed for membranes cast in low pH (acidic) baths. The permeation rate of aqueous solutions through the PAAc-g-PVDF and P4VP-g-PVDF MF membranes exhibited a reversible dependence on the pH of the solution, with the membranes cast near the neutral pH exhibiting the highest sensitivity to changes in permeate pH. PMID:12962674

  18. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  19. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH. PMID:21957966

  20. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.

  1. pH dependence of iron photoreduction in a rocky mountain stream affected by acid mine drainage

    USGS Publications Warehouse

    McKnight, Diane M.; Kimball, B.A.; Runkel, R.L.

    2001-01-01

    The redox speciation of dissolved iron and the transport of iron in acidic, metal-enriched streams is controlled by precipitation and dissolution of iron hydroxides, by photoreduction of dissolved ferric iron and hydrous iron oxides, and by oxidation of the resulting dissolved ferrous iron. We examined the pH dependence of these processes in an acidic mine-drainage stream, St Kevin Gulch, Colorado, by experimentally increasing the pH of the stream from about 4.0 to 6.5 and following the downstream changes in iron species. We used a solute transport model with variable flow to evaluate biogeochemical processes controlling downstream transport. We found that at pH 6.4 there was a rapid and large initial loss of ferrous iron concurrent with the precipitation of aluminium hydroxide. Below this reach, ferrous iron was conservative during the morning but there was a net downstream loss of ferrous iron around noon and in the afternoon. Calculation of net oxidation rates shows that the noontime loss rate was generally much faster than rates for the ferrous iron oxidation at pH 6 predicted by Singer and Stumm (1970. Science 167: 1121). The maintenance of ferrous iron concentrations in the morning is explained by the photoreduction of photoreactive ferric species, which are then depleted by noon. Copyright ?? 2001 John Wiley & Sons, Ltd.

  2. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    PubMed

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  3. Control of diapause by acidic pH and ammonium accumulation in the hemolymph of Antarctic copepods.

    PubMed

    Schründer, Sabine; Schnack-Schiel, Sigrid B; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 (+)) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 (+)). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  4. Short-chain fatty acids and acidic pH upregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats.

    PubMed

    Lu, Zhongyan; Gui, Hongbing; Yao, Lei; Yan, Lei; Martens, Holger; Aschenbach, Jörg R; Shen, Zanming

    2015-02-15

    Currently, the mechanism(s) responsible for the regulation of urea transporter B (UT-B) expression levels in the epithelium of the rumen remain unclear. We hypothesized that rumen fermentation products affect ruminal UT-B expression. Therefore, the effects of short-chain fatty acids (SCFA), pH, ammonia, and urea on mRNA and protein levels of UT-B were assayed in primary rumen epithelial cell cultures and in rumen epithelium obtained from intact goats. In vitro, SCFA and acidic pH were found to synergetically stimulate both mRNA and protein expression of UT-B, whereas NH4Cl decreased mRNA and protein levels of UT-B at pH 6.8. Treatment with urea increased both levels at pH 7.4. When goats received a diet rich in nitrogen (N) and nonfiber carbohydrates (NFC), their rumen epithelium had higher levels of UT-B, and the rumen contained higher concentrations of SCFA and NH3-N with a lower pH. An increase in plasma urea-N concentration was also observed compared with the plasma of the goats that received a diet low in N and NFC. In a second feeding trial, goats that received a NFC-rich, but isonitrogenous, diet had higher mRNA and protein levels of UT-B, and higher levels of G protein-coupled receptor (GPR) 41 and GPR4, in their rumen epithelium. The ruminal concentrations of SCFA and NH3-N also increased, while a lower pH was detected. In contrast, the serum urea-N concentrations remained unchanged. These data indicate that ruminal SCFA and pH are key factors, via GPR4 and GPR41, in the dietary regulation of UT-B expression, and they have priority over changes in plasma urea.

  5. A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins.

    PubMed

    Fiorica, Calogero; Pitarresi, Giovanna; Palumbo, Fabio Salvatore; Di Stefano, Mauro; Calascibetta, Filippo; Giammona, Gaetano

    2013-11-30

    Atom transfer radical polymerization (ATRP) has been successfully employed to obtain a new derivative of hyaluronic acid (HA) able to change its solubility as a function of external pH and then to be potentially useful for intestinal release of bioactive molecules, included enzymes and proteins. In particular, a macroinitiator has been prepared by linking 2-bromo-2-methypropionic acid (BMP) to the amino groups of ethylenediamino derivative of tetrabutyl ammonium salt of HA (HA-TBA-EDA). This macroinititor, named HA-TBA-EDA-BMP has been used for the ATRP of sodium methacrylate (MANa) using a complex of Cu(I) and 2,2'-bipyridyl (Byp) as a catalyst. The resulting copolymer, named HA-EDA-BMP-MANa, has been characterized by (1)H NMR and size exclusion chromatography (SEC) analyses. A turbidimetric analysis has showed its pH sensitive behavior, being insoluble in simulated gastric fluid but soluble when pH increases more than 2.5. To confirm the ability of HA-EDA-BMP-MANa in protecting peptides or proteins from denaturation in acidic medium, α-chymotrypsin has been chosen as a model of protein molecule and its activity has been evaluated after entrapment into HA-EDA-BMP-MANa chains and treatment under simulated gastric conditions. Finally, cell compatibility has been evaluated by performing a MTS assay on murine dermal fibroblasts cultured with HA-EDA-BMP-MANa solutions. PMID:24060369

  6. Exfoliation corrosion susceptibility and mechanisms of Al -- Li 2060 T8E30 aluminum lithium alloy in acidic media

    NASA Astrophysics Data System (ADS)

    Karayan, Ahmad Ivan

    The Al - Li 2060 aluminum lithium alloy was first launched in 2011. This alloy is a potential candidate for the use at wing/fuselage forgings, lower wing, and fuselage/pressure cabin. However, since its first launching, the corrosion properties of this alloy has not been extensively explored. There are three common laboratory tests for assessing the exfoliation corrosion (EFC) susceptibility of aluminum alloy 2XXX, namely EFC test in EXCO, modified EXCO and MASTMAASIS media. The objectives of this work is to study the susceptibility and mecahnism of corrosion of this alloy in EXCO, modified EXCO and MATSMAASIS media. These three media are acid. In the EXCO solution, this alloy suffers EFC after a 96-hour EFC test. The pH dramatically increases in the first 11 hours from 0.25 to 0.30. The pH then slightly increases and tends to remain constant at pH of 3.45 after 96 hours. The cyclic potentiodynamic polarization (CPP) test results show the presence of negative hysteresis and one breakdwon potential. This negative hysteresis suggests the absence of pitting corrosion due to the breakdown of passive film. The potentiostatic tests at potentials below and above the breakdown potential show an abrupt increase in potential in the first minutes and the presence of current transients. The scanning electron microscopy (SEM)-energy dispersive x-ray spectroscopy (EDS) examination confirms that the Al 20Cu2Mn3 particles preferentially dissolve, leaving the pitting after a potentiostatic test below the breakdown potential. From the potentiostatic test at a potential above the breakdown potential and an SEM examination after this potentiostatic test, intergranular corrosion (IGC) was observed. The electrochemical impedance spectroscopy (EIS) test and mathematical modeling indicates that the adsorption of intermediates in reduction of hydrogen ions is dominant in the first hours of immersion. The two time constants are observed when EFC occurs. The video capture microscopy

  7. The PH gene determines fruit acidity and contributes to the evolution of sweet melons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acids are one of the three major components of fleshy fruit taste, together with sugars and volatile flavor compounds. However, the molecular-genetic control of acid accumulation in fruit is poorly understood and, to date, no genes responsible for acid accumulation in fleshy fruit have been function...

  8. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

    PubMed

    Matsushika, Akinori; Sawayama, Shigeki

    2012-12-01

    The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH. PMID:23076570

  9. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  10. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    PubMed

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature. PMID:26706930

  11. The effect of lipids on bongkrekic (Bongkrek) acid toxin production by Burkholderia cocovenenans in coconut media.

    PubMed

    Garcia, R A; Hotchkiss, J H; Steinkraus, K H

    1999-02-01

    Tempe bongkrek is an Indonesian food made by fermentation of coconut presscake or coconut milk residue Rhizopus oligosporus. Consumption of tempe bongkrek is associated with a food-borne human intoxication and significant numbers of deaths annually. The bacterium Burkholderia cocovenenans, which is the causative organism, produces two toxins, toxoflavin and bongkrekic acid (also commonly referred to as bongkrek acid). The reasons why these poisonings occur only in a very limited number of foods and only in isolated regions of the world are unclear. Our preliminary experiments in defined media and coconut investigated several compositional and environmental factors and suggested that lipid type and/or concentration were important. The effect of lipid concentration and fatty acid type on the production of bongkrekic acid by B. cocovenenans was examined by adding different amounts of coconut fat or individual free fatty acids to defatted and sterilized Rich Coconut Media (dRCM). The dRCM with added lipid was inoculated with B. cocovenenans, incubated at 30 degrees C for 5 days and the amount of bongkrekic acid formed quantified by HPLC. Coconut fat concentrations of 10% (dry basis) or less did not result in detectable amounts of bongkrekic acid even though the B. cocovenenans grew to high levels. Forty and 50% coconut fat resulted in as much as 1.4 mg/g bonkrekic acid (dry weight) at the same level of growth. Of eight saturated fatty acids tested, only lauric (12:0), myristic (14:0), and palmitic (16:0) acids stimulated the production of detectable amounts of toxin. When four 18-carbon free fatty acids with different degrees of saturation were compared, significant amounts of bongkrekic acid (2.62 mg/g dry weight) were produced only with oleic acid (18:1). These data indicate that the concentration and type of lipid in the substrate is critical for bongkrekic acid formation. This may explain why bongkrekic acid intoxication is limited to certain foods. Outbreaks

  12. Pre-industrial atmospheric pollution: was it important for the pH of acid-sensitive Swedish lakes?

    PubMed

    Bindler, Richard; Korsman, Tom; Renberg, Ingemar; Högberg, Peter

    2002-09-01

    Acid rain has caused extensive surface water acidification in Sweden since the mid-20th century. Sulfur emissions from fossil-fuel burning and metal production were the main sources of acid deposition. In the public consciousness, acid deposition is strongly associated with the industrial period, in particular the last 50 years. However, studies of lake-water pH development and atmospheric pollution, based on analyses of lake sediment deposits, have shown the importance of a long-term perspective. Here, we present a conceptual argument, using the sediment record, that large-scale atmospheric acid deposition has impacted the environment since at least Medieval times. Sulfur sources were the pre-industrial mining and metal industries that produced silver, lead and other metals from sulfide ores. This early excess sulfur deposition in southern Sweden did not cause surface water acidification; on the contrary, it contributed to alkalization, i.e. increased pH and productivity of the lakes. Suggested mechanisms are that the excess sulfur caused enhanced cation exchange in catchment soils, and that it altered iron-phosphorus cycling in the lakes, which released phosphorus and increased lake productivity.

  13. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  14. Fluorimetric determination of tin and organotin compounds in hydroorganic and micellar media in the presence of 8-hydroxyquinoline-5-sulfonic acid.

    PubMed

    Jourquin, G; Mahedero, M C; Paredes, S; Vire, J C; Kauffmann, J M

    1996-06-01

    The fluorescence of tin(IV) complexed by 8-hydroxyquinoline-5-sulfonic acid (8-HQSA) has been studied in both aqueous and hydroorganic (acetate buffer and dimethylsulfoxide) media. Several experimental parameters such as pH, DMSO/water ratio and reactant concentration have been investigated to increase the fluorescence of the tin(IV)-8-HQSA complex. A linear relationship between tin(IV) concentration and fluorescence intensity was observed between 1.7 and 20 microM). Mechanistic and quantitative studies in the presence of surfactants have been performed. Judiciously selected micellar media permitted solubilisation and quantitation of tin(IV) as well as dibutyltin compounds. A linear relationship between concentration and fluorescence intensity was found for mono-, di- and tributyltin with detection limits of 0.1 microM, 0.7 microM and 1 microM, respectively.

  15. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    SciTech Connect

    Cingolani, Gino Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26 forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.

  16. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  17. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and β-cyclodextrin (β-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with β-CD is analysed by UV-vis, fluorimetry, FT-IR, 1H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with β-CD and COOH group present in the β-CD cavity. A mechanism is proposed to explain the inclusion process.

  18. Effects of starvation on the transport of Escherichia coli K12 in saturated porous media are dependent on pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.

    2010-12-01

    In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.

  19. In vivo measurements of changes in pH triggered by oxalic acid in leaf tissue of transgenic oilseed rape.

    PubMed

    Zou, Qiu-Ju; Liu, Sheng-Yi; Dong, Xu-Yan; Bi, Yan-Hua; Cao, Yuan-Cheng; Xu, Qiao; Zhao, Yuan-Di; Chen, Hong

    2007-01-01

    Oxalic acid (OA), a non-host-specific toxin secreted by Sclerotinia sclerotiorum during pathogenesis, has been demonstrated to be a major phytotoxic and pathogenic factor. Oxalate oxidase (OXO) is an enzyme associated with the detoxification of OA, and hence the introduction of an OXO gene into oilseed rape (Brassica napus L.) to break down OA may be an alternative way of increasing the resistance of the plant to Sclerotinia sclerotiorum. In order to investigate the activation of OXO in transgenic oilseed rape, a convenient and accessible method was used to monitor changes in pH in response to stress induced by OA. The pH sensor, a platinum microcylinder electrode modified using polyaniline film, exhibited a linear response within the pH range from 3 to 7, with a Nernst response slope of 70 mV/pH at room temperature. The linear correlation coefficient was 0.9979. Changes induced by OA in the pH values of leaf tissue of different oilseed rape species from Brassica napus L. were monitored in real time in vivo using this electrode. The results clearly showed that the transgenic oilseed rape was more resistant to OA than non-transgenic oilseed rape.

  20. Key role of pH in the photochemical conversion of NO2 to HONO on humic acid

    NASA Astrophysics Data System (ADS)

    Han, Chong; Yang, Wangjin; Wu, Qianqian; Yang, He; Xue, Xiangxin

    2016-10-01

    The heterogeneous photochemical reactions of NO2 with humic acid (HA) were performed using a flow tube reactor coupled to a NOx analyzer. The effects of the pH on the uptake coefficient (γ) of NO2 and HONO and NO yields were investigated in detail. With increasing the pH in the range of 2-12, γ was almost constant with an average value of (4.21 ± 0.46) × 10-6, whereas the HONO yield and NO yield linearly decreased from (81.07 ± 4.07)% and (10.35 ± 3.86)% to (13.87 ± 9.15)% and (1.51 ± 0.94)%, respectively. According to the characterization of HA compositions and possible reaction paths, it can be concluded that the pH may influence the transfer of protons and the equilibrium of HONO with NO2- by varying the contents of carboxyl and phenol groups in HA, which should primarily contribute to the change in the HONO yield with the pH.

  1. The study of interaction of modified fatty acid with 99mTc in alcoholic media

    NASA Astrophysics Data System (ADS)

    Skuridin, V. S.; Stasyuk, E. S.; Varlamova, N. V.; Nesterov, E. A.; Sinilkin, I. G.; Sadkin, V. L.; Rogov, A. S.; Ilina, E. A.; Larionova, L. A.; Sazonova, S. I.; Zelchan, R. V.; Villa, N. E.

    2016-08-01

    The paper presents the results of laboratory research aimed at the development of methods of synthesis of new radiodiagnostic agents based on modified fatty acid labelled with technetium-99m intended for scintigraphic evaluation of myocardial metabolism. In particular, the interaction of substance with 99mTc in alcoholic media and the use of ethanol as solvent in the synthesis of the radiopharmaceutical were studied.

  2. Effects of pH and fulvic acids concentration on the stability of fulvic acids--cerium (IV) oxide nanoparticle complexes.

    PubMed

    Oriekhova, Olena; Stoll, Serge

    2016-02-01

    The behavior of cerium (IV) oxide nanoparticles has been first investigated at different pH conditions. The point of zero charge was determined as well as the stability domains using dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. A baseline hydrodynamic diameter of 180 nm was obtained indicating that individual CeO2 nanoparticles are forming small aggregates. Then we analyzed the particle behavior at variable concentrations of fulvic acids for three different pH-electrostatic scenarios corresponding to positive, neutral and negative CeO2 surface charges. The presence of fulvic acids was found to play a key role on the CeO2 stability via the formation of electrostatic complexes. It was shown that a small amount of fulvic acids (2 mg L(-1)), representative of environmental fresh water concentrations, is sufficient to stabilize CeO2 nanoparticles (50 mg L(-1)). When electrostatic complexes are formed between negatively charged FAs and positively charged CeO2 NPs the stability of such complexes is obtained with time (up to 7 weeks) as well as in pH changing conditions. Based on zeta potential variations we also found that the fulvic acids are changing the CeO2 acid-base surface properties. Obtained results presented here constitute an important outcome in the domain of risk assessment, transformation and removal of engineered nanomaterials released into the environment. PMID:26347935

  3. Salinity and pH affect Na+-montmorillonite dissolution and amino acid adsorption: a prebiotic chemistry study

    NASA Astrophysics Data System (ADS)

    Farias, Ana Paula S. F.; Tadayozzi, Yasmin S.; Carneiro, Cristine E. A.; Zaia, Dimas A. M.

    2014-06-01

    The adsorption of amino acids onto minerals in prebiotic seas may have played an important role for their protection against hydrolysis and formation of polymers. In this study, we show that the adsorption of the prebiotic amino acids, glycine (Gly), α-alanine (α-Ala) and β-alanine (β-Ala), onto Na+-montmorillonite was dependent on salinity and pH. Specifically, adsorption decreased from 58.3-88.8 to 0-48.9% when salinity was increased from 10 to 100-150% of modern seawater. This result suggests reduced amino acid adsorption onto minerals in prebiotic seas, which may have been even more saline than the tested conditions. Amino acids also formed complexes with metals in seawater, affecting metal adsorption onto Na+-montmorillonite, and amino acid adsorption was enhanced when added before Na+-montmorillonite was exposed to high saline solutions. Also, the dissolution of Na+-montmorillonite was reduced in the presence of amino acids, with β-Ala being the most effective. Thus, prebiotic chemistry experiments should also consider the integrity of minerals in addition to their adsorption capacity.

  4. The renal response to chronic mineral acid feeding: a re-examination of the role of systemic pH.

    PubMed

    Madias, N E; Zelman, S J

    1986-03-01

    It has been widely held that systemic acidemia represents the proximate event signaling the kidney to elicit its acidification response to chronic metabolic acidosis. However, a previous study from this laboratory has cast serious doubt on the validity of this conventional viewpoint. When a large acid load (7 mEq/kg/day) was fed chronically to dogs as HCl, H2SO4 or HNO3, net acid excretion increased similarly in all three groups of animals despite wide variability in the prevailing systemic acid-base composition. Marked or moderate hypobicarbonatemia and acidemia were observed in the HCl- or H2SO4-fed animals respectively, but strikingly, plasma [HCO3-] and pH did not change significantly from the control in the HNO3-fed animals. That study concluded that the renal response to chronic mineral acid feeding appears to be triggered, not by acidemia, but by the interplay of sodium delivery to and sodium avidity of the distal nephron as modulated by the reabsorbability of the "acid" anion. We have re-examined the above provocative conclusion in the light of the observation that the only evidence for a dissociation of the renal response from systemic acidemia in that study was derived from preprandial (8:00 a.m.) blood samples obtained some 23 hr after the ingestion of the daily acid load (administered at 9:00 a.m.). We investigated the diurnal variation of plasma acid-base composition in two groups of dogs fed chronically a large acid load (7 mEq/kg/day) as either HCl or HNO3. Both groups exhibited significant diurnal oscillations of plasma acid-base composition.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3009955

  5. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response. PMID:25967171

  6. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  7. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  8. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  9. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions.

    PubMed

    Cupi, Denisa; Hartmann, Nanna B; Baun, Anders

    2016-05-01

    In aquatic toxicity testing of engineered nanoparticles (ENPs) the process of agglomeration is very important as it may alter bioavailability and toxicity. In the present study, we aimed to identify test conditions that are favorable for maintaining stable ENP suspensions. We evaluated the influence of key environmental parameters: pH (2-12) and ionic strength using M7, Soft EPA (S EPA) medium, and Very Soft EPA (VS EPA) medium; and observed the influence of these parameters on zeta potential, zeta average, and acute immobilization of Daphnia magna for three different ENPs. Despite being sterically stabilized, test suspensions of silver (Ag) ENPs formed large agglomerates in both VS EPA and M7 media; and toxicity was found to be higher in VS EPA medium due to increased dissolution. Low-agglomerate suspensions for zinc oxide (ZnO) could be obtained at pH 7 in VS EPA medium, but the increase in dissolution caused higher toxicity than in M7 medium. Titanium dioxide (TiO2) ENPs had a point of zero charge in the range of pH 7-8. At pH 7 in VS EPA, agglomerates with smaller hydrodynamic diameters (~200nm) were present compared to the high ionic strength M7 medium where hydrodynamic diameters reached micrometer range. The stable suspensions of TiO2 ENPs caused immobilization of D. magna, 48-h EC50 value of 13.7mgL(-1) (95% CI, 2.4mg-79.1mgL(-1)); whereas no toxicity was seen in the unstable, highly agglomerated M7 medium suspensions, 48-h EC50 >100mgL(-1). The current study provides a preliminary approach for methodology in testing and assessing stability and toxicity of ENPs in aquatic toxicity tests of regulatory relevance.

  10. Acid/base front propagation in saturated porous media: 2D laboratory experiments and modeling

    NASA Astrophysics Data System (ADS)

    Loyaux-Lawniczak, Stéphanie; Lehmann, François; Ackerer, Philippe

    2012-09-01

    We perform laboratory scale reactive transport experiments involving acid-basic reactions between nitric acid and sodium hydroxide. A two-dimensional experimental setup is designed to provide continuous on-line measurements of physico-chemical parameters such as pH, redox potential (Eh) and electrical conductivity (EC) inside the system under saturated flow through conditions. The electrodes provide reliable values of pH and EC, while sharp fronts associated with redox potential dynamics could not be captured. Care should be taken to properly incorporate within a numerical model the mixing processes occurring inside the electrodes. The available observations are modeled through a numerical code based on the advection-dispersion equation. In this framework, EC is considered as a variable behaving as a conservative tracer and pH and Eh require solving the advection dispersion equation only once. The agreement between the computed and measured pH and EC is good even without recurring to parameters calibration on the basis of the experiments. Our findings suggest that the classical advection-dispersion equation can be used to interpret these kinds of experiments if mixing inside the electrodes is adequately considered.

  11. Acid/base front propagation in saturated porous media: 2D laboratory experiments and modeling.

    PubMed

    Loyaux-Lawniczak, Stéphanie; Lehmann, François; Ackerer, Philippe

    2012-09-01

    We perform laboratory scale reactive transport experiments involving acid-basic reactions between nitric acid and sodium hydroxide. A two-dimensional experimental setup is designed to provide continuous on-line measurements of physico-chemical parameters such as pH, redox potential (Eh) and electrical conductivity (EC) inside the system under saturated flow through conditions. The electrodes provide reliable values of pH and EC, while sharp fronts associated with redox potential dynamics could not be captured. Care should be taken to properly incorporate within a numerical model the mixing processes occurring inside the electrodes. The available observations are modeled through a numerical code based on the advection-dispersion equation. In this framework, EC is considered as a variable behaving as a conservative tracer and pH and Eh require solving the advection dispersion equation only once. The agreement between the computed and measured pH and EC is good even without recurring to parameters calibration on the basis of the experiments. Our findings suggest that the classical advection-dispersion equation can be used to interpret these kinds of experiments if mixing inside the electrodes is adequately considered.

  12. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH.

    PubMed

    Hasanzadeh, Mohammad; Sadeghi, Sattar; Bageri, Leyla; Mokhtarzadeh, Ahad; Karimzadeh, Ayub; Shadjou, Nasrin; Mahboob, Soltanali

    2016-12-01

    A novel nanobiopolymer film was electrodeposited on the surface of glassy carbon through cyclic voltammetry from dopamine, β-cyclodextrin, and phosphate buffer solution in physiological pH (7.40). The electrochemical behavior of polydopamine-Beta-cyclodextrin modified glassy carbon electrode was investigated for electro-oxidation and determination of some amino acids (l-Cysteine, l-Tyrosine, l-Glycine, and l-Phenylalanine). The modified electrode was applied for selected amino acid detection at physiological pH using cyclic voltammetry, differential pulse voltammetry and chronoamperometry, chronocoulometery. The linear concentration range of the proposed sensor for the l-Glycine, l-Cysteine, l-Tyrosine, and l-Phenylalanine were 0.2-70, 0.06-0.2, 0.01-0.1, and 0.2-10μM, while low limit of quantifications were 0.2, 0.06, 0.01, and 0.2μM, respectively. The modified electrode shows many advantages as an amino acid sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, good sensitivity, short response time, and long term stability. PMID:27612722

  13. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH.

    PubMed

    Hasanzadeh, Mohammad; Sadeghi, Sattar; Bageri, Leyla; Mokhtarzadeh, Ahad; Karimzadeh, Ayub; Shadjou, Nasrin; Mahboob, Soltanali

    2016-12-01

    A novel nanobiopolymer film was electrodeposited on the surface of glassy carbon through cyclic voltammetry from dopamine, β-cyclodextrin, and phosphate buffer solution in physiological pH (7.40). The electrochemical behavior of polydopamine-Beta-cyclodextrin modified glassy carbon electrode was investigated for electro-oxidation and determination of some amino acids (l-Cysteine, l-Tyrosine, l-Glycine, and l-Phenylalanine). The modified electrode was applied for selected amino acid detection at physiological pH using cyclic voltammetry, differential pulse voltammetry and chronoamperometry, chronocoulometery. The linear concentration range of the proposed sensor for the l-Glycine, l-Cysteine, l-Tyrosine, and l-Phenylalanine were 0.2-70, 0.06-0.2, 0.01-0.1, and 0.2-10μM, while low limit of quantifications were 0.2, 0.06, 0.01, and 0.2μM, respectively. The modified electrode shows many advantages as an amino acid sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, good sensitivity, short response time, and long term stability.

  14. Evaluating Potential Bias in Media Coverage of the Public Debate over Acid Rain and Chlorofluorocarbons in the 1980s

    ERIC Educational Resources Information Center

    Williams, Tiffany Dawn; Moore, Rebecca; Markewitz, Daniel

    2012-01-01

    This study evaluates media coverage of two important environmental issues from the 1980s (acid rain and chlorofluorocarbons), providing historical context for current media coverage analysis. Focusing on popular magazine articles, this study identifies key characteristics of content and presentation. Content-related characteristics are inclusion…

  15. AN HPLC METHOD WITH UVDETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chlorinated isocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabiliz...

  16. AN HPLC METHOD WITH UV DETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chloroisocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. ...

  17. FIA acid-base titrations with a new flow-through pH detector.

    PubMed

    Kahlert, H; Pörksen, J R; Behnert, J; Scholz, F

    2005-08-01

    A pH-sensitive detector for flow-through potentiometry based on a graphite/quinhydrone composite electrode was applied for flow-injection analysis (FIA) titrations. Hydrochloric acid and acetic acid were titrated by injection of samples into a sodium hydroxide carrier solution. System conditions were optimised by variation of flow rate, injection volume and titrant concentration. The parameters sampling frequency, residence time and dispersion coefficient were determined. The evaluation of peak width (time between the two inflection points on each side of the peak), peak area and slope of the raising edge of the peak lead were studied with respect to their use for calibration. Hydrochloric acid and acetic acid could be titrated down to a concentration of 2 x 10(-4) mol L(-1) using 150-microL injection volumes, which is almost ten times lower than can be achieved using colour indicators and a spectrophotometric detection.

  18. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH

    PubMed Central

    Cotter, Paul D.; Hill, Colin

    2003-01-01

    Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the reponses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments. PMID:12966143

  19. Copper-catalyzed oxidation of a structured lipid-based emulsion containing alpha-tocopherol and citric acid: influence of pH and NaCl.

    PubMed

    Osborn-Barnes, Hannah T; Akoh, Casimir C

    2003-11-01

    The effects of salt and pH on copper-catalyzed lipid oxidation in structured lipid-based emulsions were evaluated. Ten percent oil-in-water emulsions were formulated with a canola oil/caprylic acid structured lipid and stabilized with 0.5% whey protein isolate. alpha-Tocopherol and citric acid were added to the emulsions to determine how changes in pH or the addition of NaCl affected their antioxidant activity. The peroxide values and anisidine values of emulsions stored at 50 degrees C were measured over an 8-day period. Increased lipid oxidation occurred in the pH 7.0 emulsions and when 0.5 M NaCl was added to the pH 3.0 samples. Adding alpha-tocopherol, citric acid, or a combination of the two compounds slowed the formation of hydroperoxides and their subsequent decomposition products in pH 3.0 emulsions.

  20. The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.

    ERIC Educational Resources Information Center

    Martins, Luis J. A.; da Costa, J. Barbosa

    1988-01-01

    Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)

  1. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    SciTech Connect

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  2. Tetramerization of the LexA repressor in solution: implications for gene regulation of the E.coli SOS system at acidic pH.

    PubMed

    Sousa, Francisco J R; Lima, Luis M T R; Pacheco, Ana B F; Oliveira, Cristiano L P; Torriani, Iris; Almeida, Darcy F; Foguel, Debora; Silva, Jerson L; Mohana-Borges, Ronaldo

    2006-06-16

    Structural changes on LexA repressor promoted by acidic pH have been investigated. Intense protein aggregation occurred around pH 4.0 but was not detected at pH values lower than pH 3.5. The center of spectral mass of the Trp increased 400 cm(-1) at pH 2.5 relatively to pH 7.2, an indication that LexA has undergone structural reorganization but not denaturation. The Trp fluorescence polarization of LexA at pH 2.5 indicated that its hydrodynamic volume was larger than its dimer at pH 7.2. 4,4'-Dianilino-1,1'-binaphthyl-5,5'- disulfonic acid (bis-ANS) experiments suggested that the residues in the hydrophobic clefts already present at the LexA structure at neutral pH had higher affinity to it at pH 2.5. A 100 kDa band corresponding to a tetramer was obtained when LexA was subject to pore-limiting native polyacrylamide gel electrophoresis at this pH. The existence of this tetrameric state was also confirmed by small angle X-ray scattering (SAXS) analysis at pH 2.5. 1D 1H NMR experiments suggested that it was composed of a mixture of folded and unfolded regions. Although 14,000-fold less stable than the dimeric LexA, it showed a tetramer-monomer dissociation at pH 2.5 from the hydrostatic pressure and urea curves. Albeit with half of the affinity obtained at pH 7.2 (Kaff of 170 nM), tetrameric LexA remained capable of binding recA operator sequence at pH 2.5. Moreover, different from the absence of binding to the negative control polyGC at neutral pH, LexA bound to this sequence with a Kaff value of 1415 nM at pH 2.5. A binding stoichiometry experiment at both pH 7.2 and pH 2.5 showed a [monomeric LexA]/[recA operator] ratio of 2:1. These results are discussed in relation to the activation of the Escherichia coli SOS regulon in response to environmental conditions resulting in acidic intracellular pH. Furthermore, oligomerization of LexA is proposed to be a possible regulation mechanism of this regulon. PMID:16701697

  3. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, Helicobacter pylori, and bile acids.

    PubMed

    Mukaisho, Ken-Ichi; Nakayama, Takahisa; Hagiwara, Tadashi; Hattori, Takanori; Sugihara, Hiroyuki

    2015-01-01

    Gastric cancer can be classified as cardia and non-cardia subtypes according to the anatomic site. Although the gastric cancer incidence has decreased steadily in several countries over the past 50 years, the incidence of cardia cancers and esophageal adenocarcinoma (EAC) continue to increase. The etiological factors involved in the development of both cardia cancers and EACs are associated with high animal fat intake, which causes severe obesity. Central obesity plays roles in cardiac-type mucosa lengthening and partial hiatus hernia development. There are two distinct etiologies of cardia cancer subtypes: one associated with gastroesophageal reflux (GER), which predominantly occurs in patients without Helicobacter pylori (H. pylori) infection and resembles EAC, and the other associated with H. pylori atrophic gastritis, which resembles non-cardia cancer. The former can be developed in the environment of high volume duodenal content reflux, including bile acids and a higher acid production in H. pylori-negative patients. N-nitroso compounds, which are generated from the refluxate that includes a large volume of bile acids and are stabilized in the stomach (which has high levels of gastric acid), play a pivotal role in this carcinogenesis. The latter can be associated with the changing colonization of H. pylori from the distal to the proximal stomach with atrophic gastritis because a high concentration of soluble bile acids in an environment of low acid production is likely to act as a bactericide or chemorepellent for H. pylori in the distal stomach. The manuscript introduces new insights in causative factors of adenocarcinoma of the cardia about the role of bile acids in gastro-esophageal refluxate based upon robust evidences supporting interactions among pH, H. pylori, and bile acids. PMID:26029176

  4. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  5. Effects of root medium pH on water transport in paper birch (Betula papyrifera) seedlings in relation to root temperature and abscisic acid treatments.

    PubMed

    Kamaluddin, M; Zwiazek, Janusz J

    2004-10-01

    We investigated the effects of root medium pH on water transport in whole-plant and detached roots of paper birch (Betula papyrifera Marsh.). Exposure of seedling roots to pH 4 and 8 significantly decreased root hydraulic conductivity (Lp) and stomatal conductance (gs), compared with pH 6. When roots of solution-culture-grown (pH 6) seedlings were transferred to pH 4 or 8, their steady-state water flow (Qv) declined within minutes, followed by a decline in gs. The root oxygen uptake rates were not significantly affected by the pH treatments. Treatment of roots with mercuric chloride resulted in a large decrease in Qv at pH 6; the extent of this decrease was similar to that brought about by pH 4 and 8. Lowering root temperature from 21 to 4 degrees C decreased Qv irrespective of medium pH. Low root temperatures did not offset the effects of medium pH 4 on Qv and the roots in this treatment had a high activation energy for water flow. Conversely, roots exposed to pH 8 had a low activation energy, similar to that at pH 6. When 2 micro M abscisic acid, (+/-)-cis-trans-ABA, was added to the root medium, Qv increased in roots that were incubated at pH 6. It also increased slightly in roots incubated at pH 4, but not at pH 8. The increase at pH 4 and 6 was temperature-dependent, occurring at 21 degrees C, but not 4 degrees C. We suggest that the pH treatments are responsible for altering root water flow properties through their effects on the activity of water channels. These results support the concept that ABA effects on water channels are modulated by other, possibly metabolic- and pH-dependent factors.

  6. Experimental evaluation of the contribution of acidic pH and Fe concentration to the structure, function and tolerance to metals (Cu and Zn) exposure in fluvial biofilms.

    PubMed

    Luís, Ana Teresa; Bonet, Berta; Corcoll, Natàlia; Almeida, Salomé F P; da Silva, Eduardo Ferreira; Figueira, Etelvina; Guasch, Helena

    2014-09-01

    An indoor channel system was colonised with fluvial biofilms to study the chronic effects of high Fe and SO4(2-) concentrations and acidic pH, the water chemistry in the surrounding streams of Aljustrel mining area (Alentejo, Portugal), and their contribution to community (in)tolerance to metal toxicity by short-term experiments with Cu and Zn. Biofilms were subjected to four different treatments during 8 weeks: high Fe and SO4(2-) concentrations (1 mg Fe l(-1)+ 700 mg SO4(2-) l(-1)) and acidic pH, high Fe and SO4(2-) at alkaline pH; lower Fe and SO4(2-) at acidic pH: and lower Fe and SO4(2-) concentrations at alkaline pH as negative control. During chronic exposure, acidic pH affected growth negatively, based on low values of algal biomass and the autotrophic index, high values of the antioxidant enzyme activities and low diversity diatom communities, dominated by acidophilic species (Pinnularia aljustrelica) in acidic treatments, being the effects more marked with high Fe and SO4(2-). Co-tolerance to metals (Cu and Zn) was also shown in biofilms from the acidic treatments, contrasting with the higher sensitivity observed in the alkaline treatments. We can conclude that the Aljustrel mining area acidic environment limits algal growth and exerts a strong selection pressure on the community composition which is in turn, more tolerant to metal exposure. PMID:25011920

  7. The effects of temperature, pH and redox state on the stability of glutamic acid in hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Lee, Namhey; Foustoukos, Dionysis I.; Sverjensky, Dimitri A.; Cody, George D.; Hazen, Robert M.

    2014-06-01

    Natural hydrothermal vent environments cover a wide range of physicochemical conditions involving temperature, pH and redox state. The stability of simple biomolecules such as amino acids in such environments is of interest in various fields of study from the origin of life to the metabolism of microbes at the present day. Numerous previous experimental studies have suggested that amino acids are unstable under hydrothermal conditions and decompose rapidly. However, previous studies have not effectively controlled the redox state of the hydrothermal fluids. Here we studied the stability of glutamate with and without reducing hydrothermal conditions imposed by 13 mM aqueous H2 at temperatures of 150, 200 and 250 °C and initial (25 °C) pH values of 6 and 10 in a flow-through hydrothermal reactor with reaction times from 3 to 36 min. We combined the experimental measurements with theoretical calculations to model the in situ aqueous speciation and pH values. As previously observed under hydrothermal conditions, the main reaction involves glutamate cyclizing to pyroglutamate through a simple dehydration reaction. However, the amounts of decomposition products of the glutamate detected, including succinate, formate, carbon dioxide and ammonia depend on the temperature, the pH and particularly the redox state of the fluid. In the absence of dissolved H2, glutamate decomposes in the sequence glutamate, glutaconate, α-hydroxyglutarate, ketoglutarate, formate and succinate, and ultimately to CO2 and micromolar quantities of H2(aq). Model speciation calculations indicate the CO2, formate and H2(aq) are not in metastable thermodynamic equilibrium. However, with 13 mM H2(aq) concentrations, the amounts of decomposition products are suppressed at all temperatures and pH values investigated. The small amounts of CO2 and formate present are calculated to be in metastable equilibrium with the H2. It is further proposed that there is a metastable equilibrium between glutamate

  8. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  9. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds.

    PubMed

    Oja, M; Maran, U

    2015-01-01

    Absorption in gastrointestinal tract compartments varies and is largely influenced by pH. Therefore, considering pH in studies and analyses of membrane permeability provides an opportunity to gain a better understanding of the behaviour of compounds and to obtain good permeability estimates for prediction purposes. This study concentrates on relationships between the chemical structure and membrane permeability of acidic and basic drugs and drug-like compounds. The membrane permeability of 36 acidic and 61 basic compounds was measured using the parallel artificial membrane permeability assay (PAMPA) at pH 3, 5, 7.4 and 9. Descriptive and/or predictive single-parameter quantitative structure-permeability relationships were derived for all pH values. For acidic compounds, membrane permeability is mainly influenced by hydrogen bond donor properties, as revealed by models with r(2) > 0.8 for pH 3 and pH 5. For basic compounds, the best (r(2) > 0.7) structure-permeability relationships are obtained with the octanol-water distribution coefficient for pH 7.4 and pH 9, indicating the importance of partition properties. In addition to the validation set, the prediction quality of the developed models was tested with folic acid and astemizole, showing good matches between experimental and calculated membrane permeabilities at key pHs. Selected QSAR models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.166 ). PMID:26383235

  10. Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins.

    PubMed

    Moldes, A B; Alonso, J L; Parajó, J C

    2003-07-01

    The physicochemical properties (capacity, kinetics and selectivity) of the ion exchange resins Amberlite IRA900, IRA400, IRA96 and IRA67 were determined to evaluate their comparative suitability for lactic acid recovery. Both the kinetics of lactic acid sorption from aqueous solutions and the equilibrium were assessed using mathematical models, which provided a close interpretation of the experimental results. The best resins (Amberlite IRA96 and IRA67) were employed in further fixed-bed operation using aqueous lactic acid solutions as feed. In this set of experiments, parameters such as capacity, regenerant consumption, percentage of lactic acid recovery and product concentration were measured. Amberlite IRA67, a weak base resin, was selected for lactic acid recovery from SSF (simultaneous saccharification and fermentation) broths. Owing to the presence of nutrients and ions other than lactate, a slightly decreased capacity was determined when using SSF media instead aqueous lactic acid solutions, but quantitative lactic acid recoveries at constant capacities were obtained in four sequential load/regeneration cycles.

  11. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media

    PubMed Central

    Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor

    2014-01-01

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes. PMID:24886955

  12. Effect of pH and succinic acid on the morphology of α-calcium sulfate hemihydrate synthesized by a salt solution method

    NASA Astrophysics Data System (ADS)

    Li, Fan; Liu, Jianli; Yang, Guangyong; Pan, Zongyou; Ni, Xiao; Xu, Huazi; Huang, Qing

    2013-07-01

    Well-crystallized α-calcium sulfate hemihydrate (α-CSH) powders useful for bone defect filling were synthesized using a salt solution method and their morphologies were effectively modified by adjusting the pH of the reaction solutions or by adding succinic acid. The effect and its mechanism of the pH and the succinic acid on the phase composition and the morphology of the crystals were discussed in detail.

  13. Nickel toxicity to microbes: effect of pH and implications for acid rain

    SciTech Connect

    Babich, H.; Stotzky, G.

    1982-12-01

    A broad spectrum of microorganisms, including eubacteria (nonmarine and marine), actinomycetes, yeasts, and filamentous fungi, were evaluated for their sensitivities to nickel. Wide extremes in sensitivity to Ni were noted among the filamentous fungi, whereas the range of tolerance to Ni of the yeasts, eubacteria, and actinomycetes was narrower. With all microorganisms, the toxicity of Ni has not been defined, although the formation of hydroxylated Ni species with differing toxicities was not involved. The enhanced toxicity of Ni at acidic levels may have implications for the toxicity of Ni in environments stressed by acid precipitation.

  14. Systematics and species-specific response to pH of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) from acid mining lakes

    PubMed Central

    Weisse, Thomas; Moser, Michael; Scheffel, Ulrike; Stadler, Peter; Berendonk, Thomas; Weithoff, Guntram; Berger, Helmut

    2013-01-01

    We investigated the morphology, phylogeny of the 18S rDNA, and pH response of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) isolated from two chemically similar acid mining lakes (pH ∼ 2.6) located at Langau, Austria, and in Lusatia, Germany. Oxytricha acidotolerans sp. nov. from Langau has 18 frontal-ventral-transverse cirri but a very indistinct kinety 3 fragmentation so that the assignment to Oxytricha is uncertain. The somewhat smaller species from Lusatia has a highly variable cirral pattern and the dorsal kineties arranged in the Urosomoida pattern and is, therefore, preliminary designated as Urosomoida sp. The pH response was measured as ciliate growth rates in laboratory experiments at pH ranging from 2.5 to 7.0. Our hypothesis was that the shape of the pH reaction norm would not differ between these closely related (3% difference in their SSU rDNA) species. Results revealed a broad pH niche for O. acidotolerans, with growth rates peaking at moderately acidic conditions (pH 5.2). Cyst formation was positively and linearly related to pH. Urosomoida sp. was more sensitive to pH and did not survive at circumneutral pH. Accordingly, we reject our hypothesis that similar habitats would harbour ciliate species with virtually identical pH reaction norm. PMID:23021638

  15. Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake

    SciTech Connect

    Phelps, T.J.; Zeikus, J.G.

    1984-12-01

    The carbon and electron flow pathways and the bacterial populations responsible for transformation of H/sub 2/-CO/sub 2/, formate, methanol, methylamine, acetate, glycine, ethanol, and lactate were examined in sediments collected from Knaack Lake, Wisconsin. The sediments were 60% organic matter (pH 6.2) and did not display detectable sulfate-reducing activity, but they contained the following average concentration (in micromoles per liter of sediment) of metabolites and end products: sulfide, 10; methane, 1540; CO/sub 2/, 3950; formate, 25; acetate, 157; ethanol, 174; and lactate, 138. Methane was produced predominately from acetate, and only 4% of the total CH/sub 4/ was derived from CO/sub 2/. Methanogenesis was limited by low environmental temperature and sulfide levels and more importantly by low pH. Increasing in vitro pH to neutral values enhanced total methane production rates and the percentage of CO/sub 2/ transformed to methane but did not alter the amount of /sup 14/CO/sub 2/ produced from (2-/sup 14/C)acetate (approx. 24%). Analysis of both carbon transformation parameters with /sup 14/C-labeled tracers and bacterial trophic group enumerations indicated that methanogenesis from acetate and both heterolactic- and acetic acid-producing fermentations were important to the anaerobic digestion process.

  16. Sorption of toluene by humic acids derived from lake sediment and mountain soil at different pH.

    PubMed

    Chang Chien, S W; Chen, C Y; Chang, J H; Chen, S H; Wang, M C; Mannepalli, Madhava Rao

    2010-05-15

    Contamination of soil and groundwater with BTEX compounds (benzene, toluene, ethylbenzene, and xylene) depends on the sorption behavior of these compounds by soil organic matter (SOM) and humic acids (HAs). In this study sorption of toluene by HAs extracted from lake sediment and mountain soil was investigated. HA suspensions were adjusted to pH 4.00, 6.00, or 8.00 and made to the concentration of 200 mg L(-1). Each HA suspension or solution was subjected to particle size analysis using high performance particle sizer (HPPS). The particle size of HA from lake sediment was around 1000-1200 nm while that from mountain soil was 220-320 nm at suspension pH 4.00. Kinetic studies showed that sorption of toluene by the two HAs followed pseudo-first-order and mainly pseudo-zero-order kinetics. At suspension pH 4.00, the sorption of toluene by the two HAs was best described by Langmuir and Temkin adsorption isotherm models. Further, sorption of toluene by the lake sediment HA was significantly greater than that by mountain soil HA. It was thus suggested that the lake sediment HA with larger particle size may develop beneficially chemical conformation for sorption of toluene and related compounds in soil and associated environments.

  17. Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro

    PubMed Central

    Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K

    2012-01-01

    Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901

  18. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases

    PubMed

    Espinosa; Bosch; Roses

    2000-11-01

    The pH calibration procedures that lead to the different pH scales in acetonitrile-water mixtures used as mobile phases in reversed-phase liquid chromatography are discussed. Appropriate buffers of known pH value in acetonitrile-water mixtures are selected and used to establish the relationship (delta values) between the two rigorous acetonitrile-water pH scales: sspH and wspH (pH measured in acetonitrile-water mixtures and referred to acetonitrile-water or water, respectively, as standard state). These delta values allow one to convert pH values measured in acetonitrile-water with electrode systems calibrated with aqueous buffers (wspH scale) to sspH values, which are directly related to the thermodynamic acid-base constants. This offers an easy way to measure the pH of acetonitrile-water mobile phases and to relate this pH to the chromatographic retention of acids and bases through the thermodynamic acid-base constants. The relationships are tested for the variation of the retention of acids and bases with the pH of the mobile phase at several mobile-phase compositions and favorably compared with the relationships obtained with the common wwpH scale (pH measured in the aqueous buffer before mixing it with the organic modifier). The use of the rigorous sspH and wspH scales allows one to explain the retention behavior of bases, which in many instances cannot be justified from the pH measurement in the ill-founded wwpH scale. PMID:11080863

  19. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases

    PubMed

    Espinosa; Bosch; Roses

    2000-11-01

    The pH calibration procedures that lead to the different pH scales in acetonitrile-water mixtures used as mobile phases in reversed-phase liquid chromatography are discussed. Appropriate buffers of known pH value in acetonitrile-water mixtures are selected and used to establish the relationship (delta values) between the two rigorous acetonitrile-water pH scales: sspH and wspH (pH measured in acetonitrile-water mixtures and referred to acetonitrile-water or water, respectively, as standard state). These delta values allow one to convert pH values measured in acetonitrile-water with electrode systems calibrated with aqueous buffers (wspH scale) to sspH values, which are directly related to the thermodynamic acid-base constants. This offers an easy way to measure the pH of acetonitrile-water mobile phases and to relate this pH to the chromatographic retention of acids and bases through the thermodynamic acid-base constants. The relationships are tested for the variation of the retention of acids and bases with the pH of the mobile phase at several mobile-phase compositions and favorably compared with the relationships obtained with the common wwpH scale (pH measured in the aqueous buffer before mixing it with the organic modifier). The use of the rigorous sspH and wspH scales allows one to explain the retention behavior of bases, which in many instances cannot be justified from the pH measurement in the ill-founded wwpH scale.

  20. High-rate volatile fatty acid (VFA) production by a granular sludge process at low pH.

    PubMed

    Tamis, J; Joosse, B M; Loosdrecht, M C M van; Kleerebezem, R

    2015-11-01

    Volatile fatty acids (VFA) are proposed platform molecules for the production of basic chemicals and polymers from organic waste streams. In this study we developed a granular sludge process to produce VFA at high rate, yield and purity while minimizing potential operational costs. A lab-scale anaerobic sequencing batch reactor (ASBR) was fed with 10 g l(-1) glucose as model substrate. Inclusion of a short (2 min) settling phase before effluent discharge enabled effective granulation and very high volumetric conversion rates of 150-300 gCOD l(-1)  d(-1) were observed during glucose conversion. The product spectrum remained similar at the tested pH range with acetate and butyrate as the main products, and a total VFA yield of 60-70% on chemical oxygen demand (COD) basis. The requirement for base addition for pH regulation could be reduced from 1.1 to 0.6 mol OH(-) (mol glucose)(-1) by lowering the pH from 5.5 to 4.5. Solids concentrations in the effluent were 0.6 ± 0.3 g l(-1) but could be reduced to 0.02 ± 0.01 g l(-1) by introduction of an additional settling period of 5 min. The efficient production of VFA at low pH with a virtually solid-free effluent increases the economic feasibility of waste-based chemicals and polymer production. Biotechnol.

  1. Simultaneous quantification of simvastatin and simvastatin hydroxy acid in blood serum at physiological pH by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS).

    PubMed

    Bews, Hilary J; Carlson, Jules C; Jha, Aruni; Basu, Sujata; Halayko, Andrew J; Wong, Charles S

    2014-02-01

    Simvastatin attenuates airway inflammation and hyperreactivity, hallmarks of asthma, in allergen-challenged mice. As such, it is under consideration as a novel therapeutic, thus it is important to quantify the levels of simvastatin and its pharmacologically active and interconvertible metabolite, simvastatin hydroxy acid, that can be attained in the body. Methods exist to measure the concentrations of these compounds in biological media; however they do not maintain a physiological pH, and as a result do not accurately measure the ratio of these two compounds that exists in vivo. We developed a new method to measure simvastatin and simvastatin hydroxy acid more accurately in serum from mice by ultra high performance liquid chromatography-tandem mass spectrometry. We minimized the time that the compounds were in aqueous solution, and buffered samples to a physiological pH value of 7.4. Limits of quantification (LOQ) were 0.16 ng mL(-1) extract (1.3 ng mL(-1) serum) for simvastatin, and 8.3 ng mL(-1) extract (66 ng mL(-1) serum) for simvastatin hydroxy acid, respectively. No interconversion was observed, based on spike-and-recovery experiments of solutions containing both compounds. The method was applied using biological samples from mice challenged with house dust mite extract and simultaneously treated with subcutaneous simvastatin injection. Simvastatin hydroxy acid concentrations became significantly increased after a 2 week pre-treatment regime, whereas simvastatin concentrations were below the LOQ for all serum samples.

  2. pH at the micellar interface: synthesis of pH probes derived from salicylic acid, acid-base dissociation in sodium dodecyl sulfate micelles, and Poisson-Boltzmann simulation.

    PubMed

    Souza, T P; Zanette, D; Kawanami, A E; de Rezende, L; Ishiki, H M; do Amaral, A T; Chaimovich, H; Agostinho-Neto, A; Cuccovia, I M

    2006-05-01

    The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumundecanoyl)benzoate; 2-hydroxy-5-acetylbenzoic acid; and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pK(ap). The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pK(ap)'s of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis.

  3. Effect of salicylic acid upon trace-metal sorption (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite as a function of pH

    SciTech Connect

    Benyahya, L.; Garnier, J.M.

    1999-05-01

    The sorption of four trace metals (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite, in the presence or absence of salicylic acid was investigated in batch experiments in the pH range from 4 to 9. The sorption was interpreted in terms of surface complexation using the diffuse layer model (DLM). Equilibrium parameters were optimized using the FITEQL program. The salicylic acid was only significantly sorbed onto the alumina and the sorption was modeled using the anionic monodentate surface complex. In the absence of salicylic acid, the sorption of the trace metals presented different pH edge behaviors, depending on the substrate. Using the cationic monodendate surface complex, the model fitted the experimental data well. In the presence of salicylic acid, at a given pH and depending on the substrate, the sorption of metals was (1) increased, suggesting the occurrence of ternary complexes; (2) reduced (sometimes totally inhibited), due to the complexation with dissolved salicylic acid; or (3) very weakly changed in terms of net effect compared to free-organic-ligand systems. Modeling of the trace-metal sorption in the presence of salicylic acid was performed using ternary surface complexes. In the acidic pH range, this allowed the experimental data to be simulated, but in the alkaline pH range, the model failed to simulate the decrease in sorption. Probable causes of the discrepancies between the experimental data and modeling results are discussed.

  4. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  5. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  6. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.

    PubMed

    Peretyazhko, Tanya S; Zhang, Qingbo; Colvin, Vicki L

    2014-10-21

    Silver nanoparticles (Ag(NP)) are widely utilized in increasing number of medical and consumer products due to their antibacterial properties. Once released to aquatic system, Ag(NP) undergoes oxidative dissolution leading to production of toxic Ag(+). Dissolved Ag(+) can have a severe impact on various organisms, including indigenous microbial communities, fungi, alga, plants, vertebrates, invertebrates, and human cells. Therefore, it is important to investigate fate of Ag(NP) and determine physico-chemicals parameters that control Ag(NP) behavior in the natural environment. Nanoparticle size might have a dominant effect on Ag(NP) dissolution in natural waters. In this work, we investigated size-dependent dissolution of AgNP exposed to ultrapure deionized water (pH ≈ 7) and acetic acid (pH 3) and determined changes in nanoparticle size after dissolution. Silver nanoparticles stabilized by thiol functionalized methoxyl polyethylene glycol (PEGSH) of 6 nm (Ag(NP_)6), 9 nm (Ag(NP_)9), 13 nm (Ag(NP_)13), and 70 nm (Ag(NP_)70) were prepared. The results of dissolution experiments showed that the extent of AgNP dissolution in acetic acid was larger than in water. Solubility of Ag(NP) increased with the size decrease and followed the order Ag(NP_)6 > Ag(NP_)9 > Ag(NP_)13 > Ag(NP_)70 in both water and acetic acid. Transmission electron microscopy (TEM) was applied to characterize changes in size and morphology of the AgNP after dissolution in water. Analysis of Ag(NP) by TEM revealed that the particle morphology did not change during dissolution. The particles remained approximately spherical in shape, and no visible aggregation was observed in the samples. TEM analysis also demonstrated that Ag(NP_)6, Ag(NP_)9, and Ag(NP_)13 increased in size after dissolution likely due to Ostwald ripening. PMID:25265014

  7. Desorption of 137Cs from Brachythecium mildeanum moss using acid solutions with pH 4.60-6.50

    NASA Astrophysics Data System (ADS)

    Čučulović, Ana; Veselinović, Dragan

    2015-12-01

    The desorption of 137Cs from the moss Brachythecium mildeanum (Schimp.) was performed using the following solutions: H2SO4 ( I), HNO3 ( II), H2SO4 + HNO3 ( III) with pH values of 4.60, 5.15, and 5.75, respectively, as well as distilled water (D) with pH 6.50. After five successive desorptions, each lasting 24 h, 20.5-37.6% 137Cs was desorbed from the moss using these solutions, while 30.7% of the starting content was desorbed using distilled water. The first desorption removed the highest percent of the original content of 137Cs in the moss (11.3-18.4%). This was determined by measuring 137Cs activity. If the current results are compared with those obtained earlier it may be concluded that 137Cs desorption from mosses is not species-dependent. The obtained results indicate the necessity of investigating the influence of acid rain, or rather, of H+ ions, on desorption of other ions from biological systems, i.e., the role of H+ ions in spreading other polluting compounds and thus producing secondary environmental pollution. From the results of this study it follows that acid rain will lead, through H+ ion action, to a similar increasing pollution of fallout waters with other ionic compounds which may not be present in the water before the contact with the plants and thus enable the pollution spreading. In the investigated system, the replacement of H+ ions from acid rains by more dangerous radioactive ions occured, increasing the concentration of the radioactive ions in the water, which demonstrates that the same process takes place in fallout water.

  8. pH-, Lactic Acid-, and Non-Lactic Acid-Dependent Activities of Probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium

    PubMed Central

    Fayol-Messaoudi, Domitille; Berger, Cédric N.; Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L.

    2005-01-01

    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect. PMID:16204515

  9. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    PubMed

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. PMID:27451111

  10. Cu-Co-Ni alloys: an efficient and durable electrocatalyst in acidic media

    NASA Astrophysics Data System (ADS)

    Saha, Soumen; Ramanujachary, Kandalam V.; Lofland, Samuel E.; Ganguli, Ashok K.

    2016-01-01

    We have developed efficient nanostructures of Cu-Co-Ni alloy with varied stoichiometry as an alternative to the costly Pt-based alloys for hydrogen evolution reaction (HER). These nanoparticles were synthesized using the reverse micellar method. The size of the alloy nanoparticles varied from 40 to 70 nm. An enhanced catalytic activity as evident from high current density was observed for these Cu-Co-Ni (111) alloys which follows the Volmer-Heyrovsky mechanism. They have excellent stability (up to 500 cycles) and significant activity in acid media which might be due to the low hydrogen binding energy.

  11. Furfural production in biphasic media using an acidic ionic liquid as a catalyst.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Parajó, Juan C

    2016-11-20

    Ionic liquids are valuable tools for biorefineries. This study provides an experimental assessment on the utilization of an acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate) as a catalyst for furfural production in water/solvent media. The substrates employed in experiments were commercial xylose (employed as a reference compound) or hemicellulosic saccharides obtained by hydrothermal processing of Eucalyptus globulus wood (which were employed as produced, after membrane concentration or after freeze-drying). A variety of reaction conditions (defined by temperature, reaction time and type of organic solvent) were considered. The possibility of recycling the catalyst was assessed in selected experiments. PMID:27561513

  12. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    PubMed

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials.

  13. Furfural production in biphasic media using an acidic ionic liquid as a catalyst.

    PubMed

    Peleteiro, Susana; Santos, Valentín; Parajó, Juan C

    2016-11-20

    Ionic liquids are valuable tools for biorefineries. This study provides an experimental assessment on the utilization of an acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate) as a catalyst for furfural production in water/solvent media. The substrates employed in experiments were commercial xylose (employed as a reference compound) or hemicellulosic saccharides obtained by hydrothermal processing of Eucalyptus globulus wood (which were employed as produced, after membrane concentration or after freeze-drying). A variety of reaction conditions (defined by temperature, reaction time and type of organic solvent) were considered. The possibility of recycling the catalyst was assessed in selected experiments.

  14. Effects of Environmental pH on Antioxidant Interactions between Rosmarinic Acid and α-Tocopherol in Oil-in-Water (O/W) Emulsions.

    PubMed

    Kittipongpittaya, Ketinun; Panya, Atikorn; Phonsatta, Natthaporn; Decker, Eric A

    2016-08-31

    Antioxidant regeneration could be influenced by various factors such as antioxidant locations and pH conditions. The effects of environmental pH on the antioxidant interaction between rosmarinic acid and α-tocopherol in oil-in-water (O/W) emulsions were investigated. Results showed that the combined antioxidants at pH 7 exhibited the strongest synergistic antioxidant activity in comparison with the combinations at other pH conditions as indicated by the interaction index. A drop in pH from 7 to 3 resulted in a reduction in the synergistic effect. However, in the case of pH 3, an additive effect was obtained. Moreover, the effect of the pH on the regeneration of α-tocopherol by rosmarinic acid in heterogeneous Tween 20 solutions was studied using EPR spectrometer. The same was true for the regeneration efficiency, where the reaction at pH 7 exhibited the highest regeneration efficiency of 0.3 mol of α-tocopheroxyl radicals reduced/mol of phenolics. However, the study on depletions of rosmarinic acid and α-tocopherol revealed that the formation of caffeic acid, an oxidative degradation product of rosmarinic acid, could be involved in enhancing the antioxidant activity observed at pH 7 rather than the antioxidant regeneration. This study has highlighted that the importance of pH-dependent antioxidant interactions does not solely rely on antioxidant regeneration. In addition, the formation of other oxidative products from an antioxidant should be taken into account. PMID:27494424

  15. Effect of short-chain organic acids and pH on the behaviors of pyrene in soil-water system.

    PubMed

    An, Chunjiang; Huang, Guohe; Yu, Hui; Wei, Jia; Chen, Wei; Li, Gongchen

    2010-12-01

    The effects of five short-chain organic acids (SCOAs) on the behaviors of pyrene in soil-water system were investigated. The influences of the quantity and species of organic acids, pH, and soil dissolved organic matter were considered. The results showed the presence of SCOAs inhibited the adsorption and promoted the desorption of pyrene in the following order: citric acid>oxalic acid>tartaric acid>lactic acid>acetic acid. The decreased extents of pyrene adsorption performance enhanced with increasing SCOA concentrations, while the decreasing rate became less pronounced at high SCOA concentrations. In the presence of organic acids, the adsorption ability of pyrene decreased with increasing pH. However, there was a slight increase of pyrene adsorption with the addition of oxalic acid, tartaric acid and citric acid above pH 8. The capacity for pyrene retention differentiated significantly between the soils with and without dissolved organic matter. The presence of SCOAs was also favorable for the decrease of pyrene adsorption on soil without dissolved organic matter. The results of this study have important implications for the remediation of persistent organic pollutants in soil and groundwater.

  16. Transport and retention of zinc oxide nanoparticles in porous media: effects of natural organic matter versus natural organic ligands at circumneutral pH.

    PubMed

    Jones, Edward H; Su, Chunming

    2014-06-30

    The potential toxicity of nanoparticles (NPs) has received considerable attention, but there is little knowledge relating to the fate and transport of engineered ZnO NPs in the environment. Column experiments were performed at pH 7.3-7.6 to generate effluent concentrations and retention profiles for assessing the fate and transport of ZnO NPs (PZC=9.3, nominal size 20 nm) in saturated quartz sands (256 μm) in the presence of low natural organic matter (NOM) concentrations (1 mg/L humic and fulvic acids) and millimolar natural organic ligands (NOL) levels (formic, oxalic, and citric acids). At circumneutral pHs, ZnO NPs were positively charged and immobile in sand. The presence of NOM decreased the attachment efficiency facilitating ZnO transport through sand columns. Conversely, ZnO transport in the presence of formic and oxalic acids was only slightly improved when compared to ZnO in DI water; whereas, citric acid showed no improvement. The distinct difference between NOM and NOL may have important implications with regard to ZnO transport in the subsurface environment. Experimental results suggested the presence of both favorable and unfavorable nanoparticle interactions causes significant deviations from classical colloid filtration theory (CFT).

  17. Dissolution kinetics and mechanism of Mg-Al layered double hydroxides: a simple approach to describe drug release in acid media.

    PubMed

    Parello, Mara L; Rojas, Ricardo; Giacomelli, Carla E

    2010-11-01

    Layered double hydroxides (LDHs) weathering in acidic media is one of the main features that affects their applications in drug delivery systems. In this work, the dissolution kinetics of biocompatible Mg-Al LDHs was studied at different initial pH values and solid concentrations using a simple and fast experimental method that coupled flow injection analysis and amperometric detection. A carbonate intercalated sample was used to determine the controlling step of the process and the dissolution mechanism. Finally, the study was extended to an ibuprofen intercalated LDH. The obtained results showed that the weathering process was mainly controlled by the exposed area and surface reactivity of LDHs particles. The dissolution mechanism at the particle surface was described in two steps: fast formation of surface reactive sites by hydroxyl group protonation and slow detachment of metal ions from surface. At strongly acidic conditions, the reaction rate was pH dependent due to the equilibrium between protonated (active) and deprotonated (inactive) hydroxyl groups. On the other hand, at mildly acidic conditions, the dissolution behavior was also ruled by the equilibrium attained between the particle surface reactive sites and the dissolved species. LDHs solubility and dissolution rate presented strong dependence with the interlayer anion. The ibuprofen intercalated sample was more soluble and more rapidly dissolved than the carbonate intercalated one in acetic/acetate buffer. On the other hand, the dissolution mechanism was invariant with the interlayer anion.

  18. Electrochemistry of poly(vinylferrocene) modified electrodes in aqueous acidic media

    NASA Astrophysics Data System (ADS)

    Issa, Touma B.; Singh, Pritam; Baker, Murray V.

    A cyclic voltammetric study of the electrochemistry and chemical stability of the poly(vinylferrocene) (PVFc) redox couple, coated on a gold substrate, in aqueous solutions of H 2SO 4, HClO 4 and HCl was carried out. It was found that the anodic peak potential ( Epa) did not depend on the acid concentration in the range (1.0 × 10 -2 to 1.0 × 10 -7 mol L -1). However, the Epa values shifted linearly to less positive potentials when investigated in more concentrated acid solutions in the range 1-5 mol L -1. The slope of the Epa versus acid concentration graph was found to be in the order H 2SO 4 > HCl > HClO 4. In this regard PVFc behaved very similar to 1,1'-bis(11-mercaptoundecyl)ferrocene (Fc(C 11SH) 2) except for its chemical stability. In H 2SO 4 media the PVFc was found to be much less stable than 1,1'-Fc(C 11SH) 2. The dependence of Epa on acid concentration could be used to monitor state of charge of lead-acid batteries. However, for this application Fc(C 11SH) 2 would be a better choice because of its superior chemical stability.

  19. Presence of viral nucleic acids in the middle ear: acute otitis media pathogen or bystander?

    PubMed

    Chonmaitree, Tasnee; Ruohola, Aino; Hendley, J Owen

    2012-04-01

    Viruses play an important role in acute otitis media (AOM) pathogenesis, and live viruses may cause AOM in the absence of pathogenic bacteria. Detection of AOM pathogens generally relies on bacterial culture of middle ear fluid. When viral culture is used and live viruses are detected in the middle ear fluid of children with AOM, the viruses are generally accepted as AOM pathogens. Because viral culture is not sensitive and does not detect the comprehensive spectrum of respiratory viruses, polymerase chain reaction assays are commonly used to detect viral nucleic acids in the middle ear fluid. Although polymerase chain reaction assays have greatly increased the viral detection rate, new questions arise on the significance of viral nucleic acids detected in the middle ear because nucleic acids of multiple viruses are detected simultaneously, and nucleic acids of specific viruses are detected repeatedly and in a high proportion of asymptomatic children. This article first reviews the role of live viruses in AOM and presents the point-counterpoint arguments on whether viral nucleic acids in the middle ear represent an AOM pathogen or a bystander status. Although there is evidence to support both directions, helpful information for interpretation of the data and future research direction is outlined.

  20. Modeling the effects of sodium chloride, acetic acid and intracellular pH on the survival of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primar...

  1. Ingested acidic food and liquids may lead to misinterpretation of 24-hour ambulatory pH tests: focus on measurement of extra-esophageal reflux.

    PubMed

    Koskenvuo, Juha W; Pärkkä, Jussi P; Hartiala, Jaakko J; Kinnunen, Ilpo; Peltola, Matti; Sala, Eeva

    2007-07-01

    Normal values of extra-esophageal reflux are difficult to determine owing to variation in the location of the proximal electrode, limited information on the ingestion of acidic food, different exclusion periods for meals, and poor reproducibility of measurement of extra-esophageal reflux. We studied whether ambulatory esophageal pH testing is disturbed by acidic food ingestion. Eighteen healthy subjects were enrolled in standard dual-channel esophageal pH tests (recorder 1). Ten subjects were equipped with another pH device (recorder 2), positioned to measure extra-esophageal reflux. The subjects were exposed to controlled ingestion of different acidic food or liquid for five 1-min periods. The present study showed that acidic food ingestion for 5 min has a significant effect on the outcome of standard dual-channel ambulatory pH testing. Reflux occurs equally on proximal channels during ingestion of acidic food, whether the proximal channel position is normal or 2 cm above the upper esophageal sphincter. We recommend avoiding acidic food intake during esophageal pH testing.

  2. Intracellular pH modulates taste receptor cell volume and the phasic part of the chorda tympani response to acids.

    PubMed

    Lyall, Vijay; Pasley, Hampton; Phan, Tam-Hao T; Mummalaneni, Shobha; Heck, Gerard L; Vinnikova, Anna K; DeSimone, John A

    2006-01-01

    The relationship between cell volume and the neural response to acidic stimuli was investigated by simultaneous measurements of intracellular pH (pHi) and cell volume in polarized fungiform taste receptor cells (TRCs) using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) in vitro and by rat chorda tympani (CT) nerve recordings in vivo. CT responses to HCl and CO2 were recorded in the presence of 1 M mannitol and specific probes for filamentous (F) actin (phalloidin) and monomeric (G) actin (cytochalasin B) under lingual voltage clamp. Acidic stimuli reversibly decrease TRC pHi and cell volume. In isolated TRCs F-actin and G-actin were labeled with rhodamine phalloidin and bovine pancreatic deoxyribonuclease-1 conjugated with Alexa Fluor 488, respectively. A decrease in pHi shifted the equilibrium from F-actin to G-actin. Treatment with phalloidin or cytochalasin B attenuated the magnitude of the pHi-induced decrease in TRC volume. The phasic part of the CT response to HCl or CO2 was significantly decreased by preshrinking TRCs with hypertonic mannitol and lingual application of 1.2 mM phalloidin or 20 microM cytochalasin B with no effect on the tonic part of the CT response. In TRCs first treated with cytochalasin B, the decrease in the magnitude of the phasic response to acidic stimuli was reversed by phalloidin treatment. The pHi-induced decrease in TRC volume induced a flufenamic acid-sensitive nonselective basolateral cation conductance. Channel activity was enhanced at positive lingual clamp voltages. Lingual application of flufenamic acid decreased the magnitude of the phasic part of the CT response to HCl and CO2. Flufenamic acid and hypertonic mannitol were additive in inhibiting the phasic response. We conclude that a decrease in pHi induces TRC shrinkage through its effect on the actin cytoskeleton and activates a flufenamic acid-sensitive basolateral cation conductance that is involved in eliciting the phasic part of the CT response to

  3. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.

    PubMed

    Choudhary, Vinit; Mushrif, Samir H; Ho, Christopher; Anderko, Andrzej; Nikolakis, Vladimiros; Marinkovic, Nebojsa S; Frenkel, Anatoly I; Sandler, Stanley I; Vlachos, Dionisios G

    2013-03-13

    5-(Hydroxymethyl)furfural (HMF) and levulinic acid production from glucose in a cascade of reactions using a Lewis acid (CrCl3) catalyst together with a Brønsted acid (HCl) catalyst in aqueous media is investigated. It is shown that CrCl3 is an active Lewis acid catalyst in glucose isomerization to fructose, and the combined Lewis and Brønsted acid catalysts perform the isomerization and dehydration/rehydration reactions. A CrCl3 speciation model in conjunction with kinetics results indicates that the hydrolyzed Cr(III) complex [Cr(H2O)5OH](2+) is the most active Cr species in glucose isomerization and probably acts as a Lewis acid-Brønsted base bifunctional site. Extended X-ray absorption fine structure spectroscopy and Car-Parrinello molecular dynamics simulations indicate a strong interaction between the Cr cation and the glucose molecule whereby some water molecules are displaced from the first coordination sphere of Cr by the glucose to enable ring-opening and isomerization of glucose. Additionally, complex interactions between the two catalysts are revealed: Brønsted acidity retards aldose-to-ketose isomerization by decreasing the equilibrium concentration of [Cr(H2O)5OH](2+). In contrast, Lewis acidity increases the overall rate of consumption of fructose and HMF compared to Brønsted acid catalysis by promoting side reactions. Even in the absence of HCl, hydrolysis of Cr(III) decreases the solution pH, and this intrinsic Brønsted acidity drives the dehydration and rehydration reactions. Yields of 46% levulinic acid in a single phase and 59% HMF in a biphasic system have been achieved at moderate temperatures by combining CrCl3 and HCl.

  4. Perfluoroalkyl acids in the Canadian environment: multi-media assessment of current status and trends.

    PubMed

    Gewurtz, Sarah B; Backus, Sean M; De Silva, Amila O; Ahrens, Lutz; Armellin, Alain; Evans, Marlene; Fraser, Susan; Gledhill, Melissa; Guerra, Paula; Harner, Tom; Helm, Paul A; Hung, Hayley; Khera, Nav; Kim, Min Gu; King, Martha; Lee, Sum Chi; Letcher, Robert J; Martin, Pamela; Marvin, Chris; McGoldrick, Daryl J; Myers, Anne L; Pelletier, Magella; Pomeroy, Joe; Reiner, Eric J; Rondeau, Myriam; Sauve, Marie-Claude; Sekela, Mark; Shoeib, Mahiba; Smith, Daniel W; Smyth, Shirley Anne; Struger, John; Spry, Doug; Syrgiannis, Jim; Waltho, Jasmine

    2013-09-01

    In Canada, perfluoroalkyl acids (PFAAs) have been the focus of several monitoring programs and research and surveillance studies. Here, we integrate recent data and perform a multi-media assessment to examine the current status and ongoing trends of PFAAs in Canada. Concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and other long-chain perfluorocarboxylates (PFCAs) in air, water, sediment, fish, and birds across Canada are generally related to urbanization, with elevated concentrations observed around cities, especially in southern Ontario. PFOS levels in water, fish tissue, and bird eggs were below their respective Draft Federal Environmental Quality Guidelines, suggesting there is low potential for adverse effects to the environment/organisms examined. However, PFOS in fish and bird eggs tended to exceed guidelines for the protection of mammalian and avian consumers, suggesting a potential risk to their wildlife predators, although wildlife population health assessments are needed to determine whether negative impacts are actually occurring. Long-term temporal trends of PFOS in suspended sediment, sediment cores, Lake Trout (Salvelinus namaycush), and Herring Gull (Larus argentatus) eggs collected from Lake Ontario increased consistently from the start of data collection until the 1990s. However, after this time, the trends varied by media, with concentrations stabilizing in Lake Trout and Herring Gull eggs, and decreasing and increasing in suspended sediment and the sediment cores, respectively. For PFCAs, concentrations in suspended sediment, sediment cores, and Herring Gulls generally increased from the start of data collection until present and concentrations in Lake Trout increased until the late 1990s and subsequently stabilized. A multimedia comparison of PFAA profiles provided evidence that unexpected patterns in biota of some of the lakes were due to unique source patterns rather than internal lake processes. High

  5. Effect of ph on the Electrodeposition of Cu(In, Al)Se2 from Aqueous Solution in Presence of Citric Acid as Complexing Agent

    NASA Astrophysics Data System (ADS)

    Ganjkhanlou, Yadolah; Ebadzadeh, Touradj; Kazemzad, Mahmood; Maghsoudipour, Amir; Kianpour-Rad, Mansoor

    2015-05-01

    Effect of pH on the one-step electrodeposition of Cu(In, Al)Se2 chalcopyrite layer in the presence of citric acid has been investigated by applying different electrochemical and characterization techniques. It has been observed that at pH of 1.5, nanocrystalline phase of chalcopyrite and small amount of binary phase of Cu2Se with overall composition of Cu0.91In0.32Al0.39Se2 have been deposited. On the other hand, at pH of 4, the film composition changed to Cu1.9In0.05Al0.21Se2 and an additional binary phase of copper selenide (CuSe) has also been formed. Morphological investigation illustrated that smooth and compact layer with fine spherical particles having the size of 20 nm has been obtained at pH of 1.5 whereas mixture of planar and spherical particles with size of 450-550 nm have been formed at pH of 4. In alkaline environment (pH 9), the deposition current has been noticeably decreased and no deposition occurred due to the formation of a stable complex of citric acid with metal ions. The mechanism of citric acid interaction with metal ions at different pH has also been studied by cyclic voltammetry measurement.

  6. Continuous monitoring of salivary flow rate and pH at the surface of the dentition following consumption of acidic beverages.

    PubMed

    Millward, A; Shaw, L; Harrington, E; Smith, A J

    1997-01-01

    Use of a splint-mounted flexible pH electrode has allowed reliable continuous monitoring of pH at the surface of the dentition whilst still enabling subjects to drink normally. pH was monitored at the palatal upper left central incisor and upper right first permanent molar sites after drinking 1% (w/v) citric acid. A maximal decrease in pH to values of 2-3 was observed after 1 min followed by a slower recovery which was above pH 5.5 within 2 min at the former site and in 4-5 min at the latter site. A sharp rise in parotid saliva flow rate was seen at 1 min after drinking the same concentration of citric acid by glass, straw or feeder cup, which returned to resting levels within 6 min although the fall-off of flow rate was slower with the feeder cup. Thus, after dietary acid intake the pH at the surface of the dentition is below the critical pH for enamel dissolution for shorter periods than previously suggested, which is probably a reflection of salivary neutralisation and washing. PMID:8955994

  7. Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media.

    PubMed

    Walshe, Gillian E; Pang, Liping; Flury, Markus; Close, Murray E; Flintoft, Mark

    2010-02-01

    Viruses are often associated with colloids in wastewater and could be transported with colloids into groundwater from land disposal of human and animal effluent and sludge, causing contamination of groundwater. To investigate the role of colloids in the transport of viruses in groundwater, experiments were conducted using a 2m long column packed with heterogeneous gravel aquifer media. Bacteriophage MS2 was used as the model virus and kaolinite as the model colloid. Experimental data were analyzed using Temporal Moment Analysis and Filtration Theory. In the absence of kaolinite colloid, MS2 phage traveled slightly faster than the conservative tracer bromide (Br), with little differences observed between unfiltered and filtered MS2 phage (0.22 microm as the operational cut-off for colloid-free virus). In the presence of kaolinite colloids, MS2 phage breakthrough occurred concurrently with that of the colloidal particles and the time taken to reach the peak virus concentration was reduced, suggesting a colloid-facilitated virus transport in terms of peak-concentration time and velocity. Meanwhile mass recovery and magnitude of concentrations of the phages were significantly reduced, indicating colloid-assisted virus attenuation in terms of concentrations and mass. Decreasing the pH or increasing the ionic strength increased the level of virus attachment to the aquifer media and colloids, and virus transport became more retarded, resulting in lower peak-concentration, lower mass recovery, longer peak-concentration time, and greater apparent collision efficiency. Increasing the concentration of dissolved organic matter (DOM) or flow rate resulted in faster virus transport velocity, higher peak-concentrations and mass recoveries, and lower apparent collision efficiencies. The dual-role of colloids in transport viruses has important implications for risk analysis and remediation of virus-contaminated sites.

  8. Effect of protein concentration, pH, lactose content and pasteurization on thermal gelation of acid caprine whey protein concentrates.

    PubMed

    Bordenave-Juchereau, Stéphanie; Almeida, Bruno; Piot, Jean-Marie; Sannier, Frédéric

    2005-02-01

    The influence of pH (4.5-6.5), sodium chloride content (125-375 mM), calcium chloride content (10-30 mM), protein concentration (70-90 g/l) and lactose content on the gel hardness of goat whey protein concentrate (GWPC) in relation to the origin of the acid whey (raw or pasteurized milk) was studied using a factorial design. Gels were obtained after heat treatment (90 degrees C, 30 min). Gel hardness was measured using texture analyser. Only protein concentration and pH were found to have a statistically significant effect on the gel hardness. An increase in the protein concentration resulted in an increase in the gel hardness. GWPC containing 800g/kg protein formed gels with a hardness maximum at the pHi, whereas GWPC containing 300 g/kg protein did not form true gels. Whey from pasteurized milk formed softer gels than whey from raw milk. A high lactose content (approximately 360 g/kg) also reduced the gelation performance of GWPC. PMID:15747729

  9. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate.

    PubMed

    Jiang, Jianguo; Zhang, Yujing; Li, Kaimin; Wang, Quan; Gong, Changxiu; Li, Menglu

    2013-09-01

    The effects of pH, temperature, and organic loading rate (OLR) on the acidogenesis of food waste have been determined. The present study investigated their effects on soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), volatile solids (VS), and ammonia nitrogen (NH4(+)-N). Both the concentration and yield of VFAs were highest at pH 6.0, acetate and butyrate accounted for 77% of total VFAs. VFAs concentration and the VFA/SCOD ratio were highest, and VS levels were lowest, at 45 °C, but the differences compared to the values at 35 °C were slight. The concentrations of VFAs, SCOD, and NH4(+)-N increased as OLR increased, whereas the yield of VFAs decreased from 0.504 at 5 g/Ld to 0.306 at 16 g/Ld. Acetate and butyrate accounted for 60% of total VFAs. The percentage of acetate and valerate increased as OLR increased, whereas a high OLR produced a lower percentage of propionate and butyrate.

  10. Kinetics of Antibody Aggregation at Neutral pH and Ambient Temperatures Triggered by Temporal Exposure to Acid.

    PubMed

    Imamura, Hiroshi; Honda, Shinya

    2016-09-15

    The purification process of an antibody in manufacturing involves temporal exposure of the molecules to low pH followed by neutralization-pH-shift stress-which causes aggregation. It remains unclear how aggregation triggered by pH-shift stress grows at neutral pH and how it depends on the temperature in an ambient range. We used static and dynamic light scattering to monitor the time-dependent evolution of the aggregate size of the pH-shift stressed antibody between 4.0 and 40.0 °C. A power-law relationship between the effective molecular weight and the effective hydrodynamic radius was found, indicating that the aggregates were fractal with a dimension of 1.98. We found that the aggregation kinetics in the lower-temperature range, 4.0-25.0 °C, were well described by the Smoluchowski aggregation equation. The temperature dependence of the effective aggregation rate constant gave 13 ± 1 kcal/mol of endothermic activation energy. Temporal acid exposure creates an enriched population of unfolded protein molecules that are competent of aggregating. Therefore, the energetically unfavorable unfolding step is not required and the aggregation proceeds faster. These findings provide a basis for predicting the growth of aggregates during storage under practical, ambient conditions. PMID:27537343

  11. Efficient interrupting skills of amino acid metallointercalators with DNA at physiological pH: Evaluation of biological assays

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Selvaganapathy, Muthusamy; Radhakrishnan, Srinivasan

    2014-06-01

    The 4-aminoantipyrine derivatives (sbnd NO2, sbnd OCH3) and their mixed-ligand complexes with amino acids have been synthesized and investigated for their binding with CT DNA using UV-visible spectroscopy, cyclic voltammetry, and viscosity measurements under physiological conditions of pH (stomach 4.7; blood 7.4). The results from all techniques i.e. binding constant (Kb), and free energy change (ΔG) were in good agreement and inferred spontaneous compound-DNA complexes formation via intercalation. Among all the compounds 1 and 4 showed comparatively greater binding at pH 7.4 as evident from its greater Kb values. All the complexes exhibit oxidative cleavage of supercoiled (SC) pBR322 plasmid DNA in the presence of H2O2 as an activator. It is remarkable that at 25 μM concentration 1 and 4 completely degrade SC DNA into undetectable minor fragments and thus they act as efficient chemical nucleases. Among the new complexes, complexes 1 and 4 have highest potential against all the microorganisms tested. The results of the above biological experiments also reveal that the choice of different metal ions has little influence on the DNA binding, DNA cleavage and antimicrobial assay.

  12. Isotope fractionation of Si in protonation/deprotonation reaction of silicic acid: A new pH proxy

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiyuki; Pringle, Emily A.; Chaussidon, Marc; Moynier, Frédéric

    2015-11-01

    Isotopic fractionation of Si in protonation/deprotonation reactions of monomeric silicic acids was theoretically and experimentally studied. The reduced partition function ratio for Si (as 1000 ln β) complexes was theoretically estimated by ab initio methods. Three permil of isotope fractionation was estimated to be possible for the 28Si-30Si isotope pair. This prediction was experimentally demonstrated by multi-collector inductively coupled plasma mass spectrometer measurements of Si-bearing aqueous solutions, for which equilibrated Si(OH)4 and SiO(OH)3- were separated using an anionic exchange column. The results create a new possibility for the application of Si isotopes as proxies for paleo-pH in the 9 < pH < 12 range.

  13. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  14. The binding of CpG-oligodeoxynucleotides to cell-surface and its immunostimulatory activity are modulated by extracellular acidic pH.

    PubMed

    Hu, Zhenlin; Sun, Shuhan; Zhou, Fengjuan

    2003-01-17

    Both the binding of CpG-oligodeoxynucleotides (CpG-ODNs) to cell-surface and its immunostimulatory activity were modulated by extracellular pH in present study. At neutral pH (pH 7.4), the binding of CpG-ODN to splenocyte-surface, as well as that of non-CpG-ODN, was competitively inhibited by non-specific DNA-Herring sperm DNA in a dose dependent manner, indicating their binding sites have no specificity for CpG-motif. When the extracellular pH shifted to acidic (pH 6.4), however, their binding to cell-surface markedly increased, and only the binding of non-CpG-ODN instead of CpG-ODN was inhibited by Herring sperm DNA, implying such pH change enabled CpG-ODN bind to its specific binding-site. Consistently, lymphocytes appeared more sensitive to the stimulation of CpG-ODN at acidic pH, and Herring sperm DNA inhibited the CpG-ODN-induced TNF production from splenocytes at pH 7.4, but not at pH 6.4. These results suggest the existence of membrane receptor that specifically engages CpG-ODN with high affinity only at acidic pH, and support the hypothesis that the binding CpG-ODN to its specific membrane receptor and subsequently triggering of CpG-related signaling occurred within acidified endosomes.

  15. The role of calcium ions in the photocatalytic oxidation of humic acid at neutral pH.

    PubMed

    Mariquit, Eden G; Salim, Chris; Hinode, Hirofumi

    2008-10-01

    Humic acids (HAs) are natural organic matter derived from the decomposition of plant, algal, and microbial materials. They belong to the group of the most predominant type of natural organic matter present in ground and surface waters. HAs affect the mobility and bioavailability of aquatic contaminants. However, if they are left unremoved from the water before water treatment processes, they can form carcinogenic disinfection by-products, such as trihalomethanes, haloacetic acids, and other halogenated disinfection by-products, that can pose a threat to human beings. An advanced oxidation process using UV light and a commercially available titanium dioxide was used to oxidize HA at a pH that is similar to that of natural water. The effect of adding calcium ions to the adsorption and the photocatalytic oxidation of HAs was studied. The effect of varying the TiO(2) load was also investigated. The experiment was done using a photochemical batch reactor equipped with a mercury lamp emitting light with wavelengths of 310-580 nm. The absorbances by the samples were determined at wavelengths of 254 nm and 436 nm, which represent the aromatic-compound content of and the color of the solution, respectively. Results indicated calcium ions have an effect on both the adsorption and the photocatalytic oxidation of HA at a pH within 8.0 +/- 0.5. Calcium ions facilitated adsorption of HA onto the surface of TiO(2) and resulted to faster photocatalytic oxidation. The data were plotted with respect to the normalized absorbances and irradiation time. PMID:18991939

  16. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage.

    PubMed

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor A P; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-06-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including 'ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called 'ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  17. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    PubMed Central

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor AP; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  18. Bilayers at High pH in the Fatty Acid Soap Systems and the Applications for the Formation of Foams and Emulsions.

    PubMed

    Xu, Wenlong; Zhang, Heng; Zhong, Yingping; Jiang, Liwen; Xu, Mengxin; Zhu, Xionglu; Hao, Jingcheng

    2015-08-20

    In our previous work, we reported bilayers at high pH in the stearic acid/CsOH/H2O system, which was against the traditional viewpoint that fatty acid (FA) bilayers must be formed at the pKa of the fatty acid. Herein, the microstructures at high pH of several fatty acid soap systems were investigated systematically. We found that palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O, and stearic acid/CsOH/H2O systems can form bilayers at high pH. The bilayer structure was demonstrated by cryogenic transmission electron microscopy (cryo-TEM) and deuterium nuclear magnetic resonance ((2)H NMR), and molecular dynamics simulation was used to confirm the formation of bilayers. The influence of fatty acids with different chain lengths (n = 10, 12, 14, 16, and 18) and different counterions including Li(+), Na(+), K(+), Cs(+), (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) on the formation of bilayers was discussed. The stability of foam and emulsification properties were compared between bilayers and micelles, drawing the conclusion that bilayer structures possess a much stronger ability to foam and stronger emulsification properties than micelles do.

  19. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  20. Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1983-01-01

    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.

  1. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  2. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance. PMID:26059505

  3. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  4. Bile components and amino acids affect survival of the newly excysted juvenile Clonorchis sinensis in maintaining media.

    PubMed

    Li, Shunyu; Kim, Tae Im; Yoo, Won Gi; Cho, Pyo Yun; Kim, Tong-Soo; Hong, Sung-Jong

    2008-10-01

    Clonorchis sinensis thrives on bile juice. The effects of bile and bile acids on newly excysted juvenile C. sinensis (CsNEJ) were studied in terms of survival. Survival of CsNEJs maintained in 1x Locke's solution, Dulbecco's modified Eagle's medium, NCTC 109, Eagle's, RPMI 1640, and 0.1% glucose was high, but dropped rapidly in 2x Locke's, 0.85% NaCl, and phosphate-buffered saline. Most amino acids in the media favored CsNEJ survival; however, aspartic and glutamic acids and adenine reduced survival. Survival was also significantly lower in media containing more than 0.1% bile. CsNEJs preconditioned in low bile media survived longer in higher bile media. All bile acids and conjugated bile salts were found to favor CsNEJ survival, except for lithocholic acid (LCA) which was toxic. NCTC 109 medium was found to be optimal for the in vitro maintenance of CsNEJs and 1x Locke's solution to be suitable for analyzing the biological effects of bioactive compounds and molecules. Based on these results, we propose that bile acids enhance activity of CsNEJs, but LCA deteriorate CsNEJs.

  5. Improving clarity and stability of skim milk powder dispersions by dissociation of casein micelles at pH 11.0 and acidification with citric acid.

    PubMed

    Pan, Kang; Zhong, Qixin

    2013-09-25

    Casein micelles in milk cause turbidity and have poor stability at acidic conditions. In this study, skim milk powder dispersions were alkalized to pH 10.0 or 11.0, corresponding to reduced particle mass. In the following acidification with hydrochloric or citric acid, the re-formation of casein particles was observed. The combination of treatment at pH 11.0 and acidification with citric acid resulted in dispersions with the lowest turbidity and smallest particles, which enabled translucent dispersions at pH 5.5-7.0, corresponding to discrete nanoparticles. The concentration of ionic calcium was lower when acidified with citric acid than hydrochloric acid, corresponding to smaller particles with less negative zeta potential. The pH 11.0 treatment followed by acidification with citric acid also resulted in smaller particles than the simple chelating effects (directly implementing sodium citrate). The produced casein nanoparticles with reduced dimensions can be used for beverage and other novel applications.

  6. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate.

    PubMed

    Takeuchi, T L; Suzuki, I

    1994-02-01

    The oxidation of sulfite by Thiobacillus thiooxidans was studied at various pH values with changing concentrations of potassium sulfite. The optimal pH for sulfite oxidation by cells was a function of sulfite concentrations, rising with increasing substrate concentrations, while that by the cell extracts was unaffected. The sulfite oxidation by cells was inhibited at high sulfite concentrations, particularly at low pH values. The results from kinetic studies show that the fully protonated form of sulfite, sulfurous acid or sulfur dioxide, is the form which penetrates the cells for the oxidation.

  7. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study

    PubMed Central

    2010-01-01

    Background The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis. The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults. Methods Design: Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index. Results There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders. Conclusion Urine pH and urine acid excretion do not predict osteoporosis risk. PMID:20459740

  8. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.

    PubMed

    Yang, Hui; Hu, Yuanan; Cheng, Hefa

    2016-10-01

    Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm(2)) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the "loosely bound" water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a "coating layer" on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream. PMID:27364487

  9. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.

    PubMed

    Yang, Hui; Hu, Yuanan; Cheng, Hefa

    2016-10-01

    Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm(2)) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the "loosely bound" water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a "coating layer" on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream.

  10. Modeling of the dissolution of oxide phases I. Electrochemical model of the dissolution of copper(II) oxides in acidic media

    SciTech Connect

    Gorichev, I.G.; Dorofeev, M.V.; Batrakov, V.V.; Shaplygin, I.S.; Nevskaya, E.Yu.

    1994-12-01

    Suggested in this report is a theoretical substantiation of the change in the order of reaction with respect to hydrogen ions in the reaction of Cu(II) oxides with electrolytes. This idea is based on the electrochemical concepts concerning the structure of the electrical double layer (EDL). It was shown that during the dissolution of Cu(II) oxides in acidic media, the order of reaction with respect to hydrogen ions changes from 0.5 to 1.5 as the pH of the solution grows. This change is correlated with the charge acquired by the oxide-electrolyte solution interface. The developed concepts can be applied to describing dissolution kinetics for other oxides.

  11. Chronic suppurative otitis media due to nontuberculous mycobacteria: A case of successful treatment with topical boric acid.

    PubMed

    Lefebvre, Marie-Astrid; Quach, Caroline; Daniel, Sam J

    2015-07-01

    Nontuberculous mycobacteria (NTM) are an increasingly recognized cause of chronic suppurative otitis media in children with tympanostomy tubes. Treatment of this condition is difficult and typically requires a combination of systemic antibiotics and surgical debridement. We present the first case of a 2-year-old male with chronic suppurative otitis media due to NTM who failed systemic antibiotic therapy and was successfully managed with topical boric acid powder. This report highlights the challenges involved in treating this infection, and introduces boric acid as a potentially valuable component of therapy.

  12. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid.

    PubMed

    Kavitha, Mysore Doddaiah; Kathiresan, Shanmugam; Bhattacharya, Sila; Sarada, Ravi

    2016-05-01

    Porphyridium purpureum a red marine microalga is known for phycobiliproteins (PB), polyunsaturated fatty acids and sulphated exopolysaccharides. In the present study, effects of media constituents for the production of different polyunsaturated fatty acids from P. purpureum were considered using a response surface methodology (RSM). A second order polynomial was used to predict the response functions in terms of the independent variables such as the concentrations of sodium chloride, magnesium sulphate, sodium nitrate and potassium dihydrogen phosphate. The response functions were production of biomass yield, total lipid and polyunsaturated fatty acids like arachidonic acid (AA 20:4) and eicosapentaenoic acid (EPA 20:5). Results corroborated that maximum Biomass (0.95 gL(-1)) yield was at the concentrations of sodium chloride (14.89 gL(-1)), magnesium sulfate (3.93 gL(-1)) and sodium nitrate (0.96 gL(-1)) and potassium dihydrogen phosphate (0.09 gL(-1)). Optimum total lipid (17.9 % w/w) and EPA (34.6 % w/w) content was at the concentrations of sodium chloride (29.98 gL(-1)), magnesium sulfate (9.34 gL(-1)) and sodium nitrate (1.86 gL(-1)). Variation in concentration of potassium dihydrogen phosphate for both lipid (0.01gL(-1)) and EPA content (0.20 gL(-1)) was observed. The optimum conditions for biomass, total lipid, AA and EPA varied indicating their batch mode of growth and interaction effect of the salt.

  13. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid.

    PubMed

    Kavitha, Mysore Doddaiah; Kathiresan, Shanmugam; Bhattacharya, Sila; Sarada, Ravi

    2016-05-01

    Porphyridium purpureum a red marine microalga is known for phycobiliproteins (PB), polyunsaturated fatty acids and sulphated exopolysaccharides. In the present study, effects of media constituents for the production of different polyunsaturated fatty acids from P. purpureum were considered using a response surface methodology (RSM). A second order polynomial was used to predict the response functions in terms of the independent variables such as the concentrations of sodium chloride, magnesium sulphate, sodium nitrate and potassium dihydrogen phosphate. The response functions were production of biomass yield, total lipid and polyunsaturated fatty acids like arachidonic acid (AA 20:4) and eicosapentaenoic acid (EPA 20:5). Results corroborated that maximum Biomass (0.95 gL(-1)) yield was at the concentrations of sodium chloride (14.89 gL(-1)), magnesium sulfate (3.93 gL(-1)) and sodium nitrate (0.96 gL(-1)) and potassium dihydrogen phosphate (0.09 gL(-1)). Optimum total lipid (17.9 % w/w) and EPA (34.6 % w/w) content was at the concentrations of sodium chloride (29.98 gL(-1)), magnesium sulfate (9.34 gL(-1)) and sodium nitrate (1.86 gL(-1)). Variation in concentration of potassium dihydrogen phosphate for both lipid (0.01gL(-1)) and EPA content (0.20 gL(-1)) was observed. The optimum conditions for biomass, total lipid, AA and EPA varied indicating their batch mode of growth and interaction effect of the salt. PMID:27407193

  14. Evaluation of NaCl, pH, and lactic acid on the growth of Shiga toxin-producing Escherichia coli in a liquid Cheddar cheese extract.

    PubMed

    Oh, Jee-Hwan; Vinay-Lara, Elena; McMinn, Russell; Glass, Kathleen A; Johnson, Mark E; Steele, James L

    2014-11-01

    A Cheddar cheese model system, Cheddar cheese extract, was used to examine how different levels of known microbial hurdles (NaCl, pH, and lactic acid) in Cheddar cheese contribute to inhibition of bacterial pathogens. This knowledge is critical to evaluate the safety of Cheddar varieties with altered compositions. The range of levels used covered the lowest and highest level of these factors present in low-sodium, low-fat, and traditional Cheddar cheeses. Four pathogens were examined in this model system at 11 °C for 6 wk, with the lowest levels of these inhibitory factors that would be encountered in these products. The 4 pathogens examined were Salmonella enterica, Staphylococcus aureus, Listeria monocytogenes, and Shiga toxin-producing Escherichia coli (STEC). None of these organisms were capable of growth under these conditions. The STEC exhibited the highest survival and hence was used to examine which of these inhibitory factors (NaCl, pH, and lactic acid) was primarily responsible for the observed inhibition. The STEC survival was examined in Cheddar cheese extract varying in NaCl (1.2 vs. 4.8%), lactic acid (2.7 vs. 4.3%), and pH (4.8 vs. 5.3) at 11 °C for 6 wk. The microbial hurdle found to have the greatest effect on STEC survival was pH. The interactions between pH and levels of protonated lactic acid and anionic lactic acid with STEC survival was also evaluated; only the concentration of protonated lactic acid was determined to have a significant effect on STEC survival. These results indicate that, of the pathogens examined, STEC is of the greatest concern in Cheddar varieties with altered compositions and that pH is the microbial hurdle primarily responsible for controlling STEC in these products. PMID:25200778

  15. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    PubMed Central

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  16. Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH

    NASA Astrophysics Data System (ADS)

    Gammons, Christopher H.; Wood, Scott A.; Nimick, David A.

    2005-08-01

    Diel (24-h) changes in concentrations of rare earth elements (REE) were investigated in Fisher Creek, a mountain stream in Montana that receives acid mine drainage in its headwaters. Three simultaneous 24-h samplings were conducted at an upstream station (pH = 3.3), an intermediate station (pH = 5.5), and a downstream station (pH = 6.8). The REE were found to behave conservatively at the two upstream stations. At the downstream station, REE partitioned into suspended particles to a degree that varied with the time of day, and concentrations of dissolved REE were 2.9- to 9.4-fold (190% to 830%) higher in the early morning vs. the late afternoon. The decrease in dissolved REE concentrations during the day coincided with a corresponding increase in the concentration of REE in suspended particles, such that diel changes in the total REE concentrations were relatively minor (27% to 55% increase at night). Across the lanthanide series, the heavy REE partitioned into the suspended solid phase to a greater extent than the light REE. Filtered samples from the downstream station showed a decrease in shale-normalized REE concentration across the lanthanide series, with positive anomalies at La and Gd, and a negative Eu anomaly. As the temperature of the creek increased in the afternoon, the slope of the REE profile steepened and the magnitude of the anomalies increased. The above observations are explained by cyclic adsorption of REE onto suspended particles of hydrous ferric and aluminum oxides (HFO, HAO). Conditional partition coefficients for each REE between the suspended solids and the aqueous phase reached a maximum at 1700 hours and a minimum at 0700 hours. This pattern is attributed to diel variations in stream temperature, possibly reinforced by kinetic factors (i.e., slower rates of reaction at night than during the day). Estimates of the enthalpy of adsorption of each REE onto suspended particles based on the field results averaged +82 kJ/mol and are similar in

  17. Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH

    USGS Publications Warehouse

    Gammons, C.H.; Wood, S.A.; Nimick, D.A.

    2005-01-01

    Diel (24-h) changes in concentrations of rare earth elements (REE) were investigated in Fisher Creek, a mountain stream in Montana that receives acid mine drainage in its headwaters. Three simultaneous 24-h samplings were conducted at an upstream station (pH = 3.3), an intermediate station (pH = 5.5), and a downstream station (pH = 6.8). The REE were found to behave conservatively at the two upstream stations. At the downstream station, REE partitioned into suspended particles to a degree that varied with the time of day, and concentrations of dissolved REE were 2.9- to 9.4-fold (190% to 830%) higher in the early morning vs. the late afternoon. The decrease in dissolved REE concentrations during the day coincided with a corresponding increase in the concentration of REE in suspended particles, such that diel changes in the total REE concentrations were relatively minor (27% to 55% increase at night). Across the lanthanide series, the heavy REE partitioned into the suspended solid phase to a greater extent than the light REE. Filtered samples from the downstream station showed a decrease in shale-normalized REE concentration across the lanthanide series, with positive anomalies at La and Gd, and a negative Eu anomaly. As the temperature of the creek increased in the afternoon, the slope of the REE profile steepened and the magnitude of the anomalies increased. The above observations are explained by cyclic adsorption of REE onto suspended particles of hydrous ferric and aluminum oxides (HFO, HAO). Conditional partition coefficients for each REE between the suspended solids and the aqueous phase reached a maximum at 1700 hours and a minimum at 0700 hours. This pattern is attributed to diel variations in stream temperature, possibly reinforced by kinetic factors (i.e., slower rates of reaction at night than during the day). Estimates of the enthalpy of adsorption of each REE onto suspended particles based on the field results averaged +82 kJ/mol and are similar in

  18. PhTX-II a Basic Myotoxic Phospholipase A2 from Porthidium hyoprora Snake Venom, Pharmacological Characterization and Amino Acid Sequence by Mass Spectrometry

    PubMed Central

    Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Marangoni, Sergio

    2014-01-01

    A monomeric basic PLA2 (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA2 enzyme class and displays conserved domains as the catalytic network, Ca2+-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA2 showed an allosteric behavior and its enzymatic activity was dependent on Ca2+. Examination of PhTX-II PLA2 by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA2 causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA2 that contributes with toxic actions caused by P. hyoprora venom. PMID:25365526

  19. Production and stability of chlorine dioxide in organic acid solutions as affected by pH, type of acid, and concentration of sodium chlorite, and its effectiveness in inactivating Bacillus cereus spores.

    PubMed

    Kim, Hoikyung; Kang, Youngjee; Beuchat, Larry R; Ryu, Jee-Hoon

    2008-12-01

    We studied the production and stability of chlorine dioxide (ClO(2)) in organic acid solutions and its effectiveness in killing Bacillus cereus spores. Sodium chlorite (5000, 10,000, or 50,000 microg/ml) was added to 5% acetic, citric, or lactic acid solution, adjusted to pH 3.0, 4.0, 5.0, or 6.0, and held at 21 degrees C for up to 14 days. The amount of ClO(2) produced was higher as the concentration of sodium chlorite was increased and as the pH of the acid solutions was decreased. However, the stability in production of ClO(2) was enhanced by increasing the pH of the organic acid solutions. To evaluate the lethal activity of ClO(2) produced in various acid solutions as affected by acidulant and pH, suspensions of B. cereus spores were treated at 21 degrees C for 1, 3, 5, or 10 min in hydrochloric acid or organic acid solutions (pH 3.0, 4.0, 5.0, or 6.0) containing ClO(2) at concentrations of 100, 50, or 25 microg/ml. Populations of viable spores treated with ClO(2) at concentrations of 100 or 50 microg/ml in organic acid solutions decreased more rapidly than populations treated with the same concentrations of ClO(2) in HCl. Rates of inactivation tended to increase with higher pH of ClO(2) solutions. Results show that ClO(2) formed in organic acid solutions has higher stability and is more lethal to B. cereus spores than ClO(2) formed at the same concentration in HCl solution. This finding emphasizes the benefits of using organic acid solutions to prepare ClO(2) intended for use as an antimicrobial.

  20. Migration of 18 trace elements from ceramic food contact material: influence of pigment, pH, nature of acid and temperature.

    PubMed

    Demont, M; Boutakhrit, K; Fekete, V; Bolle, F; Van Loco, J

    2012-03-01

    The effect of pH, nature of acid and temperature on trace element migration from ceramic ware treated with 18 commercially available glazes was studied. Besides of the well-studied lead and cadmium, migration of other toxic and non toxic elements such as aluminum, boron, barium, cobalt, chrome, copper, iron, lithium, magnesium, manganese, nickel, antimony, tin, strontium, titanium, vanadium, zinc and zirconium was investigated in order to evaluate their potential health hazards. Trace element concentrations were determined with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This study suggests that there is indeed a health risk concerning the possible migration of other elements than lead and cadmium. At low pH (2<pH<3), the nature of the acid plays an important role. Citric and malic acid seem to be more aggressive to the glaze than acetic acid except for aluminum, barium, chromium, iron and magnesium. The migration kinetics between pH 2 and 3 in acetic acid of these exceptions also are more exponential while the other elements display a decreasing linear gradient. In ceramics used for this study (fired at 900 °C), a linear relationship between the migration and the temperature was observed. PMID:22265939

  1. pH dependent growth of poly( L-lysine)/poly( L-glutamic) acid multilayer films and their cell adhesion properties

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Arntz, Youri; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2004-10-01

    The short-term interaction of chondrosarcoma cells with (PGA/PLL) polyelectrolyte multilayers was investigated in a serum-containing medium for films built at different pHs and subsequently exposed to the culture medium. The buildup of the films and their stability was first investigated by means of optical waveguide lightmode spectroscopy, quartz crystal microbalance, streaming potential measurements and atomic force microscopy. While film growth is linear at all pHs, after a few layers have been deposited the growth is much larger for the films built at basic pH and even more pronounced for those built at acidic pH. However, these latter films remain stable in the culture medium only if they have been crosslinked prior to the ionic strength and pH jumps. The films built at acidic pH were found to swell in water by about 200% whereas those built at other pHs did not swell in a physiological buffer. For thin films (≈20 nm) built at pH = 7.4, the detachment forces were dependent on the outermost layer, the forces being significantly higher on PLL-ending films than on PGA-ending ones. In contrast, for the thick films built at pH = 4.4 and at pH = 10.4 (thickness of the order of few hundred of nanometers), the detachment forces were independent of the outermost layer of the film. The films built at pH = 10.4, which shrink in contact with salt containing solutions, were highly cell adhesive whereas those built at acidic pH were highly cell resistant. Protein adsorption and film roughness (as measured by AFM) could not explain these striking differences. The high adhesion observed on the film built at pH 10.4 may rather be related to the secondary structure of the film and to its relatively low swellability in water, whereas the cell resistance of the films built at pH 4.4 may be linked to their high swellability. Therefore, for the PGA/PLL films, the cell adhesion properties can be tuned depending on the deposition pH of the polyelectrolyte solutions. This study

  2. Acidic Digestion in a Teleost: Postprandial and Circadian Pattern of Gastric pH, Pepsin Activity, and Pepsinogen and Proton Pump mRNAs Expression

    PubMed Central

    Yúfera, Manuel; Moyano, Francisco J.; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo

    2012-01-01

    Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices. PMID:22448266

  3. Simultaneous determination of amino acids and carbohydrates in culture media of Clostridium thermocellum by valve-switching ion chromatography.

    PubMed

    Fa, Yun; Yang, Haiyan; Ji, Chengshuai; Cui, He; Zhu, Xinshu; Du, Juan; Gao, Jun

    2013-10-10

    An improved method for the simultaneous determination of 20 amino acids and 7 carbohydrates using one-valve switching after injection, ion chromatography, and integrated pulsed amperometric detection is proposed. The resolution of the amino acids and carbohydrates in the cation trap column was investigated. In addition, parameters including flow liquid type, flow rate, concentration, and valve-switch timing were optimized. The method is time-saving, effective, and accurate for the simultaneous separation of amino acids and carbohydrates, with a mean correlation coefficient of >0.99 and repeatability of 0.5-4.6% for eight replicates. The method was successfully applied in the analysis of amino acids and carbohydrates in aseptic media and in extracellular culture media of three phenotypes of Clostridium thermocellum.

  4. Microculture model studies on the effect of sorbic acid on Penicillium chrysogenum, Cladosporium cladosporioides and Ulocladium atrum at different pH levels.

    PubMed

    Skirdal, I M; Eklund, T

    1993-02-01

    The minimum growth-inhibitory concentration of sorbic acid has been determined for Penicillium chrysogenum, Cladosporium cladosporioides and Ulocladium atrum at pH 4.1-7.6 by using a microculture technique. This technique had earlier been applied to bacteria and Candida albicans and gave very reliable minimum inhibitory values. This investigation has shown that it is suitable also for determination of mould growth. The minimum inhibitory concentrations of sorbic acid were at the tested pH levels 1-230 mmol l-1 for P. chrysogenum, 0.3-18.0 mmol l-1 for C. cladosporioides and 0.2-33.0 mmol l-1 for U. atrum. A mathematical model for combined inhibition by dissociated and undissociated acid, which gave a good description of the minimum inhibitory concentration data earlier obtained for bacteria and Candida albicans, was suitable also for moulds. Both dissociated and undissociated acid contributed to growth inhibition.

  5. Past and future seasonal variation in pH and metal concentrations in runoff from river basins on acid sulphate soils in Western Finland.

    PubMed

    Saarinen, Tuomas S; Kløve, Bjørn

    2012-01-01

    Drainage of acid sulphate soils (ASS) increases oxidation, leading to extensive leaching of acidity and metals to rivers (Al, Cd, Cr, Fe, Ni and Zn). This is often apparent during high runoff periods in spring and autumn after long dry periods with low groundwater levels and associated ASS oxidation. Regression models were used to study changes in these water quality variables according to various discharge scenarios. The knowledge of seasonal patterns of water quality variables in future is important for planning land use of the catchments in relation to WFD of European Union. The data showed that river water acidity (pH and metals) increased with discharge, with the correlation being strongest in low runoff periods in winter and summer and less clear in spring. With future climate change, river acidity can increase radically, especially during winters following extremely dry summers, and pH and metal peaks may occur even during winter.

  6. Propagated fixed-bed mixed-acid fermentation: Part I: Effect of volatile solid loading rate and agitation at high pH.

    PubMed

    Golub, Kristina W; Forrest, Andrea K; Mercy, Kevin L; Holtzapple, Mark T

    2011-11-01

    Countercurrent fermentation is a high performing process design for mixed-acid fermentation. However, there are high operating costs associated with moving solids, which is an integral component of this configuration. This study investigated the effect of volatile solid loading rate (VSLR) and agitation in propagated fixed-bed fermentation, a configuration which may be more commercially viable. To evaluate the role of agitation on fixed-bed configuration performance, continuous mixing was compared with periodic mixing. VSLR was also varied and not found to affect acid yields. However, increased VSLR and liquid retention time did result in higher conversions, productivity, acid concentrations, but lower selectivities. Agitation was demonstrated to be important for this fermentor configuration, the periodically-mixed fermentation had the lowest conversion and yields. Operating at a high pH (∼9) contributed to the high selectivity to acetic acid, which might be industrially desirable but at the cost of lower yield compared to a neutral pH.

  7. Column experiments to investigate transport of colloidal humic acid through porous media during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Zhou, Jingjing; Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Li, Fulin; Chen, Xuequn

    2016-09-01

    Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.

  8. Nutrient salts promote light-induced degradation of indole-3-acetic Acid in tissue culture media.

    PubMed

    Dunlap, J R; Robacker, K M

    1988-10-01

    The disappearance of indole-3-acetic acid (IAA) from cell-free liquid culture medium was followed in response to nutrient salts found in Murashige-Skoog salt base, light, and pH range of 4 to 7. The loss of IAA was accelerated by light or Murashige-Skoog salts. However, the combination of both light and Murashige-Skoog salts acted synergistically to catalyze the destruction of over 80% of the original IAA within 7 days of continuous incubation. Under these same conditions, the loss of IAA was decreased to approximately 50% by adjusting the initial pH of the medium to 7. Iron was identified as the single major contributor to light-catalyzed destruction of IAA. Removal of nitrates, which represented 87% of the molar salt composition, also reduced the light-catalyzed loss of IAA. Treatments that protected IAA from degradation, such as darkness or removal of iron from the medium, suppressed the growth of muskmelon (Cucumis melo. Naud., var. reticulatus) callus tissue cultured for 30 days. Treatments in the light that rapidly degraded IAA resulted in maximum growth. Consequently, the brief exposure to IAA prior to degradation was apparently sufficient to initiate physiological changes required for growth. Possible approaches to the preservation of IAA during incubation are discussed. PMID:16666312

  9. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation.

    PubMed

    Laumann, Susanne; Micić, Vesna; Lowry, Gregory V; Hofmann, Thilo

    2013-08-01

    The limited transport of nanoscale zero-valent iron (nZVI) in porous media is a major obstacle to its widespread application for in situ groundwater remediation. Previous studies on nZVI transport have mainly been carried out in quartz porous media. The effect of carbonate minerals, which often predominate in aquifers, has not been evaluated to date. This study assessed the influence of the carbonate minerals in porous media on the transport of polyacrylic acid modified nZVI (PAA-nZVI). Increasing the proportion of carbonate sand in the porous media resulted in less transport of PAA-nZVI. Predicted travel distances were reduced to a few centimeters in pure carbonate sand compared to approximately 1.6 m in quartz sand. Transport modeling showed that the attachment efficiency and deposition rate coefficient increased linearly with increasing proportion of carbonate sand.

  10. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH

    PubMed Central

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  11. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-03-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  12. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-01-08

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism.

  13. Effect of acidic pH on flow cytometric detection of bacteria stained with SYBR Green I and their distinction from background

    NASA Astrophysics Data System (ADS)

    Baldock, Daniel; Nebe-von-Caron, Gerhard; Bongaerts, Roy; Nocker, Andreas

    2013-12-01

    Unspecific background caused by biotic or abiotic particles, cellular debris, or autofluorescence is a well-known interfering parameter when applying flow cytometry to the detection of microorganisms in combination with fluorescent dyes. We present here an attempt to suppress the background signal intensity and thus to improve the detection of microorganisms using the nucleic acid stain SYBR® Green I. It has been observed that the fluorescent signals from SYBR Green I are greatly reduced at acidic pH. When lowering the pH of pre-stained samples directly prior to flow cytometric analysis, we hypothesized that the signals from particles and cells with membrane damage might therefore be reduced. Signals from intact cells, temporarily maintaining a neutral cytosolic pH, should not be affected. We show here that this principle holds true for lowering background interference, whereas the signals of membrane-compromised dead cells are only affected weakly. Signals from intact live cells at low pH were mostly comparable to signals without acidification. Although this study was solely performed with SYBR® Green I, the principle of low pH flow cytometry (low pH-FCM) might hold promise when analyzing complex matrices with an abundance of non-cellular matter, especially when expanded to non-DNA binding dyes with a stronger pH dependence of fluorescence than SYBR Green I and a higher pKa value.

  14. Modulation of cupric ion activity by pH and fulvic acid as determinants of toxicity in Xenopus laevis embryos and larvae

    SciTech Connect

    Buchwalter, D.B. |; Linder, G.; Curtis, L.R.

    1996-04-01

    An ion-specific electrode measured cupric ion activity modulated by fulvic acid (FA) and pH in a series of modified Frog Embryo Teratogenesis Assay--Xenopus (FETAX) toxicity assays. Hydrogen ion concentration was the primary determinant of cupric ion activity, while FA played a smaller but significant role. Fulvic acid was a weak copper complexing agent at pH 5.50. At pH 5.50 there was slight reduction of ionic activity and a subsequent attenuation of copper toxicity with 5.0 mg/L FA. At pH 7.50, FA also had a mild attenuating effect on copper toxicity. At pH 6.50, copper was strongly complexed by FA at total copper (TCu) concentrations below its pH-dependent solubility limit. At TCu concentrations above the solubility limit FA enhanced toxicity. There was more cupric ion activity measured in the presence of 0.5 and 5.0 mg/L FA than without it at TCu concentrations above the solubility limit. The proposed mechanism for this behavior was FA action as a nucleation inhibitor. Under the chemical conditions of the pH 6.50 experiments, a stable supersaturation of copper was formed, resulting in a more toxic aqueous matrix.

  15. Acidic extracellular pH of tumors induces octamer-binding transcription factor 4 expression in murine fibroblasts in vitro and in vivo

    PubMed Central

    Som, Avik; Bloch, Sharon; Ippolito, Joseph E.; Achilefu, Samuel

    2016-01-01

    Octamer-binding transcription factor 4 (OCT-4) is an important marker of cellular de-differentiation that can be induced by environmental stressors, such as acidity. Here we demonstrate that chronic acidic stress in solid tumors induced OCT-4 expression in fibroblasts and other stromal cells in four tumor models. The results have implications for how tumors utilize pH modulation to recruit associated stromal cells, induce partial reprogramming of tumor-associated stromal cells, and respond to therapy. PMID:27302093

  16. Mechanisms of microenvironmental pH regulation in the cuticle of Ascaris suum.

    PubMed

    Sims, S M; Magas, L T; Barsuhn, C L; Ho, N F; Geary, T G; Thompson, D P

    1992-07-01

    The excretion kinetics of various organic acids by Ascaris suum were quantified to determine if the excretion of these metabolic end-products could generate and maintain a microclimate pH within the aqueous compartment of the cuticle. Ligated and nonligated A. suum were incubated in media buffered with 0.25 or 2.5 mM Hepes (initial pH 7.5) or 0.5 or 5 mM glycine (initial pH 3.25). The concentration of organic acids and the pH of the media were followed for 24 h. Several volatile fatty acids, including acetic, 2-methylbutyric, 2-methylvaleric, n-valeric, and n-butyric, were excreted at relatively high rates. Propionic, n-caproic, 2-methylcaproic, tiglic acid, and the non-volatile organic acids, lactic and succinic, were excreted more slowly. The organic acids were excreted at a constant rate and in apparently fixed molar concentration ratios. The accumulation of organic acids was associated with changes in pH of the medium until a limiting constant pH, in the vicinity of the pKa of the volatile fatty acids, was reached. The rate of organic acid excretion was not affected by initial medium pH, buffer capacity, or parasite ligation. The rate of pH change induced by the excretion of organic acids was also insensitive to whether ligated or nonligated A. suum were used, but was dependent on the initial buffer capacity of the medium. These results suggest that A. suum excrete the end-products of carbohydrate metabolism across the cuticle. The presence of organic acids in the aqueous pores of the cuticle creates and maintains a microclimate pH of about 5.0 +/- 0.3. This pH will influence the transport properties of weak acids and bases and should be considered in the design of delivery systems for anthelmintics. PMID:1501633

  17. The effect of degradation on κ-carrageenan/locust bean gum/konjac glucomannan gels at acidic pH.

    PubMed

    Yang, Kun; Wang, Zheng; Nakajima, Tetsuya; Nishinari, Katsuyoshi; Brenner, Tom

    2013-10-15

    The feasibility of textural and rheological modification of gels containing κ-carrageenan (KC) and locust bean gum (LBG) by addition of konjac glucomannan (KGM) was investigated. Special attention was paid to the effect of polysaccharide degradation during heating at acidic pH. The general effect of polysaccharide degradation was to decrease the Young's modulus, while the fracture strain in extension was scarcely affected unless the degradation was very severe. Differential scanning calorimetry showed that the melting peak corresponding to dissociation of KC-KGM bonds decreased faster than the melting peak of KC-only bonds with increasing degree of polysaccharide degradation. The implication is that as degradation proceeds, fewer KGM molecules can interact with KC to form elastic bonds, and the excess of KGM which reinforces the existing elastic network and increases the fracture strain actually increases. For this reason, the fracture strain remains nearly unchanged with increasing degradation levels. A decrease in fracture strain is thus observed only at very severe degradations, where KC no longer forms a self-supporting gel by itself.

  18. Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.

    PubMed

    Adra, Areej; Morin, Guillaume; Ona-Nguema, Georges; Menguy, Nicolas; Maillot, Fabien; Casiot, Corinne; Bruneel, Odile; Lebrun, Sophie; Juillot, Farid; Brest, Jessica

    2013-11-19

    Ferrihydrite (Fh) is a nanocrystalline ferric oxyhydroxide involved in the retention of pollutants in natural systems and in water-treatment processes. The status and properties of major chemical impurities in natural Fh is however still scarcely documented. Here we investigated the structure of aluminum-rich Fh, and their role in arsenic scavenging in river-bed sediments from a circumneutral river (pH 6-7) impacted by an arsenic-rich acid mine drainage (AMD). Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Fe K-edge shows that Fh is the predominant mineral phase forming after neutralization of the AMD, in association with minor amount of schwertmannite transported from the AMD. TEM-EDXS elemental mapping and SEM-EDXS analyses combined with EXAFS analysis indicates that Al(3+) substitutes for Fe(3+) ions into the Fh structure in the natural sediment samples, with local aluminum concentration within the 25-30 ± 10 mol %Al range. Synthetic aluminous Fh prepared in the present study are found to be less Al-substituted (14-20 ± 5 mol %Al). Finally, EXAFS analysis at the arsenic K-edge indicates that As(V) form similar inner-sphere surface complexes on the natural and synthetic Al-substituted Fh studied. Our results provide direct evidence for the scavenging of arsenic by natural Al-Fh, which emphasize the possible implication of such material for scavenging pollutants in natural or engineered systems.

  19. Acclimation of sublethal acidic and alkaline media of Tilapia mossambica (Peters): changes in glycogen metabolism of red muscle

    SciTech Connect

    Bhaskar, M.; Govindappa, S.

    1986-07-01

    Freshwater bodies at several parts of the globe are presently undergoing progressive acidification due to acid precipitation and acid mine drainage. Significant changes under altered pH stress includes reduced primary production of algal biomass, benthic communities and rapid decline in fish populations. Studies dealing with the physiological responses of fish to acidic and alkaline water pollution are very limited. Hence, the studies dealing with the biological impact of acidity and alkalinity on the physiology and biochemistry of freshwater fish has been undertaken.

  20. Monoclinic hafnium oxynitride supported on reduced graphene oxide to catalyse the oxygen reduction reaction in acidic media.

    PubMed

    Chisaka, M; Sasaki, H; Muramoto, H

    2014-10-14

    Monoclinic HfO2 nanoparticles were doped with nitrogen via hydrothermal treatment that avoided high-cost pyrolysis with NH3 gas in order to develop a novel oxygen reduction reaction catalyst for use in acidic media. Catalyst size reduction was achieved using a reduced graphene oxide support, and activity above 0.8 V was obtained.

  1. Chemically defined media and auxotrophy of the prolific l-lactic acid producer Lactococcus lactis IO-1.

    PubMed

    Machii, Miki; Watanabe, Satoru; Zendo, Takeshi; Chibazakura, Taku; Sonomoto, Kenji; Shimizu-Kadota, Mariko; Yoshikawa, Hirofumi

    2013-05-01

    Two chemically defined media, CDM-1G and CDM-1X, that use glucose and xylose as carbon sources, respectively, were prepared for Lactococcus lactis strain IO-1. The maximal cell density at 600 nm in CDM-1G exceeded 2. Omission growth experiments indicated that IO-1 is auxotrophic for 2 vitamins and 6 amino acids.

  2. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  3. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  4. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  5. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-07-06

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  6. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM basedmore » systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  7. An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and Amberlite IRC-50 as pH buffers for nutrient solution studies

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1985-01-01

    All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.

  8. Mitochondrial, acidic, and cytosolic pHs determination by ³¹P NMR spectroscopy: design of new sensitive targeted pH probes.

    PubMed

    Culcasi, Marcel; Thétiot-Laurent, Sophie; Atteia, Ariane; Pietri, Sylvia

    2015-01-01

    (31)P nuclear magnetic resonance (NMR) is a unique technique to monitor noninvasively the energetics of living systems at real time through the detection of a variety of phosphorylated metabolites. Using adequately designed α-aminophosphonates as external probes, we have shown earlier that (31)P NMR can also give access simultaneously to the accurate pH of cytosolic and acidic compartments in normal and stressed cultured cells or isolated perfused organs, a feature that was not possible using endogenous inorganic phosphate as the probe. More recently, we obtained a series of derivatives of these new pH probes that incorporate a triphenylphosphonium cation as a specific vector to the mitochondrion. Here, we describe the synthesis, (31)P NMR pH titrating properties in buffers, and application in cultures of the green alga Chlamydomonas reinhardtii of two of these mitochondria-targeted pH probes in comparison with one nonvectorized, yet still informative α-aminophosphonate.

  9. Mitochondrial, acidic, and cytosolic pHs determination by ³¹P NMR spectroscopy: design of new sensitive targeted pH probes.

    PubMed

    Culcasi, Marcel; Thétiot-Laurent, Sophie; Atteia, Ariane; Pietri, Sylvia

    2015-01-01

    (31)P nuclear magnetic resonance (NMR) is a unique technique to monitor noninvasively the energetics of living systems at real time through the detection of a variety of phosphorylated metabolites. Using adequately designed α-aminophosphonates as external probes, we have shown earlier that (31)P NMR can also give access simultaneously to the accurate pH of cytosolic and acidic compartments in normal and stressed cultured cells or isolated perfused organs, a feature that was not possible using endogenous inorganic phosphate as the probe. More recently, we obtained a series of derivatives of these new pH probes that incorporate a triphenylphosphonium cation as a specific vector to the mitochondrion. Here, we describe the synthesis, (31)P NMR pH titrating properties in buffers, and application in cultures of the green alga Chlamydomonas reinhardtii of two of these mitochondria-targeted pH probes in comparison with one nonvectorized, yet still informative α-aminophosphonate. PMID:25634273

  10. Effects of pH, dissolved oxygen, and ionic strength on the survival of Escherichia coli O157:H7 in organic acid solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of Escherichia coli O157:H7 to survive in acidified vegetable products is of concern because of previously documented outbreaks associated with fruit juices. A study was conducted to determine the survival of E. coli O157:H7 in organic acids at pH values typical of acidified vegetable pr...

  11. The Effect of Level of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    Within high school chemistry the topic of acids, bases, and pH is particularly challenging because robust understanding of the topic depends heavily on the student possessing deep concepts of atoms, molecules, ions, and chemical reactions. Since knowledge is acquired and stored in a dynamic structure, it was investigated in this study how…

  12. Novel acidophilic β-galactosidase with high activity at extremely acidic pH region from Teratosphaeria acidotherma AIU BGA-1.

    PubMed

    Chiba, Serina; Yamada, Miwa; Isobe, Kimiyasu

    2015-09-01

    A β-galactosidase exhibiting maximal activity at pH 1.0 was purified from Teratosphaeria acidotherma AIU BGA-1. The enzyme had a molecular mass of 180 kDa and consisted of two heterosubunits of 120 kDa and 66 kDa. The N-terminal amino acid sequence of the large subunit was found to be SPNLQDIVTVDGESY. These physicochemical properties differed from those of other microbial β-galactosidases. At pH values of 1.5 and pH 4.5, the enzyme exhibited its highest activity at temperatures of 70°C and 80°C, respectively. Thus, the enzyme exhibited the lowest optimal pH and highest optimal temperature among the microbial β-galactosidases thus reported. The enzyme retained more than 80% of its original activity in the pH range from 2.0 to 8.0 by incubation at 50°C for 30 min. The enzyme hydrolyzed 4-nitrophenyl-β-D-fucopyranoside, 2-nitrophenyl-β-D-galactopyranoside, and 4-nitrophenyl-β-D-galacto-pyranoside at relative reaction rates of 100, 59, and 24, respectively, at pH 1.5, and its affinity for β-D-galactopyranosides was higher than that for β-D-fucopyranosides. The enzyme also efficiently hydrolyzed lactose in milk and whey from yoghurt at pH 1.5.

  13. Spread mixed monolayers of deoxycholic and dehydrocholic acids at the air-water interface, effect of subphase pH. Characterization by axisymmetric drop shape analysis.

    PubMed

    Messina, Paula V; Fernández-Leyes, Marcos D; Prieto, Gerardo; Ruso, Juan M; Sarmiento, Félix; Schulz, Pablo C

    2008-01-01

    Bile acids (deoxycholic and dehydrocholic acids) spread mixed monolayers behavior at the air/water interface were studied as a function of subphase pH using a constant surface pressure penetration Langmuir balance based on the Axisymmetric Drop Shape Analysis (ADSA). We examined the influence of electrostatic, hydrophobic and hydration forces on the interaction between amphiphilic molecules at the interface by the collapse area values, the thermodynamic parameters and equation of state virial coefficients analysis. The obtained results showed that at neutral (pH=6.7) or basic (pH=10) subphase conditions the collapse areas values are similar to that of cholanoic acid and consistent with the cross-sectional area of the steroid nucleus (approximately 40 A(2)). The Gibbs energy of mixing values (DeltaG(mix)<0) and the first virial coefficients of the equation of state (b(0)<1) indicated that a miscible monolayer with laterally structured microdomains existed. The aggregation number (1/b(0)) was estimated within the order of 6 (pH=6.7) and 3 (pH=10). At pH=3.2, acidic subphase conditions, no phase separation occurs (DeltaG(mix)<0) but a high expanded effect of the monolayer could be noted. The mixed monolayer behavior was no ideal and no aggregates were formed (b(0)> or =1). Such behavior indicates that the polar groups of the molecules interacts each other more strongly by repulsive electrostatic forces than with the more hydrophobic part of the molecule.

  14. Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors

    PubMed Central

    Garbern, Jessica C.; Hoffman, Allan S.; Stayton, Patrick S.

    2010-01-01

    A new sharply pH- and temperature-responsive hydrogel system was designed for delivering drugs to regions of local acidosis, as found in wound healing, tumor sites, or sites of ischemia. The reversible addition fragmentation chain transfer (RAFT) polymerization technique was used to synthesize copolymers of N-isopropylacrylamide (NIPAAM) and propylacrylic acid (PAA) with feed ratios of PAA between 0 and 20 mol %. The pH-responsive viscoelastic properties of these materials as a function of pH and temperature were quantified by rheometry. At physiologic pH (7.4) and 5 wt %, the polymer did not form gels, but rather remained soluble at temperatures as high as 50 °C. At lower pH values (pH ca. 5.5 and below) the polymer was liquid at 20 °C but exhibited a sol-gel phase transformation with increasing temperature and existed as a physical gel at 37 °C. Incorporation of the hydrophobic monomer, butyl acrylate, into the random copolymer raised the pH of gel formation to greater than 6.0 at 37 °C. Drug loading studies demonstrated that p(NIPAAm-co-PAA) hydrogels are able to maintain the bioactivity of basic fibroblast growth factor following storage in hydrogel for 40 h and can provide sustained pH-dependent release of vascular endothelial growth factor over a period of at least three weeks. This hydrogel system will thus gel at controllable acidic pH values upon injection, and is designed to undergo gradual dissolution as it performs its drug delivery function and the ischemic site returns to physiological pH. PMID:20509687

  15. Incorporation of alpha-Ketoglutaric Acid as a Fixed Bed Scrubber Media for the Neutralization of Hydrazine Family Hypergolic Fuels

    NASA Technical Reports Server (NTRS)

    DeVor, R. W.; Santiago-Maldonado, E.; Parkerson, J. K.

    2010-01-01

    A candidate scrubber media, alpha-ketoglutaric acid (aKGA) adsorbed onto a silica-based substrate was examined as a potential alternative to the hydrazine-family hypergolic fuel neutralization techniques currently utilized at NASA/Kennedy Space Center (KSC). Helvenson et. al. has indicated that aKGA will react with hydrazines to produce non-hazardous, possibly biodegradable products. Furthermore, the authors have previously tested and demonstrated the use of aKGA aqueous solutions as a replacement neutralizing agent for citric acid, which is currently used as a scrubbing agent in liquid scrubbers at KSC. Specific properties examined include reaction efficiency, the loading capacity of aKGA onto various silica substrates, and the comparison of aKGA media performance to that of the citric acid vapor scrubber systems at KSC and a commercial vapor scrubber media. Preliminary investigations showed hydrophobic aerogel particles to be an ideal substrate for the deposition of the aKGA. Current studies have shown that the laboratory produced aKGA-Aerogel absorbent media are more efficient and cost effective than a commercially available fixed bed scrubber media, although much less cost effective than liquid-based citric acid scrubbers (although possibly safer and less labor intensive). A comparison of all three alternative scrubber technologies (liquid aKGA, solid-phase aKGA, and commercially available sorbent materials) is given considering both hypergolic neutralization capabilities and relative costs (as compared to the current citric acid scrubbing technology in use at NASA/KSC).

  16. Modulation of Phagosomal pH by Candida albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport

    PubMed Central

    Vylkova, Slavena; Lorenz, Michael C.

    2014-01-01

    Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. PMID:24626429

  17. Lewis Acid Pairs for the Activation of Biomass-derived Oxygenates in Aqueous Media

    SciTech Connect

    Roman, Yuriy

    2015-09-14

    The objective of this project is to understand the mechanistic aspects behind the cooperative activation of oxygenates by catalytic pairs in aqueous media. Specifically, we will investigate how the reactivity of a solid Lewis acid can be modulated by pairing the active site with other catalytic sites at the molecular level, with the ultimate goal of enhancing activation of targeted functional groups. Although unusual catalytic properties have been attributed to the cooperative effects promoted by such catalytic pairs, virtually no studies exist detailing the use heterogeneous water-tolerant Lewis pairs. A main goal of this work is to devise rational pathways for the synthesis of porous heterogeneous catalysts featuring isolated Lewis pairs that are active in the transformation of biomass-derived oxygenates in the presence of bulk water. Achieving this technical goal will require closely linking advanced synthesis techniques; detailed kinetic and mechanistic investigations; strict thermodynamic arguments; and comprehensive characterization studies of both materials and reaction intermediates. For the last performance period (2014-2015), two technical aims were pursued: 1) C-C coupling using Lewis acid and base pairs in Lewis acidic zeolites. Tin-, zirconium-, and hafnium containing zeolites (e.g., Sn-, Zr-, and Hf-Beta) are versatile solid Lewis acids that selectively activate carbonyl functional groups. In this aim, we demonstrate that these zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. 2) One-pot synthesis of MWW zeolite nanosheets for activation of bulky substrates. Through

  18. Production of Antilisterial Bacteriocins from Lactic Acid Bacteria in Dairy-Based Media: A Comparative Study.

    PubMed

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2015-12-01

    One hundred and eight strains of lactic acid bacteria (LAB) were screened for bacteriocin production by the modified deferred antagonism and agar well diffusion methods. When the modified deferred antagonism method was employed, 82 LAB strains showed inhibitory action against Listeria monocytogenes v7 ½a, whereas 26 LAB strains expressed no inhibition. Only 12 LAB strains exhibited inhibitory activity when the agar well diffusion method was used, 11 of which had been previously recognized as bacteriocin production positive (Bac(+)). Lactobacillus viridescens NRRL B-1951 was determined, for the first time, to produce an inhibitory compound with a proteinaceous nature. The inhibitory activity was observed in the presence of lipase, α-chymotrypsin, and trypsin, but no inhibition zone could be detected in the presence of proteinase K, indicating the proteinaceous nature of the inhibitory compound. The inhibitory compound was active against Lact. sake ATCC 15521 and Lact. plantarum NCDO 995. Bacteriocin production by the Bac(+) LAB strains was assessed in Lactobacillus MRS Broth as well as in dairy-based media such as nonfat milk, demineralized whey powder, and cheddar cheese whey supplemented with complex nutrient sources that are rich in nitrogen. Lact. sake ATCC 15521 and L. monocytogenes CWD 1002, CWD 1092, CWD 1157, CWD 1198, and v7 ½a were used as indicators. The inhibitory activities of the bacteriocins varied depending on the indicator strains and the growth media used. The LAB indicator strains were found to be more sensitive to inhibition by bacteriocins when compared to the listerial indicator strains. Among the listerial indicators, L. monocytogenes CWD 1002 and CWD 1198 were the most sensitive strains to the bacteriocins investigated in this study. Media composition had a significant influence on bacteriocin production and activity. When compared to demineralized whey powder medium and cheddar cheese whey medium supplemented with whey protein concentrate

  19. Production of Antilisterial Bacteriocins from Lactic Acid Bacteria in Dairy-Based Media: A Comparative Study.

    PubMed

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2015-12-01

    One hundred and eight strains of lactic acid bacteria (LAB) were screened for bacteriocin production by the modified deferred antagonism and agar well diffusion methods. When the modified deferred antagonism method was employed, 82 LAB strains showed inhibitory action against Listeria monocytogenes v7 ½a, whereas 26 LAB strains expressed no inhibition. Only 12 LAB strains exhibited inhibitory activity when the agar well diffusion method was used, 11 of which had been previously recognized as bacteriocin production positive (Bac(+)). Lactobacillus viridescens NRRL B-1951 was determined, for the first time, to produce an inhibitory compound with a proteinaceous nature. The inhibitory activity was observed in the presence of lipase, α-chymotrypsin, and trypsin, but no inhibition zone could be detected in the presence of proteinase K, indicating the proteinaceous nature of the inhibitory compound. The inhibitory compound was active against Lact. sake ATCC 15521 and Lact. plantarum NCDO 995. Bacteriocin production by the Bac(+) LAB strains was assessed in Lactobacillus MRS Broth as well as in dairy-based media such as nonfat milk, demineralized whey powder, and cheddar cheese whey supplemented with complex nutrient sources that are rich in nitrogen. Lact. sake ATCC 15521 and L. monocytogenes CWD 1002, CWD 1092, CWD 1157, CWD 1198, and v7 ½a were used as indicators. The inhibitory activities of the bacteriocins varied depending on the indicator strains and the growth media used. The LAB indicator strains were found to be more sensitive to inhibition by bacteriocins when compared to the listerial indicator strains. Among the listerial indicators, L. monocytogenes CWD 1002 and CWD 1198 were the most sensitive strains to the bacteriocins investigated in this study. Media composition had a significant influence on bacteriocin production and activity. When compared to demineralized whey powder medium and cheddar cheese whey medium supplemented with whey protein concentrate

  20. Influence of pH and diluent on the ion-pair solvent extraction of aromatic carboxylic acids using quaternary ammonium salts

    SciTech Connect

    Kawamura, K.; Takahashi, K.; Okuwaki, A.

    2006-07-01

    The influence of pH and diluent on the ion-pair solvent extraction of benzene polycarboxylic acids have been investigated for the separation of the coal oxidation products, which are formed by the treatment with alkaline solutions at high temperatures. Although the extent of the solvent extraction of benzoic acid (1BE) with a quaternary ammonium reagent (tri-n-octylmethylammonium chloride) into chloroform and benzene did not change at a very acidic and alkaline solutions, those of 1,2-benzenedicarboxylic acid (12BE) and trimellitic acid (124BE) somewhat decreased at very low pH and very high pH. The magnitudes of the equilibrium constants (K{sub ex}) of 1BE using a different diluent decreased in the order benzene {gt} carbontetrachloride {gt} 1,2-dichloroethane {gt} cyclohexane {gt} hexane {gt} chloroform {gt} 1-octanol and those of 12BE decreased in the order benzene {gt} cyclohexane {gt} carbontetrachloride {gt} hexane {gt} 1,2-dichloroethane {gt} chloroform. The inspection of the correlation between the values of K{sub ex} and several parameters of the diluent implies that the magnitude of K{sub ex} can be described by using the dielectric constant and the solubility parameter of diluent.

  1. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control.

    PubMed

    Kwak, E-J; Lim, S-I

    2004-08-01

    The color intensities was determined of Maillard reaction products (MRPs) prepared by heating each of five sugars (maltose, fructose, glucose, arabinose, and xylose) with each of 12 amino acids (aspartic acid, glutamic acid, alanine, leucine, isoleucine, valine, proline, serine, cysteine, phenylalanine, arginine, and lysine). The remaining percentages of glucose and rate of change of color intensity due to the addition of a metal ion and NaCl were monitored for nine MRPs that had been formed between glucose and each of nine amino acids (aspartic acid, glutamic acid, alanine, valine, serine, cysteine, phenylalanine, arginine, and lysine). Model MRPs were prepared in a block heater at 100 degrees C for 1-12 h with the pH value controlled at 6.5. The resulting color intensity of each MRPs formed from the basic amino acids was greater due to the higher reactivity than those from the acidic amino acids. The remaining percentage of glucose in each MRPs from the basic amino acids was lower than those from the acidic amino acids. The MRPs from the nonpolar amino acids showed an intermediate color intensity and remaining percentages of glucose between those formed from the basic and acidic amino acids. Browning tended to be accelerated in the presence of metal ions, especially Fe2+ and Cu2+, although it was affected by the property of the amino acid and heating time as well as by the type of metal ion. On the other hand, browning was greatly inhibited by a high concentration of NaCl.

  2. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the

  3. Listeria phage and phage tail induction triggered by components of bacterial growth media (phosphate, LiCl, nalidixic acid, and acriflavine).

    PubMed

    Lemaître, Jean-Paul; Duroux, Amandine; Pimpie, Romain; Duez, Jean-Marie; Milat, Marie-Louise

    2015-03-01

    The detection of Listeria monocytogenes from food is currently carried out using a double enrichment. For the ISO methodology, this double enrichment is performed using half-Fraser and Fraser broths, in which the overgrowth of L. innocua can occur in samples where both species are present. In this study, we analyzed the induction of phages and phage tails of Listeria spp. in these media and in two brain heart infusion (BHI) broths (BHIM [bioMérieux] and BHIK [Biokar]) to identify putative effectors. It appears that Na2HPO4 at concentrations ranging from 1 to 40 g/liter with an initial pH of 7.5 can induce phage or phage tail production of Listeria spp., especially with 10 g/liter of Na2HPO4 and a pH of 7.5, conditions present in half-Fraser and Fraser broths. Exposure to LiCl in BHIM (18 to 21 g/liter) can also induce phage and phage tail release, but in half-Fraser and Fraser broths, the concentration of LiCl is much lower (3 g/liter). Low phage titers were induced by acriflavine and/or nalidixic acid. We also show that the production of phages and phage tails can occur in half-Fraser and Fraser broths. This study points out that induction of phages and phage tails could be triggered by compounds present in enrichment media. This could lead to a false-negative result for the detection of L. monocytogenes in food products.

  4. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    NASA Astrophysics Data System (ADS)

    Vet, Robert; Artz, Richard S.; Carou, Silvina

    2014-08-01

    Investigating and assessing the chemical composition of precipitation and atmospheric deposition is essential to understanding how atmospheric pollutants contribute to contemporary environmental concerns including ecosystem acidification and eutrophication, loss of biodiversity, air pollution and global climate change. Evidence of the link between atmospheric deposition and these environmental issues is well established. The state of scientific understanding of this link is that present levels of atmospheric deposition of sulfur and nitrogen adversely affect terrestrial and aquatic ecosystems, putting forest sustainability and aquatic biodiversity at risk. Nitrogen and phosphorus loadings are linked to impacts on the diversity of terrestrial and aquatic vegetation through biological cycling, and atmospheric deposition plays a major role in the emission-transport-conversion-loss cycle of chemicals in the atmosphere as well as the formation of particulate matter and ozone in the troposphere. Evidence also shows that atmospheric constituents are changing the earth's climate through direct and indirect atmospheric processes. This Special Issue, comprising a single article titled "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus", presents a recent comprehensive review of precipitation chemistry and atmospheric deposition at global and regional scales. The information in the Special Issue, including all supporting data sets and maps, is anticipated to be of great value not only to the atmospheric deposition community but also to other science communities including those that study ecosystem impacts, human health effects, nutrient processing, climate change, global and hemispheric modeling and biogeochemical cycling. Understanding and quantifying pollutant loss from the atmosphere is, and will remain, an important component of each of these scientific fields as they

  5. Resilience of sulfate-reducing granular sludge against temperature, pH, oxygen, nitrite, and free nitrous acid.

    PubMed

    Hao, Tianwei; Mackey, Hamish R; Guo, Gang; Liu, Rulong; Chen, Guanghao

    2016-10-01

    Sulfate-reducing granular sludge has recently been developed and characterized in detail as part of the development of the sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process. However, information regarding temperature of granules to environmental fluctuation is lacking, an aspect that is important in dealing with real wastewater. A comprehensive assessment of sulfate-reducing granular sludge performance under various environmental conditions was thus conducted in this study, including temperature, pH, oxygen, nitrite, and free nitrous acid (FNA) as possible encountering conditions in the removal of organics and/or nitrate. Specific chemical oxygen demand removal rate of the granules was determined to be reduced by 65 % when the temperature varied between 10-15 °C, reduced by 70 % when dissolved oxygen (DO) was 0.5 mg/L or greater, and at least, reduced by 75 % when nitrite was 30 mg N/L or above. Nevertheless, the sludge activity recovered by 82, 100, and 86 % from exposure to high oxygen and nitrite and low temperature levels, respectively. Combined inhibition of nitrite and FNA on the sludge is strong and complex, while FNA alone reduced cell viability from 60 to 40 % when its concentration increased to 2.3 mg N/L. The present study demonstrates that sulfate-reducing bacteria (SRB) granules possess high resilience against varying environmental conditions, showing the high application potential of sulfate-reducing granular sludge in dealing with brackish and saline industrial or domestic wastewaters. PMID:27294382

  6. Resilience of sulfate-reducing granular sludge against temperature, pH, oxygen, nitrite, and free nitrous acid.

    PubMed

    Hao, Tianwei; Mackey, Hamish R; Guo, Gang; Liu, Rulong; Chen, Guanghao

    2016-10-01

    Sulfate-reducing granular sludge has recently been developed and characterized in detail as part of the development of the sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process. However, information regarding temperature of granules to environmental fluctuation is lacking, an aspect that is important in dealing with real wastewater. A comprehensive assessment of sulfate-reducing granular sludge performance under various environmental conditions was thus conducted in this study, including temperature, pH, oxygen, nitrite, and free nitrous acid (FNA) as possible encountering conditions in the removal of organics and/or nitrate. Specific chemical oxygen demand removal rate of the granules was determined to be reduced by 65 % when the temperature varied between 10-15 °C, reduced by 70 % when dissolved oxygen (DO) was 0.5 mg/L or greater, and at least, reduced by 75 % when nitrite was 30 mg N/L or above. Nevertheless, the sludge activity recovered by 82, 100, and 86 % from exposure to high oxygen and nitrite and low temperature levels, respectively. Combined inhibition of nitrite and FNA on the sludge is strong and complex, while FNA alone reduced cell viability from 60 to 40 % when its concentration increased to 2.3 mg N/L. The present study demonstrates that sulfate-reducing bacteria (SRB) granules possess high resilience against varying environmental conditions, showing the high application potential of sulfate-reducing granular sludge in dealing with brackish and saline industrial or domestic wastewaters.

  7. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  8. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.

    PubMed

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V

    2015-07-14

    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage. PMID:26070329

  9. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.

    PubMed

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V

    2015-07-14

    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage.

  10. Variations in preenrichment pH of poultry feed and feed ingredients after incubation periods up to 48 hours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human salmonellosis outbreaks have been linked to contaminated animal feed. The literature indicates that Salmonella sustains acid injury at about pH 4.0, so we determined the pH of various preenrichment media during incubation of feed and feed ingredient samples. Five poultry finished feeds were...

  11. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    PubMed

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  12. [PH and oxidation-reduction potential change of environment during a growth of lactic acid bacteria: effects of oxidizers and reducers].

    PubMed

    Sogomonian, D; Akopian, K; Trchunian, A

    2011-01-01

    Decrease of pH and dropping of oxidation-reduction potential have been observed during growing Lactobacillus salivarius 1588 and 3823, Lactobacillus acidophilus 101E, and Lactococcus lactis 3690 in anaerobic conditions in medium with glucose acidification. These parameters and membrane proton permeability of bacteria (C(M)(H+)) changed in the mediums with different pH. Oxidizer ferrycianide and reducer DL-dithiothreitol affected the bacterial growth and their changed H+ extrusion from the cells and K+ uptake by the cells in experiment conditions. Application of oxidizers and reducers are suggested for regulation of growth related with H+ ion transport in lactic acid bacteria.

  13. Uptake of atmospheric mercury by deionized water and aqueous solutions of inorganic salts at acidic, neutral and alkaline pH.

    PubMed

    Waite, D T; Snihura, A D; Liu, Y; Huang, G H

    2002-10-01

    Mercury (Hg) is well known as a toxic environmental pollutant that is among the most highly bioconcentrated trace metals in the human food chain. Th