Science.gov

Sample records for acidic mobile phase

  1. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase.

    PubMed

    West, Caroline; Melin, Jodie; Ansouri, Hassna; Mengue Metogo, Maïly

    2017-04-07

    The mobile phases employed in current supercritical fluid chromatography (SFC) are usually composed of a mixture of pressurized carbon dioxide and a co-solvent. The co-solvent is most often an alcohol and may contain a third component in small proportions, called an additive (acid, base or salt). The polarity of such mobile phase compositions is here re-evaluated with a solvatochromic dye (Nile Red), particularly to assess the contribution of additives. It appears that additives, when employed in usual concentration range (0.1% or 20mM) do not modify the polarity in the immediate environment of the probe. In addition, the combination of carbon dioxide and an alcohol is known to form alkoxylcarbonic acid, supposedly conferring some acidic character to SFC mobile phases. Direct measurements of the apparent pH are impossible, but colour indicators of pH can be used to define the range of apparent pH provided by carbon dioxide-alcohol mixtures, with or without additives. Five colour indicators (Thymol Blue, Bromocresol Green, Methyl Red, Bromocresol Purple, and Bromothymol Blue) were selected to provide a wide range of aqueous pKa values (from 1.7 to 8.9). UV-vis absorption spectra measured in liquid phases of controlled pH were compared to those measured with a diode-array detector employed in SFC, with the help of chemometric methods. Based on these observations, it is concluded that the apparent pH range in carbon dioxide-methanol mobile phases is close to 5. Increasing the proportion of methanol (in the course of a gradient elution for instance) causes decreasing apparent pH. Strong acids can further decrease the apparent pH below 1.7; strong bases have little influence on the apparent pH, probably because, in this range of concentrations, they are titrated by alkoxylcarbonic acid or form ion pairs with alkoxycarbonate. However, bases and salts could stabilize the acidity in the course of gradient runs.

  2. Separation optimization in reversed-phase liquid chromatography by using alkanol additives in the mobile phase: application to amino acids.

    PubMed

    Pappa-Louisi, A; Agrafiotou, P; Georgiadis, I

    2011-09-30

    In an effort to enhance complex mixture separations by using small amounts of a homologous series of alkanols as additives in the mobile phases, it was proposed an optimization algorithm based on a sixth-parameter retention model. This model considers simultaneously the contents of the main organic modifier and of the alkanol additive in the mobile phase as well as of the number of alkyl chain of the additive. This model is in fact a modification of a previously one derived in a recently published paper for the retention description of a mixture of purely hydrophobic alkylbenzenes under isocratic conditions with mobile phases containing alkanol additives. The effectiveness of the new retention model as well as the optimization algorithm was successfully applied to the separation of ten o-phthalaldehyde (OPA) derivatives of amino acids. Indeed, the new retention model exhibited an excellent prediction performance since the obtained overall predictive error between calculated and experimental times was only 2.8% for all isocratic runs by using a variety of mobile phase compositions containing any alkanol homologue even different than those used in the starting/fitting experiments. Moreover, a perfect resolution of the above amino acid mixture was achieved within only 7.4 min in the chromatogram recorded using the optimal mobile phase determined by means of the simple optimization algorithm proposed in this study.

  3. Imitation of artificial membrane system via mobile phases with Tween-80 and cholic acid in biopartitioning micellar chromatography.

    PubMed

    Rukhadze, Marina D; Sebiskveradze, Maya V; Akhalkatsi, Tsaro G; Makharadze, Teona G

    2006-08-01

    The chromatographic behaviour of compounds of biomedical significance was studied using micellar mobile phases modified with polyoxyethylene (20) sorbitan monooleate (Tween-80). The influence of the surfactant within the 0.75-4% concentration range on the retention factor of model compounds was investigated. The biological surfactant cholic acid was introduced into the mobile phases in order to approach to the structure of natural membranes, viz. erythrocyte and cytoplasmatic membranes. It was found that curves of dependence of retention factor vs concentration of Tween-80 in the absence and presence of cholic acid in the mobile phase considerably diverge with one another, especially in the 2-3% concentration range of Tween-80 using C18-type support. Increasing the concentration of Tween-80 resulted in the increase of retention factors using phenyl-coated stationary phase.

  4. Simultaneous Determination of Trigonelline, Caffeine, Chlorogenic Acid and Their Related Compounds in Instant Coffee Samples by HPLC Using an Acidic Mobile Phase Containing Octanesulfonate.

    PubMed

    Arai, Kana; Terashima, Hiroyuki; Aizawa, Sen-ichi; Taga, Atsushi; Yamamoto, Atsushi; Tsutsumiuchi, Kaname; Kodama, Shuji

    2015-01-01

    In order to analyze trigonelline, caffeine, chlorogenic acid, and their related compounds simultaneously, an HPLC method using an InertSustain C18 column and a mobile phase containing octanesulfonate as an ion-pairing reagent under an acidic condition was developed. The optimum mobile phase conditions were determined to be 0.1% phosphoric acid, 4 mM octanesulfonate, and 15% methanol at 35°C. Using the proposed method, trigonelline, nicotinic acid, caffeine, theophylline, chlorogenic acid, and caffeic acid in ten instant coffee samples were analyzed. These analytes except for theophylline were detected in all samples. An increase in the caffeine content in instant coffee samples tended to decrease in both trigonelline and chlorogenic acid contents, and the trigonelline content was found to be correlated well with the chlorogenic acid content (R(2) = 0.887).

  5. ENHANCED MOBILITY OF DENSE NONAQUEOUS-PHASE LIQUIDS (DNAPLs) USING DISSOLVED HUMIC ACIDS

    SciTech Connect

    EDWIN S. OLSON; JOHN R. GALLAGHER; MARC D. KURZ

    1998-10-01

    The specific objectives of this subtask are as follows: � Evaluate the suitability of using humic acids to enhance the solubility and mobility of DNAPL contaminants sorbed to soils. � Evaluate the toxicity and bioavailablity of the DNAPLs to biodegrading microorganisms. To meet the first objective, the Energy & Environmental Research Center (EERC) evaluated a set of humic acids (two) with different chemical compositions and polarities for the following: � Ability of the humates to mobilize/solubilize selected (three) DNAPLs � Mobilization/solubilization in batch soil�water experiments (one soil) � Removal rate via biotreatment with a well-established active microbial culture. The second objective was met by evaluating the inhibiting effects of a leonardite-derived humic acid on active microbial populations.

  6. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds.

    PubMed

    Jandera, P; Bocian, S; Molíková, M; Buszewski, B

    2009-01-09

    We investigated the effects of the concentration of naphthalene sulphonic acids (NSAs) as anionic test compounds in the injected sample and of the salt additives to the mobile phase on ion-exclusion. The retention behaviour of NSAs sensitively reflects even minor changes in the ionic and hydrophobic interactions and can be useful for predicting the effects of the stationary phases in reversed-phase chromatography of polar and ionic compounds, both small ones and biopolymers, e.g., oligonucleotides. We studied chromatographic properties of several stationary phases intended for separations in aqueous mobile phases: a C18 column end-capped with polar hydrophilic groups, a densely bonded C8 column doubly end-capped with short alkyl groups, a short alkyl stationary phase designed to keep full pore accessibility in highly-aqueous mobile phases and a Bidentate column with "bridged" C18 groups attached to the silica hydride support. The chemistry and pore structure of various types of column packing materials and of the salt additives to the mobile phase affect the proportion of the pore volume non-accessible to anions due to ion-exclusion and consequently the peak asymmetry and hydrophobic selectivity in reversed-phase chromatography of organic acids. We also addressed the problems connected with the determination of column hold-up volume in aqueous mobile phases. The accessibility of the stationary phase for anionic compounds in contact with the sample zone is affected by ion-exclusion due to repulsive interactions with the negatively charged surface in the pores of the stationary phase. The accessible part of the stationary phase increases and consequently the migration velocity along the column decreases with increasing concentration of the sample in the zone moving along the column. Because of a limited access to the stationary phase, its capacity can be easily overloaded. The combination of the column overload and ion-exclusion effects may result in fronting or

  7. Chiral resolution of derivatized amino acids using uniformly sized molecularly imprinted polymers in hydro-organic mobile phases.

    PubMed

    Haginaka, Jun; Kagawa, Chino

    2004-04-01

    Uniformly sized molecularly imprinted polymers (MIPs) for Boc-L-Trp were prepared using ethylene glycol dimethacrylate (EDMA) as the cross-linker, and methacylic acid (MAA) and/or 4-vinylpyridine (4-VPY) as the functional monomers or without use of a functional monomer. The MIPs prepared were evaluated using acetonitrile or a mixture of phosphate buffer and acetonitrile as the mobile phase. The Boc-L-Trp-imprinted EDMA polymers can recognize Boc-L-Trp by its molecular shape, and can thus afford the enantioseparation of Boc-Trp. Besides the molecular shape recognition, the hydrophobic interactions with the polymer backbones as well as the hydrogen-bonding interactions of Boc-L-Trp with carboxyl and pyridyl groups in the polymers should work for the retention and recognition of Boc-L-Trp on the imprinted MAA- co-EDMA and 4-VPY- co-EDMA polymers, respectively, in the hydro-organic mobile phase. The hydrogen-bonding interactions seem to become dominant when only acetonitrile is used as the mobile phase. The Boc-L-Trp-imprinted 4-VPY- co-EDMA polymers gave the highest retentivity and enantioselectivity for Boc-Trp among the MIPs prepared. However, the simultaneous use of MAA and 4-VPY was not effective for the enantioseparation of Boc-Trp in a hydro-organic mobile phase. Furthermore, the baseline separation of Boc-Trp enantiomers was attained within 10 min on the Boc-L-Trp-imprinted 4-VPY- co-EDMA polymers under the optimized HPLC conditions.

  8. Task 1.16 - Enhanced Mobility of Dense Nonaqueous-Phase Liquids (DNAPLs) Using Dissolved Humic Acids

    SciTech Connect

    Edwin S. Olson; Marc D. Kurz

    1998-02-01

    Chlorinated solvent contamination is widespread across the U.S. Department of Energy (DOE) complex and other industrial facilities. Because of the physical properties of dense nonaqueous-phase liquids (DNAPLs), current treatment technologies are generally incapable of completely removing contamination from the source area. Incomplete removal means that the residual DNAPL WN persist as a long-term source of groundwater contamination. When DNALPs occur in the subsurface, they resist remediation, owing to low water volubility, high viscosity and interracial tension, and microbial recalcitrance. Because of their high density and polarity, they are usually found sorbed to aquifer solids or in pools on impermeable materials. Surfactants have been used with some success to reduce interracial tension between the aqueous and organic phases and improve volubility of DNAPLs. However, surfactants are expensive and toxic and exhibit an oxygen demand. An alternative is the use of dissolved humic acids in improving DNAPL mobilization and solubilization. Humic acids, a natural form of organic carbon, are abundant, inexpensive, and nontoxic; biodegrade slowly (low oxygen demand); and have excellent mobilization properties. The present work is to establish the feasibility of using hurnates for enhancing DNAPL remediation.

  9. [Chiral separation of five beta-blockers using di-n-hexyl L-tartrate-boric acid complex as mobile phase additive by reversed-phase liquid chromatography].

    PubMed

    Yang, Juan; Wang, Lijuan; Guo, Qiaoling; Yang, Gengliang

    2012-03-01

    A reversed-phase high performance liquid chromatographic (HPLC) method using the di-n-hexyl L-tartrate-boric acid complex as a chiral mobile phase additive was developed for the enantioseparation of five beta-blockers including propranolol, esmolol, metoprolol, bisoprolol and sotalol. In order to obtain a better enantioseparation, the influences of concentrations of di-n-butyl L-tartrate and boric acid, the type, concentration and pH of the buffer, methanol content as well as the molecular structure of analytes were extensively investigated. The separation of the analytes was performed on a Venusil MP-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 15 mmol/L ammonium acetate-methanol containing 60 mmol/L boric acid, 70 mmol/L di-n-hexyl L-tartrate (pH 6.00). The volume ratios of 15 mmol/L ammonium acetate to methanol were 20: 80 for propranolol, esmolol, metoprolol, bisoprolol and 30: 70 for sotalol. The flow rate was 0.5 mL/min and the detection wavelength was set at 214 nm. Under the optimized conditions, baseline enantioseparation was obtained separately for the five pairs of analytes.

  10. Prediction of the chromatographic retention of acid-base compounds in pH buffered methanol-water mobile phases in gradient mode by a simplified model.

    PubMed

    Andrés, Axel; Rosés, Martí; Bosch, Elisabeth

    2015-03-13

    Retention of ionizable analytes under gradient elution depends on the pH of the mobile phase, the pKa of the analyte and their evolution along the programmed gradient. In previous work, a model depending on two fitting parameters was recommended because of its very favorable relationship between accuracy and required experimental work. It was developed using acetonitrile as the organic modifier and involves pKa modeling by means of equations that take into account the acidic functional group of the compound (carboxylic acid, protonated amine, etc.). In this work, the two-parameter predicting model is tested and validated using methanol as the organic modifier of the mobile phase and several compounds of higher pharmaceutical relevance and structural complexity as testing analytes. The results have been quite good overall, showing that the predicting model is applicable to a wide variety of acid-base compounds using mobile phases prepared with acetonitrile or methanol.

  11. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang

    2014-01-01

    The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270

  12. Formation of Iron Complexes from Trifluoroacetic Acid Based Liquid Chromatography Mobile Phases as Interference Ions in LC-ESI-MS Analysis

    PubMed Central

    Shukla, Anil; Zhang, Rui; Orton, Daniel; Zhao, Rui; Clauss, Therese; Moore, Ronald; Smith, Richard

    2011-01-01

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid that severely interfered with sample analysis. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are composed of three components; clusters of trifluoroacetic acid, clusters of mass 159 and iron. Formation of these ions is inhibited by removing trifluoroacetic acid from the mobile phases and using formic acid in its place, replacing the stainless steel union with a titanium union or by adding a small blank fused silica capillary column between the chromatography column and the electrospray tip via a stainless steel union without any adverse effects to chromatographic separation, peak broadening or peptide identifications. PMID:21504012

  13. Membrane-based continuous remover of trifluoroacetic acid in mobile phase for LC-ESI-MS analysis of small molecules and proteins.

    PubMed

    Zhou, Zhigui; Zhang, Jialing; Xing, Jiawei; Bai, Yu; Liao, Yiping; Liu, Huwei

    2012-07-01

    We developed a "continuous" trifluoroacetic acid (TFA) remover based on electrodialysis with bipolar membrane for online coupling of liquid chromatography (LC) and electrospray ionization mass spectrometry (ESI-MS) using TFA containing mobile phase. With the TFA remover as an interface, the TFA anion in the mobile phase was removed based on electrodialysis mechanism, and meanwhile, the anion exchange membrane was self-regenerated by the hydroxide ions produced by the bipolar membrane. So the remover could continuously work without any additional regeneration process. The established LC-TFA remover-MS system has been successfully applied for the qualitative and quantitative analysis of small molecules as well as proteins.

  14. Peak shapes of acids and bases under overloaded conditions in reversed-phase liquid chromatography, with weakly buffered mobile phases of various pH: A thermodynamic interpretation

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    We measured overloaded band profiles for a series of nine compounds (phenol, caffeine, 3-phenyl 1-propanol, 2-phenylbutyric acid, amphetamine, aniline, benzylamine, p-toluidine, and procainamidium chloride) on columns packed with four different C{sub 18}-bonded packing materials: XTerra-C{sub 18}, Gemini-C{sub 18}, Luna-C{sub 18}(2), and Halo-C{sub 18}, using buffered methanol-water mobile phases. The {sub W}{sup S}pH of the mobile phase was increased from 2.6 to 11.3. The buffer concentration (either phosphate, acetate, or carbonate buffers) was set constant at values below the maximum concentration of the sample in the band. The influence of the surface chemistry of the packing material on the retention and the shape of the peaks was investigated. Adsorbents having a hybrid inorganic/organic structure tend to give peaks exhibiting moderate or little tailing. The retention and the shape of the band profiles can easily be interpreted at {sub W}{sup S}pHs that are well above or well below the {sub W}{sup S}pK{sub a} of the compound studied. In contrast, the peak shapes in the intermediary pH range (i.e., close to the compound {sub W}{sup S}pK{sub a}) have rarely been studied. These shapes reveal the complexity of the competitive adsorption behavior of couples of acido-basic conjugated compounds at {sub W}{sup S}pHs that are close to their {sub W}{sup S}pK{sub a}. They also reveal the role of the buffer capacity on the resulting peak shape. With increasing {sub W}{sup S}pH, the overloaded profiles are first langmuirian (isotherm type I) at low {sub W}{sup S}pHs, they become S-shaped (isotherm type II), then anti-langmuirian (isotherm type III), S-shaped again at intermediate {sub W}{sup S}pHs, and finally return to a langmuirian shape at high {sub W}{sup S}pHs. A new general adsorption isotherm model that takes into account the dissociation equilibrium of conjugated acidic and basic species in the bulk mobile phase accounts for these transient band shapes. An

  15. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-03-06

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 microL samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (SW)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase.

  16. Formation of iron complexs from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid chromatography/electrospray ionization mass spectrometric analysis

    SciTech Connect

    Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.; Zhao, Rui; Clauss, Therese RW; Moore, Ronald J.; Smith, Richard D.

    2011-05-30

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to apply high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.

  17. Analysis of Phenacylester Derivatives of Fatty Acids from Human Skin Surface Sebum by Reversed-Phase HPLC: Chromatographic Mobility as a Function of Physico-Chemical Properties

    PubMed Central

    Bodoprost, Juliana; Rosemeyer, Helmut

    2007-01-01

    A set of 13 fatty acids was transformed into their phenacyl esters by reaction with phenacyl bromide in acetonitrile using 18-crown-6 as phase-transfer catalyst. Conditions for the RP-18 HPL chromatographic separation of most of the esters has been worked out. Using this standard the fatty acid spectra from skin surface sebum lipids of 17 test persons was taken after microwave-assisted hydrolysis, neutralization and extraction with n-hexane. Quantitative evaluation of the chromatograms exhibits that oleic acid predominates in the sebum of all test persons. In the second part of the work the chromatographic mobility (RE values) of fatty acid phenacyl esters is correlated with calculated physico-chemical parameters of the corresponding acids. The best linear correlation was found between the RE and the logP values. This is helpful for the structural elucidation of un-identified fatty acids in a chromatogram.

  18. Effects of ionic liquid as additive and the pH of the mobile phase on the retention factors of amino benzoic acids in RP-HPLC.

    PubMed

    Zheng, J; Polyakova, Y; Row, K H

    2007-01-01

    As an organic salt, ionic liquids are widely used as new solvent media. In this paper, three positional isomers, such as o-amino benzoic acid, m-amino benzoic acid, and p-amino benzoic acid are separated with four different ionic liquids as additives to the mobile phase using reversed-phase (RP) high-performance liquid chromatography (HPLC). Amino benzoic acids are biologically active substances; the p-isomer is present in a group of water-soluble vitamins and is widely known as a sunscreen agent. The ionic liquids used are 1-butyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium methylsulfate, and 1-octyl-3-methylimidazolium methylsulfate. The effects of the length of the alkyl group on the imidazolium ring and its counterion, the concentrations of the ionic liquid, and the effect of the pH of the mobile phase on the retention factor of the amino benzoic acid isomers are studied. Separation with the ionic liquid in the eluent was better than the separation without the ionic liquid. The pH mainly affected the retention and elution order of the solutes in RP-HPLC.

  19. Comprehensive investigation of the influence of acidic, basic, and organic mobile phase compositions on bioanalytical assay sensitivity in positive ESI mode LC/MS/MS.

    PubMed

    Rainville, Paul D; Smith, Norman W; Cowan, David; Plumb, Robert S

    2012-02-05

    The sensitivity and accuracy of a bioanalytical method is critical in defining the pharmacokinetic (PK) parameters of a potential new chemical entity (NCE). Inhaled therapeutics and low dose NCEs present one of the most significant analytical challenges to the bioanalyst, due to their low systemic concentration. The sensitivity of a bioanalytical LC/MS/MS based assay can be influenced by multiple parameters, including: mobile phase composition, extraction efficiency and chromatographic performance. In this work, we discuss the influence of acidic (pH 3), and basic (pH 10) aqueous mobile phases in conjunction with the two most common organic modifiers used in HPLC, acetonitrile and methanol, on the assay sensitivity of twenty-four probe pharmaceuticals in solvent and biological fluid extract. The study showed that when the test probe pharmaceuticals were analyzed with basic aqueous mobile phases compared to standard acidic conditions the following results were observed: increases in chromatographic peak area ranging from 1.2 to 9.6 fold for twenty-one of the test compounds as well as increased signal-to-noise for greater than seventy percent of the compounds. This observed increase in the MS response was not necessarily related to the later elution of the analyte in a higher organic composition under basic conditions. This was demonstrated as seven out of the twenty-four (approximately thirty percent) of the probe pharmaceuticals tested, eluted earlier, or with the same retention time, under basic conditions, and still produced a greater signal-to-noise when analyzed under these basic conditions. Also observed were decreases in chromatographic peak width, and increases in the retention time of very hydrophilic pharmaceutical compounds. The effect of the mobile phase combinations on the retention and MS response of the choline-containing phospholipids present in precipitated plasma was also investigated, as these analytes are a major source of interference when

  20. Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: Typical reversed-phase behavior?

    PubMed

    Matarashvili, Iza; Ghughunishvili, Darejan; Chankvetadze, Lali; Takaishvili, Nino; Khatiashvili, Tamar; Tsintsadze, Maia; Farkas, Tivadar; Chankvetadze, Bezhan

    2017-02-03

    When polysaccharide-based chiral columns are used in combination with aqueous-organic mobile phases for the separation of enantiomers in high-performance liquid chromatography the separation mode is commonly called "reversed-phase" in analogy to achiral separations. In several earlier and recent studies on neutral and basic chiral analytes it was shown by our and other groups that due to multiple type of interactions involved in selector-selectand binding and enantioselective recognition with polysaccharide derivatives, the above mentioned separation system may not always behave like a reversed-phase system. In the present study additional examples of non-reversed-phase behavior are described for the first time for weak acidic chiral analytes. In addition, the reversal of enantiomer elution order was observed again for the first time for several analytes based on water-content in the mobile phase.

  1. Chromatography with two mobile phases.

    PubMed

    Wang, M; Hou, S; Parcher, J F

    2006-02-15

    Experimental results for the investigation of chromatographic columns containing two mobile phases are presented. The eluent was composed of mixtures of methanol and carbon dioxide. The column was an uncoated fused-silica-lined stainless steel capillary column. At certain experimental conditions, the eluent divided into two phases, both of which moved through the column. The predominant component of the liquid phase was methanol whereas the gas phase was composed of at least 93 mol % CO2. The columns were studied over a range of feed compositions (45-95 mol % CO2), pressures (61-101 bar), and temperatures (30-100 degrees C). The compositions and densities of each phase were calculated from the Peng-Robinson equation of state. The residence times of the two mobile phases were determined by tracer pulse chromatography. The partition coefficients of a probe solute, benzene, were measured along with the retention times of neon and the total volume of the chromatographic column as a function of temperature, pressure, and stoichiometric feed composition. The calculated column volumes, that is the volume of the liquid and gas, were constant over the full range of feed composition. The partition coefficient of benzene was constant at fixed pressure and temperature, varied logarithmically with density at fixed temperature and feed composition, and displayed a maximum at intermediate temperatures at fixed pressure and feed composition. The measured retention times of neon were consistently equivalent to the calculated residence times of the gas phase, indicating that neon did not dissolve in the liquid phase and could thus serve as an accurate dead time marker. The implementation of chromatography with two mobile phases produces a chromatographic "window". There is a lower limit for the retention volume of all solutes, viz., the residence time of the gas phase, exactly the same as normal chromatography. However, elimination of the stationary phase produces an upper limit to

  2. Aqueous sulfuric acid as the mobile phase in cation ion chromatography for determination of histamine, putrescine, and cadaverine in fish samples.

    PubMed

    Liao, Benjamin S; Sram, Jackie; Cain, Teresa T; Halcrow, Kenneth R

    2011-01-01

    Aqueous sulfuric acid can be used as the mobile phase in cation ion chromatography to separate the three biogenic amines, putrescine, cadaverine, and histamine, from fish. Various concentrations of aqueous sulfuric acid were investigated to optimize the separation of these three biogenic amines. Aqueous sulfuric acid (5.0 mM) was found to be optimum for the separation and was used to determine the three biogenic amines in fish. The LOQ, defined as the lowest level of the standard calibration curve, was 0.055 ppm (equivalent to 0.55 microg/g sample) for putrescine, 0.05 ppm (equivalent to 0.5 microg/g sample) for cadaverine, and 1.0 ppm (equivalent to 10 microg/g sample) for histamine. From statistical analysis of the LOQ, the method detection limit was 0.003 ppm for putrescine, 0.009 ppm for cadaverine, and 0.16 ppm for histamine. For sample preparation, the fish was composited, homogenized in methanol-water (75 + 25, v/v), incubated for 15 min at 60 degrees C, and centrifuged. The sample solution was micron-filtered before injection. The mobile phase flow rate was 0.8 mL/min under isocratic conditions at room temperature (15-25 degrees C). The three biogenic amines were separated in the order of increasing retention time, i.e., putrescine, cadaverine, and histamine, within 30 min. The chromatograms showed complete peak separation of the three amines regardless of the difference in fish matrixes.

  3. Gradient retention prediction of acid-base analytes in reversed phase liquid chromatography: a simplified approach for acetonitrile-water mobile phases.

    PubMed

    Andrés, Axel; Rosés, Martí; Bosch, Elisabeth

    2014-11-28

    In previous work, a two-parameter model to predict chromatographic retention of ionizable analytes in gradient mode was proposed. However, the procedure required some previous experimental work to get a suitable description of the pKa change with the mobile phase composition. In the present study this previous experimental work has been simplified. The analyte pKa values have been calculated through equations whose coefficients vary depending on their functional group. Forced by this new approach, other simplifications regarding the retention of the totally neutral and totally ionized species also had to be performed. After the simplifications were applied, new prediction values were obtained and compared with the previously acquired experimental data. The simplified model gave pretty good predictions while saving a significant amount of time and resources.

  4. Retention of ionisable compounds on high-performance liquid chromatography XVIII: pH variation in mobile phases containing formic acid, piperazine, tris, boric acid or carbonate as buffering systems and acetonitrile as organic modifier.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2009-03-20

    In the present work dissociation constants of commonly used buffering species, formic acid, piperazine, tris(hydroxymethyl)-aminomethane, boric acid and carbonate, have been determined for several acetonitrile-water mixtures. From these pK(a) values a previous model has been successfully evaluated to estimate pH values in acetonitrile-aqueous buffer mobile phases from the aqueous pH and concentration of the above mentioned buffers up to 60% of acetonitrile, and aqueous buffer concentrations between 0.005 (0.001 mol L(-1) for formic acid-formate) and 0.1 mol L(-1). The relationships derived for the presently studied buffers, together with those established for previously considered buffering systems, allow a general prediction of the pH variation of the most commonly used HPLC buffers when the composition of the acetonitrile-water mobile phase changes during the chromatographic process, such as in gradient elution. Thus, they are an interesting tool that can be easily implemented in general retention models to predict retention of acid-base analytes and optimize chromatographic separations.

  5. On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases.

    PubMed

    Mosiashvili, L; Chankvetadze, L; Farkas, T; Chankvetadze, B

    2013-11-22

    This article reports the systematic study of the effect of basic and acidic additives on HPLC separation of enantiomers of some basic chiral drugs on polysaccharide-based chiral columns under polar organic mobile-phase conditions. In contrary to generally accepted opinion that the basic additives improve the separation of enantiomers of basic compounds, the multiple scenarios were observed including the increase, decrease, disappearance and appearance of separation, as well as the reversal of the enantiomer elution order of studied basic compounds induced by the acidic additives. These effects were observed on most of the studied 6 chiral columns in 2-propanol and acetonitrile as mobile phases and diethylamine as a basic additive. As acidic additives formic acid was used systematically and acetic acid and trifluoroacetic acid were applied for comparative purposes. This study illustrates that the minor acidic additives to the mobile phase can be used as for the adjustment of separation selectivity and the enantiomer elution order of basic compounds, as well as for study of chiral recognition mechanisms with polysaccharide-based chiral stationary phases.

  6. Chiral mobile phase in ligand-exchange chromatography of amino acids: exploring the copper(II) salt anion effect with a computational approach.

    PubMed

    Sardella, Roccaldo; Macchiarulo, Antonio; Carotti, Andrea; Ianni, Federica; Rubiño, Maria Eugenia García; Natalini, Benedetto

    2012-12-21

    With the use of a chiral ligand-exchange chromatography (CLEC) system operating with the O-benzyl-(S)-serine [(S)-OBS] [1,2] as the chiral mobile phase (CMP) additive to the eluent, the effect of the copper(II) anion type on retention (k) and separation (α) factors was evaluated, by rationally changing the following experimental conditions: salt concentration and temperature. The CLEC-CMP analysis was carried out on ten amino acidic racemates and with nine different cupric salts. While the group of analytes comprised both aliphatic (leucine, isoleucine, nor-leucine, proline, valine, nor-valine, and α-methyl-valine) and aromatic (1-aminoindan-1,5-dicarboxylic acid, phenylglycine, and tyrosine) species, representative organic (formate, methanesulfonate, and trifluoroacetate) and inorganic (bromide, chloride, fluoride, nitrate, perchlorate, and sulfate) Cu(II) salts were selected as the metal source into the eluent. This route of investigation was pursued with the aim of identifying analogies among the employed Cu(II) salts, by observing the variation profile of the selected chromatographic parameters, upon a change of the above experimental conditions. All the data were collected and analyzed through a statistical approach (PCA and k-means clustering) that revealed the presence of two behavioral classes of cupric salts, sharing the same variation profile for k and α values. Interestingly, this clustering can be explained in terms of ESP (electrostatic surface potential) balance (ESP(bal)) values, obtained by an ab initio calculation operated on the cupric salts. The results of this appraisal could aid the rational choice of the most suitable eluent system, to succeed in the enantioseparation of difficult-to-resolve compounds, along with the eventual scale-up to a semi-preparative level.

  7. 47 CFR 54.1008 - Mobility Fund Phase I disbursements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) UNIVERSAL SERVICE Mobility Fund § 54.1008 Mobility Fund Phase I disbursements. (a) A winning... compliance with all requirements for receipt of Mobility Fund Phase I support at the time that it...

  8. Retention of ionisable compounds on high-performance liquid chromatography XIX. pH variation in mobile phases containing formic acid, piperazine and tris as buffering systems and methanol as organic modifier.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2009-07-10

    In previous works a model to estimate the pH of methanol-aqueous buffer mobile phases from the aqueous pH and concentration of the buffer and the fraction of organic modifier was developed. This model was successfully applied and validated for buffers prepared from ammonia, acetic, phosphoric and citric acids. In the present communication this model has been extended to formic acid, piperazine and tris(hydroxymethyl)aminomethane buffers. Prior to the modelling work, the pK(a) values of the studied buffers at several methanol-water compositions were determined.

  9. Effect of the ionic strength of a mobile phase on the chromatographic retention and thermodynamic characteristics of the adsorption of enantiomers of α-phenylcarboxylic acids on a chiral adsorbent with grafted antibiotic eremomycin

    NASA Astrophysics Data System (ADS)

    Reshetova, E. N.

    2017-01-01

    The effect the ionic strength of an aqueous ethanol mobile phase containing buffer salt has the on retention and thermodynamics of adsorption of optical isomers of some α-phenylcarboxylic acids on chiral adsorbent Nautilus-E with grafted antibiotic eremomycin is investigated. It is shown that ion exchange processes participate in the adsorption of enantiomers of α-phenylcarboxylic acids. It is established that electrostatic interactions contribute to the retention of enantiomers of α-phenylcarboxylic acids and affect selectivity only slightly. The dependences of retention characteristics, selectivity, and thermodynamic parameters on the concentration of the buffer salt in the eluent are determined. A statistical analysis of enthalpy-entropy compensation is performed, and the compensation effect is shown to be true. It is found that the points corresponding to the investigated adsorbates are distributed over the compensation dependence according to the spatial structural characteristics of molecules.

  10. Octanol/water partitioning simulation by RP-HPLC for structurally diverse acidic drugs: comparison of three columns in the presence and absence of n-octanol as the mobile phase additive.

    PubMed

    Giaginis, Costas; Theocharis, Stamatios; Tsantili-Kakoulidou, Anna

    2013-12-01

    The advantageous effect of n-octanol as a mobile phase additive for lipophilicity assessment of structurally diverse acidic drugs both in the neutral and ionized form was explored. Two RP C18 columns, ABZ+ and Aquasil, were used for the determination of logkw indices, and the results were compared with those previously reported on a base-deactivated silica column. At pH 2.5, the use of n-octanol-saturated buffer as the mobile phase aqueous component led to high-quality 1:1 correlation between logkw and logP for the ABZ+ column, while inferior statistics were obtained for Aquasil. At physiological pH, the correlations were significantly improved if strongly ionized acidic drugs were treated separately from weakly ionized ones. In the latter case, 1:1 correlations between logD7.4 and logkw(oct) indices were obtained in the presence of 0.25% n-octanol. Concerning strongly ionized compounds, adequate correlations were established under the same conditions; however, slopes were significantly lower than unity, while large negative intercepts were obtained. According to the absolute difference (diff = logD7.4 – logkw) pattern, base-deactivated silica showed a better performance than ABZ+, however, the latter seems more efficient for the lipophilicity assessment of highly lipophilic acidic compounds. Aquasil may be the column of choice if logD7.4<3 with the limitation, however, that very hydrophilic compounds cannot be measured.

  11. Gas Phase Chiral Separations By Ion Mobility Spectrometry

    PubMed Central

    Dwivedi, Prabha; Wu, Ching; Hill, Herbert H.

    2013-01-01

    This manuscript introduces the concept of Chiral Ion Mobility Spectrometry (CIMS) and presents examples demonstrating the gas phase separation of enantiomers of a wide range of racemates including pharmaceuticals, amino acids and carbohydrates. CIMS is similar to traditional ion mobility spectrometry (IMS), where gas phase ions, when subjected to a potential gradient are separated at atmospheric pressure due to differences in their shapes and sizes. In addition to size and shape, CIMS separates ions based on their stereospecific interaction with a chiral gas. In order to achieve chiral discrimination by CIMS, an asymmetric environment was provided by doping the drift gas with a volatile chiral reagent. In this study S-(+)-2-butanol was used as a chiral modifier to demonstrate enantiomeric separations of atenolol, serine, methionine, threonine, methyl-α-glucopyranoside, glucose, penicillamine, valinol, phenylalanine, and tryptophan from their respective racemic mixtures. PMID:17165808

  12. Aqueous phase oligomerization of α,β-unsaturated carbonyls and acids investigated using ion mobility spectrometry coupled to mass spectrometry (IMS-MS)

    NASA Astrophysics Data System (ADS)

    Renard, Pascal; Tlili, Sabrine; Ravier, Sylvain; Quivet, Etienne; Monod, Anne

    2016-04-01

    One of the current essential issues to unravel our ability to forecast future climate change and air quality, implies a better understanding of natural processes leading to secondary organic aerosol (SOA) formation, and in particular the formation and fate of oligomers. The difficulty in characterizing macromolecules is to discern between large oxygenated molecules from series of oligomers containing repeated small monomers of diverse structures. In the present study, taking advantage from previously established radical vinyl oligomerization of methyl vinylketone (MVK) in the aqueous phase, where relatively simple oligomers containing up to 14 monomers were observed, we have investigated the same reactivity on several other unsaturated water soluble organic compounds (UWSOCs) and on a few mixtures of these precursor compounds. The technique used to characterize the formed oligomers was a traveling wave ion mobility spectrometry coupled to a hybrid quadrupole - time of flight mass spectrometer (IMS-MS) fitted with an electrospray source and ultra-high performance liquid chromatography (UPLC). The technique allows for an additional separation, especially for large ions, containing long carbon chains. We have shown the efficiency of the IMS-mass spectrometry technique to detect oligomers derived from MVK photooxidation in the aqueous phase. The results were then compared to other oligomers, derived from ten other individual biogenic UWSOCs. The technique allowed distinguishing between different oligomers arising from different precursors. It also clearly showed that compounds bearing a non-conjugated unsaturation did not provide oligomerization. Finally, it was shown that the IMS-mass spectrometry technique, applied to mixtures of unsaturated conjugated precursors, exhibited the ability of these precursors to co-oligomerize, i.e. forming only one complex oligomer system bearing monomers of different structures. The results are discussed in terms of atmospheric

  13. Analysis of polar peptides using a silica hydride column and high aqueous content mobile phases.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Kulsing, Chadin; Matyska, Maria T; Pesek, Joseph J; Hearn, Milton T W

    2013-09-01

    The retention behavior of a set of polar peptides separated on a silica hydride stationary phase was examined with a capillary HPLC system coupled to ESI-MS detection. The mobile phases consisted of formic acid or acetic acid/acetonitrile/water mixtures with the acetonitrile content ranging from 5 to 80% v/v. The effects on peptide retention of these two acidic buffer additives and their concentrations in the mobile phase were systematically investigated. Strong retention of the peptides on the silica hydride phase was observed with relatively high-organic low-aqueous mobile phases (i.e. under aqueous normal-phase conditions). However, when low concentrations of acetic acid were employed as the buffer additive, strong retention of the peptides was also observed even when high aqueous content mobile phases were employed. This unique feature of the stationary phase therefore provides an opportunity for chromatographic analysis of polar peptides with water-rich eluents, a feature usually not feasible with traditional RP sorbents, and thus under conditions more compatible with analytical green chemistry criteria. In addition, both isocratic and gradient elution procedures can be employed to optimize peptide separations with excellent reproducibility and resolution under these high aqueous mobile phase conditions with this silica hydride stationary phase.

  14. Chromatography using a water stationary phase and a carbon dioxide mobile phase.

    PubMed

    Fogwill, Michael O; Thurbide, Kevin B

    2010-12-15

    A novel chromatographic separation method is introduced which employs water (saturated with CO(2)) as a stationary phase and CO(2) (saturated with water) as a mobile phase. Since water and CO(2) have little miscibility, conditions can be attained that create a stationary phase of water lining the inside of an uncoated stainless steel capillary. Because altering temperature and pressure can change both the density of the mobile phase and the polarity of the stationary phase, these experimental parameters offer good flexibility for optimizing separations and allow for different gradient programmed separation options. Further, since this method is free of organic stationary and mobile phase components, it is environmentally compatible and allows the use of universal flame ionization detection. This system offers very good sample capacity, peak symmetry, and retention time reproducibility (∼1% RSD run-to-run, ∼4% RSD day-to-day). Analytes such as alcohols, carboxylic acids, phenols, and tocopherols are employed to investigate this relatively inexpensive and robust method. As an application, the system is used to quantify ethanol in alcoholic beverages and biofuel and to analyze caffeine levels in drinks. In all cases, quantitative results are obtained with quick throughput times and often little need for sample preparation.

  15. The phase 2 enzyme inducers ethacrynic acid, DL-sulforaphane, and oltipraz inhibit lipopolysaccharide-induced high-mobility group box 1 secretion by RAW 264.7 cells.

    PubMed

    Killeen, Meaghan E; Englert, Joshua A; Stolz, Donna Beer; Song, Mingchen; Han, Yusheng; Delude, Russell L; Kellum, John A; Fink, Mitchell P

    2006-03-01

    The diuretic ethacrynic acid (EA) has been shown to inhibit signaling by the proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB). Accordingly, we sought to determine whether this compound is capable of inhibiting the release of cytokines [interleukin (IL)-6 and IL-10] and NO from RAW 264.7 murine macrophage-like cells stimulated with lipopolysaccharide (LPS). Additionally, we sought to determine whether EA can inhibit secretion of high-mobility group box 1 (HMGB1), a nuclear protein that is secreted by immunostimulated macrophages and functions in the extracellular milieu as a proinflammatory mediator. In a concentration-dependent manner, EA inhibited secretion of IL-6, IL-10, nitric oxide, and HMGB1. As expected, EA inhibited NF-kappaB DNA binding in LPS-stimulated RAW 264.7 cells. Treating these cells with pyrrolidine dithiocarbamate, SN50 (amino acid sequence AAVALLPAVLLALLAPVQRKRQKLMP) or 5-(thien-3-yl)-3-aminothiophene-2-carboxamide (SC-514) also inhibited LPS-induced NF-kappaB DNA binding, but these compounds failed to inhibit LPS-induced HMGB1 secretion. These findings suggested that inhibition of HMGB1 secretion by EA might occur via a mechanism unrelated to the NF-kappaB signaling pathway. Because EA is an electrophilic compound that is known to be capable of inducing expression of so-called phase 2 proteins, we sought to determine whether two other phase 2 enzyme inducers, oltipraz and DL-sulforaphane, also are capable of inhibiting HMGB1 release from immunostimulated macrophages. Incubating RAW 264.7 cells with either oltipraz or DL-sulforaphane inhibited LPS-induced HMGB1 secretion. Moreover, both EA and DL-sulforaphane inhibited relocalization of nuclear HMGB1 into the cytoplasm of LPS-stimulated RAW 264.7 cells. These data suggest that phase 2 inducers may exert anti-inflammatory effects by inhibiting secretion of the cytokine-like nuclear protein HMGB1.

  16. Retention behavior of isomeric triacylglycerols in silver-ion HPLC: effects of mobile phase composition and temperature.

    PubMed

    Lísa, Miroslav; Denev, Rumen; Holčapek, Michal

    2013-09-01

    A systematic study of the retention behavior of isomeric triacylglycerols (TGs) in silver-ion HPLC on a ChromSpher Lipids column has been performed between 10 to 40°C using the most widespread hexane- and dichloromethane-based mobile phases. The randomization of mono-acyl TG standards and the random esterification of glycerol with fatty acids are employed to produce mixtures of TG isomers. The mobile phase composition has no influence on the general retention pattern, but significant differences in the retention order of double bond (DB) positional isomers in hexane and dichloromethane mobile phases are described and compared with the previous literature data. Saturated TGs with fatty acyl chain length from C7:0 to C22:0 are partially separated using the hexane mobile phase but not at all with the dichloromethane mobile phase. The hexane mobile phase enables at least partial resolution of TG regioisomers with up to seven DBs, while the resolution of only ALA/AAL and ALnA/AALn isomers is achieved with the dichloromethane mobile phase. The effect of temperature differs significantly depending on the mobile phase composition. Retention times of TGs increase with increasing temperature in the hexane mobile phase, while an opposite effect is observed for the dichloromethane mobile phase.

  17. Adduct Formation in ESI/MS by Mobile Phase Additives

    NASA Astrophysics Data System (ADS)

    Kruve, Anneli; Kaupmees, Karl

    2017-03-01

    Adduct formation is a common ionization method in electrospray ionization mass spectrometry (ESI/MS). However, this process is poorly understood and complicated to control. We demonstrate possibilities to control adduct formation via mobile phase additives in ESI positive mode for 17 oxygen and nitrogen bases. Mobile phase additives were found to be a very effective measure for manipulating the formation efficiencies of adducts. An appropriate choice of additive may increase sensitivity by up to three orders of magnitude. In general, sodium adduct [M + Na]+ and protonated molecule [M + H]+ formation efficiencies were found to be in good correlation; however, the former were significantly more influenced by mobile phase properties. Although the highest formation efficiencies for both species were observed in water/acetonitrile mixtures not containing additives, the repeatability of the formation efficiencies was found to be improved by additives. It is concluded that mobile phase additives are powerful, yet not limiting factors, for altering adduct formation.

  18. MSAT mobile electronically steered phased array antenna development

    NASA Technical Reports Server (NTRS)

    Schmidt, Fred

    1988-01-01

    The Mobile Satellite Experiment (MSAT-X) breadboard antenna design demonstrates the feasibility of using a phased array in a mobile satellite application. An electronically steerable phased array capable of tracking geosynchronous satellites from anywhere in the Continental United States has been developed. The design is reviewed along with the test data. Cost analysis are presented which indicate that this design can be produced at a cost of $1620 per antenna.

  19. Retention models for ionizable compounds in reversed-phase liquid chromatography: effect of variation of mobile phase composition and temperature.

    PubMed

    Rosés, Martí; Subirats, Xavier; Bosch, Elisabeth

    2009-03-06

    General models in reversed-phase liquid chromatography that have been extended to relate retention of ionizable compounds to mobile phase composition, pH and/or temperature are reviewed. In particular, the fundamentals and applications of the solvation parameter model, the polarity parameter model and several classical models based on empirical equations are presented and compared. A main parameter in all these models is the degree of ionization of the acid-base compound, which depends on both the pH of the mobile phase and the acid-base constant of the compound. Thus, on one hand, the different procedures for pH measurement in the mobile phase and their influence on the performance of the models are outlined. On the other hand, equations that relate the variation of the pH of the buffer and the pK(a) of the compound with the mobile phase composition and/or temperature are reviewed and their applicability to the retention models critically discussed.

  20. The Role of Fluorinated Alcohols as Mobile Phase Modifiers for LC-MS Analysis of Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Basiri, Babak; van Hattum, Hilde; van Dongen, William D.; Murph, Mandi M.; Bartlett, Michael G.

    2017-01-01

    Hexafluoroisopropanol (HFIP) has been widely used as an acidic modifier for mobile phases for liquid chromatography-mass spectrometry (LC-MS) analysis of oligonucleotides ever since the first report of its use for this purpose. This is not surprising, considering the exceptional performance of HFIP compared with carboxylic acids, which cause significant MS signal suppression in electrospray ionization. However, we have found that other fluorinated alcohols can also be utilized for mobile phase preparation and the choice of optimal fluorinated alcohol is determined by the ion-pairing (IP) agent. Although HFIP is a very good choice to be used alongside less hydrophobic IP agents, other fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (HFMIP) can significantly outperform HFIP when used with more hydrophobic IP agents. We also found that more acidic fluorinated alcohols assist with the transfer of oligonucleotides with secondary structure (e.g., folded strands and hairpins) into the gas phase.

  1. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration.

  2. Microfabricated refractive index gradient based detector for reversed-phase liquid chromatography with mobile phase gradient elution.

    PubMed

    McBrady, Adam D; Synovec, Robert E

    2006-02-10

    Typical refractive index (RI) detectors for liquid chromatography (LC) are not well suited to application with mobile phase gradient elution, due to the difficulty in correcting for the detected baseline shift during the gradient. We report a sensitive, highly reproducible, microfabricated refractive index gradient (micro-RIG) detector that performs well with mobile phase gradient elution LC. Since the micro-RIG signal remains on-scale throughout the mobile phase gradient, one can apply a baseline correction procedure. We demonstrate that by collecting two mobile phase gradient blanks and subtracting one of them from the other, a reproducible, flat baseline is achieved. Therefore, subtracting a blank from a separation provides a baseline corrected chromatogram with reasonably high signal-to-noise ratio for eluting analytes. The micro-RIG detector uses a collimated diode laser beam to optically probe a RIG formed perpendicular to the laminar flow direction within a microfabricated borosilicate glass chip. The chip-based design of the detector is suitable for either traditional bench-top or LC-on-a-chip technologies. We report reversed phase high performance liquid chromatography (RP-HPLC) separations of proteins and polymers, over mobile phase gradient conditions of 67% A:33% B to 3% A:97% B by volume, where A is 96% methanol:3.9% water:0.1% trifluoroacetic acid (TFA), and B is 3.9% methanol:96% water:0.1% TFA. The separations were performed on a Jupiter 5 mu C4 300 A 150 mm x 1.0 mm Phenomenex column at a flow rate of 20 microl/min. Viscosity changes during the mobile phase gradient separation are found to shift the on-chip merge position of the detected concentration gradient (i.e., RIG), in a reproducible fashion. However, this viscosity effect makes detection sensitivity vary throughout the mobile phase gradient, due to moving the optimized position of the probe beam in relation to the analyte concentration gradient being probed. None-the-less, consistent limits

  3. Reversed phase ion-pairing chromatography of an oligolysine mixture in different mobile phases: effort of searching critical chromatography conditions.

    PubMed

    Xie, Wenchun; Teraoka, Iwao; Gross, Richard A

    2013-08-23

    Our earlier study [J. Chromatogr. A 1218 (2011) 7765] on separation of an oligolysine mixture consisting of chains with 2-8 lysine residues (number of lysine residues, dp=2-8) by ion-pairing reversed-phase chromatography using heptafluorobutyric acid (HFBA) as an ion pairing reagent at fixed mobile phase acetonitrile (ACN) content was extended to isocratic elution conditions with different ACN percentages. The present work explored how manipulating the mobile phase HFBA concentration ([HFBA]) and %-ACN content influences separations of the oligolysine mixture. The closed pairing model was used to analyze variation of the retention factor as a function of [HFBA]. The partition coefficient of the paired peptide decreased with increasing %-ACN. Pairing of HFBA to oligolysine was cooperative, and the effect increased when %-ACN in the mobile phase was lowered. A plot of the partition coefficient as a function of %-ACN for oligolysines varying in dp converged at one ACN content, indicating a critical condition in which components of different dp co-elute.

  4. 77 FR 14012 - Eligible Telecommunications Carrier Designation for Participation in Mobility Fund Phase I

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... Telecommunications Carrier Designation for Participation in Mobility Fund Phase I AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: In this document, the Commission's Wireless Telecommunications and... Telecommunications Carrier (ETC) Designation from the Commission for participation in Mobility Fund Phase I...

  5. Effect of Foam on Liquid Phase Mobility in Porous Media

    PubMed Central

    Eftekhari, A. A.; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge. PMID:28262795

  6. Effect of Foam on Liquid Phase Mobility in Porous Media

    NASA Astrophysics Data System (ADS)

    Eftekhari, A. A.; Farajzadeh, R.

    2017-03-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge.

  7. Regularities of Anthocyanins Retention in RP HPLC for “Water–Acetonitrile–Phosphoric Acid” Mobile Phases

    PubMed Central

    Deineka, V. I.; Deineka, L. A.; Saenko, I. I.

    2015-01-01

    The influence of exchange of HCOOH (System 2) by phosphoric acid (System 1) for acidification of the “acetonitrile–water” mobile phases for reversed-phase HPLC of anthocyanins was investigated in the framework of relative retention analysis. The differences and similarities of anthocyanins separation were revealed. It has been shown that some common features of the quantitative relationships may be used for preliminary anthocyanins structure differentiation, according to the number of OH-groups in anthocyanidin backbone as well as to a number of saccharide molecules in glycoside radicals in position 3 of the anthocyanin without MS detection. PMID:25692073

  8. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  9. Considerations of digital phase modulation for narrowband satellite mobile communication

    NASA Technical Reports Server (NTRS)

    Grythe, Knut

    1990-01-01

    The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.

  10. Phased Arrays of Ground and Airborne Mobile Terminals for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1996-01-01

    Phased array antenna is beginning to play an important in the arena of mobile/satellite communications. Two examples of mobile terminal phased arrays will be shown. Their technical background, challenges, and cost drivers will be discussed. A possible solution to combat some of the deficiencies of the conventional phased array by exploiting the phased reflectarray technology will be briefly presented.

  11. Simultaneous effect of pH, temperature and mobile phase composition in the chromatographic retention of ionizable compounds.

    PubMed

    Agrafiotou, Panagiota; Ràfols, Clara; Castells, Cecilia; Bosch, Elisabeth; Rosés, Martí

    2011-07-29

    The retention of 22 monoprotic acid-base solutes in 12 buffers (pH from 2 to 12) at 3 temperatures (25, 40 and 55°C) and in 3 mobile phase compositions (20, 40 and 60% acetonitrile) was measured. The retention data for each solute, temperature and mobile phase compositions was fitted to pH by means of the common sigmoidal equation and the retention and acid-base parameters were obtained (logk(HA), logk(A) and pK(a)). The dependence of these parameters on temperature (van't Hoff plots), mobile phase composition (ϕ, volume fraction of acetonitrile) and mobile phase polarity (P(m)(N) parameter) was investigated. Linear plots of the parameter values against the reverse of the absolute temperature, on one hand, and ϕ or P(m)(N), in the other hand, were generally obtained. From this analysis we propose 6-parameter equations to relate retention to pH and T at constant mobile phase composition, and to pH and ϕ or P(m)(N) at constant temperature. A general 12 parameter equation is also proposed to relate retention simultaneously to pH, T and ϕ or P(m)(N). The general constancy of some terms of the equations allow to simplify the 12 parameter equation to a 8 parameter equation able to predict retention of the studied solutes. The accuracy of the proposed method provided excellent results with the advantage of modeling the effects of various optimization variables (modifier concentration, mobile phase pH and temperature) using a single equation, based on only eight fitting parameters.

  12. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    PubMed

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity.

  13. Effect of mobile phase additives on qualitative and quantitative analysis of ginsenosides by liquid chromatography hybrid quadrupole-time of flight mass spectrometry.

    PubMed

    Liang, Yan; Guan, Tianye; Zhou, Yuanyuan; Liu, Yanna; Xing, Lu; Zheng, Xiao; Dai, Chen; Du, Ping; Rao, Tai; Zhou, Lijun; Yu, Xiaoyi; Hao, Kun; Xie, Lin; Wang, Guangji

    2013-07-05

    This study was to systematically investigate the effect of mobile phase additives, including ammonia water, formic acid, acetic acid, ammonium chloride and water (as a control), on qualitative and quantitative analysis of fifteen representative ginsenosides based on liquid chromatography hybrid quadrupole-time of flight mass spectrometry (LC-Q-TOF/MS). To evaluate the influence of mobile phase additives on qualitative performance, the quality of the negative mode MS/MS spectra of ginsenosides produced by online LC-Q-TOF/MS analyses, particularly the numbers and intensities of fragment ions, were compared under different adduct ion states, and found to be strongly affected by the mobile phase additives. When 0.02% acetic acid was added in the mobile phase, the deprotonated ginsenosides ions produced the most abundant product ions, while almost no product ion was observed for the chlorinated ginsenoside ions when 0.1mM ammonium chloride was used as the mobile phase additive. On the other hand, sensitivity, linear range and precision were adopted to investigate the quantitative performance affected by different mobile phase additives. Validation results of the LC-Q-TOF/MS-based quantitative performance for ginsenosides showed that ammonium chloride not only provided the highest sensitivity for all the target analytes, but also dramatically improved the linear ranges, the intra-day and inter-day precisions comparing to the results obtained using other mobile phase additives. Importantly, the validated method, using 0.1mM ammonium chloride as the mobile phase additive, was successfully applied to the quantitative analysis of ginsenosides in rat plasma after intragastric administration of Ginsenoside Extract at 200mg/kg. In conclusion, 0.02% acetic acid was deemed to be the most suitable mobile phase additive for qualitative analysis of ginsenosides, and 0.1mM ammonium chloride in mobile phase could lead to the best quantitative performance. Our results reveal that

  14. 78 FR 45071 - Annual Report for Mobility Fund Phase I Support and Record Retention

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    .... 01-92, 96-45; WT Docket No. 10-208; FCC 11-161; FCC 12-52] Annual Report for Mobility Fund Phase I... the Commission's Annual Report for Mobility Fund Phase I Support and Record Retention, adopted as part...-1185. OMB Approval Date: 03/28/2013. OMB Expiration Date: 03/31/2016. Title: Annual Report for...

  15. High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations

    NASA Astrophysics Data System (ADS)

    Hudgins, Robert R.; Woenckhaus, Jürgen; Jarrold, Martin F.

    1997-11-01

    Our high resolution ion mobility apparatus has been modified by attaching an electrospray source to perform measurements for biological molecules. While the greater resolving power permits the resolution of more conformations for BPTI and cytochrome c, the resolved features are generally much broader than expected for a single rigid conformation. A major advantage of the new experimental configuration is the much gentler introduction of ions into the drift tube, so that the observed gas phase conformations appear to more closely reflect those present in solution. For example, it is possible to distinguish between the native state of cytochrome c and the methanol-denatured form on the basis of the ion mobility measurements; the mass spectra alone are not sensitive enough to detect this change. Thus this approach may provide a quick and sensitive tool for probing the solution phase conformations of biological molecules.

  16. Enantioselective high-performance liquid chromatographic separation of N-methyloxycarbonyl unsaturated amino acids on macrocyclic glycopeptide stationary phases.

    PubMed

    Boesten, J M M; Berkheij, M; Schoemaker, H E; Hiemstra, H; Duchateau, A L L

    2006-03-03

    This paper describes the enantiomeric resolution of a series of unsaturated N-methyloxycarbonyl-alpha-H-alpha-amino acids (N-MOC-alpha-amino acids) on macrocyclic glycopeptide stationary phases by means of high-performance liquid chromatography (HPLC). Three types of glycopeptide phases, i.e. Chirobiotic T, V and R, were evaluated in both reversed-phase (RP) and polar ionic mode (PIM). The best results in terms of enantioselectivity and resolution were obtained on Chirobiotic R phase, with the PIM mobile phase giving the highest resolution per min. Investigation of the pH of the reversed-phase mobile phase in the pH range 4.1-5.9 showed little effect on enantioselectivity. The method was applied for monitoring the conversion and product enantiomeric excess of an enzymatic hydrolysis reaction using N-MOC-alpha-H-alpha-amino acid esters as substrate.

  17. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment.

    PubMed

    Tinjum, James M; Benson, Craig H; Edil, Tuncer B

    2008-02-25

    Batch leaching studies on chromite ore processing residue (COPR) were performed using acids to investigate leaching of hexavalent chromium, Cr(VI), with respect to particle size, reaction time, and type of acid (HNO(3) and H(2)SO(4)). Aqueous Cr(VI) is maximized at approximately 0.04 mol Cr(VI) per kg of dry COPR at pH 7.6-8.1. Cr(VI) mobilized more slowly for larger particles, and the pH increased with time and increased more rapidly for smaller particles, suggesting that rate limitations occur in the solid phase. With H(2)SO(4), the pH stabilized at a higher value (8.8 for H(2)SO(4) vs. 8.0 for HNO(3)) and more rapidly (16 h vs. 30 h), and the differences in pH for different particle sizes were smaller. The acid neutralization capacity (ANC) of COPR is very large (8 mol HNO(3) per kg of dry COPR for a stable eluate pH of 7.5). Changes to the elemental and mineralogical composition and distribution in COPR particles after mixing with acid indicate that Cr(VI)-bearing solids dissolved. However, concentrations of Cr(VI) >2800 mg kg(-1) (>50% of the pre-treatment concentration) were still found after mixing with acid, regardless of the particle size, reaction time, or type of acid used. The residual Cr(VI) appears to be partially associated with poorly-ordered Fe and Al oxyhydroxides that precipitated in the interstitial areas of COPR particles. Remediation strategies that use HNO(3) or H(2)SO(4) to neutralize COPR or to maximize Cr(VI) in solution are likely to require extensive amounts of acid, may not mobilize all of the Cr(VI), and may require extended contact time, even under well-mixed conditions.

  18. Impact of mobile phase temperature on recovery and stability of monoclonal antibodies using recent reversed-phase stationary phases.

    PubMed

    Fekete, Szabolcs; Rudaz, Serge; Veuthey, Jean-Luc; Guillarme, Davy

    2012-11-01

    Recent reversed-phase wide-pore stationary phases were evaluated for the separation of intact monoclonal antibodies and their fragments. Two types of stationary phases were tested: Phenomenex Aeris Widepore, with 3.6 μm core-shell particles and Waters Acquity BEH300 with 1.7 μm fully porous particles. A systematic investigation was carried out using model IgG1 and IgG2 antibodies, namely rituximab, panitumumab, and bevacizumab. It appeared that adsorption of these antibodies on the stationary phase was significantly higher compared to proteins of equivalent size. The adsorption was particularly important for the intact antibodies of 150 kDa and for the largest fragments of 50 to 100 kDa (i.e., heavy chain, -fraction of antigene-binding). The present study demonstrated an obvious relationship between adsorption phenomenon and the unwanted strong secondary interactions (ionic and hydrogen bond) of the stationary phase. Thus, adsorption was more pronounced on the Aeris column because of the stronger ion exchange contribution of this stationary phase. Using C4 phase instead of C18 at 50-70°C, there is a slight reduction (5-20%) in adsorption. Two solutions were proposed to decrease the strength of secondary interactions and thus resolve (or at least diminish) adsorption issue. First, increasing mobile phase temperature up to 80-90°C appeared as a promising solution. However, temperature should be used with caution as it can partially damage large biomolecules. A compromise between residence time and temperature should be found. Second, it is recommended to add a small amount of an ancillary solvent, such as n-butanol to the mobile phase. Indeed, the hydroxyl group of n-butanol probably interacts with water adsorbed on the residual silanol groups "to shield" silanols.

  19. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids

    USGS Publications Warehouse

    Lawrence, G.B.; Sutherland, J.W.; Boylen, C.W.; Nierzwicki-Bauer, S. W.; Momen, B.; Baldigo, Barry P.; Simonin, H.A.

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg 2+, Na+, and K+, minus SO42-, NO3-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and NO 3-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. ?? 2007 American Chemical Society.

  20. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids.

    PubMed

    Lawrence, G B; Sutherland, J W; Boylen, C W; Nierzwicki-Bauer, S W; Momen, B; Baldigo, B P; Simonin, H A

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg2+, Na+, and K+, minus S042-, N03-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and N03-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects.

  1. Site-Specific Characterization of d-Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry

    PubMed Central

    2013-01-01

    Traditionally, the d-amino acid containing peptide (DAACP) candidate can be discovered by observing the differences of biological activity and chromatographic retention time between the synthetic peptides and naturally occurring peptides. However, it is difficult to determine the exact position of d-amino acid in the DAACP candidates. Herein, we developed a novel site-specific strategy to rapidly and precisely localize d-amino acids in peptides by ion mobility spectrometry (IMS) analysis of mass spectrometry (MS)-generated epimeric fragment ions. Briefly, the d/l-peptide epimers were separated by online reversed-phase liquid chromatography and fragmented by collision-induced dissociation (CID), followed by IMS analysis. The epimeric fragment ions resulting from d/l-peptide epimers exhibit conformational differences, thus showing different mobilities in IMS. The arrival time shift between the epimeric fragment ions was used as criteria to localize the d-amino acid substitution. The utility of this strategy was demonstrated by analysis of peptide epimers with different molecular sizes, [d-Trp]-melanocyte-stimulating hormone, [d-Ala]-deltorphin, [d-Phe]-achatin-I, and their counterparts that contain all-l amino acids. Furthermore, the crustacean hyperglycemia hormones (CHHs, 8.5 kDa) were isolated from the American lobster Homarus americanus and identified by integration of MS-based bottom-up and top-down sequencing approaches. The IMS data acquired using our novel site-specific strategy localized the site of isomerization of l- to d-Phe at the third residue of the CHHs from the N-terminus. Collectively, this study demonstrates a new method for discovery of DAACPs using IMS technique with the ability to localize d-amino acid residues. PMID:24328107

  2. Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases.

    PubMed

    Ruiz-Angel, M J; Pous-Torres, S; Carda-Broch, S; García-Alvarez-Coque, M C

    2014-05-30

    Column selection in reversed-phase liquid chromatography (RPLC) can become a challenge if the target compounds interact with the silica-based packing. One of such interactions is the attraction of cationic solutes to the free silanols in silica-based columns, which is a slow sorption-desorption interaction process that gives rise to tailed and broad peaks. The effect of silanols is minimised by the addition of a competing agent in the mobile phase, such as the anionic surfactant sodium dodecyl sulphate (SDS). In micellar-organic RPLC, the adsorption of an approximately fixed amount of SDS monomers gives rise to a stable modified stationary phase, with properties remarkably different from those of the underlying bonded phase. The chromatographic behaviour (in terms of selectivity, analysis time and peak shape) of eight C18 columns in the analysis of weakly acidic phenols and basic β-blockers was examined with hydro-organic and micellar-organic mobile phases. The behaviour of the columns differed significantly when the cationic basic drugs were eluted with hydro-organic mobile phases. With micellar-organic mobile phases, the adsorption of surfactant, instead of making the columns similar, gave rise to a greater diversity of behaviours (especially in terms of selectivity and analysis time), for both groups of phenols and β-blockers, which should be explained by the residual effect of the underlying bonded stationary phase and the different amount of surfactant covering the packing. Therefore, the implementation of a micellar-organic procedure in RPLC will depend significantly on the selected type of C18 column.

  3. Polarons and Mobile Impurities Near a Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  4. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-01-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples.

  5. Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility

    DTIC Science & Technology

    2008-06-01

    LABORATORY STUDY REPORT Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant...Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility 5a. CONTRACT NUMBER 5b...PDMS poly dimethylsiloxane SPME Solid phase microextraction TOC Total organic carbon     1 1. LABORATORY DEMONSTRATION GOALS The

  6. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure

    PubMed Central

    D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie

    2015-01-01

    Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654

  7. Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2006-03-01

    The equilibrium isotherm and the intraparticle mass transfer kinetics of the enantiomers of the template were investigated on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer at different pHs and water concentrations in acetonitrile/aqueous buffer mobile phases. The equilibrium isotherm data were measured using frontal analysis at 25 {+-} 2 C. The adsorption energy distribution was found to be trimodal, with narrow modes. Consistent with this distribution, the adsorption data were modeled using a tri-Langmuir isotherm equation and the best estimates of the isotherm parameters were determined. The intraparticle mass transfer parameters were derived by comparing the profiles of experimental overloaded bands and the profiles calculated using the isotherm model and the lumped pore diffusion (POR) model of chromatography. These results showed that different adsorption and mass transfer mechanisms exist in mobile phases made of acetonitrile/aqueous buffer and of acetonitrile/acetic acid solutions.

  8. Use of microfocused X-ray techniques to investigate the mobilization of arsenic by oxalic acid

    NASA Astrophysics Data System (ADS)

    Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.

    2012-08-01

    Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (˜4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88-95%). Considerably less Fe was removed by oxalic acid treatment, 14-25% based on μSXRF counts, which is somewhat higher than the 7-9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either removing

  9. Use of Microfocused X-ray Techniques to Investigate the Mobilization of As by Oxalic Acid

    PubMed Central

    Wovkulich, Karen; Mailloux, Brian J.; Bostick, Benjamin C.; Dong, Hailiang; Bishop, Michael E.; Chillrud, Steven N.

    2012-01-01

    Improved linkages between aqueous phase transport and solid-phase reactions are needed to better predict and model transport of contaminants through the subsurface. Here we develop and apply a new method for measuring As mobilization in situ within soil columns that utilizes synchrotron-based X-ray fluorescence. By performing these measurements in situ during column transport experiments, we simultaneously monitor grain-scale solid phase reactions and column-scale transport. Arsenic may be effectively mobilized by oxalic acid but the geochemical and mineralogical factors that influence the rate and extent of mobilization are not well understood. Column experiments (~4 cm long × 0.635 cm ID) using As contaminated sediments from the Vineland Chemical Company Superfund site were performed on the laboratory bench as well as in the synchrotron beamline. Microfocused synchrotron X-ray fluorescence (μSXRF) maps for As and Fe were collected at the same location in the columns (<1 mm2) before and during treatment with 10 mM oxalic acid. The fraction of As and Fe removed by oxalic acid treatment was calculated from the change in flux-normalized counts for each pixel in the map images, and these data were used to calculate kinetic parameters over the studied area. Between 79% and 83% of the As was removed from the sediments by the oxalic acid treatment based on μSXRF data; these removal percentages agreed well with laboratory data based on column effluent (88–95%). Considerably less Fe was removed by oxalic acid treatment, 14–25% based on μSXRF counts, which is somewhat higher than the 7–9% calculated from laboratory column effluent concentrations. Microfocused X-ray absorption near edge spectroscopy (μXANES) on a subset of points indicates most of the Fe was oxidized and present as a mixture of goethite, hematite, and ferrihydrite on sand grain coatings. Treatment with oxalic acid led to subtle shifts in Fe (III) species following oxalic acid treatment, either

  10. Oleic acid phase behavior from molecular dynamics simulations.

    PubMed

    Janke, J Joel; Bennett, W F Drew; Tieleman, D Peter

    2014-09-09

    Fatty acid aggregation is important for a number of diverse applications: from origins of life research to industrial applications to health and disease. Experiments have characterized the phase behavior of oleic acid mixtures, but the molecular details are complex and hard to probe with many experiments. Coarse-grained molecular dynamics computer simulations and free energy calculations are used to model oleic acid aggregation. From random dispersions, we observe the aggregation of oleic acid monomers into micelles, vesicles, and oil phases, depending on the protonation state of the oleic acid head groups. Worm-like micelles are observed when all the oleic acid molecules are deprotonated and negatively charged. Vesicles form spontaneously if significant amounts of both neutral and negative oleic acid are present. Oil phases form when all the fatty acids are protonated and neutral. This behavior qualitatively matches experimental observations of oleic acid aggregation. To explain the observed phase behavior, we use umbrella sampling free energy calculations to determine the stability of individual monomers in aggregates compared to water. We find that both neutral and negative oleic acid molecules prefer larger aggregates, but neutral monomers prefer negatively charged aggregates and negative monomers prefer neutral aggregates. Both neutral and negative monomers are most stable in a DOPC bilayer, with implications on fatty acid adsorption and cellular membrane evolution. Although the CG model qualitatively reproduces oleic acid phase behavior, we show that an updated polarizable water model is needed to more accurately predict the shift in pKa for oleic acid in model bilayers.

  11. Selective mobilization of fatty acids from adipose tissue in migratory birds.

    PubMed

    Price, Edwin R; Krokfors, Anna; Guglielmo, Christopher G

    2008-01-01

    During times of high energy demand, stored fatty acids are mobilized from adipocytes. This mobilization has previously been shown to be a non-random process, with more hydrophilic fatty acids being mobilized most readily. The objectives of this study were to characterize the relative mobilization of fatty acids from adipocytes in two migratory bird species and to investigate possible changes in selective fatty acid mobilization associated with the migratory period. Captive ruffs (Philomachus pugnax) and white-crowned sparrows (Zonotrichia leucophrys) were studied. The sparrows were divided into two treatments: 'winter' (photoperiod 8 h:16 h L:D) and 'migrant' (in which migratory condition was induced with a photoperiodic manipulation of 8 h:16 h L:D, followed by 16 h:8 h L:D). Adipose tissue was removed from ruffs and sparrows and incubated for 90 min after stimulation with epinephrine. The proportions of individual fatty acid species released into the incubation medium were compared with their proportions in the adipocytes to determine relative mobilizations. We found that patterns of relative mobilization in ruffs and sparrows are similar to those of mammals, with shorter chain lengths and more double bonds leading to higher relative mobilization. Seasonal condition in sparrows did not alter this pattern. This pattern of relative mobilization from adipocytes seems to be a general rule amongst birds and mammals and should be considered before inferring functionality about selective retention or mobilization of certain fatty acids. The composition of adipose stores in birds may affect migratory performance; however, our results indicate that patterns of relative mobilization at the adipocytes do not vary with season in migratory birds.

  12. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry.

    PubMed

    Qiao, Xue; Song, Wei; Ji, Shuai; Wang, Qi; Guo, De-an; Ye, Min

    2015-07-10

    Licorice is one of the most popular herbal medicines worldwide. It contains a big array of phenolic compounds (flavonoids, coumarins, and diphenylethanones). Due to high structural diversity, low abundance, and co-elution with licorice saponins, these phenolic compounds are difficult to be separated by conventional chromatography. In this study, a mobile phase-dependent reversed-phase×reversed phase comprehensive two-dimensional liquid chromatography (RP×RP 2DLC) method was established to separate phenolic compounds in licorice (the roots of Glycyrrhiza uralensis). Organic solvents in the mobile phase were optimized to improve orthogonality of the first and second dimensions, and a synchronized gradient mode was used to improve chromatographic resolution. Finally, licorice extracts were eluted with methanol/water/formic acid in the first dimension (Acquity CSH C18 column), and acetonitrile/water/formic acid in the second dimension (Poroshell Phenyl-Hexyl column). By using this 2DLC system, a total of 311 compounds were detected within 40min. The practical and effective peak capacity was 1329 and 524, respectively, and the orthogonality was 79.8%. The structures of 21 selected unknown compounds were tentatively characterized by mass spectrometry, and 8 of them were discovered from G. uralensis for the first time. The mobile phase-dependent 2DLC/MS system could benefit the separation and characterization of natural products in complicated herbal extracts.

  13. Ionic liquid as a mobile phase additive in high-performance liquid chromatography for the simultaneous determination of eleven fluorescent whitening agents in paper materials.

    PubMed

    Wang, Qing; Chen, Xianbo; Qiu, Bin; Zhou, Liang; Zhang, Hui; Xie, Juan; Luo, Yan; Wang, Bin

    2016-04-01

    In the present study, 11 4,4'-diaminostilbene-2,2'-disulfonic acid based fluorescent whitening agents with different numbers of sulfonic acid groups were separated by using an ionic liquid as a mobile phase additive in high-performance liquid chromatography with fluorescence detection. The effects of ionic liquid concentration, pH of mobile phase B, and composition of mobile phase A on the separation of fluorescent whitening agents were systematically investigated. The ionic liquid tetrabutylammonium tetrafluoroborate is superior to tetrabutylammomnium bromide for the separation of the fluorescent whitening agents. The optimal separation conditions were an ionic liquid concentration at 8 mM and the pH of mobile phase B at 8.5 with methanol as mobile phase A. The established method exhibited low limits of detection (0.04-0.07 ng/mL) and wide linearity ranges (0.30-20 ng/mL) with high linear correlation coefficients from 0.9994 to 0.9998. The optimized procedure was applied to analyze target analytes in paper samples with satisfactory results. Eleven target analytes were quantified, and the recoveries of spiked paper samples were in the range of 85-105% with the relative standard deviations from 2.1 to 5.1%. The obtained results indicated that the method was efficient for detection of 11 fluorescent whitening agents.

  14. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    SciTech Connect

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  15. Effects of C18 Fatty Acids on Intracellular Ca(2+) Mobilization and Histamine Release in RBL-2H3 Cells.

    PubMed

    Kim, Myung Chul; Kim, Min Gyu; Jo, Young Soo; Song, Ho Sun; Eom, Tae In; Sim, Sang Soo

    2014-06-01

    To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and α-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular Ca(2+) mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular Ca(2+) mobilization, whereas linoleic acid and α-linolenic acid gradually increased this mobilization. In the absence of extracellular Ca(2+), stearic acid (100 µM) did not cause any increase of intracellular Ca(2+) mobilization. Both linoleic acid and α-linolenic acid increased intracellular Ca(2+) mobilization, but the increase was smaller than that in the presence of extracellular Ca(2+). These results suggest that C18 fatty acid-induced intracellular Ca(2+) mobilization is mainly dependent on extracellular Ca(2+) influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular Ca(2+) mobilization, but did not affect both linoleic acid and α-linolenic acid-induced intracellular Ca(2+) mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and α-linolenic acid on intracellular Ca(2+) mobilization may differ. Linoleic acid and α-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: ω-6)-induced intracellular Ca(2+) mobilization and histamine release were more prominent than α-linolenic acid (C18:3: ω-3). These data support the view that the intake of more α-linolenic acid than linoleic acid is useful in preventing inflammation.

  16. Effects of C18 Fatty Acids on Intracellular Ca2+ Mobilization and Histamine Release in RBL-2H3 Cells

    PubMed Central

    Kim, Myung Chul; Kim, Min Gyu; Jo, Young Soo; Song, Ho Sun; Eom, Tae In

    2014-01-01

    To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and α-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular Ca2+ mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular Ca2+ mobilization, whereas linoleic acid and α-linolenic acid gradually increased this mobilization. In the absence of extracellular Ca2+, stearic acid (100 µM) did not cause any increase of intracellular Ca2+ mobilization. Both linoleic acid and α-linolenic acid increased intracellular Ca2+ mobilization, but the increase was smaller than that in the presence of extracellular Ca2+. These results suggest that C18 fatty acid-induced intracellular Ca2+ mobilization is mainly dependent on extracellular Ca2+ influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular Ca2+ mobilization, but did not affect both linoleic acid and α-linolenic acid-induced intracellular Ca2+ mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and α-linolenic acid on intracellular Ca2+ mobilization may differ. Linoleic acid and α-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: ω-6)-induced intracellular Ca2+ mobilization and histamine release were more prominent than α-linolenic acid (C18:3: ω-3). These data support the view that the intake of more α-linolenic acid than linoleic acid is useful in preventing inflammation. PMID:24976764

  17. Description of Gas-Phase Ion/Neutral Interactions in Differential Ion Mobility Spectrometry: CV Prediction Using Calibration Runs

    NASA Astrophysics Data System (ADS)

    Auerbach, David; Aspenleiter, Julia; Volmer, Dietrich A.

    2014-09-01

    Differential ion mobility spectrometry (DMS) coupled to mass spectrometry is increasingly used in both quantitative analyses of biological samples and as a means of removing background interferences for enhanced selectivity and improved quality of mass spectra. However, DMS separation efficiency using dry inert gases often lacks the required selectivity to achieve baseline separation. Polar gas-phase modifiers such as alcohols are therefore frequently employed to improve selectivity via clustering/declustering processes. The choice of an optimal modifier currently relies on trial and error experiments, making method development a tedious activity. It was the goal of this study to establish a means of CV prediction for compounds using a homologous series of alcohols as gas-phase modifiers. This prediction was based on linear regression of compensation voltages of two calibration runs for the alcohols with the lowest and the highest molecular weights and readily available descriptors such as proton affinity and gas phase acidity of the modifier molecules. All experiments were performed on a commercial quadrupole linear ion trap mass spectrometer equipped with a DMS device between electrospray ionization source and entrance quadrupole lens. We evaluated our approach using a homologous series of 4-alkylbenzoic acids and a selection of 23 small molecules of high chemical diversity. Predicted CV values typically deviated from the experimentally determined values by less than 0.5 V. Several test compounds changed their ion mobility behavior for the investigated gas phase modifiers (e.g., from type B to type A) and thus could thus not be evaluated.

  18. Separation and indirect detection of small-chain peptides using chromophoric mobile phase additives.

    PubMed

    Yuan, D X; Pietrzyk, D J

    1990-06-22

    Ruthenium(II) 1,10-phenanthroline, Ru(phen)3(2+), and ruthenium(II) 2,2'-bipyridyl, Ru(bipy)3(2+), salts were evaluated as mobile phase additives for the liquid chromatographic separation of small-chain peptides on a polystyrene-divinylbenzene copolymeric (Hamilton PRP-1) stationary phase. In a basic mobile phase peptides are anions, and retention, resolution and detection occur because of the interactions between the stationary phase, the RuII complex and the peptide anion. Since the RuII complex concentration changes in the analyte band relative to the background eluent RuII complex concentration, the peptide can be detected by indirect photometric detection using the wavelength where the RuII complex absorbs. Peptide analyte peaks may be positive or negative depending on the counter-anion and its concentration. Small-chain peptides that do not contain chromophoric side-chains are detected without derivatization at about 0.1 nmol injected at a 3:1 signal-to-noise ratio. Factors that affect retention, resolution and indirect photometric detection are the RuII complex, its mobile phase concentration, mobile phase pH and solvent composition, and the type and concentration of the mobile phase counter-anion and/or buffer anion.

  19. Enantioseparation of gantofiban precursors on chiral stationary phases of the poly-(N-acryloyl amino acid derivative)-type.

    PubMed

    Schulte, Michael; Devant, R; Grosser, R

    2002-01-15

    A separation strategy for the preparative enantioseparation of intermediates of the synthesis route towards the new antithrombotic drug Gantofiban is outlined. The selectivities of six different intermediates on a series of chiral stationary phases of the poly-[N-(meth-)acryloyl amino acid derivative]-type are determined. The separations are optimized with respect to high enantioselectivities and good solubilities in the mobile phase. For three optimized combinations of chiral stationary and mobile phases the separation parameters for a simulated moving bed-systems are determined.

  20. Gas-phase acidities of binary hydrides.

    NASA Technical Reports Server (NTRS)

    Brauman, J. I.; Eyler, J. R.; Blair, L. K.; White, M. J.; Comisarow, M. B.; Smyth, K. C.

    1971-01-01

    The preferred direction of proton transfer in a reaction between a hydride molecule and a hydride ion was studied in order to determine the relative acidities of some binary hydrides. Sufficient data are presented to make clear the periodic trends in acidities and the underlying trends in other fundamental thermochemical quantities which influence acidity. The bond dissociation energies and electron affinities of the hydrides considered are listed in a table.

  1. Retention behavior of proton pump inhibitors using immobilized polysaccharide-derived chiral stationary phases with organic-aqueous mobile phases.

    PubMed

    Cirilli, Roberto; Ferretti, Rosella; Gallinella, Bruno; Zanitti, Leo

    2013-08-23

    In the present study, the chromatographic behavior of two immobilized polysaccharide-derived chiral stationary phases (CSPs), the Chiralpak ID-3 and Chiralpak IE-3, under aqueous mobile phases conditions is presented. Four proton pump inhibitors (PPIs) (omeprazole, lansoprazole, pentaprazole and rabeprazole) were selected as test compounds. The effect of the concentration of water in the mobile phase was investigated with respect to its contribution to enantioselectivity and retention. Under acetonitrile-water mobile phase conditions, retention behavior evidenced an interesting pattern. At lower water content, the retention factors decreased with increasing water and at higher water content a reversed trend was observed. These findings support the hypothesis that two retention mechanisms operated successively on the same CSP: the HILIC (with water-poor eluents) and RPLC (with water-rich eluents) modes. The retention factors were minimum in the intermediate region, corresponding to a water concentration of about 20%. Interestingly, the baseline separation of all PPIs investigated was optimized under organic-aqueous mobile phases containing a high water content (from about 50 to 65%). Thus, the dual retention behavior of the PPIs on the Chiralpak ID-3 and Chiralpak IE-3 made it possible to reach greener and harmless enantioselective conditions in a short analysis time.

  2. The ionic liquid isopropylammonium formate as a mobile phase modifier to improve protein stability during reversed phase liquid chromatography.

    PubMed

    Zhou, Ling; Danielson, Neil D

    2013-12-01

    The room temperature ionic liquid isopropylammonium formate (IPAF) is studied as a reversed phase HPLC mobile phase modifier for separation of native proteins using a polymeric column and the protein stability is compared to that using acetonitrile (MeCN) as the standard organic mobile phase modifier. A variety of important proteins with different numbers of subunits are investigated, including non-subunit proteins: albumin, and amyloglucosidase (AMY); a two subunit protein: thyroglobulin (THY); and four subunit proteins: glutamate dehydrogenase (GDH) and lactate dehydrogenase (LDH). A significant enhancement in protein stability is observed in the chromatograms upon using IPAF as a mobile phase modifier. The first sharper peak at about 2min represented protein in primarily the native form and a second broader peak more retained at about 5-6min represented substantially denatured or possibly aggregated protein. The investigated proteins (except LDH) could maintain the native form within up to 50% IPAF, while a mobile phase, with as low as 10% MeCN, induced protein denaturation. The assay for pyruvate using LDH has further shown that enzymatic activity can be maintained up to 30% IPAF in water in contrast to no activity using 30% MeCN.

  3. Uniformly sized molecularly imprinted polymer for d-chlorpheniramine. Evaluation of retention and molecular recognition properties in an aqueous mobile phase.

    PubMed

    Haginaka, Jun; Kagawa, Chino

    2002-03-01

    A uniformly sized molecularly imprinted polymer (MIP) for d-chlorpheniramine has been prepared by a multi-step swelling and polymerization method using methacrylic acid and ethylene glycol dimethacrylate as a functional monomer and cross-linker, respectively. The retentive and enantioselective properties of chlorpheniramine and its structurally related compounds on the MIP were evaluated using an aqueous mobile phase. Electrostatic and hydrophobic interactions could mainly work for the retention and enantioseparation of chlorpheniramine in aqueous mobile phase. Further, the MIP showed the highest recognition for chlorpheniramine and slight recognition for its structurally related compounds, and enantioseparation of pheniramine was attained.

  4. Retention of ionizable compounds on HPLC. 4. Mobile-phase pH measurement in methanol/water

    PubMed

    Canals; Portal; Bosch; Roses

    2000-04-15

    The different procedures used in HPLC to measure the pH of a mobile phase are evaluated in terms of the rigorous IUPAC definition of pH. The three procedures evaluated are as follows: measurement of the pH of the aqueous HPLC buffer before mixing it with the organic modifier, measurement of the pH of the HPLC buffer after mixing it with the organic modifier using a pH electrode system calibrated with aqueous buffers, and measurement of the pH of the HPLC buffer after mixing it with the organic modifier but calibrating the electrode system with reference buffers prepared in the same mixed solvent used as mobile phase. Following IUPAC definitions and recommendations, the three pH values can be related with the pH scales: w(w)pH, s(w)pH, and s(s)pH, respectively. The relationships between these three pH scales are also presented. The retention of several compounds with acid/base behavior in a C-18 and a polymeric column with buffered methanol/water as mobile phase is related to the mobile phase pH value measured in the three pH scales. It is demonstrated that the s(w)pH and s(s)pH scales give better relationships than the w(w)pH scale (pH measured in the aqueous buffer before mixing it with the organic modifier), commonly used on HPLC. The s(w)pH scale is specially recommended because of its simplicity of measurement: the pH is measured after mixing the aqueous buffer with the organic modifier, but the pH calibration is performed with the common aqueous reference buffers.

  5. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment.

  6. Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility (User’s Manual)

    DTIC Science & Technology

    2012-05-01

    GUIDANCE DOCUMENT Demonstration and Evaluation of Solid Phase Microextraction For the Assessment of Bioavailability and Contaminant Mobility...Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility ER-200624Danny R. Reible...in-situ measurement of sediment pore water concentrations with solid phase microextraction using polydimethyl siloxane as the extractant. The method

  7. Boundary of Phase Co-existence in Docosahexaenoic Acid System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda S.

    2011-11-01

    Docosahexaenoic acid (DHA) is a highly polyunsaturated fatty acid (PUFA) that exhibits six double bonds in the hydrocarbon tail. It induces phase separation of the membrane into liquid order and liquid disorder in mixtures containing other lipids with more saturation and cholesterol. With the utilization of atomic force microscopy, phase co-existence is observed in lipid mixtures containing DHA on a single supported lipid bilayer. The boundary of phase co-existence with decreasing DHA concentration is explored. The elastic force, thickness, and roughness of the different phases are investigated.

  8. Liquid chromatography/tandem mass spectrometric bioanalysis using normal-phase columns with aqueous/organic mobile phases - a novel approach of eliminating evaporation and reconstitution steps in 96-well SPE.

    PubMed

    Naidong, Weng; Shou, Wilson Z; Addison, Thomas; Maleki, Saber; Jiang, Xiangyu

    2002-01-01

    Bioanalytical methods using automated 96-well solid-phase extraction (SPE) and liquid chromatography with electrospray tandem mass spectrometry (LC/MS/MS) are widely used in the pharmaceutical industry. SPE methods typically require manual steps of drying of the eluates and reconstituting of the analytes with a suitable injection solvent possessing elution strength weaker than the mobile phase. In this study, we demonstrated a novel approach of eliminating these two steps in 96-well SPE by using normal-phase LC/MS/MS methods with low aqueous/high organic mobile phases, which consisted of 70-95% organic solvent, 5-30% water, and small amount of volatile acid or buffer. While the commonly used SPE elution solvents (i.e. acetonitrile and methanol) have stronger elution strength than a mobile phase on reversed-phase chromatography, they are weaker elution solvents than a mobile phase for normal-phase LC/MS/MS and therefore can be injected directly. Analytical methods for a range of polar pharmaceutical compounds, namely, omeprazole, metoprolol, fexofenadine, pseudoephedrine as well as rifampin and its metabolite 25-desacetyl-rifampin, in biological fluids, were developed and optimized based on the foregoing principles. As a result of the time saving, a batch of 96 samples could be processed in one hour. These bioanalytical LC/MS/MS methods were validated according to "Guidance for Industry - Bioanalytical Method Validation" recommended by the Food and Drug Administration (FDA) of the United States.

  9. Mobilization Base Requirements Model (MOBREM) Study. Phases I-V.

    DTIC Science & Technology

    1984-08-01

    providers. Based on CAA experience in :naking data modifications, the communication produces the best results when the MOBREM operational analyst...Revipw ani va ,ato contr-actor pr- re Trl:, A an~pr-oducti. periodi )f c.rrict MAJ TAYOR /70614I B -48 CAA-SR-84-22 STATEMENT OF WORK MOBREM PHASE IV

  10. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  11. Combined lyotropic and thermotropic phase transitions of deoxycholic acid

    NASA Astrophysics Data System (ADS)

    Vuc˜elić, V.; Vũcelić, D.

    1980-02-01

    Phase transitions of deoxycholic acid have been examined by studying systems which form a clathrate during crystallization. It has been shown that, depending upon the type of solvent molecule present, the deoxycholic acid clathrate may or may not form a thermotropic liquid crystal. In this manner, the simultaneous occurrence of both lyotropic and thermotropic effects was observed.

  12. Reversed-phase high-performance liquid chromatography of unsubstituted aminobenzoic acids

    USGS Publications Warehouse

    Abidi, S.L.

    1989-01-01

    High-performance liquid chromatographic (HPLC) characteristics of three position isomers of aminobenzoic acids (potential metabolites of important anesthetic drugs), were delineated with respect to their interactions with various mobile phases and stationary phases. HPLC with five hydrocarbonaceous phase, I?-cyclodextrin silica (CDS), macrophase MP-1 polymer (MP), macroporous polystyrene/divinylbenzene (MPD), octadecylsilica (ODS), and propylphenylsilica (PPS), yielded results explicable in terms of substituent effects derived from the bifunctional amino- and carboxy groups. For cases where mobile phases contained sulfonates or quaternary ammonium salts both having longer chain alkyls, retention of analytes on all but CDS appeared to proceed predominantly via an ion-pairing mechanism. The extent of the corresponding counter-ion effects decreased in the order: MPD > ODS > PPS > MP, while the analyte retention order paralleled thier pH2 values. On the other hand, an inverse relationship between the magnitude of capacity factors (k') and pK1 values of the title compounds was observed in experiments that produced retention data incompatible with ion-pair interaction rationales. The unique HPLC results obtained with the CDS phase are compared with those obtained with other phases.

  13. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  14. Effects of coating of dicarboxylic acids on the mass-mobility relationship of soot particles.

    PubMed

    Xue, Huaxin; Khalizov, Alexei F; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-04-15

    Atandem differential mobility analyzer (TDMA) and a differential mobility analyzer-aerosol particle mass analyzer (DMA-APM) have been employed to study morphology and hygroscopicity of soot aerosol internally mixed with dicarboxylic acids. The effective densities, fractal dimensions, and dynamic shape factors of soot particles before and after coating with succinic and glutaric acids are determined. Coating of soot with succinic acid results in a significant increase in the particle mobility diameter, mass, and effective density, but these properties recover to their initial values once succinic acid is removed by heating, suggesting that no restructuring of the soot core occurs. This conclusion is also supported from the observation of similar fractal dimensions and dynamic shape factors for fresh and coated/heated soot aggregates. Also, no change is observed when succinic acid-coated aggregates are cycled through elevated relative humidity (5% to 90% to 5% RH) below the succinic acid deliquescence point. When soot is coated with glutaric acid, the particle mass increases, but the mobility diameter shrinks by 10-40%. Cycling the soot aerosol coated with glutaric acid through elevated relative humidity leads to an additional mass increase, indicating that condensed water remains within the coating even at low RH. The fractal dimension of soot particles increases after coating and remains high when glutaric acid is removed by heating. The dynamic shape factor of glutaric acid-coated and heated soot is significantly lower than that of fresh soot, suggesting a significant restructuring of the soot agglomerates by glutaric acid. The results imply that internal mixing of soot aerosol during atmospheric aging leads to changes in hygroscopicity, morphology, and effective density, which likely modify their effects on direct and indirect climate forcing and deposition in the human respiratory system.

  15. Density, phase behavior keys to acid gas injection

    SciTech Connect

    Carroll, J.J.; Lui, D.W.

    1997-06-23

    Acid gas injection requires an understanding of the complexities of gas phase behavior and physical properties. Injected acid gas streams typically come from the top of the regenerator reflux accumulator of an amine unit. Thus, they are composed mainly of hydrogen sulfide (H{sub 2}S) and carbon dioxide (CO{sub 2}) with significant amounts of methane and lesser amounts of other hydrocarbons. The stream is also saturated with water. The stream from the amine plant has a low pressure and must be compressed to a higher pressure for injection into a disposal well. This article summarizes the available research on acid gas phase behavior and density calculations.

  16. Fast non-aqueous reversed-phase liquid chromatography separation of triacylglycerol regioisomers with isocratic mobile phase. Application to different oils and fats.

    PubMed

    Tamba Sompila, Arnaud W G; Héron, Sylvie; Hmida, Dorra; Tchapla, Alain

    2017-01-15

    The distribution of fatty acid species at the sn-1/3 position or the sn-2 position of triacylglycerols (TAGs) in natural fats and oils affects their physical and nutritional properties. In fats and oils, determining the presence of one or two regioisomers and the identification of structure, where they do have one, as well as their separation, became a problem of fundamental importance to solve. A variety of instrumental technics has been proposed, such as MS, chromatography-MS or pure chromatography. A number of studies deal with the optimization of the separation, but very often, they are expensive in time. In the present study, in order to decrease the analysis time while maintaining good chromatographic separation, we tested different monomeric and polymeric stationary phases and different chromatographic conditions (mobile phase composition and analysis temperature) using Non-Aqueous Reversed Phase Liquid Chromatography (NARP-LC). It was demonstrated that mixed polymeric stationary bonded silica with accessible terminal hydroxyl groups leads to very good separation for the pairs of TAGs regioisomers constituted by two saturated and one unsaturated fatty acid (with double bond number: from 1 to 6). A Nucleodur C18 ISIS percolated by isocratic mobile phase (acetonitrile/2-propanol) at 18°C leads to their separations in less than 15min. The difference of retention times between two regioisomers XYX and XXY are large enough to confirm, as application, the presence of POP, SOP, SOS and PLP and no PPO, SPO, SSO and PPL in Theobroma cacao butter. In the same way, this study respectively shows the presence of SOS, SOP and no SSO, PSO in Butyrospermum parkii butter, POP, SOP, SOS and no PPO, PSO and SSO in Carapa oil and finally POP and no PPO in Pistacia Lentiscus oil.

  17. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  18. Micellar versus hydro-organic mobile phases for retention-hydrophobicity relationship studies with ionizable diuretics and an anionic surfactant.

    PubMed

    Ruiz-Angel, M J; Carda-Broch, S; García-Alvarez-Coque, M C; Berthod, A

    2004-03-19

    Logarithm of retention factors (log k) of a group of 14 ionizable diuretics were correlated with the molecular (log P o/w) and apparent (log P(app)) octanol-water partition coefficients. The compounds were chromatographed using aqueous-organic (reversed-phase liquid chromatography, RPLC) and micellar-organic mobile phases (micellar liquid chromatography, MLC) with the anionic surfactant sodium dodecyl sulfate (SDS), in the pH range 3-7, and a conventional octadecylsilane column. Acetonitrile was used as the organic modifier in both modes. The quality of the correlations obtained for log P(app) at varying ionization degree confirms that this correction is required in the aqueous-organic mixtures. The correlation is less improved with SDS micellar media because the acid-base equilibriums are shifted towards higher pH values for acidic compounds. In micellar chromatography, an electrostatic interaction with charged solutes is added to hydrophobic forces; consequently, different correlations should be established for neutral and acidic compounds, and for basic compounds. Correlations between log k and the isocratic descriptors log k(w), log k(wm) (extrapolated retention to pure water in the aqueous-organic and micellar-organic systems, respectively), and psi0 (extrapolated mobile phase composition giving a k = 1 retention factor or twice the dead time), and between these descriptors and log P(app) were also satisfactory, although poorer than those between log k and log P(app) due to the extrapolation. The study shows that, in the particular case of the ionizable diuretics studied, classical RPLC gives better results than MLC with SDS in the retention hydrophobicity correlations.

  19. Kinetic model of phase separation in binary mixtures with hard mobile impurities.

    PubMed

    Ginzburg, V V; Peng, G; Qiu, F; Jasnow, D; Balazs, A C

    1999-10-01

    We develop a mean-field rate-equation model for the kinetics of phase separation in binary mixtures with hard mobile impurities. For impurities preferentially wet by one of the components, the phase separation is arrested in the late stage. The "steady-state" domain size depends strongly on both the particle diffusion constant and the particle concentration. We compare theoretical results with the simulation data and find good qualitative agreement.

  20. Mixture design optimization of extraction and mobile phase media for fingerprint analysis of Bauhinia variegata L.

    PubMed

    Delaroza, Fernanda; Scarminio, Ieda Spacino

    2008-04-01

    Two statistical mixture designs were used to optimize the proportions of solvents used in both the extraction medium and the reversed liquid chromatographic mobile phase to improve the quality of chromatographic fingerprints of Bauhinia variegata L extracts. For modeling, the number of peaks was used as a measure of fingerprint information. Three mobile phases, each with a chromatographic strength of two, gave good results. A methanol/water (77:23 v/v) mixture resulted in 17 peaks in the chromatographic fingerprint whereas acetonitrile/water (64.5:35.5 v/v) and methanol/acetonitrile/water (35:35:30 v/v/v) mixtures resulted in 18 and 20 peaks, respectively. The corresponding optimum solvent compositions to extract chemical substances for these three mobile phases were ethanol/acetone (25:75 v/v/v) and dichloromethane/acetone (70:30 v/v) mixtures, and pure dichloromethane, respectively. The mixture designs are useful for understanding the influence of different solvents on the strengths of the extraction medium and the mobile phase.

  1. 77 FR 15369 - Mobility Fund Phase I Auction GIS Data of Potentially Eligible Census Blocks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... information system (GIS) data for the census blocks potentially eligible for Mobility Fund Phase I support to...-released data files and interactive map. The Bureaus are taking this step to make the data accessible to.... 12-25 on the Commission's Electronic Comment Filing System (ECFS) Web page at...

  2. Investigation on enantiomeric separations of fluorenylmethoxycarbonyl amino acids and peptides by high-performance liquid chromatography using native cyclodextrins as chiral stationary phases.

    PubMed

    Tang, Y; Zukowski, J; Armstrong, D W

    1996-09-06

    A systematic study was carried out to investigate enantiomeric separations of fluorenylmethoxycarbonyl (FMOC) amino acids and their peptides. Twenty amino acids were derivatized by 9-fluorenylmethyl chloroformate (FMOC-Cl) and its analogues, FMOC-glycyl-Cl and FMOC-beta-alanyl-Cl. All derivatives were chromatographed on native beta- and gamma-cyclodextrin columns using acetonitrile as the main mobile phase component. The results indicated that glycyl and beta-alanyl groups between FMOC and amino acid moieties enhanced chiral selectivities of amino acid derivatives. The addition of modifiers, triethylamine, acetic acid and methanol, into the mobile phase caused alterations in retention, enantiorecognition and elution order. The structures of amino acids and the type of chiral stationary phase employed exhibited significant impacts on chiral resolutions. It is also found that the number and position of glycyl moieties affect the retentions and enantioselectivities of FMOC derivatized glycyl containing peptides.

  3. Anchoring the gas-phase acidity scale: From formic acid to methanethiol

    NASA Astrophysics Data System (ADS)

    Eyet, Nicole; Villano, Stephanie M.; Bierbaum, Veronica M.

    2009-06-01

    We have measured the gas-phase acidities of nine compounds: formic acid, acetic acid, 1,3-propanedithiol, 2-methyl-2-propanethiol, 3-methyl-1-butanethiol, 2-propanethiol, 1-propanethiol, ethanethiol, and methanethiol, with acidities ranging from 338.6 to 351.1 kcal mol-1 using proton transfer kinetics and the resulting equilibrium constants. These acids were anchored to the well-known acidity of hydrogen sulfide; the measured acidities are in good agreement with previous experimental values, but error bars are significantly reduced. The gas-phase acidity of 3-methyl-1-butanethiol was determined to be 347.1 (5) kcal mol-1; there were no previous measurements of this value. Entropies of deprotonation were calculated and enthalpies of deprotonation were determined.

  4. Frustrated smectic liquid crystalline phases in lactic acid derivatives

    NASA Astrophysics Data System (ADS)

    Glogarová, M.; Novotná, V.

    2016-08-01

    We have prepared and studied a series of compounds with different types of molecular core and lactate unit in the chiral terminal chain. We draw a survey and comparison of their mesomorphic properties with respect to the occurrence of twist grain boundary (TGB) phases. The materials exhibit extremely wide TGBA phase more than 60K broad, unique TGBA-TGBC-SmC*-SmCA* phase sequence and unique re-entrant TGBA phase below the SmA phase. TGB phases have been induced in binary mixtures of molecules with different molecular shape and chirality (chiral lactic acid derivative and non-chiral hockey-stick mesogen). Unique effect is observed for compounds with TGBA phase, where the applied electric field transforms the planar texture into the homeotropic one, homogeneously dark in crossed polarizers. The process is analogy of the Frederiks transition so far known only for nematics. This effect, changing the bright state to the dark one, is promising for applications.

  5. 78 FR 68839 - Tribal Mobility Fund Phase I Auction Rescheduled for February 25, 2014; Notice of Changes to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... COMMISSION Tribal Mobility Fund Phase I Auction Rescheduled for February 25, 2014; Notice of Changes to... single-round reverse auction that will award up to $50 million in one-time Tribal Mobility Fund Phase I... Rescheduling Public Notice, the Bureaus adopt schedule changes intended to give potential bidders...

  6. 77 FR 57085 - Mobility Fund Phase I Auction; Release of Files with Recalculated Road Miles for Auction 901...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... COMMISSION Mobility Fund Phase I Auction; Release of Files with Recalculated Road Miles for Auction 901; Mock... updated data files of census blocks eligible for the Mobility Fund Phase I support to be offered in Auction 901, which is to be held on September 27, 2012, and the change of the mock auction date...

  7. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    PubMed

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs.

  8. Guidance to Design Grain Boundary Mobility Experiments with Molecular Dynamics and Phase-Field Modeling

    SciTech Connect

    Michael R Tonks; Yongfeng Zhang; S.B. Biner; Paul C Millett; Xianming Bai

    2013-02-01

    Quantitative phase-field modeling can play an important role in designing experiments to measure the grain boundary (GB) mobility. In this work, molecular dynamics (MD) simulation is employed to determine the GB mobility using Cu bicrystals. Two grain configurations are considered: a shrinking circular grain and a half loop grain. The results obtained from the half loop configuration approaches asymptotically to that obtained from the circular configuration with increasing half loop width. We then verify the phase- field model by directly comparing to the MD simulation results, obtaining excellent agreement. Next, this phase-field model is used to predict the behavior in a common experimental setup that utilizes a half loop grain configuration in a bicrystal to measure the GB mobility. With a 3D simulation, we identify the two critical times within the experiments to reach an accurate value of the GB mobility. We use a series of 2D simulations to investigate the impact of the notch angle on these two critical times and we identify an angle of 60? as an optimal value. We also show that if the notch does not have a sharp tip, it may immobilize the GB migration indefinitely.

  9. Improved efficiency in micellar liquid chromatography using triethylamine and 1-butanol as mobile phase additives to reduce surfactant adsorption.

    PubMed

    Thomas, David P; Foley, Joe P

    2008-09-26

    The effect of triethylamine as a mobile phase modifier on chromatographic efficiency in micellar liquid chromatography (MLC) is reported for nine different columns with various bonded stationary phases and silica pore sizes, including large-pore short alkyl chain, non-porous, and perfluorinated. Reduced plate height (h) versus reduced velocity (nu) plots were constructed for each column and the A' and C' terms calculated using a simplified Van Deemter equation introduced in our previous work. To further explore the practicality of using triethylamine in the micellar mobile phase, the efficiency of nine polar and non-polar substituted benzenes was studied on seven columns. Surfactant adsorption isotherms were measured for five columns with three micellar mobile phases to understand the relationship between adsorbed surfactant, mobile phase additive, and column efficiency. Clear improvements in efficiency were observed with the addition of 2% (v/v) triethylamine to a 1-butanol modified aqueous micellar mobile phase. This finding is supported by the lower amount of surfactant adsorbed onto the stationary phase when TEA is present in the mobile phase compared to an SDS only or a 1-butanol modified SDS mobile phase.

  10. Acid tolerance response of Bordetella bronchiseptica in avirulent phase.

    PubMed

    Fingermann, M; Hozbor, D

    2015-12-01

    Bordetella bronchiseptica is a Gram-negative bacterium responsible for respiratory diseases in many mammalian hosts, including humans. This pathogen has been shown as able to persist inside the host cells, even in the phagosomes that are acidified to pH 4.5-5.0 after bacterial infection. Here we evaluated the resistance of B. bronchiseptica to survive under acidic conditions. In particular we analyzed the bacterial capacity to develop the mechanism known as acid tolerance response (ATR). Our studies were mainly focused on the avirulent phase of the bacteria since this phenotypic phase was reported to be more resistant to environmental stress conditions than the virulent phase. Results from B. bronchiseptica in virulent phase were also included for comparison purposes. In fact, for B. bronchiseptica 9.73 bacteria in virulent phase we observed that the viability of bacteria does not decrease significantly when grown at pH as low as 4.5, but it is affected when the pH of the medium was equal to or less than 4.0. After acid-adaptation at pH 5.5 for several hours, the survival rate of B. bronchiseptica 9.73 at lethal pH 4.0 for 6h was increased. Interestingly, the avirulent phase mediated by the two-component BvgAS system conferred further resistance to lethal acid challenge and a marked increase in the magnitude of the expressed ATR. The ATR for this avirulent phase seems to be associated with changes in LPS and surface protein profiles. 2D-gel electrophoresis revealed at least 25 polypeptides differentially expressed, 17 of which were only expressed or over-expressed under acid conditions. Using MALDI-TOF mass spectrometry, 10 of these differentially expressed polypeptides were identified.

  11. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    ERIC Educational Resources Information Center

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  12. Element mobility and partitioning along a soil acidity gradient in central Ontario forests, Canada.

    PubMed

    Watmough, Shaun A

    2008-10-01

    The potential environmental risk posed by metals in forest soils is typically evaluated by modeling metal mobility using soil-solution partitioning coefficients (K(d)), although such information is generally restricted to a few well-studied metals. Soil-solution partitioning coefficients were determined for 17 mineral elements (Al, As, Be, Ba, Ca, Cr, Cu, Fe, Ga, K, Li, Mg, Rb, Sr, Tl, U and V) in A-horizon (0-5 cm) soil at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pH(aq) varied from 3.9 to 8.1. Sites were dominated by mature sugar maple (Acer saccharum Marsh.), white birch (Betula papyrifera Marsh.), balsam fir (Abies balsamea (L.) Mill.) or white pine (Pinus strobus L.). Log K(d) values for all elements could be predicted by empirical linear regression with soil pH (r(2) = 0.17-0.77) independent of forest type, although this relationship was greatly affected by positive relationships between acid-extractable metal concentration and pH(aq) for 13 of the 17 elements. Elements that exhibited strong or moderate (r(2) > 0.29; p < 0.001) relationships with soil pH(aq) in soil water extracts include Al, Ba, Fe, Ga, K, Li, Rb, Tl, V (negative) and Ca (positive). Elemental partitioning in mineral soil was independent of forest type; tree species differed in their response to chemical differences in mineral soil. For example, Rb, Ba, and Sr concentrations in foliage of sugar maple and white birch significantly increased with increasing soil acidity, whereas Rb, Ba, and Sr concentrations in balsam fir and white pine foliage exhibited no response to soil pH(aq). While K(d) values can provide useful information on the potential mobility and bioavailability of mineral elements in forest soils, care must be used when interpreting the relative contribution of solid and aqueous phases to this relationship and the differing responses of vegetation in elemental cycling in forests must also be considered.

  13. Seven Conformers of Pipecolic Acid Identified in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Cabezas, Carlos; Simao, Alcides; Alonso, José L.

    2016-06-01

    The multiconformational landscape of the non-proteinogenic cyclic amino acid pipecolic acid has been explored in the gas phase. Solid pipecolic acid (m.p. 280°C) was vaporized by laser ablation (LA) and expanded in a supersonic jet where the rotational spectra of seven conformers were obtained by broadband microwave spectroscopy (CP-FTMW). All conformers were conclusively identified by comparison of the experimental spectroscopic constants with those predicted theoretically. The relative stability of the conformers rests on a delicate balance of the different intramolecular hydrogen bonds established between the carboxylic and the amino groups.

  14. Fundamental studies of gas phase ionic reactions by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Giles, K.; Knighton, W. B.; Sahlstrom, K. E.; Grimsrud, E. P.

    1995-01-01

    Ion mobility spectrometry (IMS) provides a promising approach to the study of gas phase ionic reactions in buffer gases at unusually high pressures. This point is illustrated here by studies of the Sn2 nucleophilic displacement reaction, Cl(-) + CH3Br yields Br + CH3Br, using IMS at atmospheric pressure. The equilibrium clustering reaction, Cl(-)(CHCI3)(n - 1) + CHCI3 yields Cl(-)(CHCI3)(n), where n = 1 and 2, and the effect of clustering on the Sn2 reaction with CH3Br have also been characterized by this IMS-based kinetic method. Present problems and anticipated improvements in the application of ion mobility spectrometry to studies of other gas phase ionic processes are discussed.

  15. Acidity-Facilitated Mobilization of Surface Clay Colloid from Natural Sand Medium

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wang, C.; Mohanty, B. P.

    2010-12-01

    Colloid mobilization and migration in a soil system has attracted increasing scrutiny for its role in facilitating colloid-borne transport of contaminants in the environments. In many previous studies, pH was evoked as a major factor in mobilizing surface colloids through inducing favorable surface charge and electrostatic conditions. The possible direct role of acidity with H+ as a chemical agent has remained largely obscured behind the indirect role of pH. In this study, we demonstrated through column flow-through tests that cyclical elution of natural sand media with weak acid and base solutions can greatly facilitate detachment and transport of surface clay colloids. We found that while elevating pH to an alkaline condition helped release the loosely-attached surface clays, a pretreatment with H+ could facilitate the mobilization of chemically-bonded clay colloids through lysing of labile Ca and Mg ions. A quantitative relation was observed that 1 mmol H+ could lyse about 0.5 mmol Ca2+ and Mg2+ and subsequently resulted in a release of about 1,200 mg clay during base elution when repulsive force between particles dominated. Natural organic acids such as citric acid and acetic acid in environment-relevant low concentrations (<1mM and pH>5.0) were as effective as HCl with a stronger acidic condition. The small mass ratio of Ca and Mg over colloid released and the nature of weak acid used suggest that the mobilization was less likely due to dissolution of cement casing than lysing of labile interstitial Ca and Mg by H+, which severed Ca and Mg bridging bonds between particles. Natural acidity is generated in abundance from various bio- and geochemical processes; e.g., many plants produce citric acid through citric acid cycle metabolism; biodegradation of dead organic matter forms humic acids. We postulate that natural proton dynamics in tendon with pH oscillation accompanied with various soil biogeochemical processes could play a major role in subsurface clay

  16. A Langevin dynamics study of mobile filler particles in phase-separating binary systems

    NASA Astrophysics Data System (ADS)

    Laradji, Mohamed

    2004-05-01

    The dynamics of phase separation in a simple binary mixture containing mobile filler particles that are preferentially wet by one of the two components is investigated systematically via Langevin simulations in two dimensions. We found that while the filler particles reduce the growth rate of spinodal decomposition, the domain growth remains essentially identical to that of the pure binary mixture. The growth rate diminishes as either the filler particles concentration is increased or their diffusivity is decreased.

  17. Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography.

    PubMed

    Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang

    2014-10-10

    CHIRALPAK ZWIX(+) and ZWIX(-) are cinchona alkaloid-derived zwitterionic chiral stationary phases (CSPs) containing a chiral sulfonic acid motif which serves as negatively charged interaction site. They are versatile for direct enantiomer resolution of amino acids and many other ampholytic compounds by HPLC. The synergistic double ion-pairing between the zwittrionic chiral selector and the ampholyte is the basis for interaction and chiral recognition mechanisms. ZWIX(+) and ZWIX(-) type CSPs or columns behave pseudo-enantiomerically and provide the feature of reversing enantiomer elution order by column switching. In the current study, extensive experimental work was carried out with the aim of developing schemes for an efficient generic screening and proposing straightforward approaches for method optimization on these ZWIX columns. Various chromatographic parameters were investigated using a large series of diverse amino acids and analogues for the purpose. The role of methanol (MeOH) as the protic solvent in the mobile phase is confirmed to be essential. The presence of water in a low percentage is beneficial for peak shape, resolution, analysis speed, sample solubility and MS detection performance. The involvement of acetonitrile (ACN) or tetrahydrofuran (THF) can help for adjusting retention time and selectivity. Incorporation of a suitable pair of acidic-basic additives at a right ratio in the mobile phase is determinant as well for the double ion-pairing mechanism. 50 mM formic acid+25 mM diethylamine (or ammonium hydroxide) in MeOH/ACN/H₂O and in MeOH/THF/H₂O at 49:49:2 (by volume) are recommended as the starting mobile phases for method development. Some other parameters are also considered in the proposed scheme to achieve successful enantioselective or stereoselective separation of the ampholytes.

  18. Substituent effects on the gas-phase acidity of silane

    SciTech Connect

    Gordon, M.S.; Volk, D.E. ); Gano, D.R. )

    1989-12-20

    In a previous paper, the gas-phase acidities of XH{sub n} compounds (X = C, N, O, F, Si, P, S, Cl) were predicted with ab initio wave functions. At the MP4{sup 2} level of theory with extended basis sets acidities for these species were determined to be within 2 kcal/mol of experimental value. In the present work, with 6-31G(d) geometries and full MP4/MC-311++G{sup 6}(3df,2pd) energies, the effects of CH{sub 3}, NH{sub 2}, OH, F, SiH{sub 3}, PH{sub 2}, SH, and Cl on the gas-phase acidity of silane are examined. Only a few related calculations have been carried out. All calculations were performed with Gaussian86, and all structures were verified as minima by diagonalizing the analytically determined hessians. Only the valence electrons were correlated in the perturbation theory calculations.

  19. The effect of acidic and basic additives on the enantioseparation of basic drugs using polysaccharide-based chiral stationary phases.

    PubMed

    Ye, Yun K; Stringham, Rodger W

    2006-08-01

    The enantioseparation of nine commercially available basic drugs was achieved on polysaccharide-based chiral stationary phases with the acidic additive ethanesulfonic acid and the basic additive butylamine. Seven different commercially available CSPs were used for the study (AD, AS, OD, OJ, OG, OB, and OC). Mobile phase additives have been proven to be essential in obtaining satisfactory enantio-resolution in terms of both efficiency and selectivity. Significantly improved selectivities were obtained for the basic probe drugs with the acidic additive, ethanesulfonic acid, rather than the basic additive, butylamine. This is best seen with Chiralpak AS CSP. No enantioseparation for the nine drugs was observed when butylamine was used as an additive; however, satisfactory enantioseparation for the nine drugs was achieved using ethanesulfonic acid. Higher column efficiencies were observed with the acidic additive, especially when isopropanol was used as a modifier. Higher sensitivity was also achieved with ethanesulfonic acid because of the significantly lower background at the UV detection wavelength. The acidic additive was demonstrated to be superior to the basic additive for the enantioseparation of basic drugs using seven different polysaccharide-based CSPs. These results are counterintuitive to the common "rule of thumb" in enantioseparation that states acidic additives work best for acidic analytes and basic additives work best for basic analytes. The beneficial effects of acidic additive in enantioseparations observed in this study could significantly improve the applicability of polysaccharide-based CSPs for the enantioseparation of basic analytes.

  20. Organic acids as indicators of VOC oxidation: Measurements of formic acid and other gas-phase acids during SOAS

    NASA Astrophysics Data System (ADS)

    Farmer, D.; Brophy, P.; Murschell, T.

    2013-12-01

    Oxidation of volatile organic compounds (VOCs) in the atmosphere affects not only the oxidative capacity of the atmosphere, but also the formation of secondary organic aerosol. Organic acids are produced during VOC oxidation, although additional sources include biomass burning and primary emissions. While some organic acids are semi-volatile and dominantly present in the aerosol phase, formic acid and other small organic acids are dominantly present in the gas phase. The concentrations of these gas-phase organic acids can provide insight into oxidation chemistry. Here, we present measurements made during the Southern Oxidant and Aerosol Study (SOAS) in Centerville, Alabama during the summer of 2013 by a high resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) operated in a novel switching reagent ion mode to measure gas phase organic acids with both acetate (CH3COO-) and iodide (I-) reagent ions. Formic acid was quantified using for both ionization schemes using multiple calibration techniques. In this study, we will focus on the impact of anthropogenic pollutants, including nitrogen and sulfur oxides, on oxidation chemistry, and discuss the potential use of organic acids as tracers for atmospheric oxidation chemistry.

  1. Reduced Triacylglycerol Mobilization during Seed Germination and Early Seedling Growth in Arabidopsis Containing Nutritionally Important Polyunsaturated Fatty Acids

    PubMed Central

    Shrestha, Pushkar; Callahan, Damien L.; Singh, Surinder P.; Petrie, James R.; Zhou, Xue-Rong

    2016-01-01

    There are now several examples of plant species engineered to synthesize and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG). The utilization of TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain elevated levels of the engineered polyunsaturated fatty acids (PUFA). LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilized engineered fatty acids were used in de novo membrane lipid synthesis during seedling development. PMID:27725822

  2. Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Kovalenko, Ekaterina; Vilaseca, Marta; Díaz-Lobo, Mireia; Masliy, A. N.; Vicent, Cristian; Fedin, Vladimir P.

    2016-02-01

    The complexation of the macrocyclic cavitand cucurbit[7]uril (Q7) with a series of amino acids (AA) with different side chains (Asp, Asn, Gln, Ser, Ala, Val, and Ile) is investigated by ESI-MS techniques. The 1:1 [Q7 + AA + 2H]2+ adducts are observed as the base peak when equimolar Q7:AA solutions are electrosprayed, whereas the 1:2 [Q7 + 2AA + 2H]2+ dications are dominant when an excess of the amino acid is used. A combination of ion mobility mass spectrometry (IM-MS) and DFT calculations of the 1:1 [Q7 + AA + 2H]2+ (AA = Tyr, Val, and Ser) adducts is also reported and proven to be unsuccessful at discriminating between exclusion or inclusion-type conformations in the gas phase. Collision induced dissociation (CID) revealed that the preferred dissociation pathways of the 1:1 [Q7 + AA + 2H]2+ dications are strongly influenced by the identity of the amino acid side chain, whereas ion molecule reactions towards N-butylmethylamine displayed a common reactivity pattern comprising AA displacement. Special emphasis is given on the differences between the gas-phase behavior of the supramolecular adducts with amino acids (AA = Asp, Asn, Gln, Ser, Ala, Val, and Ile) and those featuring basic (Lys and Arg) and aromatic (Tyr and Phe) side chains.

  3. The intrinsic (gas-phase) acidities of bridgehead alcohols

    NASA Astrophysics Data System (ADS)

    Herrero, Rebeca; Dávalos, Juan Z.; Abboud, José-Luis M.; Alkorta, I.; Koppel, I.; Koppel, I. A.; Sonoda, T.; Mishima, M.

    2007-11-01

    The gas-phase acidities of 1-adamantanol and perfluoro1-adamantanol were determined by means of Fourier transform ion cyclotron resonance spectrometry (FT-ICR). The acidity of perfluoro1-adamantanol seems to be the highest ever reported for an alcohol. A computational study of these species and their anions at both the MP2/6-311 + G(d,p) and B3LYP/6-311 + G(d,p) levels was performed. Also studied were the tertiary alcohols (including their perfluorinated forms) derived from norbornane, bicyclo[2.2E2]octane and cubane. It was found that: (i) the intrinsic acidity of non-fluorinated bridgehead alcohols increases with the strain of the hydrocarbon framework and, (ii) perfluorination of these compounds strongly increases their acidity and, likely, significantly modifies their internal strain.

  4. Selective mobilization of fatty acids in adipose tissue of heavy pigs.

    PubMed

    Bochicchio, D; Comellini, M; Lambertini, P; Marchetto, G; Della Casa, G

    2015-01-01

    The mobilization of fatty acids during food deprivation is a selective process studied in different species (humans, rodents, birds, viverrids). The aim of this work was to study the effect of fasting on selective mobilization in commercial pigs. A total of 16 barrows (Large White×Landrace (167 kg±12.5 kg live weight) were subdivided into two homogeneous groups, one subjected to 12 h and the other to 60 h of fasting (fasting time) before slaughtering. For each pig inner and outer backfat layer were sampled at slaughter and at ham trimming 24 h later (sampling time). Increasing the fasting time and the sampling time after slaughter caused an increase in the amount of free fatty acids in both layers. Therefore it can be argued that during fasting lipolysis is stimulated and remains active also after slaughtering. The factors that stimulate lipolysis determine a greater mobilization of unsaturated fatty acids than saturated ones. Thus fasting time may influence the suitability of pork for processing and conservation, since free fatty acids are more suitable for oxidation than the esterified ones.

  5. Determination of chloroacetic acids in drinking water using suppressed ion chromatography with solid-phase extraction.

    PubMed

    Yoshikawa, Kenji; Soda, Yuko; Sakuragawa, Akio

    2009-12-01

    Suppressed ion chromatography with a conductivity detector was developed for the determination of trace amounts of underivatized chloroacetic acids (CAAs). When sodium carbonate and methanol were used as a mobile phase, the simultaneous determination of each CAA took approximately 25 min. The linearity, reproducibility and detection limits were determined for the proposed method. For the solid-phase extraction step, the effects of the pH of the sample solution, sample volume and the eluting agent were tested. Under the optimized extracting conditions, the average recoveries for CAAs spiked in tap water were 83-107%, with an optimal preconcentration factor of 20. The reproducibility of recovery rate for CAAs was 1.2-3.8%, based upon 6 repetitions of the recovery experiments.

  6. [Separation of bases, phenols and pharmaceuticals on ionic liquid-modified silica stationary phase with pure water as mobile phase].

    PubMed

    Wang, Xusheng; Qiu, Hongdeng; Liu, Xia; Jiang, Shengxiang

    2011-03-01

    N-methylimidazolium ionic liquid (IL) -modified silica was prepared with the reaction of 3-chloropropyl modified silica and N-methylimidazole using toluene as solvent. Based on the multiple interactions between N-methylimidazolium IL-modified silica and analytes such as hydrophobic interaction, electrostatic attraction, repulsion interaction, hydrogen-bonding, etc., the bases (cytosine, thymine, 2-aminopyrimidine and 6-chloroguanine), phenols (m-aminophenol, resorcinol and m-nitrophenol) and three pharmaceuticals (moroxydine hydrochloride, acyclovir and cephalexin hydrate) were separated successfully with only pure water as the mobile phase. These chromatographic separations are environmental friendly, economical and convenient, without any organic solvent or buffer additive. The retention mechanism of these samples on the stationary phase was also investigated.

  7. Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility. ESTCP Cost and Performance Report

    DTIC Science & Technology

    2012-08-01

    Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and Contaminant Mobility August 2012 Report Documentation Page Form...DATES COVERED - 4. TITLE AND SUBTITLE Demonstration and Evaluation of Solid Phase Microextraction for the Assessment of Bioavailability and...polyoxymethylene PRC performance reference compounds SERDP Strategic Environmental Research and Development Program SPME solid phase microextraction

  8. Mobilization

    DTIC Science & Technology

    1987-01-01

    istic and romantic emotionalism that typifies this genre. Longino, James C., et al. “A Study of World War Procurement and Industrial Mobilization...States. Harrisburg, PA: Military Service Publishing Co., 1941. CARL 355.22 J72b. Written in rough prose , this World War II era document explains the

  9. Reversed-phase high-performance liquid chromatography of tenuazonic acid and related tetramic acids.

    PubMed

    Shephard, G S; Thiel, P G; Sydenham, E W; Vleggaar, R; Marasas, W F

    1991-05-03

    A reversed-phase high-performance liquid chromatographic system for the determination of the fungal toxin, tenuazonic acid, (5S,8S)-3-acetyl-5-sec.-butyltetramic acid, is described. The system utilizes a column packed with deactivated end-capped C18 silica with a high carbon load to overcome the problem of poor chromatographic performance of this beta-diketone on reversed-phase liquid chromatography which previously necessitated the use of anion-exchange, ligand-exchange or ion-pairing methods. The reversed-phase system allows the separation of tenuazonic acid from its (5R,8S)-diastereomer, allo-tenuazonic acid and was applied to the detection of tenuazonic acid in cultures of Alternaria alternata and Phoma sorghina. By means of diode-array ultraviolet detection, (5S)-3-acetyl-5-isopropyltetramic acid was observed in extracts of culture material. This metabolite was purified using the analytical reversed-phase system and was identified by 1H and 13C nuclear magnetic resonance spectroscopy.

  10. STTR Phase 1 Final Technical Report for Project Entitled "Developing a Mobile Torrefaction Machine"

    SciTech Connect

    James, Joseph J.

    2014-03-11

    The goal of this project, sponsored by Agri-Tech Producers, LLC (ATP), the small business grantee, was to determine if the torrefaction technology, developed by North Carolina State University (NCSU), which ATP has licensed, could be feasibly deployed in a mobile unit. The study adds to the area investigated, by having ATP’s STTR Phase I team give thoughtful consideration to how to use NCSU’s technology in a mobile unit. The findings by ATP’s team were that NCSU’s technology would best perform in units 30’ by 80’ (See Spec Sheet for the Torre-Tech 5.0 Unit in the Appendix) and the technical effectiveness and economic feasibility investigation suggested that such units were not easily, efficiently or safely utilized in a forest or farm setting. (Note rendering of possible mobile system in the Appendix) Therefore, the findings by ATP’s team were that NCSU’s technology could not feasibly be deployed as a mobile unit.

  11. Selective mobilization of saturated fatty acids in isolated adipocytes of hibernating 13-lined ground squirrels Ictidomys tridecemlineatus.

    PubMed

    Price, Edwin R; Armstrong, Christopher; Guglielmo, Christopher G; Staples, James F

    2013-01-01

    Fatty acids are not mobilized from adipocyte triacylglycerols uniformly but rather some are preferentially mobilized while others are preferentially retained. In many vertebrate species, the pattern of differential mobilization is determined by the physical and chemical properties of each fatty acid. Fatty acids with shorter chains and more double bonds tend to be more readily mobilized than others, a pattern observed both in whole-animal studies and in isolated adipocytes. Several hibernating species seem to break this pattern, however, and retain 18:2ω6 (linoleic acid) while mobilizing saturated fatty acids such as 18:0. We sought to confirm this pattern in adipocytes of a hibernator, the 13-lined ground squirrel Ictidomys tridecemlineatus, and to investigate mobilization patterns for the first time at hibernation temperature. We isolated adipocytes from summer active and winter torpid squirrels and incubated them with 1 μM norepinephrine at 4°C (7 h) and 37°C (90 min). We measured the proportion of each fatty acid in the adipose tissue and in the buffer at the end of incubation. Patterns of mobilization were similar in both seasons and incubation temperatures. Saturated fatty acids (18:0 and 16:0) were highly mobilized relative to the average, while some unsaturated fatty acids (notably, 18:1ω9 and 18:2ω6) were retained. We conclude that hibernators have unique mechanisms at the level of adipose tissue that preferentially mobilize saturated fatty acids. Additionally, we found that adipocytes from hibernating squirrels produced more glycerol than those from summer squirrels (regardless of temperature), indicating a higher lipolytic capacity in hibernating squirrels.

  12. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    PubMed

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase

  13. Circulating nucleic acids: a new class of physiological mobile genetic elements.

    PubMed

    Mittra, Indraneel

    2015-01-01

    Mobile genetic elements play a major role in shaping biotic genomes and bringing about evolutionary transformations. Herein, a new class of mobile genetic elements is proposed in the form of circulating nucleic acids (CNAs) derived from the billions of cells that die in the body every day due to normal physiology and that act intra-corporeally. A recent study shows that CNAs can freely enter into healthy cells, integrate into their genomes by a unique mechanism and cause damage to their DNA. Being ubiquitous and continuously arising, CNA-induced DNA damage may be the underlying cause of ageing, ageing-related disabilities and the ultimate demise of the organism. Thus, DNA seems to act in the paradoxical roles of both preserver and destroyer of life. This new class of mobile genetic element may be relevant not only to multi-cellular organisms with established circulatory systems, but also to other multi-cellular organisms in which intra-corporeal mobility of nucleic acids may be mediated via the medium of extra-cellular fluid.

  14. Circulating nucleic acids: a new class of physiological mobile genetic elements

    PubMed Central

    Mittra, Indraneel

    2015-01-01

    Mobile genetic elements play a major role in shaping biotic genomes and bringing about evolutionary transformations. Herein, a new class of mobile genetic elements is proposed in the form of circulating nucleic acids (CNAs) derived from the billions of cells that die in the body every day due to normal physiology and that act intra-corporeally. A recent study shows that CNAs can freely enter into healthy cells, integrate into their genomes by a unique mechanism and cause damage to their DNA. Being ubiquitous and continuously arising, CNA-induced DNA damage may be the underlying cause of ageing, ageing-related disabilities and the ultimate demise of the organism. Thus, DNA seems to act in the paradoxical roles of both preserver and destroyer of life. This new class of mobile genetic element may be relevant not only to multi-cellular organisms with established circulatory systems, but also to other multi-cellular organisms in which intra-corporeal mobility of nucleic acids may be mediated via the medium of extra-cellular fluid. PMID:26664710

  15. Uniform fatty acid mobilization from anatomically distinct fat depots in the sable (Martes zibellina).

    PubMed

    Nieminen, Petteri; Mustonen, Anne-Mari

    2007-07-01

    The mobilization of fatty acids (FA) is a selective process in humans, rodents and the few previously studied carnivores. The FA composition of and mobilization from different fat depots reflect the functions of adipose tissues, e.g. in energy storage or insulation. Sixteen farm-raised sables (Martes zibellina), a terrestrial mustelid, were assigned into a fed control group or fasted for 4 days. The FA composition of the sable was relatively similar to other previously studied mustelids. The masses of the different fat depots decreased by 28-55% during fasting. The subcutaneous (sc) and intraabdominal (iab) fats had a uniform FA composition and the sable could mobilize both sc and iab FA. 18:3n-3, 18:4n-3 and 16:1n-7 were effectively mobilized, while long-chain saturated (SFA) and monounsaturated FA (MUFA) increased in proportion. Relative mobilization (RM) correlated inversely with the FA chain length and Delta9-desaturation increased RM of several MUFA compared to SFA. The results reinforce the hypothesis that the terrestrial sable can utilize sc and iab fat depots as energy reserves during nutritional scarcity. The natural history of the species is an important determinant of the FA composition and RM between anatomically different fat depots.

  16. Thermal desorption solid-phase microextraction inlet for differential mobility spectrometry.

    PubMed

    Rainsberg, Matthew R; de Harrington, Peter B

    2005-06-01

    A splitless thermal desorber unit that interfaces a differential mobility spectrometry (DMS) sensor has been devised. This device was characterized by the detection of benzene, toluene, and xylene (BTX) in water. The detection of BTX in water is important for environmental monitoring, and ion mobility measurements are traditionally difficult for hydrocarbons in water because water competes for charge and quenches the hydrocarbon signals. This paper reports the use of a DMS with a photoionization source that is directly coupled to a solid-phase microextraction (SPME) desorber. The separation and detection capabilities of the DMS were demonstrated using BTX components. Detection limits for benzene, toluene, and m-xylene were 75, 50, and 5 microg mL(-1), respectively.

  17. Chiral anion exchangers applied to capillary electrochromatography enantioseparation of oppositely charged chiral analytes: investigation of stationary and mobile phase parameters.

    PubMed

    Lämmerhofer, M; Tobler, E; Lindner, W

    2000-07-28

    Weak anion-exchange (WAX) type chiral stationary phases (CSPs) based on tert.-butyl carbamoyl quinine as chiral selector (SO) and different types of silica particles (porous and non-porous) as chromatographic support are evaluated in packed capillary electrochromatography (CEC). Their ability to resolve the enantiomers of negatively charged chiral analytes, e.g., N-derivatized amino acids, in the anion-exchange mode and their electrochromatographic characteristics are described in dependence of several mobile phase parameters (pH, buffer type and concentration, organic modifier type and concentration) and other experimental variables (electric field strength, capillary temperature). The inherent "zwitterionic" surface character of such silica-based WAX type CSPs (positively charged SO and negatively charged residual silanols) allows the reversal of the electroosmotic flow (EOF) towards the anode at pH values below the isoelectric point (pI) of the modified surface, whereas a cathodic EOF results at pH values above the pI. Since for negatively charged analytes also an electrophoretic transport increment has to be considered, which can be either in or against the EOF direction, several distinct modes of elution have been observed under different stationary phase and mobile phase conditions: (i) co-electrophoretic elution of the negatively charged solutes with the anodic EOF in the negative polarity mode, (ii) counter-electrophoretic elution with the cathodic EOF in the positive polarity mode, and (iii) electrophoretically dominated elution in the negative polarity mode with a cathodic EOF directed to the injection end of the capillary. Useful enantioseparations of chiral acids have been obtained with all three modes. Enantioselectivity values as high as under pressure-driven conditions and theoretical plate numbers up to 120000 per meter could be achieved under electrically driven conditions. A repeatability study yielded RSD values below 2% for retention times and

  18. Use of vancomycin silica stationary phase in packed capillary electrochromatography: III. enantiomeric separation of basic compounds with the polar organic mobile phase.

    PubMed

    Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna

    2002-02-01

    The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.

  19. Purification method development for chiral separation in supercritical fluid chromatography with the solubilities in supercritical fluid chromatographic mobile phases.

    PubMed

    Gahm, Kyung H; Tan, Helming; Liu, Jodi; Barnhart, Wesley; Eschelbach, John; Notari, Steve; Thomas, Samuel; Semin, David; Cheetham, Janet

    2008-04-14

    A comprehensive approach was applied to develop a chiral purification method for an analyte that was found to be unusually difficult to scale-up in supercritical fluid chromatography (SFC). This was performed by studying major factors such as the solubility of an analyte in SFC mobile phases, impurity profiles, and cycle time. For this case study, the solubility in SFC mobile phase was measured by a packed column technique, coupled with a novel trapping mechanism to enhance measurement precision in SFC conditions. The solubility studies in SFC mobile phases suggested a couple of possible SFC mobile phases, in which the analyte would potentially be most soluble. The SFC methods were developed to purify a sample containing 15% of an impurity, after considering impurity profiles and cycle times of several potential methods in addition to SFC mobile phase solubility. An equal volume mixture of acetonitrile and ethanol was chosen for the final purification method, since this mixture demonstrated the relatively high SFC solubility among all solvent combinations with enhanced resolution between the analyte and the impurity as well as the shortest run time. The solubility of the compound was also determined in various organic solvents using a high throughput solubility screening system to better understand relative change of solubility from neat solution to SFC mobile phases.

  20. Phase behavior and bilayer properties of fatty acids: hydrated 1:1 acid-soaps.

    PubMed

    Cistola, D P; Atkinson, D; Hamilton, J A; Small, D M

    1986-05-20

    The physical properties in water of a series of 1:1 acid-soap compounds formed from fatty acids and potassium soaps with saturated (10-18 carbons) and omega-9 monounsaturated (18 carbons) hydrocarbon chains have been studied by using differential scanning calorimetry (DSC), X-ray diffraction, and direct and polarized light microscopy. DSC showed three phase transitions corresponding to the melting of crystalline water, the melting of crystalline lipid hydrocarbon chains, and the decomposition of the 1:1 acid-soap compound into its parent fatty acid and soap. Low- and wide-angle X-ray diffraction patterns revealed spacings that corresponded (with increasing hydration) to acid-soap crystals, hexagonal type II liquid crystals, and lamellar liquid crystals. The lamellar phase swelled from bilayer repeat distances of 68 (at 45% H2O) to 303 A (at 90% H2O). Direct and polarized light micrographs demonstrated the formation of myelin figures as well as birefringent optical textures corresponding to hexagonal and lamellar mesophases. Assuming that 1:1 potassium hydrogen dioleate and water were two components, we constructed a temperature-composition phase diagram. Interpretation of the data using the Gibbs phase rule showed that, at greater than 30% water, hydrocarbon chain melting was accompanied by decomposition of the 1:1 acid-soap compound and the system changed from a two-component to a three-component system. Comparison of hydrated 1:1 fatty acid/soap systems with hydrated soap systems suggests that the reduced degree of charge repulsion between polar groups causes half-ionized fatty acids in excess water to form bilayers rather than micelles.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Simultaneous determination of gibberellic acid, indole-3-acetic acid and abscisic acid in wheat extracts by solid-phase extraction and liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Hou, Shengjie; Zhu, Jiang; Ding, Mingyu; Lv, Guohua

    2008-08-15

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous determination of three representative phytohormones in plant samples: gibberellic acid (GA(3)), indole-3-acetic acid (IAA) and abscisic acid (ABA). A solid-phase extraction (SPE) pretreatment method was used to concentrate and purify the three phytohormones of different groups from plant samples. The separation was carried out on a C(18) reversed-phase column, using methanol/water containing 0.2% formic acid (50:50, v/v) as the isocratic mobile phase at the flow-rate of 1.0 mL min(-1), and the three phytohormones were eluted within 7 min. A linear ion trap mass spectrometer equipped with electrospray ionization source was operated in negative ion mode. Selective reaction monitoring (SRM) was employed for quantitative measurement. The SRM transitions monitored were as 345-->239, 301 for GA(3), 174-->130 for IAA and 263-->153, 219 for ABA. Good linearities were found within the ranges of 5-200 microg mL(-1) for IAA and 0.005-10 microg mL(-1) for ABA and GA(3). Their detection limits based on a signal-to-noise ratio of three were 0.005 microg mL(-1), 2.2 microg mL(-1) and 0.003 microg mL(-1) for GA(3), IAA and ABA, respectively. Good recoveries from 95.5% to 102.4% for the three phytohormones were obtained. The results demonstrated that the SPE-LC-MS/MS method developed is highly effective for analyzing trace amounts of the three phytohormones in plant samples.

  2. Mobility of Ions in the Nematic Phase of 4-n-Octyl-4‧-cyanobiphenyl (8CB)

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi; Naemura, Shohei

    2002-02-01

    The relationship between the mobility of ions and viscosity is discussed for the nematic phase of 4-n-octyl-4‧-cyanobiphenyl (8CB). The Miesowicz viscosity coefficient η2 exhibits a divergence at the nematic-smectic phase transition; nevertheless, normal behavior of the temperature dependence is observed for the mobility of ions. Although the Walden rule is not valid for the entire temperature range in the nematic phase, it is presumed that there is no significant difference in the ionic radius between the nematic and isotropic phases.

  3. Gas-phase acid-base properties of melamine and cyanuric acid.

    PubMed

    Mukherjee, Sumit; Ren, Jianhua

    2010-10-01

    The thermochemical properties of melamine and cyanuric acid were characterized using mass spectrometry measurements along with computational studies. A triple-quadrupole mass spectrometer was employed with the application of the extended Cooks kinetic method. The proton affinity (PA), gas-phase basicity (GB), and protonation entropy (Δ(p)S) of melamine were determined to be 226.2 ± 2.0 kcal/mol, 218.4 ± 2.0 kcal/mol, and 26.2 ± 2.0 cal/mol K, respectively. The deprotonation enthalpy (Δ(acid)H), gas-phase acidity (Δ(acid)G), and deprotonation entropy (Δ(acid)S) of cyanuric acid were determined to be 330.7 ± 2.0 kcal/mol, 322.9 ± 2.0 kcal/mol, and 26.1 ± 2.0 cal/mol K, respectively. The geometries and energetics of melamine, cyanuric acid, and related ionic species were calculated at the B3LYP/6-31+G(d) level of theory. The computationally predicted proton affinity of melamine (225.9 kcal/mol) and gas-phase deprotonation enthalpy of cyanuric acid (328.4 kcal/mol) agree well with the experimental results. Melamine is best represented as the imide-like triazine-triamine form and the triazine nitrogen is more basic than the amino group nitrogen. Cyanuric acid is best represented as the keto-like tautomer and the N-H group is the most probable proton donor.

  4. Electromembrane-surrounded solid-phase microextraction coupled to ion mobility spectrometry for the determination of nonsteroidal anti-inflammatory drugs: A rapid screening method in complicated matrices.

    PubMed

    Abedi, Hamid; Ebrahimzadeh, Homeira

    2015-05-01

    A new robust method of electromembrane-surrounded solid-phase microextraction coupled to ion mobility mass spectrometry was applied for nonsteroidal anti-inflammatory drugs determination in complex matrices. This is the first time that a graphene/polyaniline composite coating is applied in electromembrane-surrounded solid-phase microextraction method. The homemade graphene/polyaniline composite is characterized by a high electrical conductivity and thermal stability. The variables affecting electromembrane-surrounded solid-phase microextraction, including extraction time; applied voltage and pH were optimized through chemometric methods, central composite design, and response surface methodology. Under the optimized conditions, limits of detection of 0.04 and 0.05 ng/mL were obtained for mefenamic acid and ibuprofen, respectively. The feasibility of electromembrane-surrounded solid-phase microextraction followed by ion mobility mass spectrometry was successfully confirmed by the extraction and determination of low levels of ibuprofen and mefenamic acid in human urine and plasma samples and satisfactory results were obtained.

  5. Mobile terminal equipment design utilising split-loop phase-lock techniques

    NASA Technical Reports Server (NTRS)

    Kenington, P. B.; Mcgeehan, J. P.; Edwards, D. J.

    1990-01-01

    The design and resultant performance of the terminal equipment in a mobile satellite system is vitally important in respect to the overall cost/performance compromise of the whole system. Improvements in system performance which also result in a reduction of the equipment cost are rare. However, this paper details a significant advance in terminal design, utilizing a novel form of 'split-loop' phase locked receiver/downconverter system to enable an accurate, stable and wide coverage terminal to be realized at a reduced cost. The system has the capability of automatically locking onto any carrier within a complete transponder, and can cope with severe amplitude modulation and fading effects.

  6. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.

    PubMed

    D'Archivio, Angelo Antonio; Ruggieri, Fabrizio; Mazzeo, Pietro; Tettamanti, Enzo

    2007-06-19

    A quantitative structure-retention relationship (QSRR) analysis based on multilinear regression (MLR) and artificial neural networks (ANNs) is carried out to model the combined effect of solute structure and eluent composition on the retention behaviour of pesticides in isocratic reversed-phase high-performance liquid chromatography (RP-HPLC). The octanol-water partition coefficient and four quantum chemical descriptors (the total dipole moment, the mean polarizability, the anisotropy of the polarizability and a descriptor of hydrogen-bonding based on the atomic charges on acidic and basic chemical functionalities) are considered as solute descriptors. In order to identify suitable mobile phase descriptors, encoding composition-dependent properties of both methanol- and acetonitrile-containing mobile phases, the Kamlet-Taft solvatochromic parameters (polarity-dipolarity, hydrogen-bond acidity and hydrogen-bond basicity, pi*, alpha and beta, respectively) and the 14N hyperfine-splitting constant (aN) of a spin-probe dissolved in the eluent are examined. A satisfactory description of mobile phase properties influencing the solute retention is provided by aN and beta or alternatively pi* and beta. The two seven-parameter models resulting from combination of aN and beta, or pi* and beta, with the solute descriptors were tested on a set of 26 pesticides representative of 10 different chemical classes in a wide range of mobile phase composition (30-60% (v/v) water-methanol and 30-70% (v/v) water-acetonitrile). Within the explored experimental range, the acidity of the eluent, as quantified by alpha, is almost constant, and this parameter is in fact irrelevant. The results reveal that aN and pi*, that can be considered as interchangeable mobile phase descriptors, are the most influent variables in the respective models. The predictive ability of the proposed models, as tested on an external data set, is quite good (Q2 close to 0.94) when a MLR approach is used, but the

  7. A method to attenuate U(VI) mobility in acidic waste plumes using humic acids

    SciTech Connect

    Wan, J.; Dong, W.; Tokunaga, T.K.

    2011-02-01

    Acidic uranium (U) contaminated plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in-situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in-situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/y) show that desorption of U and HA were non-detectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH < 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results demonstrated that HA-treatment is a promising in-situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost effective, nontoxic, and easily introducible to the subsurface.

  8. Separation of peptides from myoglobin enzymatic digests by RPLC. Influence of the mobile-phase composition and the pressure on the retention and separation

    SciTech Connect

    Marchetti, Nicola; Guiochon, Georges A

    2005-06-01

    The influence of the mobile-phase composition and the pressure on the chromatographic separation of the peptides from the enzymatic digest of myoglobin was studied under linear conditions. The retention behavior of these tryptic peptides was measured under isocratic conditions with different mobile-phase compositions, ranging from 9 to 28% (v/v) acetonitrile in 0.1% (v/v) aqueous trifluoroacetic acid. The effect of the pressure was studied by analyzing the separation of the tryptic peptides under different average column pressures between 14 and 220 bar, at 13, 20, and 26% (v/v) acetonitrile. The differences between the partial molar volumes of these peptides in the stationary and mobile phases were derived from these results. All the measurements were performed on a 10-cm-long C{sub 18}-bonded, end-capped monolithic column. The results obtained illustrate the highly complicated behavior of the complex peptide mixtures afforded by tryptic digestion. The capacity factors of the analyzed peptides do not depend linearly on the acetonitrile concentration but follow exactly a quadratic relationship. The adsorption changes of partial molar volumes are in good agreement with other literature data. The consequences of the influence of the average column pressure (hence of the flow rate) on the column phase ratio and on the retention factors of the peptides are discussed. The retention pattern of the complex mixture is affected by both the mobile-phase composition and the pressure, and the resolution of certain peptide pairs is so much affected by the pressure that inversions in the elution order of some pairs are observed.

  9. Trying to detect gas-phase ions? Understanding Ion Mobility Spectrometry

    PubMed Central

    Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.

    2014-01-01

    Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, especially mass spectrometry as identification approach and multi-capillary column as pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data is treated, and the influences of the experimental parameters in both a conventional drift time IMS (DTIMS) and a miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The current review article is preceded by a companion review article which details the current instrumentation and to the sections that configures both a conventional DTIMS and FAIMS devices. Those reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465248

  10. Gas-Phase Fragmentation Analysis of Nitro-Fatty Acids

    PubMed Central

    Bonacci, Gustavo; Asciutto, Eliana K.; Woodcock, Steven R.; Salvatore, Sonia R.; Freeman, Bruce A.; Schopfer, Francisco J.

    2012-01-01

    Nitro-fatty acids are electrophilic signaling mediators formed in increased amounts during inflammation by nitric oxide and nitrite-dependent redox reactions. A more rigorous characterization of endogenously-generated species requires additional understanding of their gas-phase induced fragmentation. Thus, collision induced dissociation (CID) of nitroalkane and nitroalkene groups in fatty acids were studied in the negative ion mode to provide mass spectrometric tools for their structural characterization. Fragmentation of nitroalkanes occurred mainly through loss of the NO2− anion or neutral loss of HNO2. The CID of nitroalkenes proceeds via a more complex cyclization, followed by fragmentation to nitrile and aldehyde products. Gas-phase fragmentation of nitroalkene functional groups with additional γ or δ unsaturation occurred through a multiple step cyclization reaction process, leading to 5 and 6 member ring heterocyclic products and carbon chain fragmentation. Cyclization products were not obtained during nitroalkane fragmentation, highlighting the role of double bond π electrons during NO2− rearrangements, stabilization and heterocycle formation. The proposed structures, mechanisms and products of fragmentation are supported by analysis of 13C and 15N labeled parent molecules, 6 different nitroalkene positional isomers, 6 nitroalkane positional isomers, accurate mass determinations at high resolution and quantum mechanics calculations. Multiple key diagnostic ion fragments were obtained through this analysis, allowing for the precise placement of double bonds and sites of fatty acid nitration, thus supporting an ability to predict nitro positions in biological samples. PMID:21953257

  11. Use of micellar mobile phases for the chromatographic determination of melamine in dietetic supplements.

    PubMed

    Beltrán-Martinavarro, Beatriz; Peris-Vicente, Juan; Marco-Peiró, Sergio; Esteve-Romero, Josep; Rambla-Alegre, Maria; Carda-Broch, Samuel

    2012-01-07

    Melamine is a nitrogen-rich industrial chemical which is occasionally used to increase the apparent protein content of different products destined for human and animal consumption. In this work, a liquid chromatographic procedure that uses micellar mobile phases of sodium dodecyl sulfate (SDS) buffered at pH 3, a C18 column and UV detection is reported for the determination of melamine in dietetic supplements. Samples were reconstituted with a SDS solution and were directly injected, thus avoiding long extraction and experimental procedures. Melamine was eluted in less than 10 min with no interference by other compounds of the matrices. The optimum mobile phase composition was taken by a chemometrical approach that considers the retention factor, efficiency and peak shape. Validation was performed following the indications of the European Commission (Decision 2002/657/EC). The following parameters were considered: linearity (0.02-100 μg mL(-1); R(2) = 0.9996), intra- and inter-day precisions (<12.4%), accuracy (90.0-101.3%), and robustness (less than 9.8% and 5.1%, for retention time and peak area, respectively). The limits of detection and quantification were 9 and 20 ng mL(-1), respectively. Recoveries for several spiked samples were in the 85.8-114.3% range. These results indicate that the proposed methodology is useful for routine analysis of control quality of infant formula and adult dietetic supplements.

  12. Early-phase adaptations to intrahospital training in strength and functional mobility of children with leukemia.

    PubMed

    San Juan, Alejandro F; Fleck, Steven J; Chamorro-Viña, Carolina; Maté-Muñoz, José L; Moral, Susana; García-Castro, Javier; Ramírez, Manuel; Madero, Luis; Lucia, Alejandro

    2007-02-01

    Improvements in chemotherapy and radiotherapy have contributed to the high survival rate (approximately 70%) of childhood acute lymphoblastic leukemia (ALL). However, during treatment, lack of physical activity and treatment cause various short- to long-term side effects, such as muscle atrophy and physical deconditioning. The purpose of this study was to determine the effects of an intrahospital, short-duration (8 weeks) exercise training program on muscle strength and endurance and functional mobility of children with ALL. Seven children (4 boys and 3 girls; 4-7 years of age) who were in the maintenance phase of treatment for ALL were selected as subjects. Three training sessions of 90- to 120-minute duration were performed each week. Each session included 11 different strength exercises engaging the major muscle groups and aerobic training. Gains in strength and endurance were assessed with a 6 repetition maximum test for upper (seated bench press and seated lateral row) and lower extremities (leg press). Gains in functional mobility were assessed with the time up and go test (TUG) and the timed up and down stairs test (TUDS). Performance was significantly improved after the training program in all strength tests (p < 0.01 for seated bench press and p < 0.05 for both seated lateral row and seated leg press) and in the TUG test (p < 0.05). In summary, a period of time as short as 8 weeks is enough to produce clinically relevant early-phase adaptations in children receiving treatment against ALL (i.e., improved functional mobility and muscle strength). Although more research is needed in the area of exercise training and pediatric cancer, exercise sciences can play a beneficial role in assisting both oncologists in treating cancer and improving children's quality of life during and after treatment.

  13. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia; Qin, Junhao

    2017-03-01

    A batch experiment was conducted to examine the combined effects of three common low-molecular-weight organic acids (LMWOAs) on the mobilization of arsenic and lead in different types of multi-contaminated soils. The capacity of individual LMWOAs (at a same molar concentration) to mobilize soil-borne As and Pb varied significantly. The combination of the organic acids did not make a marked "additive" effect on the mobilization of the investigated three elements. An "antagonistic" effect on element mobilization was clear in the treatments involving oxalic acid for some soils. The acid strength of a LMWOA did not play an important role in controlling the mobilization of elements. While the mobilization of As and Pb was closely associated with the dissolution of soil-borne Fe, soil properties such as original soil pH, organic matter contents and the total amount of the element relative to the total Fe markedly complicated the mobility of that element. Aging led to continual consumption of proton introduced from addition of LMWOAs and consequently caused dramatic changes in solution-borne Fe, which in turn resulted in change in As and Pb in the soil solution though different elements behaved differently.

  14. Gas and liquid phase acidity of natural antioxidants.

    PubMed

    Leopoldini, Monica; Russo, Nino; Toscano, Marirosa

    2006-04-19

    The gas phase and in solution absolute and relative acidities of nine natural systems contained in red and white wines were determined through theoretical B3LYP/6-311++G** calculations. The aim was to correlate these thermodynamic quantities to the ability that some of these compounds show in chelating metals ions to carry out an antioxidant action following a mechanism recently reported in the literature. Results indicated that both absolute and relative values are affected by molecular features such as electronic delocalization and conjugation and intramolecular hydrogen bonds. Polyphenols characterized by the ortho-dihydroxy functionality were found to be good candidates to act as metal cation chelating ligands. Some differences in absolute acidities values were encountered in going from vacuum to water solution.

  15. Hydrolysis of ionized deoxycholic acid in the aqueous phase and rate analysis for transfer of neutralized deoxycholic acid into the benzene phase across the benzene/water interface.

    PubMed

    Ohno, Ryo; Nakamura, Shohei; Moroi, Yoshikiyo; Isoda-Yamashita, Teruyo

    2008-11-13

    Sodium deoxycholate in water dissociates into sodium cation and deoxycholate anion in the aqueous phase, and then, the latter anions partially hydrolyze to form deionized deoxycholic acids. The acids move into the benzene phase, when liquid benzene is placed upon the aqueous phase, and finally the partition equilibrium is reached. The above processes were traced by pH change in the aqueous phase by a pH meter or the change in [OH-] with time, from which the rate for transfer of neutralized acid to the organic phase was analyzed. From the trace, the rate constants for hydrolysis of acid anion ( kf), neutralization of acid ( kb), transfer of neutralized acid from the aqueous phase to the organic phase ( kin*), and its back-transfer from the organic phase to the aqueous phase ( kut*) were evaluated; kf = 2.18 x 10 (-4) mol (-1) dm (3) min (-1), kb = 1.24 x 10 (5) mol (-1) dm (3) min (-1), kin* = 4.06 x 10 (-1) min (-1) cm (-2), and kout*) = 8.00 x 10 (-2) min (-1) cm (-2). The above values are supported by the partition constant of deoxycholic acid between the benzene phase and the aqueous phase.

  16. Standard systems for measurement of pKs and ionic mobilities. 1. Univalent weak acids.

    PubMed

    Slampová, Andrea; Krivánková, Ludmila; Gebauer, Petr; Bocek, Petr

    2008-12-05

    Determination of pK values of weak bases and acids by CZE has already attracted big attention in current practice and proved to offer the advantage of being applicable for mixtures of analytes. The method is based on the measurement of mobility curves plotting the effective mobility vs. the pH of the background electrolyte, and following computer-assisted regression involving corrections for ionic strength and temperature. To cover the necessary range of pH for a given case, both buffering weak acids and bases are used in one set of measurements, which requires implementing computations of individual ionic strength corrections for each pH value. It is also well known that some components of frequently used background electrolytes may interact with the analytes measured, on forming associates or complexes. This obviously deteriorates the reliability of the resulting data. This contribution brings a rational approach to this problem and establishes a standard system of anionic buffers for measurements of pKs and mobilities of weak acids, where the only counter cation present (besides H(+)) is Na(+). In this way, the risk of formation of complexes or associates of analytes with counter ions is strongly reduced. Moreover, the standard system of anionic buffers is selected in such a way that it provides, for an entire set of measurements, constant and accurately known ionic strength and the operational conditions are selected so that they provide constant Joule heating. Due to these precautions only one correction for ionic strength and temperature is needed for the obtained set of experimental data. This considerably facilitates their evaluation and regression analysis as the corrections need not be implemented in the computation software. The reliability and the advantages of the proposed system are well documented by experiments, where the known problematic group of phenol derivatives was measured with high accuracy and without any notice of anomalous behaviour.

  17. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    USGS Publications Warehouse

    Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B.

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased from 45 to 145 nm g-1. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r2 = 0.68, P < 0.027) suggests that foliar stress may be linked to soil chemistry.

  18. Predicting retention in reverse-phase liquid chromatography at different mobile phase compositions and temperatures by using the solvation parameter model.

    PubMed

    Gotta, Javier; Keunchkarian, Sonia; Castells, Cecilia; Reta, Mario

    2012-10-01

    The prediction capability of the solvation parameter model in reverse-phase liquid chromatography at different methanol-water mobile phase compositions and temperatures was investigated. By using a carefully selected set of solutes, the training set, linear relationships were established through regression equations between the logarithm of the solute retention factor, logk, and different solute parameters. The coefficients obtained in the regressions were used to create a general retention model able to predict retention in an octadecylsilica stationary phase at any temperature and methanol-water composition. The validity of the model was evaluated by using a different set (the test set) of 30 solutes of very diverse chemical nature. Predictions of logk values were obtained at two different combinations of temperature and mobile phase composition by using two different procedures: (i) by calculating the coefficients through a mathematical linear relationship in which the mobile phase composition and temperature are involved; (ii) by using a general equation, obtained by considering the previous results, in which only the experimental values of temperature and mobile phase composition are required. Predicted logk values were critically compared with the experimental values. Excellent results were obtained considering the diversity of the test set.

  19. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  20. Computational study of atomic mobility for the bcc phase of the U-Pu-Zr ternary system

    NASA Astrophysics Data System (ADS)

    Li, Weibang; Hu, Rui; Cui, Y.-W.; Zhong, Hong; Chang, Hui; Li, Jinshan; Zhou, Lian

    2010-12-01

    Experimental diffusion data in literature has been evaluated to assess the atomic mobility for the bcc phase in the U-Pu-Zr system by means of the DICTRA-type (Diffusion Controlled TRAnsformation) phenomenological treatment. The developed mobility database has been validated by comprehensive comparisons made between the experimental and calculated diffusion coefficients, as well as other interesting details resulting from interdiffusion, e.g. the concentration profile and the diffusion path of diffusion couples.

  1. Solution and gas-phase acidities of all-trans (all-E) retinoic acid: an experimental and computational study.

    PubMed

    Abboud, José-Luis M; Koppel, Ilmar A; Uggerud, Einar; Leito, Ivo; Koppel, Ivar; Sekiguchi, Osamu; Kaupmees, Karl; Saame, Jaan; Kütt, Karl; Mishima, Masaaki

    2015-07-27

    Retinoic acid is of fundamental biological importance. Its acidity was determined in the gas phase and in acetonitrile solution by means of mass spectrometry and UV/Vis spectrophotometry, respectively. The intrinsic acidity is slightly higher than that of benzoic acid. In solution, the situation is opposite. The experimental systems were described theoretically applying quantum chemical methods (wave function theory and density functional theory). This allowed the determination of the molecular structure of the acid and its conjugate base, both in vacuo and in solution, and for computational estimates of its acidity in both phases.

  2. Selective fatty acid mobilization from adipose tissues of the pheasant (Phasianus colchicus mongolicus) during food deprivation.

    PubMed

    Mustonen, Anne-Mari; Käkelä, Reijo; Asikainen, Juha; Nieminen, Petteri

    2009-01-01

    Avian response to fasting has been examined intensively in penguins (Aptenodytes spp.) adapted to long-term food deprivation but less in species experiencing shorter fasts. Thus, the selectivity in (i) incorporating different fatty acids (FA) from diet into total lipids of white adipose tissue (WAT) and liver and (ii) mobilizing FA from these tissues was examined in pheasants Phasianus colchicus mongolicus fed or fasted for 4 d. Dietary FA were selectively incorporated into intra-abdominal and subcutaneous WAT having a similar composition. The WAT lipids contained higher proportions of saturated and monounsaturated FA and less polyunsaturated FA (PUFA) than the dietary profile. However, the isomers of 20:1 and 22:1 were incorporated inefficiently into the WAT lipids. The essential C18 PUFA precursors having smaller percentages in the pheasant tissues than in the diet were likely converted into longer-chain derivatives probably utilized to a great extent for structural lipids of muscles and organs. During food deprivation, the pheasants preferentially utilized 16:1n-7, 18:3n-3, 18:1n-9, and 16:0 but preserved long-chain saturated and unsaturated FA. Mobilization was more efficient for shorter-chain FA and increased with Delta9-desaturation. The hepatic FA profile was resistant to the 4-d period of food deprivation. The results demonstrate that the incorporation of FA into WAT and their mobilization from lipid stores are selective not only in mammals but also in birds.

  3. Statistical mixture design optimization of extraction media and mobile phase compositions for the characterization of green tea.

    PubMed

    Alves de Almeida, Aline; Scarminio, Ieda Spacino

    2007-02-01

    The influence of different solvents on the extraction medium and the RP-HPLC mobile phase composition were investigated by statistical mixture designs to optimize solvent proportions to prepare the fingerprint of a medicinal herbal extract. For modeling, the number of peaks was used as a measure of fingerprint information. The optimum compositions of solvent to extract chemical substances from green tea and for mobile phase chromatographic analysis were ethyl acetate/ ethanol/dichloromethane (20:5:75 v/v/v) and MeOH/ACN/water (7.5:57.5:35 v/v/v), respectively. This system results in 26 peaks in the chromatographic fingerprint. These results show that an incorrect choice of modifiers for mobile phase composition and solvent extraction hampers the detection of a maximum number of peaks and produces a poor chromatographic fingerprint.

  4. Explosive ordnance detection in land and water environments with solid phase extraction/ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Chambers, William B.; Phelan, James M.; Rodacy, Philip J.; Reber, Steven; Woodfin, Ronald L.

    1999-08-01

    The qualitative and quantitative determination of nitroaromatic compounds such as trinitrotoluene (TNT) and dinitrotoluene (DNT) in water and soil has applications to environmental remediation and the detection of buried military ordnance. Recent results of laboratory and field test have shown that trace level concentrations of these compounds can be detected in water, soil, and solid gas samples taken from the vicinity of submerged or buried ordnance using specialized sampling and signal enhancement techniques. Solid phase micro-extraction methods have been combined with Ion Mobility Spectroscopy to provide rapid, sub-parts-per-billion analysis of these compounds. In this paper, we will describe the gas. These sampling systems, when combined with field-portable IMS, are being developed as a means of classifying buried or submerged objects as explosive ordnance.

  5. Analysis of histidine and urocanic acid isomers by reversed-phase high-performance liquid chromatography.

    PubMed

    Hermann, K; Abeck, D

    2001-01-05

    The qualitative separation performance of a C18, C8 and C4 reversed-phase column was investigated for the separation of histidine and its metabolites histamine, 1-methyihistamine and trans- and cis-urocanic acid. Trans- and cis-urocanic acid were baseline separated from their precursor histidine on all three columns using isocratic elution with a mobile phase composed of 0.01 M aqueous TEAP pH 3.0 and acetonitrile at a ratio of 98:2 (v/v). However, histidine was not separated from histamine and 1-methyihistamine. Selecting the C8 column and introducing 0.005 M of the ion pairing reagent 1-octanesulfonic acid sodium salt into the aqueous solution and acetonitrile at a ratio of 90:10 (v/v), significantly improved the separation. The separation was also followed by a change in the retention times and the order of elution. The sequence of elution was histidine, cis-urocanic acid, trans-urocanic acid, histamine and 1-methylhistamine with retention times of 5.58 +/- 0.07, 7.03 +/- 0.15, 7.92 +/- 0.18, 18.77 +/- 0.24 and 20.79 +/- 0.21 min (mean +/- SD; n=5). The separation on the C8 column in the presence of the ion-pairing reagent was further improved with gradient elution that resulted in a reduction in the retention times and elution volumes of histamine and 1-methylhistamine. The detection limits of histidine and trans-urocanic acid at a wavelength of 210 nm and an injection volume of 0.05 ml were 5 x 10(-8) mol l(-1) (n=3). The kinetic of the in-vitro conversion of trans- into the cis-isomer after UV irradiation was depending on the time of exposure and the energy of the light source. UVB light induced a significantly faster conversion than UVA light. TUCA and cUCA samples kept at -25 degrees C were stable for up to 50 weeks. Samples, eluted from human skin showed various concentrations of histidine and trans- and cis-urocanic acid with an average of 1.69 +/- 0.33 x 10(-5) mol l(-1), 1.17 +/- 0.43 x 10(-5) mol l(-1) and 1.67 +/- 0.33 x 10(-5) mol l(-1), respectively

  6. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    SciTech Connect

    Shortle, W.C.; Smith, K.T.; Minocha, R.

    1997-05-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential and Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased form 45 to 145 nm g{sup {minus}1}. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r{sup 2} = 0.68, P <0.027) suggests that foliar stress may be linked to soil chemistry. 32 refs., 2 figs., 1 tab.

  7. Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany

    NASA Astrophysics Data System (ADS)

    Huang, J.-H.; Matzner, E.

    2006-04-01

    Wetland soils play a key role for the transformation of heavy metals in forested watersheds, influencing their mobility, and ecotoxicity. Our goal was to investigate the mechanisms of release from solid to solution phase, the mobility, and the transformation of arsenic species in a fen soil. In methanol-water extracts, monomethylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, and two unknown organic arsenic species were found with concentrations up to 14 ng As g -1 at the surface horizon. Arsenate is the dominant species at the 0-30 cm depth, whereas arsenite predominated at the 30-70 cm depth. Only up to 2.2% of total arsenic in fen was extractable with methanol-water. In porewaters, depth gradient spatial variation of arsenic species, pH, redox potentials, and the other chemical parameters along the profile was observed in June together with high proportion of organic arsenic species (up to 1.2 μg As L -1, 70% of total arsenic). Tetramethylarsonium ion and an unknown organic arsenic species were additionally detected in porewaters at deeper horizons. In comparison, the arsenic speciation in porewaters in April was homogeneous with depth and no organic arsenic species were found. Thus, the occurrence of microbial methylation of arsenic in fen was demonstrated for the first time. The 10 times elevated total arsenic concentrations in porewaters in June compared to April were accompanied by elevated concentrations of total iron, lower concentrations of sulfate and the presence of ammonium and phosphate. The low proportion of methanol-water extractable total arsenic suggests a generally low mobility of arsenic in fen soils. The release of arsenic from solid to solution phases in fen is dominantly controlled by dissolution of iron oxides, redox transformation, and methylation of arsenic, driven by microbial activity in the growing season. As a result, increased concentrations of total arsenic and potentially toxic arsenic species in fen

  8. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Moliner, Ana; Masaguer, Alberto

    2013-01-01

    A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO(3) and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal-organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5-10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg(-1) in the control to 42 mg kg(-1) with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg(-1)) and the Fe and Mn oxides (from 443 to 277 mg kg(-1)) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques.

  9. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  10. High-performance liquid chromatography study of the enantiomer separation of chrysanthemic acid and its analogous compounds on a terguride-based stationary phase.

    PubMed

    Dondi, M; Flieger, M; Olsovska, J; Polcaro, C M; Sinibaldi, M

    1999-10-29

    The direct enantioseparation of chrysanthemic acid [2,2-dimethyl-3-(2-methylpropenyl)-cyclopropanecarboxylic acid] and its halogen-substituted analogues was systematically studied by HPLC using a terguride-based chiral stationary phase in combination with a UV diode array and chiroptical detectors. Isomers with (1R) configuration always eluted before those with (IS) configuration. The elution sequence of cis- and trans-isomers was strongly affected by mobile phase pH, whereas the enantioselectivity remained the same. Conditions for the separation of all the enantiomers were also examined. This method was used for monitor the hydrolytic degradation products of Cyfluthrin (Baythroid) in soil under laboratory conditions.

  11. Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia

    We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.

  12. Simultaneous flame ionization and absorbance detection of volatile and nonvolatile compounds by reversed-phase liquid chromatography with a water mobile phase.

    PubMed

    Bruckner, C A; Ecker, S T; Synovec, R E

    1997-09-01

    A flame ionization detector (FID) is used to detect volatile organic compounds that have been separated by water-only reversed-phase liquid chromatography (WRP-LC). The mobile phase is 100% water at room temperature, without use of organic solvent modifiers. An interface between the LC and detector is presented, whereby a helium stream samples the vapor of volatile components from individual drops of the LC eluent, and the vapor-enriched gas stream is sent to the FID. The design of the drop headspace cell is simple because the water-only nature of the LC separation obviates the need to do any organic solvent removal prior to gas phase detection. Despite the absence of organic modifier, hydrophobic compounds can be separated in a reasonable time due to the low phase volume ratio of the WRP-LC columns. The drop headspace interface easily handles LC flows of 1 mL/min, and, in fact, compound detection limits are improved at faster liquid flow rates. The transfer efficiency of the headspace interface was estimated at 10% for toluene in water at 1 mL/min but varies depending on the volatility of each analyte. The detection system is linear over more than 5 orders of 1-butanol concentration in water and is able to detect sub-ppb amounts of o-xylene and other aromatic compounds in water. In order to analyze volatile and nonvolatile analytes simultaneously, the FID is coupled in series to a WRP-LC system with UV absorbance detection. WRP-LC improves UV absorbance detection limits because the absence of organic modifier allows the detector to be operated in the short-wavelength UV region, where analytes generally have significantly larger molar absorptivities. The selectivity the headspace interface provides for flame ionization detection of volatiles is demonstrated with a separation of 1-butanol, 1,1,2-trichloroethane (TCE), and chlorobenzene in a mixture of benzoic acid in water. Despite coelution of butanol and TCE with the benzoate anion, the nonvolatile benzoate anion

  13. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  14. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  15. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  16. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  17. Brønsted Acid Catalysis-Structural Preferences and Mobility in Imine/Phosphoric Acid Complexes.

    PubMed

    Greindl, Julian; Hioe, Johnny; Sorgenfrei, Nils; Morana, Fabio; Gschwind, Ruth M

    2016-12-14

    Despite the huge success of enantioselective Brønsted acid catalysis, experimental data about structures and activation modes of substrate/catalyst complexes in solution are very rare. Here, for the first time, detailed insights into the structures of imine/Brønsted acid catalyst complexes are presented on the basis of NMR data and underpinned by theoretical calculations. The chiral Brønsted acid catalyst R-TRIP (3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate) was investigated together with six aromatic imines. For each investigated system, an E-imine/R-TRIP complex and a Z-imine/R-TRIP complex were observed. Each of these complexes consists of two structures, which are in fast exchange on the NMR time scale; i.e., overall four structures were found. Both identified E-imine/R-TRIP structures feature a strong hydrogen bond but differ in the orientation of the imine relative to the catalyst. The exchange occurs by tilting the imine inside the complex and thereby switching the oxygen that constitutes the hydrogen bond. A similar situation is observed for all investigated Z-imine/R-TRIP complexes. Here, an additional exchange pathway is opened via rotation of the imine. For all investigated imine/R-TRIP complexes, the four core structures are highly preserved. Thus, these core structures are independent of electron density and substituent modulations of the aromatic imines. Overall, this study reveals that the absolute structural space of binary imine/TRIP complexes is large and the variations of the four core structures are small. The high mobility is supposed to promote reactivity, while the preservation of the core structures in conjunction with extensive π-π and CH-π interactions leads to high enantioselectivities and tolerance of different substrates.

  18. Brønsted Acid Catalysis—Structural Preferences and Mobility in Imine/Phosphoric Acid Complexes

    PubMed Central

    2016-01-01

    Despite the huge success of enantioselective Brønsted acid catalysis, experimental data about structures and activation modes of substrate/catalyst complexes in solution are very rare. Here, for the first time, detailed insights into the structures of imine/Brønsted acid catalyst complexes are presented on the basis of NMR data and underpinned by theoretical calculations. The chiral Brønsted acid catalyst R-TRIP (3,3′-bis(2,4,6-triisopropylphenyl)-1,1′-binaphthyl-2,2′-diyl hydrogen phosphate) was investigated together with six aromatic imines. For each investigated system, an E-imine/R-TRIP complex and a Z-imine/R-TRIP complex were observed. Each of these complexes consists of two structures, which are in fast exchange on the NMR time scale; i.e., overall four structures were found. Both identified E-imine/R-TRIP structures feature a strong hydrogen bond but differ in the orientation of the imine relative to the catalyst. The exchange occurs by tilting the imine inside the complex and thereby switching the oxygen that constitutes the hydrogen bond. A similar situation is observed for all investigated Z-imine/R-TRIP complexes. Here, an additional exchange pathway is opened via rotation of the imine. For all investigated imine/R-TRIP complexes, the four core structures are highly preserved. Thus, these core structures are independent of electron density and substituent modulations of the aromatic imines. Overall, this study reveals that the absolute structural space of binary imine/TRIP complexes is large and the variations of the four core structures are small. The high mobility is supposed to promote reactivity, while the preservation of the core structures in conjunction with extensive π–π and CH−π interactions leads to high enantioselectivities and tolerance of different substrates. PMID:27960345

  19. Understanding gas phase modifier interactions in rapid analysis by Differential Mobility-Tandem Mass Spectrometry

    PubMed Central

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-01-01

    A systematic study involving the use and optimization of gas phase modifiers in quantitative differential mobility- mass spectrometry (DMS-MS) analysis is presented using mucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab-initio thermochemical results we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry in mobility differences, but at lower temperatures multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects. PMID:24452298

  20. Phase diagram of a system of adipic, glutaric, and sebacic acids

    NASA Astrophysics Data System (ADS)

    Kolyado, A. V.; Alenova, S. M.; Garkushin, I. K.

    2016-06-01

    Adipic acid-glutaric acid, glutaric acid-sebacic acid, and adipic acid-sebacic acid binary systems are studied, along with an adipic acid-glutaric acid-sebacic acid ternary system. It is shown all of these systems are eutectic. Phase equilibria for the diagram elements of the binary systems and the ternary system are described. It is concluded that the above low-melting compounds can be recommended for use as working bodies in heat accumulators, and for preparing electrolytes used in the thin-layer anodic oxidation of aluminum alloys.

  1. Enantiomeric 3-chloromandelic acid system: binary melting point phase diagram, ternary solubility phase diagrams and polymorphism.

    PubMed

    Le Minh, Tam; von Langermann, Jan; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2010-09-01

    A systematic study of binary melting point and ternary solubility phase diagrams of the enantiomeric 3-chloromandelic acid (3-ClMA) system was performed under consideration of polymorphism. The melting point phase diagram was measured by means of thermal analysis, that is, using heat-flux differential scanning calorimetry (DSC). The results reveal that 3-ClMA belongs to the racemic compound-forming systems. Polymorphism was found for both the enantiomer and the racemate as confirmed by X-ray powder diffraction analysis. The ternary solubility phase diagram of 3-ClMA in water was determined between 5 and 50 degrees C by the classical isothermal technique. The solubilities of the pure enantiomers are extremely temperature-dependent. The solid-liquid equilibria of racemic 3-ClMA are not trivial due to the existence of polymorphism. The eutectic composition in the chiral system changes as a function of temperature. Further, solubility data in the alternative solvent toluene are also presented.

  2. Packed-column capillary electrochromatography and capillary electrochromatography-mass spectrometry using a lithocholic acid stationary phase

    PubMed Central

    Norton, Dean; Shamsi, Shahab A.

    2009-01-01

    The preparation and characterization of a novel lithocholic acid (LCA)-based liquid crystalline (LC) stationary phase (SP) suitable for application in packed-column CEC and CEC coupled to MS is described. The extent of bonding reactions of LCA-SP was assessed using 1H-NMR, 13C-NMR and elemental analysis. This characterization is followed by application of the LCA-SP for separation of β-blockers, phenylethylamines (PEAs), polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Using the optimum mobile phase operating conditions (pH 3.0-4.5, 10 mM ammonium acetate, 85% v/v ACN), a comparison of the chromatographic ability of the aminopropyl silica phase vs. the LCA-bonded phase was conducted. The results showed improved selectivity for all test analytes using the latter phase. For example, the CEC-MS of β-blockers demonstrated that the LCA-bonded phase provides separation of six out of seven β-blockers, whereas the amino silica phase provides four peaks of several co-eluting β-blockers. For the CEC-MS analysis of PEAs, the LCA-bonded phase showed improved resolution and different selectivity as compared to the aminopropyl phase. An evaluation of the retention trends for PEAs on both phases suggested that the PEAs were retained based on varying degree of hydroxyl substitution on the aromatic ring. In addition, the MS characterization shows several PEAs fragment in the electrospray either by loss of an alkyl group and/or by loss of H2O. Finally, the LCA-bonded phase displayed significantly higher separation selectivity for PAHs and PCBs as compared to the amino silica phase. PMID:18425746

  3. Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein.

    PubMed

    Shaikh, Afshan S; Tang, Yinjie J; Mukhopadhyay, Aindrila; Martín, Héctor García; Gin, Jennifer; Benke, Peter I; Keasling, Jay D

    2010-01-01

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully (13)C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  4. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  5. Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990

    EIA Publications

    1994-01-01

    The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

  6. Synthesis of sulfonamide- and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH.

    PubMed

    Li, Xiaobao; Pennington, Justin; Stobaugh, John F; Schöneich, Christian

    2008-01-15

    Two new types of boronate affinity solid phases were synthesized and characterized. The materials were prepared by silylation of porous silica gel with monochlorosilane derivatives containing synthetic sulfonyl- and sulfonamide-substituted phenylboronic acids. The new solid phases were evaluated for boronate affinity chromatography with aryl and alkyl cis-diol compounds and were found to be suitable for the retention of cis-diols under acidic conditions. Significant correlations between the retention factor (K) and the pH of the mobile phase demonstrate that the binding of cis-diols to the solid phases is best rationalized by chelation. Based on the lower pKa, caused by the electron-withdrawing effects of the sulfonyl and sulfonamide groups, these media display an enhanced affinity for cis-diols as compared with unsubstituted phenylboronic acid. Using isocratic elution, a mixture of various biologically relevant l-tyrosines, l-DOPA, and several catecholamines were resolved with a mobile phase composed of 0.05M phosphate buffer (pH 5.5). Mono-, di-, and triphosphates of adenosine were also separated at pH 6.0. Hence, the new boronate solid phase offers efficient affinity separation and purification of cis-diol-containing molecules under rather mild pH conditions.

  7. Uniformly sized molecularly imprinted polymers for bisphenol A and beta-estradiol: retention and molecular recognition properties in hydro-organic mobile phases.

    PubMed

    Sanbe, Haruyo; Haginaka, Jun

    2003-01-15

    Uniformly sized molecularly imprinted polymers (MIPs) for bisphenol A (BPA) have been prepared using ethylene glycol dimethacrylate (EDMA) as a cross-linker and methacrylic acid, 2-diethylaminoethyl methacrylate or 4-vinylpyridine (4-VPY) as a functional monomer or without use of a functional monomer. The MIPs obtained for BPA were evaluated using a mixture of phosphate buffer (or water) and acetonitrile or only acetonitrile as the mobile phase. Among the MIPs prepared, that using 4-VPY showed the highest retentivity and selectivity for BPA. The highest selectivity factor, which is defined as the ratio of the retention factors (k) on the molecularly imprinted and non-imprinted polymers, k(imprinted)/k(non-imprinted), was 9.4 for BPA on the BPA-imprinted 4-VPY-co-EDMA polymers, while that for beta-estradiol on the beta-estradiol-imprinted 4-VPY-co-EDMA polymers was 2.4. The differences in the selectivity factors between BPA and beta-estradiol on the respective MIPs could be ascribable to differences in the number of interaction sites. It is plausible that the phenol groups of BPA could interact with two pyridyl groups of the MIP by hydrogen bonding interactions, while there is only one such site for beta-estradiol. Furthermore, the results suggest that hydrophobic and hydrogen bonding interactions can play an important role in the retention and recognition of BPA and beta-estradiol in the hydro-organic mobile phase, while hydrogen bonding interactions seem to be useful for the retention and recognition when acetonitrile is used as the mobile phase.

  8. Phases in development of an interactive mobile phone-based system to support self-management of hypertension

    PubMed Central

    Hallberg, Inger; Taft, Charles; Ranerup, Agneta; Bengtsson, Ulrika; Hoffmann, Mikael; Höfer, Stefan; Kasperowski, Dick; Mäkitalo, Åsa; Lundin, Mona; Ring, Lena; Rosenqvist, Ulf; Kjellgren, Karin

    2014-01-01

    Hypertension is a significant risk factor for heart disease and stroke worldwide. Effective treatment regimens exist; however, treatment adherence rates are poor (30%–50%). Improving self-management may be a way to increase adherence to treatment. The purpose of this paper is to describe the phases in the development and preliminary evaluation of an interactive mobile phone-based system aimed at supporting patients in self-managing their hypertension. A person-centered and participatory framework emphasizing patient involvement was used. An interdisciplinary group of researchers, patients with hypertension, and health care professionals who were specialized in hypertension care designed and developed a set of questions and motivational messages for use in an interactive mobile phone-based system. Guided by the US Food and Drug Administration framework for the development of patient-reported outcome measures, the development and evaluation process comprised three major development phases (1, defining; 2, adjusting; 3, confirming the conceptual framework and delivery system) and two evaluation and refinement phases (4, collecting, analyzing, interpreting data; 5, evaluating the self-management system in clinical practice). Evaluation of new mobile health systems in a structured manner is important to understand how various factors affect the development process from both a technical and human perspective. Forthcoming analyses will evaluate the effectiveness and utility of the mobile phone-based system in supporting the self-management of hypertension. PMID:24910510

  9. Phases in development of an interactive mobile phone-based system to support self-management of hypertension.

    PubMed

    Hallberg, Inger; Taft, Charles; Ranerup, Agneta; Bengtsson, Ulrika; Hoffmann, Mikael; Höfer, Stefan; Kasperowski, Dick; Mäkitalo, Asa; Lundin, Mona; Ring, Lena; Rosenqvist, Ulf; Kjellgren, Karin

    2014-01-01

    Hypertension is a significant risk factor for heart disease and stroke worldwide. Effective treatment regimens exist; however, treatment adherence rates are poor (30%-50%). Improving self-management may be a way to increase adherence to treatment. The purpose of this paper is to describe the phases in the development and preliminary evaluation of an interactive mobile phone-based system aimed at supporting patients in self-managing their hypertension. A person-centered and participatory framework emphasizing patient involvement was used. An interdisciplinary group of researchers, patients with hypertension, and health care professionals who were specialized in hypertension care designed and developed a set of questions and motivational messages for use in an interactive mobile phone-based system. Guided by the US Food and Drug Administration framework for the development of patient-reported outcome measures, the development and evaluation process comprised three major development phases (1, defining; 2, adjusting; 3, confirming the conceptual framework and delivery system) and two evaluation and refinement phases (4, collecting, analyzing, interpreting data; 5, evaluating the self-management system in clinical practice). Evaluation of new mobile health systems in a structured manner is important to understand how various factors affect the development process from both a technical and human perspective. Forthcoming analyses will evaluate the effectiveness and utility of the mobile phone-based system in supporting the self-management of hypertension.

  10. Evaluation of mobile phase gradient supercritical fluid chromatography for impurity profiling of pharmaceutical compounds.

    PubMed

    Alexander, A J; Hooker, T F; Tomasella, F P

    2012-11-01

    The use of gradient supercritical fluid chromatography (SFC) for the impurity profiling of pharmaceutical products is not widely practiced. Historically, the limited advancement in SFC instrumentation and the lag in column development have resulted in marginal sensitivity, selectivity and reproducibility when compared with high performance liquid chromatography (HPLC). Using a recently developed commercial module, which allows an ordinary HPLC to be converted to a SFC system, a significant improvement in sensitivity (up to ~12-fold) has been obtained over previous studies. This has allowed for the first time a "real-world" head-to-head comparison of SFC to HPLC for impurity profiling of pharmaceutical products in a regulated environment. Retention time reproducibility and low level impurity detection were found to be comparable to reversed phase liquid chromatography (RPLC), that is, single digit %relative standard deviations (RSDs) were obtained for impurities present at less than 0.1 area%. Furthermore, these results were obtained with drug loading levels (≤2 mg/mL) that are not only comparable to those employed with HPLC, but are dictated by the limited solubility of many drug candidates. The elution of impurities was generally found to be orthogonal to that obtained with RPLC, but it was still challenging to find SFC conditions that would separate all of the components in the mixtures studied. In terms of enhancing selectivity, small amounts of mobile phase additives (0.1-1%) and temperature optimization were found to have a greater impact in SFC method development versus RPLC. However, unlike gradient RPLC, the relative changes in baseline noise and slope were found to be a complex function of the experimental conditions, with the largest differences in noise levels being generally observed for the widest and steepest gradients. It is likely that this gradient related noise is more apparent now because other sources of noise in SFC have been reduced

  11. Collection of ethanolamines in air and determination by mobile phase ion chromatography

    SciTech Connect

    Bouyoucos, S.A.; Melcher, R.G.

    1986-03-01

    A method is described for the collection and determination of monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) in air. Samples were collected by pulling air through a glass tube containing alumina, cleaned especially to remove interfering inorganic ions. The ethanolamines were desorbed with water and determined by Mobile Phase Ion Chromatography (MPIC). The recovery and total relative precision for MEA, DEA, and TEA - all collected from air at a flow rate of 100 mL/min for 7 hr - was 93.1 +/- 17%, 92.7 +/- 15% and 89.4 +/- 21%, respectively (95% confidence level). The method was validated for all three compounds from approximately the limit of detection (3 x noise) to ten times the limit of detection. Based on a sample size of 42 L, MEA was validated over the range from 0.12 to 3.0 ppm v/v (TLV=3), DEA over the range from 0.25 to 3.3 ppm v/v (TLV=3) and TEA from 0.31 to 3.7 ppm v/v (no TLV assigned). No effect on recovery was observed when sampling at high humidity or on storage of the samples for up to 31 days.

  12. Development of optimized mobile phases for protein separation by high performance thin layer chromatography.

    PubMed

    Biller, Julia; Morschheuser, Lena; Riedner, Maria; Rohn, Sascha

    2015-10-09

    In recent years, protein chemistry tends inexorably toward the analysis of more complex proteins, proteoforms, and posttranslational protein modifications. Although mass spectrometry developed quite fast correspondingly, sample preparation and separation of these analytes is still a major issue and quite challenging. For many years, electrophoresis seemed to be the method of choice; nonetheless its variance is limited to parameters such as size and charge. When taking a look at traditional (thin-layer) chromatography, further parameters such as polarity and different mobile and stationary phases can be utilized. Further, possibilities of detection are manifold compared to electrophoresis. Similarly, two-dimensional separation can be also performed with thin-layer chromatography (TLC). As the revival of TLC developed enormously in the last decade, it seems to be also an alternative to use high performance thin-layer chromatography (HPTLC) for the separation of proteins. The aim of this study was to establish an HPTLC separation system that allows a separation of protein mixtures over a broad polarity range, or if necessary allowing to modify the separation with only few steps to improve the separation for a specific scope. Several layers and solvent systems have been evaluated to reach a fully utilized and optimized separation system.

  13. Use of trifluoroacetic acid to quantify small, polar compounds in rat plasma during discovery-phase pharmacokinetic evaluation.

    PubMed

    Bock, M J; Neilson, K L; Dudley, A

    2007-09-01

    Although it is accepted that trifluoroacetic acid (TFA) can cause suppression of an analyte during LC/MS analysis, this paper presents a relatively sensitive gradient method that uses a TFA mobile phase for the improved quantification of small, polar drug-like compounds. The described method was developed in a discovery drug metabolism and pharmacokinetics (DMPK) laboratory for the screening measurement of compound concentrations to calculate PK parameters and CNS exposure of compounds from a chemical series that had poor chromatography under generic methods using formic acid mobile phase. The samples were collected by a Culex automated sampling unit, and the plasma proteins were precipitated by a Tecan robot in 96-well plates. After centrifugation, the supernatant was removed, dried down using a SPE-Dry unit, and the samples were reconstituted in aqueous buffer on the robot. The samples were analyzed on an Agilent LC/MSD using a 5-min gradient on a 5 cm phenyl column. No additional steps, such as the "TFA-fix", were necessary. Although sample batches were analyzed over 6h, no drift or degradation of signal was observed. The improved chromatography resulted in a method that was selective, rugged, and had a dynamic range from 5 to 20,000 nM, which was sufficient to quantitate low volume, serial plasma samples collected out to 8 h postdose.

  14. The Role of a Double Molecular Anchor on the Mobility and Self-Assembly of Thiols on Au(111): The Case of Mercaptobenzoic Acid.

    PubMed

    Rodríguez González, Miriam C; Carro, Pilar; Pensa, Evangelina; Vericat, Carolina; Salvarezza, Roberto; Hernández Creus, Alberto

    2017-01-09

    The dynamics of the self-assembly process of thiol molecules on Au(111) is affected by the interplay between molecule-substrate and molecule-molecule interactions. Therefore, it is interesting to explore the effect of a second anchor to the gold surface, in addition to the S atom, on both the order and the feasibility of phase transitions in self-assembled monolayers. To assess the role of an additional O anchor, we have compared the adsorption of two mercaptobenzoic acid isomers, 2-mercaptobenzoic acid (2-MBA) and 4-mercaptobenzoic acid (4-MBA), on Au(111). Results from scanning tunneling microscopy, X-ray photoelectron spectroscopy, electrochemical techniques, and density functional theory calculations show that the additional O anchor in 2-MBA hinders surface mobility, reducing domain size and impeding the molecular reorganization involved in phase transition to denser phases on the Au(111) substrates. This knowledge can help to predict the range order and molecular density of the thiol SAM depending on the chemical structure of the adsorbate.

  15. Analysis of carbon functional groups in mobile humic acid and recalcitrant calcium humate extracted from eight US soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid state 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to study the structure of soil humic fractions; however, knowledge regarding carbon structural relationships in humic fractions is limited. In this study, mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fr...

  16. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    PubMed

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  17. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  18. Influence of acid-induced conformational variability on protein separation in reversed phase high performance liquid chromatography.

    PubMed

    Bobály, Balázs; Tóth, Eszter; Drahos, László; Zsila, Ferenc; Visy, Júlia; Fekete, Jenő; Vékey, Károly

    2014-01-17

    Influence of acid concentration in the mobile phase on protein separation was studied in a wide concentration range using trifluoroacetic acid (TFA) and formic acid (FA). At low, 0.001-0.01 (v/v%) TFA concentration and appropriate solvent strength proteins elute before the column's dead time. This is explained by the proteins having a structured, but relatively extended conformation in the eluent; and are excluded from the pores of the stationary phase. Above ca. 0.01-0.05 (v/v%) TFA concentration proteins undergo further conformational change, leading to a compact, molten globule-like structure, likely stabilized by ion pairing. Proteins in this conformation enter the pores and are retained on the column. The results suggest a pore exclusion induced separation related to protein conformation. This effect is influenced by the pH and type of acid used, and is likely to involve ion-pair formation. The TFA concentration needed to result in protein folding (and therefore to observe retention on the column) depends on the protein; and therefore can be utilized to improve chromatographic performance. Conformation change was monitored by circular dichroism spectroscopy and mass spectrometry; and it was shown that not only TFA but FA can also induce molten globule formation.

  19. Enantioseparation of Citalopram by RP-HPLC, Using Sulfobutyl Ether-β-Cyclodextrin as a Chiral Mobile Phase Additive

    PubMed Central

    Peng, Yangfeng; He, Quan Sophia; Cai, Jiang

    2016-01-01

    Enantiomeric separation of citalopram (CIT) was developed using a reversed phase HPLC (RP-HPLC) with sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive. The effects of the pH value of aqueous buffer, concentration of chiral additive, composition of mobile phase, and column temperature on the enantioseparation of CIT were investigated on the Hedera ODS-2 C18 column (250 mm × 4.6 mm × 5.0 um). A satisfactory resolution was achieved at 25°C using a mobile phase consisting of a mixture of aqueous buffer (pH of 2.5, 5 mM sodium dihydrogen phosphate, and 12 mM SBE-β-CD), methanol, and acetonitrile with a volumetric ratio of 21 : 3 : 1 and flow rate of 1.0 mL/min. This analytical method was evaluated by examining the precision (lower than 3.0%), linearity (regression coefficients close to 1), limit of detection (0.070 µg/mL for (R)-CIT and 0.076 µg/mL for (S)-CIT), and limit of quantitation (0.235 µg/mL for (R)-CIT and 0.254 µg/mL for (S)-CIT). PMID:26880921

  20. Greener liquid chromatography using a guard column with micellar mobile phase for separation of some pharmaceuticals and determination of parabens.

    PubMed

    Youngvises, Napaporn; Chaida, Thanatcha; Khonyoung, Supada; Kuppithayanant, Nattawan; Tiyapongpattana, Warawut; Itharat, Arunporn; Jakmunee, Jaroon

    2013-03-15

    In this research, a greener chromatography employing a short column, Zorbax SB C18 cartridge (12.5 × 4.6 mm, 5 μm) commonly used as a guard column in a reverse phase high performance liquid chromatography (RP-HPLC), was utilized as the analytical column in conjunction with a more eco-friendly micellar mobile phase of sodium dodecyl sulfate (SDS) for separation tertiary mixtures of local anesthetics and antihistamines; and binary mixture of colds drugs; and quaternary mixture of some parabens with different separation conditions. The chromatographic behavior of these analytes was studied to demonstrate separation efficiency of this guard column in a micellar mobile phase. Moreover, this column and SDS mobile phase was exploited for determination of parabens in 64 samples of cosmetic product, both those that were produced locally in the community and those that were commercially manufactured. Linear calibration graphs of the parabens as detected at 254 nm were obtained in the range of 1-100 μmol L(-1) with R(2)>0.9990. Percentage recoveries were 92.4-109.2 with %RSD<3, and the limit of detection and quantitation were 0.04-0.10 and 0.20-0.80 μmol L(-1), respectively. This analytical system is not only greener but also faster and employing simpler sample preparation than a conventional liquid chromatographic system.

  1. Quinolones control in milk and eggs samples by liquid chromatography using a surfactant-mediated mobile phase.

    PubMed

    Rambla-Alegre, M; Collado-Sánchez, M A; Esteve-Romero, J; Carda-Broch, S

    2011-05-01

    Four quinolones (danofloxacin, difloxacin, flumequine and marbofloxacin) were determined in milk and egg samples by a simplified high-performance liquid chromatographic procedure using a micellar mobile phase. No extraction was needed to precipitate the proteins from the matrices since they were solubilised in micelles. The only pretreatment steps required were homogenisation, dilution and filtration before injecting the sample into the chromatographic system. An adequate resolution of the quinolones was achieved by a chemometrics approach where retention was modelled as a first step using the retention factors in only five mobile phases. Afterwards, an optimisation criterion was applied to consider the position and shape of the chromatographic peaks. Analytical separation involved a C18 reversed-phase column, a hybrid micellar mobile phase of 0.05 M sodium dodecyl sulphate, 10% (v/v) butanol and 0.5% (v/v) triethylamine buffered at pH 3 and fluorimetric detection. Quinolones were eluted in less than 15 min without the protein band or other endogenous compounds from the food matrices interfering. The calculated relevant validation parameters, e.g., decision limit (CC(α)), detection capability (CC(β)), repeatability, within-laboratory reproducibility, recoveries and robustness, were acceptable and complied with European Commission Decision 2002/657/EC. Finally, the proposed method was successfully employed in quantifying the four quinolones in spiked egg and milk samples.

  2. Enantioseparation of Citalopram by RP-HPLC, Using Sulfobutyl Ether-β-Cyclodextrin as a Chiral Mobile Phase Additive.

    PubMed

    Peng, Yangfeng; He, Quan Sophia; Cai, Jiang

    2016-01-01

    Enantiomeric separation of citalopram (CIT) was developed using a reversed phase HPLC (RP-HPLC) with sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive. The effects of the pH value of aqueous buffer, concentration of chiral additive, composition of mobile phase, and column temperature on the enantioseparation of CIT were investigated on the Hedera ODS-2 C18 column (250 mm × 4.6 mm × 5.0 um). A satisfactory resolution was achieved at 25°C using a mobile phase consisting of a mixture of aqueous buffer (pH of 2.5, 5 mM sodium dihydrogen phosphate, and 12 mM SBE-β-CD), methanol, and acetonitrile with a volumetric ratio of 21 : 3 : 1 and flow rate of 1.0 mL/min. This analytical method was evaluated by examining the precision (lower than 3.0%), linearity (regression coefficients close to 1), limit of detection (0.070 µg/mL for (R)-CIT and 0.076 µg/mL for (S)-CIT), and limit of quantitation (0.235 µg/mL for (R)-CIT and 0.254 µg/mL for (S)-CIT).

  3. Temperature-Dependent Hole Mobility and Its Limit in Crystal-Phase P3HT Calculated from First Principles.

    PubMed

    Lücke, Andreas; Ortmann, Frank; Panhans, Michel; Sanna, Simone; Rauls, Eva; Gerstmann, Uwe; Schmidt, Wolf Gero

    2016-06-23

    We study temperature-dependent hole transport in ideal crystal-phase poly(3-hexylthiophene) (P3HT) with ab initio calculations, with the aim of estimating the maximum mobility in the limit of perfect order. To this end, the molecular transfer integrals, phonon frequencies, and electron-phonon coupling constants are obtained from density functional theory (DFT). This allows the determination of transport properties without fit parameters. The strong coupling between charge carriers and vibrations leads to strong scattering and polaronic effects that impact carrier transport. By providing an intrinsic mobility limit to ideal P3HT crystals, this work allows identification of the impact of disorder on the temperature-dependent transport in real samples. A detailed analysis of the transport-relevant phonon modes is provided that gives microscopic insight into the polaron effects and hints toward mobility optimization strategies.

  4. Changes in the mobile phase composition on a stepwise counter-current chromatography elution for the isolation of flavonoids from Siparuna glycycarpa.

    PubMed

    Costa, Fernanda das Neves; Garrard, Ian; da Silva, Antonio Jorge Ribeiro; Leitão, Gilda Guimarães

    2013-07-01

    This paper describes the isolation of flavonoids and other aromatic compounds from an ethyl acetate extract of leaves of Siparuna glycycarpa using stepwise elution counter-current chromatography (CCC). The elution profile yielded the following compounds: diglycosylated flavonoids, quercetin 3-O-rutinoside and quercetin 7-O-rutinoside, followed by monoglycosylated flavonoids, kaempferol-3-O-β-glucopyranoside, kaempferol-3-O-β-rhamnopiranoside, kaempferol-3-O-β-6''(p-coumaroyl) glucopyranoside, and quercetin-3-O-β-glucopyranoside, and then free phenolics, protocatechuic acid, and 2',6'-dihydroxy-4, 4'-dimethoxydihydrochalcone, which shows that this type of elution covers a broader range of polarity than the traditional isocratic mode. This makes it more suitable to perform separations of mixtures containing large differences in hydrophobicity. A GC analysis of a blank CCC run was performed to determine if changes in the mobile phase composition affect the chromatographic process. Results showed a gradual variation of the composition of the mobile phase emerging after the step gradient, favoring the selectivity of the solvent system.

  5. Mated Drosophila melanogaster females consume more amino acids during the dark phase.

    PubMed

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock.

  6. Mated Drosophila melanogaster females consume more amino acids during the dark phase

    PubMed Central

    Uchizono, Shun; Tabuki, Yumi; Kawaguchi, Natsumi; Tanimura, Teiichi; Itoh, Taichi Q.

    2017-01-01

    To maintain homeostasis, animals must ingest appropriate quantities, determined by their internal nutritional state, of suitable nutrients. In the fruit fly Drosophila melanogaster, an amino acid deficit induces a specific appetite for amino acids and thus results in their increased consumption. Although multiple processes of physiology, metabolism, and behavior are under circadian control in many organisms, it is unclear whether the circadian clock also modulates such motivated behavior driven by an internal need. Differences in levels of amino acid consumption by flies between the light and dark phases of the day:night cycle were examined using a capillary feeder assay following amino acid deprivation. Female flies exhibited increased consumption of amino acids during the dark phase compared with the light phase. Investigation of mutants lacking a functional period gene (per0), a well-characterized clock gene in Drosophila, found no difference between the light and dark phases in amino acid consumption by per0 flies. Furthermore, increased consumption of amino acids during the dark phase was observed in mated but not in virgin females, which strongly suggested that mating is involved in the rhythmic modulation of amino acid intake. Egg production, which is induced by mating, did not affect the rhythmic change in amino acid consumption, although egg-laying behavior showed a per0-dependent change in rhythm. Elevated consumption of amino acids during the dark phase was partly induced by the action of a seminal protein, sex peptide (SP), on the sex peptide receptor (SPR) in females. Moreover, we showed that the increased consumption of amino acids during the dark phase is induced in mated females independently of their internal level of amino acids. These results suggest that a post-mating SP/SPR signal elevates amino acid consumption during the dark phase via the circadian clock. PMID:28241073

  7. Impact of the intermixed phase and the channel network on the carrier mobility of nanostructured solar cells.

    PubMed

    Woellner, Cristiano F; Freire, José A

    2016-02-28

    We analyzed the impact of the complex channel network of donor and acceptor domains in nanostructured solar cells on the mobility of the charge carriers moving by thermally activated hopping. Particular attention was given to the so called intermixed phase, or interface roughness, that has recently been shown to promote an increase in the cell efficiency. The domains were obtained from a Monte Carlo simulation of a two-species lattice gas. We generated domain morphologies with controllable channel size and interface roughness. The field and density dependence of the carrier hopping mobility in different morphologies was obtained by solving a master equation. Our results show that the mobility decreases with roughness and increases with typical channel sizes. The deleterious effect of the roughness on the mobility is quite dramatic at low carrier densities and high fields. The complex channel network is shown to be directly responsible for two potentially harmful effects to the cell performance: a remarkable decrease of the mobility with increasing field and the accumulation of charge at the domains interface, which leads to recombination losses.

  8. Evaluation of mobile phase characteristics on three zwitterionic columns in hydrophilic interaction liquid chromatography mode for liquid chromatography-high resolution mass spectrometry based untargeted metabolite profiling of Leishmania parasites.

    PubMed

    Zhang, Rong; Watson, David G; Wang, Lijie; Westrop, Gareth D; Coombs, Graham H; Zhang, Tong

    2014-10-03

    It has been reported that HILIC column chemistry has a great effect on the number of detected metabolites in LC-HRMS-based untargeted metabolite profiling studies. However, no systematic investigation has been carried out with regard to the optimisation of mobile phase characteristics. In this study using 223 metabolite standards, we explored the retention mechanisms on three zwitterionic columns with varied mobile phase composition, demonstrated the interference from poor chromatographic peak shapes on the output of data extraction, and assessed the quality of chromatographic signals and the separation of isomers under each LC condition. As expected, on the ZIC-cHILIC column the acidic metabolites showed improved chromatographic performance at low pH which can be attributed to the opposite arrangement of the permanently charged groups on this column in comparison with the ZIC-HILIC column. Using extracts from the protozoan parasite Leishmania, we compared the numbers of repeatedly detected LC-HRMS features under different LC conditions with putative identification of metabolites not amongst the standards being based on accurate mass (±3ppm). Besides column chemistry, the pH of the mobile phase plays a key role in not only determining the retention mechanisms of solutes but also the output of the LC-HRMS data processing. Fast evaporation of ammonium carbonate produced less ion suppression in ESI source and consequently improved the detectability of the metabolites in low abundance in comparison with other ammonium salts. Our results show that the combination of a ZIC-pHILIC column with an ammonium carbonate mobile phase, pH 9.2, at 20mM in the aqueous phase or 10mM in both aqueous and organic mobile phase components, provided the most suitable LC conditions for LC-HRMS-based untargeted metabolite profiling of Leishmania parasite extracts. The signal reliability of the mass spectrometer used in this study (Exactive Orbitrap) was also investigated.

  9. Gas phase measurements of pyruvic acid and its volatile metabolites.

    PubMed

    Jardine, Kolby J; Sommer, Evan D; Saleska, Scott R; Huxman, Travis E; Harley, Peter C; Abrell, Leif

    2010-04-01

    Pyruvic acid, central to leaf carbon metabolism, is a precursor of many volatile organic compounds (VOCs) that impact air quality and climate. Although the pathways involved in the production of isoprenoids are well-known, those of several oxygenated VOCs remain uncertain. We present concentration and flux measurements of pyruvic acid and other VOCs within the tropical rainforest (TRF) biome at Biosphere 2. Pyruvic acid concentrations varied diurnally with midday maxima up to 15 ppbv, perhaps due to enhanced production rates and suppression of mitochondrial respiration in the light. Branch fluxes and ambient concentrations of pyruvic acid correlated with those of acetone, acetaldehyde, ethanol, acetic acid, isoprene, monoterpenes, and sesquiterpenes. While pyruvic acid is a known substrate for isoprenoid synthesis, this correlation suggests that the oxygenated VOCs may also derive from pyruvic acid, an idea supported by leaf feeding experiments with sodium pyruvate which resulted in large enhancements in emissions of both isoprenoids and oxygenated VOCs. While feeding with sodium pyruvate-2-(13)C resulted in large emissions of both (13)C-labeled isoprenoids and oxygenated VOCs, feeding with sodium pyruvate-1-(13)C resulted in only (13)C-labeled isoprenoids. This suggests that acetaldehyde, ethanol, and acetic acid are produced from pyruvic acid via the pyruvate dehydrogenase (PDH) bypass system (in which the 1-C carbon of pyruvic acid is lost as CO(2)) and that acetone is also derived from the decarboxylation of pyruvic acid.

  10. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes.

    PubMed

    Pérez-López, Rafael; Alvarez-Valero, Antonio M; Nieto, José Miguel

    2007-09-30

    Presently, about 3 million tonnes of phosphogypsum are being generated annually in Spain as by-product from phosphoric acid in a fertilizer factory located in Huelva (southwestern Iberian Peninsula). Phosphate rock from Morocco is used as raw material in this process. Phosphogypsum wastes are stored in a stack containing 100Mt (approximately 1200ha of surface) over salt marshes of an estuary formed by the confluence of the Tinto and Odiel rivers, less than 1km away from the city centre. A very low proportion of this waste is used to improve fertility of agricultural soils in the area of the Guadalquivir river valley (Seville, SW Spain). The chemical speciation of potentially toxic elements (Ba, Cd, Cu, Ni, Sr, U and Zn) in phosphogypsum and phosphate rock was performed using the modified BCR-sequential extraction procedure, as described by the European Community Bureau of Reference (1999). This study has been done with the main of: (1) evaluate changes in the mobility of metals during the production of phosphoric acid; (2) estimate the amount of mobile metals that can affect the environmental surrounding; and (3) verify the environmentally safe use of phosphogypsum as an amendment to agricultural soils. The main environmental concern associated to phosphoric acid production is that Uranium, a radiotoxic element, is transferred from the non-mobile fraction in the phosphate rock to the bioavailable fraction in phosphogypsum in a rate of 23%. Around 21% of Ba, 6% of Cu and Sr, 5% of Cd and Ni, and 2% of Zn are also contained in the water-soluble phase of the final waste. Considering the total mass of phosphogypsum, the amount of metals easily soluble in water is approximately 6178, 3089, 1931, 579, 232, 193 and 77t for Sr, U, Ba, Zn, Ni, Cu and Cd, respectively. This gives an idea of the pollution potential of this waste.

  11. Affinity Capillary Electrophoresis for Selective Control of Electrophoretic Mobility of Sialic Acid Using Lanthanide-Hexadentate Macrocyclic Polyazacarboxylate Complexes.

    PubMed

    Goto, Daiki; Ouchi, Kazuki; Shibukawa, Masami; Saito, Shingo

    2015-01-01

    It is difficult to control the electrophoretic mobility in order to obtain high resolution among saccharides in complex samples. We report herein on a new affinity capillary electrophoresis (ACE) method for an anionic monosaccharide, N-acetylneuraminic acid (Neu5Ac), which is important in terms of pathological diagnosis, using lanthanide-hexadentate macrocyclic polyazacarboxylate complexes (Ln-NOTA) as affinity reagents. It was shown that Ln-NOTA complexes increased the anionic mobility of Neu5Ac by approximately 40% through selective complexation with Neu5Ac. The extent of change in the mobility strongly depended on the type of central metal ion of Ln-NOTA. The stability constant (K) of Lu-NOTA with Neu5Ac was determined by ACE to be log Kb = 3.62 ± 0.04, which is the highest value among artificial receptors for Neu5Ac reported so far. Using this ACE, the Neu5Ac content in a glycoprotein sample, α1-acid glycoprotein (AGP), was determined after acid hydrolysis. Complete separation between Neu5Ac and hydrolysis products was successful by controlling the mobility to determine the concentration of Neu5Ac.

  12. Understanding Gas Phase Modifier Interactions in Rapid Analysis by Differential Mobility-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-07-01

    A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.

  13. Polymorphic Phase Transformation in the 3-Bromo- trans-cinnamic Acid System

    NASA Astrophysics Data System (ADS)

    Ahn, Shinbyoung; Harris, Kenneth D. M.; Kariuki, Benson M.; Zin, Dimple M. S.

    2001-01-01

    3-Bromo-trans-cinnamic acid (3-BrCA) exists as two crystalline polymorphic forms (designated as β and γ phases). A polymorphic phase transformation from the γ phase to the β phase has been investigated using ex situ powder X-ray diffraction, in situ high-temperature optical microscopy, and differential scanning calorimetry. The transformation occurs at an observable rate at temperatures above about 100°C. A reverse transformation on subsequently cooling the β phase is not observed. Thermodynamic aspects of the polymorphic 3-BrCA system are discussed, together with kinetic aspects of the transformation from the γ phase to the β phase. The structural properties of the β phase (reported previously) and the γ phase (determined in this work from single-crystal X-ray diffraction data) are in accord with the α/β/γ structural classification of trans-cinnamic acid derivatives.

  14. Effect of organic mobile phase composition on signal responses for selected polyalkene additive compounds by liquid chromatography-mass spectrometry.

    PubMed

    Duderstadt, Randall E; Fischer, Steven M

    2008-06-06

    The high performance liquid chromatography (HPLC) separation methodology employed in the study of polyalkene additive compounds by atmospheric pressure ionization mass spectrometry (API-MS) was undertaken. Both atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were examined. APPI (including dopant-assisted APPI) was found to be an inferior ionization technique to APCI in all cases. APCI ion responses were found to be highly dependent upon the organic solvent type used in the HPLC separations. Namely, employing a water/methanol gradient in place of a water/acetonitrile or a water/acetone gradient yielded improvements in analyte ion intensities between 2.3- and 52-fold for the liquid chromatography-mass spectrometry (LC-MS) experiments. Analyte and mobile phase solvent ionization energies were found to be only partially responsible, whereas mobile phase cluster formation and hydration was also implicated. Mobile phase component modification is demonstrated to be an important consideration when developing new, or modifying existing HPLC separations for use in LC-MS experiments in order to enhance analyte sensitivity for a wide variety of common polyalkene additives.

  15. Phase transfer of oleic acid stabilized rod-shaped anatase TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wilkerson, Rachel J.; Elder, Theresa; Sowinksi, Olivia; Fostvedt, Jade I.; Hoefelmeyer, James D.

    2016-06-01

    Three methods were evaluated for phase transfer of oleic acid stabilized TiO2 nanorods from non-polar phase to an aqueous phase. Three alkyltrimethylammonium bromide (C6, C8, C12) surfactants were tested and compared with an amphiphilic polymer as interdigitation agents. Ligand substitutions with catechol derivatives with polar functional groups para to the -enediol were evaluated as well. The molecular surfactants were ineffective compared to the amphiphilic polymer in the interdigitation phase transfer approach. Ligand substitution with catechols proceeded efficiently with phase transfer. The ligand substitution reactions were accompanied by gas evolution, which was found to result from decarboxylation of oleic acid in alkaline aqueous conditions.

  16. Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.

    PubMed

    Longmuir, Kenneth J

    2014-03-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.

  17. Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium.

    PubMed

    Farias, Manuel J S; Busó-Rogero, Carlos; Vidal-Iglesias, Francisco J; Solla-Gullón, José; Camara, Giuseppe A; Feliu, Juan M

    2017-01-31

    The knowledge about how CO occupies and detaches from specific surface sites on well-structured Pt surfaces provides outstanding information on both dynamics/mobility of COads and oxidation of this molecule under electrochemical conditions. This work reports how the potentiostatic growth of different coverage CO adlayers evolves with time on both cubic and octahedral Pt nanoparticles in acidic medium. Data suggest that during the growth of the CO adlayer, COads molecules slightly shift toward low coordination sites only on octahedral Pt nanoparticles, so that these undercoordinated sites are the first filled on octahedral Pt nanoparticles. Conversely, on cubic Pt nanoparticles, adsorbed CO behaves as an immobile species, and low coordinated sites as well as (100) terraces are apparently filled uniformly and simultaneously. However, once the adlayer is complete, irrespectively of whether the CO is oxidized in a single step or in a sequence of different potential steps, results suggest that COads behaves as an immobile species during its oxidation on both octahedral and cubic Pt nanoparticles.

  18. Structural Elucidation of cis/trans Dicaffeoylquinic Acid Photoisomerization Using Ion Mobility Spectrometry-Mass Spectrometry.

    PubMed

    Zheng, Xueyun; Renslow, Ryan S; Makola, Mpho M; Webb, Ian K; Deng, Liulin; Thomas, Dennis G; Govind, Niranjan; Ibrahim, Yehia M; Kabanda, Mwadham M; Dubery, Ian A; Heyman, Heino M; Smith, Richard D; Madala, Ntakadzeni E; Baker, Erin S

    2017-04-06

    Due to the recently uncovered health benefits and anti-HIV activities of dicaffeoylquinic acids (diCQAs), understanding their structures and functions is of great interest for drug discovery efforts. DiCQAs are analytically challenging to identify and quantify since they commonly exist as a diverse mixture of positional and geometric (cis/trans) isomers. In this work, we utilized ion mobility spectrometry coupled with mass spectrometry to separate the various isomers before and after UV irradiation. The experimental collision cross sections were then compared with theoretical structures to differentiate and identify the diCQA isomers. Our analyses found that naturally the diCQAs existed predominantly as trans/trans isomers, but after 3 h of UV irradiation, cis/cis, cis/trans, trans/cis, and trans/trans isomers were all present in the mixture. This is the first report of successful differentiation of cis/trans diCQA isomers individually, which shows the great promise of IMS coupled with theoretical calculations for determining the structure and activity relationships of different isomers in drug discovery studies.

  19. Mobilization of lead by esters of meso-2,3-dimercaptosuccinic acid

    SciTech Connect

    Singh, P.K.; Jones, M.M.; Xu, Z.; Gale, G.R.; Smith, A.B.; Atkins, L.M. )

    1989-01-01

    An examination was made of the relative efficacies of 2,3-dimercapto-1-propanol (BAL) and three diesters (CH(SH)COOR)2; DMDMS, R = CH3; DEDMS, R = C2H5; and Di-PDMS, R = CH(CH3)2 of meso-2,3-dimercaptosuccinic acid (DMSA) in mobilizing freshly injected lead from mice. These diesters, like BAL, reduced the lead levels resulting from freshly injected lead in both the soft tissues (liver, kidneys, spleen, and brain) and the bone (tibia). After treatment with the dimethyl (DMDMS), the diethyl (DEDMS), and the diisopropyl (Di-PDMS) esters the lead content of each of the organs was significantly less than that present in the untreated controls. Each of the diesters reduced lead levels in the kidneys, liver, and spleen significantly below those levels found after BAL treatment. The action of the diesters in reducing brain lead levels was comparable to that of BAL. Di-PDMS was the most effective of these compounds and was significantly superior to BAL. Each of the esters was also significantly more effective than BAL in reducing the whole body level of lead.

  20. [Simultaneous determination of 17 underivatized amino acids in donkey-hide glue by reversed-phase high performance liquid chromatography-evaporative light-scattering detection].

    PubMed

    Yan, Dan; Han, Yumei; Dong, Xiaoping

    2006-07-01

    An analytical method to determine 17 underivatized amino acids in donkey-hide glue was established with reversed-phase high performance liquid chromatography (HPLC) coupled with evaporative light-scattering detection (ELSD). A Prevail C18 column was used with the mobile phase of acetonitrile-0.7% trifluoroacetic acid containing 5.0 mmol/L heptafluorobutyric acid. Under the condition of solvent gradient elution, the temperature of drift tube was 115 degrees C and the gas flow rate was 2.5 L/min. The 17 amino acids were separated within 25 min. The good linearities between the logarithm of peak area and logarithm of mass concentration of amino acids were obtained in a range of mass concentrations from 0.073 g/L to 2.327 g/L. The recoveries of 17 amino acids were 93.5% - 104.8% with the relative standard deviations (RSDs) of 0.58% - 2.88%. The lowest detection limits of amino acids were from 18.2 mg/L to 54.6 mg/L with 3 times the signal to noise ratio. This HPLC-ELSD method is rapid, simple and accurate. It can be used for the direct determination of 17 underivatized amino acids in donkey-hide glue. It also serves as a good reference for the determination of amino acids in other fields, such as pharmaceutical analysis.

  1. Chromatographic retention prediction and octanol-water partition coefficient determination of monobasic weak acidic compounds in ion-suppression reversed-phase liquid chromatography using acids as ion-suppressors.

    PubMed

    Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2009-08-15

    Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.

  2. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  3. Enantioselective determination of protein amino acids in fertilizers by liquid chromatography-tandem mass spectrometry on chiral teicoplanin stationary phase.

    PubMed

    Taujenis, Lukas; Olšauskaitė, Vilma; Padarauskas, Audrius

    2014-11-19

    High-performance liquid chromatography on a glycopeptide antibiotic teicoplanin-based chiral stationary phase coupled with tandem mass spectrometry was developed for fast and reliable enantioseparation and determination of protein amino acids in hydrolyzed fertilizer samples. The effect of the mobile phase parameters (type and content of organic modifier and pH) and the column temperature on the enantioselectivity was investigated. Under optimized conditions, the majority (15 of 19) of d/l-amino acid pairs were resolved with a resolution factor (Rs) higher than 1.5 with a run time of 15 min. A triple quadrupole tandem mass spectrometer operating in multiple reaction monitoring mode with an electrospray ionization (ESI) ion source was employed for detection. The method was validated in terms of linearity, limits of detection, limits of quantitation, precision, and accuracy. Linear responses were obtained with determination coefficients higher than 0.998 for all analytes, and limits of detection were from 0.04 to 0.24 μg/mL. Sample spike/recovery experiments gave recovery values ranging from 73% for d-threonine to 116% for L-tryptophan. Relative standard deviations for inter- and intraday precision experiments were lower than 21.7%. The developed method was successfully applied for determination of the free amino acid enantiomers in five commercially available hydrolyzed protein fertilizer samples.

  4. Investigation of Growth Phase-Dependent Acid Tolerance in Bifidobacteria longum BBMN68.

    PubMed

    Jin, Junhua; Song, Jingyi; Ren, Fazheng; Zhang, Hongxing; Xie, Yuanhong; Ma, Jingsheng; Li, Xue

    2016-11-01

    The underlying mechanisms imparting the growth phase-dependent acid tolerance have not been extensively investigated. In this study, we compared the acid resistance of the Bifidobacterium longum strain BBMN68 from different growth phases at lethal pH values (pH 2.5, 3.0, and 3.5), and analyzed the activity of H(+)-ATPase, the composition of fatty acids, and the mRNA abundance of ffh, uvrA, recA, lexA, groES, and dnaK in cells from different growth phases. The results indicated that the survival rates of cells from early stationary (ES) and late stationary (LS) growth phases at lethal pH values were significantly higher than those of exponential growth phase cells. Our findings indicated that by inducing a continuously auto-acidizing environment during cell growth, the acid resistance of ES and LS cells was strengthened. The higher activity of H(+)-ATPase, the decrease in unsaturated fatty acids, and the increased expression of genes involved in DNA repair and protein protection in the cells in stationary growth phase were all implicated in the significantly increased acid resistance of ES and LS cells compared with exponential growth phase cells of the B. longum strain BBMN68.

  5. Microbial mobilization of cesium from illite: Role of organic acids and siderophores

    NASA Astrophysics Data System (ADS)

    Hazotte, Alice; Peron, Olivier; Abdelouas, Abdesselam; Lebeau, Thierry

    2015-04-01

    Understanding the behavior of cesium (Cs) in soils and geological formations is interesting in the context of nuclear accidents and nuclear waste disposals. Indeed, this radionuclide with a 30-years half-life can contaminate crops and more generally the food chain. Cs with properties similar to potassium is known to be strongly accumulated in the clays of upper soil horizons. While excavation of contaminated soil cannot be feasible for the whole contaminated surfaces (huge volumes to be cleaned-up), in situ methods could provide a sustainable and low cost solution. Phytoextraction is one of a few solutions for in situ remediation of soils contaminated by trace elements and it preserves the quality of agricultural soils. However, many improvements are still needed to enhance phytoextraction effectiveness. The combination of bioaugmentation (soil inoculation with exogenous microorganisms) with phytoextraction is likely to increase the bioaccessibility of radionuclides and their accumulation in plants. The role of bacteria on soil-pollutants can be direct (direct metal complexation) and/or indirect (weathering of clays adsorbing Cs). This study aims to provide more specifically a mechanistic understanding of the bacterial mobilization of Cs from soil with the prospect of soil bioremediation. Bacterial metabolites of Pseudomonas fluorescens (ATCC 17400) were supplied to illite spiked with 0.1 and 1 mM of Cs. Purified siderophores including pyoverdine from P. fluorescens, or the whole metabolites from the bacterial culture supernatant were compared to low molecular weight organic acids (LMWOA) (citric and oxalic acids) at 0.04 mM, or synthetic chelants, i.e., acetohydroxamic acid (AHA) and desferrioxamine mesylate (DFOM) ranging from 50 µM up to 250 µM. The release of Cs and the structural alteration of illite (release of Al, Fe and Si) were monitored. When compared to the control, no release of Cs from illite was observed with LMWOA. On the contrary, a slight release

  6. Separation and quantitation of free fatty acids and fatty acid methyl esters by reverse phase high pressure liquid chromatography.

    PubMed

    Aveldano, M I; VanRollins, M; Horrocks, L A

    1983-01-01

    Reverse phase high pressure liquid chromatography (HPLC) on octadecylsilyl columns separates mixtures of either free fatty acids or fatty acid methyl esters prepared from mammalian tissue phospholipids. Acetonitrile-water mixtures are used for the elution of esters. Aqueous phosphoric acid is substituted for water for the separation of the free acids. Unsaturated compounds are detected and quantitated by their absorption at 192 nm. Saturates are detected better at 205 nm. The order of elution of fatty acids in complex mixtures varies as a function of acetonitrile concentration. At any given concentration, some compounds overlap. However, by varying the solvent strength, any fatty acid of interest can be resolved including many geometrical and positional isomers. Methyl esters prefractionated according to unsaturation by argentation thin-layer chromatography (TLC) are rapidly and completely separated by elution with CH3CN alone. Argentation TLC-reverse phase HPLC can be used as an analytical as well as a preparative procedure. Octylsilyl columns are used for rapid resolution and improved detection of minor or low ultraviolet-absorbing components in the fractions. For example, monoenoic fatty acids with up to 32 carbons have been detected in bovine brain glycerophospholipids. Specific radioactivities of 3H- and 14C-labeled fatty acids and the distribution of radioactivity among acyl groups from complex lipids are measured. The method is not recommended for complete compositional analysis, but is useful for determinations of specific radioactivities during studies on turnover and metabolic conversions of labeled fatty acids.

  7. Trace explosive detection in aqueous samples by solid-phase extraction ion mobility spectrometry (SPE-IMS).

    PubMed

    Buxton, Tricia L; Harrington, Peter de B

    2003-02-01

    Law enforcement agencies use ion mobility spectrometers for the detection of explosives, drugs of abuse, and chemical warfare agents. Ion mobility spectrometry (IMS) has the advantages of short analysis times, detections in the parts per billion concentrations, and high sensitivity. On-site environmental analysis of explosives or explosive residues in water is possible with ion mobility spectrometers. Unfortunately, the direct analysis of low levels of explosives in water is difficult. Extraction provides a method for pre-concentrating the analytes and removing interferents. Coupling solid-phase extraction (SPE) with IMS is useful for the identification of trace amounts of explosives in water. Commercially available SPE disks were used. After extraction, the sample disk is inserted into the ion mobility spectrometer, where the analytes are thermally desorbed from the disk. Concentrations as low as one part per trillion were detected with a Barringer Ionscan 350. An external computer and acquisition software (LabVIEW, National Instruments) were used to collect data. SIMPLISMA (SIMPLe-to-use-Interactive Self-modeling Mixture Analysis) was applied to the data to resolve features that vary with respect to time.

  8. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    PubMed

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination.

  9. The enormous apparent gas-phase acidity of cubylamine

    NASA Astrophysics Data System (ADS)

    Abboud, José-Luis M.; Alkorta, Ibon; Burk, Peeter; Dávalos, Juan Z.; Quintanilla, Esther; Della, Ernest W.; Koppel, Ilmar A.; Koppel, Ivar

    2004-11-01

    The high acidity of cubylamine ( 1NH 2) seems to originate in the release of strain energy attending the breaking of some C-C bonds in 1NH -. This process is greatly facilitated by the strong stereoelectronic interactions in 1NH -. The anionic species thus formed are less strained, and their corresponding conjugate acids seem unable to 'borrow strength' from the residual strain, at least within the time-scale of the FT ICR experiments.

  10. Multifunctional acid formation from the gas-phase ozonolysis of beta-pinene.

    PubMed

    Ma, Yan; Marston, George

    2008-10-28

    The gas-phase ozonolysis of beta-pinene was studied in static chamber experiments, using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. A range of multifunctional organic acids-including pinic acid, norpinic acid, pinalic-3-acid, pinalic-4-acid, norpinalic acid and OH-pinalic acid-were identified in the condensed phase after derivatisation. Formation yields for these products under systematically varying reaction conditions (by adding different OH radical scavengers and Criegee intermediate scavengers) were investigated and compared with those observed from alpha-pinene ozonolysis, allowing detailed information on product formation mechanisms to be elucidated. In addition, branching ratios for the initial steps of the reaction were inferred from quantitative measurements of primary carbonyl formation. Atmospheric implications of this work are discussed.

  11. Phase diagrams and water activities of aqueous dicarboxylic acid systems of atmospheric importance.

    PubMed

    Beyer, Keith D; Friesen, Katherine; Bothe, Jameson R; Palet, Benjamin

    2008-11-20

    We have studied liquid/solid phase diagrams and water activities of the dicarboxylic acid/water binary systems for maleic, dl-malic, glutaric, and succinc acids using differential scanning calorimetry, infrared (IR) spectroscopy of thin films, and conductivity analysis of saturated solutions. For each binary system we report the measurements of the ice melting envelope, the acid dissolution envelope, and the ice/acid eutectic temperature and composition. Water activities have been determined by using the freezing point depression of ice. Additionally, an irreversible solid/solid phase transition for maleic acid was observed in both DSC and IR studies likely due to the conversion of a meta-stable crystal form of maleic acid to its most stable crystal form. In general we find good agreement with literature values for temperature-dependent acid solubilities.

  12. Effect of growth phase on the fatty acid compositions of four species of marine diatoms

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Mai, Kangsen

    2005-04-01

    The fatty acid compositions of four species of marine diatoms ( Chaetoceros gracilis MACC/B13, Cylindrotheca fusiformis MACC/B211, Phaeodactylum tricornutum MACC/B221 and Nitzschia closterium MACC/B222), cultivated at 22°C±1°C with the salinity of 28 in f/2 medium and harvested in the exponential growth phase, the early stationary phase and the late stationary phase, were determined. The results showed that growth phase has significant effect on most fatty acid contents in the four species of marine diatoms. The proportions of 16:0 and 16:1n-7 fatty acids increased while those of 16:3n-4 and eicosapentaenoic acid (EPA) decreased with increasing culture age in all species studied. The subtotal of saturated fatty acids (SFA) increased with the increasing culture age in all species with the exception of B13. The subtotal of monounsaturated fatty acids (MUFA) increased while that of polyunsaturated fatty acids (PUFA) decreased with culture age in the four species of marine diatoms. MUFA reached their lowest value in the exponential growth phase, whereas PUFA reached their highest value in the same phase.

  13. On-site quantitation of arsenic in drinking water by disk solid-phase extraction/mobile X-ray fluorescence spectrometry.

    PubMed

    Hagiwara, Kenta; Koike, Yuya; Aizawa, Mamoru; Nakamura, Toshihiro

    2015-11-01

    A rapid and simple method was developed for As determination in drinking water by solid-phase extraction (SPE)/mobile X-ray fluorescence (XRF) spectrometry. A 50 mL aqueous sample was adjusted to pH 3 with dilute hydrochloric acid, and then passed through a Ti and Zr-loaded carbon disk (TiZr-CD) to pre-concentrate the As. The SPE disk was adhered to an acrylic plate with cellophane tape, and then examined by mobile XRF spectrometry. The TiZr-CD adsorbed inorganic As (as As(III) and As(V)) and organic As (as methyl, phenyl and aromatic arsenic compounds) from water. The As calibration curve had good linearity over the range of 0.5-5 μg, and the limit of detection was 0.10 μg (2.0 μgL(-1) in As concentration). The concentrations of As in well water samples were determined using the proposed method were similar to results obtained from atomic absorption spectrometry. The proposed method did not require a power supply or a toxic solution and/or gas in any analytical step, therefore it is suitable for the on-site determination of As in drinking water.

  14. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase.

    PubMed

    Groen, Daniel; Gooris, Gert S; Bouwstra, Joke A

    2010-03-16

    The lipid matrix present in the human stratum corneum (the thin, uppermost layer of the skin) is considered to play a crucial role in the skin barrier function. The lipid matrix consists of ceramides, cholesterol, and free fatty acids. The 13 nm lamellar phase present in the lipid matrix of the stratum corneum is very characteristic and plays an important role in the skin barrier function. One subclass of ceramides with a linoleic acid linked to a very long acyl (referred to as EOS) plays a crucial role in the formation of the 13 nm lamellar phase. In this article, we focus on the lipid phase behavior of EOS mixed with cholesterol or with cholesterol and free fatty acids. Our studies reveal that an equimolar ratio of EOS, cholesterol, and free fatty acids forms a lamellar phase with a very long repeat distance of approximately 14.7 nm. This phase exhibits exceptional behavior in that in the thermotropic response the fatty acid chains and the ceramide chains undergo an order-disorder transition in different temperature ranges while part of the hydrocarbon chains of ceramides and fatty acids are mixing in the orthorhombic lattice. On the basis of these observations, a molecular model for the 14.7 nm phase has been proposed in which the lipids are organized in a lamellar phase with three different lipid layers in a symmetric unit cell.

  15. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

    PubMed

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael

    2013-06-13

    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database.

  16. Retention behavior of phenols, anilines, and alkylbenzenes in liquid chromatographic separations using subcritical water as the mobile phase.

    PubMed

    Yang, Y; Jones, A D; Eaton, C D

    1999-09-01

    The unique characteristic of subcritical water is its widely tunable physical properties. For example, the polarity (measured by dielectric constant) of water is significantly decreased by raising water temperature. At temperatures of 200-250 °C (under moderate pressure to keep water in the liquid state), the polarity of pure water is similar to that of pure methanol or acetonitrile at ambient conditions. Therefore, pure subcritical water may be able to serve as the mobile phase for reversed-phase separations. To investigate the retention behavior in subcritical water separation, the retention factors of BTEX (benzene, toluene, ethylbenzene, and m-xylene), phenol, aniline, and their derivatives have been determined using subcritical water, methanol/water, and acetonitrile/water systems. Subcritical water separations were also performed using alumina, silica-bonded C18, and poly(styrene-divinylbenzene) columns to study the influence of the stationary phase on analyte retention under subcritical water conditions.

  17. M-ary frequency shift keying with differential phase detector in satellite mobile channel with narrowband receiver filter

    NASA Astrophysics Data System (ADS)

    Korn, I.; Namet, M.

    1990-02-01

    An expression is derived for the error probability of M-ary frequency-shift keying with differential phase detector and narrow-band receiver filter in the satellite mobile (Rician) channel, which includes as special cases the Gaussian and land mobile (Rayleigh) channels. The error probability is computed as a function of various system parameters for M = 2, 4, and 8 symbols and the third-order Butterworth receiver filter. The error probability increases with Doppler frequency and with the shift of the channel from Gaussian through Rician to Rayleigh. The optimum normalized bandwidth per bit is in the vicinity of one, and the optimum modulation index for binary symbols is about 0.6. The threshold for quaternary symbols can be optimized to about 0.9 of the modulation index. For Rician and Rayleigh channels with nonzero Doppler frequency, there is an error floor; therefore, diversity or coding may be required to achieve a desired error probability.

  18. Evidence that oleic acid exists in a separate phase within stratum corneum lipids

    SciTech Connect

    Ongpipattanakul, B.; Burnette, R.R.; Potts, R.O.; Francoeur, M.L. )

    1991-03-01

    Oleic acid is known to be a penetration enhancer for polar to moderately polar molecules. A mechanism related to lipid phase separation has been previously proposed by this laboratory to explain the increases in skin transport. In the studies presented here, Fourier transform infrared spectroscopy (FT-IR) was utilized to investigate whether or not oleic acid exists in a separate phase within stratum corneum (SC) lipids. Per-deuterated oleic acid was employed allowing the conformational phase behavior of the exogenously added fatty acid and the endogenous SC lipids to be monitored independently of each other. The results indicated that oleic acid exerts a significant effect on the SC lipids, lowering the lipid transition temperature (Tm) in addition to increasing the conformational freedom or flexibility of the endogenous lipid alkyl chains above their Tm. At temperatures lower than Tm, however, oleic acid did not significantly change the chain disorder of the SC lipids. Similar results were obtained with lipids isolated from the SC by chloroform:methanol extraction. Oleic acid, itself, was almost fully disordered at temperatures both above and below the endogenous lipid Tm in the intact SC and extracted lipid samples. This finding suggested that oleic acid does exist as a liquid within the SC lipids. The coexistence of fluid oleic acid and ordered SC lipids, at physiological temperatures, is consistent with the previously proposed phase-separation transport mechanism for enhanced diffusion.

  19. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  20. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    PubMed

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  1. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems.

  2. Acid-catalytic decomposition of peracetic acid in the liquid phase

    SciTech Connect

    Kharchuk, V.G.; Kolenko, I.P.; Petrov, L.A.

    1985-12-01

    This paper elucidates the kinetic relationships of peracetic acid (PAA) decomposition in the presence of mineral acids and their heterogeneous analogs, polystyrene-di-vinylbenzene cation-exchangers, differing in physicochemical and morphological parameters. It is shown that the thermal decomposition of PAA in acetic acid is an acid-catalyzed reaction. The controlling step of the reaction is protonation of the substrate with formation of an active intermediate form. Sulfonated cation-exchangers are twice as effective as sulfuric acid in this process. Polystyrene-divinylbenzene sulfonated cation-exchangers can be used with success as acid catalysts in oxidation processes involving PAA, because of their high effectiveness, stability, and availability.

  3. Reactive Extraction of Lactic Acid by Using Tri-n-octylamine: Structure of the Ionic Phase.

    PubMed

    Aimer, Matthias; Klemm, Elias; Langanke, Bernd; Gehrke, Helmut; Stubenrauch, Cosima

    2016-03-01

    Lactic acid is a promising biogenic platform chemical which can be produced by fermentation of cellulose and hemicellulose. However, separating lactic acid from the fermentation broth is extremely costly and technically complex. We therefore investigated whether liquid/liquid extraction of lactic acid with tri-n-octylamine is a cost-effective alternative to the existing downstream processing method. In order to find an answer to this question, the structure of the middle phase of the occurring three-phase region, which is enriched with up to 20 wt. % lactic acid, was explored. The results of our IR, small-angle X-ray scattering and NMR measurements show that this phase is ionic and has a bicontinuous structure. Due to the analogy with bicontinuous microemulsions, it should be possible to further enrich the lactic acid, which could lead to a rethink regarding the design of extraction processes.

  4. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  5. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.

  6. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  7. Solid/Liquid phase diagram of the ammonium sulfate/maleic acid/water system.

    PubMed

    Beyer, Keith D; Schroeder, Jason R; Pearson, Christian S

    2011-12-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution.

  8. Application of Ion Mobility Mass Spectrometry for Identification of Gas and Particulate Phase Organic Species in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Canagaratna, M. R.; Krechmer, J.; Groessl, M.; Junninen, H.; Kimmel, J.; Cubison, M.; Massoli, P.; Lin, Y. H.; Zhang, H.; Lambe, A. T.; Zhang, X.; Knochenmuss, R.; Surratt, J. D.; Jimenez, J. L.; Worsnop, D. R.

    2015-12-01

    We present recent results obtained from the application of an ion mobility time-of-flight mass spectrometer (IMS-TOF) to the detection of oxidized organic species in the atmosphere. Ion mobility mass spectrometry separates ions on the basis of their interactions with buffer gases on millisecond time scales and allows for detailed separation and identification of isomeric and isobaric molecules. Detection of highly oxidized gas phase organics is achieved by coupling the IMS-TOF to a chemical ionization scheme that utilized NO3- as the reagent ion. Oxidized gas phase molecules produced from biogenic precursors were chemically characterized with this technique during the Southern Oxidant and Aerosol Study (SOAS) field campaign as well as in laboratory experiments utilizing a potential aerosol mass (PAM) reactor. The application of IMS-TOF to aerosol phase organic species is also presented. While molecular composition of fine aerosol is often obtained by combining gas or liquid chromatography (GC or LC) with mass spectrometric detection, these techniques are limited in their ability to transfer, resolve and identify water soluble organic carbon (WSOC) species which account for a significant portion of aerosol mass. Here we demonstrate IMS as a promising alternative approach for obtaining detailed information about organic aerosol (OA) constituent species. We examine aerosol particles collected on filters during ambient and laboratory measurements. The filter extracts are subjected to electrospray ionization (ESI) before detection with the IMS-TOF. The capability of this technique to resolve WSOC species, isomers, and oligomers is highlighted.

  9. Metal ion-mobilizing additives for comprehensive detection of femtomole amounts of phosphopeptides by reversed phase LC-MS.

    PubMed

    Seidler, Joerg; Zinn, Nico; Haaf, Erik; Boehm, Martin E; Winter, Dominic; Schlosser, Andreas; Lehmann, Wolf D

    2011-07-01

    It is hypothesized that metal ion-mediated adsorption of phosphorylated peptides on stationary phases of LC-columns is the major cause for their frequently observed poor detection efficiency in LC-MS. To study this phenomenon in more detail, sample solutions spiked with metal ion-mobilizing additives were analyzed by reversed phase μLC-ICP-MS or nanoLC-ESI-MS. Using μLC-ICP-MS, metal ions were analyzed directly as atomic ions. Using electrospray ionization, either metal ion chelates or phosphopeptide standard mixtures injected in subpicomole amounts were analyzed. Deferoxamine, imidazole, ascorbate, citrate, EDTA, and the tetrapeptide pSpSpSpS were tested as sample additives for the interlinked purposes of metal ion-mobilization and improvement of phosphopeptide recovery. Iron probably represents the major metal ion contamination of reversed phase columns. Based on the certified iron level in LC-grade solvents, a daily metal ion load of >10 pmol was estimated for typical nanoLC flow rates. In addition, phosphopeptide fractions from IMAC columns were identified as source for metal ion contamination of the LC column, as demonstrated for Ga(3+)-IMAC. The three metal ion-chelating additives, EDTA, citrate and pSpSpSpS, were found to perform best for improving the LC recovery of multiply phosphorylated peptides injected at subpicomole amounts. The benefits of metal ion-mobilizing LC (mimLC) characterized by metal ion complexing sample additives is demonstrated for three different instrumental setups comprising (a) a nanoUPLC-system with direct injection on the analytical column, (b) a nanoLC system with inclusion of a trapping column, and (c) the use of a HPLC-Chip system with integrated trapping and analytical column.

  10. Modeling the effects of different mobile phase compositions and temperatures on the retention of various analytes in HPLC.

    PubMed

    Jouyban, Abolghasem; Soltanpour, Shahla; Acree, William E; Thomas, Dimitris; Agrafiotou, Panagiota; Pappa-Louisi, Adriani

    2009-11-01

    A mathematical model is proposed for representing the combined effects of mobile phase solvent composition and temperature on the retention of various analytes in HPLC. The applicability of the model in describing the retention of four macrolides in aqueous mixtures of methanol and acetonitrile determined at 20-80 degrees C in various volume fractions of the organic modifiers was shown. The mean percentage deviation (MPD) was computed as an accuracy criterion in which the overall MPD of four analytes investigated in this work was 3.9+/-1.5% (N=72). The proposed model could be reduced to two simpler versions. The first version concerning the retention data of analytes in one organic modifier at various temperatures produced for the retention description of the above experimental system as well as for the retention of three benzodiazepines in aqueous mixtures of methanol at 25-40 degrees C an overall MPD of 3.6+/-1.8%. The more reduced version of the model for calculating the retention factor of one analyte in a given organic modifier at various temperatures produced an overall MPD of 1.7+/-1.1% for both the experimental systems studied. The accuracy of the proposed model is compared with recent models to predict the retention of an analyte with respect to solvent component of the mobile phase and the temperature of column in which the results were comparable. The main advantage of the proposed model is its capability to predict the retention of various analytes considering (i) temperature of the column, (ii) the mobile phase solvent composition, (iii) the chemical structure of the analytes and (iv) the nature of organic modifier.

  11. Advanced heat pump for recovery of volatile organic compounds, Phase III - demonstration of BCSRHP mobile regenerator. Final report

    SciTech Connect

    Not Available

    1994-11-01

    Under Phase I of the subject contract, feasibility studies and basic engineering studies were performed for a Brayton Cycle Solvent Recovery Heat Pump (BCSRBP) system to prevent pollution from small source emitters. It was determined that the cost of a complete system, including adsorbers and regeneration process, would be far too much for the small emission source in most cases. This {open_quotes}integrated{close_quotes} approach was therefore not feasible. However, it was concluded that the expensive portion of the Brayton cycle process, the regenerator, could be shared by mounting it on a trailer that could be transported to different sites to regenerate an adsorber. Under Phase II of the project a mobile regenerator (BCSRI-IP) was designed and built to serve a large number of sites. Adsorbers were designed to control emissions for a week or more between regenerations. The purpose of phase III was to demonstrate the cost effectiveness and efficiency of the shared (decoupled) BRAYSORB{reg_sign} solvent recovery system in energy use and emission control compared to other control technologies through a performance testing program at representative industrial and commercial host sites in Southern California. NUCON was the prime contractor for the demonstration portion of this project. Support and funding were received from Southern California Edison Company, South Coast Air Quality Management District, and the U.S. Department of Energy in addition to the contribution by NUCON. Contractual arrangements were completed with each of the host sites and permits for both the stationary and mobile equipment were acquired. The adsorbers were installed at each host site and the appropriate interface connections were made. The mobile regenerator was transported to Southern California for the demonstration.

  12. Gas Phase Structure of Amino Acids: La-Mb Studies

    NASA Astrophysics Data System (ADS)

    Mata, I. Pena S.; Sanz, M. E.; Vaquero, V.; Cabezas, C.; Perez, C.; Blanco, S.; López, J. C.; Alonso, J. L.

    2009-06-01

    Recent improvements in our laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectrometer such as using Laval-type nozzles and picoseconds Nd:YAG lasers (30 to 150 ps) have allowed a major step forward in the capabilities of this experimental technique as demonstrated by the last results in serine cysteine and threonine^a for which seven, six and seven conformers have been respectively identified. Taking advantage of these improvements we have investigated the natural amino acids metionine, aspartic and glutamic acids and the γ-aminobutyric acid (GABA) with the aim of identify and characterize their lower energy conformers. Searches in the rotational spectra have lead to the identification of seven conformers of metionine, six and five of aspartic and glutamic acids, respectively, and seven for the γ-aminobutyric. These conformers have been unambiguously identified by their spectroscopic constants. In particular the ^{14}N nuclear quadrupole coupling constants, that depend heavily on the orientation of the amino group with respect to the principal inertial axes of the molecule, prove to be a unique tool to distinguish unambigously between conformations with similar rotational constants. For the γ-aminobutyric acid two of the seven observed structures are stablized by an intramolecular interaction n-π*. Two new conformers of proline have been identified together with the two previously observed. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys.Chem.Chem.Phys., 2009, 11, 617. D. B. Atkinson, M. A. Smith, Rev. Sci. Instrum. 1995, 66, 4434 S. Blanco, M. E. Sanz, J. C. López, J. L. Alonso, Proc. Natl. Acad. Sci. USA2007, 104, 20183. M. E. Sanz, S. Blanco, J. C. López, J. L. Alonso, Angew. Chem. Int. Ed.,2008, 120, 6312. A. Lesarri, S. Mata, E. J. Cocinero, S. Blanco, J.C. López, J. L. Alonso, Angew. Chem. Int. Ed. , 2002, 41, 4673

  13. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  14. Selective transport of amino acids into the gas phase: driving forces for amino acid solubilization in gas-phase reverse micelles.

    PubMed

    Fang, Yigang; Bennett, Andrew; Liu, Jianbo

    2011-01-28

    We report a study on encapsulation of various amino acids into gas-phase sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) reverse micelles, using electrospray ionization guided-ion-beam tandem mass spectrometry. Collision-induced dissociation of mass-selected reverse micellar ions with Xe was performed to probe structures of gas-phase micellar assemblies, identify solute-surfactant interactions, and determine preferential incorporation sites of amino acids. Integration into gas-phase reverse micelles depends upon amino acid hydrophobicity and charge state. For examples, glycine and protonated amino acids (such as protonated tryptophan) are encapsulated within the micellar core via electrostatic interactions; while neutral tryptophan is adsorbed in the surfactant layer. As verified using model polar hydrophobic compounds, the hydrophobic effect and solute-interface hydrogen-bonding do not provide sufficient driving force needed for interfacial solubilization of neutral tryptophan. Neutral tryptophan, with a zwitterionic structure, is intercalated at the micellar interface between surfactant molecules through complementary effects of electrostatic interactions between tryptophan backbone and AOT polar heads, and hydrophobic interactions between tryptophan side chain and AOT alkyl tails. Protonation of tryptophan could significantly improve its incorporation capacity into gas-phase reverse micelles, and displace its incorporation site from the micellar interfacial zone to the core; protonation of glycine, on the other hand, has little effect on its encapsulation capacity. Another interesting observation is that amino acids of different isoelectric points could be selectively encapsulated into, and transported by, reverse micelles from solution to the gas phase, based upon their competition for protonation and subsequent encapsulation within the micellar core.

  15. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  16. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    PubMed

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ.

  17. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  18. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY REVERSE PHASE CHROMATOGRAPHY

    EPA Science Inventory

    The method for determination of T-MAZ ethoxylated sorbitan fatty acid esters is described. This work demonstrates that with a less retentive C8 alkyl bonded phase packing, reverse phase chromatography can be used to analyze nonionic polymer mixtures with a molecular weight range ...

  19. Simultaneous analysis of non-steroidal anti-inflammatory drugs using electrochemically controlled solid-phase microextraction based on nanostructure molecularly imprinted polypyrrole film coupled to ion mobility spectrometry.

    PubMed

    Ameli, Akram; Kalhor, Hamideh; Alizadeh, Naader

    2013-06-01

    A simple, rapid, and highly sensitive method for simultaneous analysis of anti-inflammatory drugs (naproxen, ibuprofen, and mefenamic acid) in diluted human serum was developed using the electrochemically controlled solid-phase microextraction coupled to ion mobility spectrometry. A conducting molecularly imprinted polymer film based on polypyrrole was synthesized for the selective uptake and release of drugs. The film was prepared by incorporation of a template molecule (naproxen) during the electropolymerization of pyrrole onto a platinum electrode using cyclic voltammetry method. The measured ion mobility spectrometry intensity was related to the concentration of analytes taken up into the films. The calibration graphs (naproxen, ibuprofen, and mefenamic acid) were linear in the range of 0.1-30 ng/mL and detection limits were 0.07-0.37 ng/mL and relative standard deviation was lower than 6%. On the basis of the results obtained in this work, the conducting molecularly imprinted polymer films as absorbent have been applied in the electrochemically controlled solid-phase microextraction and ion mobility spectrometry system for the selective clean-up and quantification of trace amounts of anti-inflammatory drugs in human serum samples. Scanning electron microscopy has confirmed the nano-structure morphology of the polypyrrole film.

  20. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  1. Ion mobility-mass spectrometry and orthogonal gas-phase techniques to study amyloid formation and inhibition.

    PubMed

    Hoffmann, Waldemar; von Helden, Gert; Pagel, Kevin

    2017-03-23

    Amyloidogenic peptide oligomers are responsible for a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Due to their dynamic, polydisperse, and polymorphic nature, these oligomers are very challenging to characterize using traditional condensed-phase methods. In the last decade, ion mobility-mass spectrometry (IM-MS) and related gas-phase techniques have emerged as a powerful alternative to disentangle the structure and assembly characteristics of amyloid forming systems. This review highlights recent advances in which IM-MS was used to characterize amyloid oligomers and their underlying assembly pathway. In addition, we summarize recent studies in which IM-MS was used to size- and mass-select species for a further spectroscopic investigation and outline the potential of IM-MS as a tool for the screening of amyloid inhibitors.

  2. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-02

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution.

  3. Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: Formation, fate and reactivity

    NASA Astrophysics Data System (ADS)

    Charbouillot, Tiffany; Gorini, Sophie; Voyard, Guillaume; Parazols, Marius; Brigante, Marcello; Deguillaume, Laurent; Delort, Anne-Marie; Mailhot, Gilles

    2012-09-01

    In the first part of the work, we investigated the reactivity toward photogenerated hydroxyl radicals (rad OH) of seven monocarboxylic acids and six dicarboxylic acids found in natural cloud water. This leads to the proposition of a schematic degradation pathway linking glutaric acid (C5) to complete mineralization into CO2. We report a detailed mechanism on the succinic acid reactivity toward rad OH leading to the formation of malonic, glyoxylic and consequently oxalic acids and a comparison with reported pathways proposed by the CAPRAM (Chemical Aqueous Phase RAdical Mechanism) is discussed. We also investigated the photooxidation of formic acid under atmospherically relevant conditions leading to the possible formation of oxalic acid via radical mediated recombination. The second part focuses on the polychromatic irradiation (closed to solar irradiation) of a collected cloud aqueous phase showing that irradiation of cloud water leads to the formation of both formic and acetic acids. Carboxylic acid formation increases in the presence of photogenerated hydroxyl radicals from hydrogen peroxide, showing that photooxidation could play a key role in the formation of carboxylic acids under atmospherically relevant conditions.

  4. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  5. Novel Ultra Stable Silica-Based Stationary Phases for Reversed Phase Liquid Chromatography-Study of a Hydrophobically Assisted Weak Acid Cation Exchange Phase

    PubMed Central

    Zhang, Yu; Carr, Peter W.

    2010-01-01

    A mixed-mode reversed-phase/weak cation exchange (RP/WCX) phase has been developed by introducing a small amount of carboxylate functionality into a hydrophobic hyper-crosslinked (HC) platform. This silica based HC-platform was designed to form an extensive polystyrene network completely confined to the particle's surface. The fully connected polymer network prevents the loss of bonded phase, which leads to superior hydrolytic stability of the new phase when compared to conventional silica based phases. Compared to previously introduced HC phases the added carboxylic groups impart a new weak cation exchange selectivity to the base hydrophobic HC platform. The phase thus prepared shows a mixed-mode retention mechanism, allowing for both neutral organic compounds and bases of a wide polarity range to be simultaneously separated on the same phase under the same conditions. In addition, the new phase offers the flexibility that gradients in organic modifier, pH or ionic competitors can be used to affect the separation of a wide range of solutes. Moreover, the inherent weak acid cation exchange groups allow formic and acetic acid buffers to be used as eluents thereby avoiding the mass spectrometric ionization suppression problems concomitant to the use of non-volatile additives such as strong amine modifiers (e.g. triethylamine) or salts (e.g. NaCl) to elute basic solutes from the strong cation exchange phase which was previously developed in this lab. The use of the new phase for achieving strong retention of rather hydrophilic neurotransmitters and drugs of abuse without the need for ion pairing agents is demonstrated. PMID:21227426

  6. Analysis of acid transport through multi-phase epoxy mortars for wastewater structures.

    PubMed

    Valix, M

    2015-01-01

    The characteristics of acid migration through epoxy mortars were examined. Diffusion coefficients of typical sewer bio-metabolised acids: sulphuric, nitric, citric and oxalic acids were determined by gravimetric sorption method and fitted to the multi-phase Jacob-Jones model. Acid permeation was characterised by hindered pore diffusion with the extent being determined by the polarity of the acid and epoxy, and by the microstructure of the epoxy. Epoxy with higher polarity was able to reduce the diffusion coefficients by 49, while dense phases of the coating reduced the diffusion coefficient by 5,100. These results reflect the relative influence of epoxy polarity and microstructure on their performance as protective liners in sewers.

  7. Feasibility of 19F-NMR for assessing the molecular mobility of flufenamic acid in solid dispersions.

    PubMed

    Aso, Yukio; Yoshioka, Sumie; Miyazaki, Tamaki; Kawanishi, Toru

    2009-01-01

    The purpose of the present study was to clarify the feasibility of 19F-NMR for assessing the molecular mobility of flufenamic acid (FLF) in solid dispersions. Amorphous solid dispersions of FLF containing poly(vinylpyrrolidone) (PVP) or hydroxypropylmethylcellulose (HPMC) were prepared by melting and rapid cooling. Spin-lattice relaxation times (T1 and T(1rho)) of FLF fluorine atoms in the solid dispersions were determined at various temperatures (-20 to 150 degrees C). Correlation time (tauc), which is a measure of rotational molecular mobility, was calculated from the observed T1 or T1rho value and that of the T1 or T1rho minimum, assuming that the relaxation mechanism of spin-lattice relaxation of FLF fluorine atoms does not change with temperature. The tauc value for solid dispersions containing 20% PVP was 2-3 times longer than that for solid dispersions containing 20% HPMC at 50 degrees C, indicating that the molecular mobility of FLF in solid dispersions containing 20% PVP was lower than that in solid dispersions containing 20% HPMC. The amount of amorphous FLF remaining in the solid dispersions stored at 60 degrees C was successfully estimated by analyzing the solid echo signals of FLF fluorine atoms, and it was possible to follow the overall crystallization of amorphous FLF in the solid dispersions. The solid dispersion containing 20% PVP was more stable than that containing 20% HPMC. The difference in stability between solid dispersions containing PVP and HPMC is considered due to the difference in molecular mobility as determined by tauc. The molecular mobility determined by 19F-NMR seems to be a useful measure for assessing the stability of drugs containing fluorine atoms in amorphous solid dispersions.

  8. Determination of bile acids by hollow fibre liquid-phase microextraction coupled with gas chromatography.

    PubMed

    Ghaffarzadegan, T; Nyman, M; Jönsson, J Å; Sandahl, M

    2014-01-01

    A method based on hollow-fibre liquid phase microextraction combined with gas chromatography was developed for determination of specific bile acids in caecal materials of rats. Nine unconjugated bile acids, including the primary bile acids (cholic acid, chenodeoxycholic acid and α-muricholic acid) and the secondary bile acids (lithocholic acid, deoxycholic acid, ursodeoxycholic acid, hyodeoxycholic acid, β-muricholic acid and ω-muricholic acid) were quantified. Extraction conditions were evaluated, including: sample pH, type of organic solvent and amount of caecal material to be extracted. To compensate for sample matrix effects during extraction the method of standard addition was applied. The satisfactory linearity (r(2)>0.9840), high recovery (84.2-108.7%) and good intra-assay (6.3-10.6%) and inter-assay (6.9-11.1%) precision illustrated the good performance of the present method. The method is rapid, simple and capable of detecting and determining bile acids with limit of detection (LOD) ranged from 0.002 to 0.067μg/mL and limits of quantification (LOQ) varied from 0.006 to 0.224μg/mL. The results indicated that the concentration of some secondary bile acids, which usually are associated with health problems, were lower in rats fed with fermentable dietary fibre compared with a fibre free control diet, while the concentration of primary bile acids, usually connected with positive health effects, were higher in rats fed with diets containing dietary fibre. Of the dietary fibres, guar gum and to some extent the mixture of pectin+guar gum had the most positive effects. Thus, it was concluded that the composition of bile acids can be affected by the type of diet.

  9. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    PubMed

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load.

  10. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    PubMed

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine.

  11. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-01-25

    A gas phase surface discharge plasma combined with organic acids system was developed to enhance active species mass transfer and dye-containing wastewater treatment efficacy, with Acid Orange II (AO7) as the model pollutant. The effects of discharge voltage and various organic acid additives (acetic acid, lactic acid and nonoic acid) on AO7 decoloration efficiency were evaluated. The experimental results showed that an AO7 decoloration efficiency of approximately 69.0% was obtained within 4 min of discharge plasma treatment without organic acid addition, which was improved to 82.8%, 83.5% and 88.6% within the same treatment time with the addition of acetic acid, lactic acid and nonoic acid, respectively. The enhancement effects on AO7 decoloration efficiency could be attributed to the decrease in aqueous surface tension, improvement in bubble distribution and shape, and increase in ozone equivalent concentration. The AO7 wastewater was biodegradable after discharge plasma treatment with the addition of organic acid. AO7 decomposition intermediates were analyzed by UV-vis spectrometry and GC-MS; 2-naphthol, 1,4-benzoquinone, phthalic anhydride, coumarin, 1,2-naphthoquinone, and 2-formyl-benzoic acid were detected. A possible pathway for AO7 decomposition in this system was proposed.

  12. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  13. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    SciTech Connect

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kukolich, Stephen G.; Kang, Lu

    2015-04-14

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0{sup +}) = 1151.8(5), B(0{sup +}) = 100.3(5), C(0{sup +}) = 87.64(3) MHz and A(0{sup −}) = 1152.2(5), B(0{sup −}) = 100.7(5), C(0{sup −}) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  14. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  15. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    PubMed

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines.

  16. Characterising the phase behaviour of stearic acid and its triethanolamine soap and acid-soap by infrared spectroscopy.

    PubMed

    Pudney, Paul D A; Mutch, Kevin J; Zhu, Shiping

    2009-07-07

    The behaviour of stearic acid neutralised by triethanolamine to form soap and its acid-soap has been examined by infrared spectroscopy. It was found that not only could the neutralisation behaviour be characterised, but the thermotropic behaviour could also be followed. The neutralisation confirmed the formation of a fixed stoichiometeric ratio, 2 : 1, acid-soap. When following the thermotropic behaviour the break up of the acid-soap could be followed along with various disordering and melting transitions of the alkyl chain tail. This allowed all the thermal transitions that have been observed to be characterised in terms of the type of molecular rearrangement that was occurring and also the transition temperature at which they occurred. This allowed the binary phase diagram to be plotted and understood for this system. This is the first time IR has been used to measure a whole phase diagram of this type. The nature of the acid-soap complex itself was also characterised, with very short hydrogen bonds being present as well as a free, non-hydrogen bonded, hydroxyl group.

  17. A fully integrated continuous-flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO(2) as the mobile phase.

    PubMed

    Hintermair, Ulrich; Franciò, Giancarlo; Leitner, Walter

    2013-04-02

    A continuous-flow process based on a chiral transition-metal complex in a supported ionic liquid phase (SILP) with supercritical carbon dioxide (scCO(2)) as the mobile phase is presented for asymmetric catalytic transformations of low-volatility organic substrates at mild reaction temperatures. Enantioselectivity of >99% ee and quantitative conversion were achieved in the hydrogenation of dimethylitaconate for up to 30 h, reaching turnover numbers beyond 100000 for the chiral QUINAPHOS-rhodium complex. By using an automated high-pressure continuous-flow setup, the product was isolated in analytically pure form without the use of any organic co-solvent and with no detectable catalyst leaching. Phase-behaviour studies and high-pressure NMR spectroscopy assisted the localisation of optimum process parameters by quantification of substrate partitioning between the IL and scCO(2). Fundamental insight into the molecular interactions of the metal complex, ionic liquid and the surface of the support in working SILP catalyst materials was gained by means of systematic variations, spectroscopic studies and labelling experiments. In concert, the obtained results provided a rationale for avoiding progressive long-term deactivation. The optimised system reached stable selectivities and productivities that correspond to 0.7 kgL(-1)h(-1) space-time yield and at least 100 kg product per gram of rhodium, thus making such processes attractive for larger-scale application.

  18. Observations of a high-pressure phase creation in oleic acid

    NASA Astrophysics Data System (ADS)

    Kościesza, R.; Kulisiewicz, L.; Delgado, A.

    2010-03-01

    Oleic acid is one of the unsaturated fatty acids which frequently appears in food products such as edible fats and oils. A molecule of oleic acid possesses a double carbon bond, C=C, which is responsible for a transition to a new phase when pressure is applied. This work presents the results of optical observations of such a transition. The observations were made in two cases, the first being static p-T conditions under 60 MPa at 20°C and the other the dynamic application of the pressure up to 350 MPa. The obtained visualization reveals differences in the creation of the phase and in its further appearance. Some crystal forms may be recognized. These results tend to be of interest for food engineers due to increasing interest in high-pressure food preservation among nutritionists and medical scientists concerned with fatty acids.

  19. Features of separation on polymeric reversed phase for two classes of higher saturated fatty acids esters

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Lapshova, M. S.; Zakharenko, E. V.; Deineka, L. A.

    2013-11-01

    The principles of sorption on polymeric reversed phase (PRP) YMS C30 for members of the two classes of esters formed by higher saturated fatty acids, i.e., lutein diesters ( I) and triacylglycerols ( II), are investigated. It is shown that the logarithm of the retention factor increases nonlinearly with an increase of the length of the acid radical, although the retention on PRP is higher in the case of I and lower in the case of II, compared to their retention on traditional monomeric reversed phase (MRP) Kromasil-100 5C18; however, the equivalence of the contributions to the retention of I that correspond to an identical change in acids, does not depend on the length of the hydrocarbon radical of the second acid. It is noted that the Van't Hoff plot for PRP contains a curve break, indicating a change in the retention mechanism upon a rise in temperature.

  20. Gas-phase acidities of tetrahedral oxyacids from ab initio electronic structure theory

    SciTech Connect

    Rustad, J.R.; Dixon, D.A.; Kubicki, J.D.; Felmy, A.R.

    2000-05-04

    Density functional calculations have been performed on several protonation states of the oxyacids of Si, P, V, As, Cr, and S. Structures and vibrational frequencies are in good agreement with experimental values where these are available. A reasonably well-defined correlation between the calculated gas-phase acidities and the measured pK{sub a} in aqueous solution has been found. The pK{sub a}/gas-phase acidity slopes are consistent with those derived from previous molecular mechanics calculations on ferric hydrolysis and the first two acidity constants for orthosilicic acid. The successive deprotonation of other H{sub n}TO{sub 4} species, for a given tetrahedral anion T are roughly consistent with this slope, but not to the extent that there is a universal correlation among all species.

  1. Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure.

    PubMed

    Okusa, Kensuke; Iwasaki, Yuki; Kuroda, Ikuma; Miwa, Shohei; Ohira, Masayoshi; Nagai, Toshiharu; Mizobe, Hoyo; Gotoh, Naohiro; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2014-04-25

    A high-density, polymeric C18 stationary phase (Inertsil ODS-P) or a polymeric C30 phase (Inertsil C30) provided improved resolution of the isomeric fatty acids (FAs), FA methyl esters (FAMEs), triacylglycerols (TAGs), and tocopherols with an increase in pressure of 20-70MPa in reversed-phase HPLC. With respect to isomeric C18 FAMEs with one cis-double bond, ODS-P phase was effective for recognizing the position of a double bond among petroselinic (methyl 6Z-octadecenoate), oleic (methyl 9Z-octadecenoate), and cis-vaccenic (methyl 11Z-octadecenoate), especially at high pressure, but the differentiation between oleic and cis-vaccenic was not achieved by C30 phase regardless of the pressure. A monomeric C18 phase (InertSustain C18) was not effective for recognizing the position of the double bond in monounsaturated FAME, while the separation of cis- and trans-isomers was achieved by any of the stationary phases. The ODS-P and C30 phases provided increased separation for TAGs and β- and γ-tocopherols at high pressure. The transfer of FA, FAME, or TAG molecules from the mobile phase to the ODS-P stationary phase was accompanied by large volume reduction (-30∼-90mL/mol) resulting in a large increase in retention (up to 100% for an increase of 50MPa) and improved isomer separation at high pressure. For some isomer pairs, the ODS-P and C30 provided the opposite elution order, and in each case higher pressure improved the separation. The two stationary phases showed selectivity for the isomers having rigid structures, but only the ODS-P was effective for differentiating the position of a double bond in monounsaturated FAMEs. The results indicate that the improved isomer separation was provided by the increased dispersion interactions between the solute and the binding site of the stationary phase at high pressure.

  2. Solid phase micro-extraction coupled with ion mobility spectrometry for the analysis of ephedrine in urine.

    PubMed

    Lokhnauth, John K; Snow, Nicholas H

    2005-05-01

    Quantitative solid phase micro-extraction (SPME) coupled with ion mobility spectrometry is demonstrated using the analysis of ephedrine in urine. Since its inception in the 1970's ion mobility spectrometry (IMS) has evolved into a useful technique for laboratories to detect explosives, chemical warfare agents, environment pollutants and, increasingly, for detecting drugs of abuse. Ephedrine is extracted directly from urine samples using SPME and the analyte on the fiber is heated by the IMS desorber unit and vaporized into the drift tube. The analytical procedure was optimized for fiber coating selection, extraction temperature, extraction time, sample pH, and analyte desorption temperature. The carryover effects, ion fragmentation characteristics, peak shapes, and drift times of ephedrine were also evaluated based on the direct interfacing of SPME to IMS. A limit of detection of 50 ng/mL of ephedrine in urine and a linear range of 3 orders of magnitude were obtained, showing that SPME-IMS compares well to other techniques for ephedrine and drug analysis presented in the literature.

  3. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-12-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant.

  4. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    PubMed Central

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant. PMID:26627307

  5. 77 FR 38061 - Mobility Fund Phase I Auction Supplemental Short-Form Instructions and Other Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Phase I Auction for completing FCC Form 180, announce the availability of certain updated files and..., please provide the appropriate FCC document number, for example, DA 12-947. The Supplemental Filing... site: http://wireless.fcc.gov/auctions/901/ or by using the search function for AU Docket No. 12-25...

  6. Observation of a topological 3D Dirac semimetal phase in high-mobility Cd3As2

    NASA Astrophysics Data System (ADS)

    Neupane, M.; Xu, S.-Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, Chang; Belopolski, I.; Chang, T.-R.; Jeng, H.-T.; Lin, H.; Bansil, A.; Chou, Fangcheng; Hasan, M. Z.

    2014-03-01

    Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport. Using high-resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on well-known compound Cd3As2. For the first time, we observe a highly linear bulk Dirac cone located at the Brillouin zone center projected onto the (001) surface, which is consistent with a 3D Dirac semimetal phase in Cd3As2. Remarkably, an unusually high Dirac Fermion velocity is seen in samples where the mobility far exceeds 20,000 cm2/V.s suggesting that Cd3As2 can be a promising candidate as a hypercone analog of graphene in many device-applications, which can also incorporate topological quantum phenomena in a large gap setting. This work is primarily supported by U.S. DOE and Princeton University.

  7. Determination of chlorophenols in water by headspace solid phase microextraction ion mobility spectrometry (HS-SPME-IMS).

    PubMed

    Holopainen, Sanna; Luukkonen, Ville; Nousiainen, Marjaana; Sillanpää, Mika

    2013-09-30

    Chlorophenols (CPs) as persistent toxic compounds are of worldwide environmental concern. Usage of chlorinated phenols, especially pentachlorophenol (PCP), has been restricted or widely banned in many countries due to their possible adverse health effects even at low concentrations. Ion mobility spectrometry (IMS) has received increasing interest in environmental applications due to its unique characteristics, such as portability and speed of analysis. A range of sample introduction methods combined with IMS enable analysis from different environmental matrices. This study utilised headspace solid phase microextraction IMS (HS-SPME-IMS) in the determination of CPs from water samples. The extraction conditions were examined and the method was applied to real water samples. The developed method is suitable to detect CPs at milligram per liter level in water. Based on the results, SPME-IMS setup is feasible as an early warning system for water monitoring of pollutants present in drinking or surface water in case of environmental accidents or leakages.

  8. Evaluation of dimethyl sulfoxide (DMSO) as a mobile phase additive during top 3 label-free quantitative proteomics.

    PubMed

    Strzelecka, Dominika; Holman, Stephen W; Eyers, Claire E

    2015-11-30

    Dimethyl sulfoxide (DMSO) has been advocated as a beneficial additive to electrospray solvents for peptide analysis due to the improved ionisation efficiency conferred. Previous reports have shown that the resultant improvements in peptide ion signal intensities are non-uniform. As a result, it was hypothesised that inclusion of DMSO in electrospray solvents could be detrimental to the outcome of intensity-based label-free absolute quantification approaches, specifically the top 3 method. The effect of DMSO as a mobile phase additive in top 3 label-free quantification was therefore evaluated. We show that inclusion of DMSO enhances data quality, improving the precision and number of proteins quantified, with no significant change to the quantification values observed in its absence.

  9. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    SciTech Connect

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    1995-09-01

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. The phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.

  10. Analysis of iodinated haloacetic acids in drinking water by reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry with large volume direct aqueous injection.

    PubMed

    Li, Yongtao; Whitaker, Joshua S; McCarty, Christina L

    2012-07-06

    A large volume direct aqueous injection method was developed for the analysis of iodinated haloacetic acids in drinking water by using reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry in the negative ion mode. Both the external and internal standard calibration methods were studied for the analysis of monoiodoacetic acid, chloroiodoacetic acid, bromoiodoacetic acid, and diiodoacetic acid in drinking water. The use of a divert valve technique for the mobile phase solvent delay, along with isotopically labeled analogs used as internal standards, effectively reduced and compensated for the ionization suppression typically caused by coexisting common inorganic anions. Under the optimized method conditions, the mean absolute and relative recoveries resulting from the replicate fortified deionized water and chlorinated drinking water analyses were 83-107% with a relative standard deviation of 0.7-11.7% and 84-111% with a relative standard deviation of 0.8-12.1%, respectively. The method detection limits resulting from the external and internal standard calibrations, based on seven fortified deionized water replicates, were 0.7-2.3 ng/L and 0.5-1.9 ng/L, respectively.

  11. Rapid determination of beta-aminoisobutyric acid by reversed-phase high-performance liquid chromatography.

    PubMed

    Ladrón de Guevara, O; Cortinas de Nava, C; Padilla, P; Espinosa, J; Cebrian, M; García, L

    1990-06-08

    For the determination of beta-aminoisobutyric acid (BAIBA) in urine samples in which the beta-alanine concentrations are higher than those of BAIBA, the resolution between these two amino acids, separated by reversed-phase liquid chromatography on an octadecylsilane column, was optimized. The chromatographic analysis included precolumn derivatization of amino acids with o-phthalaldehyde, followed by a 15-min isocratic elution and detection at 340 nm. Because of its simplicity, this method should be useful for monitoring urinary excretion of BAIBA.

  12. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system.

  13. The Use of Mobile, Electrochemical Sensor Nodes for the Measurement of Personal Exposure to Gas-Phase Air Pollutants

    NASA Astrophysics Data System (ADS)

    Stewart, G.; Popoola, O. A.; Mead, M. I.; McKeating, S. J.; Calleja, M.; Hayes, M.; Baron, R. P.; Saffell, J.; Jones, R.

    2012-12-01

    , and thus also the potential insufficiency at quantifying the risks to health in the surrounding area. Recent campaigns with mobile sensor nodes have included attempts to probe the differences in personal exposure to gas-phase air pollutants at different heights of breathing zone and between different methods of transport.

  14. Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system

    SciTech Connect

    LUKE, S.N.

    1999-02-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

  15. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength.

    PubMed

    Wolcott, R G; Dolan, J W; Snyder, L R

    2000-02-11

    Software is described which allows the rapid development of separations by means of isocratic reversed-phase liquid chromatography (RP-LC), based on the optimization of column temperature (T) and mobile phase strength (%B). For a given sample, four initial experiments are carried out at two different temperatures, using either isocratic or (better) gradient elution. If isocratic experiments are chosen for computer simulation, it is necessary to select appropriate values of %B for these initial runs. Literature data for solute retention as a function of T are reviewed, as a basis for estimating suitable values of %B at the two values of T selected. The use of optimized values of T and %B led to acceptable separations for three representative samples. The prediction of isocratic separation on the basis of initial gradient experiments is more convenient than the use of initial isocratic experiments, but less reliable. When gradient experiments are used, one additional isocratic experiment can improve the accuracy of such predictions by a "reflection" procedure. The latter approach was confirmed for predictions of both isocratic and gradient separation from initial gradient experiments.

  16. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation.

    PubMed

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J

    2017-03-17

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions. Graphical Abstract ᅟ.

  17. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2017-03-01

    Gas-phase hydrogen/deuterium exchange (HDX) using D2O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions.

  18. Environmental mobility of cobalt-Influence of solid phase characteristics and groundwater chemistry.

    PubMed

    Payne, T E; Itakura, T; Comarmond, M J; Harrison, J J

    2009-01-01

    The adsorption of cobalt on samples from a potential waste repository site in an arid region was investigated in batch experiments, as a function of various solution phase parameters including the pH and ionic strength. The samples were characterized using a range of techniques, including BET surface area measurements, total clay content and quantitative X-ray diffraction. The statistical relationships between the measured cobalt distribution coefficients (K(d) values) and the solid and liquid phase characteristics were assessed. The sorption of cobalt increased with the pH of the aqueous phase. In experiments with a fixed pH value, the measured K(d) values were strongly correlated to the BET surface area, but not to the amount of individual clay minerals (illite, kaolinite or smectite). A further set of sorption experiments was undertaken with two samples of distinctive mineralogy and surface area, and consequently different sorption properties. A simple surface complexation model (SCM) that conceptualized the surface sites as having equivalent sorption properties to amorphous Fe-oxide was moderately successful in explaining the pH dependence of the sorption data on these samples. Two different methods of quantifying the input parameters for the SCM were assessed. While a full SCM for cobalt sorption on these complex environmental substrates is not yet possible, the basic applicability and predictive capability of this type of modeling is demonstrated. A principal requirement to further develop the modeling approach is adequate models for cobalt sorption on component mineral phases of complex environmental sorbents.

  19. Wireless Roadside Inspection Phase II Tennessee Commercial Mobile Radio Services Pilot Test Final Report

    SciTech Connect

    Franzese, Oscar; Lascurain, Mary Beth; Capps, Gary J; Siekmann, Adam

    2011-05-01

    The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is researching the feasibility and value of electronically assessing truck and bus driver and vehicle safety at least 25 times more often than is possible using only roadside physical inspections. The WRI program is evaluating the potential benefits to both the motor carrier industry and to government. These potential benefits include reduction in accidents, fatalities and injuries on our highways and keeping safe and legal drivers and vehicles moving on the highways. WRI Pilot tests were conducted to prototype, test and demonstrate the feasibility and benefits of electronically collecting safety data message sets from in-service commercial vehicles and performing wireless roadside inspections using three different communication methods. This report summarizes the design, conduct and results of the Tennessee CMRS WRI Pilot Test. The purpose of this Pilot test was to demonstrate the implementation of commercial mobile radio services to electronically request and collect safety data message sets from a limited number of commercial vehicles operating in Tennessee. The results of this test have been used in conjunction with the results of the complimentary pilot tests to support an overall assessment of the feasibility and benefits of WRI in enhancing motor carrier safety (reduction in accidents) due to increased compliance (change in motor carrier and driver behavior) caused by conducting frequent safety inspections electronically, at highway speeds, without delay or need to divert into a weigh station

  20. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid.

    PubMed

    Yan, Bo; Tao, Li-Zhi; Liang, Yu; Xu, Bo-Qing

    2014-06-01

    Gas-phase dehydration of lactic acid (LA) to acrylic acid (AA) was investigated over alkali-exchanged β zeolite (M(x)Na(1-x)β, M=Li(+), K(+), Rb(+), or Cs(+)) of different exchange degrees (x). The reaction was conducted under varying conditions to understand the catalyst selectivity for AA production and trends of byproduct formation. The nature and exchange degree of M(+) were found to be critical for the acid-base properties and catalytic performance of the exchanged zeolite. K(x)Na(1-x)β of x=0.94 appeared to be the best performing catalyst whereas Li(x)Na(1-x)β and Naβ were the poorest in terms of AA selectivity and yield. The AA yield as high as 61 mol % (selectivity: 64 mol %) could be obtained under optimized reaction conditions for up to 8 h over the best performing K0.94Na0.06β. The acid and base properties of the catalysts were probed, respectively by temperature-programmed desorption (TPD) of adsorbed NH3 and CO2, and were related to the electrostatic potentials of the alkali ions in the zeolite, which provided a basis for the discussion of the acid-base catalysis for sustainable AA formation from LA.

  1. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    PubMed

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts.

  2. Comparison of the performance of non-ionic and anionic surfactants as mobile phase additives in the RPLC analysis of basic drugs.

    PubMed

    Ruiz-Ángel, María J; García-Álvarez-Coque, María C

    2011-03-01

    Surfactants added to the mobile phases in reversed-phase liquid chromatography (RPLC) give rise to a modified stationary phase, due to the adsorption of surfactant monomers. Depending on the surfactant nature (ionic or non-ionic), the coated stationary phase can exhibit a positive net charge, or just change its polarity remaining neutral. Also, micelles in the mobile phase introduce new sites for solute interaction. This affects the chromatographic behavior, especially in the case of basic compounds. Two surfactants of different nature, the non-ionic Brij-35 and the anionic sodium dodecyl sulfate (SDS) added to water or aqueous-organic mixtures, are here compared in the separation of basic compounds (β-blockers and tricyclic antidepressants). The reversible/irreversible adsorption of the monomers of both surfactants on the stationary phase was examined. The changes in the nature of the chromatographic system using different columns and chromatographic conditions were followed based on the changes in retention and peak shape. The study revealed that Brij-35 is suitable for analyzing basic compounds of intermediate polarity, using "green chemistry", since the addition of an organic solvent is not needed and Brij-35 is a biodegradable surfactant. In contrast, RPLC with hydro-organic mixtures or mobile phases containing SDS required high concentrations of organic solvents.

  3. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  4. Thermodynamics and phase behavior of acid-tethered block copolymers with ionic liquids.

    PubMed

    Jung, Ha Young; Park, Moon Jeong

    2016-12-21

    We investigate the phase behavior of acid-tethered block copolymers with and without ionic liquids. Two phosphonated block copolymers and their sulfonated analogs were synthesized by fine-tuning the degree of polymerization and the acid content. The block copolymers carrying acid groups with ionic liquids exhibited rich phase sequences, i.e., disorder-lamellae (LAM), gyroid-LAM, gyroid-hexagonal cylinder (HEX), and gyroid-A15 lattice, and the cation/anion ratio in the ionic liquid exerted profound effects on the segregation strength and topology of the self-assembled structures. Additionally, using ionic liquids with excessive cation content was found to enhance the effective Flory-Huggins interaction parameter, χeff, of the samples. However, as the anion content of the ionic liquids increased the segregation strength decreased. This is attributed to the packing frustration accompanied by the prevailing repulsive electrostatic interactions of the anions in the ionic liquid and the polymer matrix. As the hydrophobicity of the ionic liquids increased, well-defined ordered phases emerged in the phosphonated block copolymers with increased anion content, contrary to the disordered phases of the sulfonated samples. Thus, the balance between solvation energy of the anions and the electrostatic interactions is a key determinant of the thermodynamics of acid-tethered block copolymers containing ionic liquids.

  5. Gas-phase reactivity of carboxylic acid functional groups with carbodiimides.

    PubMed

    Prentice, Boone M; Gilbert, Joshua D; Stutzman, John R; Forrest, William P; McLuckey, Scott A

    2013-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT)]. Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities.

  6. Transport of fluorescent bile acids by the isolated perfused rat liver: kinetics, sequestration, and mobilization.

    PubMed

    Holzinger, F; Schteingart, C D; Ton-Nu, H T; Cerrè, C; Steinbach, J H; Yeh, H Z; Hofmann, A F

    1998-08-01

    Hepatocyte transport of six fluorescent bile acids containing nitrobenzoxadiazolyl (NBD) or a fluorescein derivative on the side chain was compared with that of natural bile acids using the single-pass perfused rat liver. Compounds were infused at 40 nmol/g liver min for 15 minutes; hepatic uptake and biliary recovery were measured; fractional extraction, intrinsic basolateral clearance, and sequestration (nonrecovery after 45 minutes of additional perfusion) were calculated. Fluorescent bile acids were efficiently extracted during the first 3 minutes (70%-97%), but net extraction decreased with time mostly because of regurgitation into the perfusate. For cholylglycine and ursodeoxycholylglycine (UDC-glycine), extraction was 94% to 99%, and regurgitation did not occur. Intrinsic hepatic clearance of fluorescent bile acids (2-7 mL/g liver x min) was lower than that of cholylglycine (9.0 +/- 0.6; mean +/- SD) and UDC-glycine (21.4 +/- 0.4). Sequestration at 60 minutes was 8% to 26% for fluorescent bile acids with a cholyl moiety (cholylglycylaminofluorescein [CGamF], cholyllysylfluorescein [C-L-F], cholyl-[N epsilon-NBD]-lysine [C-L-NBD], and cholylaminofluorescein [CamF]), 32% for ursodeoxycholylaminofluorescein (UDCamF), and 88% for ursodeoxycholyl-(N epsilon-NBD)lysine (UDC-L-NBD). Cholylglycine and UDC-glycine had <3% retention. Biliary secretion of sequestered UDCamF, but not of UDC-L-NBD, was induced by adding dibutyryl cyclic adenosine monophosphate (DBcAMP) to the perfusate, possibly by translocation to the canaliculus of pericanalicular vesicles containing fluorescent bile acids. Biliary secretion of UDC-L-NBD, but not of UDCamF, was induced by adding cholyltaurine or UDC-taurine, possibly by inhibition of binding to intracellular constituents or of transport into organelles. It is concluded that fluorescent bile acids are efficiently transported across the basolateral membrane, but in contrast to natural conjugated bile acids, are sequestered in the

  7. High-Resolution Electrospray Ionization/Ion Mobility Spectrometer for Detection of Abiotic Amino Acids

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Terrell, C. A.; Kim, H.; Kanik, I.

    2003-01-01

    One of the primary goals of the current NASA thrust in Astrobiology is the detection and identification of organic molecules as part of an in-situ lander platform on the surface of Mars or Europa. The identification of these molecules should help determine whether indigenous organisms exist on the surface of Mars or in an undersea environment on Europa. In addition, a detailed organic chemical inventory of surface and near surface molecules will help elucidate the possibilities of life elsewhere in the Universe. Terrestrial life has, as its backbone, the family of molecules known as the amino acids (AA), and while AA can be found in the terrestrial environments as part of more complex molecules, such as peptides, and proteins, they also exist as individual molecules due to of the hydrolyses of biopolymers. In terrestrial biochemistry, there are 20 principal amino acids which are necessary for life. However, some forms of these molecules can be found in nature synthesized via abiotic process. For example, they are known to exist extraterrestrially as a component of carbonaceous meteorites. The idea that amino acids are readily created by abiotic means has been demonstrated by their positive identification in the Murchison CM2 meteorite, which fell in 1969. This meteorite was analyzed before contamination by terrestrial microbes could result. Three laboratories individually tested parts of the meteorite and concluded that the amino acids present in them were indigenous to the meteorite because, among other reasons, they had equal L- and D- enantiomers. Final identification of the constituents of the Murchison included 33 amino acids which have no known biotic source, 11 amino acids which have limited distribution and 8 (Glycine, Alanine, Valine, Proline, Leucine, Isoleucine, Aspartic Acid, and Glutamic Acid), which readily occur in terrestrial proteins.

  8. Orthogonally Protected Furanoid Sugar Diamino Acids for Solid-Phase Synthesis of Oligosaccharide Mimetics.

    PubMed

    John, Franklin; Wittmann, Valentin

    2015-08-07

    Sugar diamino acids (SDAs), which differ from the widely used sugar amino acids in the presence of a second amino group connected to the carbohydrate core, share structural features of both amino acids and carbohydrates. They can be used for the preparation of linear and branched amide-linked oligosaccharide mimetics. Such oligomers carry free amino groups, which are positively charged at neutral pH, in a spatially defined way and, thus, represent a potential class of aminoglycoside mimetics. We report here the first examples of orthogonally protected furanoid SDAs and their use in solid-phase synthesis. Starting from d-glucose, we developed a divergent synthetic route to three derivatives of 3,5-diamino-3,5-dideoxy-d-ribofuranose. These building blocks are compatible with solid-phase peptide synthesis following the 9-fluorenylmethoxycarbonyl (Fmoc) strategy, which we demonstrate by the synthesis of an SDA tetramer.

  9. Phase diagram for controlled crystallization of calcium phosphate under acidic organic monolayers

    NASA Astrophysics Data System (ADS)

    Cui, F. Z.; Zhou, L. F.; Cui, H.; Ma, C. L.; Lu, H. B.; Li, H. D.

    1996-12-01

    The effect of ionic concentration and pH on matrix-regulated crystallization may be important in biomineralization processes and biomimetic synthesis of materials. This effect in the system of calcium phosphate solution under stearic acid monolayers was investigated. In experiments, the solution conditions ranged in concentration of Ca ion of 0.1-20mM and in pH of 5.3-7.0. It was found that at the initial stage of the controlled crystallization, the (0001)-oriented hydroxyapatite (HAp) precipitations under the acidic monolayers always occur. At solution conditions near the solubility isotherms of octacalcium phosphate (OCP) and dicalcium phosphate dihydrate (DCPD) in the solubility phase diagram, precipitations of OCP and DCPD phases can form together with HAp precipitation, respectively. Orientations of DCPD or OCP phase precipitations were irregular.

  10. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    NASA Technical Reports Server (NTRS)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  11. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    PubMed

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns.

  12. Chromatographic studies of unusual on-column degradations of aniline compounds on XBridge Shield RP18 column in high pH aqueous mobile phase.

    PubMed

    Wang, Fang; Liu, Xiao-Keng; Lai, Susanna; Fang, Jan; Semin, David

    2011-06-03

    This paper reports unusual on-column degradations of aniline compounds on Waters XBridge Shield RP18 column when ammonium hydroxide in water and acetonitrile were used as mobile phases in liquid chromatography. The change of the level of on-column degradation of a model compound (Compound 1) with time was observed in the first fifteen injections when started at 60 °C. During a subsequent cooling program from 60 °C to 10 °C with a 10 °C interval, the levels of the degradation products of Compound 1 changed with the change of temperature and reached a maximum at 40 °C. The on-column degradation of Compound 1 was observed when started at 10 °C in the first injection, however, the magnitude of the change of the level of on-column degradation of Compound 1 with time in the first fifteen injections was much smaller than that at 60 °C. During a subsequent heating program from 10 to 60 °C with a 10 °C interval, the levels of the degradation products of Compound 1 increased with the increase in temperature but without a maximum. The change of the degradation product levels of this model compound in the heating process is not super-imposable with that in the cooling process, which demonstrates the degree of the degradation also depends on the heating or cooling process. Column history studies demonstrated that the on-column degradation of Compound 1 changed dramatically on the used columns at both starting temperatures while the dependency of heating and cooling processes on on-column degradation still existed. The unusual on-column degradation of Compound 1 on the used columns can be regenerated in a very similar fashion with an acetic acid column-wash procedure, but is not identical to that on the new column. Similar degradations of other commercially available aniline compounds were also observed with this high pH aqueous mobile phase system.

  13. Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system.

    PubMed

    Dhamole, Pradip B; Demanna, Dhanashree; Desai, S A

    2014-09-01

    Ferulic acid (FA) and p-coumaric acid (pCA) are high-value products that can be obtained by alkaline hydrolysis of lignocellulose. Present work explores the potential of surfactant-based cloud-point extraction (CPE) for FA and pCA extraction from corn cob hydrolysate. More than 90 % (w/w) extraction of both FA and pCA was achieved from model system with L92. The partition coefficient of FA and pCA in L92 aqueous phase system was 35 and 55, respectively. A significant enrichment (8-10-fold) of both FA and pCA was achieved in surfactant-rich phase. Furthermore, the downstream process volume was reduced by 10 to 13 times. Optimized conditions (5 % v/v L92 and pH 3.0) resulted into 85 and 89 % extraction of FA and p-CA, respectively, from alkaline corn cob hydrolysate. Biocompatibility tests were carried out for L92 for ethanol fermentation and found to be biocompatible. Thus, the new surfactant-based CPE system not only concentrated FA and pCA but also reduced the process volume significantly. Further, aqueous phase containing sugars can be used for ethanol fermentation.

  14. Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase

    NASA Astrophysics Data System (ADS)

    Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten

    2016-04-01

    Objective. One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. Approach. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. Main results. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. Significance. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.

  15. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids.

    PubMed

    Agut, Blas; Gamir, Jordi; Jaques, Josep A; Flors, Victor

    2016-10-01

    Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance.

  16. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids

    PubMed Central

    Agut, Blas; Gamir, Jordi; Jaques, Josep A.; Flors, Victor

    2016-01-01

    Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance. PMID:27683726

  17. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    SciTech Connect

    Damron, D.S.; Dorman, R.V. )

    1990-06-01

    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with ({sup 3}H)arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of ({sup 3}H)free fatty acids. These effects were attenuated in Ca{sup 2}{sup +}-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca{sup 2}{sup +} with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of ({sup 3}H)free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca{sup 2}{sup +} influx and that at least 80% of the ({sup 3}H)free fatty acid accumulation required calcium.

  18. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys

    NASA Astrophysics Data System (ADS)

    Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; Jin, Ke; Yang, Taini; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Shi, Shi; He, Mo-Rigen; Robertson, Ian M.; Weber, William J.; Wang, Lumin

    2016-12-01

    A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys.

  19. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys

    PubMed Central

    Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; Jin, Ke; Yang, Taini; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Shi, Shi; He, Mo-Rigen; Robertson, Ian M.; Weber, William J.; Wang, Lumin

    2016-01-01

    A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. The results suggest design criteria for next generation radiation tolerant structural alloys. PMID:27976669

  20. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys

    DOE PAGES

    Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; ...

    2016-12-15

    A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhancedmore » swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. Finally, the results suggest design criteria for next generation radiation tolerant structural alloys.« less

  1. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys

    SciTech Connect

    Lu, Chenyang; Niu, Liangliang; Chen, Nanjun; Jin, Ke; Yang, Taini; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Shi, Shi; He, Mo-Rigen; Robertson, Ian M.; Weber, William J.; Wang, Lumin

    2016-12-15

    A grand challenge in material science is to understand the correlation between intrinsic properties and defect dynamics. Radiation tolerant materials are in great demand for safe operation and advancement of nuclear and aerospace systems. Unlike traditional approaches that rely on microstructural and nanoscale features to mitigate radiation damage, this study demonstrates enhancement of radiation tolerance with the suppression of void formation by two orders magnitude at elevated temperatures in equiatomic single-phase concentrated solid solution alloys, and more importantly, reveals its controlling mechanism through a detailed analysis of the depth distribution of defect clusters and an atomistic computer simulation. The enhanced swelling resistance is attributed to the tailored interstitial defect cluster motion in the alloys from a long-range one-dimensional mode to a short-range three-dimensional mode, which leads to enhanced point defect recombination. Finally, the results suggest design criteria for next generation radiation tolerant structural alloys.

  2. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    PubMed

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  3. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry.

    PubMed

    Gallegos, Janneth; Arce, Cristina; Jordano, Rafael; Arce, Lourdes; Medina, Luis M

    2017-04-01

    The purpose of this work was to study the potential of gas chromatography-ion mobility spectrometry (GC-IMS) to differentiate lactic acid bacteria (LAB) through target identification and fingerprints of volatile metabolites. The LAB selected were used as reference strains for their influence in the flavour of cheese. The four strains of LAB can be distinguished by the fingerprints generated by the volatile organic compounds (VOCs) emitted. 2-butanone, 2-pentanone, 2-heptanone and 3-methyl-1-butanol were identified as relevant VOCs for Lactobacillus casei and Lactobacillus paracasei subsp. paracasei. 2-Butanone and 3-methyl-1-butanol were identified in Lactococcus lactis subsp. lactis and Lactococcus cremoris subsp. cremoris. The IMS signals monitoring during a 24-30h period showed the growth of the LAB in vitro. The results demonstrated that GC-IMS is a useful technology for bacteria recognition and also for screening the aromatic potential of new isolates of LAB.

  4. Computing Debris-flow Mobilization and Run-out with a Two-phase Depth-averaged Model

    NASA Astrophysics Data System (ADS)

    George, D. L.; Iverson, R. M.

    2011-12-01

    Large-scale, shallow earth-surface flows, such as river flows, overland flooding, and tsunami propagation and inundation, are commonly modeled with depth-averaged equations for the evolution of mass and momentum distributions. Depth-averaging three-dimensional conservation equations results in a tractable two-dimensional model that predicts macroscopic flow features with reasonable accuracy. For example, the simplest of the depth-averaged models---the shallow water equations---has proven to accurately describe water flooding and inundation. We have developed a depth-averaged, two-phase model applicable to granular-fluid mixtures such as landslides and debris flows. While the model relies on relatively simple assumptions for Coulomb frictional stress, the governing equations are more complex than those for shallow water flow. Our new equations include important feedback effects due to coupled evolution of the solid volume fraction and pore-fluid pressure, which mediates frictional stress. While pore-fluid pressure has long been known to be an important factor influencing debris-flow mobility, previous models lacked explicit coupling between pressure and granular dilation. Consequently, traditional models have also lacked the ability to account for the quasi-static transition of a stable mass of water-laden sediment into a debris flow. These models must be initialized by assuming a force balance far from equilibrium, ignoring the important transition to instability. By explicitly tracking the coupled pore-fluid pressure and solid volume fraction, our model captures this important transition and therefore can be used to investigate stability and mobility in addition to flow routing and deposition. Our model equations are a nonlinear hyperbolic system similar in mathematical structure to the shallow water equations, but having two additional equations for the solid volume fraction and pore-fluid pressure. Because of the mathematical similarities, numerical techniques

  5. Gas-phase structures and thermochemistry of neutral histidine and its conjugated acid and base.

    PubMed

    Riffet, Vanessa; Bouchoux, Guy

    2013-04-28

    Extensive exploration of the conformational space of neutral, protonated and deprotonated histidine has been conducted at the G4MP2 level. Theoretical protonation and deprotonation thermochemistry as well as heats of formation of gaseous histidine and its ionized forms have been calculated at the G4 level considering either the most stable conformers or an equilibrium population of conformers at 298 K. These theoretical results were compared to evaluated experimental determinations. Recommended proton affinity and protonation entropy deduced from these comparisons are PA(His) = 980 kJ mol(-1) and ΔpS(His) ∼ 0 J mol(-1) K(-1), thus leading to a gas-phase basicity value of GB(His) = 947.5 kJ mol(-1). Similarly, gas phase acidity parameters are ΔacidH(o)(His) = 1373 kJ mol(-1), ΔacidS(His) ∼ 10 J mol(-1) K(-1) and ΔacidG(o)(His) = 1343 kJ mol(-1). Computed G4 heats of formation values are equal to -290, 265 and -451 kJ mol(-1) for gaseous neutral histidine and its protonated and deprotonated forms, respectively. The present computational data correct, and complete, previous thermochemical parameter estimates proposed for gas-phase histidine and its acido-basic properties.

  6. Revision of the gas-phase acidity scale below 300 kcal mol(-1).

    PubMed

    Leito, Ivo; Raamat, Elin; Kütt, Agnes; Saame, Jaan; Kipper, Karin; Koppel, Ilmar A; Koppel, Ivar; Zhang, Min; Mishima, Masaaki; Yagupolskii, Lev M; Garlyauskayte, Romute Yu; Filatov, Andrey A

    2009-07-23

    The gas-phase acidity (GA) scale from (CF(3)CO)(2)NH to (C(2)F(5)SO(2))(2)NH--about a 24 kcal mol(-1) range of gas-phase acidities--was reexamined using the Fourier transform ion cyclotron resonance equilibrium measurement approach. Some additions and modifications to the standard methodology of GA measurements were introduced (estimation of partial pressures from mass spectra of the compounds, instead of the pressure gauge readings and use of long reaction times) to achieve higher reliability. Gas-phase acidities of 18 compounds were determined for the first time. The results reveal a contraction of the previously published values in this part of the scale. In particular, the GA values of (CF(3)SO(2))(2)NH and (C(2)F(5)SO(2))(2)NH (important components of lithium ion battery electrolytes and ionic liquids) were revised toward stronger acidities from 291.8 kcal mol(-1) to 286.5 kcal mol(-1) and from 289.4 kcal mol(-1) to 283.7 kcal mol(-1) (i.e., by 5.3 and 5.7 kcal mol(-1)), respectively. Experimental and computational evidence is presented in support of the current results.

  7. Ten- to 15-year results of the Oxford Phase III mobile unicompartmental knee arthroplasty

    PubMed Central

    Lisowski, L. A.; Meijer, L. I.; van den Bekerom, M. P. J.; Pilot, P.; Lisowski, A. E.

    2016-01-01

    Aims The interest in unicompartmental knee arthroplasty (UKA) for medial osteoarthritis has increased rapidly but the long-term follow-up of the Oxford UKAs has yet to be analysed in non-designer centres. We have examined our ten- to 15-year clinical and radiological follow-up data for the Oxford Phase III UKAs. Patients and Methods Between January 1999 and January 2005 a total of 138 consecutive Oxford Phase III arthroplasties were performed by a single surgeon in 129 patients for medial compartment osteoarthritis (71 right and 67 left knees, mean age 72.0 years (47 to 91), mean body mass index 28.2 (20.7 to 52.2)). Both clinical data and radiographs were prospectively recorded and obtained at intervals. Of the 129 patients, 32 patients (32 knees) died, ten patients (12 knees) were not able to take part in the final clinical and radiological assessment due to physical and mental conditions, but via telephone interview it was confirmed that none of these ten patients (12 knees) had a revision of the knee arthroplasty. One patient (two knees) was lost to follow-up. Results The mean follow-up was 11.7 years (10 to 15). A total of 11 knees (8%) were revised. The survival at 15 years with revision for any reason as the endpoint was 90.6% (95% confidence interval (CI) 85.2 to 96.0) and revision related to the prosthesis was 99.3% (95% CI 97.9 to 100). The mean total Knee Society Score was 47 (0 to 80) pre-operatively and 81 (30 to 100) at latest follow-up. The mean Oxford Knee Score was 19 (12 to 40) pre-operatively and 42 (28 to 55) at final follow-up. Radiolucency beneath the tibial component occurred in 22 of 81 prostheses (27.2%) without evidence of loosening. Conclusion This study supports the use of UKA in medial compartment osteoarthritis with excellent long-term functional and radiological outcomes with an excellent 15-year survival rate. Cite this article: Bone Joint J 2016;98-B(10 Suppl B):41–7. PMID:27694515

  8. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stress acclimating plants respond to abiotic and biotic stress by remodeling membrane fluidity and the release of a-linolenic from membrane lipid. The adjustment of membrane lipid fluidity occurs through changes in unsaturated fatty acid levels, a function provided by the regulated activity of...

  9. [Determination of trace haloacetic acids in drinking water using ion chromatography coupled with solid phase extraction].

    PubMed

    Sun, Yingxue; Huang, Jianjun; Gu, Ping

    2006-05-01

    The combined solid phase extraction (SPE)-ion chromatography (IC) method was developed for the analysis of trace haloacetic acids (HAAs) in drinking water. The tested HAAs included monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA). For trace determination of HAAs in real drinking water samples, conditions of LiChrolut EN SPE cartridge were investigated for HAAs preconcentration and matrix elimination. Elution was carried out by 2 mL of sodium hydroxide (10 mmol/L) with the flow rate of 2 mL/min. The Dionex IonPac AS16 column (250 mm x 4 mm i. d.), a high capacity and hydroxide-selective anion-exchange column designed for the determination of polarizable anions, was chosen for chromatographic separation. HAAs were analyzed with a concentration gradient of NaOH with the flow rate of 0.8 mL/min and detected by suppressed conductivity. A 500 microL sample loop was used. The detection limits of this SPE-IC method for MCAA, DCAA, DBAA and TCAA were 0.38-1.69 microg/L and MBAA was 12.5 microg/L under 25-fold preconcentration. The results demonstrate that the method is suitable for the analysis of trace haloacetic acids in drinking water.

  10. Phase Diagram and Heat Capacities of the Malonic Acid/Water System

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Beyer, K. D.

    2003-12-01

    Malonic acid is one of the more ubiquitous dicarboxylic acids found in the atmosphere and is quite soluble in water. Therefore, its impact on particle/cloud droplet formation needs to be better understood through the study of the thermodynamics of its aqueous solutions. The liquid/solid phase diagram and solution heat capacities of the malonic acid/water binary system have been investigated using differential scanning calorimetry and infrared spectroscopy of thin films. We report here the first measurement of the ice melting envelope as well as the ice/malonic acid eutectic temperature and composition in this binary system. Evidence from both thermal analysis and infrared spectroscopy is shown for a malonic acid hydrate, possibly C3H4O4ṡ6H2O. We have observed the formation of this hydrate over a large range of concentrations, and have found it is a major fraction of samples within that region. We have also determined the enthalpy of fusion of malonic acid as well as the constant pressure heat capacities of solutions in the concentration range 5 - 55 wt% malonic acid from 323 K to the freezing point of each solution.

  11. In-house SIRAS phasing of the polyunsaturated fatty-acid isomerase from Propionibacterium acnes

    SciTech Connect

    Liavonchanka, Alena; Hornung, Ellen; Feussner, Ivo; Rudolph, Markus

    2006-02-01

    Low iodide concentrations were sufficient to allow SAD and SIRAS phasing of cubic crystals of a novel fatty acid isomerase using Cu Kα radiation. The polyenoic fatty-acid isomerase from Propionibacterium acnes (PAI) catalyzes the double-bond isomerization of linoleic acid to conjugated linoleic acid, which is a dairy- or meat-derived fatty acid in the human diet. PAI was overproduced in Escherichia coli and purified to homogeneity as a yellow-coloured protein. The nature of the bound cofactor was analyzed by absorption and fluorescence spectroscopy. Single crystals of PAI were obtained in two crystal forms. Cubic shaped crystals belong to space group I2{sub 1}3, with a unit-cell parameter of 160.4 Å, and plate-like crystals belong to the monoclinic space group C2, with unit-cell parameters a = 133.7, b = 60.8, c = 72.2 Å, β = 115.8°. Both crystal forms contain one molecule per asymmetric unit and diffract to a resolution of better than 2.0 Å. Initial phases were obtained by SIRAS from in-house data from a cubic crystal that was soaked with an unusually low KI concentration of 0.25 M.

  12. Phase diagrams and water activities of aqueous ammonium salts of malonic acid.

    PubMed

    Beyer, Keith D; Richardson, Michael; Reusch, Breanna

    2011-04-14

    Malonic acid has been observed in the free troposphere and as a component of tropospheric aerosol, among other dicarboxylic acids. These aerosols can uptake ammonia, which partially or completely neutralizes the acids. Therefore, the impact of ammoniated dicarboxylic acids on the phases that can exist in aerosols at atmospheric temperatures needs investigation. To that end, the low temperature, solid/liquid phase diagrams of ammonium hydrogen malonate/water, ammonium malonate/water, and triammonium hydrogen malonate/water have been investigated with differential scanning calorimetry and infrared spectroscopy of thin films. Results show that the order of increasing solubility is triammonium hydrogen malonate, ammonium hydrogen malonate, malonic acid, and ammonium malonate. We have also determined a hydrate may form in the ammonium malonate system and decompose below 240 K. We report water activities at the ice melting points for each system up to the respective eutectic concentrations, and find for a given mole fraction of water, increasing ammonium content leads to decreasing water activity coefficients.

  13. Greening pharmaceutical applications of liquid chromatography through using propylene carbonate-ethanol mixtures instead of acetonitrile as organic modifier in the mobile phases.

    PubMed

    Tache, Florentin; Udrescu, Stefan; Albu, Florin; Micăle, Florina; Medvedovici, Andrei

    2013-03-05

    Substitution of acetonitrile (ACN) as organic modifier in mobile phases for liquid chromatography by mixtures of propylene carbonate (PC) and ethanol (EtOH) may be considered a greener approach for pharmaceutical applications. Such a replacement is achievable without any major compromise in terms of elution order, chromatographic retention, efficiency and peak symmetry. This has been equally demonstrated for reverse phase (RP), ion pair formation (IP) and hydrophilic interaction liquid chromatography (HILIC) separation modes. The impact on the sensitivity induced by the replacement between these organic solvents is discussed for UV-vis and mass spectrometric detection. A comparison between Van Deemter plots obtained under elution conditions based on ACN and PC/EtOH is presented. The alternative elution modes were also compared in terms of thermodynamic parameters, such as standard enthalpy (ΔH⁰) and entropic contributions to the partition between the mobile and the stationary phases, for some model compounds. Van't Hoff plots demonstrated that differences between the thermodynamic parameters are minor when shifting from ACN/water to PC/EtOH/water elution on an octadecyl chemically modified silicagel stationary phase. As long as large volume injection (LVI) of diluents non-miscible with the mobile phase is a recently developed topic having a high potential of greening the sample preparation procedures through elimination of the solvent evaporation stage, this feature was also assessed in the case of ACN replacement by PC/EtOH.

  14. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid.

    PubMed

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-12-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L(-1) limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  15. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid

    NASA Astrophysics Data System (ADS)

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-03-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L-1 limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  16. Applicability of the Remote Mobile Emplacement Package (RMEP) design as a mobility aid for proposed post-84 Mars missions, phase O

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The results of study to determine the applicability of the Remote Mobile Emplacement Package (RMEP) design concept as a mobility aid for the proposed post-'84 Mars missions are presented. The RMEP wheel and mobility subsystem parameters: wheel tire size, weight, stowed volume, and environmental effects; obstacle negotiation; reliability and wear; motor and drive train; and electrical power demand were reviewed. Results indicated that: (1) the basic RMEP wheel design would be satisfactory, with additional attention to heating, side loading, tread wear and ultraviolet radiation protection; (2) motor and drive train power requirements on Mars would be less than on Earth; and (3) the mobility electrical power requirements would be small enough to offer the option of operating the Mars mini rover untethered. Payload power required for certain sampling functions would preclude the use of battery power for these missions. Hazard avoidance and reverse direction maneuvers are discussed. Limited examination of vehicle payload integration and thermal design was made, pending establishment of a baseline vehicle/payload design.

  17. Hydration energies of deprotonated amino acids from gas phase equilibria measurements.

    PubMed

    Wincel, Henryk

    2008-08-01

    Singly hydrated clusters of deprotonated amino acids were studied using an electrospray high-pressure mass spectrometer equipped with a pulsed ion-beam reaction chamber. Thermochemical data, DeltaH(o), DeltaS(o), and DeltaG(o), for the hydration reaction [AA - H](-) + H(2)O = [AA - H](-).(H(2)O) were obtained from gas-phase equilibria determinations for AA = Gly, Ala, Val, Pro, Phe, Lys, Met, Trp, Gln, Arg, and Asp. The hydration free-energy changes are found to depend significantly on the side-chain substituents. The water binding energy in [AA - H](-).(H(2)O) increases with the gas-phase acidity of AA. The anionic hydrogen bond strengths in [AA - H](-).(H(2)O) are compared with those of the cationic bonds in the corresponding AAH(+).(H(2)O) systems.

  18. Calculations of phase equilibria for mixtures of triglycerides, fatty acids, and their esters in lower alcohols

    NASA Astrophysics Data System (ADS)

    Stepanov, D. A.; Ermakova, A.; Anikeev, V. I.

    2011-01-01

    The objects of study were mixtures containing triglycerides and lower alcohols and also the products of the transesterification of triglycerides, glycerol and fatty acid esters. The Redlich-Kwong-Soave equation of state was used as a thermodynamic model for the phase state of the selected mixtures over wide temperature, pressure, and composition ranges. Group methods were applied to determine the critical parameters of pure substances and their acentric factors. The parameters obtained were used to calculate the phase diagrams and critical parameters of mixtures containing triglycerides and lower alcohols and the products of the transesterification of triglycerides, glycerol and fatty acid esters, at various alcohol/oil ratios. The conditions of triglyceride transesterification in various lower alcohols providing the supercritical state of reaction mixtures were selected.

  19. Vacuum FTIR observation on hygroscopic properties and phase transition of malonic acid aerosols

    NASA Astrophysics Data System (ADS)

    Shao, Xu; Zhang, Yun; Pang, Shu-Feng; Zhang, Yun-Hong

    2017-02-01

    A novel approach based on a combination of a pulse relative humidity (RH) controlling system and a rapid scan vacuum FTIR spectrometer was utilized to investigate the hygroscopic property and phase transition of malonic acid (MA) aerosols. By using this approach, both water vapor amount around the aerosols and water content within aerosols with sub-second time resolution were obtained. Based on the features of FTIR absorbing bands, it can be known that the evolution of hydrogen-bonding structures of malonic acid aerosols took place from (H2O)n-MA to MA-MA accompanying with phase transition in the dehumidifying process. And in present paper, the stepwise efflorescence of MA aerosols and nucleation rates at different RHs are first reported. Our observation has shown that the efflorescence of MA started at ∼17% RH and the nucleation rates increased with decreasing RH.

  20. Effects of the number of fatty acid residues on the phase behaviors of decaglycerol fatty acid esters.

    PubMed

    Ai, Sakiko; Ishitobi, Masahiko

    2006-04-15

    The effects of the number of fatty acid residues (n) in decaglycerol fatty acid esters, i.e., decaglycerol laurates (abbreviated to (C11)nG10), on the phase behaviors of three laurate esters, (C11)1.9G10, (C11)2.7G10, and (C11)3.4G10, were investigated. The unreacted decaglycerol remaining in each ester was removed by liquid extraction before use. (C11)1.9G10 formed hexagonal liquid crystals in aqueous solutions, while (C11)2.7G10 and (C11)3.4G10, which are more hydrophobic than (C11)1.9G10, formed lamellar liquid crystals. The cloud point in aqueous solution was measured for mixtures of these three esters. The cloud phenomenon was observed when the weight ratio of hydrophilic groups to the total surfactant (WH/WS) was around 0.6. The cloud point shifted to a markedly higher temperature, even with a slight increase in the WH/WS ratio. The solubilization abilities of (C11)nG10 for the oils m-xylene and (R)-(+)-limonene were also examined. When the WH/WS ratio was between 0.60 and 0.64, (C11)nG10 formed microemulsions and lyotropic liquid crystals in the presence of water and the oils. These self-organized structures were stable, even above 90 degrees C. It is concluded that the phase behavior of (C11)nG10 are insensitive to temperature, but strongly dependent on both the WH/WS ratio and the number of fatty acid residues (n).

  1. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    PubMed

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-07

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  2. Simultaneous Determination of Diosmin and Hesperidin in Pharmaceuticals by RPLC using Ionic Liquids as Mobile Phase Modifiers

    PubMed Central

    Szymański, Marcin; Młynarek, Daria; Szymański, Arkadiusz; Matławska, Irena

    2016-01-01

    Diosmin and hesperidin are natural flavonoid glycosides found in various plant materials, mainly in citrus fruits in different concentrations. Diosmin for pharmaceutical use is obtained mainly semi-synthetically from hesperidin. Hesperidin often accompanies diosmin as a natural impurity in different pharmaceutical formulations; therefore, a simple, fast and precise method for the simultaneous assay of diosmin and hesperidin in pharmaceutical formulations has been developed to control their contents. Chromatographic resolution was performed using a column with C-18 packing and the following mobile phase: methanol/water (45:55, v/v) with 0.025% added didecyldimethylammonium lactate, which significantly affects retention, shortening analysis time and having a positive impact on the symmetry of resulting chromatographic peaks. The method shows linearity between 2.5 and 100 μg/mL, high repeatability (0.39 and 0.42% for diosmin and hesperidin, respectively) and accuracy of 96 to 102% for both the assayed compounds. Intraday and interday precision of the new method were less than RSD% 1, 2. The limit of detection of the assayed compounds is 2.5 and 1.2 μg/mL for diosmin and hesperidin, respectively. The method was tested on several pharmaceutical products available in Poland. PMID:27610154

  3. Interaction of gas phase oxalic acid with ammonia and its atmospheric implications.

    PubMed

    Peng, Xiu-Qiu; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Huang, Wei

    2015-04-14

    Oxalic acid is believed to play an important role in the formation and growth of atmospheric organic aerosols. However, as a common organic acid, the understanding of the larger clusters formed by gas phase oxalic acid with multiple ammonia molecules is incomplete. In this work, the structural characteristics and thermodynamics of oxalic acid clusters with up to six ammonia molecules have been investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that oxalic acid forms relatively stable clusters with ammonia molecules, and that ionization events play a key role. The analyses of the thermodynamics and atmospheric relevance indicate that the heterodimer (H2C2O4)(NH3) shows an obvious relative concentration in the atmosphere, and thus likely participates in new particle formation. However, with increasing number of ammonia molecules, the concentration of clusters decreases gradually. Additionally, clusters of oxalic acid with ammonia molecules are predicted to form favorably in low temperature conditions and show high Rayleigh scattering intensities.

  4. Interaction of Gas Phase Oxalic Acid with Ammonia and its Atmospheric Implications

    SciTech Connect

    Peng, Xiu-Qiu; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Huang, Wei

    2015-04-14

    Oxalic acid is believed to play an important role in the formation and growth of atmospheric organic aerosols. However, as a common organic acid, the understanding of the larger clusters formed by gas phase oxalic acid with multiple ammonia molecules is incomplete. In this work, the structural characteristics and thermodynamics of oxalic acid clusters with up to six ammonia molecules have been investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that oxalic acid forms relatively stable clusters with ammonia molecules, and that ionization events play a key role. The analyses of the thermodynamics and atmospheric relevance indicate that the heterodimer (H2C2O4)(NH3) shows an obvious relative concentration in the atmosphere, and thus likely participates in new particle formation. However, with increasing number of ammonia molecules, the concentration of clusters decreases gradually. Additionally, clusters of oxalic acid with ammonia molecules are predicted to form favorably in low temperature conditions and show high Rayleigh scattering intensities.

  5. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism

    PubMed Central

    Ceusters, Johan; Borland, Anne M.; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P.

    2014-01-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m–2 s–1) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea ‘Maya’. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  6. Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility.

    PubMed

    Eschauzier, Christian; Raat, Klaasjan J; Stuyfzand, Pieter J; De Voogt, Pim

    2013-08-01

    Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main source for PFAA in surface waters and corresponding drinking water. However, even though groundwater is an important source for drinking water production, PFAA sources remain largely uncertain. In this paper, we identified different direct and indirect sources of PFAA to groundwater within the catchment area of a public supply well field (PSWF) in The Netherlands. Direct sources were landfill leachate and water draining from a nearby military base/urban area. Indirect sources were infiltrated rainwater. Maximum concentrations encountered in groundwater within the landfill leachate plume were 1.8 μg/L of non branched perfluorooctanoic acid (L-PFOA) and 1.2 μg/L of perfluorobutanoic acid (PFBA). Sum concentrations amounted to 4.4 μg/L total PFAA. The maximum concentration of ΣPFAA in the groundwater originating from the military camp was around 17 ng/L. Maximum concentrations measured in the groundwater halfway the landfill and the PWSF (15 years travel distance) were 29 and 160 ng/L for L-PFOA and PFBA, respectively. Concentrations in the groundwater pumping wells (travel distance >25 years) were much lower: 0.96 and 3.5 ng/L for L-PFOA and PFBA, respectively. The chemical signature of these pumping wells corresponded to the signature encountered in other wells sampled which were fed by water that had not been in contact with potential contaminant sources, suggesting a widespread diffuse contamination from atmospheric deposition.

  7. Determination of naphthenic acids in crude oils using nonaqueous ion exchange solid-phase extraction.

    PubMed

    Jones, D M; Watson, J S; Meredith, W; Chen, M; Bennett, B

    2001-02-01

    A method is presented for the routine, rapid, and quantitative analysis of aliphatic and naphthenic acids in crude oils, based on their isolation using nonaqueous ion exchange solid-phase extraction cartridges. The isolated acid fractions are methylated and analyzed by gas chromatography and gas chromatography/mass spectrometry. The method is effective on both light and heavy oils and is capable of providing mechanistic information of geochemical significance on the origin of the acids in the oils. Analysis of oils that were solvent extracted from laboratory and field mesocosm marine sediment oil degradation studies indicate that this new method of analyzing the products of hydrocarbon biodegradation may be a useful tool for monitoring the progress of bioremediation of oil spills in the environment.

  8. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.

    PubMed

    Yang, Sheng-Xiang; Liao, Bin; Li, Jin-tian; Guo, Tao; Shu, Wen-Sheng

    2010-08-01

    A revegetation program was established at an extreme acidic and metal-toxic pyrite/copper mine wasteland in Guangdong Province, PR China using a combination of four native grass species and one non-native woody species. It was continued and monitored for 2 y. The emphasis was on acidification, metal mobility and nutrient accumulation in the soil-plant system. Our results showed the following: (i) the acid-forming potential of the mine soils decreased steadily with time, which might be due to plant root-induced changes inhibiting the oxidization of sulphide minerals; (ii) heavy metal extractability (diethylene-triamine-pentaacetic acid-extractable Pb and Zn) in the soils increased with time despite an increase in soil pH, which might be attributed to soil disturbance and plant rhizospheric processes, as well as a consequence of the enhanced metal accumulation in plants over time; and (iii) the vegetation cover increased rapidly with time, and plant development accelerated the accumulation of major nutrients (organic matter, total and ammonium-N, and available P and K). The 2-y field experiment demonstrates that direct seeding/planting of native plant species in combination with lime and manure amelioration is a practical approach to the initial establishment of a self-sustaining vegetation cover on this metalliferous and sulphide-bearing mine wasteland. However, heavy metal accumulation in the soil-plant system should be of great concern, and long-term monitoring of ecological risk must be an integral part of such a restoration scheme.

  9. Reversed-phase liquid chromatography using mandelic acid as an eluent for the determination of uranium in presence of large amounts of thorium.

    PubMed

    Jaison, P G; Telmore, Vijay M; Kumar, Pranaw; Aggarwal, Suresh K

    2009-02-27

    Studies were carried out for the separation of uranium (U) and thorium (Th) on reversed-phase (RP) C18 columns using mandelic acid as an eluent. Retention of thorium-mandelate on the unmodified stationary phase was found to be greater than that of uranyl-mandelate under the pH conditions employed. Th retention capacity of the stationary phase was determined as a function of pH and MeOH content of the mobile phase. The optimised parameters allowing U elution prior to Th were utilized for the determination of small amounts of U in the presence of large amounts of Th. The method has been used for the determination of U in synthetic samples with Th/U amount ratios up to 100,000 (10 microg/g of U) without any pre-separation, employing a particulate C18 column. Effect of concentration of ion interaction reagents (IIRs) on the retention was studied to understand the mechanism of adsorption of their mandelate complexes onto the stationary phase. The experiments conducted unequivocally prove that thorium-mandelate complex is neutral whereas uranyl-mandelate complex is anionic in nature.

  10. Mobility of Transgenic Nucleic Acids and Proteins within Grafted Rootstocks for Agricultural Improvement

    PubMed Central

    Haroldsen, Victor M.; Szczerba, Mark W.; Aktas, Hakan; Lopez-Baltazar, Javier; Odias, Mar Joseph; Chi-Ham, Cecilia L.; Labavitch, John M.; Bennett, Alan B.; Powell, Ann L. T.

    2012-01-01

    Grafting has been used in agriculture for over 2000 years. Disease resistance and environmental tolerance are highly beneficial traits that can be provided through use of grafting, although the mechanisms, in particular for resistance, have frequently been unknown. As information emerges that describes plant disease resistance mechanisms, the proteins, and nucleic acids that play a critical role in disease management can be expressed in genetically engineered (GE) plant lines. Utilizing transgrafting, the combination of a GE rootstock with a wild-type (WT) scion, or the reverse, has the potential to provide pest and pathogen resistance, impart biotic and abiotic stress tolerance, or increase plant vigor and productivity. Of central importance to these potential benefits is the question of to what extent nucleic acids and proteins are transmitted across a graft junction and whether the movement of these molecules will affect the efficacy of the transgrafting approach. Using a variety of specific examples, this review will report on the movement of organellar DNA, RNAs, and proteins across graft unions. Attention will be specifically drawn to the use of small RNAs and gene silencing within transgrafted plants, with a particular focus on pathogen resistance. The use of GE rootstocks or scions has the potential to extend the horticultural utility of grafting by combining this ancient technique with the molecular strategies of the modern era. PMID:22645583

  11. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry.

    PubMed

    Rondo, L; Ehrhart, S; Kürten, A; Adamov, A; Bianchi, F; Breitenlechner, M; Duplissy, J; Franchin, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Hakala, J; Hansel, A; Keskinen, H; Kim, J; Jokinen, T; Lehtipalo, K; Leiminger, M; Praplan, A; Riccobono, F; Rissanen, M P; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Smith, J N; Tomé, A; Tröstl, J; Tsagkogeorgas, G; Vaattovaara, P; Winkler, P M; Williamson, C; Wimmer, D; Baltensperger, U; Kirkby, J; Kulmala, M; Petäjä, T; Worsnop, D R; Curtius, J

    2016-03-27

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  12. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  13. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  14. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer.

    PubMed

    Dominguez Pardo, Juan J; Dörr, Jonas M; Iyer, Aditya; Cox, Ruud C; Scheidelaar, Stefan; Koorengevel, Martijn C; Subramaniam, Vinod; Killian, J Antoinette

    2017-01-01

    A promising tool in membrane research is the use of the styrene-maleic acid (SMA) copolymer to solubilize membranes in the form of nanodiscs. Since membranes are heterogeneous in composition, it is important to know whether SMA thereby has a preference for solubilization of either specific types of lipids or specific bilayer phases. Here, we investigated this by performing partial solubilization of model membranes and analyzing the lipid composition of the solubilized fraction. We found that SMA displays no significant lipid preference in homogeneous binary lipid mixtures in the fluid phase, even when using lipids that by themselves show very different solubilization kinetics. By contrast, in heterogeneous phase-separated bilayers, SMA was found to have a strong preference for solubilization of lipids in the fluid phase as compared to those in either a gel phase or a liquid-ordered phase. Together the results suggest that (1) SMA is a reliable tool to characterize native interactions between membrane constituents, (2) any solubilization preference of SMA is not due to properties of individual lipids but rather due to properties of the membrane or membrane domains in which these lipids reside and (3) exploiting SMA resistance rather than detergent resistance may be an attractive approach for the isolation of ordered domains from biological membranes.

  15. Insights into diastereoisomeric characterization of tetrahydropyridazine amino acid derivatives: crystal structures and gas phase ion chemistry.

    PubMed

    Giorgi, Gianluca; Favi, Gianfranco; Attanasi, Orazio A

    2013-08-14

    Structural, conformational properties, and gas phase reactivity of two representative diastereoisomeric members of a series of α,α-tetrahydropyridazine amino acid derivatives have been investigated by using X-ray crystallography, tandem mass spectrometry and theoretical calculations. Both diastereoisomers show an unusual screw-boat conformation of the tetrahydropyridazine ring. While protonated molecules mainly decompose in the gas phase by loss of acetamide, the main reactivity of the [M + Na](+) species consists of loss of PhNCO followed by acetamide and it is strictly dependent upon the stereochemistry of the parent compound. The most stable energy minimized structures obtained by theoretical calculations are in full agreement with the experimental data and allowed us to rationalize the gas phase reaction pathways.

  16. EnEnvironmental Mobility of Pu(IV) in the Presence of Ethylenediaminetetraacetic Acid: Myth or Reality

    SciTech Connect

    Rai, Dhanpat; Moore, Dean A.; Rosso, Kevin M.; Felmy, Andrew R.; Bolton, Harvey

    2008-07-01

    Ethylenediaminetetracetic acid (EDTA), which was co-disposed with Pu at several U. S. Department of Energy sites, has been reported to enhance the solubility and transport of Pu. It is generally assumed that this enhanced transport of Pu in geologic environments is a result of complexation of Pu(IV) with EDTA. However, the fundamental bases for this assumption have never been fully explored. Whether EDTA can mobilize Pu(IV) in geologic environments is dependent on many factors, chief among them are not only the complexation constants of Pu with EDTA and dominant oxidation state and the nature of Pu solids, but also 1) the complexation constants of environmentally important metal ions (e.g. Fe, Al, Ca, Mg) that compete with Pu for EDTA and 2) EDTA interactions with geomedia (e.g., adsorption, biodegradation) that reduce effective EDTA concentrations available for complexation. Extensive studies over a large range of pH values (1 to 14) and EDTA concentrations (0.0001 to 0.01 M) as a function of time were conducted on the solubility of 2-line ferrihydrite (Fe(OH)3(s)), PuO2(am) in the presence of different concentrations of Ca ions, and mixtures of PuO2(am) and Fe(OH)3(s). The solubility data were interpreted using Pitzer’s ion-interaction approach to determine/validate the solubility product of Fe(OH)3(s), the complexation constants of Pu(IV)-EDTA and Fe(III)-EDTA, and to determine the affect of EDTA in solubilizing Pu(IV) from PuO2(am) in the presence of Fe(III) compounds and aqueous Ca concentrations. Predictions based on these extensive fundamental data show that environmental mobility of Pu as a result of Pu(IV)-EDTA complexation as reported/implied in the literature is a myth rather than the reality.

  17. Use of oleic-acid functionalized nanoparticles for the magnetic solid-phase microextraction of alkylphenols in fruit juices using liquid chromatography-tandem mass spectrometry.

    PubMed

    Viñas, Pilar; Pastor-Belda, Marta; Torres, Aitor; Campillo, Natalia; Hernández-Córdoba, Manuel

    2016-05-01

    Magnetic nanoparticles of cobalt ferrite with oleic acid as the surfactant (CoFe2O4/oleic acid) were used as sorbent material for the determination of alkylphenols in fruit juices. High sensitivity and specificity were achieved by liquid chromatography and detection using both diode-array (DAD) and electrospray-ion trap-tandem mass spectrometry (ESI-IT-MS/MS) in the selected reaction monitoring (SRM) mode of the negative fragment ions for alkylphenols (APs) and in positive mode for ethoxylate APs (APEOs). The optimized conditions for the different variables influencing the magnetic separation procedure were: mass of magnetic nanoparticles, 50mg, juice volume, 10mL diluted to 25mL with water, pH 6, stirring for 10min at room temperature, separation with an external neodymium magnet, desorption with 3mL of methanol and orbital shaking for 5min. The enriched organic phase was evaporated and reconstituted with 100µL acetonitrile before injecting 30µL into a liquid chromatograph with a mobile phase composed of acetonitrile/0.1% (v/v) formic acid under gradient elution. Quantification limits were in the range 3.6 to 125ngmL(-1). The recoveries obtained were in the 91-119% range, with RSDs lower than 14%. The ESI-MS/MS spectra permitted the correct identification of both APs and APEOs in the fruit juice samples.

  18. Normal phase LC coupled with direct analysis in real time MS for the chiral analysis of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and jasmonic acid.

    PubMed

    Chang, Cuilan; Zhou, Zhigui; Yang, Youyou; Han, Yehua; Bai, Yu; Zhao, Meiping; Liu, Huwei

    2012-11-01

    Normal phase chiral LC (NPLC) has been proved to be powerful and efficient for chiral separation. However, the combination of NPLC with ESI or atmospheric pressure chemical ionization MS is restricted by the poor ionization efficiency and thermal fragmentations of analytes to some extent. Direct analysis in real time MS (DART-MS) is an ambient ionization technique that shows high ionization efficiency of the analytes in the normal phase mobile phase. In this work, we coupled chiral NPLC to DART-MS for the chiral qualitative and quantitative analysis of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and jasmonic acid enantiomers. Satisfactory results for the enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol operating in the positive mode were obtained in terms of linearity (2.5-250 μg/mL, R(2) , 0.999-1.000) and repeatability (25 μg/mL, RSDs, 4.7-5.6%). Moreover, chiral NPLC-DART-MS resulted in the simultaneous chiral separation and detection of jasmonic acid enantiomers, which are very difficult to be analyzed by NPLC-ESI-MS and NPLC-APCI-MS. Compared with the coupled techniques of NPLC-ESI-MS and NPLC-APCI-MS, NPLC-DART-MS showed advantages in increasing the ionization efficiency and reducing the in-source thermal fragmentation of analytes.

  19. Probing the segmental mobility and energy of the active zones of a protein chain (aspartic acid protease) by a coarse-grained bond-fluctuation Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Farmer, Barry

    2008-03-01

    A protein chain such as aspartic acid protease is described by a specific sequence of 99 residues each with its own specific characteristics. In a coarse-grained description, the backbone of a protein chain is described by nodes tethered together by peptide bonds where each node (the amino acid group) is characterized by molecular weight and hydrophobicity. A well-developed and somewhat mature computational modeling tool for the polymer chain such as the bond-fluctuation model is used to study such a specific protein chain with its constitutive amino groups and their sequence. The relative magnitude of hydrophobicity is used to develop appropriate interaction potentials for these amino acid groups in explicit solvent. The Metropolis algorithm is used to move each node and solvent constituent. Local energy and mobility of each amino group are analyzed along with global energy, mobility, and conformation of the protein chain. Effect of the solvent interaction and its concentration on these quantities will be presented.

  20. Calculation of the hole mobilities of the three homopolynucleotides, poly(guanilic acid), poly(adenilic acid), and polythymidine in the presence of water and Na+ ions.

    PubMed

    Bende, Attila; Bogár, Ferenc; Beleznay, Ferenc; Ladik, János

    2008-12-01

    Recent high resolution x-ray diffraction experiments have determined the structure of nucleosomes. In it 147 base pair long DNA B superhelix is wrapped around the eight nucleohistone proteins. They have found that there are many hydrogen-bonds (H-bonds) between the negative sites phosphate (PO4-) groups DNA, and first of all there is the positively charged lysine and arginine side chains of the histones. This means that there is a non-negligible charge transfer from DNA to the proteins causing a hole current in DNA and an electronic one in the proteins. If the relative positions of the two macromolecules change due to some external disturbances, the DNA moves away from the protein and can be read. If this happens simultaneously at several nucleosomes and at many places in chromatin (built up from the nucleosomes), undesired genetic information becomes readable. This final end can cause the occurrence of oncoproteins at an undesired time point which most probably disturbs the self-regulation of a differentiated cell. The connection of these chain of events with the initiation of cancer is obvious. To look into the details of these events we have used the detailed band structures of the four homopolynucleotides in the presence of water and natrium (Na+) ions calculated previously with the help of the ab initio Hartree-Fock crystal orbital method. We have found that in the case of three homopolynucleotides the width of their valence band is broad enough (approximately 10 times broader than the thermal energy at 300K) for the application of the simple deformation potential approximation for transport calculations. With the help of this we have determined the hole mobilities at 300K and 180K of poly(guanilic acid), poly(adenilic acid), and polythimidine (polycytidine has a too narrow valence band for the application of the deformation potential method). The obtained mobilities are large enough to allow Bloch-type conduction in these systems. At the end of the paper we

  1. Calculation of the hole mobilities of the three homopolynucleotides, poly(guanilic acid), poly(adenilic acid), and polythymidine in the presence of water and Na+ ions

    NASA Astrophysics Data System (ADS)

    Bende, Attila; Bogár, Ferenc; Beleznay, Ferenc; Ladik, János

    2008-12-01

    Recent high resolution x-ray diffraction experiments have determined the structure of nucleosomes. In it 147 base pair long DNA B superhelix is wrapped around the eight nucleohistone proteins. They have found that there are many hydrogen-bonds (H-bonds) between the negative sites phosphate ( PO4- ) groups DNA, and first of all there is the positively charged lysine and arginine side chains of the histones. This means that there is a non-negligible charge transfer from DNA to the proteins causing a hole current in DNA and an electronic one in the proteins. If the relative positions of the two macromolecules change due to some external disturbances, the DNA moves away from the protein and can be read. If this happens simultaneously at several nucleosomes and at many places in chromatin (built up from the nucleosomes), undesired genetic information becomes readable. This final end can cause the occurrence of oncoproteins at an undesired time point which most probably disturbs the self-regulation of a differentiated cell. The connection of these chain of events with the initiation of cancer is obvious. To look into the details of these events we have used the detailed band structures of the four homopolynucleotides in the presence of water and natrium ( Na+ ) ions calculated previously with the help of the ab initio Hartree-Fock crystal orbital method. We have found that in the case of three homopolynucleotides the width of their valence band is broad enough ( ˜10 times broader than the thermal energy at 300K ) for the application of the simple deformation potential approximation for transport calculations. With the help of this we have determined the hole mobilities at 300K and 180K of poly(guanilic acid), poly(adenilic acid), and polythimidine (polycytidine has a too narrow valence band for the application of the deformation potential method). The obtained mobilities are large enough to allow Bloch-type conduction in these systems. At the end of the paper we discuss

  2. Characterization and Acid-Mobilization Study of Iron-Containing Mineral Dust Source Materials

    SciTech Connect

    Cwiertny, David M.; Baltrusaitis, Jonas; Hunter, Gordon J.; Laskin, Alexander; Scherer, Michelle; Grassian, Vicki H.

    2008-03-04

    Processes that solubilize the iron in mineral dust aerosols may increase the amount of iron supplied to ocean surface waters, and thereby stimulate phytoplankton productivity. It was recently proposed that mixing of mineral dusts with SO2 and HNO3 produces extremely acidic environments that favor the formation of bioavailable Fe(II). Here, four authentic mineral dust source materials (Saudi Beach sand (SB), Inland Saudi sand (IS), Saharan Sand (SS) and China Loess (CL)) and one commercial reference material (Arizona Test Dust (AZTD)) were spectroscopically characterized, and their dissolution at pH 1 was examined in aqueous batch systems. Spectroscopic analyses indicated that the bulk and near-surface region of all samples possessed similar elemental compositions and that iron was unevenly distributed among dust 10 particles. Mössbauer spectroscopy revealed Fe(III) in all samples, although SB, CL and AZTD also contained appreciable Fe(II). Both Fe(II) and Fe(III) were primarily substituted into aluminosilicates, although CL, AZTD and IS also contained Fe(III) oxides. Total iron solubility (defined as the summed concentration of dissolved Fe(II) and Fe(III) measured after 24 h) ranged 14 between 4-12% of the source materials’ iron content, but did not scale with either the surface area or the iron content of the samples. This suggests that other factors such as iron speciation and mineralogy may play a key role in iron solubility. Also, the elevated nitrate concentrations encountered from nitric acid at pH 1 suppressed dissolution of Fe(II) from AZTD, CL and SB particles, which we propose results from the surface-mediated, non-photochemical reduction of nitrate by Fe(II).

  3. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams.

  4. Understanding the Complexity of Porous Graphitic Carbon (PGC) Chromatography: Modulation of Mobile-Stationary Phase Interactions Overcomes Loss of Retention and Reduces Variability

    PubMed Central

    2016-01-01

    Porous graphitic carbon (PGC) is an important tool in a chromatographer’s armory that retains polar compounds with mass spectrometry (MS)-compatible solvents. However, its applicability is severely limited by an unpredictable loss of retention, which can be attributed to contamination. The solutions offered fail to restore the original retention and our observations of retention time shifts of gemcitabine/metabolites on PGC are not consistent with contamination. The mobile phase affects the ionization state of analytes and the polarizable PGC surface that influences the strength of dispersive forces governing retention on the stationary phase. We hypothesized that failure to maintain the same PGC surface before and after running a gradient is a cause of the observed retention loss/variability on PGC. Herein, we optimize the choice of mobile phase solvent in a gradient program with three parts: a preparatory phase, which allows binding of analytes to column; an elution phase, which gives the required separation/peak shape; and a maintenance phase, to preserve the required retention capacity. Via liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis of gemcitabine and its metabolites extracted from tumor tissue, we demonstrate reproducible chromatography on three PGC columns of different ages. This approach simplifies use of the PGC to the same level as that of a C-18 column, removes the need for column regeneration, and minimizes run times, thus allowing PGC columns to be used to their full potential. PMID:27228284

  5. Model-based identification of optimal operating conditions for amino acid simulated moving bed enantioseparation using a macrocyclic glycopeptide stationary phase.

    PubMed

    Fuereder, Markus; Majeed, Imthiyas N; Panke, Sven; Bechtold, Matthias

    2014-06-13

    Teicoplanin aglycone columns allow efficient separation of amino acid enantiomers in aqueous mobile phases and enable robust and predictable simulated moving bed (SMB) separation of racemic methionine despite a dependency of the adsorption behavior on the column history (memory effect). In this work we systematically investigated the influence of the mobile phase (methanol content) and temperature on SMB performance using a model-based optimization approach that accounts for methionine solubility, adsorption behavior and back pressure. Adsorption isotherms became more favorable with increasing methanol content but methionine solubility was decreased and back pressure increased. Numerical optimization suggested a moderate methanol content (25-35%) for most efficient operation. Higher temperature had a positive effect on specific productivity and desorbent requirement due to higher methionine solubility, lower back pressure and virtually invariant selectivity at high loadings of racemic methionine. However, process robustness (defined as a difference in flow rate ratios) decreased strongly with increasing temperature to the extent that any significant increase in temperature over 32°C will likely result in operating points that cannot be realized technically even with the lab-scale piston pump SMB system employed in this study.

  6. Use of hydrochloric acid for determinining solid-phase arsenic partitioning in sulfidic sediments.

    PubMed

    Wilkin, Richard T; Ford, Robert G

    2002-11-15

    We examined the use of room-temperature hydrochloric acid (1-6 M) and salt solutions of magnesium chloride, sodium carbonate, and sodium sulfide for the removal of arsenic from synthetic iron monosulfides and contaminated sediments containing acid-volatile sulfides (AVS). Results indicate that acid-soluble arsenic reacts with H2S released from AVS phases and precipitates at low pH as disordered orpiment or alacranite. Arsenic sulfide precipitation is consistent with geochemical modeling in that conditions during acid extraction are predicted to be oversaturated with respect to orpiment, realgar, or both. Binding of arsenic with sulfide at low pH is sufficiently strong that 6 M HCl will not keep spiked arsenic in the dissolved fraction. Over a wide range of AVS concentrations and molar [As]/[AVS] ratios, acid extraction of arsenic from sulfide-bearing sediments will give biased results that overestimate the stability or underestimate the bioavailability of sediment-bound arsenic. Alkaline solutions of sodium sulfide and sodium carbonate are efficient in removing arsenic from arsenic sulfides and mixed iron-arsenic sulfides because of the high solubility of arsenic at alkaline pH, the formation of stable arsenic complexes with sulfide or carbonate, or both.

  7. Mobility of Po and U-isotopes under acid mine drainage conditions: an experimental approach with samples from Río Tinto area (SW Spain).

    PubMed

    Barbero, L; Gázquez, M J; Bolívar, J P; Casas-Ruiz, M; Hierro, A; Baskaran, M; Ketterer, M E

    2014-12-01

    Under acid mine drainage (AMD) conditions, the solubilities and mobilities of many elements are vastly different from conditions prevailing in most natural waters. Studies are underway in the Río Tinto area (Iberian Pyrite Belt), in order to understand the behavior and mobility of long-lived U-series radionuclides under AMD conditions. A set of leaching experiments utilizing typical country rocks from the Tinto River basin, waste rock pile composite materials, iron-rich riverbed sediments and gossan (weathered naturally rock) were performed towards this purpose. Initial leaching experiments using distilled water kept in contact with solid material for 300, 100, 50 and 1 h resulted in very low concentrations of U with (234)U/(238)U activity ratios close to equilibrium and activity concentrations of (210)Po < 0.03 mBq/g. Leaching experiments performed with sulfuric acid media (0.1 and 0.01 M), and contact times between the solid and solution for 24 h were conducted to quantify the amount of U-isotopes and (210)Po leached, and the radioactive disequilibria generated between the radionuclides in the leachate. These experiments show that Po mobility in acidic conditions (pH around 1-2) is very low, with (210)Po activity in the leachate to be 6% in average for the solid sample. By contrast, mobility of U-isotopes is higher than that of Po, around 1.2%.

  8. Phase diagram of crystallization of Aspergillus niger acid proteinase A, a non-pepsin-type acid proteinase

    NASA Astrophysics Data System (ADS)

    Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru

    1996-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.

  9. Determination and temperature effects of lidocaine (lignocaine) hydrochloride, epinephrine, methylparaben, 2,6-dimethylaniline, and p-hydroxybenzoic acid in USP lidocaine injection by ion-pair reversed-phase high pressure liquid chromatography

    SciTech Connect

    Smith, D.J.

    1981-05-01

    USP Lidocaine injection was assayed using ion-pair high pressure liquid chromatography with an octylsilane (RP-8) reversed-phase column packing and a mobile phase consisting of D-10-camphorsulfonic acid/methanol/acetic acid/water. The effect of temperature was investigated to determine the optimum temperature for separating the drug components and their degradation products. Lidocaine (lignocaine) hydrochloride, epinephrine, methylparaben, and p-hydroxybenzoic acid were separated at 50 degrees C. 2,6-Dimethylaniline was separated from lidocaine at 15 degrees C. An aliquot of the sample was injected directly into the liquid chromatograph, and after separation the compounds were quantitated by their spectrophotometric response at 254 nm (lidocaine) or 280 nm (lidocaine plus epinephrine).

  10. Determination and temperature effects of lidocaine (lignocaine) hydrochloride, epinephrine, methylparaben, 2,6-dimethylaniline, and p-hydroxybenzoic acid in USP lidocaine injection by ion-pair reversed-phase high pressure liquid chromatography.

    PubMed

    Smith, D J

    1981-05-01

    USP Lidocaine injection was assayed using ion-pair high pressure liquid chromatography with an octylsilane (RP-8) reversed-phase column packing and a mobile phase consisting of D-10-camphorsulfonic acid/methanol/acetic acid/water. The effect of temperature was investigated to determine the optimum temperature for separating the drug components and their degradation products. Lidocaine (lignocaine) hydrochloride, epinephrine, methylparaben, and p-hydroxybenzoic acid were separated at 50 degrees C. 2,6-Dimethylaniline was separated from lidocaine at 15 degrees C. An aliquot of the sample was injected directly into the liquid chromatograph, and after separation the compounds were quantitated by their spectrophotometric response at 254 nm (lidocaine) or 280 nm (lidocaine plus epinephrine).

  11. The Energy Electronics are Coming to an Expansion Phase which Applied to Home Appliances and Mobile Devices

    NASA Astrophysics Data System (ADS)

    Omori, Hideki; Iwai, Toshiaki; Nakajima, Noboru

    Recently the energy electronics comes to attention that energy saving effects to meet global environment problems. The evolution of home appliances and mobile devices have been realized by efficient frequency converter which are low cost and small size. This paper presents recent trend of energy electronics applied to home appliances and mobile devices.

  12. Tandem mass spectrometry with online high-flow reversed-phase extraction and normal-phase chromatography on silica columns with aqueous-organic mobile phase for quantitation of polar compounds in biological fluids.

    PubMed

    Deng, Yuzhong; Zhang, Hongwei; Wu, Jing-Tao; Olah, Timothy V

    2005-01-01

    In this work, high-flow online reversed-phase extraction was coupled with normal phase on silica columns with aqueous-organic mobile phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) to quantify drug candidates in biological fluids. The orthogonal separation effect obtained from this configuration considerably reduced matrix effects and increased sensitivity for highly polar compounds as detected by selected reaction monitoring. This approach also significantly improved the robustness and limit of detection of the assays. An evaluation of this system was performed using a mixture of albuterol and bamethan in rat plasma. Assay validation demonstrated acceptable accuracy (< 8% difference) and precision (< 6% CV) for these model compounds. The system has been used for the quantitation of polar ionic compounds in biological fluids in support of drug discovery programs. This assay was used to analyze samples for a BMS proprietary compound (A) in a rat pharmacokinetic study and is shown as an example to demonstrate the precision, accuracy, and sufficient sensitivity of this system.

  13. Are cyclopentadienylberyllium, magnesium and calcium hydrides carbon or metal acids in the gas phase?

    PubMed

    Hurtado, Marcela; Lamsabhi, Al-Mokhtar; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2010-05-21

    The structure and bonding of cyclopentadienylberyllium (CpBeH), magnesium (CpMgH), and calcium (CpCaH) hydrides as well as those of their deprotonated species have been investigated by means of B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) and B3LYP/6-311+G(3df,2p)//QCISD/6-311+G(d,p) density functional theory (DFT) calculations. The three compounds exhibit C(5v) equilibrium conformations in their ground states. For CpBeH the agreement between the calculated geometry and that determined by MW spectroscopy is excellent. CpMgH and CpCaH can be viewed almost as the result of the interaction between a C₅H₅⁻ anion and a XH(+) (X = Mg, Ca) cation. Conversely, for CpBeH the interaction between the C₅H₅ and the BeH subunits is significantly covalent. These compounds exhibit a significant aromaticity, usually named three-dimension aromaticity, in contrast with the unsubstituted cyclopentadiene compound. The CpBeH derivative behaves as a C acid in the gas phase and is less acidic than cyclopentadiene. More importantly, CpMgH and CpCaH, in spite of the X(+δ)H(-δ) polarity exhibited by the X-H bond in the neutral systems, are predicted to be metal acids in the gas phase. Also surprisingly, both the Mg and the Ca derivatives are stronger acids than the Be analogue, and only slightly weaker acids than cyclopentadiene. This somewhat unexpected result is the consequence of two concomitant facts: the lower dissociation energy of the X-H (X = Mg, Ca) bonds with respect to the C-H bonds, and the significantly high electron affinity of the C₅H₅X* (X = Mg, Ca) radicals.

  14. Defect-mediated relaxation in the random tiling phase of a binary mixture: Birth, death and mobility of an atomic zipper

    SciTech Connect

    Tondl, Elisabeth; Ramsay, Malcolm; Harrowell, Peter; Widmer-Cooper, Asaph

    2014-03-14

    This paper describes the mechanism of defect-mediated relaxation in a dodecagonal square-triangle random tiling phase exhibited by a simulated binary mixture of soft discs in 2D. We examine the internal transitions within the elementary mobile defect (christened the “zipper”) that allow it to move, as well as the mechanisms by which the zipper is created and annihilated. The structural relaxation of the random tiling phase is quantified and we show that this relaxation is well described by a model based on the distribution of waiting times for each atom to be visited by the diffusing zipper. This system, representing one of the few instances where a well defined mobile defect is capable of structural relaxation, can provide a valuable test case for general theories of relaxation in complex and disordered materials.

  15. Defect-mediated relaxation in the random tiling phase of a binary mixture: Birth, death and mobility of an atomic zipper

    NASA Astrophysics Data System (ADS)

    Tondl, Elisabeth; Ramsay, Malcolm; Harrowell, Peter; Widmer-Cooper, Asaph

    2014-03-01

    This paper describes the mechanism of defect-mediated relaxation in a dodecagonal square-triangle random tiling phase exhibited by a simulated binary mixture of soft discs in 2D. We examine the internal transitions within the elementary mobile defect (christened the "zipper") that allow it to move, as well as the mechanisms by which the zipper is created and annihilated. The structural relaxation of the random tiling phase is quantified and we show that this relaxation is well described by a model based on the distribution of waiting times for each atom to be visited by the diffusing zipper. This system, representing one of the few instances where a well defined mobile defect is capable of structural relaxation, can provide a valuable test case for general theories of relaxation in complex and disordered materials.

  16. Phase properties of carbon-supported platinum-gold nanoparticles for formic acid eletro-oxidation

    NASA Astrophysics Data System (ADS)

    Liao, Mengyin; Xiong, Jihai; Fan, Min; Shi, Jinming; Luo, Chenglong; Zhong, Chuan-Jian; Chen, Bing H.

    2015-10-01

    The design of active and robust bimetallic nanocatalysts requires the control of the nanoscale alloying, phase-segregation and the correlation between nanoscale phase-segregation and catalytic properties. To enhance the performance and durability of formic acid oxidation reaction in fuel-cell applications, we prepared a platinum-gold (PtAu) nanocatalyst with controlled morphology and composition. The catalyst is further treated by calcination under controlled temperature and atmosphere. The morphology of the bimetallic nanoparticles is determined by transmission electron microscopy. The nanoscale phase properties and surface composition are carried out by X-ray diffraction and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements demonstrated that the catalytic activity is highly dependent on the nanoscale evolution of alloying and phase segregation. The mass activity of as-prepared Pt50Au50/C with 600 °C treatment temperature is about 11 times higher than that of commercial Pt/C. Stability tests showed no obvious loss of activity after 500 potential cycles. The high activity and stability are attributed to lattice contraction effect as a result of the high thermal treatment condition. Our findings demonstrate the importance of phase segregation at the nanoscale in harnessing the true electrocatalytic potential of bimetallic nanoparticles.

  17. Electrodeposition of single gamma phased Zn-Ni alloy coatings from additive-free acidic bath

    NASA Astrophysics Data System (ADS)

    Ghaziof, Soroor; Gao, Wei

    2014-08-01

    Zn-Ni alloy coatings were electrodeposited on mild steel substrate from acidic sulphate bath. The effect of different electrodeposition parameters including temperature, current density, agitation speed and Ni2+/Zn2+ ion ratio on the Zn-Ni coating's physical, chemical and mechanical properties has been studied. Results show that Ni content of coatings has a strong effect on the structure, morphology and microhardness of coatings. Increasing Ni2+/Zn2+ ratio in the bath, higher temperature and higher deposition current density increased the Ni content of coatings. However, higher agitation speed increased the Zn electrodeposition and the anomaly of deposits. The phase structure of the coatings was strongly affected by the Ni content in the coatings. It changed from Zn rich η phase to Ni5Zn21 γ phase. Weak signal of δ-Ni3Zn22 phase was rarely observed for some coatings deposited at different parameters. Single γ phase coatings with optimum properties were electrodeposited at 40 °C and 80 mA/cm2, under 600 rpm agitation speed from the bath with Ni2+/Zn2+ ratio equals 1. Wear resistance of coatings were also improved by Ni doping.

  18. Improvement of Nicotinic Acid and Nicotinamide Analysis in Meats and Meat Products by HPLC and LC-MS/MS with Solid-Phase Extraction.

    PubMed

    Hiki, Asako; Yamajima, Yukiko; Uematsu, Yoko

    2016-01-01

    A method for nicotinic acid (NA) and nicotinamide (NAA) analysis in meats was developed. NA and NAA were extracted from meats or meat products with metaphosphate aqueous solution. The extract was cleaned up with an Oasis MCX cartridge. The cartridge was washed with 2% acetic acid (v/v) and acetic acid-methanol solution. NA and NAA were eluted with ammonia-methanol solution. NA and NAA in the eluate were chromatographed on a Scherzo SM-C18 (3.0×150 mm, 3.0 μm) column with 20 mmol/L ammonium acetate containing 0.1% acetic acid-acetonitrile (97 : 3) as a mobile phase and were monitored at 261 nm. Quantification was performed by LC and LC-MS/MS. Calibration curves showed high linearity (correlation coefficient>0.998) between 1-25 μg/mL for LC and LC-MS/MS. Recoveries were 84-108% (CV≦5.8%) by HPLC and 79-105% (CV≦9.0%) by LC-MS/MS. The limit of quantitation for NA was 0.005-0.01 g/kg and that for NAA was 0.01-0.02 g/kg.

  19. Phase behaviour and formation of fatty acid esters nanoemulsions containing piroxicam.

    PubMed

    Mat Hadzir, Nursyamsyila; Basri, Mahiran; Abdul Rahman, Mohd Basyaruddin; Salleh, Abu Bakar; Raja Abdul Rahman, Raja Noor Zaliha; Basri, Hamidon

    2013-03-01

    Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via 'One-At-A-Time Approach' were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze-thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.

  20. The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy

    2012-12-28

    A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed).

  1. Improved binding of acidic bone matrix proteins to cationized filters during solid phase assays.

    PubMed

    Farach-Carson, M C; Wright, G C; Butler, W T

    1992-01-01

    A number of commercially available matrix filter supports have been designed for the immobilization of proteins following either electrotransfer from sodium dodecyl sulfate (SDS) polyacrylamide gels or direct application during dot blotting assays. These matrices differ with respect to chemical composition, charge, pore size, and degree of hydrophobicity. It follows that the properties of the protein(s) of interest will greatly influence the degree to which they interact with and ultimately bind to various filters. Acidic bone proteins contain diverse post-translational modifications that influence their interactions with solid phase matrices such as those used in immunoblotting (Western or dot blotting) or ion binding (overlay) procedures. This communication describes the results of a study comparing binding of various mixtures of non-collagenous acidic bone matrix phosphoproteins as well as purified osteopontin and osteocalcin to various filters including nitrocellulose and cationized paper or nylon. Based on our findings, we recommend the use of cationized filters for solid phase assays requiring the binding of these acidic macromolecules to background supports.

  2. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  3. Preparative separation of cis- and trans-isomers of unsaturated fatty acid methyl esters contained in edible oils by reversed-phase high-performance liquid chromatography.

    PubMed

    Tsuzuki, Wakako; Ushida, Kaori

    2009-04-01

    In order to measure exactly the trans-fatty acids content in food materials, a preparative group separation of cis- and trans-isomers of unsaturated fatty acid methyl esters (FAMEs) was achieved by an isocratic reversed-phase HPLC (RP-HPLC) method. The trans-isomers of 16:1, 18:1, 18:2, 18:3, 20:1 and 22:1 FAMEs were readily separated from the corresponding cis-isomers by a COSMOSIL Cholester C18 column (4.6 mm I.D. x 250 mm, Nacalai Tesque) or a TSKgel ODS-100Z column (4.6 mm I.D. x 250 mm, TOSOH), using acetonitrile as the mobile phase. This method was applied for determining the trans-18:1 fatty acid content in partially hydrogenated rapeseed oil. The methyl esters of cis- and trans-18:1 isomers of the oil were collected as two separate fractions by the developed RP-HPLC method. Each fraction was analyzed by gas chromatography (GC) for both qualitative and quantitative information on its positional isomers. By a combination of RP-HPLC and GC methods, a nearly complete separation of cis- and trans-18:1 positional isomers was achieved and the trans-18:1 fatty acid content was able to be evaluated more precisely than is possible by the direct GC method. The reproducibility of cis- and trans-18:1 isomers fractionated by the RP-HPLC method was better than 98%. These results suggested that the preparative RP-HPLC method developed in this study could be a powerful tool for trans-fatty acid analysis in edible oils and food products as an alternative to silver-ion chromatography.

  4. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  5. Iron oxide nanoparticles modified with oleic acid: Vibrational and phase determination

    NASA Astrophysics Data System (ADS)

    Soares, Paula P.; Barcellos, Geórgia S.; Petzhold, Cesar L.; Lavayen, Vladimir

    2016-12-01

    A simple path methodology to detect the phase composition of iron oxide nanoparticles modified with oleic acid based on vibrational spectroscopy is present here and applied on three different nanoparticles prepared by co-precipitation method. Firstly, the phase composition, magnetite, maghemite, and hematite, is determined using a reference intensity ratio methodology on X-ray diffraction pattern. Also, the size of each sample was calculated by Scherrer equation. Scanning, transmission electron microscopy, microanalysis and electron diffraction show a core magnetite particles size of around 10 nm for all particles. Based on lattice vibrations, we find a concentration of around 80% of magnetite and a hematite phase lower than 5%. Whereas, the magnetite composition from X-ray diffraction shows 76%. We also investigate the metal-organic interaction and disorder degree of organic molecule conformation by infrared and Raman spectroscopy analysis. Hematite lattice vibrations show more alterations as it interacts with the organic acid. Finally, magnetic measurements at room temperature of the modified particles, suggest a superparamagnetic behavior and high saturation magnetization.

  6. Compressive fatigue properties of an acidic calcium phosphate cement-effect of phase composition.

    PubMed

    Ajaxon, Ingrid; Öhman Mägi, Caroline; Persson, Cecilia

    2017-03-01

    Calcium phosphate cements (CPCs) are synthetic bone grafting materials that can be used in fracture stabilization and to fill bone voids after, e.g., bone tumour excision. Currently there are several calcium phosphate-based formulations available, but their use is partly limited by a lack of knowledge of their mechanical properties, in particular their resistance to mechanical loading over longer periods of time. Furthermore, depending on, e.g., setting conditions, the end product of acidic CPCs may be mainly brushite or monetite, which have been found to behave differently under quasi-static loading. The objectives of this study were to evaluate the compressive fatigue properties of acidic CPCs, as well as the effect of phase composition on these properties. Hence, brushite cements stored for different lengths of time and with different amounts of monetite were investigated under quasi-static and dynamic compression. Both storage and brushite-to-monetite phase transformation was found to have a pronounced effect both on quasi-static compressive strength and fatigue performance of the cements, whereby a substantial phase transformation gave rise to a lower mechanical resistance. The brushite cements investigated in this study had the potential to survive 5 million cycles at a maximum compressive stress of 13 MPa. Given the limited amount of published data on fatigue properties of CPCs, this study provides an important insight into the compressive fatigue behaviour of such materials.

  7. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  8. Digestion of feed amino acids in the rumen and intestine of steers measured using a mobile nylon bag technique.

    PubMed

    Taghizadeh, A; Danesh Mesgaran, M; Valizadeh, R; Shahroodi, F Eftekhar; Stanford, K

    2005-05-01

    The disappearance of dry matter (DM), crude protein (CP), and amino acids (AA) in steers after rumen incubation and intestinal passage of alfalfa hay, barley hay, corn silage, barley grain, corn grain, wheat bran, meat meal, fish meal, cottonseed meal, and soybean meal were measured in 3 steers using a mobile nylon bag technique. Ruminal degradation of individual AA differed between feedstuffs. For barley hay and corn silage, the ruminal disappearance of total AA was higher and lower than the other feedstuffs, respectively. The intestinal digestibility of total AA in alfalfa hay was lower than the digestion of CP. The intestinal digestibility of Arg and His was higher than that of total AA in alfalfa hay, meat meal, cottonseed meal, soybean meal, barley hay, and wheat bran. In addition, the intestinal digestibility of Lys was higher than that of total AA in alfalfa hay, meat meal, cottonseed meal, soybean meal, barley hay, corn silage, and wheat bran. The intestinal disappearance of CP in most cases was higher than that of DM. The results indicated that feedstuffs with lower ruminal disappearance of DM, CP, total AA, essential AA, and nonessential AA generally had a higher intestinal disappearance, resulting in a relatively constant total tract disappearance. These results could be used to improve the current system of diet formulation in ruminants.

  9. [Intersection point rule for the retention value with mobile phase composition and boiling point of the homologues and chlorobenzenes in soil leaching column chromatography].

    PubMed

    Xu, F; Liang, X; Lin, B; Su, F

    1999-03-01

    Based on the linear retention equation of the logarithm of the capacity factor (logk') vs. the methanol volume fraction (psi) of aqueous binary mobile phase in soil leaching column chromatography, the intersection point rule for the logk' of homologues and weak polar chlorobenzenes, with psi, as well as with boiling point, has been derived due to existence of the similar interactions among solutes of the same series, stationary phase (soil) and eluent (methanol-water). These rules were testified by experimental data of homologues (n-alkylbenzenes, methylbenzenes) and weak polar chlorobenzenes.

  10. Studies on equilibrium of anthranilic acid in aqueous solutions and in two-phase systems: aromatic solvent-water.

    PubMed

    Zapała, Lidia; Kalembkiewicz, Jan; Sitarz-Palczak, Elzbieta

    2009-03-01

    The acid-base equilibria of anthranilic acid have been characterized in terms of macro- and microdissociation constants (dissociation constants K(a1), K(a2) and tautomeric constant K(z)). On the basis of spectrophotometric investigations the values of the distribution ratio D of anthranilic acid in the two-phase systems: aromatic solvent (benzene, ethylbenzene, toluene, chlorobenzene, bromobenzene)-aqueous solution were obtained. Employing the results of potentiometric titration in the two-phase systems: aromatic solvent-aqueous solution the distribution constant K(D) and dimerization constant K(dim) values were calculated. The influence of organic solvent polarity and pH of the aqueous phase on the contents of the particular forms of the acid in the two-phase systems were analyzed.

  11. Effect of solvent strength and temperature on retention for a polar-endcapped, octadecylsiloxane-bonded silica stationary phase with methanol-water mobile phases.

    PubMed

    Kiridena, Waruna; Poole, Colin F; Koziol, Wladyslaw W

    2004-12-10

    Synergi Hydro-RP is a new type of polar-endcapped, octadecylsiloxane-bonded silica packing for reversed-phase liquid chromatography. Its retention properties as a function of solvent strength and temperature are evaluated from the change in retention factors over the composition range (0-70% v/v methanol) and temperature range (25-65 degrees C) using the solvation parameter model and response surface methodologies. The main factors that affect retention are solute size and hydrogen-bond basicity, with minor contributions from solute hydrogen-bond acidity, dipole-type and electron lone pair interactions. Within the easily accessible range for both temperature and solvent strength, the ability to change selectivity is much greater for solvent strength than temperature. Also, a significant portion of the effect of increasing temperature is to reduce retention without changing selectivity. Response surfaces for the system constants are smooth and non-linear, except for cavity formation and dispersion interactions (v system constant), which is linear. Modeling of the response surfaces suggests that solvent strength and temperature are not independent factors for the b, s and e system constants and for the model intercept (c term).

  12. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    PubMed

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.

  13. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases.

    PubMed

    Fusaro, Maxime B; Chagnault, Vincent; Postel, Denis

    2015-05-29

    Chemistry development of renewable resources is a real challenge. Carbohydrates from biomass are complex and their use as substitutes for fossil materials remains difficult (European involvement on the incorporation of 20% raw material of plant origin in 2020). Most of the time, the transformation of these polyhydroxylated structures are carried out in acidic conditions. Recent reviews on this subject describe homogeneous catalytic transformations of pentoses, specifically toward furfural, and also the transformation of biomass-derived sugars in heterogeneous conditions. To complete these informations, the objective of this review is to give an overview of the structural variety described during the treatment of two monosaccharides (D-Fructose and D-xylose) in acidic conditions in homogeneous phases. The reaction mechanisms being not always determined with certainty, we will also provide a brief state of the art regarding this.

  14. Theoretical calculations of Electron Paramagnetic Resonance parameters of liquid phase Orotic acid radical

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ebru Karakaş; Dereli, Ömer

    2017-02-01

    To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.

  15. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    PubMed

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency.

  16. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production.

    PubMed

    Lian, Jieni; Garcia-Perez, Manuel; Coates, Ralph; Wu, Hongwei; Chen, Shulin

    2012-08-01

    The presence of very reactive C1-C4 molecules adversely affects the quality bio-oils produced from the pyrolysis of lignocellulosic materials. In this paper a scheme to produce lipids with Cryptococcus curvatus from the carboxylic acids in the pyrolytic aqueous phase collected in fractional condensers is proposed. The capacities of three oleaginous yeasts C. curvatus, Rhodotorula glutinis, Lipomyces starkeyi to ferment acetate, formate, hydroxylacat-aldehyde, phenol and acetol were investigated. While acetate could be a good carbon source for lipid production, formate provides additional energy and contributes to yeast growth and lipid production as auxiliary energy resource. Acetol could slightly support yeast growth, but it inhibits lipid accumulation. Hydroxyacetaldehyde and phenols showed high yeast growth and lipid accumulation inhibition. A pyrolytic aqueous phase with 20 g/L acetate was fermented with C. curvatus, after neutralization and detoxification to produce 6.9 g/L dry biomass and 2.2 g/L lipid.

  17. Potentiodynamic polarization effect on phase and microstructure of SAC305 solder in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Zaini, Nurwahida Binti Mohd; Nazeri, Muhammad Firdaus Bin Mohd

    2016-07-01

    The corrosion analysis of SAC305 lead free solder was investigated in Hydrochloric acid (HCl) solution. Potentiodynamic polarization was used to polarize the SAC305. The effect of polarization on the phase and microstructure were compared to as-prepared SAC305 solder. Potentiodynamic polarization introduces mixed corrosion products on the surface of SAC305 solder. The XRD analysis confirms that the mixed corrosion products emerged on the surface after polarization by formation of SnO and SnO2 of which confirmed that dissolution of Sn was dominant during polarization. Microstructure analysis reveal the presence of gap and porosities produced limits the protection offered by the passivation film.

  18. Chemical composition of phase I Coxiella burnetii soluble antigen prepared by trichloroacetic acid extraction.

    PubMed

    Lukácová, M; Brezina, R; Schramek, S; Pastorek, J

    1989-01-01

    Optimal conditions of extraction (time and temperature) by trichloroacetic acid of soluble antigen from phase I Coxiella burnetii (TCAE), possessing protective properties and used as a chemovaccine against Q fever in men, were studied. Extracts prepared under various conditions were analysed for their polysaccharide, protein and phosphorus contents. Forty-five min of extraction at 0 degrees C were sufficient to obtain a soluble antigen reacting in immunodiffusion with hyperimmune rabbit antiserum. The polysaccharide contents decreased with prolonged extraction at 0 degrees C. At higher extraction temperatures (37 and 100 degrees C), the polysaccharide contents increased while that of proteins decreased. TCAE prepared at 100 degrees C gave no positive immunodiffusion reaction.

  19. Arsenic removal from contaminated brackish sea water by sorption onto Al hydroxides and Fe phases mobilized by land-use.

    PubMed

    Yu, Changxun; Peltola, Pasi; Nystrand, Miriam I; Virtasalo, Joonas J; Österholm, Peter; Ojala, Antti E K; Hogmalm, Johan K; Åström, Mats E

    2016-01-15

    This study examines the spatial and temporal distribution patterns of arsenic (As) in solid and aqueous materials along the mixing zone of an estuary, located in the south-eastern part of the Bothnian Bay and fed by a creek running through an acid sulfate (AS) soil landscape. The concentrations of As in solution form (<1 kDa) increase steadily from the creek mouth to the outer estuary, suggesting that inflowing seawater, rather than AS soil, is the major As source in the estuary. In sediments at the outer estuary, As was accumulated and diagenetically cycled in the surficial layers, as throughout much of the Bothnian Bay. In contrast, in sediments in the inner estuary, As concentrations and accumulation rates showed systematical peaks at greater depths. These peaks were overall consistent with the temporal trend of past As discharges from the Rönnskär smelter and the accompanied As concentrations in past sea-water of the Bothnian Bay, pointing to a connection between the historical smelter activities and the sediment-bound As in the inner estuary. However, the concentrations and accumulation rates of As peaked at depths where the smelter activities had already declined, but a large increase in the deposition of Al hydroxides and Fe phases occurred in response to intensified land-use in the mid 1960's and early 1970's. This correspondence suggests that, apart from the inflowing As-contaminated seawater, capture by Al hydroxides, Fe hydroxides and Fe-organic complexes is another important factor for As deposition in the inner estuary. After accumulating in the sediment, the solid-phase As was partly remobilized, as reflected by increased pore-water As concentrations, a process favored by As(V) reduction and high concentrations of dissolved organic matter.

  20. High carrier mobility of Sn-doped polycrystalline-Ge films on insulators by thickness-dependent low-temperature solid-phase crystallization

    NASA Astrophysics Data System (ADS)

    Sadoh, Taizoh; Kai, Yuki; Matsumura, Ryo; Moto, Kenta; Miyao, Masanobu

    2016-12-01

    To realize the advanced thin-film transistors (TFTs), high-carrier-mobility semiconductor films on insulator structures should be fabricated with low-temperature processing conditions (≤500 °C). To achieve this, we investigated the solid-phase crystallization of amorphous-GeSn films on insulating substrates under a wide range of Sn concentrations (0%-20%), film thicknesses (30-500 nm), and annealing temperatures (380-500 °C). Our results reveal that a Sn concentration close to the solid solubility of Sn in Ge (˜2%) is effective in increasing the grain-size of poly-GeSn. In addition, we discovered that the carrier mobility depends on the film thickness, where the mobilities are determined by the counterbalance between two different carrier scattering mechanisms. Here, vacancy-related defects dominate the carrier scattering near the insulating substrates (≤˜120 nm), and grain-size determined by bulk nucleation dominates the grain-boundary scattering of thick films (≥˜200 nm). Consequently, we obtained the maximum mobilities in samples with a Sn concentration of 2% and a film thickness of 200 nm. The effect of increasing the grain-size of poly-GeSn by lowering the annealing temperature was also clarified. By combining these results, a very high carrier mobility of 320 cm2/Vs was obtained at a low temperature of 380 °C. This mobility is about 2.5 times as high as previously reported data for Ge and GeSn films grown at low temperatures (≤500 °C). Our technique therefore opens up the possibility of high-speed TFTs for use in the next generation of electronics.

  1. Experimental and computational thermochemical study and solid-phase structure of 5,5-dimethylbarbituric acid.

    PubMed

    Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P

    2010-03-18

    This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.

  2. Pulse respirometry in two-phase partitioning bioreactors: case study of terephthalic acid biodegradation.

    PubMed

    Ordaz, Alberto; Quijano, Guillermo; Thalasso, Frederic; Garibay-Orijel, Claudio

    2013-02-01

    Two-phase partitioning bioreactors (TPPBs) are based on the addition of an organic phase, often called vector, to a bioreactor in order to increase mass transfer of oxygen or gaseous substrates from the gaseous phase to the aqueous phase. In TPPBs, like in any other reactor design, the characterization of the bioprocess is often required for design, control, and operation purposes. Pulse respirometry is a method that allows for microbial processes characterization through the determination of several stoichiometric and kinetic parameters with relatively little experimental effort. Despite its interest and its previous application in countless applications, pulse respirometry has never been applied in TPPBs. In this work, pulse respirometry was assessed in a model TPPB degrading terephthalic acid and using Elvax™ as solid vector to enhance oxygen transfer. The results indicated that the addition of 10 to 20% Elvax increased oxygen transfer by up to 97%, compared to control with no vector. Pulse respirometry was successfully applied and allowed for the determination of the growth yield, the substrate affinity constant, and the maximum growth rate, within other. It is concluded that pulse respirometry is a useful method, not only for the characterization of processes in TPPBs but also for the selection of a vector within several brands commercially available.

  3. The study of aluminum loss and consequent phase transformation in heat-treated acid-leached kaolin

    SciTech Connect

    Foo, Choo Thye; Mahmood, Che Seman; Mohd Salleh, Mohamad Amran

    2011-04-15

    This study investigates the effect of Al leaching during Fe removal from kaolin to mullite. Heat-treated kaolin was obtained by heating natural kaolin at 400, 500, 600, 700, 800 and 900 deg. C. The heat-treated kaolin was then leached at 100 deg. C with 4 M, 3 M, 2 M, 1 M, 0.2 M solution of H{sub 2}SO{sub 4} and 0.2 M solution of oxalic acid. The dried samples were sintered to 1300 deg. C for 4 h at a heating rate of 10 deg. C min{sup -1}. X-ray diffractometry and differential thermal analysis were used to study the phase transformation of kaolin to mullite. It was found that 700 deg. C is the optimum preheat-treatment temperature to leach out Fe and also Al for both types of the acids used. The majority of the 4 M sulfuric acid-treated kaolins formed the cristobalite phase when sintered. On the other hand, 1 M, 0.2 M sulfuric acid and 0.2 M oxalic acid leached heat-treated kaolin formed mullite and quartz phase after sintering. - Research Highlights: {yields} Preheat-treatment of kaolin improves the leachability of unwanted iron. {yields} The optimum preheat-treatment temperature is 700 deg. C. {yields} Sintered 4 M sulfuric acid-treated kaolin majorly formed the cristobalite phase. {yields} Sintered 0.2 M oxalic acid-treated kaolin formed lesser amorphous silicate phase.

  4. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  5. Hollow porous ionic liquids composite polymers based solid phase extraction coupled online with high performance liquid chromatography for selective analysis of hydrophilic hydroxybenzoic acids from complex samples.

    PubMed

    Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing

    2017-02-10

    Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM(+)Cl(-)) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples.

  6. Liquid phase separation of proteins based on electrophoretic effects in an electrospray setup during sample introduction into a gas-phase electrophoretic mobility molecular analyzer (CE-GEMMA/CE-ES-DMA).

    PubMed

    Weiss, Victor U; Kerul, Lukas; Kallinger, Peter; Szymanski, Wladyslaw W; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-09-02

    Nanoparticle characterization is gaining importance in food technology, biotechnology, medicine, and pharmaceutical industry. An instrument to determine particle electrophoretic mobility (EM) diameters in the single-digit to double-digit nanometer range receiving increased attention is the gas-phase electrophoretic mobility molecular analyzer (GEMMA) separating electrophoretically single charged analytes in the gas-phase at ambient pressure. A fused-silica capillary is used for analyte transfer to the gas-phase by means of a nano electrospray (ES) unit. The potential of this capillary to separate analytes electrophoretically in the liquid phase due to different mobilities is, at measurement conditions recommended by the manufacturer, eliminated due to elevated pressure applied for sample introduction. Measurements are carried out upon constant feeding of analytes to the system. Under these conditions, aggregate formation is observed for samples including high amounts of non-volatile components or complex samples. This makes the EM determination of individual species sometimes difficult, if not impossible. With the current study we demonstrate that liquid phase electrophoretic separation of proteins (as exemplary analytes) occurs in the capillary (capillary zone electrophoresis, CE) of the nano ES unit of the GEMMA. This finding was consecutively applied for on-line desalting allowing EM diameter determination of analytes despite a high salt concentration within samples. The present study is to our knowledge the first report on the use of the GEMMA to determine EM diameters of analytes solubilized in the ES incompatible electrolyte solutions by the intended use of electrophoresis (in the liquid phase) during sample delivery. Results demonstrate the proof of concept of such an approach and additionally illustrate the high potential of a future on-line coupling of a capillary electrophoresis to a GEMMA instrument.

  7. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents.

    PubMed

    Jeong, Lena N; Sajulga, Ray; Forte, Steven G; Stoll, Dwight R; Rutan, Sarah C

    2016-07-29

    High-performance liquid chromatography (HPLC) simulators are effective method development tools. The goal of the present work was to design and implement a simple algorithm for simulation of liquid chromatographic separations that allows for characterization of the effect of injection solvent mismatch and injection solvent volume overload. The simulations yield full analyte profiles during solute migration and at elution, which enable a thorough physical understanding of the effects of method variables on chromatographic performance. The Craig counter-current distribution model (the plate model) is used as the basis for simulation, where a local retention factor is assigned for each spatial and temporal element within the simulation. The algorithm, which is an adaptation of an approach originally described by Czok and Guiochon (Ref. [10]), is sufficiently flexible to allow the use of either linear (e.g., Linear Solvent Strength Theory) or non-linear models of solute retention (e.g., Neue-Kuss (Ref. [36])). In this study, both types of models were used, one for simulating separations of a homologous series of alkylbenzenes, and the other for separations of selected amphetamines. The simulation program was validated first by comparison of simulated retention times and peak widths for five amphetamines to predictions obtained using linear solvent strength (LSS) theory, and to results from experimental separations of these compounds. The simulated retention times for the amphetamines agreed within 0.02% and 2.5% compared to theory and experiment, respectively. Secondly, the program was evaluated for simulating the case where there is a compositional mismatch between the mobile phase at the column inlet and the injection solvent (i.e., the sample matrix). This work involved alkylbenzenes, and retention time and peak width predictions from simulations were within 1.5 and 6.0% of experimental values, respectively, even without correction for extra-column dispersion. The

  8. Rapid analysis of captopril in human plasma and pharmaceutical preparations by headspace solid phase microextraction based on polypyrrole film coupled to ion mobility spectrometry.

    PubMed

    Karimi, Akarm; Alizadeh, Naader

    2009-07-15

    A rapid, simple, and sensitive headspace solid phase microextraction coupled to ion mobility spectrometry (HS-SPME-IMS) method is presented for analysis of the highly specific angiotensin-converting enzyme (ACE) inhibitor, captopril (CAP). Positive ion mobility spectra of CAP were acquired with an ion mobility spectrometer equipped with a corona discharge ionization source. Mass-to-mobility correlation equation was used to identify product ions. A dodecylsulfate-doped polypyrrole (PPy-DS) coating was used as a fiber for SPME. The results showed that PPy-DS based SPME fiber was suitable for successfully extracting CAP from human blood plasma and pharmaceutical samples. The HS-SPME-IMS method provided good repeatability (R.S.D.s<4%) for aqueous and spiked plasma samples. The calibration graphs were linear in the range of 10-300 ng mL(-1) (R(2)>0.99) and detection limits were 7.5 ng mL(-1) for aqueous and 6.3 ng mL(-1) for plasma blank samples. Finally, a standard addition calibration method was applied to HS-SPME-IMS technique for the analysis of blood plasma samples and tablets. Purpose method seemed to be suitable for the analysis of CAP in plasma samples as it is not time consuming (state total time from sample preparation to analysis), it required only small quantities of the sample, and no derivatization was required.

  9. Effects of lipid-analog detergent solubilization on the functionality and lipidic cubic phase mobility of the Torpedo californica nicotinic acetylcholine receptor.

    PubMed

    Padilla-Morales, Luis F; Morales-Pérez, Claudio L; De La Cruz-Rivera, Pamela C; Asmar-Rovira, Guillermo; Báez-Pagán, Carlos A; Quesada, Orestes; Lasalde-Dominicci, José A

    2011-10-01

    Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β(2)-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility.

  10. Determination of biogenic amines in canned fish samples using head-space solid phase microextraction based on nanostructured polypyrrole fiber coupled to modified ionization region ion mobility spectrometry.

    PubMed

    Parchami, Razieh; Kamalabadi, Mahdie; Alizadeh, Naader

    2017-01-20

    The head-space solid phase microextraction (HS-SPME) was applied to extraction and determination of histamine (HIS), putrescine (PUT), cadaverine (CAD), tyramine (TYR) in canned fish samples by ion mobility spectrometry (IMS) without any derivatization process. HIS and CAD have the same mobilities in nitrogen as buffer gas and their corresponding peaks are severely overlapped in ion mobility spectrum. Peak separation was acquired in the presence of 18-crown-6 vapor as complexation reagent into carrier gas and modified ionization region of IMS (MIR-IMS) at optimum flow rate. The interaction between 18-crown-6 and the mentioned amines forms nanocluster product ions with different cross section areas and ion mobilities. The effects of main extraction parameters on the efficiency of HS-SPME-MIR-IMS were investigated and optimized. Relative standard deviations (RSD%) of the biogenic amines determination at 50μgL(-1) concentration level were obtained in range 5.7%-6.3%. Limits of detection for analytes were in the range of 0.6-1ngg(-1). HS-SPME-MIR-IMS results indicate that the proposed method can be successfully used in biogenic amines analysis in water and food samples. Method validation was conducted by comparing our results with those obtained through GC-MS method.

  11. Accessing structure and dynamics of mobile phase in organic solids by real-time T1C filter PISEMA NMR spectroscopy.

    PubMed

    Zhang, Rongchun; Chen, Yuzhu; Chen, Tiehong; Sun, Pingchuan; Li, Baohui; Ding, Datong

    2012-01-26

    The structure and dynamic behavior of mobile components play a significant role in determining properties of solid materials. Herein, we propose a novel real-time spectrum-editing method to extract signals of mobile components in organic solids on the basis of the polarization inversion spin exchange at magic angle (PISEMA) pulse sequence and the difference in (13)C T(1) values of rigid and mobile components. From the dipolar splitting spectrum sliced along the heteronuclear dipolar coupling dimension of the 2D spectrum, the structural and dynamic information can be obtained, such as the distances between atoms, the dipolar coupling strength, the order parameter of the polymer backbone chain, and so on. Furthermore, our proposed method can be used to achieve the separation of overlapped NMR signals of mobile and rigid phases in the PISEMA experiment. The high efficacy of this 2D NMR method is demonstrated on organic solids, including crystalline L-alanine, semicrystalline polyamide-6, and the natural abundant silk fibroin.

  12. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatography, part 1: optimization of the mobile phase.

    PubMed

    Rodriguez-Aller, Marta; Guillarme, Davy; Beck, Alain; Fekete, Szabolcs

    2016-01-25

    The goal of this work is to provide some recommendations for method development in HIC using monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) as model drug candidates. The effects of gradient steepness, mobile phase pH, salt concentration and type, as well as organic modifier were evaluated for tuning selectivity and retention in HIC. Except the nature of the stationary phase, which was not discussed in this study, the most important parameter for modifying selectivity was the gradient steepness. The addition of organic solvent (up to 15% isopropanol) in the mobile phase was also found to be useful for mAbs analysis, since it could provide some changes in elution order, in some cases. On the contrary, isopropanol was not beneficial with ADCs, since the most hydrophobic DAR species (DAR6 and DAR8) cannot be eluted from the stationary phase under these conditions. This study also illustrates the possibility to perform HIC method development using optimization software, such as Drylab. The optimum conditions suggested by the software were tested using therapeutic mAbs and commercial cysteine linked ADC (brentuximab-vedotin) and the average retention time errors between predicted and experimental retention times were ∼ 1%.

  13. Phase and orientational ordering of low molecular weight rod molecules in a quenched liquid crystalline polymer matrix with mobile side chains

    NASA Astrophysics Data System (ADS)

    Gutman, Lorin; Cao, Jianshu; Swager, Tim M.

    2004-06-01

    We study the phase diagram and orientational ordering of guest liquid crystalline (LC) rods immersed in a quenched host made of a liquid crystalline polymer (LCP) matrix with mobile side chains. The LCP matrix lies below the glass transition of the polymer backbone. The side chains are mobile and can align to the guest rod molecules in a plane normal to the local LCP chain contour. A field theoretic formulation for this system is proposed and the effects of the LCP matrix on LC ordering are determined numerically. We obtain simple analytical equations for the nematic/isotropic phase diagram boundaries. Our calculation show a nematic-nematic (N/N) first order transition from a guest stabilized to a guest-host stabilized region and the possibility of a reentrant transition from a guest stabilized nematic region to a host only stabilized regime separated by an isotropic phase. A detailed study of thermodynamic variables and interactions on orientational ordering and phases is carried out and the relevance of our predictions to experiments and computer simulations is presented.

  14. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  15. Ab initio studies of aspartic acid conformers in gas phase and in solution

    NASA Astrophysics Data System (ADS)

    Chen, Mingliang; Lin, Zijing

    2007-10-01

    Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP /6-311G* level and then subjected to further optimization at the B3LYP /6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD /6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP /6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP /6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP /6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide

  16. Phase equilibria in four-component system consisting of water, a nonionic surfactant mixture, and oleic acid

    SciTech Connect

    Matveenko, V.N.; Drovetskii, B.Yu.; Kirasanov, E.A.

    1994-05-01

    The phase diagram of the system consisting of water, Tween 20, Span 80, and oleic acid has been obtained; the coexisting phases have been identified; and the character of the equilibrium of microemulsion, liquid crystal, and molecular solution has been described. In the water-Tween 20-oleic acid system, the ratio of the water volume to the surfactant volume is identical in all of the coexisting phases; this proves the existence of a corresponding field variable in a system with a nonionic surfactant.

  17. Formation of Small Gas Phase Carbonyls from Heterogeneous Oxidation of Polyunsaturated Fatty Acids (PUFA)

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Zhao, R.; Lee, A.; Gao, S.; Abbatt, J.

    2011-12-01

    Fatty acids (FAs) are emitted into the atmosphere from gas and diesel powered vehicles, cooking, plants, and marine biota. Field measurements have suggested that FAs, including polyunsaturated fatty acids (PUFA), could make up an important contribution to the organic fraction of atmospheric aerosols. Due to the existence of carbon-carbon double bonds in their molecules, PUFA are believed to be highly reactive towards atmospheric oxidants such as OH and NO3 radicals and ozone, which will contribute to aerosol hygroscopicity and cloud condensation nuclei activity. Previous work from our group has shown that small carbonyls formed from the heterogeneous reaction of linoleic acid (LA) thin films with gas-phase O3. It is known that the formation of small carbonyls in the atmosphere is not only relevant to the atmospheric budget of volatile organic compounds but also to secondary organic aerosol formation. In the present study, using an online proton transfer reaction mass spectrometry (PTR-MS) and off-line gas chromatography-mass spectrometry (GC-MS) we again investigated carbonyl formation from the same reaction system, i.e. the heterogeneous ozonolysis of LA film. In addition to the previously reported carbonyls, malondialdehyde (MDA), a source of reactive oxygen species that is mutagenic, has been identified as a product for the first time. Small dicarbonyls, e.g. glyoxal, are expected to be formed from the further oxidation of MDA. In this presentation, the gas-phase chemistry of MDA with OH radicals using a newly built Teflon chamber in our group will also be presented.

  18. Solid phase synthesis of partially protected tocinoic acid: optimization with respect to resin and protecting groups.

    PubMed

    Hlavácek, J; Ragnarsson, U

    2001-07-01

    A few solid phase and solution approaches of good repute were applied in parallel with the aim to provide optimized routes to Boc- and Fmoc-tocinoic acid (3a and 3c) and the corresponding Tyr(Bu(t)) derivatives (3b and 3d). Boc-tocinoic acid is known to couple with tripeptide amides to give substituted oxytocin precursors in high yields, requiring only Boc-cleavage to furnish the corresponding hormone analogs with minimal loss of material. For comparison, two protected linear hexapeptides (2a and 2b) were prepared on three polystyrene supports, two with acid-labile handles and one a conventional chloromethylated resin, in yields of 62-82 and 58-76%, respectively. The intermediate 2a could be converted to 3a with physical data in agreement with those earlier reported. Similarly, the intermediate 2b was converted to 3b. The highest yields for both 2a and 2b were obtained with a 2-chlorotrityl chloride resin, which in addition provided advantages with respect to overall speed and convenience. Additional syntheses of 3c and 3d on this and of 3c on SASRIN resin, in conjunction with trityl instead of benzyl for side-chain protection of cysteine, were also elaborated.

  19. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    PubMed Central

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  20. Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers.

    PubMed

    Liu, Kai; Zheng, Lifei; Liu, Qing; de Vries, Jan Willem; Gerasimov, Jennifer Y; Herrmann, Andreas

    2014-10-08

    DNA-incorporating hydrophobic moieties can be synthesized by either solid-phase or solution-phase coupling. On a solid support the DNA is protected, and hydrophobic units are usually attached employing phosphoramidite chemistry involving a DNA synthesizer. On the other hand, solution coupling in aqueous medium results in low yields due to the solvent incompatibility of DNA and hydrophobic compounds. Hence, the development of a general coupling method for producing amphiphilic DNA conjugates with high yield in solution remains a major challenge. Here, we report an organic-phase coupling strategy for nucleic acid modification and polymerization by introducing a hydrophobic DNA-surfactant complex as a reactive scaffold. A remarkable range of amphiphile-DNA structures (DNA-pyrene, DNA-triphenylphosphine, DNA-hydrocarbon, and DNA block copolymers) and a series of new brush-type DNA side-chain homopolymers with high DNA grafting density are produced efficiently. We believe that this method is an important breakthrough in developing a generalized approach to synthesizing functional DNA molecules for self-assembly and related technological applications.

  1. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.

    PubMed

    Toya, Yoshihiro; Hirasawa, Takashi; Ishikawa, Shu; Chumsakul, Onuma; Morimoto, Takuya; Liu, Shenghao; Masuda, Kenta; Kageyama, Yasushi; Ozaki, Katsuya; Ogasawara, Naotake; Shimizu, Hiroshi

    2015-01-01

    Bacterial bio-production during the stationary phase is expected to lead to a high target yield because the cells do not consume the substrate for growth. Bacillus subtilis is widely used for bio-production, but little is known about the metabolism during the stationary phase. In this study, we focused on the dipicolinic acid (DPA) production by B. subtilis and investigated the metabolism. We found that DPA production competes with acetoin synthesis and that acetoin synthesis genes (alsSD) deletion increases DPA productivity by 1.4-fold. The mutant showed interesting features where the glucose uptake was inhibited, whereas the cell density increased by approximately 50%, resulting in similar volumetric glucose consumption to that of the parental strain. The metabolic profiles revealed accumulation of pyruvate, acetyl-CoA, and the TCA cycle intermediates in the alsSD mutant. Our results indicate that alsSD-deleted B. subtilis has potential as an effective host for stationary-phase production of compounds synthesized from these intermediates.

  2. Polymorphs of acyclovir-maleic acid salt and their reversible phase transition

    NASA Astrophysics Data System (ADS)

    Wang, Lianyan; Zhao, Yumei; Zhang, Zhengfeng; Wang, Jianming; Wang, Qiang; Zheng, Zhibing; Deng, Zongwu; Zhang, Hailu

    2017-01-01

    Acyclovir is a commonly used antiviral drug while its solubility is far from satisfied. It was reported that 1:1 acyclovir-maleic acid salt (ACV-MAL) possesses much higher maximum apparent solubility. In this contribution, a new crystal structure of ACV-MAL was solved at room temperature. This new crystal structure and previously reported structure at low temperature can transform to each other via a reversible solid phase transformation, which has been confirmed by single-crystal X-ray diffraction, solid state NMR and cycling differential scanning calorimetry tests. The phase change temperature is ca. 283-293 K (10-20 °C), which is slightly lower than room temperature (298 ± 2 K/25 ± 2 °C), but is in the range of ambient temperature. This kind of near room temperature phase transformation is less concerned and tends to be neglected. This case report reminds that more attention should be paid to the polymorphism of pharmaceuticals at such temperature range due to its fundamental and practical significance.

  3. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  4. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.

    PubMed

    Dennis-Smither, Benjamin J; Hanford, Kate L; Kwamena, Nana-Owusua A; Miles, Rachael E H; Reid, Jonathan P

    2012-06-21

    Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.

  5. Structure of aldehyde cluster ions in the gas phase, according to data from ion mobility spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Lantsuzskaya (Krisilova), E. V.; Krisilov, A. V.; Levina, A. M.

    2015-09-01

    Ion-mobility spectra of a set of aliphatic linear aldehydes with the number of carbon atoms from 3 to 7 are obtained. Values of the mobility corresponding to two most intense peaks, considered to be those of a monomer and dimer, are determined according the spectra. Based on mobility, collision cross sections are calculated using the Mason-Schamp equation. The linear increase in the collision cross sections upon an increase in molecular weight is determined. According to the experimental results, the contribution to the cross section that has no dependence on molecular weight diminishes with the formation of dimers. It is established using quantum chemical calculations that this is associated with a reduction in the dipole moment upon the formation of dimers.

  6. Solid phase extraction of lactic acid from fermentation broth by anion-exchangeable silica confined ionic liquids.

    PubMed

    Bi, Wentao; Zhou, Jun; Row, Kyung Ho

    2011-01-15

    Three anion-exchangeable, silica-confined ionic liquids were synthesized for solid phase extraction of lactic acid from fermentation broth, followed by high-performance liquid chromatography coupled to ultraviolet detection. By comparing the adsorption isotherms of lactic acid on different silica-confined ionic liquids, interactions between the lactic acid and sorbents were investigated. The adsorbed amounts were then fitted into different adsorption isotherm equations; finally, the Langmuir equation was selected. Then the imidazolium silica with the highest adsorption capacity of lactic acid was packed into a cartridge for solid phase extraction. The loading volume of the cartridge was optimized by the Langmuir equation and geometry. After washing with distilled water and eluting with 0.25 mol L(-1) of an HCl solution, the lactic acid was separated from interference with a recovery yield of 91.9%. Furthermore, this kind of anion-exchangeable material exhibited potential for industrial applications and separation of other anionic bioactive compounds.

  7. [Determination of phthalic acid esters in textiles by solid phase extraction-gas chromatography].

    PubMed

    Niu, Zengyuan; Ye, Xiwen; Fang, Liping; Xue, Qiuhong; Sun, Zhongsong

    2006-09-01

    A method was established for the simultaneous determination of some phthalic acid esters, namely, dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPrP), dibutyl phthalate (DBP), diamyl phthalate (DAP), dihexyl phthalate (DHP), benzyln-butyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP), dicyclohexyl phthalate (DCHP), di-n-octyl phthalate (DNOP), diisononyl phthalate (DINP) and diisodecyl phthalate (DIDP) in textiles by solid phase extraction (SPE) coupled with gas chromatography (GC). The phthalic acid esters in textiles were extracted by Soxhlet extraction with hexane, the extracts were then cleaned up and enriched by a strong anion exchange (SAX) SPE cartridge. The parameters affecting the purification efficiency of SPE cartridge, such as solvent conditioning, rinsing, and elution, were studied. Conditioning with 5 mL hexane and rinsing with 3 mL isooctane were proved to be the optimal conditions. Of the several solvent ratios (ethylacetate in hexane) used for selective elution of phthalic acid esters from the SAX SPE cartridge, the 15% (v/v) content for ethylacetate in hexane gave the best result. Under the optimized conditions, the recoveries of phthalic acid esters for spiked standards (n=7) were 86.3%-102.7%, and the relative standard deviations (RSDs) were less than 5%. In this method the detection limits for DMP, DEP, DPrP, DBP, DAP, BBP, DCHP, DEHP, DNOP were all below 1 mg/kg, and the detection limits for DINP and DIDP were 1.74 mg/kg and 1.55 mg/kg respectively. This SPE-GC method is sensitive, accurate and suitable for the analysis of phthalate environmental hormones in textiles.

  8. Carboxylic acids in gas and PM2.5 particulate phase at a rural mountain site in northeastern United States

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Khan, A. R.; Khwaja, H. A.

    2009-12-01

    Low molecular weight carboxylic acids are important constituents of the organic fraction of atmospheric particulate matter in rural and polluted regions. The knowledge on their source is sparse, however, and organic aerosols in general need to better characterized. Atmospheric gas- and particle-phase carboxylic acids (formic, acetic, pyruvic, glyoxalic, benzoaic, adipic, succinic, malonic, and oxalic) and related compounds were measured during August 2002 at a rural site, Whiteface Mountain, NY. Formic and acetic acids were present in the PM2.5 fraction and in the gas phase. Other seven carboxylic acids were below the detection limit in all samples. Formic and acetic acid were present in the atmosphere mostly in the gaseous form with less than 10% in the PM2.5 fraction. Concentrations of formic acid and acetic acid were in the 0.5 - 2.4 ppbv and 0.6 - 1.9 ppbv ranges, respectively. Formic-to-acetic acid ratios less than one (0.88) were recorded, likely due to an increase in acetic acid contribution from direct emissions. In the fine particulate mode (PM2.5 ) the concentrations for acetic acid and formic acid were 120 - 400 and 10 - 180 ng/m3 , respectively. Backward trajectory data indicate that air mass originated at midwestern region on August 5th and gradually moved towards north on August 9th. Correlation of formic acid with sulfate was investigated to interpret their possible secondary formation pathways. A strong correlation (0.73) was observed between formic acid and sulfate in PM2.5 particulates. Since the source of sulfate found at Whiteface Mountain widely accepted as anthropogenic, its association with formic acid indicated that the later might have anthropogenic source.

  9. Increased electrospray ionization intensities and expanded chromatographic possibilities for emerging contaminants using mobile phases of different pH.

    PubMed

    Svahn, Ola; Björklund, Erland

    2016-10-15

    In this work the habitual behaviour of low pH in environmental organic trace analysis is challenged by investigating the full potential of building a multi-component UHPLC-ESI-MS/MS method adapted to cover common emerging contaminants of many different polarities, minimizing the elements of compromise in the performance of the final analytical separation and detection. Contributes have been made by taking advantage of common commercially available technology in understanding the impact from solvent components and the ionization of analytes which can facilitate future development of robust, sensitive and precise UHPLC-MS/MS methods. All contaminants were evaluated and optimized without prejudices regarding historical residence in terms of chromatographic conditions and ESI mode; increasing multi-method's flexibility that can be implemented in routine analysis in response to new requests as well as to emerging contaminants yet to be discovered. Our data strongly supports the questioning of the assumption that equilibrium concentrations of ions in solution reflect those produced during the electrospray process. ESI responses of [M+H](+) and limits of detection were comparable, or often better at high pH compared to acidic eluents. Presence of nitrogen basic groups such as tertiary and secondary amines in a compound increased the intensity of the ESI+ signal, and was even further elevated in basic eluent. The proton affinity probably changes for many nitrogen-containing compounds during the ionization process, making the gas-phase processes very important in generation of these ions by ESI+. There were also an unexpected large number of compounds showing their highest response at pH 7 and weak ionic strength. A flow optimized, buffert free, neutral UHPLC-MS/MS method enhanced the sensitivity for the environmental important synthetic hormone ethinyl estradiol significantly.

  10. Characteristics of retention and enthalpies of sorption from the gas phase of esters of trimethylolpropane and C2-C5 acids on DB-1 stationary phase

    NASA Astrophysics Data System (ADS)

    Krasnykh, E. L.; Aleksandrov, A. Yu.; Sokolova, A. A.; Levanova, S. V.

    2017-02-01

    Characteristics of retention and their temperature dependences, along with the thermodynamic characteristics of sorption on DB-1 nonpolar phase, are determined in the temperature range of 220-280°C for 21 mono-, di-, and trisubstituted esters of trimethylolpropane and monobasic acids with a variety of structures containing from 2 to 6 carbon atoms.

  11. Ion-pair mediated transport of small model peptides in liquid phase micro extraction under acidic conditions.

    PubMed

    Reubsaet, J Léon E; Paulsen, Jonas V

    2005-02-01

    This paper discusses the behaviour of five small model peptides in a three phase (aqueous donor-organic-aqueous acceptor) liquid phase micro extraction system in relation to their physico-chemical properties (charge, hydrophobicity). It is proved that for all peptides transport over the organic phase is mediated by aliphatic sulphonic acids. Heptane-1-sulphonic acid gave the best overall recoveries. It appeared that peptides with hydrophobic properties (IPI) and a high number of positive charges (KYK) show good recoveries and are enriched in the acceptor phase. Variation in the pH (1.6-4.4) of the donor phase shows that there are peptide-dependent optimal pH-values for their recovery. Increasing pH in the acceptor phase shows that in most cases the recovery decreases due to decreased ion-pair mediated membrane transport. For KYK the partition between the organic phase and the aqueous acceptor-phase is also driven by the solubility in the aqueous acceptor phase. Increase of the ion strength of the acceptor phase did not affect the recovery of the peptides. Except for KYK, which showed decreased recovery when the ion strength increased. Another finding is that delocalisation of positive charge causes bad recovery, probably due to incomplete ion-pair-peptide complex formation.

  12. Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography-diode array detection.

    PubMed

    Wang, Zhibing; Sun, Rui; Wang, Yuanpeng; Li, Na; Lei, Lei; Yang, Xiao; Yu, Aimin; Qiu, Fangping; Zhang, Hanqi

    2014-10-15

    The silica-supported ionic liquid (S-SIL) was prepared by impregnation and used as the dispersion adsorbent of matrix solid phase dispersion (MSPD) for the simultaneous extraction of eight phenolic acids and flavonoids, including caffeic acid, ferulic acid, morin, luteolin, quercetin, apigenin, chrysin, and kaempferide in raw propolis. High performance liquid chromatography with a Zorbax SB-C18 column (150mm×4.6mm, 3.5μm) was used for separation of the analytes. The mobile phase consisted of 0.2% phosphoric acid aqueous solution and acetonitrile and the flow rate of the mobile phase was 0.5mL/min. The experimental conditions for silica-supported ionic liquid-based matrix solid phase dispersion (S-SIL-based MSPD) were optimized. S-SIL containing 10% [C6MIM]Cl was used as dispersant, 20mL of n-hexane as washing solvent and 15mL of methanol as elution solvent. The ratio of S-SIL to sample was selected to be 4:1. The standard curves showed good linear relationship (r>0.9995). The limits of detection and quantification were in the range of 5.8-22.2ngmL(-1) and 19.2-74.0ngmL(-1), respectively. The relative standard deviations (RSDs) of intra-day and inter-day determination were lower than 8.80% and 11.19%, respectively. The recoveries were between 65.51% and 92.32% with RSDs lower than 8.95%. Compared with ultrasound-assisted extraction (UAE) and soxhlet extraction, the present method consumed less sample, organic solvent, and extraction time, although the extraction yields obtained by S-SIL-based MSPD are slightly lower than those obtained by UAE.

  13. Socio-Technical Dimensions of an Outdoor Mobile Learning Environment: A Three-Phase Design-Based Research Investigation

    ERIC Educational Resources Information Center

    Land, Susan M.; Zimmerman, Heather Toomey

    2015-01-01

    This design-based research project examines three iterations of Tree Investigators, a learning environment designed to support science learning outdoors at an arboretum and nature center using mobile devices (iPads). Researchers coded videorecords and artifacts created by children and parents (n = 53) to understand how both social and…

  14. 77 FR 32092 - Mobility Fund Phase I Auction Scheduled for September 27, 2012; Notice and Filing Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... provide voice and data roaming on networks built with the support, consistent with the requirements of 47... wireless services that provide voice telephony service on networks that also provide services such as... universal availability of fixed and mobile communication networks capable of providing voice and...

  15. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase.

    PubMed

    Poully, Jean-Christophe; Vizcaino, Violaine; Schwob, Lucas; Delaunay, Rudy; Kocisek, Jaroslav; Eden, Samuel; Chesnel, Jean-Yves; Méry, Alain; Rangama, Jimmy; Adoui, Lamri; Huber, Bernd

    2015-08-03

    Collisions between O(3+) ions and neutral clusters of amino acids (alanine, valine and glycine) as well as lactic acid are performed in the gas phase, in order to investigate the effect of ionizing radiation on these biologically relevant molecular systems. All monomers and dimers are found to be predominantly protonated, and ab initio quantum-chemical calculations on model systems indicate that for amino acids, this is due to proton transfer within the clusters after ionization. For lactic acid, which has a lower proton affinity than amino acids, a significant non-negligible amount of the radical cation monomer is observed. New fragment-ion channels observed from clusters, as opposed to isolated molecules, are assigned to the statistical dissociation of protonated molecules formed upon ionization of the clusters. These new dissociation channels exhibit strong delayed fragmentation on the microsecond time scale, especially after multiple ionization.

  16. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    PubMed

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.

  17. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.

    PubMed

    Svensson, Malin; Berg, Magnus; Ifwer, Karin; Sjöblom, Rolf; Ecke, Holger

    2007-06-01

    Co-landfilling of incineration ash and cellulose might facilitate the alkaline degradation of cellulose. A major degradation product is isosaccharinic acid (ISA), a complexing agent for metals. The impact of ISA on the mobility of Pb, Zn, Cr, Cu and Cd from a municipal solid waste incineration dry scrubber residue was studied at laboratory using a reduced 2(5-1) factorial design. Factors investigated were the amount of calcium isosaccharinate (Ca(ISA)(2)), L/S ratio, temperature, contact time and type of atmosphere (N(2), air, O(2)). The effects of pH and Ca(ISA)(2) as well as other factors on the leaching of metals were quantified and modelled using multiple linear regression (alpha=0.05). Cd was excluded from the study since the concentrations were below the detection limit. The presence of Ca(ISA)(2) resulted in a higher leaching of Cu indicating complex formation. Ca(ISA)(2) alone had no effect on the leaching of Pb, Zn and Cr. A secondary effect on the mobilization was predicted to occur since Ca(ISA)(2) had a positive effect on the pH and the leaching of Pb, Zn and Cr increased with increasing pH. The leaching of Pb varied from 24 up to 66 wt.% of the total Pb amount (1.74+/-0.02 g(kgTS)(-1)) in the dry scrubber residue. The corresponding interval for Zn (7.29+/-0.07 g(kgTS)(-1)) and Cu (0.50+/-0.02 g(kgTS)(-1)) were 0.5-14 wt.% of Zn and 0.8-70wt.% of Cu. Maximum leaching of Cr (0.23+/-0.03 g(kgTS)(-1)) was 4.0 wt.%. At conditions similar to a compacted and covered landfill (4 degrees C, 7 days, 0 vol.% O(2)) the presence of ISA can increase the leaching of Cu from 2 to 46 wt.% if the amount of cellulose-based waste increases 20 times, from the ratio 1:100 to 1:5. As well, the leaching of Pb, Zn, and Cr can increase from 32 to 54 wt.% (Pb), 0.8-8.0 wt.% (Zn), and 0.5 to 4.0 wt.% (Cr) depending on the amount of cellulose and L/S ratio and pH value. Therefore, a risk (alpha=0.05) exists that higher amounts of metals are leached from landfills where cellulose

  18. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    PubMed

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity.

  19. An attempt to theoretically predict third-phase formation in the dimethyldibutyltetradecylmalonamide (DMDBTDMA)/dodecane/water/nitric acid extraction system

    SciTech Connect

    LeFrancois, L.; Tondre, C.; Belnet, F.; Noel, D.

    1999-03-01

    The formation of a third phase in solvent extraction (due to splitting of the organic phase into two layers) often occurs when the aqueous phase is highly concentrated in acids. This has been reported with the extraction system dimethyldibutyltetradecylmalonamide (DMDBTDMA)/n-dodecane/water/nitric acid, both in the presence and absence of metal ions. Whereas many experimental efforts have been made to investigate the effects of different parameters on third-phase formation, very few attempts have been made to predict this phenomenon on theoretical grounds. Because the part played by aggregation of the extractant molecules is recognized, the authors propose a new predictive approach based on the use of the Flory-Huggins theory of polymer solutions, which had been successfully applied for the prediction of phase separation phenomena in nonionic surfactant solutions. The authors show that this model can provide an excellent prediction of the demixing curve (in the absence of metal ions) when establishing the relation between the interaction parameter {chi}{sub 12} calculated from this theory and the nitric acid content of the aqueous phase. Apparent values of the solubility parameter {delta}{sub 2} of the diamide extractant at different acid loadings have been calculated, from which the effect of the nature of the diluent can also be very nicely predicted.

  20. Gas-Phase Hydration Thermochemistry of Sodiated and Potassiated Nucleic Acid Bases

    NASA Astrophysics Data System (ADS)

    Wincel, Henryk

    2012-09-01

    Hydration reactions of sodiated and potassiated nucleic acid bases (uracil, thymine, cytosine, and adenine) produced by electrospray have been studied in a gas phase using the pulsed ion-beam high-pressure mass spectrometer. The thermochemical properties, ΔH o n , ΔS o n , and ΔG o n , for the hydrated systems were obtained from hydration equilibrium measurement. The structural aspects of the hydrated complexes are discussed in conjunction with available literature data. The correlation between water binding energies in the hydrated complexes and the corresponding metal ion affinities of nucleobases suggests that a significant (if not dominant) amount of the canonical structure of cytosine undergoes tautomerization during electrospray ionization, and the thermochemical values for cationized cytosine probably correspond to a mixture of tautomeric complexes.

  1. Vapor Phase Ketonization of Acetic Acid on Ceria Based Metal Oxides

    SciTech Connect

    Liu, Changjun; Karim, Ayman M.; Lebarbier, Vanessa M.; Mei, Donghai; Wang, Yong

    2013-06-27

    The activities of CeO2, Mn2O3-CeO2 and ZrO2-CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3-CeO2 was the most active catalyst at 350 oC, while ZrO2 - CeO2 was the most active catalyst at 450 oC. Under high CO2 and steam concentration in the reactants, Mn2O3-CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3-CeO2 to steam and CO2.

  2. Novel solid-phase synthesis of thiol-terminated-poly(alpha-amino acid)-drug conjugate.

    PubMed

    Palacios, P; Bussat, P; Bichon, D

    1991-01-01

    A new method using a controlled pore glass solid support for the preparation of a thiol-terminated-polymerdrug, notably poly-L-glutamate-daunomycin having a terminal thiol group, is described. The method consists of first polymerizing an ester-protected glutamic acid onto an amino-disulfide functionalized controlled pore glass support. The ester protecting group is then removed, freeing the gamma-carboxyl groups of the grafted polymer which then allows it to react with daunomycin. Finally, the disulfide bond linking the conjugated polymer-drug to the solid support is broken by thiolysis, thus releasing the desired product. The final product consists of only polymer-drug conjugates with terminal thiol groups (global yield 26%). This novel method is much simpler and more elegant than more conventional preparation methods requiring solution phase techniques.

  3. Gas-phase hydration thermochemistry of sodiated and potassiated nucleic acid bases.

    PubMed

    Wincel, Henryk

    2012-09-01

    Hydration reactions of sodiated and potassiated nucleic acid bases (uracil, thymine, cytosine, and adenine) produced by electrospray have been studied in a gas phase using the pulsed ion-beam high-pressure mass spectrometer. The thermochemical properties, ΔH(o)(n), ΔS(o)(n), and ΔG(o)(n), for the hydrated systems were obtained from hydration equilibrium measurement. The structural aspects of the hydrated complexes are discussed in conjunction with available literature data. The correlation between water binding energies in the hydrated complexes and the corresponding metal ion affinities of nucleobases suggests that a significant (if not dominant) amount of the canonical structure of cytosine undergoes tautomerization during electrospray ionization, and the thermochemical values for cationized cytosine probably correspond to a mixture of tautomeric complexes.

  4. Structure of thermotoga maritima stationary phase survival protein SurE : a novel acid phosphatase.

    SciTech Connect

    Zhang, R.-G; Skarina, T.; Katz, J. E.; Khachatryan, A; Vyas, S.; Arrowsmith, C. H.; Clarke, S.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Biosciences Division; Univ. of Toronto; Univ. of California; Clinical Genomics Centre /Proteomics, Univ. Health Network

    2001-11-01

    Background: The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase {sigma} subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. Results: The structure of SurE from Thermotoga maritima was determined at 2.0 Angstroms. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5-6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and intersubunit salt bridges were identified that may explain the SurE thermostability. Conclusions: The structure of SurE provided information about the protein's fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis.

  5. Community mobilization and social marketing to promote weekly iron-folic acid supplementation: a new approach toward controlling anemia among women of reproductive age in Vietnam.

    PubMed

    Khan, Nguyen Cong; Thanh, Hoang Thi Kim; Berger, Jacques; Hoa, Pham Thuy; Quang, Nguyen Dinh; Smitasiri, Suttilak; Cavalli-Sforza, Tommaso

    2005-12-01

    Community-based social marketing and mobilization increased knowledge and participation in preventive weekly iron-folic acid supplementation among women of reproductive age in Vietnam. Rates of buying and taking the weekly supplement containing 60 mg elemental iron and 3.5 mg folic acid among non-pregnant women of reproductive age was between 55% and 92%. Free distribution to pregnant women of the weekly supplement containing 120 mg iron and 3.5 mg folic acid covered almost all pregnant women during the project. In developing countries where community women's groups and health networks are strong, preventive supplementation can be successfully promoted to encourage active participation in the prevention and control of iron-deficiency anemia.

  6. Ion exclusion chromatography of aromatic acids.

    PubMed

    Mansour, Fotouh R; Kirkpatrick, Christine L; Danielson, Neil D

    2013-08-01

    The determination of aromatic acids by ion exclusion chromatography is challenging due to peak tailing and the long retention time of hydrophobic solutes. This review discusses the retention mechanisms and the factors affecting retention, eluents and detection methods used in ion exclusion chromatography of aromatic acids such as mono-, di-, tri- and tetra-carboxylic acids, amino acids, sulfonates and phenol. In addition, the different approaches used to improve the chromatographic separation of these compounds are also discussed. These approaches include introducing an internal gradient of the ionic strength, using vacancy ion exclusion chromatography, employing a hydrophilic cation exchange resin or adding a modifier such as heptanol to the dilute sulfuric acid mobile phase. The applications of these methods in the analysis of aromatic acids are provided with a table summarizing the stationary phases, the mobile phases and the detection methods.

  7. Reversed-phase high-performance liquid chromatography determination of selected phenolic acids in propolis concentrates in terms of standardization for drug manufacturing purposes.

    PubMed

    Krzek, Jan; Kaleta, Jolanta; Hubicka, Urszula; Niedzwiedz, Aneta

    2006-01-01

    A reversed-phase high-performance liquid chromatography method with gradient elution was developed for the determination of the caffeic, p-coumaric, and ferulic acids in propolis concentrates. Solid-phase extraction on an RP18 column was applied for preliminary purification, and chromatographic separation was performed on 100 RP18e Lichrospher column of particle size 5 microm. The mobile phase was obtained by mixing in appropriate ratios 0.03 mM NaH2PO4, acidified with H3PO4 up to pH = 3.0, with acetonitrile to obtain a gradient in the elution process. Spectrophotometric detection was conducted at 320 nm. Under the established conditions, the method featured high sensitivity, good precision, and comparability of results, as proven by method validation and statistical analysis of the obtained results. The limits of detection were 0.315, 0.325, and 0.695 microg/mL for caffeic, p-coumaric, and ferulic acids, respectively. The corresponding recovery values were 98.14, 101.05, and 99.42% and the linearity ranges from 1.31 to 99.18 microg/mL, 1.52 to 119.16 microg/mL, and 2.42 to 184.14 microg/mL. The precision of the method was expresed by relative standard deviation values that did not exceed 3%. It was also shown that the propolis concentrates under examination had similar antibacterial activity against Staphylococcus aureus ranging from 119.8 to 124.3 microg/mL, contrary to model mixtures that showed no antibacterial activity.

  8. Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.; Christensen, L. E.; Baumgardner, D. G.; Voigt, C.; Kaercher, B.; Wilson, J. C.; Mahoney, M. J.; Jensen, E. J.; Bui, T. P.

    2007-01-01

    In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.

  9. Solid phase extraction-spectrophotometric determination of salicylic acid using magnetic iron oxide nanoparticles as extractor.

    PubMed

    Parham, Hooshang; Rahbar, Nadereh

    2009-08-15

    This method shows a novel, fast and simple solid phase extraction-spectrophotometric procedure for preconcentration and determination of salicylic acid (SA) in blood serum using magnetic iron oxide nanoparticles (MIONs) as extractor. It is shown that the novel magnetic nano-adsorbent is quite efficient for fast adsorption of SA at 25 degrees C. Various parameters affecting the adsorption of SA on MIONs, such as pH of solution, type, volume and concentration of desorbing reagent and amount of adsorbent and matrix effects, have been investigated. The calibration graph for the determination of SA was linear in the range of 0.025-1.250microgmL(-1). The limit of detection (LOD) based on three times the standard deviation of the blank (3S(b)) was 5.5x10(-3)microgmL(-1) (n=10) for SA. The intra-day precision (R.S.D.) was below 10.1% and inter-day R.S.D. was less than 17.5%, while accuracy (relative error R.E.) was within +/-3.6 determined from quality control samples for salicylic acid (SA) which corresponded to requirement of the guidance of Food and Drug Administration (FDA). The preconcentration factor of 100 was achieved in this method. The proposed procedure has been successfully applied to the determination of SA in blood serum.

  10. Phase and Size Controllable Synthesis of NaYbF4 Nanocrystals in Oleic Acid/ Ionic Liquid Two-Phase System for Targeted Fluorescent Imaging of Gastric Cancer

    PubMed Central

    Pan, Liyuan; He, Meng; Ma, Jiebing; Tang, Wei; Gao, Guo; He, Rong; Su, Haichuan; Cui, Daxiang

    2013-01-01

    Upconversion nanocrystals with small size and strong fluorescent signals own great potential in applications such as biomolecule-labeling, in vivo tracking and molecular imaging. Herein we reported that NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with small size and strong fluorescent signals were controllably synthesized by oleic acid (OA)/ ionic liquid (IL) two-phase system for targeted fluorescent imaging of gastric cancer in vivo. The optimal synthesis condition of NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals by OA/IL two-phase system was established, adding more metal ion such as Na+ ion could facilitate the size control and crystal-phase transition, more importantly, markedly enhancing fluorescent intensity of beta-phase nanocrystals compared with traditional methods. Alpha-phase NaYbF4, 2%Tm upconversion nanocrystals with less than 10nm in diameter and beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals with 30 nm or so in diameter and strong fluorescent signals were obtained, these synthesized nanocrystals exhibited very low cytotoxicity. Folic acid-conjugated silica-modified beta-phase NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals were prepared, could actively target gastric cancer tissues implanted into nude mice in vivo, and realized targeted fluorescent imaging. Folic acid-conjugated silica-modified NaYbF4: 25%Gd, 2%Tm upconversion nanocrystals show great potential in applications such as targeted near infared radiation fluorescent imaging, magnetic resonance imaging and targeted therapy of gastric cancer in the near future. PMID:23471455

  11. Ion Mobility-Mass Spectrometry Analysis of Cross-Linked Intact Multiprotein Complexes: Enhanced Gas-Phase Stabilities and Altered Dissociation Pathways.

    PubMed

    Samulak, Billy M; Niu, Shuai; Andrews, Philip C; Ruotolo, Brandon T

    2016-05-17

    Analysis of protein complexes by ion mobility-mass spectrometry is a valuable method for the rapid assessment of complex composition, binding stoichiometries, and structures. However, capturing labile, unknown protein assemblies directly from cells remains a challenge for the technology. Furthermore, ion mobility-mass spectrometry measurements of complexes, subcomplexes, and subunits are necessary to build complete models of intact assemblies, and such data can be difficult to acquire in a comprehensive fashion. Here, we present the use of novel mass spectrometry cleavable cross-linkers and tags to stabilize intact protein complexes for ion mobility-mass spectrometry. Our data reveal that tags and linkers bearing permanent charges are superior stabilizers relative to neutral cross-linkers, especially in the context of retaining compact forms of the assembly under a wide array of activating conditions. In addition, when cross-linked protein complexes are collisionally activated in the gas phase, a larger proportion of the product ions produced are often more compact and reflect native protein subcomplexes when compared with unmodified complexes activated in the same fashion, greatly enabling applications in structural biology.

  12. ''Pulling'' Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of alpha-Cyclodextrin

    SciTech Connect

    Wang, Y.; Wong, J.F.; Teng, X.; Lin, X.Z.; Yang, H.

    2003-10-18

    (B204)This paper describes a general method to drastically improve the disparity of oleic acid stabilized nanoparticles in aqueous solutions. We use oleic acid stabilized monodisperse nanoparticles of iron oxides and silver as model systems, and have modified the surface properties of these nanoparticles through the formation of an inclusion complex between surface-bound surfactant molecules and alpha-cyclodextrin (alpha-CD). After the modification, the nanoparticles of both iron oxide and Ag can transfer from hydrophobic solvents, such as hexane, to alpha-CD aqueous phase. The efficiency of the phase transfer to the aqueous solutions depend son the initial alpha-CD concentration. The alpha-CD/oleic acid complex stabilized nanoparticles can be stable for long periods of time in aqueous phase under ambient atmospheric conditions. Transmission electron microscopy (TME), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, and colorimetric methods have been used in the characterization of these nanoparticles.

  13. Fabrication of poly(γ-glutamic acid) monolith by thermally induced phase separation and its application.

    PubMed

    Park, Sung-Bin; Fujimoto, Takashi; Mizohata, Eiichi; Inoue, Tsuyoshi; Sung, Moon-Hee; Uyama, Hiroshi

    2013-01-01

    Monoliths are functional porous materials with a three-dimensional continuous interconnected pore structure in a single piece. A monolith with uniform shape based on poly(γ-glutamic acid) (PGA) has been prepared via a thermally induced phase separation technique using a mixture of dimethyl sulfoxide, water, and ethanol as solvent. The morphology of the obtained monolith was observed by scanning electron microscopy and the surface area of the monolith was evaluated by the Brunauer Emmett Teller method. The effects of fabrication parameters such as the concentration and molecular mass of PGA and the solvent composition have been systematically investigated. The PGA monolith was cross-linked with hexamethylene diisocyanate to produce the water-insoluble monolith. The addition of sodium chloride to the phase separation solvent affected the properties of the cross-linked monolith. The swelling ratio of the cross-linked monolith toward aqueous solutions depended on the buffer pH as well as the monolith fabrication condition. Copper(II) ion was efficiently adsorbed on the cross-linked PGA monolith, and the obtained copper-immobilized monolith showed strong antibacterial activity for Escherichia coli. By combination of the characteristic properties of PGA (e.g., high biocompatibility and biodegradability) and the unique features of monoliths (e.g., through-pore structure, large surface area, and high porosity with small pore size), the PGA monolith possesses large potentials for various industrial applications in the biomedical, environmental, analytical, and separation fields.

  14. Lauric acid-induced formation of a lyotropic nematic phase of disk-shaped micelles.

    PubMed

    Colafemmina, Giuseppe; Recchia, Raffaella; Ferrante, Andrea S; Amin, Samiul; Palazzo, Gerardo

    2010-06-03

    Addition of small amounts of lauric acid (LA) to a micellar solution of sodium dodecyl sulfate (SDS, 11.5 wt %) and cocamidopropyl betaine (CAPB, 3 wt %) has a dramatic effect on the rheological properties and phase behavior of the system. The viscosity increases by more than 1 order of magnitude up to a weight ratio LA/SDS = 0.17 and decreases for further LA loading. The decrease in viscosity is associated with the formation of a birefringent liquid crystalline phase. The evolution of the system from isotropic micelles in the absence of LA to lyotropic liquid crystals up to a weight ratio LA/SDS = 0.30 was probed by a combination of (23)Na NMR quadrupolar splitting, measurements of water and surfactant self-diffusion coefficients via (1)H-PGSE-NMR, and rheology. The evolution of the water self-diffusion coefficients indicates that LA induced a dramatic increase in the anisotropy of disk-shaped micelles. Birefringent samples always showed a well developed (23)Na quadrupolar splitting with a line shape typical of monodomain samples. This suggests that the whole sample is easily oriented within the spectrometer electromagnet, as usually observed for nematic liquid crystals. Sample spinning first destroys the alignment (only a single peak is discernible in the (23)Na NMR spectrum). Then, upon prolonged spinning, the alignment develops again. This indicates that the system is composed by disklike micelles aligning themselves with their normal perpendicular to the magnetic field. On the other hand, the linear viscoelastic response close to the nematic transition shows features usually observed in wormlike micellar systems (e.g., nearly Maxwellian behavior). To reconciliate the rheological data and the NMR evidence of disklike micelles, the formation of columnar stacks of disklike micelles is proposed. The rheology of the isotropic phase can therefore be interpreted in terms of entanglements of "living columnar stacks" of disklike micelles, and the nematic phase observed

  15. Solubility limits and phase diagrams for fatty acids in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions.

    PubMed

    Tzocheva, Sylvia S; Kralchevsky, Peter A; Danov, Krassimir D; Georgieva, Gergana S; Post, Albert J; Ananthapadmanabhan, Kavssery P

    2012-03-01

    The limiting solubility of fatty acids in micellar solutions of the anionic surfactant sodium laurylethersulfate (SLES) and the zwitterionic surfactant cocamidopropyl betaine (CAPB) is experimentally determined. Saturated straight-chain fatty acids with n=10, 12, 14, 16, and 18 carbon atoms were investigated at working temperatures of 25, 30, 35, and 40°C. The rise of the fatty acid molar fraction in the micelles is accompanied by an increase in the equilibrium concentration of acid monomers in the aqueous phase. Theoretically, the solubility limit is explained with the precipitation of fatty acid crystallites when the monomer concentration reaches the solubility limit of the acid in pure water. In agreement with theory, the experiment shows that the solubility limit is proportional to the surfactant concentration. For ideal mixtures, the plot of the log of solubility limit vs. the chainlength, n, must be a straight line, which is fulfilled for n=14, 16, and 18. For the fatty acids of shorter chains, n=10 and 12, a deviation from linearity is observed, which is interpreted as non-ideal mixing due to a mismatch between the chainlengths of the surfactant and acid. The data analysis yields the solubilization energy and the interaction parameter for the fatty acid molecules in surfactant micelles. By using the determined parameter values, phase diagrams of the investigated mixed solutions are constructed. The four inter-domain boundary lines intersect in a quadruple point, whose coordinates have been determined. The results can be applied for the interpretation and prediction of the solubility, and phase behavior of medium- and long-chain fatty acids and other amphiphiles that are solubilizable in micellar surfactant solutions, as well as for determining the critical micellization concentration (CMC) of the respective mixed solution.

  16. Gas chromatography with tandem differential mobility spectrometry of fatty acid alkyl esters and the selective detection of methyl linolenate in biodiesels by dual-stage ion filtering.

    PubMed

    Pasupuleti, D; Pierce, K; Eiceman, G A

    2015-11-20

    Alkyl esters of fatty acids (FAAEs) with carbon numbers from 8 to 20 formed protonated monomers and proton bound dimers through atmospheric pressure chemical ionization reactions and these gas ions were characterized for their field dependent mobility coefficients using differential mobility spectrometry (DMS). Separation of ion peaks with a vapor modifier was achieved for ions with masses of 317-1033 Da though the differences in these coefficients and the resolution of ion peaks decreased proportionally with increased ion mass. Differences in dispersion curves were sufficient to isolate ions from specific FAAEs in the effluent of a gas chromatograph by dual stage ion filtering using a tandem DMS detector. Methyl linolenate was isolated from nearby eluting methyl oleate, methyl stearate and methyl linoleate within analysis times of 10s without measureable complications from charge suppression in the ion source or leakage in filtering of ions with close proximity of dispersion behavior.

  17. Molecularly imprinted polymer cartridges coupled to liquid chromatography for simple and selective analysis of penicilloic acid and penilloic acid in milk by matrix solid-phase dispersion.

    PubMed

    Luo, Zhimin; Du, Wei; Zheng, Penglei; Guo, Pengqi; Wu, Ningli; Tang, Weili; Zeng, Aiguo; Chang, Chun; Fu, Qiang

    2015-09-01

    A simple, fast and sensitive method for determination of the degradation products of penicillin (penicilloic acid and penilloic acid) in milk samples has been developed by combining selective surface molecularly imprinted matrix solid-phase dispersion and high performance liquid chromatography (SMIPs-MSPD-HPLC). The selected dispersant SMIPs had high affinity for penicilloic acid and penilloic acid in milk matrix and the obtained extract was sufficiently clean for direct injection for HPLC analysis without any interference from the matrix. The proposed SMIPs-MSPD-HPLC method was validated for linearity, precision, accuracy, limit of detection and limit of quantitation. Linearity ranged from 0.04 to 4 μg g(-1) (correlation coefficient r(2) > 0.999). Recoveries of penicilloic acid from milk samples at different spiked levels were between 79.8 and 90.3%, with RSD values within 5.2-7.4%, and the limit of detection and limit of quantitation values were 0.04 and 0.13 μg g(-1), respectively. Recoveries of penilloic acid from milk samples at different spiked levels were between 77.4 and 86.2%, with RSD values within 3.1-6.4%, and the limit of detection and limit of quantitation values were 0.05 and 0.17 μg g(-1), respectively. The developed SMIPs-MSPD-HPLC method was successfully applied to direct determination of penicilloic acid and penilloic acid in milk samples.

  18. Fast vaporization solid phase microextraction and ion mobility spectrometry: A new approach for determination of creatinine in biological fluids.

    PubMed

    Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohamma Hossein

    2015-11-01

    In this work a rapid and simple method for creatinine determination in urine and plasma samples based on aqueous derivatization of creatinine and complete vaporization of sample (as low as 10 µL), followed by ion mobility spectrometry analysis has been proposed. The effect of four important parameters (extraction temperature, total volume of solution, desorption temperature and extraction time) on ion mobility signal has been studied. Under the optimized conditions, the quantitative response of ion mobility spectrometry for creatinine was linear in the range of 0-500 mg L(-1) with a detection limit of 0.6 mg L(-1) in urine and 0-250 mg L(-1) with a detection limit of 2.6 mg L(-1) in plasma sample. The limit of quantitation of creatinine was 2.1 mg L(-1) and 8.7 mg L(-1) in urine and plasma samples, respectively. The relative standard deviation of the method was found to be 13%. The method was successfully applied to the analysis of creatinine in biological samples, showing recoveries from 92% to 104% in urine and 101-110% in plasma samples.

  19. L-lysine-L-tartaric acid: New molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions

    SciTech Connect

    Debrus, S.; Marchewka, M.K. . E-mail: mkm@int.pan.wroc.pl; Baran, J.; Drozd, M.; Czopnik, R.; Pietraszko, A.; Ratajczak, H.

    2005-09-15

    The first X-ray diffraction and vibrational spectroscopic analysis of a novel complex between L-lysine and L-tartaric acid is reported. The structure was solved in two temperatures (320 and 260 K) showing incommensurate phase between them. Room-temperature powder infrared and Raman measurements for the L-lysine-L-tartaric acid molecular complex (1:1) were carried out. DSC measurements on powder samples indicate two phase transitions points at about 295, 300 and 293, 300 K, for heating and cooling, respectively, with noticeable temperature interval between them. Second harmonic generation efficiency d {sub eff}=0.35 d {sub eff} (KDP)

  20. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2013-02-01

    Natural organic acids may play an important role in influencing the mobility of toxic contaminants in the environment. The mobilization of arsenic (As) and heavy metals from an oxidized Pb-Zn mine tailings sample in the presence of three low-molecular-weight organic acids, aspartic acid, cysteine, and succinic acid, was investigated at a mass ratio of 10 mg organic additive/g mine tailings in this study. The effect of pH was also evaluated. The mine tailings sample, containing elevated levels of As (2,180 mg/kg), copper (Cu, 1,100 mg/kg), lead (Pb, 12,860 mg/kg), and zinc (Zn, 5,075 mg/kg), was collected from Bathurst, New Brunswick, Canada. It was found that the organic additives inhibited As and heavy metal mobilization under acidic conditions (at pH 3 or 5), but enhanced it under neutral to alkaline conditions (at pH above 7) through forming aqueous organic complexes. At pH 11, As, Cu, Pb, and Zn were mobilized mostly by the organic additives, 45, 46, 1,660, and 128 mg/kg by aspartic acid, 31, 28, 1,040, and 112 mg/kg by succinic acid, and 53, 38, 2,020, and 150 mg/kg by cysteine, respectively, whereas those by distilled water were 6, 16, 260, and 52 mg/kg, respectively. It was also found that the mobilization of As and the heavy metals was closely correlated, and both were closely correlated to Fe mobilization. Arsenic mobilization by the three LMWOAs was found to be consistent with the order of the stability of Fe-, Cu-, Pb-, and Zn-organic ligand complexes. The organic acids might be used potentially in the natural attenuation and remediation of As and heavy metal-contaminated sites.

  1. Method for the isolation of citric acid and malic acid in Japanese apricot liqueur for carbon stable isotope analysis.

    PubMed

    Akamatsu, Fumikazu; Hashiguchi, Tomokazu; Hisatsune, Yuri; Oe, Takaaki; Kawao, Takafumi; Fujii, Tsutomu

    2017-02-15

    A method for detecting the undeclared addition of acidic ingredients is required to control the authenticity of Japanese apricot liqueur. We developed an analytical procedure that minimizes carbon isotope discrimination for measurement of the δ(13)C values of citric and malic acid isolated from Japanese apricot liqueur. Our results demonstrated that freeze-drying is preferable to nitrogen spray-drying, because it does not significantly affect the δ(13)C values of citric acid and results in smaller isotope discrimination for malic acid. Both 0.1% formic acid and 0.2% phosphoric acid are acceptable HPLC mobile phases for the isolation of citric and malic acid, although the δ(13)C values of malic acid exhibited relatively large variation compared with citric acid following isolation using either mobile phase. The developed procedure allows precise δ(13)C measurements of citric and malic acid isolated from Japanese apricot liqueur.

  2. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.

  3. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer

    PubMed Central

    2014-01-01

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  4. Industrial application of green chromatography--I. Separation and analysis of niacinamide in skincare creams using pure water as the mobile phase.

    PubMed

    Yang, Yu; Strickland, Zackary; Kapalavavi, Brahmam; Marple, Ronita; Gamsky, Chris

    2011-03-15

    In this work, chromatographic separation of niacin and niacinamide using pure water as the sole component in the mobile phase has been investigated. The separation and analysis of niacinamide have been optimized using three columns at different temperatures and various flow rates. Our results clearly demonstrate that separation and analysis of niacinamide from skincare products can be achieved using pure water as the eluent at 60°C on a Waters XTerra MS C18 column, a Waters XBridge C18 column, or at 80°C on a Hamilton PRP-1 column. The separation efficiency, quantification quality, and analysis time of this new method are at least comparable with those of the traditional HPLC methods. Compared with traditional HPLC, the major advantage of this newly developed green chromatography technique is the elimination of organic solvents required in the HPLC mobile phase. In addition, the pure water chromatography separations described in this work can be directly applied in industrial plant settings without further modification of the existing HPLC equipment.

  5. [Analysis of seven compounds in mainstream cigarette smoke by ultra performance liquid chromatography using a beta-cyclodextrin mobile phase additive].

    PubMed

    Li, Zhonghao; Tang, Gangling; Pang, Yongqiang; Jiang, Xingyi; Chen, Zaigen; Hu, Qingyuan

    2010-08-01

    A rapid method for the analysis of hydroquinone, resorcinol, catechol, phenol, p-cresol, m-cresol, and o-cresol in mainstream cigarette smoke by ultra performance liquid chromatography (UPLC) using a beta-cyclodextrin (beta-CD) mobile phase additive was developed. The seven major phenolic compounds in mainstream smoke were collected with YC/T 255-2008 standard method. The extract was filtrated with 0.22 microm filtration film and then subjected to UPLC analysis. The separation was performed on an ACQUITY UPLC BEH Shield RP18 column, and the mobile phase with 4 g/L beta-CD additive was used. The fluorescence detection condition was optimized. The analysis time was 10 mm for one sample. Comparing with the high performance liquid chromatography (HPLC) methods published, the p-cresol and m-cresol were completely separated. In addition, the effect of beta-CD on fluorescence enhancement for seven major phenolic compounds was significant. The linearity were good between the peak area and the concentration in the linear ranges of seven phenolic compounds, and the correlation coefficients were greater than 0.999 9. The limits of detection of the method were 4 - 14 ng/cig, and the recoveries were 95.5% - 103.5% with relative standard deviations (RSDs) less than 4%.

  6. Injury Risk Assessment of Extravehicular Mobility Unit (EMU) Phase VI and Series 4000 Gloves During Extravehicular Activity (EVA) Hand Manipulation Tasks

    NASA Technical Reports Server (NTRS)

    Kilby, Melissa

    2015-01-01

    Functional Extravehicular Mobility Units (EMUs) with high precision gloves are essential for the success of Extravehicular Activity (EVA). Previous research done at NASA has shown that total strength capabilities and performance are reduced when wearing a pressurized EMU. The goal of this project was to characterize the human-space suit glove interaction and assess the risk of injury during common EVA hand manipulation tasks, including pushing, pinching and gripping objects. A custom third generation sensor garment was designed to incorporate a combination of sensors, including force sensitive resistors, strain gauge sensors, and shear force sensors. The combination of sensors was used to measure the forces acting on the finger nails, finger pads, finger tips, as well as the knuckle joints. In addition to measuring the forces, data was collected on the temperature, humidity, skin conductance, and blood perfusion of the hands. Testing compared both the Phase VI and Series 4000 glove against an ungloved condition. The ungloved test was performed wearing the sensor garment only. The project outcomes identified critical landmarks that experienced higher workloads and are more likely to suffer injuries. These critical landmarks varied as a function of space suit glove and task performed. The results showed that less forces were acting on the hands while wearing the Phase VI glove as compared to wearing the Series 4000 glove. Based on our findings, the engineering division can utilize these methods for optimizing the current space suit glove and designing next generation gloves to prevent injuries and optimize hand mobility and comfort.

  7. Vacancy ion-exclusion chromatography of haloacetic acids on a weakly acidic cation-exchange resin.

    PubMed

    Helaleh, Murad I H; Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Taoda, Hiroshi; Ding, Ming-Yu; Hu, Wenzhi; Hasebe, Kiyoshi; Haddad, Paul R

    2003-05-16

    A new and simple approach is described for the determination of the haloacetic acids (such as mono-, di- and trichloroacetic acids) usually found in drinking water as chlorination by-products after disinfection processes and acetic acid. The new approach, termed vacancy ion-exclusion chromatography, is based on an ion-exclusion mechanism but using the sample solution as the mobile phase, pure water as the injected sample, and a weakly acidic cation-exchange resin column (TSKgel OApak-A) as the stationary phase. The addition of sulfuric acid to the mobile phase results in highly sensitive conductivity detection with sharp and well-shaped peaks, leading to excellent and efficient separations. The elution order was sulfuric acid, dichloroacetic acid, monochloroacetic acid, trichloroacetic acid, and acetic acid. The separation of these acids depends on their pKa values. Acids with lower pKa values were eluted earlier than those with higher pKa, except for trichloroacetic acid due to a hydrophobic-adsorption effect occurring as a side-effect of vacancy ion-exclusion chromatography. The detection limits of these acids in the present study with conductivity detection were 3.4 microM for monochloroacetic acid, 0.86 microM for dichloroacetic acid and 0.15 microM for trichloroacetic acid.

  8. Mandelic acid chiral separation utilizing a two-phase partitioning bioreactor built by polysulfone microspheres and immobilized enzymes.

    PubMed

    Wang, Xinyu; Cui, Yanjun; Chen, Xia; Zhu, Hao; Zhu, Weiwei; Li, Yanfeng

    2015-03-01

    A novel two-phase partitioning bioreactor (TPPB) modified by polysulfone (PSF) microspheres and immobilized enzyme (novozym-435) was formed, and the resulting TPPB was applied into mandelic acid chiral separation. The PSF microspheres containing n-hexanol (named PSF/hexanol microspheres) was prepared by using the phase inversion method, which was used as the organic phase. Meanwhile, the immobilized enzyme novozym-435 was used as a biocatalyst. The water phase was composed of the phosphate buffer solution (PBS). (R, S)-Methyl mandelate was selected as the substrate to study enzymatic properties. Different reaction factors have been researched, such as pH, reaction time, temperature and the quantity of biocatalyst and PSF/hexanol microspheres added in. Finally, (S)-mandelic acid was obtained with an 80 % optical purity after 24 h in the two-phase partitioning bioreactor. The enantiomeric excess (eep) values were very low in the water phase, in which the highest eep value was only 46 %. The eep of the two-phase partitioning bioreactor had been enhanced more obviously than that catalyzed in the water phase.

  9. Raman microspectroscopy of noncancerous and cancerous human breast tissues. Identification and phase transitions of linoleic and oleic acids by Raman low-temperature studies.

    PubMed

    Brozek-Pluska, Beata; Kopec, Monika; Surmacki, Jakub; Abramczyk, Halina

    2015-04-07

    We present the results of Raman studies in the temperature range of 293-77 K on vibrational properties of linoleic and oleic acids and Raman microspectroscopy of human breast tissues at room temperature. Our results confirmed the significant role of unsaturated fatty acids in differentiation of noncancerous and cancerous breast tissues and the role of vibrational spectroscopy in phase transition identification. We have found that vibrational properties are very sensitive indicators to specify phases and phase transitions typical of unsaturated fatty