Science.gov

Sample records for acidic mobile phase

  1. Direct chiral resolution of metalaxyl and metabolite metalaxyl acid in aged mobile phases: the role of trace water.

    PubMed

    Zhang, Xiaoxiang; Xia, Tingting; Chen, Jingwen; Huang, Liping; Cai, Xiyun

    2010-04-28

    The separation of chiral transformation products greatly complements the understanding of the stereochemistry of chiral pollutants. In this study, direct enantiomeric resolution of metalaxyl and its main degradation product metalaxyl acid, often co-occurring in the environment, was carried out in normal-phase high-performance liquid chromatography with a Chiralcel OJ-H column. (R)-Metalaxyl acid and (S)-metalaxyl, which were almost parallel bonding to the chiral stationary phase, tended to separate, started to overlap, coeluted, and separated again with subtle changes of the mobile phase consisting of n-hexane, 2-propanol, acetic acid, and trace water. Their competition above hampered an acceptable direct separation in fresh mobile phases. Aged mobile phases with a storage period of 3-5 days, however, significantly improved their separation, in which trace water from moisture air diffusion was found to play a major role. Trace water differentially affected peak width and retention times and then induced enhanced peak separation, confirmed by deliberate addition of water to fresh mobile phases. Furthermore, none of the studied factors, involving temperature, concomitant analytes, and trace water, could cause changes of the configuration of the chiral stationary phase. Simultaneous enantiomeric separation of both compounds was achieved in aged or fresh mobile phases with adventitious or added water and gave satisfactory peak separation, all with Rs values of more than 1.20 in environmental samples.

  2. Mineral phases and mobility of trace metals in white aluminum precipitates found in acid mine drainage.

    PubMed

    Kim, Yeongkyoo

    2015-01-01

    The white aluminum precipitates (S1,S2,S4-1,S4-2) collected at three different locations affected by acid mine and rock drainage were studied to characterize the mineral phases and mobility of trace metals. Chemical analysis, XRD, SEM, NMR, and sequential extraction method were mainly used. XRD data showed that most white aluminum precipitates are amorphous with small amount of gypsum, which was also confirmed by SEM. The (27)Al MAS NMR spectra provide more detailed information on the local environments of aluminum in those samples. The samples collected at two locations (S3, and S4-1 and S4-2) contain 4-coordinated aluminum, suggesting that the samples contain a significant amount of amorphous phase from Al13-tridecamer. Chemical data of calcium and sulfur with (27)Al MAS NMR spectra suggest that the relative amounts of amorphous phase from Al13-tridecamer, hydrobasaluminite, aluminum hydroxide, and gypsum are different for each sample. Different amount of amorphous phase from Al13-tridecamer in those samples are probably caused by the different geochemical conditions and hydrolysis by aging in water. Sequential extraction results show that water soluble fraction and sorbed and exchangeable fraction of trace metals in sample collected as suspended particles (S1) are higher than other samples, and can affect the ecological system in waters by releasing aluminum and trace metals. These results suggest that careful characterization of white aluminum precipitates is needed to estimate the environmental effects of those precipitates in acid mine drainage. PMID:25213794

  3. Influence of preferential adsorption of mobile phase on retention behavior of amino acids on the teicoplanin chiral selector.

    PubMed

    Poplewskaa, Izabela; Kramarz, Renata; Piatkowski, Wojciech; Seidel-Morgenstern, Andreas; Antos, Dorota

    2007-11-30

    The adsorption behavior of two amino acids, i.e., l,d-threonine and l,d-methionine has been investigated on the chiral stationary phase (CSP)column packed with teicoplanin bonded to a silica support. The study has been performed under non-linear conditions of adsorption isotherm for various types of organic modifiers (methanol, ethanol, propan-2-ol and acetonitrile) in the reversed-phase mode. A heterogeneous adsorption mechanism of amino acids has been identified that was strongly affected by the nature of organic modifier. Generally, isotherm non-linearity and retention decreased with decrease of the modifier content in the mobile phase exhibiting a minimum at water-rich mobile phases. These trends were suggested to result from a combined effect of the mobile as well as the adsorbed phase composition. To determine the composition of the adsorbed phase the excess adsorption of modifiers in aqueous solutions has been measured and their binary adsorption equilibria have been quantified and compared. Strongly non-ideal behavior of solvents in the mobile phase and the adsorbed phase has been accounted for by activity coefficients. The fraction of the modifiers in the adsorbed phase decreased in the sequence: methanol, ethanol, propan-2-ol and acetonitrile.

  4. ENHANCED MOBILITY OF DENSE NONAQUEOUS-PHASE LIQUIDS (DNAPLs) USING DISSOLVED HUMIC ACIDS

    SciTech Connect

    EDWIN S. OLSON; JOHN R. GALLAGHER; MARC D. KURZ

    1998-10-01

    The specific objectives of this subtask are as follows: � Evaluate the suitability of using humic acids to enhance the solubility and mobility of DNAPL contaminants sorbed to soils. � Evaluate the toxicity and bioavailablity of the DNAPLs to biodegrading microorganisms. To meet the first objective, the Energy & Environmental Research Center (EERC) evaluated a set of humic acids (two) with different chemical compositions and polarities for the following: � Ability of the humates to mobilize/solubilize selected (three) DNAPLs � Mobilization/solubilization in batch soil�water experiments (one soil) � Removal rate via biotreatment with a well-established active microbial culture. The second objective was met by evaluating the inhibiting effects of a leonardite-derived humic acid on active microbial populations.

  5. Boric acid as a mobile phase additive for high performance liquid chromatography separation of ribose, arabinose and ribulose.

    PubMed

    De Muynck, Cassandra; Beauprez, Joeri; Soetaert, Wim; Vandamme, Erick J

    2006-01-01

    A new high performance liquid chromatographic (HPLC) method is described for the analysis of ribose, arabinose and ribulose mixtures obtained from (bio)chemical isomerization processes. These processes gain importance since the molecules can be used for the synthesis of antiviral therapeutics. The HPLC method uses boric acid as a mobile phase additive to enhance the separation on an Aminex HPX-87K column. By complexing with boric acid, the carbohydrates become negatively charged, thus elute faster from the column by means of ion exlusion and are separated because the complexation capacity with boric acid differs from one carbohydrate to another. Excellent separation between ribose, ribulose and arabinose was achieved with concentrations between 0.1 and 10 gL(-1) of discrete sugar.

  6. Effect of the mobile phase on antibody-based enantiomer separations of amino acids in high-performance liquid chromatography.

    PubMed

    Hofstetter, Oliver; Lindstrom, Heather; Hofstetter, Heike

    2004-09-17

    The effect of the mobile phase parameters flow rate, temperature, pH and ionic strength, as well as the addition of various organic modifiers on the enantiomer separation of various aromatic alpha-amino acids was investigated using two antibody-based chiral stationary phases that have opposing stereoselectivity. On both columns, a decrease in flow rate or temperature resulted in increased interaction with the retained enantiomer. It was found that the retention factor k2 depends on the affinity between the analyte and the immobilized antibody and is not independent of the flow rate. Optimum separations of all amino acids investigated were obtained at pH 7.4 on both columns. While increased k2 values were obtained at low ionic strength on the anti-D-amino acid antibody column, no such effect was observed on the anti-L-amino acid antibody column. The addition of organic modifiers did not improve separations. In all studies, the unretained enantiomer eluted with the void volume.

  7. [Chiral separation of five beta-blockers using di-n-hexyl L-tartrate-boric acid complex as mobile phase additive by reversed-phase liquid chromatography].

    PubMed

    Yang, Juan; Wang, Lijuan; Guo, Qiaoling; Yang, Gengliang

    2012-03-01

    A reversed-phase high performance liquid chromatographic (HPLC) method using the di-n-hexyl L-tartrate-boric acid complex as a chiral mobile phase additive was developed for the enantioseparation of five beta-blockers including propranolol, esmolol, metoprolol, bisoprolol and sotalol. In order to obtain a better enantioseparation, the influences of concentrations of di-n-butyl L-tartrate and boric acid, the type, concentration and pH of the buffer, methanol content as well as the molecular structure of analytes were extensively investigated. The separation of the analytes was performed on a Venusil MP-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 15 mmol/L ammonium acetate-methanol containing 60 mmol/L boric acid, 70 mmol/L di-n-hexyl L-tartrate (pH 6.00). The volume ratios of 15 mmol/L ammonium acetate to methanol were 20: 80 for propranolol, esmolol, metoprolol, bisoprolol and 30: 70 for sotalol. The flow rate was 0.5 mL/min and the detection wavelength was set at 214 nm. Under the optimized conditions, baseline enantioseparation was obtained separately for the five pairs of analytes.

  8. Effect of basic and acidic additives on the separation of some basic drug enantiomers on polysaccharide-based chiral columns with acetonitrile as mobile phase.

    PubMed

    Gogaladze, Khatuna; Chankvetadze, Lali; Tsintsadze, Maia; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-03-01

    The separation of enantiomers of 16 basic drugs was studied using polysaccharide-based chiral selectors and acetonitrile as mobile phase with emphasis on the role of basic and acidic additives on the separation and elution order of enantiomers. Out of the studied chiral selectors, amylose phenylcarbamate-based ones more often showed a chiral recognition ability compared to cellulose phenylcarbamate derivatives. An interesting effect was observed with formic acid as additive on enantiomer resolution and enantiomer elution order for some basic drugs. Thus, for instance, the enantioseparation of several β-blockers (atenolol, sotalol, toliprolol) improved not only by the addition of a more conventional basic additive to the mobile phase, but also by the addition of an acidic additive. Moreover, an opposite elution order of enantiomers was observed depending on the nature of the additive (basic or acidic) in the mobile phase.

  9. Prediction of the chromatographic retention of acid-base compounds in pH buffered methanol-water mobile phases in gradient mode by a simplified model.

    PubMed

    Andrés, Axel; Rosés, Martí; Bosch, Elisabeth

    2015-03-13

    Retention of ionizable analytes under gradient elution depends on the pH of the mobile phase, the pKa of the analyte and their evolution along the programmed gradient. In previous work, a model depending on two fitting parameters was recommended because of its very favorable relationship between accuracy and required experimental work. It was developed using acetonitrile as the organic modifier and involves pKa modeling by means of equations that take into account the acidic functional group of the compound (carboxylic acid, protonated amine, etc.). In this work, the two-parameter predicting model is tested and validated using methanol as the organic modifier of the mobile phase and several compounds of higher pharmaceutical relevance and structural complexity as testing analytes. The results have been quite good overall, showing that the predicting model is applicable to a wide variety of acid-base compounds using mobile phases prepared with acetonitrile or methanol.

  10. Peak shapes of acids and bases under overloaded conditions in reversed-phase liquid chromatography, with weakly buffered mobile phases of various pH: a thermodynamic interpretation.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-01-01

    We measured overloaded band profiles for a series of nine compounds (phenol, caffeine, 3-phenyl 1-propanol, 2-phenylbutyric acid, amphetamine, aniline, benzylamine, p-toluidine, and procainamidium chloride) on columns packed with four different C(18)-bonded packing materials: XTerra-C(18), Gemini-C(18), Luna-C(18)(2), and Halo-C(18), using buffered methanol-water mobile phases. The pHWS of the mobile phase was increased from 2.6 to 11.3. The buffer concentration (either phosphate, acetate, or carbonate buffers) was set constant at values below the maximum concentration of the sample in the band. The influence of the surface chemistry of the packing material on the retention and the shape of the peaks was investigated. Adsorbents having a hybrid inorganic/organic structure tend to give peaks exhibiting moderate or little tailing. The retention and the shape of the band profiles can easily be interpreted at pHsWS that are well above or well below the pKWS(a) of the compound studied. In contrast, the peak shapes in the intermediary pH range (i.e., close to the compound pKWS(a)) have rarely been studied. These shapes reveal the complexity of the competitive adsorption behavior of couples of acido-basic conjugated compounds at pHsWS that are close to their pKWS(a). They also reveal the role of the buffer capacity on the resulting peak shape. With increasing pHWS, the overloaded profiles are first langmuirian (isotherm type I) at low pHsWS, they become S-shaped (isotherm type II), then anti-langmuirian (isotherm type III), S-shaped again at intermediate pHsWS, and finally return to a langmuirian shape at high pHsWS. A new general adsorption isotherm model that takes into account the dissociation equilibrium of conjugated acidic and basic species in the bulk mobile phase accounts for these transient band shapes. An excellent agreement was achieved between experimental profiles and those calculated with a two-sites adsorption isotherm model at all pHsWS. The neutral

  11. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang

    2014-01-01

    The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270

  12. Peak shapes of acids and bases under overloaded conditions in reversed-phase liquid chromatography, with weakly buffered mobile phases of various pH: A thermodynamic interpretation

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    We measured overloaded band profiles for a series of nine compounds (phenol, caffeine, 3-phenyl 1-propanol, 2-phenylbutyric acid, amphetamine, aniline, benzylamine, p-toluidine, and procainamidium chloride) on columns packed with four different C{sub 18}-bonded packing materials: XTerra-C{sub 18}, Gemini-C{sub 18}, Luna-C{sub 18}(2), and Halo-C{sub 18}, using buffered methanol-water mobile phases. The {sub W}{sup S}pH of the mobile phase was increased from 2.6 to 11.3. The buffer concentration (either phosphate, acetate, or carbonate buffers) was set constant at values below the maximum concentration of the sample in the band. The influence of the surface chemistry of the packing material on the retention and the shape of the peaks was investigated. Adsorbents having a hybrid inorganic/organic structure tend to give peaks exhibiting moderate or little tailing. The retention and the shape of the band profiles can easily be interpreted at {sub W}{sup S}pHs that are well above or well below the {sub W}{sup S}pK{sub a} of the compound studied. In contrast, the peak shapes in the intermediary pH range (i.e., close to the compound {sub W}{sup S}pK{sub a}) have rarely been studied. These shapes reveal the complexity of the competitive adsorption behavior of couples of acido-basic conjugated compounds at {sub W}{sup S}pHs that are close to their {sub W}{sup S}pK{sub a}. They also reveal the role of the buffer capacity on the resulting peak shape. With increasing {sub W}{sup S}pH, the overloaded profiles are first langmuirian (isotherm type I) at low {sub W}{sup S}pHs, they become S-shaped (isotherm type II), then anti-langmuirian (isotherm type III), S-shaped again at intermediate {sub W}{sup S}pHs, and finally return to a langmuirian shape at high {sub W}{sup S}pHs. A new general adsorption isotherm model that takes into account the dissociation equilibrium of conjugated acidic and basic species in the bulk mobile phase accounts for these transient band shapes. An

  13. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-03-01

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 microL samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (SW)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase. PMID:18976999

  14. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-03-01

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 microL samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (SW)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase.

  15. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2009-01-01

    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 {micro}L samples of a 50 mM probe solution were injected into C{sub 18}-bonded columns using a series of five buffered mobile phases at {sub W}{sup S}pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1 g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C{sub 18}-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C{sub 18}-bonded layer and the bulk

  16. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases

    PubMed

    Espinosa; Bosch; Roses

    2000-11-01

    The pH calibration procedures that lead to the different pH scales in acetonitrile-water mixtures used as mobile phases in reversed-phase liquid chromatography are discussed. Appropriate buffers of known pH value in acetonitrile-water mixtures are selected and used to establish the relationship (delta values) between the two rigorous acetonitrile-water pH scales: sspH and wspH (pH measured in acetonitrile-water mixtures and referred to acetonitrile-water or water, respectively, as standard state). These delta values allow one to convert pH values measured in acetonitrile-water with electrode systems calibrated with aqueous buffers (wspH scale) to sspH values, which are directly related to the thermodynamic acid-base constants. This offers an easy way to measure the pH of acetonitrile-water mobile phases and to relate this pH to the chromatographic retention of acids and bases through the thermodynamic acid-base constants. The relationships are tested for the variation of the retention of acids and bases with the pH of the mobile phase at several mobile-phase compositions and favorably compared with the relationships obtained with the common wwpH scale (pH measured in the aqueous buffer before mixing it with the organic modifier). The use of the rigorous sspH and wspH scales allows one to explain the retention behavior of bases, which in many instances cannot be justified from the pH measurement in the ill-founded wwpH scale. PMID:11080863

  17. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases

    PubMed

    Espinosa; Bosch; Roses

    2000-11-01

    The pH calibration procedures that lead to the different pH scales in acetonitrile-water mixtures used as mobile phases in reversed-phase liquid chromatography are discussed. Appropriate buffers of known pH value in acetonitrile-water mixtures are selected and used to establish the relationship (delta values) between the two rigorous acetonitrile-water pH scales: sspH and wspH (pH measured in acetonitrile-water mixtures and referred to acetonitrile-water or water, respectively, as standard state). These delta values allow one to convert pH values measured in acetonitrile-water with electrode systems calibrated with aqueous buffers (wspH scale) to sspH values, which are directly related to the thermodynamic acid-base constants. This offers an easy way to measure the pH of acetonitrile-water mobile phases and to relate this pH to the chromatographic retention of acids and bases through the thermodynamic acid-base constants. The relationships are tested for the variation of the retention of acids and bases with the pH of the mobile phase at several mobile-phase compositions and favorably compared with the relationships obtained with the common wwpH scale (pH measured in the aqueous buffer before mixing it with the organic modifier). The use of the rigorous sspH and wspH scales allows one to explain the retention behavior of bases, which in many instances cannot be justified from the pH measurement in the ill-founded wwpH scale.

  18. Formation of iron complexs from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid chromatography/electrospray ionization mass spectrometric analysis

    SciTech Connect

    Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.; Zhao, Rui; Clauss, Therese RW; Moore, Ronald J.; Smith, Richard D.

    2011-05-30

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to apply high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.

  19. Analysis of Phenacylester Derivatives of Fatty Acids from Human Skin Surface Sebum by Reversed-Phase HPLC: Chromatographic Mobility as a Function of Physico-Chemical Properties

    PubMed Central

    Bodoprost, Juliana; Rosemeyer, Helmut

    2007-01-01

    A set of 13 fatty acids was transformed into their phenacyl esters by reaction with phenacyl bromide in acetonitrile using 18-crown-6 as phase-transfer catalyst. Conditions for the RP-18 HPL chromatographic separation of most of the esters has been worked out. Using this standard the fatty acid spectra from skin surface sebum lipids of 17 test persons was taken after microwave-assisted hydrolysis, neutralization and extraction with n-hexane. Quantitative evaluation of the chromatograms exhibits that oleic acid predominates in the sebum of all test persons. In the second part of the work the chromatographic mobility (RE values) of fatty acid phenacyl esters is correlated with calculated physico-chemical parameters of the corresponding acids. The best linear correlation was found between the RE and the logP values. This is helpful for the structural elucidation of un-identified fatty acids in a chromatogram.

  20. Effect of (+) or (-) camphorsulfonic acid additives to the mobile phase on enantioseparations of some basic drugs on a Chiralcel OD column.

    PubMed

    Bielejewska, A; Duszczyk, K; Zukowski, J

    2005-08-12

    This paper describes the modification of Chiralcel OD column properties by adsorption of (+) or (-) camphorsulfonic acids (CSAs) used as additives to the mobile phase. The effects on retention, selectivity and efficiency, of adsorption of (+) and (-) CSAs on a Chiralcel OD column were examined. Racemic anti-histamines, anti-malarial and anti-fungal drugs, namely doxylamine, miconazole, sulconazole, hydroxyzine, homochlorcyclizine, methoxypheniramine, cyclopentolate and ephedrine were investigated as chiral tested compounds. All the studied drugs have an amino nitrogen atom in their structure. Only the enantioseparation of ephedrine enantiomers with CSAs alone was studied on the Nucleosil stationary phase, and these results were compared with the results obtained on the Chiralcel OD phase. A new dynamically generated stationary phase, with very good enantioseparation ability towards the studied compounds, was obtained by the adsorption of (-) CSA on the Chiralcel OD column. PMID:16078699

  1. A solid-state NMR study of phase structure, molecular interactions, and mobility in blends of citric acid and paracetamol.

    PubMed

    Schantz, S; Hoppu, P; Juppo, A M

    2009-05-01

    Citric acid anhydrate (CAA) and paracetamol (PARA), prepared as crystalline physical mixtures and as amorphous blends, were studied using (13)C solid-state cross polarization magic angle spinning (CPMAS) NMR. Amorphous blends showed significant line broadening from the conformational distribution as compared to the crystalline samples. Also, chemical shift variations were observed between crystalline and amorphous blends, which were attributed to differences in intermolecular interactions. Averaging of proton rotating-frame spin-lattice relaxation times (T(1rho)) probed via different (13)C sites in the amorphous blends confirmed molecular level mixing. For some, initially amorphous, sample compositions the onset of crystallization was evident directly from spectra and from the significantly longer T(1rho) relaxations. Thus, crystallization caused phase separation with properties of the two phases resembling those of pure CAA and PARA, respectively. (13)C spectra of amorphous 50/50 (w/w, %) CAA/PARA recorded from above the glass transition temperature broadened as the temperature increased to a maximum at T approximately T(g) + 33 K. This was the result of a dynamic interference between the line narrowing techniques being applied and the time scale of molecular reorientation in the miscible melt. The derived average correlation time was found to correspond well with previous results from melt rheology. We conclude that the underlying reasons for physical instability (i.e., crystallization from the miscible melt, including molecular interactions and dynamics) of this class of amorphous binary mixtures can be effectively evaluated using NMR spectroscopy.

  2. Gradient retention prediction of acid-base analytes in reversed phase liquid chromatography: a simplified approach for acetonitrile-water mobile phases.

    PubMed

    Andrés, Axel; Rosés, Martí; Bosch, Elisabeth

    2014-11-28

    In previous work, a two-parameter model to predict chromatographic retention of ionizable analytes in gradient mode was proposed. However, the procedure required some previous experimental work to get a suitable description of the pKa change with the mobile phase composition. In the present study this previous experimental work has been simplified. The analyte pKa values have been calculated through equations whose coefficients vary depending on their functional group. Forced by this new approach, other simplifications regarding the retention of the totally neutral and totally ionized species also had to be performed. After the simplifications were applied, new prediction values were obtained and compared with the previously acquired experimental data. The simplified model gave pretty good predictions while saving a significant amount of time and resources.

  3. Retention of ionisable compounds on high-performance liquid chromatography XVIII: pH variation in mobile phases containing formic acid, piperazine, tris, boric acid or carbonate as buffering systems and acetonitrile as organic modifier.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2009-03-20

    In the present work dissociation constants of commonly used buffering species, formic acid, piperazine, tris(hydroxymethyl)-aminomethane, boric acid and carbonate, have been determined for several acetonitrile-water mixtures. From these pK(a) values a previous model has been successfully evaluated to estimate pH values in acetonitrile-aqueous buffer mobile phases from the aqueous pH and concentration of the above mentioned buffers up to 60% of acetonitrile, and aqueous buffer concentrations between 0.005 (0.001 mol L(-1) for formic acid-formate) and 0.1 mol L(-1). The relationships derived for the presently studied buffers, together with those established for previously considered buffering systems, allow a general prediction of the pH variation of the most commonly used HPLC buffers when the composition of the acetonitrile-water mobile phase changes during the chromatographic process, such as in gradient elution. Thus, they are an interesting tool that can be easily implemented in general retention models to predict retention of acid-base analytes and optimize chromatographic separations.

  4. Unified pH values of liquid chromatography mobile phases.

    PubMed

    Suu, Agnes; Jalukse, Lauri; Liigand, Jaanus; Kruve, Anneli; Himmel, Daniel; Krossing, Ingo; Rosés, Martí; Leito, Ivo

    2015-03-01

    This work introduces a conceptually new approach of measuring pH of mixed-solvent liquid chromatography (LC) mobile phases. Mobile phase pH is very important in LC, but its correct measurement is not straightforward, and all commonly used approaches have deficiencies. The new approach is based on the recently introduced unified pH (pH(abs)) scale, which enables direct comparison of acidities of solutions made in different solvents based on chemical potential of the proton in the solutions. This work represents the first experimental realization of the pH(abs) concept using differential potentiometric measurement for comparison of the chemical potentials of the proton in different solutions (connected by a salt bridge), together with earlier published reference points for obtaining the pH(abs) values (referenced to the gas phase) or pH(abs)(H₂O) values (referenced to the aqueous solution). The liquid junction potentials were estimated in the framework of Izutsu's three-component method. pH(abs) values for a number of common LC and LC-MS mobile phases have been determined. The pH(abs) scale enables for the first time direct comparison of acidities of any LC mobile phases, with different organic additives, different buffer components, etc. A possible experimental protocol of putting this new approach into chromatographic practice has been envisaged and its applicability tested. It has been demonstrated that the ionization behavior of bases (cationic acids) in the mobile phases can be better predicted by using the pH(abs)(H₂O) values and aqueous pKa values than by using the alternative means of expressing mobile phase acidity. Description of the ionization behavior of acids on the basis of pH(abs)(H₂O) values is possible if the change of their pKa values with solvent composition change is taken into account. PMID:25664372

  5. Determination of hydrogen ion by ion chromatography (IC) with sulfonated cation-exchange resin as the stationary phase and aqueous EDTA (ethylenediamine-N,N,N',N'-tetraacetic acid) solution as the mobile phase.

    PubMed

    Hu, W; Iles, A; Hasebe, K; Matsukami, H; Cao, S; Tanaka, K

    2001-05-01

    An ion chromatographic (IC) method has been developed for determination of hydrogen ion (H+). It is based on the use of sulfonated cation-exchange resin as stationary phase, aqueous ethylenediamine-N,N,N',N'-tetraacetic acid (dipotassium salt, EDTA-2K, written as K2H2Y) solution as mobile phase, and conductivity for detection. H+ was separated mainly by cation-exchange, but its elution was accelerated by the presence of EDTA. The order of elution for the model cations was H+ > Li+ > Na+ > NH4+ > Ca2+ > > Mg2+. A sharp and highly symmetrical peak was obtained for H+ and this was attributed to the capacity of H2Y2(2-) to receive and bind H+. H+ was detected conductiometrically and detector response (reduction in conductivity as a result of H+ +H2Y2- --> H3Y-) was linearly proportional to the concentration of H+ in the sample. The detection limit for H+ with this IC system was better than 4.7 micromol L(-1). A significant advantage of this method was the ability to separate and determine, in one step, H+ and other cations. The successful determination of H+ and other cation species in real acid-rain samples demonstrated the usefulness of this method.

  6. 47 CFR 54.1008 - Mobility Fund Phase I disbursements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) UNIVERSAL SERVICE Mobility Fund § 54.1008 Mobility Fund Phase I disbursements. (a) A winning... compliance with all requirements for receipt of Mobility Fund Phase I support at the time that it...

  7. 47 CFR 54.1008 - Mobility Fund Phase I disbursements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) UNIVERSAL SERVICE Mobility Fund § 54.1008 Mobility Fund Phase I disbursements. (a) A winning... compliance with all requirements for receipt of Mobility Fund Phase I support at the time that it...

  8. Retention of ionisable compounds on high-performance liquid chromatography XIX. pH variation in mobile phases containing formic acid, piperazine and tris as buffering systems and methanol as organic modifier.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2009-07-10

    In previous works a model to estimate the pH of methanol-aqueous buffer mobile phases from the aqueous pH and concentration of the buffer and the fraction of organic modifier was developed. This model was successfully applied and validated for buffers prepared from ammonia, acetic, phosphoric and citric acids. In the present communication this model has been extended to formic acid, piperazine and tris(hydroxymethyl)aminomethane buffers. Prior to the modelling work, the pK(a) values of the studied buffers at several methanol-water compositions were determined.

  9. 47 CFR 54.1008 - Mobility Fund Phase I disbursements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Mobility Fund Phase I disbursements. 54.1008 Section 54.1008 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) UNIVERSAL SERVICE Mobility Fund § 54.1008 Mobility Fund Phase I disbursements. (a) A winning bidder for Mobility Fund Phase I...

  10. Determination of the pH of binary mobile phases for reversed-phase liquid chromatography.

    PubMed

    Rosés, Martí

    2004-05-28

    The measurement of pH in chromatographic mobile phases has been a constant subject of discussion during many years. The pH of the mobile phase is an important parameter that determines the chromatographic retention of many analytes with acid-base properties. In many instances a proper pH measurement is needed to assure the accuracy of retention-pH relationships or the reproducibility of chromatographic procedures. Three different methods are common in pH measurement of mobile phases: measurement of pH in the aqueous buffer before addition of the organic modifier, measurement of pH in the mobile phase prepared by mixing aqueous buffer and organic modifier after pH calibration with standard solutions prepared in the same mobile phase solvent, and measurement of pH in the mobile phase prepared by mixing aqueous buffer and organic modifier after pH calibration with aqueous standard solutions. This review discusses the different pH measurement and calibration procedures in terms of the theoretical and operational definitions of the different pH scales that can be applied to water-organic solvent mixtures. The advantages and disadvantages of each procedure are also presented through chromatographic examples. Finally, practical recommendations to select the most appropriate pH measurement procedure for particular chromatographic problems are given.

  11. An integrated electrophoretic mobility control device with split design for signal improvement in liquid chromatography-electrospray ionization mass spectrometry analysis of aminoglycosides using a heptafluorobutyric acid containing mobile phase.

    PubMed

    Hung, Sih-Hua; Yu, Meng-Ju; Wang, Nan-Hsuan; Hsu, Ren-Yu; Wei, Guor-Jien; Her, Guor-Rong

    2016-08-24

    Electrophoretic mobility control (EMC) was used to alleviate the adverse effect of the ion-pairing agent heptafluorobutyric acid (HFBA) in the liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis of aminoglycosides. Aminoglycosides separated by LC were directed to a connecting column before their detection via ESI. Applying an electric field across the connecting column caused the positively charged aminoglycosides to migrate toward the mass spectrometer whereas the HFBA anions remained in the junction reservoir, thus alleviating the ion suppression caused by HFBA. To accommodate the flow rate of a narrow-bore column, minimize the effect of electrophoretic mobility on separation, and facilitate the operation, an integrated EMC device with a split design was fabricated. With the proposed EMC device, the signals of aminoglycosides were enhanced by a factor of 5-85 without affecting the separation efficiency or elution order. For the analysis of aminoglycosides in bovine milk, the proposed approach demonstrates a sensitivity that is at least 10 times below the maximum residue limits set by most countries. PMID:27497008

  12. Aqueous phase oligomerization of α,β-unsaturated carbonyls and acids investigated using ion mobility spectrometry coupled to mass spectrometry (IMS-MS)

    NASA Astrophysics Data System (ADS)

    Renard, Pascal; Tlili, Sabrine; Ravier, Sylvain; Quivet, Etienne; Monod, Anne

    2016-04-01

    One of the current essential issues to unravel our ability to forecast future climate change and air quality, implies a better understanding of natural processes leading to secondary organic aerosol (SOA) formation, and in particular the formation and fate of oligomers. The difficulty in characterizing macromolecules is to discern between large oxygenated molecules from series of oligomers containing repeated small monomers of diverse structures. In the present study, taking advantage from previously established radical vinyl oligomerization of methyl vinylketone (MVK) in the aqueous phase, where relatively simple oligomers containing up to 14 monomers were observed, we have investigated the same reactivity on several other unsaturated water soluble organic compounds (UWSOCs) and on a few mixtures of these precursor compounds. The technique used to characterize the formed oligomers was a traveling wave ion mobility spectrometry coupled to a hybrid quadrupole - time of flight mass spectrometer (IMS-MS) fitted with an electrospray source and ultra-high performance liquid chromatography (UPLC). The technique allows for an additional separation, especially for large ions, containing long carbon chains. We have shown the efficiency of the IMS-mass spectrometry technique to detect oligomers derived from MVK photooxidation in the aqueous phase. The results were then compared to other oligomers, derived from ten other individual biogenic UWSOCs. The technique allowed distinguishing between different oligomers arising from different precursors. It also clearly showed that compounds bearing a non-conjugated unsaturation did not provide oligomerization. Finally, it was shown that the IMS-mass spectrometry technique, applied to mixtures of unsaturated conjugated precursors, exhibited the ability of these precursors to co-oligomerize, i.e. forming only one complex oligomer system bearing monomers of different structures. The results are discussed in terms of atmospheric

  13. Isopropylammonium Formate as a Mobile Phase Modifier for Liquid Chromatography

    PubMed Central

    Collins, Matthew P.; Zhou, Ling; Camp, Suzanne E.; Danielson, Neil D.

    2012-01-01

    Isopropylammonium formate (IPAF), a new alkylammonium formate (AAF) room temperature ionic liquid, has been synthesized from isopropylamine and formic acid and characterized as an organic solvent mobile phase replacement for reversed-phase liquid chromatography (LC). Characterization of IPAF solvent properties in water such as pH, conductivity, and viscosity, as well as its synthesis, is described. The LC polarity (P′) and the solvent strength (S) parameters are determined to be 6.0 and 2.4, respectively, similar to those same parameters for methanol and acetonitrile. Application of this RTIL is demonstrated as an organic solvent replacement for reversed-phase LC to separate a test mixture of niacinamide, acetophenone and p-nitroaniline. The van Deemter plot profile for several columns of different dimensions, particle size, pore size and stationary phase are compared using an IPAF–water mobile phase. At flow rates above 2 mL/min, on-line mixing of the viscous IPAF with water appears not to be uniform. A flattening of the van Deemter profile is noted for particularly short (50 mm) wide bore (4.6 mm) columns packed with larger particles (10 µm). Small particle longer columns likely facilitated mixing at the beginning of the column generating typical linearly increasing van Deemeter curves. IPAF has been further shown as a function of temperature to be a non-denaturing modifier solvent for the separation of the protein cytochrome c from tryptophan compared to methanol. This is important to show, because the semi-preparative separation of native proteins using AAF mobile phases is the long-term goal of this research program. PMID:22718743

  14. An automated mobile phase preparation workstation.

    PubMed

    Swinney, Kelly; Young, Benjamin; Jakubik, Matthew E; Clark, Hinton; Troisi, John; Fermier, Adam M

    2007-02-01

    An automated solvent dispensing workstation capable of delivering volumes ranging from 10 mL to 4.5 L for the preparation of solutions/mobile phases was developed and implemented into the industrial R&D laboratory. The workstation was designed to address business, safety, and compliance needs while meeting or exceeding the precision and accuracy of current manual methods of preparation. The system's performance was optimized with respect to liquid transfer tubing inner diameter, pumping pressure, flow characteristics of the valve, and computer control logic. The automated solvent dispensing workstation was shown to exceed the specifications set by the ASTM for Class A graduated cylinders for all dispense volumes (10 mL-4.5 L).

  15. MSAT mobile electronically steered phased array antenna development

    NASA Technical Reports Server (NTRS)

    Schmidt, Fred

    1988-01-01

    The Mobile Satellite Experiment (MSAT-X) breadboard antenna design demonstrates the feasibility of using a phased array in a mobile satellite application. An electronically steerable phased array capable of tracking geosynchronous satellites from anywhere in the Continental United States has been developed. The design is reviewed along with the test data. Cost analysis are presented which indicate that this design can be produced at a cost of $1620 per antenna.

  16. The Role of Fluorinated Alcohols as Mobile Phase Modifiers for LC-MS Analysis of Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Basiri, Babak; van Hattum, Hilde; van Dongen, William D.; Murph, Mandi M.; Bartlett, Michael G.

    2016-09-01

    Hexafluoroisopropanol (HFIP) has been widely used as an acidic modifier for mobile phases for liquid chromatography-mass spectrometry (LC-MS) analysis of oligonucleotides ever since the first report of its use for this purpose. This is not surprising, considering the exceptional performance of HFIP compared with carboxylic acids, which cause significant MS signal suppression in electrospray ionization. However, we have found that other fluorinated alcohols can also be utilized for mobile phase preparation and the choice of optimal fluorinated alcohol is determined by the ion-pairing (IP) agent. Although HFIP is a very good choice to be used alongside less hydrophobic IP agents, other fluorinated alcohols such as 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (HFMIP) can significantly outperform HFIP when used with more hydrophobic IP agents. We also found that more acidic fluorinated alcohols assist with the transfer of oligonucleotides with secondary structure (e.g., folded strands and hairpins) into the gas phase.

  17. Highly stereoselective, uniformly sized molecularly imprinted polymers for cinchona alkaloids in hydro-organic mobile phases.

    PubMed

    Haginaka, Jun; Kagawa, Chino

    2003-01-01

    Highly stereoselective, uniformly sized molecularly imprinted polymers (MIPs) for cinchona alkaloids, cinchonine (CN) and cinchonidine (CD), were prepared using methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EDMA) as a cross-linker. The MIPs were evaluated using a mixture of phosphate buffer and acetonitrile as the mobile phase. The CN- and CD-imprinted MAA-co-EDMA polymers can recognize the respective template molecule more than the other diastereomer, and afford an excellent diastereomer separation of CN and CD. In addition, the MIPs gave diastereomer separations of structurally related compounds, quinidine and quinine. The retentive and stereoselective properties of those compounds on the MIPs suggest that electrostatic and hydrophobic interactions can work to recognize these compounds. Furthermore, thermodynamic studies reveal that the entropy-driven effect is significant at mobile-phase pH 5.4, while the enthalpy-driven interactions seem to be dominant at mobile-phase pH 9.6.

  18. Mobile phase additives for enhancing the chromatographic performance of astaxanthin on nonendcapped polymeric C30-bonded stationary phases.

    PubMed

    Kaiser, Philipp; Surmann, Peter; Fuhrmann, Herbert

    2009-01-01

    Astaxanthin shows peak deformation and reduced peak area response when eluted with methanol and methyl tert-butyl ether on nonendcapped polymeric C30-bonded HPLC phases. The present study tested different column manufacturers, column batches, and ten mobile phase additives including acids, bases, buffers, complexing and antioxidant agents for improvement of peak shape and peak area response. Concerning chromatographic benefits and feasibility, ammonium acetate was found to be the best additive followed by triethylamine for all columns tested. Variation of the mobile phase pH equivalent and the column temperature showed no synergistic effects on peak shape and peak area response. Results indicate that peak tailing and variation of peak area response are due to different on-column effects. Possible mechanisms of the observed phenomenon will be discussed. PMID:19051191

  19. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration.

  20. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration. PMID:24126964

  1. Arachidonic acid-induced mobilization of calcium in human neutrophils: evidence for a multicomponent mechanism of action.

    PubMed Central

    Naccache, P. H.; McColl, S. R.; Caon, A. C.; Borgeat, P.

    1989-01-01

    1. The mechanism(s) involved in the mobilization of calcium induced by arachidonic acid in human neutrophils was investigated. 2. The addition of arachidonic acid to a suspension of human neutrophils led to a time- and concentration-dependent mobilization of calcium which was the result of two separate and experimentally differentiable processes. The latter consisted of a rapid and transient phase followed by a slower and more sustained response. 3. The initial phase of calcium mobilization elicited by arachidonic acid was decreased in the presence of EGTA, inhibited by pertussis toxin as well as by nordihydroguaiaretic acid (NDGA), and diminished following a pre-incubation with leukotriene B4, but not platelet-activating factor. 4. The characteristics of the first phase of the mobilization of calcium were consistent with an interaction of the fatty acid with the leukotriene B4 receptors, either directly or indirectly following the synthesis of leukotriene B4, as well as with a release of internal calcium. 5. The second, slower and more sustained phase of calcium mobilization was more apparent at high concentrations (greater than or equal to 8-16 microM) of arachidonic acid, and was relatively insensitive to pertussis toxin, EGTA or NDGA. 6. The characteristics of the 'slow' phase of calcium mobilization by arachidonic acid are consistent with its being associated primarily with a release of calcium from internal storage pools. 7. The data presented indicate that the mechanism of mobilization of calcium by arachidonic acid in human neutrophils is complex and involves specific activation pathways employed, in part at least, by other neutrophil agonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2547474

  2. Effect of Mobile Phase on Electrospray Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Liigand, Jaanus; Kruve, Anneli; Leito, Ivo; Girod, Marion; Antoine, Rodolphe

    2014-08-01

    Electrospray (ESI) ionization efficiencies (IE) of a set of 10 compounds differing by chemical nature, extent of ionization in solution (basicity), and by hydrophobicity (tetrapropylammonium and tetraethylammonium ion, triethylamine, 1-naphthylamine, N,N-dimethylaniline, diphenylphthalate, dimethylphtahalate, piperidine, pyrrolidine, pyridine) have been measured in seven mobile phases (three acetonitrile percentages 20%, 50%, and 80%, and three different pH-adjusting additives, 0.1% formic acid, 1 mM ammonia, pH 5.0 buffer combination) using the relative measurement method. MS parameters were optimized separately for each ion. The resulting relative IE data were converted into comparable logIE values by anchoring them to the logIE of tetrapropylammonium ion taking into account the differences of ionization in different solvents and thereby making the logIE values of the compounds comparable across solvents. The following conclusions were made from analysis of the data. The compounds with pK a values in the range of the solution pH values displayed higher IE at lower pH. The sensitivity of IE towards pH depends on hydrophobicity being very strong with pyridine, weaker with N,N-dimethylaniline, and weakest with 1-naphthylamine. IEs of tetraalkylammonium ions and triethylamine were expectedly insensitive towards solution pH. Surprisingly high IEs of phthalate esters were observed. The differences in solutions with different acetonitrile content and similar pH were smaller compared with the pH effects. These results highlight the importance of hydrophobicity in electrospray and demonstrate that high hydrophobicity can sometimes successfully compensate for low basicity.

  3. Phase transitions in contagion processes mediated by recurrent mobility patterns

    NASA Astrophysics Data System (ADS)

    Balcan, Duygu; Vespignani, Alessandro

    2011-07-01

    Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumours, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modelled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyse contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models because of the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behaviour by analysing diffusion processes mediated by real human commuting data.

  4. Acidic deposition: decline in mobilization of toxic aluminium.

    PubMed

    Palmer, Sheila M; Driscoll, Charles T

    2002-05-16

    The mobilization of aluminium from acidic forest soils is arguably the most ecologically important consequence of acid deposition in the environment because of its adverse effects on soils, forest vegetation and surface water. Here we show that there has been a significant decline in the concentrations of aluminium species in soil solutions at medium-to-high elevations in a northern hardwood forest in the United States in response to decreasing acidic deposition. Streamwater aluminium concentrations have also fallen and, if this rate of recovery persists, will within 10 years no longer pose a threat to fish.

  5. Phase transition and surface sublimation of a mobile Potts model.

    PubMed

    Bailly-Reyre, A; Diep, H T; Kaufman, M

    2015-10-01

    We study in this paper the phase transition in a mobile Potts model by the use of Monte Carlo simulation. The mobile Potts model is related to a diluted Potts model, which is also studied here by a mean-field approximation. We consider a lattice where each site is either vacant or occupied by a q-state Potts spin. The Potts spin can move from one site to a nearby vacant site. In order to study the surface sublimation, we consider a system of Potts spins contained in a recipient with a concentration c defined as the ratio of the number of Potts spins N(s) to the total number of lattice sites N(L)=N(x)×N(y)×N(z). Taking into account the attractive interaction between the nearest-neighboring Potts spins, we study the phase transitions as functions of various physical parameters such as the temperature, the shape of the recipient, and the spin concentration. We show that as the temperature increases, surface spins are detached from the solid phase to form a gas in the empty space. Surface order parameters indicate different behaviors depending on the distance to the surface. At high temperatures, if the concentration is high enough, the interior spins undergo a first-order phase transition to an orientationally disordered phase. The mean-field results are shown as functions of temperature, pressure, and chemical potential, which confirm in particular the first-order character of the transition. PMID:26565221

  6. 77 FR 14012 - Eligible Telecommunications Carrier Designation for Participation in Mobility Fund Phase I

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... Telecommunications Carrier Designation for Participation in Mobility Fund Phase I AGENCY: Federal Communications... Telecommunications Carrier (ETC) Designation from the Commission for participation in Mobility Fund Phase I Auction...) Mobility Fund Phase I support must be designated as an eligible telecommunications carrier in...

  7. Considerations of digital phase modulation for narrowband satellite mobile communication

    NASA Technical Reports Server (NTRS)

    Grythe, Knut

    1990-01-01

    The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented.

  8. Gas phase acidity of substituted benzenes

    NASA Astrophysics Data System (ADS)

    Bouchoux, Guy

    2011-04-01

    Deprotonation thermochemistry of benzene derivatives C 6H 5X (X = H, F, Cl, OH, NH 2, CN, CHO, NO 2, CH 3, C 2H 5, CHCH 2, CCH) has been examined at the G3B3 level of theory. For X = F, Cl, CN, CHO and NO 2, the most favorable deprotonation site is the ortho position of the phenyl ring. This regio-specificity is directly related to the field/inductive effect of the substituent. G3B3 gas phase acidities, Δ acidH° and Δ acidG°, compare within less than 4 kJ mol -1 with experimental data. A noticeable exception is nitrobenzene for which tabulated acidity appear to be underestimated by ca. 120 kJ mol -1.

  9. Behavior of adsorbed and fluid phases versus retention properties of amino acids on the teicoplanin chiral selector.

    PubMed

    Poplewska, Izabela; Kramarz, Renata; Piatkowski, Wojciech; Seidel-Morgenstern, Andreas; Antos, Dorota

    2008-05-23

    The relationship between adsorption equilibria of two amino acids, i.e., l,d-threonine and l,d-methionine on the teicoplanin chiral selector and their phase behavior has been analyzed. The experimental and numerical methods have been proposed to determine activity coefficients of amino acids in different solvent systems. The procedure was based on the analysis of solubility properties of the amino acids in aqueous solutions of methanol, ethanol and propanol-2-ol used as the mobile phases in chromatographic elution. The solubility measured in mixed alcohol-water solutions was correlated with the non-random-two-liquid (NRTL) model for the activity coefficients. The values of activity coefficients were incorporated into the adsorption isotherm equation, which allowed the analysis of retention properties of the amino acids versus their fluid phase behavior. For the investigation the experimental data of adsorption equilibria of amino acids as well as of the mobile phase constituents acquired in a previous work were exploited. The composition of both the mobile and the adsorbed phases was found to affect the retention properties of the amino acids. For water-rich mobile phases the activity in the adsorbed phase determined the retention mechanism, while for the alcohol-rich systems activity in the mobile phase was predominant.

  10. Methylammonium formate as a mobile phase modifier for reversed-phase liquid chromatography

    PubMed Central

    Grossman, Shau; Danielson, Neil D.

    2009-01-01

    Although alkylammonium ionic liquids such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase “solvents” for liquid chromatography (LC), we have shown that methylammonium formate (MAF), in part because of its lower viscosity, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation was possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer for LC with mass spectrometry detection of water soluble vitamins is also shown. PMID:18849044

  11. Simultaneous effect of pH, temperature and mobile phase composition in the chromatographic retention of ionizable compounds.

    PubMed

    Agrafiotou, Panagiota; Ràfols, Clara; Castells, Cecilia; Bosch, Elisabeth; Rosés, Martí

    2011-07-29

    The retention of 22 monoprotic acid-base solutes in 12 buffers (pH from 2 to 12) at 3 temperatures (25, 40 and 55°C) and in 3 mobile phase compositions (20, 40 and 60% acetonitrile) was measured. The retention data for each solute, temperature and mobile phase compositions was fitted to pH by means of the common sigmoidal equation and the retention and acid-base parameters were obtained (logk(HA), logk(A) and pK(a)). The dependence of these parameters on temperature (van't Hoff plots), mobile phase composition (ϕ, volume fraction of acetonitrile) and mobile phase polarity (P(m)(N) parameter) was investigated. Linear plots of the parameter values against the reverse of the absolute temperature, on one hand, and ϕ or P(m)(N), in the other hand, were generally obtained. From this analysis we propose 6-parameter equations to relate retention to pH and T at constant mobile phase composition, and to pH and ϕ or P(m)(N) at constant temperature. A general 12 parameter equation is also proposed to relate retention simultaneously to pH, T and ϕ or P(m)(N). The general constancy of some terms of the equations allow to simplify the 12 parameter equation to a 8 parameter equation able to predict retention of the studied solutes. The accuracy of the proposed method provided excellent results with the advantage of modeling the effects of various optimization variables (modifier concentration, mobile phase pH and temperature) using a single equation, based on only eight fitting parameters.

  12. Adsorbed solution model for prediction of normal-phase chromatography process with varying composition of the mobile phase.

    PubMed

    Piatkowski, Wojciech; Petrushka, Igor; Antos, Dorota

    2005-10-21

    The adsorbed solution model has been used to predict competitive adsorption equilibria of the solute and the active component of mobile phase in a normal-phase liquid chromatography system. The inputs to the calculations were the single adsorption isotherms accounting for energetic heterogeneity of the adsorbent surface and non-ideality of the mobile phase solution. The competitive adsorption model has been coupled with a model of the column dynamics and used for simulating of chromatography process at different mobile phase composition. The predictions have been verified by comparing the simulated and experimental chromatograms. The model allowed quantitative prediction of chromatography process on the basis of the pure-species adsorption isotherms.

  13. Amino acids, peptides, and proteins as chemically bonded stationary phases--A review.

    PubMed

    Bocian, Szymon; Skoczylas, Magdalena; Buszewski, Bogusław

    2016-01-01

    The selectivity of chromatographic separation depends mostly on the stationary phase and mobile phase composition. Despite being a material with bonded simple organic molecule, a wide group of stationary phases contain immobilized compound that possesses biological activity. Stationary phases that contain amino acids and peptides as well as enzymes and proteins are alternative materials that may be used for liquid chromatographic separations and are reviewed in this work. In the case of peptide-bonded stationary phases, most of these types of materials were elaborated in the 1970s and 1980s; however, over the last few years a growing interest has been observed which is connected with hydrophilic interaction liquid chromatography. The most important application of amino acid and peptide-bonded stationary phases is connected with separation of amino acids, their derivatives, and peptides. The main advantage of such materials is the ability for chiral separations.

  14. HPLC enantioseparation of beta2-homoamino acids using crown ether-based chiral stationary phase.

    PubMed

    Berkecz, Róbert; Ilisz, István; Misicka, Aleksandra; Tymecka, Dagmara; Fülöp, Ferenc; Choi, Hee Jung; Hyun, Myung Ho; Péter, Antal

    2009-04-01

    RP high-performance liquid chromatographic methods were developed for the enantioseparation of eleven unusual beta(2)-homoamino acids. The underivatized analytes were separated on a chiral stationary phase containing (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid as chiral selector. The effects of organic (alcoholic) and acidic modifiers, the mobile phase composition and temperature on the separation were investigated. The structures of the substituents in the alpha-position of the analytes substantially influenced the retention and resolution. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers.

  15. Quinine-Based Zwitterionic Chiral Stationary Phase as a Complementary Tool for Peptide Analysis: Mobile Phase Effects on Enantio- and Stereoselectivity of Underivatized Oligopeptides.

    PubMed

    Ianni, Federica; Sardella, Roccaldo; Carotti, Andrea; Natalini, Benedetto; Lindner, Wolfgang; Lämmerhofer, Michael

    2016-01-01

    Peptide stereoisomer analysis is of importance for quality control of therapeutic peptides, the analysis of stereochemical integrity of bioactive peptides in food, and the elucidation of the stereochemistry of peptides from a natural chiral pool which often contains one or more D-amino acid residues. In this work, a series of model peptide stereoisomers (enantiomers and diastereomers) were analyzed on a zwitterionic ion-exchanger chiral stationary phase (Chiralpak ZWIX(+) 5 µm), in order to investigate the retention and separation performance for such compounds on this chiral stationary phase and elucidate its utility for this purpose. The goal of the study focused on 1) investigations of the effects of the sample matrix used to dissolve the peptide samples; 2) optimization of the mobile phase (enabling deriving information on factors of relevance for retention and separation); and 3) derivation of structure-selectivity relationships. It turned out that small di- and tripeptides can be well resolved under optimized conditions, typically with resolutions larger than 1.5. The optimized mobile phase often consisted of methanol-tetrahydrofuran-water (49:49:2; v/v/v) with 25 mM formic acid and 12.5 mM diethylamine. This work proposes some guidance on which mobile phases can be most efficiently used for peptide stereoisomer separations on Chiralpak ZWIX. Chirality 28:5-16, 2016. © 2015 Wiley Periodicals, Inc.

  16. High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations

    NASA Astrophysics Data System (ADS)

    Hudgins, Robert R.; Woenckhaus, Jürgen; Jarrold, Martin F.

    1997-11-01

    Our high resolution ion mobility apparatus has been modified by attaching an electrospray source to perform measurements for biological molecules. While the greater resolving power permits the resolution of more conformations for BPTI and cytochrome c, the resolved features are generally much broader than expected for a single rigid conformation. A major advantage of the new experimental configuration is the much gentler introduction of ions into the drift tube, so that the observed gas phase conformations appear to more closely reflect those present in solution. For example, it is possible to distinguish between the native state of cytochrome c and the methanol-denatured form on the basis of the ion mobility measurements; the mass spectra alone are not sensitive enough to detect this change. Thus this approach may provide a quick and sensitive tool for probing the solution phase conformations of biological molecules.

  17. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids.

    PubMed

    Lawrence, G B; Sutherland, J W; Boylen, C W; Nierzwicki-Bauer, S W; Momen, B; Baldigo, B P; Simonin, H A

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg2+, Na+, and K+, minus S042-, N03-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and N03-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects.

  18. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids

    USGS Publications Warehouse

    Lawrence, G.B.; Sutherland, J.W.; Boylen, C.W.; Nierzwicki-Bauer, S. W.; Momen, B.; Baldigo, Barry P.; Simonin, H.A.

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg 2+, Na+, and K+, minus SO42-, NO3-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and NO 3-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. ?? 2007 American Chemical Society.

  19. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids.

    PubMed

    Lawrence, G B; Sutherland, J W; Boylen, C W; Nierzwicki-Bauer, S W; Momen, B; Baldigo, B P; Simonin, H A

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg2+, Na+, and K+, minus S042-, N03-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and N03-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. PMID:17265932

  20. Polarons and Mobile Impurities Near a Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  1. Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases.

    PubMed

    Ruiz-Angel, M J; Pous-Torres, S; Carda-Broch, S; García-Alvarez-Coque, M C

    2014-05-30

    Column selection in reversed-phase liquid chromatography (RPLC) can become a challenge if the target compounds interact with the silica-based packing. One of such interactions is the attraction of cationic solutes to the free silanols in silica-based columns, which is a slow sorption-desorption interaction process that gives rise to tailed and broad peaks. The effect of silanols is minimised by the addition of a competing agent in the mobile phase, such as the anionic surfactant sodium dodecyl sulphate (SDS). In micellar-organic RPLC, the adsorption of an approximately fixed amount of SDS monomers gives rise to a stable modified stationary phase, with properties remarkably different from those of the underlying bonded phase. The chromatographic behaviour (in terms of selectivity, analysis time and peak shape) of eight C18 columns in the analysis of weakly acidic phenols and basic β-blockers was examined with hydro-organic and micellar-organic mobile phases. The behaviour of the columns differed significantly when the cationic basic drugs were eluted with hydro-organic mobile phases. With micellar-organic mobile phases, the adsorption of surfactant, instead of making the columns similar, gave rise to a greater diversity of behaviours (especially in terms of selectivity and analysis time), for both groups of phenols and β-blockers, which should be explained by the residual effect of the underlying bonded stationary phase and the different amount of surfactant covering the packing. Therefore, the implementation of a micellar-organic procedure in RPLC will depend significantly on the selected type of C18 column.

  2. Polarons and Mobile Impurities Near a Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Shadkhoo, Shahriar

    This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which

  3. Influence of mobile phase composition on electroosmotic flow velocity, solute retention and column efficiency in open-tubular reversed-phase capillary electrochromatography.

    PubMed

    Crego, A L; Martínez, J; Marina, M L

    2000-02-11

    The effects of some experimental parameters, such as the volume fraction and type of organic modifier in the mobile phase, and the concentration, type and pH of the buffer on the electroosmotic flow velocity, the retention behavior of test solutes, and the column efficiency have been investigated in capillary electrochromatography (CEC) using an open-tubular column of 9.60 microm I.D. with a porous silica layer chemically modified with C18 as stationary phase. The retention of a group of polycyclic aromatic hydrocarbons (PAHs) used as a test mixture varied significantly by changing the organic modifier content in the hydroorganic mobile phase according to the reversed-phase-like selectivity of the stationary phase. In addition, an increase in the percentage of organic modifier resulted in a slight increase in the linear velocity of the EOF. On the other hand, when the phosphate buffer concentration was increased over the range 1-50 mM, the electroosmotic mobility fell dramatically, the retention of the solutes decreased steadily, and the plate height showed a significant increase. The results obtained with phosphate, trishydroxymethylaminomethane or 2-morpholinoethanesulfonic acid as buffers were similar when pH remained constant. Optimization in CEC was essential to achieve further enhancement of separation performance, because the analysis time and separation resolution are essentially affected when varying operating parameters. Separations of seven PAHs with more than 100000 plates are presented within 4 min analysis time.

  4. Studying Gas-Phase Interconversion of Tautomers Using Differential Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Campbell, J. Larry; Yang, Amy Meng-Ci; Melo, Luke R.; Hopkins, W. Scott

    2016-07-01

    In this study, we report on the use of differential mobility spectrometry (DMS) as a tool for studying tautomeric species, allowing a more in-depth interrogation of these elusive isomers using ion/molecule reactions and tandem mass spectrometry. As an example, we revisit a case study in which gas-phase hydrogen-deuterium exchange (HDX)—a probe of ion structure in mass spectrometry—actually altered analyte ion structure by tautomerization. For the N- and O-protonated tautomers of 4-aminobenzoic acid, when separated using DMS and subjected to subsequent HDX with trace levels of D2O, the anticipated difference between the exchange rates of the two tautomers is observed. However, when using higher levels of D2O or a more basic reagent, equivalent and almost complete exchange of all labile protons is observed. This second observation is a result of the interconversion of the N-protonated tautomer to the O-protonated form during HDX. We can monitor this transformation experimentally, with support from detailed molecular dynamics and electronic structure calculations. In fact, calculations suggest the onset of bulk solution phase properties for 4-aminobenzoic acid upon solvation with eight CH3OH molecules. These findings also underscore the need for choosing HDX reagents and conditions judiciously when separating interconvertible isomers using DMS.

  5. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-01-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples.

  6. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-03-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples. PMID:26717817

  7. [Determination of arsanilic acid and sulfanilic acid as adulterant in feed additives by reversed-phase high performance liquid chromatography].

    PubMed

    Xu, Jinping; He, Heng; Xu, Mengyi; Qu, Yanhua

    2010-02-01

    A reversed-phase high performance liquid chromatographic (RP-HPLC) method was established for the determination of arsanilic acid and sulfanilic acid as adulterant in the feed additives. The separation was carried out on a Waters Bondapak C18 column, and methanol-water (pH 2.9 adjusted by 0.01 mol/L phosphoric acid) (1 : 4, v/v) was used as the mobile phase with a flow rate of 1.0 mL/min. A diode array detector was used at 244 nm as the detection wavelength. Arsanilic acid and sulfanilic acid were separated within 3 min. The linear ranges all were 5 - 200 mg/L and the detection limits (S/N = 3) were 0.20 and 0.15 mg/L for arsanilic acid and sulfanilic acid, respectively. This method is simple and rapid, and suitable for the simultaneous determination of arsanilic acid and sulfanilic acid in feed additives.

  8. 77 FR 38803 - Mobility Fund Phase I Auction Updated Data For Auction 901

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Public Notice, 77 FR 32092, May 31, 2012, the Bureaus described how they identified census blocks... COMMISSION Mobility Fund Phase I Auction Updated Data For Auction 901 AGENCY: Federal Communications... Competition Bureaus (Bureaus) announce updated data files of census blocks eligible for the Mobility...

  9. 77 FR 38061 - Mobility Fund Phase I Auction Supplemental Short-Form Instructions and Other Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... Notice, 77 FR 32092, May 31, 2012, the Bureaus provided general instructions for completing FCC Form 180... COMMISSION Mobility Fund Phase I Auction Supplemental Short-Form Instructions and Other Information AGENCY... Telecommunications and Wireline ] Competition Bureaus provide supplemental filing instructions for the Mobility...

  10. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure

    PubMed Central

    D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie

    2015-01-01

    Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654

  11. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry.

    PubMed

    Qiao, Xue; Song, Wei; Ji, Shuai; Wang, Qi; Guo, De-an; Ye, Min

    2015-07-10

    Licorice is one of the most popular herbal medicines worldwide. It contains a big array of phenolic compounds (flavonoids, coumarins, and diphenylethanones). Due to high structural diversity, low abundance, and co-elution with licorice saponins, these phenolic compounds are difficult to be separated by conventional chromatography. In this study, a mobile phase-dependent reversed-phase×reversed phase comprehensive two-dimensional liquid chromatography (RP×RP 2DLC) method was established to separate phenolic compounds in licorice (the roots of Glycyrrhiza uralensis). Organic solvents in the mobile phase were optimized to improve orthogonality of the first and second dimensions, and a synchronized gradient mode was used to improve chromatographic resolution. Finally, licorice extracts were eluted with methanol/water/formic acid in the first dimension (Acquity CSH C18 column), and acetonitrile/water/formic acid in the second dimension (Poroshell Phenyl-Hexyl column). By using this 2DLC system, a total of 311 compounds were detected within 40min. The practical and effective peak capacity was 1329 and 524, respectively, and the orthogonality was 79.8%. The structures of 21 selected unknown compounds were tentatively characterized by mass spectrometry, and 8 of them were discovered from G. uralensis for the first time. The mobile phase-dependent 2DLC/MS system could benefit the separation and characterization of natural products in complicated herbal extracts.

  12. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    SciTech Connect

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  13. Effect of temperature on the chromatographic retention of ionizable compounds. II. Acetonitrile-water mobile phases.

    PubMed

    Gagliardi, Leonardo G; Castells, Cecilia B; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2005-06-10

    The retentive behavior of weak acids and bases in reversed-phase liquid chromatography (RPLC) upon changes in column temperature has been theoretically and experimentally studied. The study focuses on examining the temperature dependence of the retention of various solutes at eluent pH close to their corresponding pKa values, and on the indirect role exerted by the buffer ionization equilibria on retention and selectivity. Retention factors of several ionizable compounds in a typical octadecylsilica column and using buffer solutions dissolved in 30% (v/v) acetonitrile as eluent at five temperatures in the range from 25 to 50 degrees C were carefully measured. Six buffer solutions were prepared from judiciously chosen conjugated pairs of different chemical nature. Their pKa values in this acetonitrile-water composition and within the range of 15-50 degrees C were determined potentiometrically. These compounds exhibit very different standard ionization enthalpies within this temperature range. Thus, whenever they are used to control mobile phase pH, the column temperature determines their final pH. Predictive equations of retention that take into account the temperature effect on both the transfer and the ionization processes are evaluated. This study demonstrates the significant role that the selected buffer would have on retention and selectivity in RPLC at temperatures higher than 25 degrees C, particularly for solutes that coelute. PMID:16001552

  14. Effect of temperature on the chromatographic retention of ionizable compounds. II. Acetonitrile-water mobile phases.

    PubMed

    Gagliardi, Leonardo G; Castells, Cecilia B; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2005-06-10

    The retentive behavior of weak acids and bases in reversed-phase liquid chromatography (RPLC) upon changes in column temperature has been theoretically and experimentally studied. The study focuses on examining the temperature dependence of the retention of various solutes at eluent pH close to their corresponding pKa values, and on the indirect role exerted by the buffer ionization equilibria on retention and selectivity. Retention factors of several ionizable compounds in a typical octadecylsilica column and using buffer solutions dissolved in 30% (v/v) acetonitrile as eluent at five temperatures in the range from 25 to 50 degrees C were carefully measured. Six buffer solutions were prepared from judiciously chosen conjugated pairs of different chemical nature. Their pKa values in this acetonitrile-water composition and within the range of 15-50 degrees C were determined potentiometrically. These compounds exhibit very different standard ionization enthalpies within this temperature range. Thus, whenever they are used to control mobile phase pH, the column temperature determines their final pH. Predictive equations of retention that take into account the temperature effect on both the transfer and the ionization processes are evaluated. This study demonstrates the significant role that the selected buffer would have on retention and selectivity in RPLC at temperatures higher than 25 degrees C, particularly for solutes that coelute.

  15. Selective blubber fatty acid mobilization in lactating gray seals (Halichoerus grypus).

    PubMed

    Arriola, Aline; Biuw, Martin; Walton, Mike; Moss, Simon; Pomeroy, Patrick

    2013-01-01

    During negative energy balance periods, fatty acids (FAs) are mobilized to cover the metabolic demands of the body. FAs from adipose tissue are selectively mobilized according to their carbon length (CL) and number of double bonds (DBs); however, studies in vivo have focused only on fasting and nonlactating animals. During lactation, UK gray seals fast for 18 d, mobilizing a large amount of lipid from blubber to sustain their own metabolic demands and the nutritional requirements of pups. We investigated FA mobilization in individual gray seal mothers from two UK colonies sampled in 2005 and 2006. Linear mixed-effects models were used to examine to what extent the mobilization observed from FAs in blubber can be explained as a function of FAs' CL and number of DBs. FAs were mobilized according to their structure, such that for a given CL, mobilization increased with the number of DBs, and for a given number of DBs, mobilization decreased as CL increased. This pattern of selective mobilization was very similar between colonies, although the relative amounts of component FAs in blubber at early lactation were different between them. FAs, which are considered crucial to pup development, were mobilized more than predicted by the model. This suggests that selective mobilization of FAs is not related solely to the physicochemical characteristics of the FAs but also to the needs of a growing pup.

  16. Reverse-phase liquid chromatographic determination of benzoic and sorbic acids in foods.

    PubMed

    Bui, L V; Cooper, C

    1987-01-01

    An isocratic liquid chromatographic (LC) technique is described for the determination of benzoic acid and sorbic acid in foods such as beverages, fruits, seafood, vegetables, sauces, and dairy, bakery, and confectionery products. A C18 column is used with methanol-phosphate buffer (5 + 95) as mobile phase and 4-hydroxyacetanilide or 3,5-dinitrobenzoic acid as internal standard. Sample preparation is simple, rapid, and produces a sample extract that has a minimum effect on the column performance and life. Specificity of the method was checked against common food additives such as L-ascorbic acid, caffeine, artificial sweeteners (saccharin, cyclamate, aspartame), antioxidants (BHT, BHA) and artificial colors. Also described are 2 procedures for confirmation of the preservatives, using either redox reaction of sorbic acid with potassium permanganate or gas chromatography/mass spectrometry. Mean recoveries of 90-105% were obtained with a precision of 1-6% and a detection limit of 20 mg/kg for the 2 preservatives.

  17. [Separation of zoledronic acid and its related substances by ion-pair reversed-phase high performance liquid chromatography].

    PubMed

    Zhang, Xiaoqing; Jiang, Ye; Xu, Zhiru

    2004-07-01

    A rapid and simple ion-pair reversed-phase high performance liquid chromatographic method (HPLC) has been established for the routine analysis of zoledronic acid and its related substances. The chromatographic conditions were optimized based on the satisfactory separation of zoledronic acid from imidazol-1-ylacetic acid, their retention times and peak shape. The excellent separation of zoledronic acid from its related substances, including the remaining imidazol-1-ylacetic acid used in the synthesis of zoledronic acid and other impurities of oxidation and decomposition, was achieved within 9 min on a Hypersil C8 column with UV detection at 220 nm. The mobile phase was a mixture of methanol (20%) and 5 mmo/L phosphate buffer (80%) that contains 6 mmol/L tetrabutylammonium bromide. The resolution factor of zoledronic acid from its adjacent peak was more than 2.5. This is a simple and rapid method for the routine assay of zoledronic acid.

  18. Retention of ionizable compounds on HPLC. 4. Mobile-phase pH measurement in methanol/water

    PubMed

    Canals; Portal; Bosch; Roses

    2000-04-15

    The different procedures used in HPLC to measure the pH of a mobile phase are evaluated in terms of the rigorous IUPAC definition of pH. The three procedures evaluated are as follows: measurement of the pH of the aqueous HPLC buffer before mixing it with the organic modifier, measurement of the pH of the HPLC buffer after mixing it with the organic modifier using a pH electrode system calibrated with aqueous buffers, and measurement of the pH of the HPLC buffer after mixing it with the organic modifier but calibrating the electrode system with reference buffers prepared in the same mixed solvent used as mobile phase. Following IUPAC definitions and recommendations, the three pH values can be related with the pH scales: w(w)pH, s(w)pH, and s(s)pH, respectively. The relationships between these three pH scales are also presented. The retention of several compounds with acid/base behavior in a C-18 and a polymeric column with buffered methanol/water as mobile phase is related to the mobile phase pH value measured in the three pH scales. It is demonstrated that the s(w)pH and s(s)pH scales give better relationships than the w(w)pH scale (pH measured in the aqueous buffer before mixing it with the organic modifier), commonly used on HPLC. The s(w)pH scale is specially recommended because of its simplicity of measurement: the pH is measured after mixing the aqueous buffer with the organic modifier, but the pH calibration is performed with the common aqueous reference buffers.

  19. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment.

  20. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment. PMID:26774299

  1. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase.

    PubMed

    Šatínský, Dalibor; Brabcová, Ivana; Maroušková, Alena; Chocholouš, Petr; Solich, Petr

    2013-07-01

    A simple, rapid, and environmentally friendly HPLC method was developed and validated for the separation of four compounds (4-aminophenol, caffeine, paracetamol, and propyphenazone) with different chemical properties. A "green" mobile phase, employing water as the major eluent, was proposed and applied to the separation of analytes with different polarity on polyethylene glycol (PEG) stationary phase. The chromatography separation of all compounds and internal standard benzoic acid was performed using isocratic elution with a low-toxicity mobile phase consisting of 0.04% (v/v) triethylamine and water. HPLC separation was carried out using a PEG reversed-phase stationary phase Supelco Discovery HS PEG column (15 × 4 mm; particle size 3 μm) at a temperature of 30 °C and flow rate at 1.0 mL min(-1). The UV detector was set at 210 nm. In this study, a PEG stationary phase was shown to be suitable for the efficient isocratic separation of compounds that differ widely in hydrophobicity and acid-base properties, particularly 4-aminophenol (log P, 0.30), caffeine (log P, -0.25), and propyphenazone (log P, 2.27). A polar PEG stationary phase provided specific selectivity which allowed traditional chromatographic problems related to the separation of analytes with different polarities to be solved. The retention properties of the group of structurally similar substances (aromatic amines, phenolic compounds, and xanthine derivatives) were tested with different mobile phases. The proposed green chromatography method was successfully applied to the analysis of active substances and one degradation impurity (4-aminophenol) in commercial preparation. Under the optimum chromatographic conditions, standard calibration was carried out with good linearity correlation coefficients for all compounds in the range (0.99914-0.99997, n = 6) between the peak areas and concentration of compounds. Recovery of the sample preparation was in the range 100 ± 5% for all compounds

  2. Liquid chromatography/tandem mass spectrometric bioanalysis using normal-phase columns with aqueous/organic mobile phases - a novel approach of eliminating evaporation and reconstitution steps in 96-well SPE.

    PubMed

    Naidong, Weng; Shou, Wilson Z; Addison, Thomas; Maleki, Saber; Jiang, Xiangyu

    2002-01-01

    Bioanalytical methods using automated 96-well solid-phase extraction (SPE) and liquid chromatography with electrospray tandem mass spectrometry (LC/MS/MS) are widely used in the pharmaceutical industry. SPE methods typically require manual steps of drying of the eluates and reconstituting of the analytes with a suitable injection solvent possessing elution strength weaker than the mobile phase. In this study, we demonstrated a novel approach of eliminating these two steps in 96-well SPE by using normal-phase LC/MS/MS methods with low aqueous/high organic mobile phases, which consisted of 70-95% organic solvent, 5-30% water, and small amount of volatile acid or buffer. While the commonly used SPE elution solvents (i.e. acetonitrile and methanol) have stronger elution strength than a mobile phase on reversed-phase chromatography, they are weaker elution solvents than a mobile phase for normal-phase LC/MS/MS and therefore can be injected directly. Analytical methods for a range of polar pharmaceutical compounds, namely, omeprazole, metoprolol, fexofenadine, pseudoephedrine as well as rifampin and its metabolite 25-desacetyl-rifampin, in biological fluids, were developed and optimized based on the foregoing principles. As a result of the time saving, a batch of 96 samples could be processed in one hour. These bioanalytical LC/MS/MS methods were validated according to "Guidance for Industry - Bioanalytical Method Validation" recommended by the Food and Drug Administration (FDA) of the United States.

  3. [Determination of corosolic acid in Eriobotrya japonica leaves by reversed-phase high performance liquid chromatography].

    PubMed

    Hu, Changping; Chen, Longsheng; Xin, Yang; Cai, Qunxing

    2006-09-01

    Corosolic acid is clinically proven to activate cell glucose-transporter "shuttles" and thus helps balance blood glucose levels. A method was developed for the determination of corosolic acid in Eriobotrya japonica leaves by reversed-phase high performance liquid chromatography (RP-HPLC). The peak of corosolic acid in Eriobotrya japonica leaves was qualitatively analyzed by comparing the retention times and mass spectra of corosolic acid standard and the extract on HPLC-mass spectrometry (MS). Eriobotrya japonica leaves were extracted thrice for 3.0 h at 90 degrees C with 90% ethanol. The extract was concentrated and deposited by water to remove the impurity which interfered the determination. The deposit was dissolved by methanol and separated on an ODS column (250 mm x 4.6 mm i.d., 5 microm). Methanol-1.0% acetic acid (88:12, v/v) was used as the mobile phase with a flow rate of 0.8 mL/min. The detection wavelength was 215 nm. The linearity was good within the range of 1.0-6.0 microg (r = 0.9999). The corosolic acid content of Eriobotrya japonica leaves from Huangshan was 0.36%. The average recovery of corosolic acid was 99%. The method is simple, rapid, accurate and reliable for the determination of corosolic acid in Eriobotrya japonica leaves.

  4. Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites

    NASA Astrophysics Data System (ADS)

    Lu, Long; Wang, Rucheng; Chen, Fanrong; Xue, Jiyue; Zhang, Peihua; Lu, Jianjun

    2005-11-01

    Based on back scattered electron images and electron micro-probe analysis results, four alteration layers, including a transition layer, a reticulated ferric oxide layer, a nubby ferric oxide layer and a cellular ferric oxide layer, were identified in the naturally weathering products of pyrite. These layers represent a progressive alteration sequence of pyrite under weathering conditions. The cellular ferric oxide layer correlates with the strongest weathering phase and results from the dissolution of nubby ferric oxide by acidic porewater. Leaching coefficient was introduced to better express the response of element mobility to the degree of pyrite weathering. Its variation shows that the mobility of S, Co and Bi is stronger than As, Cu and Zn. Sulfur in pyrite is oxidized to sulfuric acid and sulfate that are basically released into to porewater, and heavy metals Co and Bi are evidently released by acid dissolution. As, Cu and Zn are enriched in ferric oxide by adsorption and by co-precipitation, but they would re-release to the environment via desorption or dissolution when porewater pH becomes low enough. Consequently, Co, Bi, As, Cu and Zn may pose a substantial impact on water quality. Considering that metal mobility and its concentration in mine waste are two important factors influencing heavy metal pollution at mining-impacted sites, Bi and Co are more important pollutants in this case.

  5. Change of mobile phase pH during gradient reversed-phase chromatography with 2,2,2-trifluoroethanol-water as mobile phase and its effect on the chromatographic hydrophobicity index determination.

    PubMed

    Espinosa, Sonia; Bosch, Elisabeth; Rosés, Martí; Valkó, Klára

    2002-04-19

    We have shown previously that using a trifluoroethanol containing mobile phase provides a unique chromatographic selectivity. This is essential to derive molecular descriptors by HPLC which requires retention data from several systems. It also requires that the ionisation is suppressed so that retention times reflect the properties of the neutral molecules. Therefore the pH change of the mobile phase during gradient elution and its effect on the solute ionisation have been studied. During gradient elution of mixtures of ammonium acetate and butylammonium formate with trifluoroethanol as an organic modifier it was found that the pH was almost constant when the gradient started with a low pH. However, when the starting mobile phase pH was above 8 the pH dropped very quickly as the trifluoroethanol concentration increased in the mobile phase. The CHI descriptor (a retention index derived directly from gradient retention times) of several basic compounds as a function of starting mobile phase pH has been measured using trifluoroethanol gradient. The effect of the trifluoroethanol on the pKa change of the compounds has been investigated. The experimental data fit closely to a previously derived equation that describes gradient retention times as a function of mobile phase pH and analyte ionisation constant (pKa). This equation makes it possible to predict the CHI descriptor for ionisable compounds at various pH values. We have used butylamine for high pH mobile phase preparation as is more basic than ammonia and for many basic drugs the retention of the neutral form could be obtained directly (without extrapolation).

  6. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  7. Reversed-phase high-performance liquid chromatography of unsubstituted aminobenzoic acids

    USGS Publications Warehouse

    Abidi, S.L.

    1989-01-01

    High-performance liquid chromatographic (HPLC) characteristics of three position isomers of aminobenzoic acids (potential metabolites of important anesthetic drugs), were delineated with respect to their interactions with various mobile phases and stationary phases. HPLC with five hydrocarbonaceous phase, I?-cyclodextrin silica (CDS), macrophase MP-1 polymer (MP), macroporous polystyrene/divinylbenzene (MPD), octadecylsilica (ODS), and propylphenylsilica (PPS), yielded results explicable in terms of substituent effects derived from the bifunctional amino- and carboxy groups. For cases where mobile phases contained sulfonates or quaternary ammonium salts both having longer chain alkyls, retention of analytes on all but CDS appeared to proceed predominantly via an ion-pairing mechanism. The extent of the corresponding counter-ion effects decreased in the order: MPD > ODS > PPS > MP, while the analyte retention order paralleled thier pH2 values. On the other hand, an inverse relationship between the magnitude of capacity factors (k') and pK1 values of the title compounds was observed in experiments that produced retention data incompatible with ion-pair interaction rationales. The unique HPLC results obtained with the CDS phase are compared with those obtained with other phases.

  8. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  9. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  10. Direct, preparative enantioselective chromatography of propranolol hydrochloride and thioridazine hydrochloride using carbon dioxide-based mobile phases.

    PubMed

    Geiser, F; Schultz, M; Betz, L; Shaimi, M; Lee, J; Champion, W

    1999-12-31

    In this paper, we describe the direct, preparative enantioselective chromatography of racemic (rac)-propranolol hydrochloride (HCI) and rac-thioridazine.HCl using Chiralpak AD chiral stationary phase and mobile phase systems containing carbon dioxide and methanol without the use of basic or acidic additives. Isolated fractions of propranolol.HCl were positively identified by mass spectrometry, Beilstein flame test, melting point, and chemical analysis to be HCI enantiomers of propranolol-HCl salts exhibited characteristic mass spectra peaks at 36 and 38 mass-to-charge ratio in the expected 3:1 isotopic ratio for the solute that were absent in the mass spectra for the free-base forms. To our knowledge, the direct, preparative enantioselective isolation of HCI enantiomeric salts of rac-propranolol and of rac-thioridazine have not been previously demonstrated and published. PMID:10674944

  11. Direct, preparative enantioselective chromatography of propranolol hydrochloride and thioridazine hydrochloride using carbon dioxide-based mobile phases.

    PubMed

    Geiser, F; Schultz, M; Betz, L; Shaimi, M; Lee, J; Champion, W

    1999-12-31

    In this paper, we describe the direct, preparative enantioselective chromatography of racemic (rac)-propranolol hydrochloride (HCI) and rac-thioridazine.HCl using Chiralpak AD chiral stationary phase and mobile phase systems containing carbon dioxide and methanol without the use of basic or acidic additives. Isolated fractions of propranolol.HCl were positively identified by mass spectrometry, Beilstein flame test, melting point, and chemical analysis to be HCI enantiomers of propranolol-HCl salts exhibited characteristic mass spectra peaks at 36 and 38 mass-to-charge ratio in the expected 3:1 isotopic ratio for the solute that were absent in the mass spectra for the free-base forms. To our knowledge, the direct, preparative enantioselective isolation of HCI enantiomeric salts of rac-propranolol and of rac-thioridazine have not been previously demonstrated and published.

  12. Mixture design optimization of extraction and mobile phase media for fingerprint analysis of Bauhinia variegata L.

    PubMed

    Delaroza, Fernanda; Scarminio, Ieda Spacino

    2008-04-01

    Two statistical mixture designs were used to optimize the proportions of solvents used in both the extraction medium and the reversed liquid chromatographic mobile phase to improve the quality of chromatographic fingerprints of Bauhinia variegata L extracts. For modeling, the number of peaks was used as a measure of fingerprint information. Three mobile phases, each with a chromatographic strength of two, gave good results. A methanol/water (77:23 v/v) mixture resulted in 17 peaks in the chromatographic fingerprint whereas acetonitrile/water (64.5:35.5 v/v) and methanol/acetonitrile/water (35:35:30 v/v/v) mixtures resulted in 18 and 20 peaks, respectively. The corresponding optimum solvent compositions to extract chemical substances for these three mobile phases were ethanol/acetone (25:75 v/v/v) and dichloromethane/acetone (70:30 v/v) mixtures, and pure dichloromethane, respectively. The mixture designs are useful for understanding the influence of different solvents on the strengths of the extraction medium and the mobile phase.

  13. 77 FR 9655 - Mobility Fund Phase I Auction Updated List of Potentially Eligible Census Blocks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ..., 77 FR 7152, February 10, 2012, comments are due on or before February 24, 2012. Reply comments are... Public Notice, 77 FR 7152, February 10, 2012, all filings in response to the notice must refer to AU... program requirements in the Auction 901 (Mobility Fund Phase I) Comment Public Notice, 77 FR...

  14. Use of basic mobile phase to improve chromatography and boost sensitivity for quantifying tetrahydrocurcumin in human plasma by LC-MS/MS.

    PubMed

    Tan, Aimin; Wu, Yanxin; Wong, Molly; Licollari, Albert; Bolger, Gordon; Fanaras, John C; Shopp, George; Helson, Lawrence

    2016-08-15

    Tetrahydrocurcumin (THC), a major metabolite of curcumin, is often quantified by LC-MS or LC-MS/MS using acidic mobile phases due to the concern of its instability in a basic medium. However, acidic mobile phases often lead to poor chromatography (e.g. split or double peaks) and reduced detection sensitivity in the commonly used negative ionization mode. To overcome these shortcomings, a basic mobile phase was used for the first time in the LC-MS/MS quantification of THC. In comparison with the acidic mobile phases, a single symmetrical chromatographic peak was obtained and the sensitivity increased by 7-fold or more under the equivalent conditions. The new LC-MS/MS method using the basic mobile phase has been successfully validated for the quantification of THC in human EDTA plasma over the concentration range of 5-2500ng/ml. The within-batch accuracy (% nominal concentration) was between 88.7 and 104.9 and the between-batch accuracy ranged from 96.7 to 108.6. The CVs for within- and between-batch precisions were equal to or less than 5.5% and 9.1%, respectively. No significant matrix interference or matrix effect was observed from normal or lipemic and hemolytic plasma matrices. In addition, the common stabilities with adequate durations were established, including up to 5days of post-preparative stability. Furthermore, when the validated method was applied to a clinical study, the passing rate of ISR samples was 83%, indicating the good reproducibility of the method. The success of the unconventional approach presented in this article demonstrates that a mobile phase could be selected based mainly on its merits to facilitate LC separation and/or MS detection. There is no need for excessive concern about the stability of the compound(s) of interest in the selected mobile phase because the run time of modern LC-MS or LC-MS/MS methods is typically only a few minutes. PMID:27327398

  15. Use of basic mobile phase to improve chromatography and boost sensitivity for quantifying tetrahydrocurcumin in human plasma by LC-MS/MS.

    PubMed

    Tan, Aimin; Wu, Yanxin; Wong, Molly; Licollari, Albert; Bolger, Gordon; Fanaras, John C; Shopp, George; Helson, Lawrence

    2016-08-15

    Tetrahydrocurcumin (THC), a major metabolite of curcumin, is often quantified by LC-MS or LC-MS/MS using acidic mobile phases due to the concern of its instability in a basic medium. However, acidic mobile phases often lead to poor chromatography (e.g. split or double peaks) and reduced detection sensitivity in the commonly used negative ionization mode. To overcome these shortcomings, a basic mobile phase was used for the first time in the LC-MS/MS quantification of THC. In comparison with the acidic mobile phases, a single symmetrical chromatographic peak was obtained and the sensitivity increased by 7-fold or more under the equivalent conditions. The new LC-MS/MS method using the basic mobile phase has been successfully validated for the quantification of THC in human EDTA plasma over the concentration range of 5-2500ng/ml. The within-batch accuracy (% nominal concentration) was between 88.7 and 104.9 and the between-batch accuracy ranged from 96.7 to 108.6. The CVs for within- and between-batch precisions were equal to or less than 5.5% and 9.1%, respectively. No significant matrix interference or matrix effect was observed from normal or lipemic and hemolytic plasma matrices. In addition, the common stabilities with adequate durations were established, including up to 5days of post-preparative stability. Furthermore, when the validated method was applied to a clinical study, the passing rate of ISR samples was 83%, indicating the good reproducibility of the method. The success of the unconventional approach presented in this article demonstrates that a mobile phase could be selected based mainly on its merits to facilitate LC separation and/or MS detection. There is no need for excessive concern about the stability of the compound(s) of interest in the selected mobile phase because the run time of modern LC-MS or LC-MS/MS methods is typically only a few minutes.

  16. 78 FR 21355 - Tribal Mobility Fund Phase I Auction Scheduled for October 24, 2013; Comment Sought on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Mobility Fund Phase I, 77 FR 14012. Petitions for designation as an ETC should be filed in WC Docket No. 09..., 76 FR 73830, November 29, 2011 and 76 FR 81562, December 28, 2011. Auction 902 will award one-time... COMMISSION Tribal Mobility Fund Phase I Auction Scheduled for October 24, 2013; Comment Sought on...

  17. 78 FR 61350 - Tribal Mobility Fund Phase I Auction (Auction 902); Short-Form Application Filing Window...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    .... In the list of bidding areas released with the Auction 902 Procedures Public Notice, 78 FR 56875... COMMISSION Tribal Mobility Fund Phase I Auction (Auction 902); Short-Form Application Filing Window... Bureau, Auctions and Spectrum Access Division: For Tribal Mobility Fund Phase I questions:...

  18. Frustrated smectic liquid crystalline phases in lactic acid derivatives

    NASA Astrophysics Data System (ADS)

    Glogarová, M.; Novotná, V.

    2016-08-01

    We have prepared and studied a series of compounds with different types of molecular core and lactate unit in the chiral terminal chain. We draw a survey and comparison of their mesomorphic properties with respect to the occurrence of twist grain boundary (TGB) phases. The materials exhibit extremely wide TGBA phase more than 60K broad, unique TGBA-TGBC-SmC*-SmCA* phase sequence and unique re-entrant TGBA phase below the SmA phase. TGB phases have been induced in binary mixtures of molecules with different molecular shape and chirality (chiral lactic acid derivative and non-chiral hockey-stick mesogen). Unique effect is observed for compounds with TGBA phase, where the applied electric field transforms the planar texture into the homeotropic one, homogeneously dark in crossed polarizers. The process is analogy of the Frederiks transition so far known only for nematics. This effect, changing the bright state to the dark one, is promising for applications.

  19. Direct high-performance liquid chromatographic separation of the enantiomers of an aromatic amine and four aminoalcohols using polysaccharide chiral stationary phases and acidic additive.

    PubMed

    Caccamese, Salvatore; Bianca, Salvatore; Carter, Guy T

    2007-08-01

    The HPLC enantiomeric separation of N-benzyl-alpha-methyl-benzylamine, phenylalaninol, tryptophanol, 2 (diphenylhydroxymethyl)pyrrolidine, and isoproterenol was accomplished in the normal-phase mode using two polysaccharide-derived chiral stationary phases (CSPs) and various n-hexane/2-propanol mobile phases with acidic (TFA) or basic (DEA) additive. The compounds were separated without any derivatization and separation factor range between 2.09 and 1.09 with resolution factor 3.4 and 0.4, respectively. The best separation of the enantiomers of the amine was achieved on amylose tris (3, 5-dimethylphenylcarbamate) CSP with TFA additive in the mobile phase; in acidic conditions, instead, the best enantioseparation of the aminoalcohols was achieved on cellulose tris (3, 5-dimethylphenilcarbamate). A long equilibration time of the CSP when switching from an undoped mobile phase to a doped one is required to obtain reproducible results. PMID:17568428

  20. Monte carlo simulation of carboxylic acid phase equilibria.

    PubMed

    Clifford, Scott; Bolton, Kim; Ramjugernath, Deresh

    2006-11-01

    Configurational-bias Monte Carlo simulations were carried out in the Gibbs ensemble to generate phase equilibrium data for several carboxylic acids. Pure component coexistence densities and saturated vapor pressures were determined for acetic acid, propanoic acid, 2-methylpropanoic acid, and pentanoic acid, and binary vapor-liquid equilibrium (VLE) data for the propanoic acid + pentanoic acid and 2-methylpropanoic acid + pentanoic acid systems. The TraPPE-UA force field was used, as it has recently been extended to include parameters for carboxylic acids. To simulate the branched compound 2-methylpropanoic acid, certain minor assumptions were necessary regarding angle and torsion terms involving the -CH- pseudo-atom, since parameters for these terms do not exist in the TraPPE-UA force field. The pure component data showed good agreement with the available experimental data, particularly with regard to the saturated liquid densities (mean absolute errors were less than 1.1%). On average, the predicted critical temperature and density were within 1% of the experimental values. All of the binary simulations showed good agreement with the experimental x-y data. However, the TraPPE-UA force field predicts saturated vapor pressures of pure components that are larger than the experimental values, and consequently the P-x-y and T-x-y data of the binary systems also deviate from the measured data.

  1. Mineral Dissolution and Metal Mobility From Rhizosphere and Non-rhizosphere Soils by Low Molecular Weight Organic Acids

    NASA Astrophysics Data System (ADS)

    Little, D. A.; Field, J. B.; Welch, S. A.

    2005-12-01

    This research is part of an ongoing investigation of micro-biogeochemistry in the rhizosphere of co-occurring Eucalyptus mannifera and Acacia falciformis on the Southern Tablelands of New South Wales, Australia. While there is still considerable controversy in the literature regarding the roles of low molecular weight organic acids in soil processes there is growing evidence suggesting low molecular weight compounds, especially di-carboxylic acids, have large impacts on mineral dissolution and metal mobility in the rhizosphere. Rhizosphere and non-rhizosphere samples from adjacent E. mannifera and A. falciformis trees were subjected to four separate treatments in sets of 3 replicates; +oxalic acid, +malic acid, +citric acid or +NaCl control solution. These three acids were chosen because they are produced by rhizosphere species and they form stable complexes with nutrient elements such as Phosphorus (P), Iron (Fe), and Calcium (Ca). Solution samples were collected at day 1, day 8 and day 15 for pH measurement and analysed for major and trace elements by ICP-AES and ICP-MS. The results of the preliminary dissolution experiments show that milli-molar concentrations of individual organic acids, malate and oxalate, and in particular citrate, greatly increase the release of major and trace metals to solution compared to inorganic controls. Concentrations of Al and Fe in organic acid solutions were up to 10 times greater than in the inorganic controls. Si concentrations were a factor of 2-5 greater in the organic acid solutions, suggesting preferential weathering of Fe and Al oxyhydroxide phases rather than primary silicate minerals. Dissolution of elements such as Si, Al and Fe from rhizosphere soils were about twice that observed from non-rhizosphere soils, further supporting this. Interestingly Ti and Zr, which are usually considered to be immobile during chemical weathering and are not usually taken up by plants, were also mobilised from the rhizosphere soils

  2. [Separation mechanism of chiral stationary phase based on quinine and crown ether for the direct stereoselective separation of amino acids].

    PubMed

    Wu, Haixia; Wang, Dongqiang; Zhao, Jianchao; Ke, Yanxiong; Liang, Xinmiao

    2016-01-01

    A novel chiral stationary phase combining quinine and crown ether (QN-CR CSP) was developed to separate amino acid enantiomers. This CSP showed good enantioselectivity for some amino acids. Since the synergistic effect of ion exchange and complexation in chiral recognition of amino acids, a new adsorption isotherm was built. Using the method of frontal analysis by characteristic point (FACP), the adsorption isotherms of tryptophan (Trp) under different mobile phase conditions were determined and fitted the proposed adsorption isotherm model well. With the increase of the competition between metal cationic and amino to crown ether, the equilibrium constant of complexing adsorption was found increased. The chiral separation ability was decreased. The adsorption isotherm improved the understanding of the retention behavior of amino acids on QN-CR CSP, which was also benefit to optimize the structure of the stationary phase.

  3. [Separation mechanism of chiral stationary phase based on quinine and crown ether for the direct stereoselective separation of amino acids].

    PubMed

    Wu, Haixia; Wang, Dongqiang; Zhao, Jianchao; Ke, Yanxiong; Liang, Xinmiao

    2016-01-01

    A novel chiral stationary phase combining quinine and crown ether (QN-CR CSP) was developed to separate amino acid enantiomers. This CSP showed good enantioselectivity for some amino acids. Since the synergistic effect of ion exchange and complexation in chiral recognition of amino acids, a new adsorption isotherm was built. Using the method of frontal analysis by characteristic point (FACP), the adsorption isotherms of tryptophan (Trp) under different mobile phase conditions were determined and fitted the proposed adsorption isotherm model well. With the increase of the competition between metal cationic and amino to crown ether, the equilibrium constant of complexing adsorption was found increased. The chiral separation ability was decreased. The adsorption isotherm improved the understanding of the retention behavior of amino acids on QN-CR CSP, which was also benefit to optimize the structure of the stationary phase. PMID:27319166

  4. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    ERIC Educational Resources Information Center

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  5. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-01

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  6. Element mobility and partitioning along a soil acidity gradient in central Ontario forests, Canada.

    PubMed

    Watmough, Shaun A

    2008-10-01

    The potential environmental risk posed by metals in forest soils is typically evaluated by modeling metal mobility using soil-solution partitioning coefficients (K(d)), although such information is generally restricted to a few well-studied metals. Soil-solution partitioning coefficients were determined for 17 mineral elements (Al, As, Be, Ba, Ca, Cr, Cu, Fe, Ga, K, Li, Mg, Rb, Sr, Tl, U and V) in A-horizon (0-5 cm) soil at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pH(aq) varied from 3.9 to 8.1. Sites were dominated by mature sugar maple (Acer saccharum Marsh.), white birch (Betula papyrifera Marsh.), balsam fir (Abies balsamea (L.) Mill.) or white pine (Pinus strobus L.). Log K(d) values for all elements could be predicted by empirical linear regression with soil pH (r(2) = 0.17-0.77) independent of forest type, although this relationship was greatly affected by positive relationships between acid-extractable metal concentration and pH(aq) for 13 of the 17 elements. Elements that exhibited strong or moderate (r(2) > 0.29; p < 0.001) relationships with soil pH(aq) in soil water extracts include Al, Ba, Fe, Ga, K, Li, Rb, Tl, V (negative) and Ca (positive). Elemental partitioning in mineral soil was independent of forest type; tree species differed in their response to chemical differences in mineral soil. For example, Rb, Ba, and Sr concentrations in foliage of sugar maple and white birch significantly increased with increasing soil acidity, whereas Rb, Ba, and Sr concentrations in balsam fir and white pine foliage exhibited no response to soil pH(aq). While K(d) values can provide useful information on the potential mobility and bioavailability of mineral elements in forest soils, care must be used when interpreting the relative contribution of solid and aqueous phases to this relationship and the differing responses of vegetation in elemental cycling in forests must also be considered. PMID:18058024

  7. The mobile phase in coals: Its nature and modes of release: Part 2, Efforts to better define the nature and magnitude of the mobile phase: Final report

    SciTech Connect

    Given, P.H.

    1987-04-01

    Several liquefaction conditions and many extracting solvents were used in attempts to set up conditions such that, as the conditions became more severe, progressively more hexane-solubles, analyzable by GC/MS, would be released. It was hoped to identify a threshold beyond which trapped mobile phase molecules would become evident. A set of 10 hexane-soluble fractions, all obtained under various conditions from the same coal (a sample of Herrin No. 6 seam, Illinois), were subjected to analysis by tandem mass spectrometry (MS/MS). Yields ranged from 0.6 to 16% of the organic matter in the coal. Prominent constituents of all of the fractions were homologous series of alkyl aromatic hydrocarbons, phenols and heterocycles, notably alkylacenaphthenes. Alkyl chains were either unbranched or lightly branched. There was a similarity in the spectra of all of the fractions irrespective of yield. The ease with which a certain homologous series can be released from a coal is highly variable. Thus the data are consistent with the concept of a mobile phase some components of which are trapped in cavities with entrances and exits of restricted size. Release of the various physically held species and the fragments from thermal breakdown of the structure will certainly present a very complex system for kinetic modeling. 30 refs., 10 tabs.

  8. Acid tolerance response of Bordetella bronchiseptica in avirulent phase.

    PubMed

    Fingermann, M; Hozbor, D

    2015-12-01

    Bordetella bronchiseptica is a Gram-negative bacterium responsible for respiratory diseases in many mammalian hosts, including humans. This pathogen has been shown as able to persist inside the host cells, even in the phagosomes that are acidified to pH 4.5-5.0 after bacterial infection. Here we evaluated the resistance of B. bronchiseptica to survive under acidic conditions. In particular we analyzed the bacterial capacity to develop the mechanism known as acid tolerance response (ATR). Our studies were mainly focused on the avirulent phase of the bacteria since this phenotypic phase was reported to be more resistant to environmental stress conditions than the virulent phase. Results from B. bronchiseptica in virulent phase were also included for comparison purposes. In fact, for B. bronchiseptica 9.73 bacteria in virulent phase we observed that the viability of bacteria does not decrease significantly when grown at pH as low as 4.5, but it is affected when the pH of the medium was equal to or less than 4.0. After acid-adaptation at pH 5.5 for several hours, the survival rate of B. bronchiseptica 9.73 at lethal pH 4.0 for 6h was increased. Interestingly, the avirulent phase mediated by the two-component BvgAS system conferred further resistance to lethal acid challenge and a marked increase in the magnitude of the expressed ATR. The ATR for this avirulent phase seems to be associated with changes in LPS and surface protein profiles. 2D-gel electrophoresis revealed at least 25 polypeptides differentially expressed, 17 of which were only expressed or over-expressed under acid conditions. Using MALDI-TOF mass spectrometry, 10 of these differentially expressed polypeptides were identified. PMID:26640052

  9. Acid tolerance response of Bordetella bronchiseptica in avirulent phase.

    PubMed

    Fingermann, M; Hozbor, D

    2015-12-01

    Bordetella bronchiseptica is a Gram-negative bacterium responsible for respiratory diseases in many mammalian hosts, including humans. This pathogen has been shown as able to persist inside the host cells, even in the phagosomes that are acidified to pH 4.5-5.0 after bacterial infection. Here we evaluated the resistance of B. bronchiseptica to survive under acidic conditions. In particular we analyzed the bacterial capacity to develop the mechanism known as acid tolerance response (ATR). Our studies were mainly focused on the avirulent phase of the bacteria since this phenotypic phase was reported to be more resistant to environmental stress conditions than the virulent phase. Results from B. bronchiseptica in virulent phase were also included for comparison purposes. In fact, for B. bronchiseptica 9.73 bacteria in virulent phase we observed that the viability of bacteria does not decrease significantly when grown at pH as low as 4.5, but it is affected when the pH of the medium was equal to or less than 4.0. After acid-adaptation at pH 5.5 for several hours, the survival rate of B. bronchiseptica 9.73 at lethal pH 4.0 for 6h was increased. Interestingly, the avirulent phase mediated by the two-component BvgAS system conferred further resistance to lethal acid challenge and a marked increase in the magnitude of the expressed ATR. The ATR for this avirulent phase seems to be associated with changes in LPS and surface protein profiles. 2D-gel electrophoresis revealed at least 25 polypeptides differentially expressed, 17 of which were only expressed or over-expressed under acid conditions. Using MALDI-TOF mass spectrometry, 10 of these differentially expressed polypeptides were identified.

  10. Effect of mobile phase on resolution of the isomers and homologues of tocopherols on a triacontyl stationary phase.

    PubMed

    Saha, Supradip; Walia, Suresh; Kundu, Aditi; Pathak, Niti

    2013-11-01

    Reversed-phase liquid chromatographic (RPLC) separation of isomers and homologues of similar polarity is challenging. Tocopherol isomers and homologues are one such example. α, β, γ, and δ-tocopherols have been successfully separated by RPLC on triacontyl (C30) stationary phase. System suitability was tested by using four mobile phases, and observed chromatographic separations of β and γ-tocopherols were compared. Comparison indicated that methanol-tert-butyl methyl ether (TBME) 95:5 (v/v) at a flow rate of 0.75 mL min(-1) was the best mobile phase. Detection systems were also evaluated on the basis of limit of quantification; it was concluded that fluorescence detection was best. The method was validated by analysis of two homologues and two isomers of tocopherol in sesame, maize, and soybean samples. MS coupled with an ESI interface in negative-ion mode [M - H](-) was used for identification of individual components. It was concluded that addition of TBME to methanol was required to enhance the separation of β and γ-tocopherols, although methanol alone provided similar results. The applicability of the method to cereal, pulse, and oilseed samples was confirmed. The reproducibility of the procedure was good, with relative standard deviations in the range 1.7-3.9%. Recovery of tocopherols added to sesame samples ranged from 91 to 99%.

  11. A two-phase approach to Fourier transform ion mobility time-of-flight mass spectrometry.

    PubMed

    Clowers, Brian H; Siems, William F; Yu, Zhihao; Davis, Austen L

    2015-10-21

    It is well known that the duty cycle of common drift-tube ion mobility experiments is often below 1%. However, multiplexing approaches such as Fourier and Hadamard pulsing schemes have been shown to independently enhance the throughput of ion mobility spectrometry (IMS) experiments to levels that approach 50%. While challenges remain to their broad scale implementation we describe a new Fourier transform (FT) IMS experiment that is directly compatible with standard drift tube ion mobility mass spectrometers (DT-IMMS). Compared to previous FT-IMS experiments, our new approach requires only a single gate and circumvents the need for signal apodization by combining data from two frequency pulsing sequences 180° out of phase. Assessment of our initial results highlights an increase in signal-to-noise (SNR) relative to both previous implementations FT-IMS experiments and signal averaged (SA) experiments. For select tetraalkylammonium salts SNR improvements of more than one order of magnitude are routinely possible. To explore the performance metrics associated with the technique a number of experimental variables were systematically altered including frequency sweep range, sweep time, and data acquisition time. Using this experimental design we present the key aspects, considerations, and minimum resources necessary for other IMS researchers to incorporate this operational mode into their research. The two-phase FT-IMMS technique offers a tractable mechanism to enhance sensitivity for IMMS measurements and its broad-scale adoption by IMMS researchers promises to enhance the acquisition speed for mobility measurements using hybrid instrumentation.

  12. Acidity-Facilitated Mobilization of Surface Clay Colloid from Natural Sand Medium

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wang, C.; Mohanty, B. P.

    2010-12-01

    Colloid mobilization and migration in a soil system has attracted increasing scrutiny for its role in facilitating colloid-borne transport of contaminants in the environments. In many previous studies, pH was evoked as a major factor in mobilizing surface colloids through inducing favorable surface charge and electrostatic conditions. The possible direct role of acidity with H+ as a chemical agent has remained largely obscured behind the indirect role of pH. In this study, we demonstrated through column flow-through tests that cyclical elution of natural sand media with weak acid and base solutions can greatly facilitate detachment and transport of surface clay colloids. We found that while elevating pH to an alkaline condition helped release the loosely-attached surface clays, a pretreatment with H+ could facilitate the mobilization of chemically-bonded clay colloids through lysing of labile Ca and Mg ions. A quantitative relation was observed that 1 mmol H+ could lyse about 0.5 mmol Ca2+ and Mg2+ and subsequently resulted in a release of about 1,200 mg clay during base elution when repulsive force between particles dominated. Natural organic acids such as citric acid and acetic acid in environment-relevant low concentrations (<1mM and pH>5.0) were as effective as HCl with a stronger acidic condition. The small mass ratio of Ca and Mg over colloid released and the nature of weak acid used suggest that the mobilization was less likely due to dissolution of cement casing than lysing of labile interstitial Ca and Mg by H+, which severed Ca and Mg bridging bonds between particles. Natural acidity is generated in abundance from various bio- and geochemical processes; e.g., many plants produce citric acid through citric acid cycle metabolism; biodegradation of dead organic matter forms humic acids. We postulate that natural proton dynamics in tendon with pH oscillation accompanied with various soil biogeochemical processes could play a major role in subsurface clay

  13. Fundamental studies of gas phase ionic reactions by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Giles, K.; Knighton, W. B.; Sahlstrom, K. E.; Grimsrud, E. P.

    1995-01-01

    Ion mobility spectrometry (IMS) provides a promising approach to the study of gas phase ionic reactions in buffer gases at unusually high pressures. This point is illustrated here by studies of the Sn2 nucleophilic displacement reaction, Cl(-) + CH3Br yields Br + CH3Br, using IMS at atmospheric pressure. The equilibrium clustering reaction, Cl(-)(CHCI3)(n - 1) + CHCI3 yields Cl(-)(CHCI3)(n), where n = 1 and 2, and the effect of clustering on the Sn2 reaction with CH3Br have also been characterized by this IMS-based kinetic method. Present problems and anticipated improvements in the application of ion mobility spectrometry to studies of other gas phase ionic processes are discussed.

  14. 78 FR 45071 - Annual Report for Mobility Fund Phase I Support and Record Retention

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    .... 54.1008(d) and (e), 54.1009(a) through (c) and 54.1010, published at 76 FR 73830, November 29, 2011.... 10-208; FCC 11-161, 76 FR 73830 and FCC 12-52, 77 FR 30904, May 24, 2012. If you have any comments on.... 01-92, 96-45; WT Docket No. 10-208; FCC 11-161; FCC 12-52] Annual Report for Mobility Fund Phase...

  15. Mobile phone imaging module with extended depth of focus based on axial irradiance equalization phase coding

    NASA Astrophysics Data System (ADS)

    Sung, Hsin-Yueh; Chen, Po-Chang; Chang, Chuan-Chung; Chang, Chir-Weei; Yang, Sidney S.; Chang, Horng

    2011-01-01

    This paper presents a mobile phone imaging module with extended depth of focus (EDoF) by using axial irradiance equalization (AIE) phase coding. From radiation energy transfer along optical axis with constant irradiance, the focal depth enhancement solution is acquired. We introduce the axial irradiance equalization phase coding to design a two-element 2-megapixel mobile phone lens for trade off focus-like aberrations such as field curvature, astigmatism and longitudinal chromatic defocus. The design results produce modulation transfer functions (MTF) and phase transfer functions (PTF) with substantially similar characteristics at different field and defocus positions within Nyquist pass band. Besides, the measurement results are shown. Simultaneously, the design results and measurement results are compared. Next, for the EDoF mobile phone camera imaging system, we present a digital decoding design method and calculate a minimum mean square error (MMSE) filter. Then, the filter is applied to correct the substantially similar blur image. Last, the blur and de-blur images are demonstrated.

  16. Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography.

    PubMed

    Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang

    2014-10-10

    CHIRALPAK ZWIX(+) and ZWIX(-) are cinchona alkaloid-derived zwitterionic chiral stationary phases (CSPs) containing a chiral sulfonic acid motif which serves as negatively charged interaction site. They are versatile for direct enantiomer resolution of amino acids and many other ampholytic compounds by HPLC. The synergistic double ion-pairing between the zwittrionic chiral selector and the ampholyte is the basis for interaction and chiral recognition mechanisms. ZWIX(+) and ZWIX(-) type CSPs or columns behave pseudo-enantiomerically and provide the feature of reversing enantiomer elution order by column switching. In the current study, extensive experimental work was carried out with the aim of developing schemes for an efficient generic screening and proposing straightforward approaches for method optimization on these ZWIX columns. Various chromatographic parameters were investigated using a large series of diverse amino acids and analogues for the purpose. The role of methanol (MeOH) as the protic solvent in the mobile phase is confirmed to be essential. The presence of water in a low percentage is beneficial for peak shape, resolution, analysis speed, sample solubility and MS detection performance. The involvement of acetonitrile (ACN) or tetrahydrofuran (THF) can help for adjusting retention time and selectivity. Incorporation of a suitable pair of acidic-basic additives at a right ratio in the mobile phase is determinant as well for the double ion-pairing mechanism. 50 mM formic acid+25 mM diethylamine (or ammonium hydroxide) in MeOH/ACN/H₂O and in MeOH/THF/H₂O at 49:49:2 (by volume) are recommended as the starting mobile phases for method development. Some other parameters are also considered in the proposed scheme to achieve successful enantioselective or stereoselective separation of the ampholytes.

  17. Modulation of phase behaviors and charge carrier mobilities by linkage length in discotic liquid crystal dimers.

    PubMed

    Wang, Yi-Fei; Zhang, Chun-Xiu; Wu, Hao; Zhang, Ao; Wang, Jian-Chuang; Zhang, Shuai-Feng; Pu, Jia-Ling

    2015-01-28

    A clear structure-property relationship was revealed in a series of triphenylene-based dimers, which contained two triphenylene nuclei each bearing five β-OC4H9 substituents and are linked through a flexible O(CH2)nO polymethylene chain (n=6-12). Dimers with the linkage close to twice the length of the free side chains (n=8, 9) exhibited a single Colhp phase, while others with the linkage shorter (n=6, 7) or longer (n=10, 11, 12) showed multiphase behaviors with a transition from the Colhp phase to Colh phase; hole mobilities of Colhp phases reached 1.4×10(-2) cm2 V(-1) s(-1) in the dimer for which the linkage is exactly twice the length of the free side chains (n=8), and decreased regularly both with linkage length becoming shorter or longer. This modulation of phase behaviors and charge carrier mobilities was demonstrated to be generated by various steric perturbations introduced by linkages with different lengths, which result in different degrees of lateral fluctuations of discotic moieties in the columns. PMID:25467212

  18. Degenerate mobilities in phase field models are insufficient to capture surface diffusion

    NASA Astrophysics Data System (ADS)

    Lee, Alpha A.; Münch, Andreas; Süli, Endre

    2015-08-01

    Phase field models frequently provide insight into phase transitions and are robust numerical tools to solve free boundary problems corresponding to the motion of interfaces. A body of prior literature suggests that interface motion via surface diffusion is the long-time, sharp interface limit of microscopic phase field models such as the Cahn-Hilliard equation with a degenerate mobility function. Contrary to this conventional wisdom, we show that the long-time behaviour of degenerate Cahn-Hilliard equation with a polynomial free energy undergoes coarsening, reflecting the presence of bulk diffusion, rather than pure surface diffusion. This reveals an important limitation of phase field models that are frequently used to model surface diffusion.

  19. Reduced Triacylglycerol Mobilization during Seed Germination and Early Seedling Growth in Arabidopsis Containing Nutritionally Important Polyunsaturated Fatty Acids

    PubMed Central

    Shrestha, Pushkar; Callahan, Damien L.; Singh, Surinder P.; Petrie, James R.; Zhou, Xue-Rong

    2016-01-01

    There are now several examples of plant species engineered to synthesize and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG). The utilization of TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain elevated levels of the engineered polyunsaturated fatty acids (PUFA). LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilized engineered fatty acids were used in de novo membrane lipid synthesis during seedling development. PMID:27725822

  20. Selective mobilization of fatty acids in adipose tissue of heavy pigs.

    PubMed

    Bochicchio, D; Comellini, M; Lambertini, P; Marchetto, G; Della Casa, G

    2015-01-01

    The mobilization of fatty acids during food deprivation is a selective process studied in different species (humans, rodents, birds, viverrids). The aim of this work was to study the effect of fasting on selective mobilization in commercial pigs. A total of 16 barrows (Large White×Landrace (167 kg±12.5 kg live weight) were subdivided into two homogeneous groups, one subjected to 12 h and the other to 60 h of fasting (fasting time) before slaughtering. For each pig inner and outer backfat layer were sampled at slaughter and at ham trimming 24 h later (sampling time). Increasing the fasting time and the sampling time after slaughter caused an increase in the amount of free fatty acids in both layers. Therefore it can be argued that during fasting lipolysis is stimulated and remains active also after slaughtering. The factors that stimulate lipolysis determine a greater mobilization of unsaturated fatty acids than saturated ones. Thus fasting time may influence the suitability of pork for processing and conservation, since free fatty acids are more suitable for oxidation than the esterified ones. PMID:25170962

  1. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2009-01-01

    Arsenic and heavy metal mobilization from mine tailings is an issue of concern as it might pose potential groundwater or ecological risks. Increasing attention recently has been focused on the effects of natural organic matter on the mobility behavior of the toxicants in the environment. Column experiments were carried out in this research study to evaluate the feasibility of using humic acid (HA) to mobilize arsenic and heavy metals (i.e., Cu, Pb and Zn) from an oxidized Pb-Zn mine tailings sample collected from Bathurst, New Brunswick, Canada. Capillary electrophoresis analyses indicated that arsenate [As(V)] was the only extractable arsenic species in the mine tailings and the addition of HA at pH 11 did not incur the oxidation-reduction or methylation reactions of arsenic. A 0.1% HA solution with an initial pH adjusted to 11 was selected as the flushing solution, while distilled water (initial pH adjusted to 11) was used as the control to account for the mobilization of arsenic and the heavy metals by physical mixing and the effect of pH. It was found that the HA could significantly enhance the mobilization of arsenic and heavy metals simultaneously from the mine tailings. After a 70-pore-volume-flushing, the mobilization of arsenic, copper, lead and zinc reached 97, 35, 838 and 224 mg kg(-1), respectively. The mobilization of arsenic and the heavy metals was found to be positively correlated with the mobilization of Fe in the presence of the HA. Moreover, the mobilization of arsenic was also correlated well with that of the heavy metals. The mobilization of co-existing metals to some extent might enhance arsenic mobilization in the presence of the HA by helping incorporate it into soluble aqueous organic complexes through metal-bridging mechanisms. Use of HA in arsenic and heavy metal remediation may be developed as an environmentally benign and possible effective remedial option to reduce and avoid further contamination.

  2. Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Kovalenko, Ekaterina; Vilaseca, Marta; Díaz-Lobo, Mireia; Masliy, A. N.; Vicent, Cristian; Fedin, Vladimir P.

    2016-02-01

    The complexation of the macrocyclic cavitand cucurbit[7]uril (Q7) with a series of amino acids (AA) with different side chains (Asp, Asn, Gln, Ser, Ala, Val, and Ile) is investigated by ESI-MS techniques. The 1:1 [Q7 + AA + 2H]2+ adducts are observed as the base peak when equimolar Q7:AA solutions are electrosprayed, whereas the 1:2 [Q7 + 2AA + 2H]2+ dications are dominant when an excess of the amino acid is used. A combination of ion mobility mass spectrometry (IM-MS) and DFT calculations of the 1:1 [Q7 + AA + 2H]2+ (AA = Tyr, Val, and Ser) adducts is also reported and proven to be unsuccessful at discriminating between exclusion or inclusion-type conformations in the gas phase. Collision induced dissociation (CID) revealed that the preferred dissociation pathways of the 1:1 [Q7 + AA + 2H]2+ dications are strongly influenced by the identity of the amino acid side chain, whereas ion molecule reactions towards N-butylmethylamine displayed a common reactivity pattern comprising AA displacement. Special emphasis is given on the differences between the gas-phase behavior of the supramolecular adducts with amino acids (AA = Asp, Asn, Gln, Ser, Ala, Val, and Ile) and those featuring basic (Lys and Arg) and aromatic (Tyr and Phe) side chains.

  3. Determination of chloroacetic acids in drinking water using suppressed ion chromatography with solid-phase extraction.

    PubMed

    Yoshikawa, Kenji; Soda, Yuko; Sakuragawa, Akio

    2009-12-01

    Suppressed ion chromatography with a conductivity detector was developed for the determination of trace amounts of underivatized chloroacetic acids (CAAs). When sodium carbonate and methanol were used as a mobile phase, the simultaneous determination of each CAA took approximately 25 min. The linearity, reproducibility and detection limits were determined for the proposed method. For the solid-phase extraction step, the effects of the pH of the sample solution, sample volume and the eluting agent were tested. Under the optimized extracting conditions, the average recoveries for CAAs spiked in tap water were 83-107%, with an optimal preconcentration factor of 20. The reproducibility of recovery rate for CAAs was 1.2-3.8%, based upon 6 repetitions of the recovery experiments.

  4. Retention of ionizable compounds on HPLC. 12. The properties of liquid chromatography buffers in acetonitrile-water mobile phases that influence HPLC retention.

    PubMed

    Espinosa, Sonia; Bosch, Elisabeth; Rosés, Marti

    2002-08-01

    The addition of acetonitrile to aqueous buffers to prepare RP HPLC mobile phases changes the buffer properties (pH and buffer capacity). This variation is studied for ace tate, phosphate, phthalate, citrate, and ammonia buffers in acetonitrile-water mixtures up to 60% in acetonitrile (v/v). Equations are proposed to relate pH and buffer capacity change of these buffers to the initial aqueous pH value and to the volume fraction of acetonitrile added. It is demonstrated that the pH change of the buffer depends not only on the initial aqueous pH of the buffer and on the percentage of acetonitrile added but also on the particular buffer used. The proposed equations allow an accurate prediction of this ionization for the studied buffers. Since the retention of acid/base compounds shows a strong dependence of their degree of ionization, the equations are used to predict the change in this ionization with addition of acetonitrile when the RP HPLC mobile phase is prepared. This prediction allows estimation of the retention of an acid/base compound in a particular acetonitrile-water buffered mobile phase.

  5. Gas-phase NMR studies of alcohols. Intrinsic acidities

    NASA Astrophysics Data System (ADS)

    Chauvel, J. Paul; True, Nancy S.

    1985-05-01

    Gas-phase (≈100 Torr) 1H NMR spectra of eighteen simple aliphatic and unsaturated alcohols, four fluorinated alcohols, and two thiols were obtained at 148.6°C where hydrogen bonding has little effect on chemical shifts. For the methanol, ethanol, n-propanol, i-propanol, t-butanol, i- butanol, neopentanol, 2,2,2-trifluoroethanol and benzyl alcohol, the observed hydroxylic proton chemical shifts correlate with previously obtained relative gas-phase acidities from thermochemical analysis which employed equilibrium constants of proton transfer reactions measured via mass spectroscopic and ion cyclotron resonance techniques. The correlational dependence is 10.3(0.5) kcal/mol ppm with a correlation coefficient of 0.99. These results demonstrate that the trend of increasing acidity with increasing size of the alkyl substituent is also reflected in the neutral forms of the alcohols, indicating that the polarizability of the ionic forms is not the only determining factor in relative gas-phase acidities of alcohols. Although factors affecting the hydroxylic proton chemical shifts of the larger substituted and unsaturated alcohols are more complex, their observed 1H NMR spectra also reflect this trend. For methanol and ethanol observed gas-phase 1H chemical shifts are also compared with recent theoritical calculations. 3JHH coupling constants across CO bonds are ≈ 5.5 Hz, significantly smaller than typical 3JHH coupling across sp 3 hybrid C C bonds.

  6. STTR Phase 1 Final Technical Report for Project Entitled "Developing a Mobile Torrefaction Machine"

    SciTech Connect

    James, Joseph J.

    2014-03-11

    The goal of this project, sponsored by Agri-Tech Producers, LLC (ATP), the small business grantee, was to determine if the torrefaction technology, developed by North Carolina State University (NCSU), which ATP has licensed, could be feasibly deployed in a mobile unit. The study adds to the area investigated, by having ATP’s STTR Phase I team give thoughtful consideration to how to use NCSU’s technology in a mobile unit. The findings by ATP’s team were that NCSU’s technology would best perform in units 30’ by 80’ (See Spec Sheet for the Torre-Tech 5.0 Unit in the Appendix) and the technical effectiveness and economic feasibility investigation suggested that such units were not easily, efficiently or safely utilized in a forest or farm setting. (Note rendering of possible mobile system in the Appendix) Therefore, the findings by ATP’s team were that NCSU’s technology could not feasibly be deployed as a mobile unit.

  7. 77 FR 7152 - Mobility Fund Phase I Auction Scheduled for September 27, 2012; Comment Sought on Competitive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... the Commission in the USF/ICC Transformation Order, 76 FR 73830, November 29, 2011 and 76 FR 81562... COMMISSION Mobility Fund Phase I Auction Scheduled for September 27, 2012; Comment Sought on Competitive... Wireline Competition Bureaus announce a reverse auction to award $300 million in one-time Mobility...

  8. Circulating nucleic acids: a new class of physiological mobile genetic elements

    PubMed Central

    Mittra, Indraneel

    2015-01-01

    Mobile genetic elements play a major role in shaping biotic genomes and bringing about evolutionary transformations. Herein, a new class of mobile genetic elements is proposed in the form of circulating nucleic acids (CNAs) derived from the billions of cells that die in the body every day due to normal physiology and that act intra-corporeally. A recent study shows that CNAs can freely enter into healthy cells, integrate into their genomes by a unique mechanism and cause damage to their DNA. Being ubiquitous and continuously arising, CNA-induced DNA damage may be the underlying cause of ageing, ageing-related disabilities and the ultimate demise of the organism. Thus, DNA seems to act in the paradoxical roles of both preserver and destroyer of life. This new class of mobile genetic element may be relevant not only to multi-cellular organisms with established circulatory systems, but also to other multi-cellular organisms in which intra-corporeal mobility of nucleic acids may be mediated via the medium of extra-cellular fluid. PMID:26664710

  9. Enantioseparation of β(2)-amino acids on cinchona alkaloid-based zwitterionic chiral stationary phases. Structural and temperature effects.

    PubMed

    Ilisz, István; Grecsó, Nóra; Aranyi, Anita; Suchotin, Pawel; Tymecka, Dagmara; Wilenska, Beata; Misicka, Aleksandra; Fülöp, Ferenc; Lindner, Wolfgang; Péter, Antal

    2014-03-21

    The enantiomers of sixteen unusual β(2)-amino acids were directly separated on chiral stationary phases containing quinine- or quinidine-based zwitterionic selectors. The effects of the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range -5 to 55°C in order to study the effects of temperature, and thermodynamic parameters were estimated from plots of lnk or lnα vs. 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantiomeric separations were in most cases enthalpically driven, but entropically driven separation was also observed. The sequence of elution of the enantiomers was determined in some cases.

  10. The mobility of the amorphous phase in polyethylene as a determining factor for slow crack growth.

    PubMed

    Men, Y F; Rieger, J; Enderle, H-F; Lilge, D

    2004-12-01

    Polyethylene (PE) pipes generally exhibit a limited lifetime, which is considerably shorter than their chemical degradation period. Slow crack growth failure occurs when pipes are used in long-distance water or gas distribution though being exposed to a pressure lower than the corresponding yield stress. This slow crack growth failure is characterized by localized craze growth and craze fibril rupture. In the literature, the lifetime of PE pipes is often considered as being determined by the density of tie chains connecting adjacent crystalline lamellae. But this consideration cannot explain the excellent durability of the recent bimodal grade PE for pipe application. We show in this paper the importance of the craze fibril length as the determining factor for the pipe lifetime. The conclusions are drawn from stress analysis. It is found that longer craze fibrils sustain lower stress and are deformed to a lesser degree. The mobility of the amorphous phase is found to control the amount of material that can be "sucked" in by the craze fibrils and thus the length of the craze fibrils. The mobility of the amorphous phase can be monitored by dynamic mechanical analysis measurements. Excellent agreement between the mobility thus derived and lifetimes of PE materials as derived from FNCT (full notch creep test) is given, thus providing an effective means to estimate the lifetime of PE pipes by considering well-defined physical properties.

  11. Mobility and speciation of Cd, Cu, and Zn in two acidic soils affected by simulated acid rain.

    PubMed

    Guo, Zhao-hui; Liao, Bo-han; Huang, Chang-yong

    2005-01-01

    Through a batch experiment, the mobility and speciation of heavy metals (Cd, Cu, Zn) in two acidic forest soils from Hunan Province were studied. The results showed that the release and potential active speciation of Cd, Cu, and Zn in the tested contaminated red soil (CRS) and yellow red soil (CYRS) increased significantly with pH decreasing and ion concentrations increasing of simulated acid rain, and these effects were mainly decided by the pH value of simulated acid rain. Cd had the highest potential risk on the environment compared with Cu and Zn. Cd existed mainly in exchangeable form in residual CRS and CYRS, Cu in organically bound and Mn-oxide occluded forms, and Zn in mineral forms due to the high background values.

  12. Mobility and speciation of Cd, Cu, and Zn in two acidic soils affected by simulated acid rain.

    PubMed

    Guo, Zhao-hui; Liao, Bo-han; Huang, Chang-yong

    2005-01-01

    Through a batch experiment, the mobility and speciation of heavy metals (Cd, Cu, Zn) in two acidic forest soils from Hunan Province were studied. The results showed that the release and potential active speciation of Cd, Cu, and Zn in the tested contaminated red soil (CRS) and yellow red soil (CYRS) increased significantly with pH decreasing and ion concentrations increasing of simulated acid rain, and these effects were mainly decided by the pH value of simulated acid rain. Cd had the highest potential risk on the environment compared with Cu and Zn. Cd existed mainly in exchangeable form in residual CRS and CYRS, Cu in organically bound and Mn-oxide occluded forms, and Zn in mineral forms due to the high background values. PMID:16295916

  13. Effect of trace amounts of water in the mobile phase of normal-phase enantioselective high-performance liquid chromatography on selectivity and resolution of optical isomers.

    PubMed

    Lu, Jun; Rustum, Abu M

    2009-04-01

    The irreproducibility of normal-phase enantioselective high-performance liquid chromatography (HPLC) could be attributed to the presence or absence of trace amounts of water in one or more components of the mobile phase. The effect of trace amounts of water on chromatographic characteristics in normal-phase enantioselective HPLC was investigated by deliberate addition of controlled, trace amounts of water into the mobile phase for the separation of T-3811ME and its undesired enantiomer. Commercial 2-propanol was pre-mixed with 2% (v/v) water and then used for preparation of the mobile phase in combination with such organic modifiers as ethanol and methanol at different ratios. The results showed up to 30% improvement in the resolution (Rs), 4% in selectivity (alpha), and 39% in efficiency (plate number N) compared to using a mobile phase prepared from neat commercial 2-propanol. Thus, the effect of trace amounts of water in the mobile phase of normal-phase enantioselective HPLC was demonstrated. PMID:19406020

  14. Validation of a 2 percent lactic acid antimicrobial rinse for mobile poultry slaughter operations.

    PubMed

    Killinger, Karen M; Kannan, Aditi; Bary, Andy I; Cogger, Craig G

    2010-11-01

    Poultry processing antimicrobial interventions are critical for pathogen control, and organic, mobile operations in Washington seek alternatives to chlorine. Laboratory and field studies (three replications each) evaluated lactic acid efficacy as a chlorine alternative. For the laboratory study, retail-purchased, conventionally processed chicken wings inoculated with Salmonella were randomly assigned to the following treatments: Salmonella inoculation followed by no treatment (10 wings) or by 3-min rinses of water, 50 to 100 ppm of chlorine, or 2% lactic acid (20 wings for each rinse treatment). Wings were sampled for Salmonella enumeration on xylose lysine desoxycholate agar. During pastured poultry processing at mobile slaughter units for each field study replication, 20 chicken carcasses were randomly assigned to each treatment: untreated control or 3-min immersion in lactic acid or chlorine. Whole-carcass rinses were examined for aerobic plate count (APC) on tryptic soy agar and coliforms on violet red bile agar. Untreated controls were also examined for Salmonella. In the laboratory study, lactic acid produced a significant (P < 0.01) Salmonella reduction compared with the inoculated no-rinse, water, and chlorine treatments, which were statistically similar to each other. In the field study, no Salmonella was detected on untreated controls. Lactic acid produced significant >2-log (P < 0.01) reductions in APC and coliforms, whereas chlorine resulted in slight, but significant 0.4-log reductions (P < 0.01) and 0.21-log reductions (P < 0.05) in APC and coliforms compared with untreated controls. Considering laboratory and field studies, lactic acid produced greater reductions in Salmonella, APC, and coliforms, validating its effectiveness as a chlorine alternative in mobile poultry slaughter operations. PMID:21219721

  15. Mobility of acid-treated carbon nanotubes in water-saturated porous media.

    PubMed

    Peng, X J; Du, C J; Liang, Z; Wang, J; Luan, Z K; Li, W J

    2011-01-01

    The production, use, and disposal of nanomaterials may inevitably lead to their appearance in water. With the development of new industries around nanomaterials, it seems necessary to be concerned about the transport of nanomaterials in the environment. In this paper, the transport of acid-treated carbon nanotubes (CNTs) in porous media was investigated. Before the mobility investigation, the stability of acid-treated CNT dispersions was studied using ultraviolet-visible spectra and it was indicated that, under the chemical conditions employed in this work, there was no apparent aggregation. The mobility investigation showed that transport of acid-treated CNTs increased with treatment time due to increase in particle zeta potential. Carbon nanotubes treated with nitric acid for 2, 6, and 12 h possessed measured zeta potentials of -30.0, -43.0, and -48.5 mV, respectively. Utilizing clean-bed filtration theory, we showed that acid-treated CNTs have the potential to migrate 3.28, 5.67, and 7.69 m in saturated glass beads, respectively. We showed that solution ionic strength and pH have important effects on the mobility of acid-treated CNTs. Increasing the pH from 6.0 to 7.9 resulted in an increase in migration potential from 2.96 to 10.86 m. Increasing the ionic strength from 0.005 to 0.020 M resulted in a decrease in CNT migration potential from 5.67 to 1.42 m.

  16. Liquid chromatographic resolution of amino acid esters of acyclovir including racemic valacyclovir on crown ether-based chiral stationary phases.

    PubMed

    Ahn, Seong Ae; Hyun, Myung Ho

    2015-03-01

    Valacyclovir, a potential prodrug for the treatment of patients with herpes simplex and herpes zoster, and its analogs were resolved on two chiral stationary phases (CSPs) based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 covalently bonded to silica gel. In order to find out an appropriate mobile phase condition, various mobile phases consisting of various organic modifiers in water containing various acidic modifiers were applied to the resolution of valacyclovir and its analogs. When 30% acetonitrile in water containing any of 0.05 M, 0.10 M, or 0.15 M perchloric acid was used as a mobile phase, valacyclovir and its analogs were resolved quite well on the two CSPs with the separation factors (α) in the range of 2.49 ~ 6.35 and resolutions (RS ) in the range of 2.95 ~ 12.21. Between the two CSPs, the CSP containing residual silanol protecting n-octyl groups on the silica surface was found to be better than the CSP containing residual silanol groups.

  17. Liquid chromatographic resolution of amino acid esters of acyclovir including racemic valacyclovir on crown ether-based chiral stationary phases.

    PubMed

    Ahn, Seong Ae; Hyun, Myung Ho

    2015-03-01

    Valacyclovir, a potential prodrug for the treatment of patients with herpes simplex and herpes zoster, and its analogs were resolved on two chiral stationary phases (CSPs) based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 covalently bonded to silica gel. In order to find out an appropriate mobile phase condition, various mobile phases consisting of various organic modifiers in water containing various acidic modifiers were applied to the resolution of valacyclovir and its analogs. When 30% acetonitrile in water containing any of 0.05 M, 0.10 M, or 0.15 M perchloric acid was used as a mobile phase, valacyclovir and its analogs were resolved quite well on the two CSPs with the separation factors (α) in the range of 2.49 ~ 6.35 and resolutions (RS ) in the range of 2.95 ~ 12.21. Between the two CSPs, the CSP containing residual silanol protecting n-octyl groups on the silica surface was found to be better than the CSP containing residual silanol groups. PMID:25626672

  18. Prediction of the zeta potentials and ionic descriptors of a silica hydride stationary phase with mobile phases of different pH and ionic strength.

    PubMed

    Kulsing, Chadin; Yang, Yuanzhong; Matyska, Maria T; Pesek, Joseph J; Boysen, Reinhard I; Hearn, Milton T W

    2015-02-15

    In this study, the zeta potentials of a silica hydride stationary phase (Diamond Hydride™) in the presence of different water-acetonitrile mixtures (from 0-80% (v/v) acetonitrile) of different ionic strengths (from 0-40mM) and pH values (from pH 3.0-7.0) have been investigated. Debye-Hückel theory was applied to explain the effect of changes in the pH and ionic strength of these aqueous media on the negative zeta potential of this stationary phase. The experimental zeta potentials of the Diamond Hydride™ particles as a function of acetonitrile content up to 50% (v/v) correlated (R(2)=0.998) with the predicted zeta potential values based on this established theory, when the values of the dissociation constant of all related species, as well as viscosity, dielectric constant and refractive index of the aqueous medium were taken into consideration. Further, the retention behavior of basic, acidic and neutral analytes was investigated under mobile phase conditions of higher pH and lower ionic strength. Under these conditions, the Diamond Hydride™ stationary phase surface became more negative, as assessed from the increasingly more negative zeta potentials, resulting in the ion exchange characteristics becoming more dominant and the basic analytes showing increasing retention. Ionic descriptors were derived from these chromatographic experiments based on the assumption that linear solvation energy relationships prevail. The results were compared with predicted ionic descriptors based on the different calculated zeta potential values resulting in an overall correlation of R(2)=0.888. These studies provide fundamental insights into the impact on the separation performance of changes in the zeta potential of the Diamond Hydride™ surface with the results relevant to other silica hydride and, potentially, to other types of stationary phase materials. PMID:25622609

  19. Prediction of the zeta potentials and ionic descriptors of a silica hydride stationary phase with mobile phases of different pH and ionic strength.

    PubMed

    Kulsing, Chadin; Yang, Yuanzhong; Matyska, Maria T; Pesek, Joseph J; Boysen, Reinhard I; Hearn, Milton T W

    2015-02-15

    In this study, the zeta potentials of a silica hydride stationary phase (Diamond Hydride™) in the presence of different water-acetonitrile mixtures (from 0-80% (v/v) acetonitrile) of different ionic strengths (from 0-40mM) and pH values (from pH 3.0-7.0) have been investigated. Debye-Hückel theory was applied to explain the effect of changes in the pH and ionic strength of these aqueous media on the negative zeta potential of this stationary phase. The experimental zeta potentials of the Diamond Hydride™ particles as a function of acetonitrile content up to 50% (v/v) correlated (R(2)=0.998) with the predicted zeta potential values based on this established theory, when the values of the dissociation constant of all related species, as well as viscosity, dielectric constant and refractive index of the aqueous medium were taken into consideration. Further, the retention behavior of basic, acidic and neutral analytes was investigated under mobile phase conditions of higher pH and lower ionic strength. Under these conditions, the Diamond Hydride™ stationary phase surface became more negative, as assessed from the increasingly more negative zeta potentials, resulting in the ion exchange characteristics becoming more dominant and the basic analytes showing increasing retention. Ionic descriptors were derived from these chromatographic experiments based on the assumption that linear solvation energy relationships prevail. The results were compared with predicted ionic descriptors based on the different calculated zeta potential values resulting in an overall correlation of R(2)=0.888. These studies provide fundamental insights into the impact on the separation performance of changes in the zeta potential of the Diamond Hydride™ surface with the results relevant to other silica hydride and, potentially, to other types of stationary phase materials.

  20. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    PubMed

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-01

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  1. Phase equilibria and thermodynamics of p-hydroxybenzoic acid.

    PubMed

    Nordström, Fredrik L; Rasmuson, Ake C

    2006-04-01

    The prevalence of phases and associated solubilities of p-hydroxybenzoic acid have been investigated in methanol, acetonitrile, acetic acid, acetone, water, and ethyl acetate at temperatures from 10 to 50 degrees C. Thermodynamic data was acquired through determination of van't Hoff enthalpy of solution, enthalpy of fusion, and melting temperature. Indications of polymorphic enantiotropy were found primarily through solubility analysis and FTIR-ATR. A comprehensive thermodynamic investigation disclosed correlation between the van't Hoff enthalpy of solution and the solubility in different solvents. A higher solubility is linked to a lower van't Hoff enthalpy of solution. A thermodynamic analysis to discriminate between different solid phases is presented.

  2. The phase diagram of 4-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid and their copolymers from x-ray diffraction and thermal analysis

    SciTech Connect

    Habenschuss, Anton {Tony}; Varma-Nair, Manika; Kwon, Yong Ku; Ma, Jisheng; Wunderlich, Bernhard {nmn}

    2006-01-01

    Homopolymers and copolymers of 4-hydroxybenzoic acid (HBA) and 2,6-hydroxynaphthoic acid (HNA) have been studied with differential scanning calorimetry and temperature-resolved wide angle X-ray diffraction. All polymers have more than one disordering transition between the glass transition (between 400 and 430 K) and decomposition (between 710 and 750 K). The first transition in PHBA at 616-633 K is from orthorhombic rigid crystals to a conformationally disordered pseudo-hexagonal phase (condis phase). The two higher transitions are first, a further disordering process to a hexagonal condis crystal, and then a change to an anisotropic melt (liquid crystal) at about 800 K, with increasing decomposition above 750 K. In PHNA, orthorhombic crystals change above 600 K to an orthorhombic condis crystal structure, which go to an anisotropic melt at 750 K, and subsequent decomposition. In addition, using empirical entropy rules that account for the changes during the transitions from the crystal to the disordered mobile phases, an effort is made to understand the disorder and mobility, and to arrive at a non-equilibrium phase diagram of the copolymer system. The existence of a single, but up to 200 K wide, glass transition and remaining high crystallinity of the copolyesters, indicate partial solubility of the repeating units in all phases. The new data are compared to and brought into agreement with the large number of prior measurements and often unclear interpretations.

  3. Use of vancomycin silica stationary phase in packed capillary electrochromatography: III. enantiomeric separation of basic compounds with the polar organic mobile phase.

    PubMed

    Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna

    2002-02-01

    The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.

  4. Mobilization of aluminum by the acid percolates within unsaturated zone of sandstones.

    PubMed

    Navrátil, Tomáš; Vařilová, Zuzana; Rohovec, Jan

    2013-09-01

    The area of the Black Triangle has been exposed to extreme levels of acid deposition in the twentieth century. The chemical weathering of sandstones found within the Black Triangle became well-known phenomenon. Infiltration of acid rain solutions into the sandstone represents the main input of salt components into the sandstone. The infiltrated solutions--sandstone percolates--react with sandstone matrix and previously deposited materials such as salt efflorescence. Acidic sandstone percolates pH 3.2-4.8 found at ten sites within the National Park Bohemian Switzerland contained high Al-tot (0.8-10 mg L(-1)) concentrations and high concentrations of anions SO4 (5-66 mg L(-1)) and NO3 (2-42 mg L(-1)). A high proportion (50-98 %) of Al-tot concentration in acid percolates was represented by toxic reactive Al(n+). Chemical equilibrium modeling indicated as the most abundant Al species Al(3+), AlSO4 (+), and AlF(2+). The remaining 2-50 % of Al-tot concentration was present in the form of complexes with dissolved organic matter Al-org. Mobilization and transport of Al from the upper zones of sandstone causes chemical weathering and sandstone structure deterioration. The most acidic percolates contained the highest concentrations of dissolved organic material (estimated up to 42 mg L(-1)) suggesting the contribution of vegetation on sandstone weathering processes. Very low concentrations of Al-tot in springs at BSNP suggest that Al mobilized in unsaturated zone is transported deeper into the sandstone. This process of mobilization could represent a threat for the water quality small-perched aquifers.

  5. Application of statistical design for the optimization of amino acid separation by reverse-phase HPLC.

    PubMed

    Gheshlaghi, R; Scharer, J M; Moo-Young, M; Douglas, P L

    2008-12-01

    Modified resolution and overall separation factors used to quantify the separation of complex chromatography systems are described. These factors were proven to be applicable to the optimization of amino acid resolution in reverse-phase (RP) HPLC chromatograms. To optimize precolumn derivatization with phenylisothiocyanate, a 2(5-1) fractional factorial design in triplicate was employed. The five independent variables for optimizing the overall separation factor were triethylamine content of the aqueous buffer, pH of the aqueous buffer, separation temperature, methanol/acetonitrile concentration ratio in the organic eluant, and mobile phase flow rate. Of these, triethylamine concentration and methanol/acetonitrile concentration ratio were the most important. The methodology captured the interaction between variables. Temperature appeared in the interaction terms; consequently, it was included in the hierarchic model. The preliminary model based on the factorial experiments was not able to explain the response curvature in the design space; therefore, a central composite design was used to provide a quadratic model. Constrained nonlinear programming was used for optimization purposes. The quadratic model predicted the optimal levels of the variables. In this study, the best levels of the five independent variables that provide the maximum modified resolution for each pair of consecutive amino acids appearing in the chromatograph were determined. These results are of utmost importance for accurate analysis of a subset of amino acids.

  6. A method to attenuate U(VI) mobility in acidic waste plumes using humic acids

    SciTech Connect

    Wan, J.; Dong, W.; Tokunaga, T.K.

    2011-02-01

    Acidic uranium (U) contaminated plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in-situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in-situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/y) show that desorption of U and HA were non-detectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH < 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results demonstrated that HA-treatment is a promising in-situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost effective, nontoxic, and easily introducible to the subsurface.

  7. Method to attenuate U(VI) mobility in acidic waste plumes using humic acids.

    PubMed

    Wan, Jiamin; Dong, Wenming; Tokunaga, Tetsu K

    2011-03-15

    Acidic uranium (U) groundwater plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/year) show that desorption of U and HA were nondetectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH ≤ 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results indicate that HA-treatment is a promising in situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost-effective, nontoxic, and easily introducible to the subsurface.

  8. Method to attenuate U(VI) mobility in acidic waste plumes using humic acids.

    PubMed

    Wan, Jiamin; Dong, Wenming; Tokunaga, Tetsu K

    2011-03-15

    Acidic uranium (U) groundwater plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/year) show that desorption of U and HA were nondetectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH ≤ 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results indicate that HA-treatment is a promising in situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost-effective, nontoxic, and easily introducible to the subsurface. PMID:21319737

  9. Mobile terminal equipment design utilising split-loop phase-lock techniques

    NASA Technical Reports Server (NTRS)

    Kenington, P. B.; Mcgeehan, J. P.; Edwards, D. J.

    1990-01-01

    The design and resultant performance of the terminal equipment in a mobile satellite system is vitally important in respect to the overall cost/performance compromise of the whole system. Improvements in system performance which also result in a reduction of the equipment cost are rare. However, this paper details a significant advance in terminal design, utilizing a novel form of 'split-loop' phase locked receiver/downconverter system to enable an accurate, stable and wide coverage terminal to be realized at a reduced cost. The system has the capability of automatically locking onto any carrier within a complete transponder, and can cope with severe amplitude modulation and fading effects.

  10. Gas-phase metalloprotein complexes interrogated by ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Faull, Peter A.; Korkeila, Karoliina E.; Kalapothakis, Jason M.; Gray, Andrew; McCullough, Bryan J.; Barran, Perdita E.

    2009-06-01

    Gas-phase biomolecular structure may be explored through a number of analytical techniques. Ion mobility-mass spectrometry (IM-MS) continues to prove itself as a sensitive and reliable bioanalytical tool for gas-phase structure determination due to intense study and development over the past 15 years. A vast amount of research interest, especially in protein and peptide conformational studies has generated a wealth of structural information for biological systems from small peptides to megadalton-sized biomolecules. In this work, linear low field IM-MS has been used to study gas-phase conformations and determine rotationally averaged collision cross-sections of three metalloproteins--cytochrome c, haemoglobin and calmodulin. Measurements have been performed on the MoQToF, a modified QToF 1 instrument (Micromass UK Ltd., Manchester, UK) modified in house. Gas-phase conformations and cross-sections of multimeric cytochrome c ions of the form [xM + nH+]n+ for x = 1-3 (monomer to trimer) have been successfully characterised and measured. We believe these to be the first reported collision cross-sections of higher order multimeric cytochrome c. Haemoglobin is investigated to obtain structural information on the associative mechanism of tetramer formation. Haemoglobin molecules, comprising apo- and holo-monomer chains, dimer and tetramer are transferred to the gas phase under a range of solution conditions. Structural information on the proposed critical intermediate, semi-haemoglobin, is reported. Cross-sections of the calcium binding protein calmodulin have been obtained under a range of calcium-bound conditions. Metalloprotein collision cross-sections from ion mobility measurements are compared with computationally derived values from published NMR and X-ray crystallography structural data. Finally we consider the change in the density of the experimentally measured rotationally averaged collision cross-section for compact geometries of the electrosprayed proteins.

  11. Evaluation of new mixed-mode UHPLC stationary phases and the importance of stationary phase choice when using low ionic-strength mobile phase additives.

    PubMed

    Nováková, Lucie; Vlčková, Hana; Petr, Solich

    2012-05-15

    In this study, the selectivity, retention properties, peak shape and loading capacity for bases were practically evaluated using two UHPLC mixed-mode hybrid CSH stationary phases modified by C18 or Phenyl group. The data were compared with the data obtained on other UHPLC hybrid stationary phases (BEH C18, BEH C8, BEH Phenyl and BEH Shield RP18) at both basic and acidic conditions using conventional HPLC buffers (50mM ammonium formate/acetate) as well as low ionic-strength additives such as, e.g. 0.1-0.01% formic/acetic acid and 1mM solution of ammonium formate/acetate, which are widely used in LC-MS applications. Ten pharmaceutically important compounds encompassing acids, bases and neutral were included into the study. Due to properties of CSH sorbent (which possess positively charged surface besides RP group), much improved peak shapes and weaker retention was obtained for bases even at very low concentration of acidic additives. Such conditions are ideally suited for LC-MS analysis of bases, where typical RP chromatographic separation (retention and good selectivity at basic pH) and LS-MS conditions (efficient ionization at acidic pH) are not in agreement. On the other hand, acids were more strongly retained and for some compounds the peak shape was influenced negatively due to ion-exchange mechanism. Further, the behavior of acidic, basic and neutral solutes is discussed using various additives at both basic and acidic pH for all above stated columns. The robustness of retention times after pH change from basic to acidic was also evaluated. The new CSH stationary phases represent an interesting selectivity tool preferably for separation of basic compounds. PMID:22483883

  12. An empirical model for gas phase acidity and basicity estimation.

    PubMed

    You, H; Kim, G E; Na, C H; Lee, S; Lee, C J; Cho, K-H; Akiyama, Y; Ishida, T; No, K T

    2014-01-01

    Gas phase acidity and basicity estimation models have been developed for acidic and basic functional groups of amino acid side-chains and also for a number of small organic molecules. The acidic functional groups include aliphatic and aromatic alcohol, and aliphatic and aromatic carboxylic acid, and the basic functional groups include aliphatic, aromatic and hetero-aromatic amines, and also pyridino-, pyrazolo- and imidazolo-groupings. The models are described in terms of a linear combination of descriptors that highly influence reactivity at the reaction centres of the functional groups. In order to describe the chemical environments of the deprotonating and protonating sites, atomic descriptors such as the effective atomic electronegativity and effective atomic polarizability of the atoms in the reaction field and the electrostatic potentials at the reaction sites have been introduced. The coefficient of determination (r(2)) of each model is above 0.8, apart from the imidazole model. The models are readily applicable, ranging from simple organic molecules to proteins.

  13. Trying to detect gas-phase ions? Understanding Ion Mobility Spectrometry

    PubMed Central

    Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.

    2014-01-01

    Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, especially mass spectrometry as identification approach and multi-capillary column as pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data is treated, and the influences of the experimental parameters in both a conventional drift time IMS (DTIMS) and a miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The current review article is preceded by a companion review article which details the current instrumentation and to the sections that configures both a conventional DTIMS and FAIMS devices. Those reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465248

  14. Traveling Wave Ion Mobility Mass Spectrometry and Ab Initio Calculations of Phosphoric Acid Clusters

    NASA Astrophysics Data System (ADS)

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH] z+ or [(H3PO4)n - zH] z- , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  15. Traveling wave ion mobility mass spectrometry and ab initio calculations of phosphoric acid clusters.

    PubMed

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH](z+) or [(H3PO4)n - zH](z-), with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  16. Retention data from reverse-phase high-performance thin-layer chromatography in characterization of some bis-salicylic acid derivatives.

    PubMed

    Djaković-Sekulić, Tatjana; Perisić-Janjić, Nada; Djurendi, Evgenija

    2009-08-01

    The chromatographic behaviour of salicylic acid derivatives was investigated using reversed-phase high performance thin-layer chromatography (RP HPTLC) with methanol-water and dioxane-water binary mixtures as mobile phase in order to establish relationships between chromatographic data and selected physico-chemical parameters that are related to ADME (absorption, distribution, metabolism and elimination). Some of the investigated compounds were screened for antioxidant activity. Examination of chromatographic behaviour revealed a linear correlation between R(M) values and the volume fraction of mobile phase modifier. Obtained R(M)(0) values were correlated with lipophilicity, solubility, human intestinal absorption, plasma-protein binding, and blood-brain barrier data. The comparison among chromatographic data obtained by two mobile phase was performed with a statistical technique, principle component analysis.

  17. Electrophoretic Mobility of Poly(acrylic acid)-Coated Alumina Particles

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-01

    The effect of poly (acrylic acid) (PAA) adsorption on the electrokinetic behavior of alumina dispersions under high pH conditions was investigated as a function of polymer concentration and molecular weight as well as the presence, concentration and ion type of background electrolyte. Systems of this type are relevant to nuclear waste treatment, in which PAA is known to be an effective rheology modifier. The presence of all but the lowest molecular weight PAA studied (1800) led to decreases in dynamic electrophoretic mobility at low polymer concentrations, attributable to bridging flocculation, as verified by measurements of particle size distribution. Bridging effects increased with polymer molecular weight, and decreased with polymer concentration. Increases in background electrolyte concentration enhanced dynamic electrophoretic mobility as the polymer layers were compressed and bridging was reduced. Such enhancements were reduced as the cation was changed from Na+ to K+ to Cs+.

  18. Racemic synthesis and solid phase peptide synthesis application of the chimeric valine/leucine derivative 2-amino-3,3,4-trimethyl-pentanoic acid.

    PubMed

    Pelà, M; Del Zoppo, L; Allegri, L; Marzola, E; Ruzza, C; Calo, G; Perissutti, E; Frecentese, F; Salvadori, S; Guerrini, R

    2014-07-01

    The synthesis of non natural amino acid 2-amino-3,3,4-trimethyl-pentanoic acid (Ipv) ready for solid phase peptide synthesis has been developed. Copper (I) chloride Michael addition, followed by a Curtius rearrangement are the key steps for the lpv synthesis. The racemic valine/leucine chimeric amino acid was then successfully inserted in position 5 of neuropeptide S (NPS) and the diastereomeric mixture separated by reverse phase HPLC. The two diastereomeric NPS derivatives were tested for intracellular calcium mobilization using HEK293 cells stably expressing the mouse NPS receptor where they behaved as partial agonist and pure antagonist.

  19. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    PubMed

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).

  20. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    PubMed

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice

  1. Standard systems for measurement of pKs and ionic mobilities. 1. Univalent weak acids.

    PubMed

    Slampová, Andrea; Krivánková, Ludmila; Gebauer, Petr; Bocek, Petr

    2008-12-01

    Determination of pK values of weak bases and acids by CZE has already attracted big attention in current practice and proved to offer the advantage of being applicable for mixtures of analytes. The method is based on the measurement of mobility curves plotting the effective mobility vs. the pH of the background electrolyte, and following computer-assisted regression involving corrections for ionic strength and temperature. To cover the necessary range of pH for a given case, both buffering weak acids and bases are used in one set of measurements, which requires implementing computations of individual ionic strength corrections for each pH value. It is also well known that some components of frequently used background electrolytes may interact with the analytes measured, on forming associates or complexes. This obviously deteriorates the reliability of the resulting data. This contribution brings a rational approach to this problem and establishes a standard system of anionic buffers for measurements of pKs and mobilities of weak acids, where the only counter cation present (besides H(+)) is Na(+). In this way, the risk of formation of complexes or associates of analytes with counter ions is strongly reduced. Moreover, the standard system of anionic buffers is selected in such a way that it provides, for an entire set of measurements, constant and accurately known ionic strength and the operational conditions are selected so that they provide constant Joule heating. Due to these precautions only one correction for ionic strength and temperature is needed for the obtained set of experimental data. This considerably facilitates their evaluation and regression analysis as the corrections need not be implemented in the computation software. The reliability and the advantages of the proposed system are well documented by experiments, where the known problematic group of phenol derivatives was measured with high accuracy and without any notice of anomalous behaviour. PMID

  2. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    USGS Publications Warehouse

    Shortle, W.C.; Smith, K.T.; Minocha, R.; Lawrence, G.B.; David, M.B.

    1997-01-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Acidic deposition to spruce forests of the northeastern USA increased sharply during the 1960s. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased from 45 to 145 nm g-1. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r2 = 0.68, P < 0.027) suggests that foliar stress may be linked to soil chemistry.

  3. Use of a Novel Sub-2 µm Silica Hydride Vancomycin Stationary Phase in Nano-Liquid Chromatography. II. Separation of Derivatized Amino Acid Enantiomers.

    PubMed

    Rocchi, Silvia; Fanali, Chiara; Fanali, Salvatore

    2015-11-01

    A novel vancomycin silica hydride stationary phase was synthesized and the particles of 1.8 µm were packed into fused silica capillaries of 75 µm internal diameter (I.D.). The chiral stationary phase (CSP) was tested for the separation of some derivatized amino acid enantiomers by using nano-liquid chromatography (nano-LC). Some experimental parameters such as the type and the content of organic modifier, the pH, and the concentration of the buffer added to the mobile phase were modified and the effect on enantioselectivity, retention time, and enantioresolution factor was studied. The separation of selected dansyl amino acids (Dns-AAs), e.g., Asp, Glu, Leu, and Phe in their enantiomers was initially achieved utilizing a mobile phase containing 85% (v/v) methanol (MeOH) and formate buffer measuring the enantioresolution factor and enantioselectivity in the range 1.74-4.17 and 1.39-1.59, respectively. Better results were obtained employing a more polar organic solvent as acetonitrile (ACN) in the mobile phase. Optimum results (Rs 1.41-6.09 and α 1.28-2.36) were obtained using a mobile phase containing formate buffer pH 2.5/water/MeOH/ACN 6:19:12.5:62.5 (v/v/v/v) in isocratic elution mode at flow rate of 130 nL/min.

  4. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  5. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  6. Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: Phase field simulation

    SciTech Connect

    Jin, Yongmei M.

    2009-02-09

    Effects of twin boundary mobility on domain microstructure evolution during magnetic field-induced deformation in magnetic shape memory alloys are studied by phase field micromagnetic microelastic modeling. The simulations show that different twin boundary mobilities lead to drastically different domain microstructures and evolution pathways, yielding very different magnetization and strain responses, even with opposite signs. The study also reveals complex domain phenomena in magnetic shape memory alloys.

  7. Direct enantioseparation of underivatized aliphatic 3-hydroxyalkanoic acids with a quinine-based zwitterionic chiral stationary phase.

    PubMed

    Ianni, Federica; Pataj, Zoltán; Gross, Harald; Sardella, Roccaldo; Natalini, Benedetto; Lindner, Wolfgang; Lämmerhofer, Michael

    2014-10-10

    While aliphatic 2-hydroxyalkanoic acids have been more or less successfully enantioseparated with various chiral stationary phases by HPLC and GC, analogous applications on underivatized aliphatic 3-hydroxyalkanoic acids are completely absent in the scientific literature. With the aim of closing this gap, the enantioseparation of 3-hydroxybutyric acid, 3-hydroxydecanoic acid and 3-hydroxymyristic acid has been performed with two ion-exchange type chiral stationary phases (CSPs): one containing the anion-exchange type tert-butyl carbamoyl quinine chiral selector motif (Chiralpak QN-AX), and the other carrying the new zwitterionic variant based on trans-(S,S)-2-aminocyclohexanesulfonic acid-derivatized quinine carbamate (Chiralpak ZWIX(+)) as the chiral selector and enantiodiscriminating element, respectively. The zwitterionic enantiorecognition material provided better results in terms of enantioselectivity and resolution compared to the anion-exchanger CSP at reduced retention times due to the intramolecular counterion effect imposed by the sulfonic acid moiety and its competition with the 3-hydroxyalkanoic acid analyte for ionic interaction at the quininium-anion exchanger site. It is thus recommended as the CSP of first choice for enantioseparations of the class of aliphatic 3-hydroxyalkanoic acids. With use of polar organic eluent composed of ACN/MeOH/AcOH - 95/5/0.05 (v/v/v), a good compromise in terms of analysis time and enantioresolution quality was accomplished. The major experimental variables have been investigated for optimization of the resolution and allowed to derive information on the enantiorecognition mechanism. Corresponding Chiralpak ZWIX(-), based on pseudo-enantiomeric selector derived from quinidine and trans-(R,R)-2-aminocyclohexanesulfonic acid with opposite configurations provided reversed enantiomer elution orders. It has further to be stressed that these separations can be obtained with mass spectrometry compatible mobile phases.

  8. Tannic acid and saponin for removing arsenic from brownfield soils: Mobilization, distribution and speciation.

    PubMed

    Gusiatin, Zygmunt Mariusz

    2014-04-01

    Plant biosurfactants were used for the first time to remove As and co-existing metals from brownfield soils. Tannic acid (TA), a polyphenol, and saponin (SAP), a glycoside were tested. The soil washing experiments were performed in batch conditions at constant biosurfactant concentration (3%). Both biosurfactants differed in natural pH, surface tension, critical micelle concentration and content of functional groups. After a single washing, TA (pH 3.44) more efficiently mobilized As than SAP (pH 5.44). When both biosurfactants were used at the same pH (SAP adjusted to 3.44), arsenic mobilization was improved by triple washing. The process efficiency for TA and SAP was similar, and depending on the soil sample, ranged between 50%-64%. Arsenic mobilization by TA and SAP resulted mainly from decomposition of Fe arsenates, followed by Fe(3+) complexation with biosurfactants. Arsenic was efficiently released from reducible and partially from residual fractions. In all soils, As(V) was almost completely removed, whereas content of As(III) was decreased by 37%-73%. SAP and TA might be used potentially to remove As from contaminated soils.

  9. Selective fatty acid mobilization from adipose tissues of the pheasant (Phasianus colchicus mongolicus) during food deprivation.

    PubMed

    Mustonen, Anne-Mari; Käkelä, Reijo; Asikainen, Juha; Nieminen, Petteri

    2009-01-01

    Avian response to fasting has been examined intensively in penguins (Aptenodytes spp.) adapted to long-term food deprivation but less in species experiencing shorter fasts. Thus, the selectivity in (i) incorporating different fatty acids (FA) from diet into total lipids of white adipose tissue (WAT) and liver and (ii) mobilizing FA from these tissues was examined in pheasants Phasianus colchicus mongolicus fed or fasted for 4 d. Dietary FA were selectively incorporated into intra-abdominal and subcutaneous WAT having a similar composition. The WAT lipids contained higher proportions of saturated and monounsaturated FA and less polyunsaturated FA (PUFA) than the dietary profile. However, the isomers of 20:1 and 22:1 were incorporated inefficiently into the WAT lipids. The essential C18 PUFA precursors having smaller percentages in the pheasant tissues than in the diet were likely converted into longer-chain derivatives probably utilized to a great extent for structural lipids of muscles and organs. During food deprivation, the pheasants preferentially utilized 16:1n-7, 18:3n-3, 18:1n-9, and 16:0 but preserved long-chain saturated and unsaturated FA. Mobilization was more efficient for shorter-chain FA and increased with Delta9-desaturation. The hepatic FA profile was resistant to the 4-d period of food deprivation. The results demonstrate that the incorporation of FA into WAT and their mobilization from lipid stores are selective not only in mammals but also in birds.

  10. Mobility of lysozyme in poly(l-lysine)/hyaluronic acid multilayer films.

    PubMed

    Velk, Natalia; Uhlig, Katja; Vikulina, Anna; Duschl, Claus; Volodkin, Dmitry

    2016-11-01

    The spatial and temporal control over presentation of protein-based biomolecules such as growth factors and hormones is crucial for in vitro applications to mimic the complex in vivo environment. We investigated the interaction of a model protein lysozyme (Lys) with poly(L-lysine)/hyaluronic acid (PLL/HA) multilayer films. We focused on Lys diffusion as well as adsorption and retention within the film as a function of the film deposition conditions and post-treatment. Additionally, an effect of Lys concentration on its mobility was probed. A combination of confocal fluorescence microscopy, fluorescence recovery after photobleaching, and microfluidics was employed for this investigation. Our main finding is that adsorption of PLL and HA after protein loading induces acceleration and reduction of Lys mobility, respectively. These results suggest that a charge balance in the film to a high extent governs the protein-film interaction. We believe that control over protein mobility is a key to reach the full potential of the PLL/HA films as reservoirs for biomolecules depending on the application demand. PMID:27552029

  11. Morphology and Composition of Structured, Phase-Separated Behenic Acid-Perfluorotetradecanoic Acid Monolayer Films.

    PubMed

    Rehman, Jeveria; Araghi, Hessamaddin Younesi; He, Anqiang; Paige, Matthew F

    2016-05-31

    The phase separation of immiscible surfactants in mixed monolayer films provides an approach to physically manipulate important properties of thin films, including surface morphology, microscale composition, and mechanical properties. In this work, we predict, based upon existing miscibility studies and their thermodynamic underpinnings described in the literature, the miscibility and film morphology of mixed monolayers comprised of behenic acid (C21H43COOH) and perfluorotetradecanoic acid (C13F27COOH) in various molar ratios. Predictions are tested using a combination of experimental surface characterization methods for probing miscibility and film morphology at the solid/air and air/water interfaces. Film components were immiscible and phase-separated into chemically well-defined domains under a variety of experimental conditions, with monolayer morphology consistent with initial predictions. The extensibility of these basic predictions to other systems is discussed in the context of using these works for different perfluorinated surfactant molecules. PMID:27163482

  12. Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility

    NASA Astrophysics Data System (ADS)

    Dai, Shibin; Du, Qiang

    2016-04-01

    We study computationally coarsening rates of the Cahn-Hilliard equation with a smooth double-well potential, and with phase-dependent diffusion mobilities. The latter is a feature of many materials systems and makes accurate numerical simulations challenging. Our numerical simulations confirm earlier theoretical predictions on the coarsening dynamics based on asymptotic analysis. We demonstrate that the numerical solutions are consistent with the physical Gibbs-Thomson effect, even if the mobility is degenerate in one or both phases. For the two-sided degenerate mobility, we report computational results showing that the coarsening rate is on the order of l ∼ ct 1 / 4, independent of the volume fraction of each phase. For the one-sided degenerate mobility, that is non-degenerate in the positive phase but degenerate in the negative phase, we illustrate that the coarsening rate depends on the volume fraction of the positive phase. For large positive volume fractions, the coarsening rate is on the order of l ∼ ct 1 / 3 and for small positive volume fractions, the coarsening rate becomes l ∼ ct 1 / 4.

  13. Acidic deposition, cation mobilization, and biochemical indicators of stress in healthy red spruce

    SciTech Connect

    Shortle, W.C.; Smith, K.T.; Minocha, R.

    1997-05-01

    Dendrochemical and biochemical markers link stress in apparently healthy red spruce trees (Picea rubens) to acidic deposition. Previous reports related visible damage of trees at high elevations to root and soil processes. In this report, dendrochemical and foliar biochemical markers indicate perturbations in biological processes in healthy red spruce trees across the northeastern USA. Previous research on the dendrochemistry of red spruce stemwood indicated that under uniform environmental conditions, stemwood concentrations of Ca and Mg decreased with increasing radial distance from the pith. For nine forest locations, frequency analysis shows that 28 and 52% of samples of red spruce stemwood formed in the 1960s are enriched in Ca and Mg, respectively, relative to wood formed prior to and after the 1960s. This enrichment in trees throughout the northeastern USA may be interpretable as a signal of increased availability of essential cations in forest soils. Such a temporary increase in the availability of Ca and Mg could be caused by cation mobilization, a consequence of increased acidic deposition. During cation mobilization, essential and Ca and Mg as well as potentially harmful Al become more available for interaction with binding sites in the soil and absorbing roots. As conditions which favor cation mobilization continue, Ca and Mg can be leached or displaced from the soil. A measure of the interaction between Ca and Al is the Al/Ca binding ratio (molar charge ratio of exchangeable Al to exchangeable Ca). As the Al/Ca binding ratio in the root zone increased from 0.3 to 1.9, the foliar concentration of the biochemical stress marker putrescine also increased form 45 to 145 nm g{sup {minus}1}. The correlation of the putrescine concentration to the Al/Ca binding ratio (adj. r{sup 2} = 0.68, P <0.027) suggests that foliar stress may be linked to soil chemistry. 32 refs., 2 figs., 1 tab.

  14. Explosive ordnance detection in land and water environments with solid phase extraction/ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Chambers, William B.; Phelan, James M.; Rodacy, Philip J.; Reber, Steven; Woodfin, Ronald L.

    1999-08-01

    The qualitative and quantitative determination of nitroaromatic compounds such as trinitrotoluene (TNT) and dinitrotoluene (DNT) in water and soil has applications to environmental remediation and the detection of buried military ordnance. Recent results of laboratory and field test have shown that trace level concentrations of these compounds can be detected in water, soil, and solid gas samples taken from the vicinity of submerged or buried ordnance using specialized sampling and signal enhancement techniques. Solid phase micro-extraction methods have been combined with Ion Mobility Spectroscopy to provide rapid, sub-parts-per-billion analysis of these compounds. In this paper, we will describe the gas. These sampling systems, when combined with field-portable IMS, are being developed as a means of classifying buried or submerged objects as explosive ordnance.

  15. Bioreduction of Uranium(VI) Complexed with Citric Acid by Clostridia Affects its Structure and Mobility

    SciTech Connect

    Francis, A.; Dodge, C

    2008-01-01

    Uranium contamination of the environment from mining and milling operations, nuclear-waste disposal, and ammunition use is a widespread global problem. Natural attenuation processes such as bacterial reductive precipitation and immobilization of soluble uranium is gaining much attention. However, the presence of naturally occurring organic ligands can affect the precipitation of uranium. Here, we report that the anaerobic spore-forming bacteria Clostridia, ubiquitous in soils, sediments, and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), U(VI) to U(IV), Pu(IV) to Pu(III), and Tc(VI) to Tc(IV); reduced U(VI) associated with citric acid in a dinuclear 2:2 U(VI):citric acid complex to a biligand mononuclear 1:2 U(IV):citric acid complex, which remained in solution, in contrast to reduction and precipitation of uranium. Our findings show that U(VI) complexed with citric acid is readily accessible as an electron acceptor despite the inability of the bacterium to metabolize the complexed organic ligand. Furthermore, it suggests that the presence of organic ligands at uranium-contaminated sites can affect the mobility of the actinide under both oxic and anoxic conditions by forming such soluble complexes.

  16. Analysis of histidine and urocanic acid isomers by reversed-phase high-performance liquid chromatography.

    PubMed

    Hermann, K; Abeck, D

    2001-01-01

    The qualitative separation performance of a C18, C8 and C4 reversed-phase column was investigated for the separation of histidine and its metabolites histamine, 1-methyihistamine and trans- and cis-urocanic acid. Trans- and cis-urocanic acid were baseline separated from their precursor histidine on all three columns using isocratic elution with a mobile phase composed of 0.01 M aqueous TEAP pH 3.0 and acetonitrile at a ratio of 98:2 (v/v). However, histidine was not separated from histamine and 1-methyihistamine. Selecting the C8 column and introducing 0.005 M of the ion pairing reagent 1-octanesulfonic acid sodium salt into the aqueous solution and acetonitrile at a ratio of 90:10 (v/v), significantly improved the separation. The separation was also followed by a change in the retention times and the order of elution. The sequence of elution was histidine, cis-urocanic acid, trans-urocanic acid, histamine and 1-methylhistamine with retention times of 5.58 +/- 0.07, 7.03 +/- 0.15, 7.92 +/- 0.18, 18.77 +/- 0.24 and 20.79 +/- 0.21 min (mean +/- SD; n=5). The separation on the C8 column in the presence of the ion-pairing reagent was further improved with gradient elution that resulted in a reduction in the retention times and elution volumes of histamine and 1-methylhistamine. The detection limits of histidine and trans-urocanic acid at a wavelength of 210 nm and an injection volume of 0.05 ml were 5 x 10(-8) mol l(-1) (n=3). The kinetic of the in-vitro conversion of trans- into the cis-isomer after UV irradiation was depending on the time of exposure and the energy of the light source. UVB light induced a significantly faster conversion than UVA light. TUCA and cUCA samples kept at -25 degrees C were stable for up to 50 weeks. Samples, eluted from human skin showed various concentrations of histidine and trans- and cis-urocanic acid with an average of 1.69 +/- 0.33 x 10(-5) mol l(-1), 1.17 +/- 0.43 x 10(-5) mol l(-1) and 1.67 +/- 0.33 x 10(-5) mol l(-1), respectively

  17. Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany

    NASA Astrophysics Data System (ADS)

    Huang, J.-H.; Matzner, E.

    2006-04-01

    Wetland soils play a key role for the transformation of heavy metals in forested watersheds, influencing their mobility, and ecotoxicity. Our goal was to investigate the mechanisms of release from solid to solution phase, the mobility, and the transformation of arsenic species in a fen soil. In methanol-water extracts, monomethylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, and two unknown organic arsenic species were found with concentrations up to 14 ng As g -1 at the surface horizon. Arsenate is the dominant species at the 0-30 cm depth, whereas arsenite predominated at the 30-70 cm depth. Only up to 2.2% of total arsenic in fen was extractable with methanol-water. In porewaters, depth gradient spatial variation of arsenic species, pH, redox potentials, and the other chemical parameters along the profile was observed in June together with high proportion of organic arsenic species (up to 1.2 μg As L -1, 70% of total arsenic). Tetramethylarsonium ion and an unknown organic arsenic species were additionally detected in porewaters at deeper horizons. In comparison, the arsenic speciation in porewaters in April was homogeneous with depth and no organic arsenic species were found. Thus, the occurrence of microbial methylation of arsenic in fen was demonstrated for the first time. The 10 times elevated total arsenic concentrations in porewaters in June compared to April were accompanied by elevated concentrations of total iron, lower concentrations of sulfate and the presence of ammonium and phosphate. The low proportion of methanol-water extractable total arsenic suggests a generally low mobility of arsenic in fen soils. The release of arsenic from solid to solution phases in fen is dominantly controlled by dissolution of iron oxides, redox transformation, and methylation of arsenic, driven by microbial activity in the growing season. As a result, increased concentrations of total arsenic and potentially toxic arsenic species in fen

  18. Rapid Determination of Bile Acids in Bile from Various Mammals by Reversed-Phase Ultra-Fast Liquid Chromatography.

    PubMed

    Si, Gu Leng Ri; Yao, Peng; Shi, Luwen

    2015-08-01

    A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. PMID:25520305

  19. Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia

    We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.

  20. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  1. Ribonucleic Acid Polymerases of the Yeast Phase of Histoplasma capsulatum

    PubMed Central

    Boguslawski, George; Schlessinger, David; Medoff, Gerald; Kobayashi, George

    1974-01-01

    Ribonucleic acid (RNA) polymerases of Histoplasma capsulatum (yeast phase) were fractionated by phosphocellulose chromatography and partially characterized. Three distinct, active fractions were seen. The major RNA polymerase species was inhibited strongly by α-amanitin, whereas the other two were resistant. When either slightly purified (HSE) extract or the major active component was assayed at 37 C, the incorporation of tritiated uridine monophosphate into RNA stopped after 10 to 15 min. In contrast, the synthesis continued for at least 1 h at 23 C. The other two RNA polymerase species exhibited higher rates of incorporation when tested at 37 C, and continued to synthesize RNA even after 60 min. However, by that time the levels of incorporation at 23 C were higher than at 37 C for all three enzymes. The temperature sensitivity was not affected by changing substrate concentration or employing either native or denatured calf thymus deoxyribonucleic acid as a template. These results are compared with the data obtained with RNA polymerases from different fungi and other organisms. A possible involvement of RNA polymerase(s) in morphological differentiation of H. capsulatum is discussed. PMID:4828308

  2. Phase diagram of mixed monolayers of stearic acid and dimyristoylphosphatidylcholine. Effect of the acid ionization.

    PubMed

    Mercado, Franco Vega; Maggio, Bruno; Wilke, Natalia

    2011-07-01

    The aim of this work is to study the phase diagram of mixed monolayers composed of dimyristoylphosphatidylcholine (DMPC) and stearic acid (SA) at different ionic strength and bulk pH of the aqueous subphase. In this way, the effect of ionization of SA on the interaction and thus on phase separation with the DMPC matrix can be analyzed. To this purpose, we first determined the ionization state of pure SA monolayers as a function of the bulk subphase pH. The SA monolayers are nearly fully ionized at pH 10 and essentially neutral at pH 4 and the mixture of DMPC and SA was studied at those two pHs. We found that the DMPC-enriched phase admits more SA if the SA monolayer is in a liquid-expanded state, which is highly related to the acid ionization state, and thus to the bulk pH and ionic strength. At pH 4 the molecules hardly mix while at pH 10 the mixed monolayer with DMPC can admit between 30 and 100% of SA (depending on the lateral pressure) before phase separation is established. The addition of calcium ions to the subphase has a condensing effect on SA monolayers at all pHs and the solubility of SA in the DMPC matrix does not depend on the bulk pH in these conditions. The observed phase diagrams are independent on the manner in which the state of the mixed film is reached and may thus be considered states of apparent equilibrium.

  3. pH effect on the mechanical performance and phase mobility of thermally processed wheat gluten-based natural polymer materials.

    PubMed

    Zhang, Xiaoqing; Hoobin, Pam; Burgar, Iko; Do, My Dieu

    2006-12-01

    The mechanical properties, phase composition, and molecular motions of thermally processed wheat gluten- (WG-) based natural polymer materials were studied by mechanical testing, dynamic mechanical analysis (DMA), and solid-state NMR spectroscopy. The performance of the materials was mainly determined by the denaturization and cross-linking occurring in the thermal processing and the nature or amount of plasticizers used. The pH effect also played an important role in the materials when water was used as the only plasticizer (WG-w). Alkaline conditions modified the chemical structure of WG, possibly via deamidation; enhanced the thermal cross-linking of WG macromolecules to form a more stable aggregation structure; and promoted intermolecular interactions between water and all components in WG (proteins, starch, and lipid), resulting in a strong adhesion among different components and phases. The saponification of lipid under alkaline conditions also enhanced the hydrophilicity of lipid and the miscibility among lipid, water, and WG components. However, when glycerol was used with water as a plasticizer (WG-wg), the phase mobility and composition of the materials mainly depended on the content of glycerol when the water content was constant. During thermal processing under either acidic or alkaline conditions, glycerol was unlikely to thermally cross-link with WG as suggested previously. The advanced mechanical performance of the WG-wg materials was attributed to the nature of hydrogen-bonding interactions between glycerol and WG components in the materials. This caused the whole material to behave like a strengthened "cross-linked" structure at room temperature due to the low mobility of glycerol. The pH effect on phase mobility and compositions of WG-wg systems was not as significant as that for WG-w materials.

  4. High-performance liquid chromatography study of the enantiomer separation of chrysanthemic acid and its analogous compounds on a terguride-based stationary phase.

    PubMed

    Dondi, M; Flieger, M; Olsovska, J; Polcaro, C M; Sinibaldi, M

    1999-10-29

    The direct enantioseparation of chrysanthemic acid [2,2-dimethyl-3-(2-methylpropenyl)-cyclopropanecarboxylic acid] and its halogen-substituted analogues was systematically studied by HPLC using a terguride-based chiral stationary phase in combination with a UV diode array and chiroptical detectors. Isomers with (1R) configuration always eluted before those with (IS) configuration. The elution sequence of cis- and trans-isomers was strongly affected by mobile phase pH, whereas the enantioselectivity remained the same. Conditions for the separation of all the enantiomers were also examined. This method was used for monitor the hydrolytic degradation products of Cyfluthrin (Baythroid) in soil under laboratory conditions.

  5. Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation.

    PubMed

    Schäff, C; Börner, S; Hacke, S; Kautzsch, U; Sauerwein, H; Spachmann, S K; Schweigel-Röntgen, M; Hammon, H M; Kuhla, B

    2013-10-01

    The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d -17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The

  6. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  7. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  8. Enhanced extraction yields and mobile phase separations by solvent mixtures for the analysis of metabolites in Annona muricata L. leaves.

    PubMed

    Ribeiro de Souza, Eloana Benassi; da Silva, Renata Reis; Afonso, Sabrina; Scarminio, Ieda Spacino

    2009-12-01

    The effects of five extraction solvents and their mixtures on the yield of metabolites in crude and fractionated extracts of Annona muricata L. leaves were investigated by direct comparison. Extraction media were prepared using simplex centroid mixtures of ethanol, ethyl acetate, dichloromethane, acetone, and chloroform. The effects of the mobile phase solvent strength and the analysis wavelength on the chromatographic separation were also investigated. Solvent mixtures rather than pure solvents were found to be the most efficient extractors for the different fractions. The results indicated that the mobile phase composed of methanol/acetonitrile/water (26:27:47 v/v/v) was most suitable for the basic fraction analysis at 254 nm, whereas the mobile phase composed of methanol/acetonitrile/water (35:35:30 v/v/v) was the most adequate for the organic fraction analysis at 254 nm. The results indicated that the chromatographic profiles and number of peaks were affected by the mobile phase strength and analysis wavelength.

  9. 77 FR 57085 - Mobility Fund Phase I Auction; Release of Files with Recalculated Road Miles for Auction 901...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    .../ecfs/ . 1. In the Auction 901 Procedures Public Notice, 77 FR 32092, May 31, 2012, the Bureaus... Notice, 77 FR 7152, February 10, 2012, in calculating the number of road miles associated with each... COMMISSION Mobility Fund Phase I Auction; Release of Files with Recalculated Road Miles for Auction 901;...

  10. 77 FR 11115 - Mobility Fund Phase I Auction Limited Extension of Deadlines for Comments and Reply Comments on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... released the Auction 901 Comment Public Notice, 77 FR 7152, February 10, 2012, which seeks comment on... Commission in the USF/ICC Transformation Order, 76 FR 73830, November 29, 2011 and 76 FR 81562, December 28... COMMISSION Mobility Fund Phase I Auction Limited Extension of Deadlines for Comments and Reply Comments...

  11. Understanding gas phase modifier interactions in rapid analysis by Differential Mobility-Tandem Mass Spectrometry

    PubMed Central

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-01-01

    A systematic study involving the use and optimization of gas phase modifiers in quantitative differential mobility- mass spectrometry (DMS-MS) analysis is presented using mucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab-initio thermochemical results we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry in mobility differences, but at lower temperatures multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects. PMID:24452298

  12. Retention of ionisable compounds on high-performance liquid chromatography. XV. Estimation of the pH variation of aqueous buffers with the change of the acetonitrile fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2004-12-01

    The most commonly used mobile phases in reversed-phase high-performance liquid chromatography (RP-HPLC) are hydro-organic mixtures of an aqueous buffer and an organic modifier. The addition of this organic solvent to buffered aqueous solutions involves a variation of the buffer properties (pH and buffer capacity). In this paper, the pH variation is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-citrate, and ammonium-ammonia buffers. The proposed equations allow pH estimation of acetonitrile-water buffered mobile phases up to 60% (v/v) of organic modifier and initial aqueous buffer concentrations between 0.001 and 0.1 mol L(-1), from the initial aqueous pH. The estimated pH variation of the mobile phase and the pKa variation of the analytes allow us to predict the degree of ionisation of the analytes and from this and analyte hydrophobicities, to interpret the relative retention and separation of analyte mixtures.

  13. Phase diagram of a system of adipic, glutaric, and sebacic acids

    NASA Astrophysics Data System (ADS)

    Kolyado, A. V.; Alenova, S. M.; Garkushin, I. K.

    2016-06-01

    Adipic acid-glutaric acid, glutaric acid-sebacic acid, and adipic acid-sebacic acid binary systems are studied, along with an adipic acid-glutaric acid-sebacic acid ternary system. It is shown all of these systems are eutectic. Phase equilibria for the diagram elements of the binary systems and the ternary system are described. It is concluded that the above low-melting compounds can be recommended for use as working bodies in heat accumulators, and for preparing electrolytes used in the thin-layer anodic oxidation of aluminum alloys.

  14. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  15. Ionic liquids as mobile phase additives for feasible assay of naphazoline in pharmaceutical formulation by HPTLC-UV-densitometric method.

    PubMed

    Marszałł, Michał Piotr; Sroka, Wiktor Dariusz; Balinowska, Aleksandra; Mieszkowski, Dominik; Koba, Marcin; Kaliszan, Roman

    2013-07-01

    A specific and reliable high-performance thin layer chromatography method with densitometry detection has been developed for the determination of naphazoline nitrate in nasal drops. The best separation of the basic analyte, without spot tailing, was achieved by using a mobile phase composed of acetonitrile-water (60:40, v/v), adding 1.5 % (v/v) imidazolium-class ionic liquid and covering the plates with a stationary phase based on RP-18 with F254S (10 × 20 cm). The presented results confirm that imidazolium tetrafluoroborate ionic liquids are efficient suppressors of free silanols, which are considered to be responsible for troublesome and irreproducible chromatographic determinations of basic compounds. The developed chromatographic system was found to be convenient in use and to provide a repeatable assay of naphazoline nitrate in nasal drops, which could not be obtained with the use of standard silanol suppressing mobile phase additives such as triethylamine or dimethyloctylamine.

  16. Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990

    EIA Publications

    1994-01-01

    The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.

  17. Collection of ethanolamines in air and determination by mobile phase ion chromatography

    SciTech Connect

    Bouyoucos, S.A.; Melcher, R.G.

    1986-03-01

    A method is described for the collection and determination of monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) in air. Samples were collected by pulling air through a glass tube containing alumina, cleaned especially to remove interfering inorganic ions. The ethanolamines were desorbed with water and determined by Mobile Phase Ion Chromatography (MPIC). The recovery and total relative precision for MEA, DEA, and TEA - all collected from air at a flow rate of 100 mL/min for 7 hr - was 93.1 +/- 17%, 92.7 +/- 15% and 89.4 +/- 21%, respectively (95% confidence level). The method was validated for all three compounds from approximately the limit of detection (3 x noise) to ten times the limit of detection. Based on a sample size of 42 L, MEA was validated over the range from 0.12 to 3.0 ppm v/v (TLV=3), DEA over the range from 0.25 to 3.3 ppm v/v (TLV=3) and TEA from 0.31 to 3.7 ppm v/v (no TLV assigned). No effect on recovery was observed when sampling at high humidity or on storage of the samples for up to 31 days.

  18. Particle concentration measurement of virus samples using electrospray differential mobility analysis and quantitative amino acid analysis.

    PubMed

    Cole, Kenneth D; Pease, Leonard F; Tsai, De-Hao; Singh, Tania; Lute, Scott; Brorson, Kurt A; Wang, Lili

    2009-07-24

    Virus reference materials are needed to develop and calibrate detection devices and instruments. We used electrospray differential mobility analysis (ES-DMA) and quantitative amino acid analysis (AAA) to determine the particle concentration of three small model viruses (bacteriophages MS2, PP7, and phiX174). The biological activity, purity, and aggregation of the virus samples were measured using plaque assays, denaturing gel electrophoresis, and size-exclusion chromatography. ES-DMA was developed to count the virus particles using gold nanoparticles as internal standards. ES-DMA additionally provides quantitative measurement of the size and extent of aggregation in the virus samples. Quantitative AAA was also used to determine the mass of the viral proteins in the pure virus samples. The samples were hydrolyzed and the masses of the well-recovered amino acids were used to calculate the equivalent concentration of viral particles in the samples. The concentration of the virus samples determined by ES-DMA was in good agreement with the concentration predicted by AAA for these purified samples. The advantages and limitations of ES-DMA and AAA to characterize virus reference materials are discussed.

  19. Chirality, phase transitions and their induction in amino acids

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    1992-08-01

    “Atoms such as carbon, oxygen, nitrogen and hydrogen, the major constituents of biological molecules, are less than 0.4 nm in diameter…. The behaviour of small molecules is a reflection of the intrinsic properties of the constituent atoms. Hence it might be expected that the behaviour of large macromolecules can be explained by a knowledge of atomic properties. Since organelles, whole cells and organisms are essentially macromolecular assemblies, it may be possible in time to derive an atomic theory of life” [A.R. Rees and M.J.E. Sternberg, From cells to atoms-An illustrated introduction to molecular biology (Blackwell, Oxford, 1984) p. 3]. It has been suggested that chirality among the twenty amino acids which make up the proteins may be a consequence of a phase transition which is analogous to that due to BCS superconductivity [A. Salam, J. Mol. Evol. 33 (1991) 105]. We explore these ideas in this paper and show, following Lee and Drell [I.H. Lee and S.D. Drell, in: Fermion masses in the standard model, M.A.B. Bég Memorial Volume, eds. A. Ali and P. Hoodbhoy (World Scientific, Singapore, 1991) p. 13], that a crucial form for the transition temperature Tc involves dynamical symmetry breaking. The t-quarks or supersymmetry (or something similar which ensures a heavy mass) appear to be essential if such mechanisms are to hold.

  20. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  1. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    PubMed

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  2. Use of tert-butylbenzoylated tartardiamide chiral stationary phase for the enantiomeric resolution of acidic compounds by nano-liquid chromatography.

    PubMed

    Fanali, Salvatore; D'Orazio, Giovanni; Rocco, Anna

    2006-07-01

    Several racemic acidic compounds of pharmaceutical and environmental interest have been separated into their enantiomers by nano-liquid chromatography (nano-LC) employing a tert-butylbenzoylated tartardiamide chiral stationary phase (CHI-TBB). CHI-TBB was packed into a fused silica capillary of 100 microm id and retained by two frits made with a heated wire; detection was on-column at a window (about 0.5 cm) prepared by removing the polyimide layer. The normal phase mode was selected for eluting the studied acidic compounds and therefore n-hexane/2-propanol/acetic acid (89/10/1, v/v/v) was used as mobile phase. Working at a flow rate of 220 nL/min a good resolution was obtained for mecoprop, dichlorprop, diclofop, fenoxaprop (herbicides) and for DF 1738Y, DF 1770Y, DF 2008Y (drugs under evaluation). In order to optimize the chiral resolution we modified the polarity of the mobile phase by adding several polar additives such as ethyl acetate, dichloromethane, tert-butyl methyl ether. Better results were obtained for some herbicides on working with 2-propanol/CH2Cl2/n-hexane/acetic acid (8/4/87/1, v/v/v/v). The influence of the capillary temperature on chiral resolution was studied for two herbicides with different chemical structures, namely mecoprop and haloxyfop in the temperature range between 10 and 40 degrees C and with n-hexane/2-propanol/1% acetic acid (89/10/1, v/v/v) as the mobile phase. Linear correlation of ln k vs 1/T and In alpha vs 1/ T was observed; deltaH degrees values were negative, demonstrating that retention of analytes was an exothermic process. A decrease in resolution was observed with rising temperature, showing that enantioresolution was mainly influenced by selectivity factors.

  3. Greener liquid chromatography using a guard column with micellar mobile phase for separation of some pharmaceuticals and determination of parabens.

    PubMed

    Youngvises, Napaporn; Chaida, Thanatcha; Khonyoung, Supada; Kuppithayanant, Nattawan; Tiyapongpattana, Warawut; Itharat, Arunporn; Jakmunee, Jaroon

    2013-03-15

    In this research, a greener chromatography employing a short column, Zorbax SB C18 cartridge (12.5 × 4.6 mm, 5 μm) commonly used as a guard column in a reverse phase high performance liquid chromatography (RP-HPLC), was utilized as the analytical column in conjunction with a more eco-friendly micellar mobile phase of sodium dodecyl sulfate (SDS) for separation tertiary mixtures of local anesthetics and antihistamines; and binary mixture of colds drugs; and quaternary mixture of some parabens with different separation conditions. The chromatographic behavior of these analytes was studied to demonstrate separation efficiency of this guard column in a micellar mobile phase. Moreover, this column and SDS mobile phase was exploited for determination of parabens in 64 samples of cosmetic product, both those that were produced locally in the community and those that were commercially manufactured. Linear calibration graphs of the parabens as detected at 254 nm were obtained in the range of 1-100 μmol L(-1) with R(2)>0.9990. Percentage recoveries were 92.4-109.2 with %RSD<3, and the limit of detection and quantitation were 0.04-0.10 and 0.20-0.80 μmol L(-1), respectively. This analytical system is not only greener but also faster and employing simpler sample preparation than a conventional liquid chromatographic system. PMID:23598137

  4. Enantioseparation of Citalopram by RP-HPLC, Using Sulfobutyl Ether-β-Cyclodextrin as a Chiral Mobile Phase Additive

    PubMed Central

    Peng, Yangfeng; He, Quan Sophia; Cai, Jiang

    2016-01-01

    Enantiomeric separation of citalopram (CIT) was developed using a reversed phase HPLC (RP-HPLC) with sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive. The effects of the pH value of aqueous buffer, concentration of chiral additive, composition of mobile phase, and column temperature on the enantioseparation of CIT were investigated on the Hedera ODS-2 C18 column (250 mm × 4.6 mm × 5.0 um). A satisfactory resolution was achieved at 25°C using a mobile phase consisting of a mixture of aqueous buffer (pH of 2.5, 5 mM sodium dihydrogen phosphate, and 12 mM SBE-β-CD), methanol, and acetonitrile with a volumetric ratio of 21 : 3 : 1 and flow rate of 1.0 mL/min. This analytical method was evaluated by examining the precision (lower than 3.0%), linearity (regression coefficients close to 1), limit of detection (0.070 µg/mL for (R)-CIT and 0.076 µg/mL for (S)-CIT), and limit of quantitation (0.235 µg/mL for (R)-CIT and 0.254 µg/mL for (S)-CIT). PMID:26880921

  5. Greener liquid chromatography using a guard column with micellar mobile phase for separation of some pharmaceuticals and determination of parabens.

    PubMed

    Youngvises, Napaporn; Chaida, Thanatcha; Khonyoung, Supada; Kuppithayanant, Nattawan; Tiyapongpattana, Warawut; Itharat, Arunporn; Jakmunee, Jaroon

    2013-03-15

    In this research, a greener chromatography employing a short column, Zorbax SB C18 cartridge (12.5 × 4.6 mm, 5 μm) commonly used as a guard column in a reverse phase high performance liquid chromatography (RP-HPLC), was utilized as the analytical column in conjunction with a more eco-friendly micellar mobile phase of sodium dodecyl sulfate (SDS) for separation tertiary mixtures of local anesthetics and antihistamines; and binary mixture of colds drugs; and quaternary mixture of some parabens with different separation conditions. The chromatographic behavior of these analytes was studied to demonstrate separation efficiency of this guard column in a micellar mobile phase. Moreover, this column and SDS mobile phase was exploited for determination of parabens in 64 samples of cosmetic product, both those that were produced locally in the community and those that were commercially manufactured. Linear calibration graphs of the parabens as detected at 254 nm were obtained in the range of 1-100 μmol L(-1) with R(2)>0.9990. Percentage recoveries were 92.4-109.2 with %RSD<3, and the limit of detection and quantitation were 0.04-0.10 and 0.20-0.80 μmol L(-1), respectively. This analytical system is not only greener but also faster and employing simpler sample preparation than a conventional liquid chromatographic system.

  6. Enantioseparation of Citalopram by RP-HPLC, Using Sulfobutyl Ether-β-Cyclodextrin as a Chiral Mobile Phase Additive.

    PubMed

    Peng, Yangfeng; He, Quan Sophia; Cai, Jiang

    2016-01-01

    Enantiomeric separation of citalopram (CIT) was developed using a reversed phase HPLC (RP-HPLC) with sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive. The effects of the pH value of aqueous buffer, concentration of chiral additive, composition of mobile phase, and column temperature on the enantioseparation of CIT were investigated on the Hedera ODS-2 C18 column (250 mm × 4.6 mm × 5.0 um). A satisfactory resolution was achieved at 25°C using a mobile phase consisting of a mixture of aqueous buffer (pH of 2.5, 5 mM sodium dihydrogen phosphate, and 12 mM SBE-β-CD), methanol, and acetonitrile with a volumetric ratio of 21 : 3 : 1 and flow rate of 1.0 mL/min. This analytical method was evaluated by examining the precision (lower than 3.0%), linearity (regression coefficients close to 1), limit of detection (0.070 µg/mL for (R)-CIT and 0.076 µg/mL for (S)-CIT), and limit of quantitation (0.235 µg/mL for (R)-CIT and 0.254 µg/mL for (S)-CIT). PMID:26880921

  7. The Effect of Body Energy Reserve Mobilization on the Fatty Acid Profile of Milk in High-yielding Cows

    PubMed Central

    Nogalski, Zenon; Wroński, Marek; Sobczuk-Szul, Monika; Mochol, Magdalena; Pogorzelska, Paulina

    2012-01-01

    We investigated the effect of the amount of body condition loss in the dry period and early lactation in 42 high-yielding Holstein-Friesian cows on milk yield and the share of fatty acids in milk fat. Energy reserves were estimated based on the body condition scoring (BCS) and backfat thickness (BFT). Milk yield and milk composition were determined over 305-d lactation. From d 6 to 60 of lactation, the concentrations of 43 fatty acids in milk fat were determined by gas chromatography. Cows were categorized based on body condition loss from the beginning of the dry period to the lowest point of the BCS curve in early lactation into three groups: low condition loss group (L) ≤0.5 points (n = 14); moderate condition loss group (M) 0.75 to 1.0 points (n = 16) and high condition loss group (H) >1.0 points (n = 12). Cows whose body energy reserves were mobilized at 0.8 BCS and 11 mm BFT, produced 12,987 kg ECM over 305-d lactation, i.e. 1,429 kg ECM more than cows whose BCS and BFT decreased by 0.3 and 5 mm, respectively. In group H, milk yield reached 12,818 kg ECM at body fat reserve mobilization of 1.3 BCS and 17 mm BFT. High mobilization of body fat reserves led to a significant (approx. 5%) increase in the concentrations of monounsaturated fatty acids-MUFA (mostly C18:1 cis-9, followed by C18:1 trans-11), a significant decrease in the levels of fatty acids adversely affecting human health, and a drop in the content of linoleic acid, arachidonic acid and docosahexaenoic acid in milk fat. In successive weeks of lactation, an improved energy balance contributed to a decrease in the concentrations of unsaturated fatty acids (UFA) and an increase in the conjugated linoleic acid (CLA) content of milk fat. PMID:25049536

  8. Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. I: Investigation of mobile phase and MS conditions.

    PubMed

    Nováková, Lucie; Grand-Guillaume Perrenoud, Alexandre; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2015-01-01

    The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS.

  9. Influence of acid-induced conformational variability on protein separation in reversed phase high performance liquid chromatography.

    PubMed

    Bobály, Balázs; Tóth, Eszter; Drahos, László; Zsila, Ferenc; Visy, Júlia; Fekete, Jenő; Vékey, Károly

    2014-01-17

    Influence of acid concentration in the mobile phase on protein separation was studied in a wide concentration range using trifluoroacetic acid (TFA) and formic acid (FA). At low, 0.001-0.01 (v/v%) TFA concentration and appropriate solvent strength proteins elute before the column's dead time. This is explained by the proteins having a structured, but relatively extended conformation in the eluent; and are excluded from the pores of the stationary phase. Above ca. 0.01-0.05 (v/v%) TFA concentration proteins undergo further conformational change, leading to a compact, molten globule-like structure, likely stabilized by ion pairing. Proteins in this conformation enter the pores and are retained on the column. The results suggest a pore exclusion induced separation related to protein conformation. This effect is influenced by the pH and type of acid used, and is likely to involve ion-pair formation. The TFA concentration needed to result in protein folding (and therefore to observe retention on the column) depends on the protein; and therefore can be utilized to improve chromatographic performance. Conformation change was monitored by circular dichroism spectroscopy and mass spectrometry; and it was shown that not only TFA but FA can also induce molten globule formation. PMID:24373532

  10. Influence of perfluorinated carboxylic acids on ion-pair reversed-phase high-performance liquid chromatographic separation of betacyanins and 17-decarboxy-betacyanins.

    PubMed

    Wybraniec, Sławomir; Mizrahi, Yosef

    2004-03-12

    The ability of trifluoroacetic acid, pentafluoropropionic acid and heptafluorobutyric acid to act as ion-pairing agents for betacyanins and 17-decarboxy-betacyanins during HPLC analysis on a Luna C18(2) reversed-phase column is reported. While the perfluorinated carboxylic acids affect the retention of both groups of compounds by changing the pH of the mobile phase, the possibility of ion-pair chromatography for 17-decarboxy-betacyanins was noticed. In order to explain the accessibility of the positive charge for the counter-anion in decarboxy-betacyanins, the mesomeric structures of the polymethine system at low pH (around a value of 1.5), when the carboxylic group in the 2 position is protonated, should be taken into consideration.

  11. [Determination of oleanic acid and paeoniflorin in Paeonia lactiflora by ultrasound-assisted ionic liquid-reversed phase liquid chromatography].

    PubMed

    Liu, Wei; Li, Dong-dong; Yang, Hong-shuai; Chen, Yuan-yuan; Wei, Jin-feng; Kang, Wen-yi; Guo, Xiu-chun

    2015-02-01

    Four kinds of ionic liquids [BMIM] Br, [BMIM] BF4, [BMIM] PF6, [HMIM] PF6 were used to analyze the content of oleanic acid and paeoniflorin in Paeonia lactiflora with ultrasonic-assisted extraction coupled with HPLC. The chromatographic column, Purospher star RP-C18 (4.6 mm x 250 mm, 5 μm), was used. Acetonitrile and water (90:10) as mobile phase was used to determine the content of oleanic acid with a gradient elution and flow rate at 1.00 mL · min(-1), detection wavelength at 210 nm, chromatographic column temperature at room temperature. Paeoniflorin content was determined using acetonitrile and water (18:82) as mobile phase with a gradient elution and flow rate at 1.00 mL · min(-1), detection wavelength at 250 nm, the chromatographic column temperature at room temperature. The result show that oleanic acid has the highest extraction yield when the conditions are solid-liquid ratio of 1:80 (g · mL(-1)), and the [BMIM] Br methanol solution concentration of 0.6 mol · L(-1). Under the optimal extraction conditions, the content of oleanic acid from 0.24 to 3.76 μg showed a good linearity (r = 0.9999), the average recovery was 97.20%. Paeoniflorin has the highest extraction yield when the conditions are solid-liquid ratio of 1:130 (g · mL(-1)), and the [C4 MIM] PF6 methanol solution concentration of 0.6 mol · L(-1). Under the optimal extraction conditions, paeoniflorin content from 0.42 to 4.20 μg showed a good lin- earity (r = 1.000), the average recovery was 98.84%. This method is simple and reliable, its repeatability is also very good. It has important significance in the study P. lactiflora of ionic liquid microextraction. PMID:26084167

  12. Impact of the intermixed phase and the channel network on the carrier mobility of nanostructured solar cells.

    PubMed

    Woellner, Cristiano F; Freire, José A

    2016-02-28

    We analyzed the impact of the complex channel network of donor and acceptor domains in nanostructured solar cells on the mobility of the charge carriers moving by thermally activated hopping. Particular attention was given to the so called intermixed phase, or interface roughness, that has recently been shown to promote an increase in the cell efficiency. The domains were obtained from a Monte Carlo simulation of a two-species lattice gas. We generated domain morphologies with controllable channel size and interface roughness. The field and density dependence of the carrier hopping mobility in different morphologies was obtained by solving a master equation. Our results show that the mobility decreases with roughness and increases with typical channel sizes. The deleterious effect of the roughness on the mobility is quite dramatic at low carrier densities and high fields. The complex channel network is shown to be directly responsible for two potentially harmful effects to the cell performance: a remarkable decrease of the mobility with increasing field and the accumulation of charge at the domains interface, which leads to recombination losses.

  13. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes.

    PubMed

    Pérez-López, Rafael; Alvarez-Valero, Antonio M; Nieto, José Miguel

    2007-09-30

    Presently, about 3 million tonnes of phosphogypsum are being generated annually in Spain as by-product from phosphoric acid in a fertilizer factory located in Huelva (southwestern Iberian Peninsula). Phosphate rock from Morocco is used as raw material in this process. Phosphogypsum wastes are stored in a stack containing 100Mt (approximately 1200ha of surface) over salt marshes of an estuary formed by the confluence of the Tinto and Odiel rivers, less than 1km away from the city centre. A very low proportion of this waste is used to improve fertility of agricultural soils in the area of the Guadalquivir river valley (Seville, SW Spain). The chemical speciation of potentially toxic elements (Ba, Cd, Cu, Ni, Sr, U and Zn) in phosphogypsum and phosphate rock was performed using the modified BCR-sequential extraction procedure, as described by the European Community Bureau of Reference (1999). This study has been done with the main of: (1) evaluate changes in the mobility of metals during the production of phosphoric acid; (2) estimate the amount of mobile metals that can affect the environmental surrounding; and (3) verify the environmentally safe use of phosphogypsum as an amendment to agricultural soils. The main environmental concern associated to phosphoric acid production is that Uranium, a radiotoxic element, is transferred from the non-mobile fraction in the phosphate rock to the bioavailable fraction in phosphogypsum in a rate of 23%. Around 21% of Ba, 6% of Cu and Sr, 5% of Cd and Ni, and 2% of Zn are also contained in the water-soluble phase of the final waste. Considering the total mass of phosphogypsum, the amount of metals easily soluble in water is approximately 6178, 3089, 1931, 579, 232, 193 and 77t for Sr, U, Ba, Zn, Ni, Cu and Cd, respectively. This gives an idea of the pollution potential of this waste. PMID:17683858

  14. Understanding Gas Phase Modifier Interactions in Rapid Analysis by Differential Mobility-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-07-01

    A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.

  15. Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry.

    PubMed

    Kafle, Amol; Coy, Stephen L; Wong, Bryan M; Fornace, Albert J; Glick, James J; Vouros, Paul

    2014-07-01

    A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 10(6) normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.

  16. Use of micellar mobile phases and microbore column switching for the assay of drugs in physiological fluids.

    PubMed

    Koenigbauer, M J; Curtis, M A

    1988-06-01

    The feasibility of directly assaying drugs in physiological fluids using on-line preconcentration and microbore high-performance liquid chromatography has been demonstrated. The untreated sample is injected onto a hydrophobic pre-column, using micellar sodium dodecyl sulfate (SDS) in the case of serum or phosphate buffer in the case of urine, as the load mobile phase. This traps the components of interest which are then backflushed onto a microbore analytical column using a stronger mobile phase. This procedure was then applied to diazepam in serum and phenobarbital in urine. Recovery was linear and quantitative over the range 30-3000 ng/ml for diazepam in serum and 2-200 micrograms/ml for phenobarbital in urine. The diazepam method was specific against caffeine and the three major metabolites of diazepam: oxazepam, temazepam, and nordiazepam. The effects of varying pre-column dimensions, pre-column loading time, and SDS concentration volume were evaluated. PMID:3410911

  17. Preparation of a new chiral stationary phase for HPLC based on the (R)- 1-phenyl-2-(4-methylphenyl)ethylamine amide derivative of (S)-valine and 2-chloro-3,5-dinitrobenzoic acid: enantioseparation of amino acid derivatives and pyrethroid insecticides.

    PubMed

    Tan, Xulin; Hou, Shicong; Jiang, Jingli; Wang, Min

    2007-08-01

    A novel chiral stationary phase (CSP) for HPLC was prepared by bonding (R)-1-phenyl-2-(4-methylphenyl)ethylamine amide derivative of (S)-valine to aminopropyl silica gel through a 2-amino-3,5-dinitro-1-carboxamido-benzene unit. The CSP was used for the separation of some amino acid derivatives and pyrethroid insecticides by chiral HPLC. Satisfactory baseline separation required optimization of the variables of mobile phase composition. Use of dichloromethane as modifier in the mobile phase gave baseline separations of amino acid derivatives. The two enantiomers of fenpropathrin and four stereoisomers of fenvalerate were baseline separated using hexane-dichloromethane-ethanol as mobile phase. The results show that the enantioselectivity of the new CSP is better than Pirkle type 1-A column for these compounds. Only partial separations were observed for the stereoisomers of cypermethrin and cyfluthrin, which gave even and eight peaks, respectively.

  18. Thermodynamic studies of the solvent effects in chromatography on molecularly imprinted polymers. 3. Nature of the organic mobile phase

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-04-01

    Experimental isotherm data of the Fmoc-tryptophan (Fmoc-Trp) enantiomers were measured by frontal analysis on a Fmoc-L-Trp imprinted polymer, using different organic mobile phases, in a wide concentration range. The nonlinear regression of the data and the independent calculation of the affinity energy distributions of the two enantiomers allowed the selection of the isotherm model and the determination of the isotherm parameters. The organic solvents studied were acetonitrile (MeCN), methylene chloride, chloroform, and tetrahydrofuran (THF), all in the presence of the same concentration of acetic acid, used as an organic modifier. It was found that the highest overall affinity and enantiomeric selectivity were obtained in MeCN, which is also the solvent used in the polymerization. In the other solvents, the overall affinity decreases with increasing hydrogen-bonding ability of the solvents but not the enantiomer selectivity. In MeCN, three types of adsorption sites coexist for the two enantiomers on the MIP. The highest energy sites for Fmoc-L-Trp in MeCN are inactive in CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF, and only two types of sites were identified in these solvents. Increasing the acetic acid concentration from 0.2 to 0.9 M causes a large decrease in the association constant of the highest energy sites in CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF but not in MeCN. The overall affinity of Fmoc-L-trp in CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF is dominated by adsorption on the lowest energy sites, the most abundant ones. In contrast, in MeCN, the overall affinity of Fmoc-L-Trp is dominated by adsorption on the highest energy sites, the least abundant sites. In CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF, the number of each type of sites increases with decreasing hydrogen-bonding ability of the solvents while the association constant of the corresponding sites does not change significantly.

  19. Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection[S

    PubMed Central

    Damen, Carola W. N.; Isaac, Giorgis; Langridge, James; Hankemeier, Thomas; Vreeken, Rob J.

    2014-01-01

    An ultraperformance LC (UPLC) method for the separation of different lipid molecular species and lipid isomers using a stationary phase incorporating charged surface hybrid (CSH) technology is described. The resulting enhanced separation possibilities of the method are demonstrated using standards and human plasma extracts. Lipids were extracted from human plasma samples with the Bligh and Dyer method. Separation of lipids was achieved on a 100 × 2.1 mm inner diameter CSH C18 column using gradient elution with aqueous-acetonitrile-isopropanol mobile phases containing 10 mM ammonium formate/0.1% formic acid buffers at a flow rate of 0.4 ml/min. A UPLC run time of 20 min was routinely used, and a shorter method with a 10 min run time is also described. The method shows extremely stable retention times when human plasma extracts and a variety of biofluids or tissues are analyzed [intra-assay relative standard deviation (RSD) <0.385% and <0.451% for 20 and 10 min gradients, respectively (n = 5); interassay RSD <0.673% and <0.763% for 20 and 10 min gradients, respectively (n = 30)]. The UPLC system was coupled to a hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer, equipped with a traveling wave ion-mobility cell. Besides demonstrating the separation for different lipids using the chromatographic method, we demonstrate the use of the ion-mobility MS platform for the structural elucidation of lipids. The method can now be used to elucidate structures of a wide variety of lipids in biological samples of different matrices. PMID:24891331

  20. Mechanisms for trapping and mobilization of residual fluids during capillary-dominated three-phase flow in porous rock

    NASA Astrophysics Data System (ADS)

    Helland, J. O.; Jettestuen, E.

    2016-07-01

    We use a multiphase level set approach to simulate capillary-controlled motions of isolated fluid ganglia surrounded by two other continuous fluids (i.e., double displacements) during three-phase flow on 3-D porous rock geometries. Double displacements and three-phase snap-off mechanisms are closely related. Water snap-off on gas/oil interfaces can initiate double displacements that mobilize isolated oil ganglia in water-wet rock, but it can also terminate ongoing double displacements and trap oil in water. The multiphase level set approach allows for calculating the evolution of disconnected-phase pressure during the motion. In the events of pore filling by double displacement of oil ganglia, and water snap-off on gas/oil interfaces, we find that the local gas/oil capillary pressure drops, while local oil/water capillary pressure increases, by a similar magnitude as observed for the capillary pressure drops during single-pore filling events in dynamic pore-scale experiments of two-phase drainage. We also find that oil ganglia decrease their surface area, and achieve a more compact shape, when the gas/oil interfacial area decreases at the expense of increased oil/water interfacial area during double displacement. By comparison with similar two-phase gas/water simulations, we find that the level of the gas/water capillary pressure curves, including hysteresis loops, are smaller when a mobile, disconnected oil is present, which suggests double displacement of oil is more favorable than direct gas/water displacement. We also present cases in which phase trapping occurred in the three-phase simulations, but not in the corresponding two-phase simulations, supporting the view that more trapping is possible in three-phase flow.

  1. Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.

    PubMed

    Longmuir, Kenneth J

    2014-03-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction.

  2. Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-01-01

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage. PMID:26101955

  3. Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-06-18

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage.

  4. Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.

    PubMed

    Longmuir, Kenneth J

    2014-03-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction. PMID:24585467

  5. Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.

    PubMed

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing

    2016-04-01

    We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid.

  6. Lysophosphatidic acid-induced calcium mobilization and proliferation in kidney proximal tubular cells.

    PubMed

    Dixon, R J; Young, K; Brunskill, N J

    1999-02-01

    Patients with proteinuria tend to develop progressive renal disease with proximal tubular cell atrophy and interstitial scarring. It has been suggested that the nephrotoxicity of albuminuric states may be due to the protein molecule itself or by lipids, such as lysophosphatidic acid (LPA), that albumin carries. LPA was found to cause a transient increase in intracytoplasmic free Ca2+ ([Ca2+]i) in opossum kidney proximal tubule cells (OK) that was maximal at 100 microM LPA and was dose dependent with an EC50 of 2.6 x 10(-6) M. This Ca2+ mobilization was from both internal stores and across the plasma membrane and was pertussis toxin (PTX) insensitive. Treatment of OK cells with 100 microM LPA for 5 min was found to cause a twofold increase in [3H]thymidine incorporation and a three- to fivefold increase over control after 24 h. This was highly PTX sensitive and insensitive to pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A. These findings may be of significance in the progression of renal disease and indicate the potential importance of lipids in modulating proximal tubule cell function and growth. PMID:9950949

  7. Mobilization of lead by esters of meso-2,3-dimercaptosuccinic acid

    SciTech Connect

    Singh, P.K.; Jones, M.M.; Xu, Z.; Gale, G.R.; Smith, A.B.; Atkins, L.M. )

    1989-01-01

    An examination was made of the relative efficacies of 2,3-dimercapto-1-propanol (BAL) and three diesters (CH(SH)COOR)2; DMDMS, R = CH3; DEDMS, R = C2H5; and Di-PDMS, R = CH(CH3)2 of meso-2,3-dimercaptosuccinic acid (DMSA) in mobilizing freshly injected lead from mice. These diesters, like BAL, reduced the lead levels resulting from freshly injected lead in both the soft tissues (liver, kidneys, spleen, and brain) and the bone (tibia). After treatment with the dimethyl (DMDMS), the diethyl (DEDMS), and the diisopropyl (Di-PDMS) esters the lead content of each of the organs was significantly less than that present in the untreated controls. Each of the diesters reduced lead levels in the kidneys, liver, and spleen significantly below those levels found after BAL treatment. The action of the diesters in reducing brain lead levels was comparable to that of BAL. Di-PDMS was the most effective of these compounds and was significantly superior to BAL. Each of the esters was also significantly more effective than BAL in reducing the whole body level of lead.

  8. Phase transfer of oleic acid stabilized rod-shaped anatase TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wilkerson, Rachel J.; Elder, Theresa; Sowinksi, Olivia; Fostvedt, Jade I.; Hoefelmeyer, James D.

    2016-06-01

    Three methods were evaluated for phase transfer of oleic acid stabilized TiO2 nanorods from non-polar phase to an aqueous phase. Three alkyltrimethylammonium bromide (C6, C8, C12) surfactants were tested and compared with an amphiphilic polymer as interdigitation agents. Ligand substitutions with catechol derivatives with polar functional groups para to the -enediol were evaluated as well. The molecular surfactants were ineffective compared to the amphiphilic polymer in the interdigitation phase transfer approach. Ligand substitution with catechols proceeded efficiently with phase transfer. The ligand substitution reactions were accompanied by gas evolution, which was found to result from decarboxylation of oleic acid in alkaline aqueous conditions.

  9. Pulsed field gradient MAS-NMR studies of the mobility of carboplatin in cubic liquid-crystalline phases

    NASA Astrophysics Data System (ADS)

    Pampel, André; Michel, Dieter; Reszka, Regina

    2002-05-01

    A drug delivery system with cubic liquid-crystalline phase structure (cubic phase) containing the anti-cancer drug Carboplatin is studied. It is demonstrated that the combination of pulsed field gradient (PFG) NMR and MAS-NMR is a useful tool to study the biophysical properties of a cubic phase. The linewidth in 1H-NMR spectra is narrowed by MAS, which can be exploited to perform PFG diffusion NMR experiments under high-resolution conditions. Measurement of self-diffusion coefficients of all components of the cubic phase becomes possible. The influence of polyethylene glycol chains on the drug mobility is discussed. It is shown that polyethylene glycol chains interact with Carboplatin.

  10. Enantiomeric separation of bicyclo[2.2.2]octane-based 2-amino-3-carboxylic acids on macrocyclic glycopeptide chiral stationary phases.

    PubMed

    Pataj, Zoltán; Ilisz, István; Grecsó, Nóra; Palkó, Márta; Fülöp, Ferenc; Armstrong, Daniel W; Péter, Antal

    2014-04-01

    Direct high-performance liquid chromatographic (HPLC) separation of four bicyclo[2.2.2]octane based 2-amino-3-carboxylic acid enantiomers were developed on chiral stationary phases (CSPs) containing different macrocyclic glycopeptide antibiotic selectors. The analyses were performed under reversed-phase, polar organic and polar ionic mode on macrocyclic-glycopeptide-based Chirobiotic T, T2, TAG, and R columns. The effects of the mobile phase composition including the acid and base modifier, the structure of the analytes, and the temperature on the separations were investigated. Experiments were achieved at constant mobile phase compositions on different stationary phases in the temperature range 5-40°C. Thermodynamic parameters were calculated from plots of ln k or ln α versus 1/T. It was recognized that the enantioseparations in reversed-phase and polar organic mode were enthalpically driven, but under polar-ionic conditions entropically driven enantioseparation was observed as well. Baseline separation and determination of elution sequence were achieved in all cases.

  11. Microbial mobilization of cesium from illite: Role of organic acids and siderophores

    NASA Astrophysics Data System (ADS)

    Hazotte, Alice; Peron, Olivier; Abdelouas, Abdesselam; Lebeau, Thierry

    2015-04-01

    Understanding the behavior of cesium (Cs) in soils and geological formations is interesting in the context of nuclear accidents and nuclear waste disposals. Indeed, this radionuclide with a 30-years half-life can contaminate crops and more generally the food chain. Cs with properties similar to potassium is known to be strongly accumulated in the clays of upper soil horizons. While excavation of contaminated soil cannot be feasible for the whole contaminated surfaces (huge volumes to be cleaned-up), in situ methods could provide a sustainable and low cost solution. Phytoextraction is one of a few solutions for in situ remediation of soils contaminated by trace elements and it preserves the quality of agricultural soils. However, many improvements are still needed to enhance phytoextraction effectiveness. The combination of bioaugmentation (soil inoculation with exogenous microorganisms) with phytoextraction is likely to increase the bioaccessibility of radionuclides and their accumulation in plants. The role of bacteria on soil-pollutants can be direct (direct metal complexation) and/or indirect (weathering of clays adsorbing Cs). This study aims to provide more specifically a mechanistic understanding of the bacterial mobilization of Cs from soil with the prospect of soil bioremediation. Bacterial metabolites of Pseudomonas fluorescens (ATCC 17400) were supplied to illite spiked with 0.1 and 1 mM of Cs. Purified siderophores including pyoverdine from P. fluorescens, or the whole metabolites from the bacterial culture supernatant were compared to low molecular weight organic acids (LMWOA) (citric and oxalic acids) at 0.04 mM, or synthetic chelants, i.e., acetohydroxamic acid (AHA) and desferrioxamine mesylate (DFOM) ranging from 50 µM up to 250 µM. The release of Cs and the structural alteration of illite (release of Al, Fe and Si) were monitored. When compared to the control, no release of Cs from illite was observed with LMWOA. On the contrary, a slight release

  12. Silica-Based, Hyper-Crosslinked Acid Stable Stationary Phases for High Performance Liquid Chromatography

    PubMed Central

    Zhang, Yu; Luo, Hao; Carr, Peter W.

    2011-01-01

    A new family of Hyper-Crosslinked (HC) phases has been recently introduced for use under very aggressive acid conditions including those encountered in ultra-fast, high temperature Two-Dimensional Liquid Chromatography (2DLC). This type of stationary phase showed significantly enhanced acid and thermal stability compared to the most acid stable, commercial RPLC phases. In addition, the use of “orthogonal” chemistry to make surface-confined polymer networks ensures good reproducibility and high efficiency. One of the most interesting features of the HC phases is the ability to derivatize the surface aromatic groups with various functional groups. This led to the development of a family of hyper-crosslinked phases possessing a wide variety of chromatographic selectivities by attaching hydrophobic (e.g. –C8), ionizable (e.g. -COOH, -SO3H), aromatic (e.g. –toluene) or polar (e.g. -OH) species to the aromatic polymer network. HC reversed phases with various degrees of hydrophobicity and mixed-mode HC phases with added strong and weak cation exchange sites have been synthesized, characterized and applied. These silica-based acid-stable HC phases, with their attractive chromatographic properties, should be very useful in the separations of bases or biological analytes in acidic media, especially at elevated temperatures. This work reviews the prior research on HC phases and introduces a novel HC phase made by alternative chemistry. PMID:21906745

  13. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  14. Enantioselective determination of protein amino acids in fertilizers by liquid chromatography-tandem mass spectrometry on chiral teicoplanin stationary phase.

    PubMed

    Taujenis, Lukas; Olšauskaitė, Vilma; Padarauskas, Audrius

    2014-11-19

    High-performance liquid chromatography on a glycopeptide antibiotic teicoplanin-based chiral stationary phase coupled with tandem mass spectrometry was developed for fast and reliable enantioseparation and determination of protein amino acids in hydrolyzed fertilizer samples. The effect of the mobile phase parameters (type and content of organic modifier and pH) and the column temperature on the enantioselectivity was investigated. Under optimized conditions, the majority (15 of 19) of d/l-amino acid pairs were resolved with a resolution factor (Rs) higher than 1.5 with a run time of 15 min. A triple quadrupole tandem mass spectrometer operating in multiple reaction monitoring mode with an electrospray ionization (ESI) ion source was employed for detection. The method was validated in terms of linearity, limits of detection, limits of quantitation, precision, and accuracy. Linear responses were obtained with determination coefficients higher than 0.998 for all analytes, and limits of detection were from 0.04 to 0.24 μg/mL. Sample spike/recovery experiments gave recovery values ranging from 73% for d-threonine to 116% for L-tryptophan. Relative standard deviations for inter- and intraday precision experiments were lower than 21.7%. The developed method was successfully applied for determination of the free amino acid enantiomers in five commercially available hydrolyzed protein fertilizer samples.

  15. Investigation of Growth Phase-Dependent Acid Tolerance in Bifidobacteria longum BBMN68.

    PubMed

    Jin, Junhua; Song, Jingyi; Ren, Fazheng; Zhang, Hongxing; Xie, Yuanhong; Ma, Jingsheng; Li, Xue

    2016-11-01

    The underlying mechanisms imparting the growth phase-dependent acid tolerance have not been extensively investigated. In this study, we compared the acid resistance of the Bifidobacterium longum strain BBMN68 from different growth phases at lethal pH values (pH 2.5, 3.0, and 3.5), and analyzed the activity of H(+)-ATPase, the composition of fatty acids, and the mRNA abundance of ffh, uvrA, recA, lexA, groES, and dnaK in cells from different growth phases. The results indicated that the survival rates of cells from early stationary (ES) and late stationary (LS) growth phases at lethal pH values were significantly higher than those of exponential growth phase cells. Our findings indicated that by inducing a continuously auto-acidizing environment during cell growth, the acid resistance of ES and LS cells was strengthened. The higher activity of H(+)-ATPase, the decrease in unsaturated fatty acids, and the increased expression of genes involved in DNA repair and protein protection in the cells in stationary growth phase were all implicated in the significantly increased acid resistance of ES and LS cells compared with exponential growth phase cells of the B. longum strain BBMN68.

  16. Effect of temperature on the chromatographic retention of ionizable compounds. I. Methanol-water mobile phases.

    PubMed

    Castells, Cecilia B; Gagliardi, Leonardo G; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2004-07-01

    The retention mechanism of acids and bases in reversed-phase liquid chromatography (RPLC) has been experimentally studied by examining the temperature dependence of retention, with emphasis on the role of the buffer ionization equilibria in the retention and selectivity. Retention factors of several ionizable compounds in a typical octadecylsilica column and using buffers dissolved in 50% (w/w) methanol as eluents at three temperatures in the range of 25-50 degrees C were measured. Two pairs of buffer solutions were prepared by a close adjusting of their pH at 25 degrees C; differences in their ionization enthalpies determined a different degree of ionization when temperature was raised and, as a consequence, a different shift in the eluent pH. Predictive equations of retention that take into account the temperature effect on both the transfer and the ionization processes are proposed. This study demonstrates the significant role that the selected buffer would have in retention and selectivity in RPLC at temperatures higher than 25 degrees C, particularly for co-eluted solutes. PMID:15296385

  17. Effect of temperature on the chromatographic retention of ionizable compounds. I. Methanol-water mobile phases.

    PubMed

    Castells, Cecilia B; Gagliardi, Leonardo G; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2004-07-01

    The retention mechanism of acids and bases in reversed-phase liquid chromatography (RPLC) has been experimentally studied by examining the temperature dependence of retention, with emphasis on the role of the buffer ionization equilibria in the retention and selectivity. Retention factors of several ionizable compounds in a typical octadecylsilica column and using buffers dissolved in 50% (w/w) methanol as eluents at three temperatures in the range of 25-50 degrees C were measured. Two pairs of buffer solutions were prepared by a close adjusting of their pH at 25 degrees C; differences in their ionization enthalpies determined a different degree of ionization when temperature was raised and, as a consequence, a different shift in the eluent pH. Predictive equations of retention that take into account the temperature effect on both the transfer and the ionization processes are proposed. This study demonstrates the significant role that the selected buffer would have in retention and selectivity in RPLC at temperatures higher than 25 degrees C, particularly for co-eluted solutes.

  18. Chitosan-induced phospholipase A2 activation and arachidonic acid mobilization in P388D1 macrophages.

    PubMed

    Bianco, I D; Balsinde, J; Beltramo, D M; Castagna, L F; Landa, C A; Dennis, E A

    2000-01-28

    We have found that chitosan, a polysaccharide present in fungal cell walls, is able to activate macrophages for enhanced mobilization of arachidonic acid in a dose- and time-dependent manner. Studies aimed at identifying the intracellular effector(s) implicated in chitosan-induced arachidonate release revealed the involvement of the cytosolic Group IV phospholipase A2 (PLA2), as judged by the inhibitory effect of methyl arachidonoyl fluorophosphonate but not of bromoenol lactone. Interestingly, priming of the macrophages with lipopolysaccharide renders the cells more sensitive to a subsequent stimulation with chitosan, and this enhancement is totally blocked by the secretory PLA2 inhibitor 3-(3-acetamide)-1-benzyl-2-ethylindolyl-5-oxy-propanesulfonic acid (LY311727). Collectively, the results of this work establish chitosan as a novel macrophage-activating factor that elicits AA mobilization in P388D1 macrophages by a mechanism involving the participation of two distinct phospholipases A2. PMID:10682846

  19. Electron Transport in a High Mobility Free-Standing GaN Substrate Grown by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Farina, L.; Kurdak, C.; Yun, F.; Morkoc, H.; Rode, D. L.; Tsen, K. T.; Park, S. S.; Lee, K. Y.

    2001-03-01

    We studied electron transport properties in a high quality free-standing GaN grown by hydride vapor phase epitaxy. The GaN, with a thickness of more than 200 μm, was lifted off the sapphire substrate and mechanically polished. At room temperature the carrier density is 1.3x10^16cm-3 and the Hall mobility is 1200 cm^2/V-s, which is the highest reported electron mobility for GaN with a wurtzite structure. Transport properties are studied using a van der Pauw geometry in a temperature range of 20 to 300 K and in magnetic fields up to 8 Tesla. Electron mobility is found to increase at lower temperatures with a peak mobility of 7400 cm^2/V-s at 48 K. The carrier density decreases exponentially at temperatures below 80 K with an activation energy of 28 meV. The electron transport measurements were used to examine the contributions of different scattering mechanisms. Numerical solution of the Boltzmann transport equation was carried out, including non-parabolic conduction bands and wavefunction admixture, along with lattice scattering and ionized-impurity scattering. LO and TO phonon energies were determined by Raman spectroscopy.

  20. Multifunctional acid formation from the gas-phase ozonolysis of beta-pinene.

    PubMed

    Ma, Yan; Marston, George

    2008-10-28

    The gas-phase ozonolysis of beta-pinene was studied in static chamber experiments, using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. A range of multifunctional organic acids-including pinic acid, norpinic acid, pinalic-3-acid, pinalic-4-acid, norpinalic acid and OH-pinalic acid-were identified in the condensed phase after derivatisation. Formation yields for these products under systematically varying reaction conditions (by adding different OH radical scavengers and Criegee intermediate scavengers) were investigated and compared with those observed from alpha-pinene ozonolysis, allowing detailed information on product formation mechanisms to be elucidated. In addition, branching ratios for the initial steps of the reaction were inferred from quantitative measurements of primary carbonyl formation. Atmospheric implications of this work are discussed.

  1. On-site quantitation of arsenic in drinking water by disk solid-phase extraction/mobile X-ray fluorescence spectrometry.

    PubMed

    Hagiwara, Kenta; Koike, Yuya; Aizawa, Mamoru; Nakamura, Toshihiro

    2015-11-01

    A rapid and simple method was developed for As determination in drinking water by solid-phase extraction (SPE)/mobile X-ray fluorescence (XRF) spectrometry. A 50 mL aqueous sample was adjusted to pH 3 with dilute hydrochloric acid, and then passed through a Ti and Zr-loaded carbon disk (TiZr-CD) to pre-concentrate the As. The SPE disk was adhered to an acrylic plate with cellophane tape, and then examined by mobile XRF spectrometry. The TiZr-CD adsorbed inorganic As (as As(III) and As(V)) and organic As (as methyl, phenyl and aromatic arsenic compounds) from water. The As calibration curve had good linearity over the range of 0.5-5 μg, and the limit of detection was 0.10 μg (2.0 μgL(-1) in As concentration). The concentrations of As in well water samples were determined using the proposed method were similar to results obtained from atomic absorption spectrometry. The proposed method did not require a power supply or a toxic solution and/or gas in any analytical step, therefore it is suitable for the on-site determination of As in drinking water. PMID:26452891

  2. On-site quantitation of arsenic in drinking water by disk solid-phase extraction/mobile X-ray fluorescence spectrometry.

    PubMed

    Hagiwara, Kenta; Koike, Yuya; Aizawa, Mamoru; Nakamura, Toshihiro

    2015-11-01

    A rapid and simple method was developed for As determination in drinking water by solid-phase extraction (SPE)/mobile X-ray fluorescence (XRF) spectrometry. A 50 mL aqueous sample was adjusted to pH 3 with dilute hydrochloric acid, and then passed through a Ti and Zr-loaded carbon disk (TiZr-CD) to pre-concentrate the As. The SPE disk was adhered to an acrylic plate with cellophane tape, and then examined by mobile XRF spectrometry. The TiZr-CD adsorbed inorganic As (as As(III) and As(V)) and organic As (as methyl, phenyl and aromatic arsenic compounds) from water. The As calibration curve had good linearity over the range of 0.5-5 μg, and the limit of detection was 0.10 μg (2.0 μgL(-1) in As concentration). The concentrations of As in well water samples were determined using the proposed method were similar to results obtained from atomic absorption spectrometry. The proposed method did not require a power supply or a toxic solution and/or gas in any analytical step, therefore it is suitable for the on-site determination of As in drinking water.

  3. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.

    PubMed

    Zhang, Bo; Cai, Wei-min; He, Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.

  4. Effect of growth phase on the fatty acid compositions of four species of marine diatoms

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Mai, Kangsen

    2005-04-01

    The fatty acid compositions of four species of marine diatoms ( Chaetoceros gracilis MACC/B13, Cylindrotheca fusiformis MACC/B211, Phaeodactylum tricornutum MACC/B221 and Nitzschia closterium MACC/B222), cultivated at 22°C±1°C with the salinity of 28 in f/2 medium and harvested in the exponential growth phase, the early stationary phase and the late stationary phase, were determined. The results showed that growth phase has significant effect on most fatty acid contents in the four species of marine diatoms. The proportions of 16:0 and 16:1n-7 fatty acids increased while those of 16:3n-4 and eicosapentaenoic acid (EPA) decreased with increasing culture age in all species studied. The subtotal of saturated fatty acids (SFA) increased with the increasing culture age in all species with the exception of B13. The subtotal of monounsaturated fatty acids (MUFA) increased while that of polyunsaturated fatty acids (PUFA) decreased with culture age in the four species of marine diatoms. MUFA reached their lowest value in the exponential growth phase, whereas PUFA reached their highest value in the same phase.

  5. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

    PubMed

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael

    2013-06-13

    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database.

  6. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

    PubMed

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael

    2013-06-13

    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database. PMID:23697338

  7. Elicidation by a H-2-receptor antagonist of the significance of mucosal histamine mobilization in exciting acid secretion.

    PubMed Central

    Lundell, L

    1975-01-01

    1. The consequence of H-2-receptor blockade for the secretory responses of the gastric mucosa to hormonal or cholinergic stimulation was studied in conscious rats with Heindenhain pouches or Pavlov pouches with the antrum retained or resected. 2. Metiamide almost completely abolished acid secretion induced by pentagastrin without altering significantly the amount of histamine excreted in the urine. Histamine mobilization on pentagastrin infusion determined in vitro, seemed to be larger during H-2-receptor blockade than with pentagastrin alone. 3. CCK-PZ mobilized mucosal histamine to a considerable extent; the secretory response to this hormone was completely abolished by H-2-receptor blockade. 4. Acid secretion in response to 2-deoxy-D-glucose was inhibited by H-2-receptor blockade in the presence or absence of the antrum; however the inhibition was less complete than with hormone-induced secretion. 5. The acid secretory response to 100 mg/kg of 2-deoxy-D-glucose appeared to be less susceptible to H-2-receptor blockade than that of 50-mg/kg of 2-deoxy-D-glucose. 6. Feeding induced a secretory response in the Pavlov pouch which initially was more effectively inhibited by H-2-receptor blockade than the response to 2-deoxy-D-glucose. In the absence of antral gastrin secretion by either stimulus was equally inhibited. 7. Methacholine-induced acid secretion was inhibited by infusion of the H-2-receptor antagonist, an inhibition that was absent when pentagastrin was concomitantly infused. 8. Although acid secretion induced by cholinergic stimuli was readily inhibited by the H-2-receptor antagonist, slight or nor inhibition was noted on pepsin secretion. 9. The role of histamine as a physiological stimulus for the parietal cell is discussed in view of the fact that the secretory effect of natural stimuli, known or demonstrated to mobilize mucosal histamine, is restrained by H-2-receptor blockade. PMID:49418

  8. Phase equilibria and distribution constants of metal ions in diantipyryl alkane-organic acid-hydrochloric acid-water systems

    NASA Astrophysics Data System (ADS)

    Degtev, M. I.; Popova, O. N.; Yuminova, A. A.

    2014-08-01

    The ability of antipyrine and its derivatives (diantipyryl alkanes) to form separating systems in the presence of salicylic (sulfosalicylic) acid and hydrochloric acid and water is studied. The optimum volume of the organic phase, the composition of complexes, and the mechanism for the distribution of metal ions are determined, depending on the concentrations of the main components and the salting-out agent. The complex distribution and extraction constants are calculated.

  9. Reversed-phase high-performance liquid chromatography of the stereoisomers of some sweetener peptides with a helical nickel(II) chelate in the mobile phase.

    PubMed

    Bazylak, G

    1994-05-13

    The use of a chiral mobile phase additive in the form of the helically distorted, square-planar, chiral nickel(II) chelate dl-[4,4'-(1-methyl-2-propylethane-1,2-diyldiimino)bis(pent-3 -en-2- onato)]nickel(II) was investigated for the resolution of optical isomers of dipeptide-type sweeteners, viz., aspartame, alitame and antiaspartame, and some of their decomposition products, e.g., diketopiperazines. The chiral discrimination mechanism for the solutes was elucidated. The proposed chiral RP-HPLC system was applied to the stereoselective determination of aspartame impurities in samples of its commercial dietetic and pharmaceutical formulations.

  10. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    PubMed

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  11. Acid-catalytic decomposition of peracetic acid in the liquid phase

    SciTech Connect

    Kharchuk, V.G.; Kolenko, I.P.; Petrov, L.A.

    1985-12-01

    This paper elucidates the kinetic relationships of peracetic acid (PAA) decomposition in the presence of mineral acids and their heterogeneous analogs, polystyrene-di-vinylbenzene cation-exchangers, differing in physicochemical and morphological parameters. It is shown that the thermal decomposition of PAA in acetic acid is an acid-catalyzed reaction. The controlling step of the reaction is protonation of the substrate with formation of an active intermediate form. Sulfonated cation-exchangers are twice as effective as sulfuric acid in this process. Polystyrene-divinylbenzene sulfonated cation-exchangers can be used with success as acid catalysts in oxidation processes involving PAA, because of their high effectiveness, stability, and availability.

  12. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  13. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems. PMID:25431860

  14. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.

  15. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  16. Capillary electrochromatography with polyacrylamide monolithic stationary phases having bonded dodecyl ligands and sulfonic acid groups: evaluation of column performance with alkyl phenyl ketones and neutral moderately polar pesticides.

    PubMed

    Zhang, M; El Rassi, Z

    2001-08-01

    In this report, we describe the preparation of porous polyacrylamide-based monolithic columns via vinyl polymerization. These monoliths possess in their structures bonded dodecyl ligands and sulfonic acid groups. While the sulfonic acid groups are meant to support the electroosmotic flow (EOF) necessary for moving the mobile phase through the monolithic capillary, the dodecyl ligands are introduced to provide the nonpolar sites for chromatographic retention. However, incorporating the sulfonic acid groups in the monoliths does not only support the EOF but also exhibit hydrophilic interaction with moderately polar compounds such as urea herbicides and carbamates insecticides. Consequently, mixed-mode (reversed-phase/normal phase) retention behavior is observed with neutral and moderately polar pesticides. The amount of sulfonic acid group in the monolith can be conveniently adjusted by changing the amount of vinylsulfonic acid added to the polymerization reaction. Optimum EOF velocity and adequate chromatographic retention are obtained when 15% vinylsulfonic acid is added to the reaction mixture. Under these conditions, rapid separation and high plate counts reaching greater than 400000 plates/m are readily obtained.

  17. Solid/Liquid phase diagram of the ammonium sulfate/maleic acid/water system.

    PubMed

    Beyer, Keith D; Schroeder, Jason R; Pearson, Christian S

    2011-12-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution. PMID:22017680

  18. Advanced heat pump for recovery of volatile organic compounds, Phase III - demonstration of BCSRHP mobile regenerator. Final report

    SciTech Connect

    Not Available

    1994-11-01

    Under Phase I of the subject contract, feasibility studies and basic engineering studies were performed for a Brayton Cycle Solvent Recovery Heat Pump (BCSRBP) system to prevent pollution from small source emitters. It was determined that the cost of a complete system, including adsorbers and regeneration process, would be far too much for the small emission source in most cases. This {open_quotes}integrated{close_quotes} approach was therefore not feasible. However, it was concluded that the expensive portion of the Brayton cycle process, the regenerator, could be shared by mounting it on a trailer that could be transported to different sites to regenerate an adsorber. Under Phase II of the project a mobile regenerator (BCSRI-IP) was designed and built to serve a large number of sites. Adsorbers were designed to control emissions for a week or more between regenerations. The purpose of phase III was to demonstrate the cost effectiveness and efficiency of the shared (decoupled) BRAYSORB{reg_sign} solvent recovery system in energy use and emission control compared to other control technologies through a performance testing program at representative industrial and commercial host sites in Southern California. NUCON was the prime contractor for the demonstration portion of this project. Support and funding were received from Southern California Edison Company, South Coast Air Quality Management District, and the U.S. Department of Energy in addition to the contribution by NUCON. Contractual arrangements were completed with each of the host sites and permits for both the stationary and mobile equipment were acquired. The adsorbers were installed at each host site and the appropriate interface connections were made. The mobile regenerator was transported to Southern California for the demonstration.

  19. Involvement of Nitric Oxide on Calcium Mobilization and Arachidonic Acid Pathway Activation during Platelet Aggregation with different aggregating agonists

    PubMed Central

    Banerjee, Debipriya; Mazumder, Sahana; Kumar Sinha, Asru

    2016-01-01

    Platelet aggregation by different aggregating agonists is essential in the normal blood coagulation process, the excess of which caused acute coronary syndrome (ACS). In all cases, the activation of arachidonic acid by cycloxygenase was needed for the synthesis of thromboxane A2 (TXA2) but the mechanism of arachidonic acid release in platelets remains obscure. Studies were conducted to determine the role of nitric oxide (NO), if any, on the release of arachidonic acid in platelets. The cytosolic Ca2+ was visualized and quantitated by fluorescent spectroscopy by using QUIN-2. NO was measured by methemoglobin method. Arachidonic acid was determined by HPLC. TXA2 was measured as ThromboxaneB2 (TXB2) by ELISA. Treatment of platelets in platelet-rich plasma (PRP) with different aggregating agents resulted in the inhibition of nitric oxide synthase (NOS) which inhibited the production of NO synthesis and increased TXA2 synthesis. Furthermore, the treatment of washed PRP with different platelet aggregating agents resulted in the increase of [Ca2+] in nM ranges. In contrast, the pre-treatment of washed PRP with aspirin increased platelet NO level and inhibited the Ca2+ mobilization and TXA2 synthesis. These results indicated that the aggregation of platelets by different aggregating agonists was caused by the cytosolic Ca2+ mobilization due to the inhibition of NOS. PMID:27127451

  20. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  1. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    PubMed

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ. PMID:27220844

  2. Gas Phase Structure of Amino Acids: La-Mb Studies

    NASA Astrophysics Data System (ADS)

    Mata, I. Pena S.; Sanz, M. E.; Vaquero, V.; Cabezas, C.; Perez, C.; Blanco, S.; López, J. C.; Alonso, J. L.

    2009-06-01

    Recent improvements in our laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectrometer such as using Laval-type nozzles and picoseconds Nd:YAG lasers (30 to 150 ps) have allowed a major step forward in the capabilities of this experimental technique as demonstrated by the last results in serine cysteine and threonine^a for which seven, six and seven conformers have been respectively identified. Taking advantage of these improvements we have investigated the natural amino acids metionine, aspartic and glutamic acids and the γ-aminobutyric acid (GABA) with the aim of identify and characterize their lower energy conformers. Searches in the rotational spectra have lead to the identification of seven conformers of metionine, six and five of aspartic and glutamic acids, respectively, and seven for the γ-aminobutyric. These conformers have been unambiguously identified by their spectroscopic constants. In particular the ^{14}N nuclear quadrupole coupling constants, that depend heavily on the orientation of the amino group with respect to the principal inertial axes of the molecule, prove to be a unique tool to distinguish unambigously between conformations with similar rotational constants. For the γ-aminobutyric acid two of the seven observed structures are stablized by an intramolecular interaction n-π*. Two new conformers of proline have been identified together with the two previously observed. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys.Chem.Chem.Phys., 2009, 11, 617. D. B. Atkinson, M. A. Smith, Rev. Sci. Instrum. 1995, 66, 4434 S. Blanco, M. E. Sanz, J. C. López, J. L. Alonso, Proc. Natl. Acad. Sci. USA2007, 104, 20183. M. E. Sanz, S. Blanco, J. C. López, J. L. Alonso, Angew. Chem. Int. Ed.,2008, 120, 6312. A. Lesarri, S. Mata, E. J. Cocinero, S. Blanco, J.C. López, J. L. Alonso, Angew. Chem. Int. Ed. , 2002, 41, 4673

  3. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  4. Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.

    PubMed

    Pilling, Sergio; Baptista, Leonardo; Boechat-Roberty, Heloisa M; Andrade, Diana P P

    2011-11-01

    Despite the extensive search for glycine (NH₂CH₂COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH₂OH. Another possible reaction involves NH₂CH₂ and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH

  5. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  6. Dependence of buffer acidity and surfactant chain-length on electro-osmotic mobility in thermoplastic microchannels.

    PubMed

    Wang, Shau-Chun; Lee, Chia-Yu; Chen, Hsiao-Ping

    2005-04-15

    In this paper, we report the dependence of buffer pH and coating surfactant chain-length on electro-osmotic (EO) mobility in co-polyester microchannels. Thermoplastics co-polyester hydrolyzes to anionic functionality to create electrical double layer on the micro-channel walls. These negatively charged sites are partially or completely screened when long-chain surfactants are added into the buffer. This ancillary technique to modify surface charge polarity to avoid analyte adsorption is known as dynamic coating. We develop a theory to predict the EO mobility tendency on buffer acidity considering the combination of pH-dependent surfactant aggregation and surface dissociation. Our findings of pH-dependent EO mobility in coated channels, using three types of quaternary ammonium surfactants, lauryltrimethyammonium bromide (LTAB), trimethyl (tetradecyl) ammonium bromide (TTAB), and cetyltrimethyammonium bromide (CTAB), agree with our theoretical prediction. We also explain the chain-length dependence of mobility with a collaborative adsorption mechanism of surfactant aggregates.

  7. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part I: Optimization of mobile phase composition.

    PubMed

    Lemasson, Elise; Bertin, Sophie; Hennig, Philippe; Boiteux, Hélène; Lesellier, Eric; West, Caroline

    2015-08-21

    Supercritical fluid chromatography (SFC) is a very useful tool in the purpose of impurity profiling of drug candidates, as an adequate selection of stationary phases can provide orthogonal separations so as to maximize the chances to see all impurities. The purpose of the present work is to develop a method for chemical purity assessment. The first part, presented here, focuses on mobile phase selection to ensure adequate elution and detection of drug-like molecules, while the second part focuses on stationary phase selection for optimal separation and orthogonality. The use of additives in the carbon dioxide - solvent mobile phase in SFC is now commonplace, and enables in particular to increase the number of eluted compounds and to improve peak shapes. The objective of this first part was to test different additives (acids, bases, salts and water) for their chromatographic performance assessed in gradient elution with a diode-array detector, but also for the mass responses obtained with a single-quadrupole mass detector, equipped with an electrospray ionization source (Waters ACQUITY QDa). In this project, we used a selection of one hundred and sixty compounds issued from Servier Research Laboratories to screen a set of columns and additives in SFC with a Waters ACQUITY UPC(2) system. The selected columns were all high-performance columns (1.7-1.8μm with totally porous particles or 2.6-2.7μm with superficially porous particles) with a variety of stationary phase chemistries. Initially, eight additives dissolved in the methanol co-solvent were tested on a UPC(2) ACQUITY UPC(2) HSS C18 SB column. A Derringer desirability function was used to classify the additives according to selected criteria: elution capability, peak shapes, UV baseline drift, and UV and mass responses (signal-to-noise ratios). Following these tests, the two best additives (ammonium acetate and ammonium hydroxide) were tested on a larger number of columns (10) where the two additives appeared

  8. Simultaneous analysis of non-steroidal anti-inflammatory drugs using electrochemically controlled solid-phase microextraction based on nanostructure molecularly imprinted polypyrrole film coupled to ion mobility spectrometry.

    PubMed

    Ameli, Akram; Kalhor, Hamideh; Alizadeh, Naader

    2013-06-01

    A simple, rapid, and highly sensitive method for simultaneous analysis of anti-inflammatory drugs (naproxen, ibuprofen, and mefenamic acid) in diluted human serum was developed using the electrochemically controlled solid-phase microextraction coupled to ion mobility spectrometry. A conducting molecularly imprinted polymer film based on polypyrrole was synthesized for the selective uptake and release of drugs. The film was prepared by incorporation of a template molecule (naproxen) during the electropolymerization of pyrrole onto a platinum electrode using cyclic voltammetry method. The measured ion mobility spectrometry intensity was related to the concentration of analytes taken up into the films. The calibration graphs (naproxen, ibuprofen, and mefenamic acid) were linear in the range of 0.1-30 ng/mL and detection limits were 0.07-0.37 ng/mL and relative standard deviation was lower than 6%. On the basis of the results obtained in this work, the conducting molecularly imprinted polymer films as absorbent have been applied in the electrochemically controlled solid-phase microextraction and ion mobility spectrometry system for the selective clean-up and quantification of trace amounts of anti-inflammatory drugs in human serum samples. Scanning electron microscopy has confirmed the nano-structure morphology of the polypyrrole film.

  9. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    PubMed

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. PMID:26575708

  10. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY REVERSE PHASE CHROMATOGRAPHY

    EPA Science Inventory

    The method for determination of T-MAZ ethoxylated sorbitan fatty acid esters is described. This work demonstrates that with a less retentive C8 alkyl bonded phase packing, reverse phase chromatography can be used to analyze nonionic polymer mixtures with a molecular weight range ...

  11. Gas Phase Electronic Spectroscopy of 5-FLUOROSALICYLIC Acid.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Fleisher, Adam J.; Pratt, David W.

    2010-06-01

    Methyl salicylate and its derivatives have generated large amounts of interest due to the possibility of intramolecular proton transfer in their electronically excited states (ESPT). Here, the excited state dynamics of 5-fluorosalicylic acid and its dimer will be discussed within the context of their vibrationally and rotationally resolved electronic spectra. Stark effect studies of the latter permit identification of specific conformers of 5FSA. However, some species exhibit broadened spectra, whereas others do not, suggesting a species-specific ESPT reaction. thanks

  12. Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles

    PubMed Central

    2011-01-01

    Background Acute exposure to elevated levels of environmental particulate matter (PM) is associated with increasing morbidity and mortality rates. These adverse health effects, e.g. culminating in respiratory and cardiovascular diseases, have been demonstrated by a multitude of epidemiological studies. However, the underlying mechanisms relevant for toxicity are not completely understood. Especially the role of particle-induced reactive oxygen species (ROS), oxidative stress and inflammatory responses is of particular interest. In this in vitro study we examined the influence of particle-generated ROS on signalling pathways leading to activation of the arachidonic acid (AA) cascade. Incinerator fly ash particles (MAF02) were used as a model for real-life combustion-derived particulate matter. As macrophages, besides epithelial cells, are the major targets of particle actions in the lung murine RAW264.7 macrophages and primary human macrophages were investigated. Results The interaction of fly ash particles with macrophages induced both the generation of ROS and as part of the cellular inflammatory responses a dose- and time-dependent increase of free AA, prostaglandin E2/thromboxane B2 (PGE2/TXB2), and 8-isoprostane, a non-enzymatically formed oxidation product of AA. Additionally, increased phosphorylation of the mitogen-activated protein kinases (MAPK) JNK1/2, p38 and ERK1/2 was observed, the latter of which was shown to be involved in MAF02-generated AA mobilization and phosphorylation of the cytosolic phospolipase A2. Using specific inhibitors for the different phospolipase A2 isoforms the MAF02-induced AA liberation was shown to be dependent on the cytosolic phospholipase A2, but not on the secretory and calcium-independent phospholipase A2. The initiation of the AA pathway due to MAF02 particle exposure was demonstrated to depend on the formation of ROS since the presence of the antioxidant N-acetyl-cysteine (NAC) prevented the MAF02-mediated enhancement of

  13. Chain Mobility in Polymer Systems: On the Borderline between Solid and Melt. 2. Crystal Size Influence in Phase Transition and Sintering of Ultrahigh Molecular Weight Polyethylene via the Mobile Hexagonal Phase.

    PubMed

    Rastogi; Kurelec; Lemstra

    1998-07-28

    Polymorphism is a well-established phenomenon in crystalline materials and is important for pharmaceutical and polymeric materials. In our study concerning the processability of polymers, we came across an unusual observation related to polymorphism induced by pressure. The experimental observation is that polyethylene crystals transform from the stable orthorhombic crystal into a transient hexagonal phase. The occurrence of a transient hexagonal phase is shown to be dependent on the polymer crystal size; smaller crystals transform into the transient hexagonal phase at temperatures and pressures much below the thermodynamic critical point Qo, which is located at P = 3.6 kbar and T = 230 degreesC. The crystal size dependence in the phase transition was investigated by in situ X-ray studies in the unirradiated and irradiated solution-crystallized films. Since the chain mobility is rather high in the hexagonal phase, sintering has been attempted via this transient phase using ultrahigh molecular weight polyethylene (UHMW-PE) as a model system. UHMW-PE is an intractable polymer due to its high molar mass but possesses excellent abrasion resistance properties. For this reason it is used as an inlay in demanding applications such as artificial hip and knee joints. The service life of UHMW-PE in these artificial joints, however, is limited due to the poor processing characteristics notably during sintering, and often a second operation is needed to replace the UHMW-PE interface. Sintering via the transient hexagonal phase could provide a solution for this important problem which concerns an increasing number of people. PMID:9680442

  14. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  15. A Far-Red Emitting Probe for Unambiguous Detection of Mobile Zinc in Acidic Vesicles and Deep Tissue†

    PubMed Central

    Rivera-Fuentes, Pablo; Wrobel, Alexandra T.; Zastrow, Melissa L.; Khan, Mustafa; Georgiou, John; Luyben, Thomas T.; Roder, John C.; Okamoto, Kenichi

    2015-01-01

    Imaging mobile zinc in acidic environments remains challenging because most small-molecule optical probes display pH-dependent fluorescence. Here we report a reaction-based sensor that detects mobile zinc unambiguously at low pH. The sensor responds reversibly and with a large dynamic range to exogenously applied Zn2+ in lysosomes of HeLa cells, endogenous Zn2+ in insulin granules of MIN6 cells, and zinc-rich mossy fiber boutons in hippocampal tissue from mice. This long-wavelength probe is compatible with the green-fluorescent protein, enabling multicolor imaging, and facilitates visualization of mossy fiber boutons at depths of >100 µm, as demonstrated by studies in live tissue employing two-photon microscopy. PMID:25815162

  16. Effect of Electrospray Ionization Source Conditions on the Tautomer Distribution of Deprotonated p-Hydroxybenzoic Acid in the Gas Phase.

    PubMed

    Xia, Hanxue; Attygalle, Athula B

    2016-06-01

    The deprotonation site of p-hydroxybenzoic acid upon electrospray ionization has been a subject of fervent debate in several articles in the Journal of the American Chemical Society and elsewhere. General consensus is that electrospray ionization mass spectrometry (ESI-MS) experimental results reflect the situation in solution to a considerable extent. Our research, using ion-mobility mass spectrometry, challenges the notion that ESI-MS results directly reflect solution-phase structures and demonstrates that the relative populations of the thermodynamically less favored gaseous carboxylate tautomer or the thermodynamically more favored gaseous phenoxide tautomer, generated from the same aqueous solution of p-hydroxybenzoic acid by ESI, can be varied back and forth by changing the probe position, capillary voltage, desolvation-gas temperature, sample infusion flow rate, and cone voltage. In other words, solvent effects are not the primary criteria that determine the relative population distributions of tautomeric carboxylate (C(-)) and phenoxide (P(-)) ions (m/z 137) generated by electrospray ionization of p-hydroxybenzoic acid. In addition, we propose that the observed ratio of the P(-) and C(-) forms indirectly reflects the relative contribution of the charge-residue or ion-evaporation process that occurs during the electrospray ion generation process.

  17. Effect of Electrospray Ionization Source Conditions on the Tautomer Distribution of Deprotonated p-Hydroxybenzoic Acid in the Gas Phase.

    PubMed

    Xia, Hanxue; Attygalle, Athula B

    2016-06-01

    The deprotonation site of p-hydroxybenzoic acid upon electrospray ionization has been a subject of fervent debate in several articles in the Journal of the American Chemical Society and elsewhere. General consensus is that electrospray ionization mass spectrometry (ESI-MS) experimental results reflect the situation in solution to a considerable extent. Our research, using ion-mobility mass spectrometry, challenges the notion that ESI-MS results directly reflect solution-phase structures and demonstrates that the relative populations of the thermodynamically less favored gaseous carboxylate tautomer or the thermodynamically more favored gaseous phenoxide tautomer, generated from the same aqueous solution of p-hydroxybenzoic acid by ESI, can be varied back and forth by changing the probe position, capillary voltage, desolvation-gas temperature, sample infusion flow rate, and cone voltage. In other words, solvent effects are not the primary criteria that determine the relative population distributions of tautomeric carboxylate (C(-)) and phenoxide (P(-)) ions (m/z 137) generated by electrospray ionization of p-hydroxybenzoic acid. In addition, we propose that the observed ratio of the P(-) and C(-) forms indirectly reflects the relative contribution of the charge-residue or ion-evaporation process that occurs during the electrospray ion generation process. PMID:27164186

  18. [Preparation and chromatographic performance of a silica-bonded (4-cyclopentadienyl benzoic acid-iron-toluene) hexafluorophosphoric acid stationary phase].

    PubMed

    Cao, Aijuan; Li, Xiaole; Qiao, Lijun; Zhou, Xiaohua; Yu, Ajuan; Zhang, Shusheng; Wu, Yangjie

    2016-02-01

    Based on the unique molecular structure of ferrocene and its potential as a new liquid chromatography separation medium, a new silica-bonded (4-cyclopentadienyl benzoic acid-iron-toluene) hexafluorophosphoric acid stationary phase was prepared. The structure of this new material was characterized by infrared spectroscopy, elemental analysis, thermogravimetric analysis et al. The chromatographic performance and retention mechanism of this new stationary phase were evaluated using different solute probes, including polycyclic aromatic hydrocarbons (PAHs), positional isomers of naphthylamine, positional isomers of nitro-aniline, nitroimidazoles, organic phosphorus et al. It could provide various action sites for different solutes in normal-phase chromatography such as π electron transfer, π-π electron interactions, dipole-dipole interactions, and electrostatic interactions with the substrates. And the possible separation mechanisms are discussed. PMID:27382719

  19. Rapid analysis of tile industry gaseous emissions by ion mobility spectrometry and comparison with solid phase micro-extraction/gas chromatography/mass spectrometry.

    PubMed

    Pozzi, R; Bocchini, P; Pinelli, F; Galletti, G C

    2006-12-01

    The present paper reports on a rapid method for the analysis of gaseous emissions from ceramic industry, based on ion mobility spectrometry (IMS) as a means for on-site monitoring of volatile organic compounds (VOCs) produced during tile baking. IMS was calibrated with a set of reference compounds (i.e. ethyl acetate, ethanol, ethylene glycol, diethylene glycol, acetaldehyde, formaldehyde, 2-methyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 1,3-dioxolane, 1,4-dioxane, benzene, toluene, cyclohexane, acetone, acetic acid) via air-flow permeation. The technique was tested on a laboratory-scale kiln and tiles prepared with selected glycol- and resin-based additives. Finally, the analytical method was applied to emissions from two industries in the Modena (Italy) ceramic area. The results of all experimental phases were compared to those obtained by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS). IMS showed potential as a real-time monitoring device for quality assessment in ceramic industry emissions. IMS spectra, SPME/GC/MS data, relationship between additives/baking conditions and produced VOCs and advantages and limitations of both techniques will be discussed.

  20. Effects of temperature and mobile-phase composition on retentions in column liquid chromatography. [Hydroxyl-terminated polybutadiene

    SciTech Connect

    Hsu, A.

    1982-08-01

    Binary-additive mobile phase systems were investigated for a more exact control over chromatography. If the mobile phase was nonpolar binary solvents (e.g., n-hexane and dichloromethane), trace amounts of THF and/or ACN could be added to control solute retentions as a function of solvent composition. Temperature also plays an important role in the coverage of modifier molecules on the surface of the adsorbent. Higher efficiencies were obtained at lower temperatures. For chromatographic systems having large extra-column volumes, higher column temperature will also reduce column efficiency. Solvophobic effects and polar-group selectivity control the chromatographic behavior of phenols in reversed-phase liquid chromatography (RPLC). The former effect predominates with the THF system, and the latter with the MeOH system. Substituent groups decrease the hydrophobic effect of phenols in aqueous media. However, owing to steric effects, ortho-substituted phenols usually eluted later. Separation of the phenols was also found with 35% MeOH/H/sub 2/O eluent. Application of window diagrams led to baseline separation with 22% THF/H/sub 2/O. Optimum column temperature was 42/sup 0/C with a Zorbax C8 microbore column. The enthalpy-entropy compensation principle was applied to the retention data observed with reversed-phase systems. Relative retention data were found to provide a more consistent compensation temperature. RPLC was shown to be useful in the separation of high molecular-weight compounds such as hydroxyl-terminated polybutadiene (HTPB). HMDS-treated HTPB eluted without difficulty from silical gel. Sample overload can provide unique separations in GPC. (DLC)

  1. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution. PMID:23544733

  2. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  3. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    PubMed

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine. PMID:26304742

  4. Analysis of acid transport through multi-phase epoxy mortars for wastewater structures.

    PubMed

    Valix, M

    2015-01-01

    The characteristics of acid migration through epoxy mortars were examined. Diffusion coefficients of typical sewer bio-metabolised acids: sulphuric, nitric, citric and oxalic acids were determined by gravimetric sorption method and fitted to the multi-phase Jacob-Jones model. Acid permeation was characterised by hindered pore diffusion with the extent being determined by the polarity of the acid and epoxy, and by the microstructure of the epoxy. Epoxy with higher polarity was able to reduce the diffusion coefficients by 49, while dense phases of the coating reduced the diffusion coefficient by 5,100. These results reflect the relative influence of epoxy polarity and microstructure on their performance as protective liners in sewers.

  5. Novel ultra stable silica-based stationary phases for reversed phase liquid chromatography--study of a hydrophobically assisted weak acid cation exchange phase.

    PubMed

    Zhang, Yu; Carr, Peter W

    2011-02-11

    A mixed-mode reversed-phase/weak cation exchange (RP/WCX) phase has been developed by introducing a small amount of carboxylate functionality into a hydrophobic hyper-crosslinked (HC) platform. This silica-based HC platform was designed to form an extensive polystyrene network completely confined to the particle's surface. The fully connected polymer network prevents the loss of bonded phase, which leads to superior hydrolytic stability of the new phase when compared to conventional silica-based phases. Compared to previously introduced HC phases the added carboxylic groups impart a new weak cation exchange selectivity to the base hydrophobic HC platform. The phase thus prepared shows a mixed-mode retention mechanism, allowing for both neutral organic compounds and bases of a wide polarity range to be simultaneously separated on the same phase under the same conditions. In addition, the new phase offers the flexibility that gradients in organic modifier, pH or ionic competitors can be used to affect the separation of a wide range of solutes. Moreover, the inherent weak acid cation exchange groups allow formic and acetic acid buffers to be used as eluents thereby avoiding the mass spectrometric ionization suppression problems concomitant to the use of non-volatile additives such as strong amine modifiers (e.g. triethylamine) or salts (e.g. NaCl) to elute basic solutes from the strong cation exchange phase which was previously developed in this lab. The use of the new phase for achieving strong retention of rather hydrophilic neurotransmitters and drugs of abuse without the need for ion pairing agents is demonstrated.

  6. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    PubMed

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load.

  7. Direct high-performance liquid chromatographic enantioseparation of secondary amino acids on Cinchona alkaloid-based chiral zwitterionic stationary phases. Unusual temperature behavior.

    PubMed

    Ilisz, István; Gecse, Zsanett; Pataj, Zoltán; Fülöp, Ferenc; Tóth, Géza; Lindner, Wolfgang; Péter, Antal

    2014-10-10

    Two chiral stationary phases containing a quinine- or a quinidine-based zwitterionic ion-exchanger as chiral selector were applied for the enantioseparation of 27 unusual cyclic secondary α-amino acids. The effects of the nature and concentration of the bulk solvent, the acid and base additives, the structures of the analytes and temperature on the enantioresolution were investigated. To study the effects of temperature and to obtain thermodynamic parameters, experiments were carried out at constant mobile phase compositions in the temperature range -5 to 55 °C. The thermodynamic parameters indicated that in most cases the separations were enthalpy-driven, but some entropy-driven separations were also observed. The sequence of elution of the enantiomers was determined in most cases.

  8. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  9. Gas Phase Measurements of Mono-Fluoro Acids and the Dimer of 3-FLUORO-BENZOIC Acid

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kang, Lu; Kukolich, Stephen G.

    2016-06-01

    The gas phase homodimer of 3-fluorobenzoic acid was detected and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0^+)= 1151.8(5), B(0^+)=100.3(5), C(0^+)= 87.64(3) MHz and A(0^-)=1152.2(5), B(0^-)= 100.7(5), C(0^-)=88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy. Additionally, the microwave spectra of the mono-fluoro-benozic acids, (2-fluoro, 3-floro and 4-fluoro) benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier Transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid and 1 conformer of 4-fluorobenzoic acid. Supported by the NSF CHE-1057796

  10. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kang, Lu; Kukolich, Stephen G.

    2015-04-01

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0+) = 1151.8(5), B(0+) = 100.3(5), C(0+) = 87.64(3) MHz and A(0-) = 1152.2(5), B(0-) = 100.7(5), C(0-) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  11. Gas phase measurements of mono-fluoro-benzoic acids and the dimer of 3-fluoro-benzoic acid

    SciTech Connect

    Daly, Adam M.; Carey, Spencer J.; Pejlovas, Aaron M.; Li, Kexin; Kukolich, Stephen G.; Kang, Lu

    2015-04-14

    The microwave spectrum of the mono-fluoro-benzoic acids, 2-fluoro-, 3-fluoro-, and 4-fluoro-benzoic acid have been measured in the frequency range of 4-14 GHz using a pulsed beam Fourier transform microwave spectrometer. Measured rotational transition lines were assigned and fit using a rigid rotor Hamiltonian. Assignments were made for 3 conformers of 2-fluorobenzoic acid, 2 conformers of 3-fluorobenzoic acid, and 1 conformer of 4-fluorobenzoic acid. Additionally, the gas phase homodimer of 3-fluorobenzoic acid was detected, and the spectra showed evidence of proton tunneling. Experimental rotational constants are A(0{sup +}) = 1151.8(5), B(0{sup +}) = 100.3(5), C(0{sup +}) = 87.64(3) MHz and A(0{sup −}) = 1152.2(5), B(0{sup −}) = 100.7(5), C(0{sup −}) = 88.85(3) MHz for the two ground vibrational states split by the proton tunneling motion. The tunneling splitting (ΔE) is approximately 560 MHz. This homodimer appears to be the largest carboxylic acid dimer observed with F-T microwave spectroscopy.

  12. Enantiomeric purity determination of (L)-amino acids with pre-column derivatization and chiral stationary phase: development and validation of the method.

    PubMed

    Cui, Yan; Jiang, Zhen; Sun, Jiayi; Yu, Jia; Li, Minghua; Li, Mingjie; Liu, Mingxia; Guo, Xingjie

    2014-09-01

    A simple, efficient and general HPLC method for the determination of enantiomeric purity of a series of (L)-amino acids was developed. In order to improve the detection sensitivity, pre-column derivatization was adopted and 7-chloro-4-nitrobenzoxadiazole (NBD-Cl) was selected as derivatization reagent. NBD-amino acid enantiomers were then enantioseparated on a Pirkle-type chiral stationary phase, Sumichiral OA-2500S (250 mm × 4.6 mm, 5 μm), using a mobile phase composed of acetonitrile-methanol (50:50, v/v) containing 5 mmol L(-1) citric acid at the flow rate of 0.5 mL min(-1). The detection wavelength was 470 nm. All the eleven pairs of tested amino acid enantiomers were well separated, and trace amounts of (D)-amino acids (0.5%) in the presence of a large excess of corresponding (L)-enantiomers could be quantified. The proposed method was validated in terms of selectivity, precision, linearity range, LOD, LOQ and accuracy, and then successfully applied to the determination of enantiomeric purity in bulk samples of (L)-amino acids.

  13. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria.

  14. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. PMID:25575969

  15. Impact of undissociated volatile fatty acids on acidogenesis in a two-phase anaerobic system.

    PubMed

    Xiao, Keke; Zhou, Yan; Guo, Chenghong; Maspolim, Yogananda; Ng, Wun Jern

    2016-04-01

    This study investigated the degradation and production of volatile fatty acids (VFAs) in the acidogenic phase reactor of a two-phase anaerobic system. 20 mmol/L bromoethanesulfonic acid (BESA) was used to inhibit acidogenic methanogens (which were present in the acidogenic phase reactor) from degrading VFAs. The impact of undissociated volatile fatty acids (unVFAs) on "net" VFAs production in the acidogenic phase reactor was then evaluated, with the exclusion of concurrent VFAs degradation. "Net" VFAs production from glucose degradation was partially inhibited at high unVFAs concentrations, with 59%, 37% and 60% reduction in production rates at 2190 mg chemical oxygen demand (COD)/L undissociated acetic acid (unHAc), 2130 mg COD/L undissociated propionic acid (unHPr) and 2280 mg COD/L undissociated n-butyric acid (unHBu), respectively. The profile of VFAs produced further indicated that while an unVFA can primarily affect its own formation, there were also unVFAs that affected the formation of other VFAs. PMID:27090711

  16. Impact of undissociated volatile fatty acids on acidogenesis in a two-phase anaerobic system.

    PubMed

    Xiao, Keke; Zhou, Yan; Guo, Chenghong; Maspolim, Yogananda; Ng, Wun Jern

    2016-04-01

    This study investigated the degradation and production of volatile fatty acids (VFAs) in the acidogenic phase reactor of a two-phase anaerobic system. 20 mmol/L bromoethanesulfonic acid (BESA) was used to inhibit acidogenic methanogens (which were present in the acidogenic phase reactor) from degrading VFAs. The impact of undissociated volatile fatty acids (unVFAs) on "net" VFAs production in the acidogenic phase reactor was then evaluated, with the exclusion of concurrent VFAs degradation. "Net" VFAs production from glucose degradation was partially inhibited at high unVFAs concentrations, with 59%, 37% and 60% reduction in production rates at 2190 mg chemical oxygen demand (COD)/L undissociated acetic acid (unHAc), 2130 mg COD/L undissociated propionic acid (unHPr) and 2280 mg COD/L undissociated n-butyric acid (unHBu), respectively. The profile of VFAs produced further indicated that while an unVFA can primarily affect its own formation, there were also unVFAs that affected the formation of other VFAs.

  17. Characterising the phase behaviour of stearic acid and its triethanolamine soap and acid-soap by infrared spectroscopy.

    PubMed

    Pudney, Paul D A; Mutch, Kevin J; Zhu, Shiping

    2009-07-01

    The behaviour of stearic acid neutralised by triethanolamine to form soap and its acid-soap has been examined by infrared spectroscopy. It was found that not only could the neutralisation behaviour be characterised, but the thermotropic behaviour could also be followed. The neutralisation confirmed the formation of a fixed stoichiometeric ratio, 2 : 1, acid-soap. When following the thermotropic behaviour the break up of the acid-soap could be followed along with various disordering and melting transitions of the alkyl chain tail. This allowed all the thermal transitions that have been observed to be characterised in terms of the type of molecular rearrangement that was occurring and also the transition temperature at which they occurred. This allowed the binary phase diagram to be plotted and understood for this system. This is the first time IR has been used to measure a whole phase diagram of this type. The nature of the acid-soap complex itself was also characterised, with very short hydrogen bonds being present as well as a free, non-hydrogen bonded, hydroxyl group.

  18. Development of a gas phase source for perfluoroalkyl acids to examine atmospheric sampling methods.

    PubMed

    MacInnis, John J; VandenBoer, Trevor C; Young, Cora J

    2016-06-21

    An inability to produce environmentally relevant gaseous mixing ratios of perfluoroalkyl acids (PFAAs), ubiquitous global contaminants, limits the analytical reliability of atmospheric chemists to make accurate gas and particulate measurements that are demonstrably free of interferences due to sampling artefacts. A gas phase source for PFAAs based on the acid displacement mechanism using perfluoropropionate (PFPrA), perfluorobutanoate (PFBA), perfluorohexanoate (PFHxA), and perfluorooctanoate (PFOA) has been constructed. The displacement efficiency of gas phase perfluorocarboxylic acids (PFCAs) is inversely related to chain length. Decreasing displacement efficiencies for PFPrA, PFBA, PFHxA, and PFOA were 90% ± 20%, 40% ± 10%, 40% ± 10%, 9% ± 4%, respectively. Generating detectable amounts of gas phase perfluorosulfonic acids (PFSAs) was not possible. It is likely that lower vapour pressure and much higher acidity play a role in this lack of emission. PFCA emission rates were not elevated by increasing relative humidity (25%-75%), nor flow rate of carrier gas from 33-111 sccm. Overall, reproducible gaseous production of PFCAs was within the error of the production of hydrochloric acid (HCl) as a displacing acid (±20%) and was accomplished using a dry nitrogen flow of 33 ± 2 sccm. A reproducible mass emission rate of 0.97 ± 0.10 ng min(-1) (n = 8) was observed for PFBA. This is equivalent to an atmospheric mixing ratio of 12 ppmv, which is easily diluted to environmentally relevant mixing ratios of PFBA. Conversely, generating gas phase perfluorononanoic acid (PFNA) by sublimating the solid acid under the same conditions produced a mass emission rate of 2800 ng min(-1), which is equivalent to a mixing ratio of 18 ppthv and over a million times higher than suspected atmospheric levels. Thus, for analytical certification of atmospheric sampling methods, generating gas phase standards for PFCAs is best accomplished using acid displacement under dry conditions

  19. Use of itaconic acid-based polymers for solid-phase extraction of deoxynivalenol and application to pasta analysis.

    PubMed

    Pascale, Michelangelo; De Girolamo, Annalisa; Visconti, Angelo; Magan, Naresh; Chianella, Iva; Piletska, Elena V; Piletsky, Sergey A

    2008-02-25

    Molecular modelling and computational design were used to identify itaconic acid (IA) as a functional monomer with high affinity towards deoxynivalenol (DON), a Fusarium-toxin frequently occurring in cereals. IA-based polymers were photochemically synthesised in dimethyl formamide (porogen) using ethylenglycol dimethacrylate as cross-linker and 1,1'-azo-bis(cyclohexane carbonitrile) as initiator, and the relevant binding interactions with DON in solvents with different polarity were investigated. The performances of the non-imprinted IA-based polymer (blank polymer, BP) and the corresponding molecularly imprinted polymer (MIP) were compared using DON as a template. Both BP and MIP were able to bind about 90% DON either in toluene, water or water containing 5% polyethylene glycol. Non-imprinted polymers with different molar ratios of IA to cross-linker were evaluated as adsorbents for solid-phase extraction (SPE) clean-up and pre-concentration of DON from wheat and pasta samples prior to HPLC analysis. Samples were extracted with PBS/0.1M EDTA solution and cleaned up through a cartridge containing blank IA-based polymer. The column was washed with PBS (pH 9.2) and the toxin was eluted with methanol and quantified by reversed-phase HPLC with UV detector (lambda=220nm), using methanol:water:acetic acid (15:85:0.1, v/v/v) as the mobile phase. Effective removal of matrix interferences was observed only for pasta with DON recoveries higher than 70% (RSD<7%, n=3) at levels close to or higher than EU regulatory limit.

  20. Fast online determination of surfactant inhibition in acidic phase bioreactors.

    PubMed

    Feitkenhauer, H

    2004-01-01

    Surfactants have been shown to inhibit the anaerobic digestion process severely, with the methanogenic microorganisms being the most affected. The diverse nature of surfactants used even in one (e.g. textile finishing) plant makes an online determination of surfactants sometimes very difficult and expensive. Therefore a fast online determination of inhibitory effects on the acidogenic microorganisms (first step of the degradation cascade) can help to give an early warning signal or to calculate a "pseudo"-surfactant concentration. In a two-phase system this information can be used to protect the methanogenic reactor against surfactant overloading and its long term negative effects. In this paper it is shown that the inhibition is a consequence of microbial inhibition and is not caused by an inactivation of extracellular hydrolytic enzymes (released by the cells for biopolymer cleavage). A titration technique was successfully employed to measure the surfactant inhibition in a laboratory-scale acidification reactor. Additional experiments demonstrate (using sodium dodecyl sulfate as the model substance) how inhibitory effects (and strategies to overcome inhibitory effects) can be investigated efficiently.

  1. Eutectic Phases in Ice Facilitate Nonenzymatic Nucleic Acid Synthesis

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia; Monnard, Pierre-Alain; Deamer, David W.

    2001-09-01

    Polymeric compounds similar to oligonucleotides are relevant to the origin of life and particularly to the concept of an RNA world. Although short oligomers of RNA can be synthesized nonenzymatically under laboratory conditions by second-order reactions in concentrated solutions, there is no consensus on how these polymers could have been synthesized de novo on the early Earth from dilute solutions of monomers. To address this question in the context of an RNA world, we have explored ice eutectic phases as a reaction medium. When an aqueous solution freezes, the solutes become concentrated in the spaces between the ice crystals. The increased concentration offsets the effect of the lower temperature and accelerates the reaction. Here we show that in the presence of metal ions in dilute solutions, frozen samples of phosphoimidazolide-activated uridine react within days at -18°C to form oligouridylates up to 11 bases long. Product yields typically exceed 90%, and ~30% of the oligomers include one or more 3‧-5‧ linkages. These conditions facilitate not only the notoriously difficult oligouridylate synthesis, but also the oligomerization of activated cytidylate, adenylate, and guanylate. To our knowledge, this represents the first report to indicate that ice matrices on the early Earth may have accelerated certain prebiotic polymerization reactions.

  2. Towards the Development of a Mobile Phonopneumogram: Automatic Breath-Phase Classification Using Smartphones.

    PubMed

    Reyes, Bersain A; Reljin, Natasa; Kong, Youngsun; Nam, Yunyoung; Ha, Sangho; Chon, Ki H

    2016-09-01

    Correct labeling of breath phases is useful in the automatic analysis of respiratory sounds, where airflow or volume signals are commonly used as temporal reference. However, such signals are not always available. The development of a smartphone-based respiratory sound analysis system has received increased attention. In this study, we propose an optical approach that takes advantage of a smartphone's camera and provides a chest movement signal useful for classification of the breath phases when simultaneously recording tracheal sounds. Spirometer and smartphone-based signals were acquired from N = 13 healthy volunteers breathing at different frequencies, airflow and volume levels. We found that the smartphone-acquired chest movement signal was highly correlated with reference volume (ρ = 0.960 ± 0.025, mean ± SD). A simple linear regression on the chest signal was used to label the breath phases according to the slope between consecutive onsets. 100% accuracy was found for the classification of the analyzed breath phases. We found that the proposed classification scheme can be used to correctly classify breath phases in more challenging breathing patterns, such as those that include non-breath events like swallowing, talking, and coughing, and alternating or irregular breathing. These results show the feasibility of developing a portable and inexpensive phonopneumogram for the analysis of respiratory sounds based on smartphones.

  3. The Use of Functional Nucleic Acids in Solid-Phase Fluorimetric Assays

    NASA Astrophysics Data System (ADS)

    Rupcich, Nicholas; Nutiu, Razvan; Shen, Yutu; Li, Yingfu; Brennan, John D.

    The past 15 years have seen a revolution in the area of functional nucleic acid (FNA) research since the demonstration that single-stranded RNA and DNA species can be used for both ligand binding and catalysis. An emerging area of application for such species is in the development of solid-phase fluorimetric assays for biosensing, proteomics, and drug screening purposes. In this chapter, the methods for immobilization of functional nucleic acids are briefly reviewed, with emphasis on emerging technologies such as sol-gel encapsulation. Methods for generating fluorescence signals from aptamers and nucleic acid enzymes are then described, and the use of such species in solid-phase fluorimetric assays is then discussed. Unique features of sol-gel based materials for the development of solid-phase assays are highlighted, and some emerging applications of immobilized FNA species are discussed.

  4. A Nitrogen-concentrated Phase in IA Iron Meteorite Acid Residue

    NASA Astrophysics Data System (ADS)

    Hashizume, K.; Sugiura, N.

    1993-07-01

    Introduction: Iron meteorites are considered to have experienced a complex history, which is indicated by the variations in trace element chemistry (e.g., [1]). Among iron meteorite groups, the so called nonmagmatic groups, such as IAB, IIE, and IIICD, may have passed through different formation paths compared to others. Nitrogen isotopes can be a useful tool to understand the origin and formation processes of iron meteorites. Nikogen isotopes in a number of iron meteorites are measured [2,3], although trapping sites of nitrogen in iron meteorites are not yet clear. This is an important issue because nitrogen, a typical mobile element, may well reflect thermal history of their parent bodies (c.f., [4]). Generally, a major portion of nitrogen in iron meteorites is expected to be in a solid solution in Fe-Ni, especially in f.c.c. Fe-Ni (taenite). Franchi et al. [3] report that at least 25 to 35% of nitrogen in magmatic iron meteorites is in acid insoluble phases, however, not in those of non-magmatic meteorites. This result contradicts with the result [5] who report that a significant portion of nitrogen seems to be trapped in acid residues not only of magmatic meteorites but also of non- magmatic meteorites. To resolve the contradiction described above, and to identify the trapping site, we started measuring nitrogen isotopes in acid residues of iron metcorites. We report here preliminary results on acid residues of Canyon Diablo (IA). Procedures: Acid residues were prepared by Dr. J.-I. Matsuda and his colleagues. Different blocks of Canyon Diablo, "Can-1" and "Can-2" were treated by 14M HCl, 10M-HF + 1M-HCl, 1M-HCl, and by aqua regia, which destroyed Fe-Ni, sulfides, silicates, and shreibersite. Acid residues of these two blocks, "Can-1bn" and "Can-2b," yielded 0.102 wt% and 0.299 wt% of their original masses, respectively These residues seem to consist mostly of graphite No diamond was detected by powder X-ray analysis [6]. Preliminary Results: A predominant

  5. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    PubMed Central

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  6. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids.

    PubMed

    Heinzelmann, Sandra M; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S; Schouten, Stefan; van der Meer, Marcel T J

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between -149 and -264‰) and chemoautotrophs (εlipid/water between -217 and -275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  7. Observations of a high-pressure phase creation in oleic acid

    NASA Astrophysics Data System (ADS)

    Kościesza, R.; Kulisiewicz, L.; Delgado, A.

    2010-03-01

    Oleic acid is one of the unsaturated fatty acids which frequently appears in food products such as edible fats and oils. A molecule of oleic acid possesses a double carbon bond, C=C, which is responsible for a transition to a new phase when pressure is applied. This work presents the results of optical observations of such a transition. The observations were made in two cases, the first being static p-T conditions under 60 MPa at 20°C and the other the dynamic application of the pressure up to 350 MPa. The obtained visualization reveals differences in the creation of the phase and in its further appearance. Some crystal forms may be recognized. These results tend to be of interest for food engineers due to increasing interest in high-pressure food preservation among nutritionists and medical scientists concerned with fatty acids.

  8. Features of separation on polymeric reversed phase for two classes of higher saturated fatty acids esters

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Lapshova, M. S.; Zakharenko, E. V.; Deineka, L. A.

    2013-11-01

    The principles of sorption on polymeric reversed phase (PRP) YMS C30 for members of the two classes of esters formed by higher saturated fatty acids, i.e., lutein diesters ( I) and triacylglycerols ( II), are investigated. It is shown that the logarithm of the retention factor increases nonlinearly with an increase of the length of the acid radical, although the retention on PRP is higher in the case of I and lower in the case of II, compared to their retention on traditional monomeric reversed phase (MRP) Kromasil-100 5C18; however, the equivalence of the contributions to the retention of I that correspond to an identical change in acids, does not depend on the length of the hydrocarbon radical of the second acid. It is noted that the Van't Hoff plot for PRP contains a curve break, indicating a change in the retention mechanism upon a rise in temperature.

  9. Fatty Acid Chain Length Dependence of Phase Separation Kinetics in Stratum Corneum Models by IR Spectroscopy.

    PubMed

    Mendelsohn, Richard; Rabie, Emann; Walters, Russel M; Flach, Carol R

    2015-07-30

    The main barrier to permeability in human skin resides in the stratum corneum (SC), a layered structure consisting of anucleated, flattened cells (corneocytes) embedded in a heterogeneous lamellar lipid matrix. While lipid structures and packing propensities in the SC and in SC models have been extensively investigated, only limited data are available concerning the kinetics and mechanism of formation of lamellar phases and particular lipid packing motifs. In our prior investigation, kinetic IR spectroscopy measurements probed the temporal sequence of phase separation leading to ordered structures in a three component SC model of equimolar structurally heterogeneous ceramide[NS], chain perdeuterated stearic acid, and cholesterol. In the current work, the phase separation kinetic effects of specific fatty acid chain lengths with a synthetic structurally homogeneous ceramide[NS] in similar ternary mixtures are examined. These are compared with a mixture containing ceramide[NS] with an unsaturated acid chain. The kinetic events are sensitive to the difference in chain lengths between the ceramide acid chain and the fatty acid as well as to the presence of unsaturation in the former. The observed kinetic behaviors span a wide range of phase separation times, ranging from the formation of a solid solution stable for at least 200 h, to a system in which an orthorhombic fatty acid structure is essentially completely formed within the time resolution of the experiment (15 min). The data seem to offer some features of a spinodal phase separation at relatively short times. Overall the approach offers a possible means for addressing several unanswered questions pertinent to skin pharmacology, such as the roles of a wide variety of ceramide and fatty acid species and the design of therapeutic interventions for repair of pathological conditions of the SC.

  10. Enantioselective Synthesis of Dialkylated α-Hydroxy Carboxylic Acids through Asymmetric Phase-Transfer Catalysis.

    PubMed

    Duan, Shaobo; Li, Sanliang; Ye, Xinyi; Du, Nuan-Nuan; Tan, Choon-Hong; Jiang, Zhiyong

    2015-08-01

    In the presence of an L-tert-leucine-derived urea-ammonium salt as phase-transfer catalyst, a highly enantioselective alkylation of 5H-oxazol-4-ones with various benzyl bromides and allylic bromides has been developed to furnish catalytic asymmetric synthesis of biologically important dialkylated α-hydroxy carboxylic acids with a broad scope. This is the first example of an L-amino acid-derived urea-ammonium salt being used as a phase-transfer catalyst with excellent catalytic efficiency.

  11. Separation of amino acids by high performance liquid chromatography based on calixarene-bonded stationary phases.

    PubMed

    Zadmard, Reza; Tabar-Heydar, Kourosh; Imani, Maryam

    2015-01-01

    In this work, we present a new method for synthesis of silica gel stationary phases based on calix[4]arene derivatives. In order to achieve it, 25,27-dipropoxy-26,28-bis-[3-propyloxydimethylsililoxy]calix[4]arene has been synthesized in six steps and immobilized on silica via chlorotrimethylsilane. Stationary phases were characterized by elemental analysis, infrared spectroscopy and thermal analysis and used for the separation of amino acid derivatives by high performance liquid chromatography. The effect of isocratic and gradient elution, pH and column temperature on retention and selectivity of the Fmoc-protected amino acids were studied. The retention mechanism was also discussed. The results indicated that the stationary phase behaves like a reverse phase packing. Size exclusion, electron-π, π-π and hydrophobic interactions seem to be involved in the separation process.

  12. Study of phase behavior in a system of linear hydrogen-bonded carboxylic acid homologues

    NASA Astrophysics Data System (ADS)

    Efremova, E. I.; Shiryaev, A. A.; Kydryashova, Z. A.; Nosikova, L. A.; Syrbue, S. A.; Chernyshev, V. V.

    2015-05-01

    The system of hydrogen-bonded liquid crystals formed from binary mixtures p-n-heptyloxybenzoic (I) acid and p-n-undecloxybenzoic (II) acid has been investigated by polarizing optical microscopy, differential scanning calorimetry, X-ray diffraction, and scattering and dielectric measurements. The T-X phase diagram was obtained for this system. All mixtures show enantiotropic smectic and nematic phases. The crystalline phase represents a (α, β) solid solution. At the 2:1 ratio of I to II, an intermediate phase - co-crystal γ - is formed. The co-crystal γ possesses a much wider mesophase range than the corresponding initial components. In contrast to mixtures based on the solid solutions having a positive anisotropy, the co-crystal shows a negative dielectric anisotropy in the mesophase.

  13. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  14. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    SciTech Connect

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    1995-09-01

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. The phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.

  15. Observation of a topological 3D Dirac semimetal phase in high-mobility Cd3As2

    NASA Astrophysics Data System (ADS)

    Neupane, M.; Xu, S.-Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, Chang; Belopolski, I.; Chang, T.-R.; Jeng, H.-T.; Lin, H.; Bansil, A.; Chou, Fangcheng; Hasan, M. Z.

    2014-03-01

    Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport. Using high-resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on well-known compound Cd3As2. For the first time, we observe a highly linear bulk Dirac cone located at the Brillouin zone center projected onto the (001) surface, which is consistent with a 3D Dirac semimetal phase in Cd3As2. Remarkably, an unusually high Dirac Fermion velocity is seen in samples where the mobility far exceeds 20,000 cm2/V.s suggesting that Cd3As2 can be a promising candidate as a hypercone analog of graphene in many device-applications, which can also incorporate topological quantum phenomena in a large gap setting. This work is primarily supported by U.S. DOE and Princeton University.

  16. Carrier concentration and mobility in two-phase eutectic A/sup III/B/sup V/-Ge(Si) alloys

    SciTech Connect

    Leonov, V.V.

    1988-06-01

    The authors proposes a technique of determining the carrier concentration and mobility in the separate phases of two-phase alloys in which oriented rod-like inclusions have carrier concentrations similar to the host material. The calculations are then used to determine the carrier concentration and mobility in each alloy phase, and to discuss the doping processes and mechanisms of impurity incorporation in two-phase semiconductors. He studied the Hall constant R in two-phase, oriented eutectic alloys of InSb-Ge, InAs-Ge, GaAs-Ge, and GaAs-Si. He established that R depends on the relative orientations of the current flow, magnetic field, and elongated inclusions. Furthermore, the particular impurity concentration in the alloy also has an effect on R.

  17. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    NASA Astrophysics Data System (ADS)

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-12-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant.

  18. Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant

    PubMed Central

    Tao, Kai; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant. PMID:26627307

  19. Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure.

    PubMed

    Okusa, Kensuke; Iwasaki, Yuki; Kuroda, Ikuma; Miwa, Shohei; Ohira, Masayoshi; Nagai, Toshiharu; Mizobe, Hoyo; Gotoh, Naohiro; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2014-04-25

    A high-density, polymeric C18 stationary phase (Inertsil ODS-P) or a polymeric C30 phase (Inertsil C30) provided improved resolution of the isomeric fatty acids (FAs), FA methyl esters (FAMEs), triacylglycerols (TAGs), and tocopherols with an increase in pressure of 20-70MPa in reversed-phase HPLC. With respect to isomeric C18 FAMEs with one cis-double bond, ODS-P phase was effective for recognizing the position of a double bond among petroselinic (methyl 6Z-octadecenoate), oleic (methyl 9Z-octadecenoate), and cis-vaccenic (methyl 11Z-octadecenoate), especially at high pressure, but the differentiation between oleic and cis-vaccenic was not achieved by C30 phase regardless of the pressure. A monomeric C18 phase (InertSustain C18) was not effective for recognizing the position of the double bond in monounsaturated FAME, while the separation of cis- and trans-isomers was achieved by any of the stationary phases. The ODS-P and C30 phases provided increased separation for TAGs and β- and γ-tocopherols at high pressure. The transfer of FA, FAME, or TAG molecules from the mobile phase to the ODS-P stationary phase was accompanied by large volume reduction (-30∼-90mL/mol) resulting in a large increase in retention (up to 100% for an increase of 50MPa) and improved isomer separation at high pressure. For some isomer pairs, the ODS-P and C30 provided the opposite elution order, and in each case higher pressure improved the separation. The two stationary phases showed selectivity for the isomers having rigid structures, but only the ODS-P was effective for differentiating the position of a double bond in monounsaturated FAMEs. The results indicate that the improved isomer separation was provided by the increased dispersion interactions between the solute and the binding site of the stationary phase at high pressure.

  20. The Use of Mobile, Electrochemical Sensor Nodes for the Measurement of Personal Exposure to Gas-Phase Air Pollutants

    NASA Astrophysics Data System (ADS)

    Stewart, G.; Popoola, O. A.; Mead, M. I.; McKeating, S. J.; Calleja, M.; Hayes, M.; Baron, R. P.; Saffell, J.; Jones, R.

    2012-12-01

    , and thus also the potential insufficiency at quantifying the risks to health in the surrounding area. Recent campaigns with mobile sensor nodes have included attempts to probe the differences in personal exposure to gas-phase air pollutants at different heights of breathing zone and between different methods of transport.

  1. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system. PMID:26048817

  2. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system.

  3. The investigation of the dynamics of the phase transformation in triolein and oleic acid under pressure

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Siegoczyński, R. M.; Rostocki, A. J.; Kos, A.; Kościesza, R.; Wieja, K.

    2008-07-01

    An aim of our work is the understanding of processes happening during phase transformations under the pressure in triglycerides and unsaturated fatty acids. Particles of investigated liquids possess the double bond between carbon atoms, which causes the bended shape of the particle and makes its free rotation impossible. This property causes low temperatures of melting point and high temperatures of boiling and also investigated by us phase transformations. For study of the dynamics of phase transformation in these liquids we measured light transmission and light scattering at 90 degrees angle, temperature, permittivity and internal pressure versus time. We applied pressure using computer controlled pump with a stepping motor, which makes increase of the pressure steady. The phase transformation in oleic acid lasts several seconds, in triolein it lasts several minutes. We think that the elongated time of phase transformation is caused by a hooked shape of particles of triolein and the dynamics of that process is determined by the tangling of particles. We checked the influence of smaller particles of oleic acid on the phase transformation by investigating the mixture of these liquids.

  4. Analysis of iodinated haloacetic acids in drinking water by reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry with large volume direct aqueous injection.

    PubMed

    Li, Yongtao; Whitaker, Joshua S; McCarty, Christina L

    2012-07-01

    A large volume direct aqueous injection method was developed for the analysis of iodinated haloacetic acids in drinking water by using reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry in the negative ion mode. Both the external and internal standard calibration methods were studied for the analysis of monoiodoacetic acid, chloroiodoacetic acid, bromoiodoacetic acid, and diiodoacetic acid in drinking water. The use of a divert valve technique for the mobile phase solvent delay, along with isotopically labeled analogs used as internal standards, effectively reduced and compensated for the ionization suppression typically caused by coexisting common inorganic anions. Under the optimized method conditions, the mean absolute and relative recoveries resulting from the replicate fortified deionized water and chlorinated drinking water analyses were 83-107% with a relative standard deviation of 0.7-11.7% and 84-111% with a relative standard deviation of 0.8-12.1%, respectively. The method detection limits resulting from the external and internal standard calibrations, based on seven fortified deionized water replicates, were 0.7-2.3 ng/L and 0.5-1.9 ng/L, respectively.

  5. Wireless Roadside Inspection Phase II Tennessee Commercial Mobile Radio Services Pilot Test Final Report

    SciTech Connect

    Franzese, Oscar; Lascurain, Mary Beth; Capps, Gary J; Siekmann, Adam

    2011-05-01

    The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is researching the feasibility and value of electronically assessing truck and bus driver and vehicle safety at least 25 times more often than is possible using only roadside physical inspections. The WRI program is evaluating the potential benefits to both the motor carrier industry and to government. These potential benefits include reduction in accidents, fatalities and injuries on our highways and keeping safe and legal drivers and vehicles moving on the highways. WRI Pilot tests were conducted to prototype, test and demonstrate the feasibility and benefits of electronically collecting safety data message sets from in-service commercial vehicles and performing wireless roadside inspections using three different communication methods. This report summarizes the design, conduct and results of the Tennessee CMRS WRI Pilot Test. The purpose of this Pilot test was to demonstrate the implementation of commercial mobile radio services to electronically request and collect safety data message sets from a limited number of commercial vehicles operating in Tennessee. The results of this test have been used in conjunction with the results of the complimentary pilot tests to support an overall assessment of the feasibility and benefits of WRI in enhancing motor carrier safety (reduction in accidents) due to increased compliance (change in motor carrier and driver behavior) caused by conducting frequent safety inspections electronically, at highway speeds, without delay or need to divert into a weigh station

  6. The stereochemical resolution of the enantiomers of aspartame on an immobilized alpha-chymotrypsin HPLC chiral stationary phase: the effect of mobile-phase composition and enzyme activity.

    PubMed

    Jadaud, P; Wainer, I W

    1990-01-01

    The enantioselective and diastereoselective resolutions of the stereoisomers of N alpha-aspartyl-phenylalanine 1-methyl ester (APME) have been accomplished on an HPLC chiral stationary phase based upon alpha-chymotrypsin (the ACHT-CSP) with observed enantioselectivities (alpha 1) for the DL-/LD-enantiomer of as high as 29.17 and for the DD-/LL-enantiomers of as high as 28.97. In addition, the effect on the chromatographic retention of the APME stereoisomers of the activity of the ACHT and the composition of the mobile phase--structure of the anionic component, molarity, and pH--have been studied. The results of this study suggest that the aspartyl moiety and/or the aspartyl-phenylalanine amide linkage play key roles in the observed enantioselectivity; the APME stereoisomers containing L-phenylalanine, i.e., DL- and LL-APME, bind at a different site in the ACHT molecule (the L-Phe site) than the APME stereoisomers containing D-phenylalanine (the D-Phe site); and the observed enantioselectivity is a measure of the difference in the binding affinities at the two sites rather than the consequence of differential affinities at a single site.

  7. Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system

    SciTech Connect

    LUKE, S.N.

    1999-02-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

  8. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid.

    PubMed

    Yan, Bo; Tao, Li-Zhi; Liang, Yu; Xu, Bo-Qing

    2014-06-01

    Gas-phase dehydration of lactic acid (LA) to acrylic acid (AA) was investigated over alkali-exchanged β zeolite (M(x)Na(1-x)β, M=Li(+), K(+), Rb(+), or Cs(+)) of different exchange degrees (x). The reaction was conducted under varying conditions to understand the catalyst selectivity for AA production and trends of byproduct formation. The nature and exchange degree of M(+) were found to be critical for the acid-base properties and catalytic performance of the exchanged zeolite. K(x)Na(1-x)β of x=0.94 appeared to be the best performing catalyst whereas Li(x)Na(1-x)β and Naβ were the poorest in terms of AA selectivity and yield. The AA yield as high as 61 mol % (selectivity: 64 mol %) could be obtained under optimized reaction conditions for up to 8 h over the best performing K0.94Na0.06β. The acid and base properties of the catalysts were probed, respectively by temperature-programmed desorption (TPD) of adsorbed NH3 and CO2, and were related to the electrostatic potentials of the alkali ions in the zeolite, which provided a basis for the discussion of the acid-base catalysis for sustainable AA formation from LA.

  9. Phase diagram involving the mesomorphic behavior of binary mixture of sodium oleate and orthophosphoric acid

    NASA Astrophysics Data System (ADS)

    Govindaiah, T. N.; Sreepad, H. R.

    2015-04-01

    The present investigation deals with the binary mixture of two non-mesogenic compounds, viz. sodium oleate (Naol) and orthophosphoric acid (H3PO4) which exhibits very interesting liquid crystalline smectic phases at large range of concentrations and temperature. The mixtures with concentrations ranging from 10% to 90% Naol in H3PO4 exhibit SmA, SmC, SmE and SmB phases, sequentially when the specimen is cooled from its isotropic phase. Physical properties, such as ultrasonic velocity, adiabatic compressibility and molar compressibility, show anomalous behavior at the isotropic to mesosphase transition.

  10. High-Resolution Electrospray Ionization/Ion Mobility Spectrometer for Detection of Abiotic Amino Acids

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Terrell, C. A.; Kim, H.; Kanik, I.

    2003-01-01

    One of the primary goals of the current NASA thrust in Astrobiology is the detection and identification of organic molecules as part of an in-situ lander platform on the surface of Mars or Europa. The identification of these molecules should help determine whether indigenous organisms exist on the surface of Mars or in an undersea environment on Europa. In addition, a detailed organic chemical inventory of surface and near surface molecules will help elucidate the possibilities of life elsewhere in the Universe. Terrestrial life has, as its backbone, the family of molecules known as the amino acids (AA), and while AA can be found in the terrestrial environments as part of more complex molecules, such as peptides, and proteins, they also exist as individual molecules due to of the hydrolyses of biopolymers. In terrestrial biochemistry, there are 20 principal amino acids which are necessary for life. However, some forms of these molecules can be found in nature synthesized via abiotic process. For example, they are known to exist extraterrestrially as a component of carbonaceous meteorites. The idea that amino acids are readily created by abiotic means has been demonstrated by their positive identification in the Murchison CM2 meteorite, which fell in 1969. This meteorite was analyzed before contamination by terrestrial microbes could result. Three laboratories individually tested parts of the meteorite and concluded that the amino acids present in them were indigenous to the meteorite because, among other reasons, they had equal L- and D- enantiomers. Final identification of the constituents of the Murchison included 33 amino acids which have no known biotic source, 11 amino acids which have limited distribution and 8 (Glycine, Alanine, Valine, Proline, Leucine, Isoleucine, Aspartic Acid, and Glutamic Acid), which readily occur in terrestrial proteins.

  11. Third phase formation in the extraction of phosphotungstic acid by TBP in n-octane.

    SciTech Connect

    Antonio, M. R.; Chiarizia, R.; Jaffrennou, F.

    2010-08-30

    The solvent extraction of 12-phosphotungstic acid, also known as 12-tungstophosphoric acid-H{sub 3}PW{sub 12}O{sub 40}, the so-called Keggin heteropolyacid - by 0.73 M (20%v/v) tri-n-butyl phosphate (TBP) in n-octane under conditions comparable to those used previously for the extraction of conventional inorganic mineral acids is described. A simplified phase diagram for the pentanary system comprised of H{sub 3}PW{sub 12}O{sub 40}, HNO{sub 3}, H{sub 2}O, TBP, and n-octane reveals an extremely low initial concentration of H{sub 3}PW{sub 12}O{sub 40} (1.1 mM) at the LOC (limiting organic concentration) condition, far lower than the most effective third-phase-forming inorganic acid, namely HClO{sub 4}. The results from small-angle neutron scattering (SANS) indicate that the interparticle attraction energy - U(r) calculated through application of the Baxter sticky sphere model to the SANS data at the LOC condition - does not approach the -2 k{sub B} T value associated with phase splitting in previous studies of TBP third-phase formation. The third-phase formation model based on attractive interactions between polar cores of reverse micelles, successfully developed for TBP and other extraction systems does not apply to the extraction of H{sub 3}PW{sub 12}O{sub 40}. Rather, the separation of a third-phase from the TBP organic phase stems from the limited solubility of the heavy and highly polar H{sub 3}PW{sub 12}O{sub 40}-TBP species in the alkane diluent.

  12. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.

    PubMed

    Viswanadham, Balaga; Srikanth, Amirineni; Kumar, Vanama Pavan; Chary, Komandur V R

    2015-07-01

    Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts.

  13. Comparison of the performance of non-ionic and anionic surfactants as mobile phase additives in the RPLC analysis of basic drugs.

    PubMed

    Ruiz-Ángel, María J; García-Álvarez-Coque, María C

    2011-03-01

    Surfactants added to the mobile phases in reversed-phase liquid chromatography (RPLC) give rise to a modified stationary phase, due to the adsorption of surfactant monomers. Depending on the surfactant nature (ionic or non-ionic), the coated stationary phase can exhibit a positive net charge, or just change its polarity remaining neutral. Also, micelles in the mobile phase introduce new sites for solute interaction. This affects the chromatographic behavior, especially in the case of basic compounds. Two surfactants of different nature, the non-ionic Brij-35 and the anionic sodium dodecyl sulfate (SDS) added to water or aqueous-organic mixtures, are here compared in the separation of basic compounds (β-blockers and tricyclic antidepressants). The reversible/irreversible adsorption of the monomers of both surfactants on the stationary phase was examined. The changes in the nature of the chromatographic system using different columns and chromatographic conditions were followed based on the changes in retention and peak shape. The study revealed that Brij-35 is suitable for analyzing basic compounds of intermediate polarity, using "green chemistry", since the addition of an organic solvent is not needed and Brij-35 is a biodegradable surfactant. In contrast, RPLC with hydro-organic mixtures or mobile phases containing SDS required high concentrations of organic solvents. PMID:21328695

  14. Structural elucidation of specific noncovalent association of folic acid with native cyclodextrins using an ion mobility mass spectrometry and theoretical approach.

    PubMed

    Zimnicka, Magdalena; Troć, Anna; Ceborska, Magdalena; Jakubczak, Michał; Koliński, Michał; Danikiewicz, Witold

    2014-05-01

    The combination of ion mobility mass spectrometry studies and theoretical calculations including docking studies permitted a detailed structural description of noncovalent complexes of folic acid (FA) and native cyclodextrins (α-CD, β-CD, and γ-CD). The mode of noncovalent association depended on the cavity size of the cyclodextrin. The structure of FA/α-CD represented the exclusion complex in which the aminobenzoic moiety and the aromatic pteridine ring of folic acid remain outside the cyclodextrin cavity, while the glutamate residue is anchored in the interior of the α-cyclodextrin. A rotaxane-type structure was proposed for the FA/β-CD complex with the aminobenzoic part of FA being trapped in the central cavity of β-CD. The glutamate residue and the aromatic pteridine ring interact with the primary and secondary rim hydroxyl residues, respectively, enhancing complex stability. Two possible structures of FA/γ-CD were suggested, the first one being analogous to the FA/β-CD complex and the second one being more stable-in which the aromatic pteridine ring penetrates into the CD cavity while the glutamate residue with the aminobenzoic part of FA is exposed to the cone exterior of CD at its wider edge. Further insight into the association behavior of the folic acid toward cyclodextrins evaluated by thermodynamic calculations indicates that the process is highly exothermic. The complex stability increased in the order FA/α-CD < FA/β-CD < FA/γ-CD. This order is consistent with the previously determined relative gas-phase stability established based on the dissociation efficiency curves of the FA/CD complexes.

  15. Relative permittivity behavior and temperature changes in linoleic acid during the phase transition

    NASA Astrophysics Data System (ADS)

    Kościesza, R.; Siegoczyński, R. M.; Rostocki, A. J.; Tefelski, D. B.; Kos, A.; Ejchart, W.

    2008-07-01

    In our earlier works several fatty liquids (edible oils and unsaturated fatty acids) which exhibit existence of a new phase induced by high pressure were presented. Conclusion of those experiments is that C=C bonds existence in these liquids plays a dominant role in a new phase occurrence. Relative permittivity in pure acids investigated till now seems to behave in specific way. That is why we decided to investigate linoleic acid (C18H32O2) under high pressure. In our experiment such quantities as: electric capacity, pressure and temperature were recorded. The experimental setup gives us also a possibility to conduct optical investigations. We observed a transmitted and scattered beams of close infrared light (λ = 800nm) in directions 0° and 90° towards the incident beam. Due to the rapid grow of temperature and the rapid change of transmitted and scattered beams we may say that observed phenomenon is a first order phase transition and a proof for the significant change of liquid structure. This paper contains time dependencies of permittivity, temperature, transmitted and scattered light intensity and also permittivity vs. pressure changes during the phase transition in linoleic acid and first of all measured data analysis which lets us explain the transition reasons.

  16. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  17. Gas-Phase Reactivity of Carboxylic Acid Functional Groups with Carbodiimides

    PubMed Central

    Prentice, Boone M.; Gilbert, Joshua D.; Stutzman, John R.; Forrest, William P.; McLuckey, Scott A.

    2012-01-01

    Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N′-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT). Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities. PMID:23208744

  18. Ascorbic acid mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties.

    PubMed

    Bhat, Showket Hussain; Azmi, Asfar Sohail; Hanif, Sarmad; Hadi, S M

    2006-01-01

    Several decades back ascorbic acid was proposed as an effective anticancer agent. However, this idea remained controversial and the mechanism of action unclear. In this paper, we show that ascorbic acid at a concentration reported to be achievable through high doses of oral consumption is capable of cytotoxic action against normal cells. Several antioxidants of both animal as well as plant origin including ascorbic acid also possess prooxidant properties. Copper is an essential component of chromatin and can take part in redox reactions. Previously we have proposed a mechanism for the cytotoxic action of plant antioxidants against cancer cells that involves mobilization of endogenous copper ions and the consequent generation of reactive oxygen species. Using human peripheral lymphocytes and Comet assay we show here that ascorbic acid is able to cause oxidative DNA breakage in normal cells at a concentration of 100-200 microM. Neocuproine, a Cu(I) specific sequestering agent inhibited DNA breakage in a dose dependent manner indicating that Cu(I) is an intermediate in the DNA cleavage reaction. The results are in support of our above hypothesis that involves events that lead to a prooxidant action by antioxidants. The results would support the idea that even a plasma concentration of around 200 microM. would be sufficient to cause pharmacological tumor cell death particularly when copper levels are elevated. This would account for the observation of several decades back by Pauling and co-workers where oral doses of ascorbic acid in gram quantities were found to be effective in treating some cancers.

  19. Tensor-based classification of an auditory mobile BCI without a subject-specific calibration phase

    NASA Astrophysics Data System (ADS)

    Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten

    2016-04-01

    Objective. One of the major drawbacks in EEG brain-computer interfaces (BCI) is the need for subject-specific training of the classifier. By removing the need for a supervised calibration phase, new users could potentially explore a BCI faster. In this work we aim to remove this subject-specific calibration phase and allow direct classification. Approach. We explore canonical polyadic decompositions and block term decompositions of the EEG. These methods exploit structure in higher dimensional data arrays called tensors. The BCI tensors are constructed by concatenating ERP templates from other subjects to a target and non-target trial and the inherent structure guides a decomposition that allows accurate classification. We illustrate the new method on data from a three-class auditory oddball paradigm. Main results. The presented approach leads to a fast and intuitive classification with accuracies competitive with a supervised and cross-validated LDA approach. Significance. The described methods are a promising new way of classifying BCI data with a forthright link to the original P300 ERP signal over the conventional and widely used supervised approaches.

  20. Combined column-mobile phase mixture statistical design optimization of high-performance liquid chromatographic analysis of multicomponent systems.

    PubMed

    Breitkreitz, Márcia C; Jardim, Isabel C S F; Bruns, Roy E

    2009-02-27

    A statistical approach for the simultaneous optimization of the mobile and stationary phases used in reversed-phase liquid chromatography is presented. Mixture designs using aqueous mixtures of acetonitrile (ACN), methanol (MeOH) and tetrahydrofuran (THF) organic modifiers were performed simultaneously with column type optimization, according to a split-plot design, to achieve the best separation of compounds in two sample sets: one containing 10 neutral compounds with similar retention factors and another containing 11 pesticides. Combined models were obtained by multiplying a linear model for column type, C8 or C18, by quadratic or special cubic mixture models. Instead of using an objective response function, combined models were built for elementary chromatographic criteria (retention factors, resolution and relative retention) of each solute or pair of solutes and, after their validation, the global separation was accomplished by means of Derringer's desirability functions. For neutral compounds a 37:12:8:43 (v/v/v/v) percentage mixture of ACN:MeOH:THF:H2O with the C18 column and for pesticides a 15:15:70 (v/v/v) ACN:THF:H2O mixture with the C8 column provide excellent resolution of all peaks.

  1. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids

    PubMed Central

    Agut, Blas; Gamir, Jordi; Jaques, Josep A.; Flors, Victor

    2016-01-01

    Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance. PMID:27683726

  2. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    PubMed

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns.

  3. An intercomparison of measurement systems for vapor and particulate phase concentrations of formic and acetic acids

    NASA Technical Reports Server (NTRS)

    Keene, William C.; Talbot, Robert W.; Andreae, Meinrat O.; Beecher, Kristene; Berresheim, Harold

    1989-01-01

    During June 1986, eight systems for measuring vapor phase and four for measuring particulate phase concentrations of formic acid (HCOOH) and acetic acid (CH3COOH) were intercompared in central Virginia. HCOOH and CH3COOH vapors were sampled by condensate, mist, Chromosorb 103 GC resin, NaOH-coated annular denuders, NaOH-impregnated quartz filters, K2CO3 and NaCO3-impregnated cellulose filters, and Nylasorb membranes. Atmospheric aerosol was collected on Teflon and Nuclepore filters using both hi-vol and lo-vol systems to measure particulate phase concentrations. Performances of the mist chamber and K2CO3-impregnated filter techniques were evaluated using zero air and ambient air spiked with HCOOH(g) and CH3COOH(g), and formaldehyde from permeation sources. The advantages and drawbacks of these methods are reported and discussed.

  4. Live-cell fluorescence correlation spectroscopy dissects the role of coregulator exchange and chromatin binding in retinoic acid receptor mobility

    PubMed Central

    Brazda, Peter; Szekeres, Tibor; Bravics, Balázs; Tóth, Katalin; Vámosi, György; Nagy, Laszlo

    2011-01-01

    The retinoic acid receptor (RAR) is a member of the nuclear receptor superfamily. This ligand-inducible transcription factor binds to DNA as a heterodimer with the retinoid X receptor (RXR) in the nucleus. The nucleus is a dynamic compartment and live-cell imaging techniques make it possible to investigate transcription factor action in real-time. We studied the diffusion of EGFP–RAR by fluorescence correlation spectroscopy (FCS) to uncover the molecular interactions determining receptor mobility. In the absence of ligand, we identified two distinct species with different mobilities. The fast component has a diffusion coefficient of D1=1.8–6.0 μm2/second corresponding to small oligomeric forms, whereas the slow component with D2=0.05–0.10 μm2/second corresponds to interactions of RAR with the chromatin or other large structures. The RAR ligand-binding-domain fragment also has a slow component, probably as a result of indirect DNA-binding through RXR, with lower affinity than the intact RAR–RXR complex. Importantly, RAR-agonist treatment shifts the equilibrium towards the slow population of the wild-type receptor, but without significantly changing the mobility of either the fast or the slow population. By using a series of mutant forms of the receptor with altered DNA- or coregulator-binding capacity we found that the slow component is probably related to chromatin binding, and that coregulator exchange, specifically the binding of the coactivator complex, is the main determinant contributing to the redistribution of RAR during ligand activation. PMID:22045737

  5. Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system.

    PubMed

    Dhamole, Pradip B; Demanna, Dhanashree; Desai, S A

    2014-09-01

    Ferulic acid (FA) and p-coumaric acid (pCA) are high-value products that can be obtained by alkaline hydrolysis of lignocellulose. Present work explores the potential of surfactant-based cloud-point extraction (CPE) for FA and pCA extraction from corn cob hydrolysate. More than 90 % (w/w) extraction of both FA and pCA was achieved from model system with L92. The partition coefficient of FA and pCA in L92 aqueous phase system was 35 and 55, respectively. A significant enrichment (8-10-fold) of both FA and pCA was achieved in surfactant-rich phase. Furthermore, the downstream process volume was reduced by 10 to 13 times. Optimized conditions (5 % v/v L92 and pH 3.0) resulted into 85 and 89 % extraction of FA and p-CA, respectively, from alkaline corn cob hydrolysate. Biocompatibility tests were carried out for L92 for ethanol fermentation and found to be biocompatible. Thus, the new surfactant-based CPE system not only concentrated FA and pCA but also reduced the process volume significantly. Further, aqueous phase containing sugars can be used for ethanol fermentation. PMID:25082768

  6. A comparison of the gas phase acidities of phospholipid headgroups: experimental and computational studies.

    PubMed

    Thomas, Michael C; Mitchell, Todd W; Blanksby, Stephen J

    2005-06-01

    Proton-bound dimers consisting of two glycerophospholipids with different headgroups were prepared using negative ion electrospray ionization and dissociated in a triple quadrupole mass spectrometer. Analysis of the tandem mass spectra of the dimers using the kinetic method provides, for the first time, an order of acidity for the phospholipid classes in the gas phase of PE < PA < PG < PS < PI. Hybrid density functional calculations on model phospholipids were used to predict the absolute deprotonation enthalpies of the phospholipid classes from isodesmic proton transfer reactions with phosphoric acid. The computational data largely support the experimental acidity trend, with the exception of the relative acidity ranking of the two most acidic phospholipid species. Possible causes of the discrepancy between experiment and theory are discussed and the experimental trend is recommended. The sequence of gas phase acidities for the phospholipid headgroups is found to (1) have little correlation with the relative ionization efficiencies of the phospholipid classes observed in the negative ion electrospray process, and (2) correlate well with fragmentation trends observed upon collisional activation of phospholipid [M - H](-) anions. PMID:15907707

  7. Evaluation of new silica-based humic acid stationary phase for the separation of tocopherols in cold-pressed oils by normal-phase high-performance liquid chromatography.

    PubMed

    Ayyildiz, Hamide Filiz

    2015-03-01

    A new humic acid stationary phase was prepared by immobilizing humic acid onto aminopropyl silica via an amide linkage formation and used, for the first time, for the separation and quantification of the tocopherol compounds in cold-pressed oil samples under normal-phase high-performance liquid chromatography conditions. Parameters affecting the chromatographic separation such as mobile phase composition and flow rate were optimized. By evaluating the calculations of capacity factor, asymmetry factor, resolution, selectivity factor, and theoretical plate number, the best separation was obtained with isocratic elution of n-hexane and isopropyl alcohol (99:1% v/v) at a flow rate of 1.0 mL/min. The effluent was monitored by a fluorescence detector set at excitation and emission wavelengths 295 and 330 nm, respectively. All compounds were separated in 20 min. The method was validated according to international guidelines and found to be linear in a wide concentration range, also the mean recovery of the compounds ranged from 97.9 to 99.2%, with a CV less than 2.7% in all cases. The results showed that the developed stationary phase is suitable for the separation and quantification of the tocopherol compounds in real oil samples.

  8. Molecular structures of benzoic acid and 2-hydroxybenzoic acid, obtained by gas-phase electron diffraction and theoretical calculations.

    PubMed

    Aarset, Kirsten; Page, Elizabeth M; Rice, David A

    2006-07-20

    The structures of benzoic acid (C6H5COOH) and 2-hydroxybenzoic acid (C6H4OHCOOH) have been determined in the gas phase by electron diffraction using results from quantum chemical calculations to inform restraints used on the structural parameters. Theoretical methods (HF and MP2/6-311+G(d,p)) predict two conformers for benzoic acid, one which is 25.0 kJ mol(-1) (MP2) lower in energy than the other. In the low-energy form, the carboxyl group is coplanar with the phenyl ring and the O-H group eclipses the C=O bond. Theoretical calculations (HF and MP2/6-311+G(d,p)) carried out for 2-hydroxybenzoic acid gave evidence for seven stable conformers but one low-energy form (11.7 kJ mol(-1) lower in energy (MP2)) which again has the carboxyl group coplanar with the phenyl ring, the O-H of the carboxyl group eclipsing the C=O bond and the C=O of the carboxyl group oriented toward the O-H group of the phenyl ring. The effects of internal hydrogen bonding in 2-hydroxybenzoic acid can be clearly observed by comparison of pertinent structural parameters between the two compounds. These differences for 2-hydroxybenzoic acid include a shorter exocyclic C-C bond, a lengthening of the ring C-C bond between the substituents, and a shortening of the carboxylic single C-O bond. PMID:16836466

  9. Novel two-phase anaerobic gasification with solid-bed acid digestion in tandem with fixed-film methane fermentation

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Sajjad, A.

    1983-01-01

    The development and performance of a novel solid-bed two-phase anaerobic digestion system are described. The system consists of a bed of organic feed operated in tandem with an acid-phase slurry digester and a methane-phase upflow anaerobic filter. The bed and the acid-phase digesters liquefy and convert the organics to volatile fatty acids (VFA) without gas production, while a high methane-content product gas is collected from the methane-phase filter. With municipal refuse feeds, VFA and ethanol were the major products from acid-phase digestion. A high methane content (up to 88 mol %) gas was the major product from the methane phase filter.

  10. Ten- to 15-year results of the Oxford Phase III mobile unicompartmental knee arthroplasty

    PubMed Central

    Lisowski, L. A.; Meijer, L. I.; van den Bekerom, M. P. J.; Pilot, P.; Lisowski, A. E.

    2016-01-01

    Aims The interest in unicompartmental knee arthroplasty (UKA) for medial osteoarthritis has increased rapidly but the long-term follow-up of the Oxford UKAs has yet to be analysed in non-designer centres. We have examined our ten- to 15-year clinical and radiological follow-up data for the Oxford Phase III UKAs. Patients and Methods Between January 1999 and January 2005 a total of 138 consecutive Oxford Phase III arthroplasties were performed by a single surgeon in 129 patients for medial compartment osteoarthritis (71 right and 67 left knees, mean age 72.0 years (47 to 91), mean body mass index 28.2 (20.7 to 52.2)). Both clinical data and radiographs were prospectively recorded and obtained at intervals. Of the 129 patients, 32 patients (32 knees) died, ten patients (12 knees) were not able to take part in the final clinical and radiological assessment due to physical and mental conditions, but via telephone interview it was confirmed that none of these ten patients (12 knees) had a revision of the knee arthroplasty. One patient (two knees) was lost to follow-up. Results The mean follow-up was 11.7 years (10 to 15). A total of 11 knees (8%) were revised. The survival at 15 years with revision for any reason as the endpoint was 90.6% (95% confidence interval (CI) 85.2 to 96.0) and revision related to the prosthesis was 99.3% (95% CI 97.9 to 100). The mean total Knee Society Score was 47 (0 to 80) pre-operatively and 81 (30 to 100) at latest follow-up. The mean Oxford Knee Score was 19 (12 to 40) pre-operatively and 42 (28 to 55) at final follow-up. Radiolucency beneath the tibial component occurred in 22 of 81 prostheses (27.2%) without evidence of loosening. Conclusion This study supports the use of UKA in medial compartment osteoarthritis with excellent long-term functional and radiological outcomes with an excellent 15-year survival rate. Cite this article: Bone Joint J 2016;98-B(10 Suppl B):41–7. PMID:27694515

  11. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    SciTech Connect

    Kawamura, K.; Okuwaki, A.; Verheyen, T.; Perry, G.J.

    2006-02-15

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid. Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.

  12. Gas-phase structures and thermochemistry of neutral histidine and its conjugated acid and base.

    PubMed

    Riffet, Vanessa; Bouchoux, Guy

    2013-04-28

    Extensive exploration of the conformational space of neutral, protonated and deprotonated histidine has been conducted at the G4MP2 level. Theoretical protonation and deprotonation thermochemistry as well as heats of formation of gaseous histidine and its ionized forms have been calculated at the G4 level considering either the most stable conformers or an equilibrium population of conformers at 298 K. These theoretical results were compared to evaluated experimental determinations. Recommended proton affinity and protonation entropy deduced from these comparisons are PA(His) = 980 kJ mol(-1) and ΔpS(His) ∼ 0 J mol(-1) K(-1), thus leading to a gas-phase basicity value of GB(His) = 947.5 kJ mol(-1). Similarly, gas phase acidity parameters are ΔacidH(o)(His) = 1373 kJ mol(-1), ΔacidS(His) ∼ 10 J mol(-1) K(-1) and ΔacidG(o)(His) = 1343 kJ mol(-1). Computed G4 heats of formation values are equal to -290, 265 and -451 kJ mol(-1) for gaseous neutral histidine and its protonated and deprotonated forms, respectively. The present computational data correct, and complete, previous thermochemical parameter estimates proposed for gas-phase histidine and its acido-basic properties.

  13. [Determination of trace haloacetic acids in drinking water using ion chromatography coupled with solid phase extraction].

    PubMed

    Sun, Yingxue; Huang, Jianjun; Gu, Ping

    2006-05-01

    The combined solid phase extraction (SPE)-ion chromatography (IC) method was developed for the analysis of trace haloacetic acids (HAAs) in drinking water. The tested HAAs included monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA). For trace determination of HAAs in real drinking water samples, conditions of LiChrolut EN SPE cartridge were investigated for HAAs preconcentration and matrix elimination. Elution was carried out by 2 mL of sodium hydroxide (10 mmol/L) with the flow rate of 2 mL/min. The Dionex IonPac AS16 column (250 mm x 4 mm i. d.), a high capacity and hydroxide-selective anion-exchange column designed for the determination of polarizable anions, was chosen for chromatographic separation. HAAs were analyzed with a concentration gradient of NaOH with the flow rate of 0.8 mL/min and detected by suppressed conductivity. A 500 microL sample loop was used. The detection limits of this SPE-IC method for MCAA, DCAA, DBAA and TCAA were 0.38-1.69 microg/L and MBAA was 12.5 microg/L under 25-fold preconcentration. The results demonstrate that the method is suitable for the analysis of trace haloacetic acids in drinking water.

  14. In-house SIRAS phasing of the polyunsaturated fatty-acid isomerase from Propionibacterium acnes

    SciTech Connect

    Liavonchanka, Alena; Hornung, Ellen; Feussner, Ivo; Rudolph, Markus

    2006-02-01

    Low iodide concentrations were sufficient to allow SAD and SIRAS phasing of cubic crystals of a novel fatty acid isomerase using Cu Kα radiation. The polyenoic fatty-acid isomerase from Propionibacterium acnes (PAI) catalyzes the double-bond isomerization of linoleic acid to conjugated linoleic acid, which is a dairy- or meat-derived fatty acid in the human diet. PAI was overproduced in Escherichia coli and purified to homogeneity as a yellow-coloured protein. The nature of the bound cofactor was analyzed by absorption and fluorescence spectroscopy. Single crystals of PAI were obtained in two crystal forms. Cubic shaped crystals belong to space group I2{sub 1}3, with a unit-cell parameter of 160.4 Å, and plate-like crystals belong to the monoclinic space group C2, with unit-cell parameters a = 133.7, b = 60.8, c = 72.2 Å, β = 115.8°. Both crystal forms contain one molecule per asymmetric unit and diffract to a resolution of better than 2.0 Å. Initial phases were obtained by SIRAS from in-house data from a cubic crystal that was soaked with an unusually low KI concentration of 0.25 M.

  15. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis.

    PubMed Central

    Beuers, U; Nathanson, M H; Isales, C M; Boyer, J L

    1993-01-01

    To assess the effects of tauroursodeoxycholic acid (TUDCA) on bile excretory function, we examined whether TUDCA modulates vesicular exocytosis in the isolated perfused liver of normal rats in the presence of high (1.9 mM) or low (0.19 mM) extracellular Ca++ and in cholestatic rats 24 h after bile duct ligation. In addition, the effects of TUDCA on Ca++ homeostasis were compared in normal and in cholestatic hepatocytes. In the isolated perfused rat liver, TUDCA (25 microM) stimulated a sustained increase in the biliary excretion of horseradish peroxidase, a marker of the vesicular pathway, in the presence of high, but not low extracellular Ca++ or in the cholestatic liver. In contrast, TUDCA stimulated bile flow to the same extent regardless of the concentration of extracellular Ca++ or the presence of cholestasis. In indo-1-loaded hepatocytes, basal cytosolic free Ca++ ([Ca++]i) levels were not different between normal and cholestatic cells. However, in cholestatic cells [Ca++]i increases induced by TUDCA (10 microM) and its 7 alpha-OH epimer taurochenodeoxycholic acid (50 microM) were reduced to 22% and 26%, respectively, compared to normal cells. The impairment of TUDCA-induced [Ca++]i increase in cholestatic cells could be mimicked by exposing normal cells to low extracellular Ca++ (21%) or to the Ca++ channel blocker NiCl2 (23%). These data indicate that (a) dihydroxy bile acid-induced Ca++ entry may be of functional importance in the regulation of hepatocellular vesicular exocytosis, and (b) this Ca++ entry mechanism across the plasma membrane is impaired in cholestatic hepatocytes. We speculate that the beneficial effect of ursodeoxycholic acid in cholestatic liver diseases may be related to the Ca+(+)-dependent stimulation of vesicular exocytosis by its conjugate. PMID:8254052

  16. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  17. Greening pharmaceutical applications of liquid chromatography through using propylene carbonate-ethanol mixtures instead of acetonitrile as organic modifier in the mobile phases.

    PubMed

    Tache, Florentin; Udrescu, Stefan; Albu, Florin; Micăle, Florina; Medvedovici, Andrei

    2013-03-01

    Substitution of acetonitrile (ACN) as organic modifier in mobile phases for liquid chromatography by mixtures of propylene carbonate (PC) and ethanol (EtOH) may be considered a greener approach for pharmaceutical applications. Such a replacement is achievable without any major compromise in terms of elution order, chromatographic retention, efficiency and peak symmetry. This has been equally demonstrated for reverse phase (RP), ion pair formation (IP) and hydrophilic interaction liquid chromatography (HILIC) separation modes. The impact on the sensitivity induced by the replacement between these organic solvents is discussed for UV-vis and mass spectrometric detection. A comparison between Van Deemter plots obtained under elution conditions based on ACN and PC/EtOH is presented. The alternative elution modes were also compared in terms of thermodynamic parameters, such as standard enthalpy (ΔH⁰) and entropic contributions to the partition between the mobile and the stationary phases, for some model compounds. Van't Hoff plots demonstrated that differences between the thermodynamic parameters are minor when shifting from ACN/water to PC/EtOH/water elution on an octadecyl chemically modified silicagel stationary phase. As long as large volume injection (LVI) of diluents non-miscible with the mobile phase is a recently developed topic having a high potential of greening the sample preparation procedures through elimination of the solvent evaporation stage, this feature was also assessed in the case of ACN replacement by PC/EtOH. PMID:23277155

  18. Applicability of the Remote Mobile Emplacement Package (RMEP) design as a mobility aid for proposed post-84 Mars missions, phase O

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The results of study to determine the applicability of the Remote Mobile Emplacement Package (RMEP) design concept as a mobility aid for the proposed post-'84 Mars missions are presented. The RMEP wheel and mobility subsystem parameters: wheel tire size, weight, stowed volume, and environmental effects; obstacle negotiation; reliability and wear; motor and drive train; and electrical power demand were reviewed. Results indicated that: (1) the basic RMEP wheel design would be satisfactory, with additional attention to heating, side loading, tread wear and ultraviolet radiation protection; (2) motor and drive train power requirements on Mars would be less than on Earth; and (3) the mobility electrical power requirements would be small enough to offer the option of operating the Mars mini rover untethered. Payload power required for certain sampling functions would preclude the use of battery power for these missions. Hazard avoidance and reverse direction maneuvers are discussed. Limited examination of vehicle payload integration and thermal design was made, pending establishment of a baseline vehicle/payload design.

  19. Solid-Phase Spectrophotometric Analysis of 1-Naphthol Using Silica Functionalized with m-Diazophenylarsonic Acid

    NASA Astrophysics Data System (ADS)

    Zaitseva, Nataliya; Alekseev, Sergei; Zaitsev, Vladimir; Raks, Viktoria

    2016-03-01

    The m-aminophenylarsonic acid (m-APAA) was immobilized onto the silica gel surface with covalently grafted quaternary ammonium groups via ion exchange. The diazotization of ion-bonded m-APAA resulted in a new solid-phase spectrophotometric reagent for detection of 1-naphtol in environmental water samples. The procedure of solid-phase spectrophotometric analysis is characterized by 20 μg L-1 limit of detection (LOD) of 1-naphtol, up to 2000 concentration factor, and insensitivity to the presence of natural water components as well as to 30-fold excess of phenol, resorcinol, and catechol.

  20. Solvent viscosity mismatch between the solute plug and the mobile phase: Considerations in the applications of two-dimensional HPLC

    SciTech Connect

    Shalliker, R. Andrew; Guiochon, Georges A

    2010-01-01

    Understanding the nature of viscosity contrast induced flow instabilities is an important aspect in the design of two-dimensional HPLC separations. When the viscosity contrast between the sample plug and the mobile phase is sufficiently large, the phenomenon known as viscous fingering can be induced. Viscous fingering is a flow instability phenomenon that occurs at the interface between two fluids with different viscosities. In liquid chromatography, viscous fingering results in the solute band undergoing a change in form as it enters into the chromatography column. Moreover, even in the absence of viscous fingering, band shapes change shape at low viscosity contrasts. These changes can result in a noticeable change in separation performance, with the result depending on whether the solvent pushing the solute plug has a higher or lower viscosity than the solute plug. These viscosity induced changes become more important as the solute injection volume increases and hence understanding the process becomes critical in the implementation of multidimensional HPLC techniques, since in these techniques the sample injection plug into the second dimension is an order of magnitude greater than in one-dimensional HPLC. This review article assesses the current understanding of the viscosity contrast induced processes as they relate to liquid chromatographic separation behaviour.

  1. Detection of cocaine and its metabolites in urine using solid phase extraction-ion mobility spectrometry with alternating least squares.

    PubMed

    Lu, Yao; O'Donnell, Ryan M; Harrington, Peter B

    2009-08-10

    A reliable, alternative screening method for detection of cocaine and its metabolites, benzoylecgonine and cocaethylene in urine is demonstrated using solid phase extraction (SPE) coupled with ion mobility spectrometry (IMS). Data analysis with alternating least squares (ALS) is used to model IMS spectral datasets and separate the reactant ion peak from the product ion peaks. IMS has been used as a screening device for drug and explosive detection for many years. It has the advantages of atmospheric pressure operation, simple sample preparation, portability, fast analysis, and high sensitivity when compared to similar methods. Coupling SPE with IMS decreases the detection limits of drug metabolites in urine while removing salts and other polar compounds that suppress ionization during the measurement. The IMS analysis time in this experiment is 20s, much shorter than traditional chromatographic analysis. The application of ALS further increases the sensitivity and selectivity of this method. The detection limits of benzoylecgonine and cocaethylene are 10 ng/mL and 4 ng/mL, respectively. Commercial adulteration of urine specimens does not influence the ability to detect cocaine metabolites after sampling the urine with SPE. This method provides forensic chemists a viable approach for fast and simple drug screening. PMID:19457629

  2. Simultaneous Determination of Diosmin and Hesperidin in Pharmaceuticals by RPLC using Ionic Liquids as Mobile Phase Modifiers

    PubMed Central

    Szymański, Marcin; Młynarek, Daria; Szymański, Arkadiusz; Matławska, Irena

    2016-01-01

    Diosmin and hesperidin are natural flavonoid glycosides found in various plant materials, mainly in citrus fruits in different concentrations. Diosmin for pharmaceutical use is obtained mainly semi-synthetically from hesperidin. Hesperidin often accompanies diosmin as a natural impurity in different pharmaceutical formulations; therefore, a simple, fast and precise method for the simultaneous assay of diosmin and hesperidin in pharmaceutical formulations has been developed to control their contents. Chromatographic resolution was performed using a column with C-18 packing and the following mobile phase: methanol/water (45:55, v/v) with 0.025% added didecyldimethylammonium lactate, which significantly affects retention, shortening analysis time and having a positive impact on the symmetry of resulting chromatographic peaks. The method shows linearity between 2.5 and 100 μg/mL, high repeatability (0.39 and 0.42% for diosmin and hesperidin, respectively) and accuracy of 96 to 102% for both the assayed compounds. Intraday and interday precision of the new method were less than RSD% 1, 2. The limit of detection of the assayed compounds is 2.5 and 1.2 μg/mL for diosmin and hesperidin, respectively. The method was tested on several pharmaceutical products available in Poland. PMID:27610154

  3. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    PubMed

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-01

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  4. Fast detection of methyl tert-butyl ether from water using solid phase microextraction and ion mobility spectrometry.

    PubMed

    Nousiainen, Marjaana; Holopainen, Sanna; Puton, Jaroslaw; Sillanpää, Mika

    2011-05-15

    Methyl tert-butyl ether (MTBE) is commonly used as chemical additive to increase oxygen content and octane rating of reformulated gasoline. Despite its impact on enhancing cleaner combustion of gasoline, MTBE poses a threat to surface and ground water when gasoline is released into the environment. Methods for onsite analysis of MTBE in water samples are also needed. A less common technique for MTBE detection from water is ion mobility spectrometry (IMS). We describe a method for fast sampling and screening of MTBE from water by solid phase microextraction (SPME) and IMS. MTBE is adsorbed from the head space of a sample to the coating of SPME fiber. The interface containing a heated sample chamber, which couples SPME and IMS, was constructed and the SPME fiber was introduced into the sample chamber for thermal desorption and IMS detection of MTBE vapors. The demonstrated SPME-IMS method proved to be a straightforward method for the detection of trace quantities of MTBE from waters including surface and ground water. We determined the relative standard deviation of 8.3% and detection limit of 5 mg L(-1) for MTBE. Because of short sampling, desorption, and detection times, the described configuration of combined SPME and IMS is a feasible method for the detection of hazardous substances from environmental matrices.

  5. Gas-phase microsolvation of ubiquitin: investigation of crown ether complexation sites using ion mobility-mass spectrometry.

    PubMed

    Göth, Melanie; Lermyte, Frederik; Schmitt, Xiao Jakob; Warnke, Stephan; von Helden, Gert; Sobott, Frank; Pagel, Kevin

    2016-10-01

    In this study the gas-phase structure of ubiquitin and its lysine-to-arginine mutants was investigated using ion mobility-mass spectrometry (IM-MS) and electron transfer dissociation-mass spectrometry (ETD-MS). Crown ether molecules were attached to positive charge sites of the proteins and the resulting non-covalent complexes were analysed. Collision induced dissociation (CID) experiments revealed relative energy differences between the wild type and the mutant crown-ether complexes. ETD-MS experiments were performed to identify the crown ether binding sites. Although not all of the binding sites could be revealed, the data confirm that the first crown ether is able to bind to the N-terminus. IM-MS experiments show a more compact structure for specific charge states of wild type ubiquitin when crown ethers are attached. However, data on ubiquitin mutants reveal that only specific lysine residues contribute to the effect of charge microsolvation. A compaction is only observed for one of the investigated mutants, in which the lysine has no proximate interaction partner. On the other hand when the lysine residues are involved in salt bridges, attachment of crown ethers has little effect on the structure. PMID:27494002

  6. A closure-independent Generalized Roe solver for free-surface, two-phase flows over mobile bed

    NASA Astrophysics Data System (ADS)

    Rosatti, Giorgio; Begnudelli, Lorenzo

    2013-12-01

    Several different natural phenomena can be studied in the framework of free-surface, two-phase flows over mobile bed. Mathematically, they can be described by the same set of highly nonlinear, hyperbolic nonconservative PDEs but they differ in the possible algebraic closure relations. These affect significantly the relevant eigenvalues and consequently, all finite-volume numerical methods based on upwind Godunov-type fluxes. In this work the Generalized Roe solver, introduced in [29] for the case of a specific closure, is reformulated in a complete closure-independent way. This gives the solver a quite general applicability to the class of problems previously mentioned. Moreover, the new method maintains all the desirable features shown by the original one: full two-dimensionality and exact well-balanceness. This result is made possible thanks to the development of a novel Multiple Averages (MAs) approach that allows a straightforward determination of the matrices required by the solver. Several tests show the capabilities of the proposed numerical strategy.

  7. Simultaneous Determination of Diosmin and Hesperidin in Pharmaceuticals by RPLC using Ionic Liquids as Mobile Phase Modifiers.

    PubMed

    Szymański, Marcin; Młynarek, Daria; Szymański, Arkadiusz; Matławska, Irena

    2016-01-01

    Diosmin and hesperidin are natural flavonoid glycosides found in various plant materials, mainly in citrus fruits in different concentrations. Diosmin for pharmaceutical use is obtained mainly semi-synthetically from hesperidin. Hesperidin often accompanies diosmin as a natural impurity in different pharmaceutical formulations; therefore, a simple, fast and precise method for the simultaneous assay of diosmin and hesperidin in pharmaceutical formulations has been developed to control their contents. Chromatographic resolution was performed using a column with C-18 packing and the following mobile phase: methanol/water (45:55, v/v) with 0.025% added didecyldimethylammonium lactate, which significantly affects retention, shortening analysis time and having a positive impact on the symmetry of resulting chromatographic peaks. The method shows linearity between 2.5 and 100 μg/mL, high repeatability (0.39 and 0.42% for diosmin and hesperidin, respectively) and accuracy of 96 to 102% for both the assayed compounds. Intraday and interday precision of the new method were less than RSD% 1, 2. The limit of detection of the assayed compounds is 2.5 and 1.2 μg/mL for diosmin and hesperidin, respectively. The method was tested on several pharmaceutical products available in Poland. PMID:27610154

  8. Selection of two reliable parameters to evaluate the impact of the mobile-phase composition on capillary electrochromatography performance with monolithic and particle-packed capillary columns.

    PubMed

    Progent, Frédéric; Augustin, Violaine; Tran, N Thuy; Descroix, Stéphanie; Taverna, Myriam

    2006-02-01

    Different models have been described in the literature to evaluate the total porosity of CEC columns: gravimetric, flow as well as conductivity-based methods. In this study, these models have been compared for two kinds of CEC columns: two mixed-mode silica particle stationary phases and different monolithic columns (acrylate or polystyrene divinylbenzene-based). The total porosities measured from the conductivity-based methods were lower than the total column porosities obtained by gravimetric or flow methods for all the investigated columns while the wide distribution of observed values shows that conductivity-based methods discriminate columns more efficiently with very different properties. We propose a conductivity-based method taking into account the actual length proposed by Horvath, to evaluate what we call an "actual electrokinetic" porosity (AEP). This parameter, based on electrokinetic theory only, affords the most consistent evaluation of porosity under experimental CEC conditions for the packed- and acrylate-based monolithic columns. To illustrate the potential of AEP and actual EOF for the estimation of the performances of a CEC system (stationary and mobile phases) we studied the influence of the mobile-phase composition on these parameters for CEC separations with an ammonium embedded packed stationary phase. The AEP and the actual electroosmotic mobility should allow a better understanding of the perfusive EOF and stationary-phase wettability. For neutral compounds (substituted phenols), AEP evaluation allowed us to predict the mobile-phase conditions able to enhance the efficiency while both AEP and actual EOF had to be considered in the case of peptide analysis.

  9. Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility.

    PubMed

    Eschauzier, Christian; Raat, Klaasjan J; Stuyfzand, Pieter J; De Voogt, Pim

    2013-08-01

    Human exposure to perfluorinated alkylated acids (PFAA) occurs primarily via the dietary intake and drinking water can contribute significantly to the overall PFAA intake. Drinking water is produced from surface water and groundwater. Waste water treatment plants have been identified as the main source for PFAA in surface waters and corresponding drinking water. However, even though groundwater is an important source for drinking water production, PFAA sources remain largely uncertain. In this paper, we identified different direct and indirect sources of PFAA to groundwater within the catchment area of a public supply well field (PSWF) in The Netherlands. Direct sources were landfill leachate and water draining from a nearby military base/urban area. Indirect sources were infiltrated rainwater. Maximum concentrations encountered in groundwater within the landfill leachate plume were 1.8 μg/L of non branched perfluorooctanoic acid (L-PFOA) and 1.2 μg/L of perfluorobutanoic acid (PFBA). Sum concentrations amounted to 4.4 μg/L total PFAA. The maximum concentration of ΣPFAA in the groundwater originating from the military camp was around 17 ng/L. Maximum concentrations measured in the groundwater halfway the landfill and the PWSF (15 years travel distance) were 29 and 160 ng/L for L-PFOA and PFBA, respectively. Concentrations in the groundwater pumping wells (travel distance >25 years) were much lower: 0.96 and 3.5 ng/L for L-PFOA and PFBA, respectively. The chemical signature of these pumping wells corresponded to the signature encountered in other wells sampled which were fed by water that had not been in contact with potential contaminant sources, suggesting a widespread diffuse contamination from atmospheric deposition.

  10. Effects of the number of fatty acid residues on the phase behaviors of decaglycerol fatty acid esters.

    PubMed

    Ai, Sakiko; Ishitobi, Masahiko

    2006-04-15

    The effects of the number of fatty acid residues (n) in decaglycerol fatty acid esters, i.e., decaglycerol laurates (abbreviated to (C11)nG10), on the phase behaviors of three laurate esters, (C11)1.9G10, (C11)2.7G10, and (C11)3.4G10, were investigated. The unreacted decaglycerol remaining in each ester was removed by liquid extraction before use. (C11)1.9G10 formed hexagonal liquid crystals in aqueous solutions, while (C11)2.7G10 and (C11)3.4G10, which are more hydrophobic than (C11)1.9G10, formed lamellar liquid crystals. The cloud point in aqueous solution was measured for mixtures of these three esters. The cloud phenomenon was observed when the weight ratio of hydrophilic groups to the total surfactant (WH/WS) was around 0.6. The cloud point shifted to a markedly higher temperature, even with a slight increase in the WH/WS ratio. The solubilization abilities of (C11)nG10 for the oils m-xylene and (R)-(+)-limonene were also examined. When the WH/WS ratio was between 0.60 and 0.64, (C11)nG10 formed microemulsions and lyotropic liquid crystals in the presence of water and the oils. These self-organized structures were stable, even above 90 degrees C. It is concluded that the phase behavior of (C11)nG10 are insensitive to temperature, but strongly dependent on both the WH/WS ratio and the number of fatty acid residues (n).

  11. Formation of organic acids from the gas-phase ozonolysis of terpinolene.

    PubMed

    Ma, Yan; Marston, George

    2009-06-01

    Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C(7)-diacids and three isomers of C(7)-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e.g. the branching ratio between the two hydroperoxide channels of the C(7)-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C(7-)CI were also obtained from measurements of the C(7) primary carbonyl product. PMID:19458821

  12. Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species.

    PubMed

    Sinha, Rajeev K; Scuderi, Debora; Maitre, Philippe; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2015-05-01

    The ion corresponding to protonated sulfurous acid, H3SO3(+), has been successfully delivered into the gas phase by electrospray ionization of the solution of a suitable precursor and an in-source fragmentation process. The neutral acid is a highly elusive molecule. However, its gas-phase basicity has been ascertained by means of a kinetic study of proton-transfer reactivity. The structure of the H3SO3(+) sampled ion has been probed by IRMPD spectroscopy in two complementary IR frequency ranges in conjunction with density functional theory calculations and found to conform to a trihydroxosulfonium ion. The characteristic IR signatures may aid in deciphering the presence of this species in extraterrestrial atmospheres. PMID:26263321

  13. Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species.

    PubMed

    Sinha, Rajeev K; Scuderi, Debora; Maitre, Philippe; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2015-05-01

    The ion corresponding to protonated sulfurous acid, H3SO3(+), has been successfully delivered into the gas phase by electrospray ionization of the solution of a suitable precursor and an in-source fragmentation process. The neutral acid is a highly elusive molecule. However, its gas-phase basicity has been ascertained by means of a kinetic study of proton-transfer reactivity. The structure of the H3SO3(+) sampled ion has been probed by IRMPD spectroscopy in two complementary IR frequency ranges in conjunction with density functional theory calculations and found to conform to a trihydroxosulfonium ion. The characteristic IR signatures may aid in deciphering the presence of this species in extraterrestrial atmospheres.

  14. Calculations of phase equilibria for mixtures of triglycerides, fatty acids, and their esters in lower alcohols

    NASA Astrophysics Data System (ADS)

    Stepanov, D. A.; Ermakova, A.; Anikeev, V. I.

    2011-01-01

    The objects of study were mixtures containing triglycerides and lower alcohols and also the products of the transesterification of triglycerides, glycerol and fatty acid esters. The Redlich-Kwong-Soave equation of state was used as a thermodynamic model for the phase state of the selected mixtures over wide temperature, pressure, and composition ranges. Group methods were applied to determine the critical parameters of pure substances and their acentric factors. The parameters obtained were used to calculate the phase diagrams and critical parameters of mixtures containing triglycerides and lower alcohols and the products of the transesterification of triglycerides, glycerol and fatty acid esters, at various alcohol/oil ratios. The conditions of triglyceride transesterification in various lower alcohols providing the supercritical state of reaction mixtures were selected.

  15. Study of the electroosmotic flow as a means to propel the mobile phase in capillary electrochromatography in view of further miniaturization of capillary electrochromatography systems.

    PubMed

    Szekely, Laszlo; Freitag, Ruth

    2005-05-01

    In this paper, we investigate the phenomenon of electroosmosis as a means to propel a mobile phase, in particular in view of an application in microfluidic systems, which are characterized by significantly smaller volumes of the reservoirs and the separation channels compared to conventional instrumentation. In the microfluidic chip, pH changes due to water electrolysis quickly showed an effect on the electroosmotic flow (EOF), which could be counteracted by either regularly exchanging or buffering the mobile phase. Surface treatment was of no effect in regard to EOF stabilization in empty channels but may have an influence in channels filled with a charged monolith. In fused-silica capillaries the EOF was generally found to decrease from 'naked' to surface-treated to monolith-filled capillaries. The EOF tended to be higher when an organic solvent (acetonitrile) was added to the mobile phase and could be further increased by substituting the water with equal amounts of methanol. In addition, the hydrostatic pressure exerted by the EOF was investigated. In a microfluidic chip with empty (cross-)channels such an effect could be responsible for a redirection of the flow. In capillaries partially filled with a noncharged (non-EOF-generating) monolith, a linear relationship could be established between the EOF created in the empty section of the capillary (apparent mobility) and the length of the monolith (backpressure). In capillaries partially filled with a charged (EOF-producing) monolith, flow inhomogeneities must be expected as a consequence of a superimposition of hydrodynamic pressure and EOF as mobile phase driving force.

  16. Phase separation behavior of fusidic acid and rifampicin in PLGA microspheres.

    PubMed

    Gilchrist, Samuel E; Rickard, Deborah L; Letchford, Kevin; Needham, David; Burt, Helen M

    2012-05-01

    The purpose of this study was to characterize the phase separation behavior of fusidic acid (FA) and rifampicin (RIF) in poly(d,l-lactic acid-co-glycolic acid) (PLGA) using a model microsphere formulation. To accomplish this, microspheres containing 20% FA with 0%, 5%, 10%, 20%, and 30% RIF and 20% RIF with 30%, 20% 10%, 5%, and 0% FA were prepared by solvent evaporation. Drug-polymer and drug-drug compatibility and miscibility were characterized using laser confocal microscopy, Raman spectroscopy, XRPD, DSC, and real-time video recordings of single-microsphere formation. The encapsulation of FA and RIF alone, or in combination, results in a liquid-liquid phase separation of solvent-and-drug-rich microdomains that are excluded from the polymer bulk during microsphere hardening, resulting in amorphous spherical drug-rich domains within the polymer bulk and on the microsphere surface. FA and RIF phase separate from PLGA at relative droplet volumes of 0.311 ± 0.014 and 0.194 ± 0.000, respectively, predictive of the incompatibility of each drug and PLGA. When coloaded, FA and RIF phase separate in a single event at the relative droplet volume 0.251 ± 0.002, intermediate between each of the monoloaded formulations and dependent on the relative contribution of FA or RIF. The release of FA and RIF from phase-separated microspheres was characterized exclusively by a burst release and was dependent on the phase exclusion of surface drug-rich domains. Phase separation results in coalescence of drug-rich microdroplets and polymer phase exclusion, and it is dependent on the compatibility between FA and RIF and PLGA. FA and RIF are mutually miscible in all proportions as an amorphous glass, and they phase separate from the polymer as such. These drug-rich domains were excluded to the surface of the microspheres, and subsequent release of both drugs from the microspheres was rapid and reflected this surface location.

  17. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.

    PubMed

    Yang, Sheng-Xiang; Liao, Bin; Li, Jin-tian; Guo, Tao; Shu, Wen-Sheng

    2010-08-01

    A revegetation program was established at an extreme acidic and metal-toxic pyrite/copper mine wasteland in Guangdong Province, PR China using a combination of four native grass species and one non-native woody species. It was continued and monitored for 2 y. The emphasis was on acidification, metal mobility and nutrient accumulation in the soil-plant system. Our results showed the following: (i) the acid-forming potential of the mine soils decreased steadily with time, which might be due to plant root-induced changes inhibiting the oxidization of sulphide minerals; (ii) heavy metal extractability (diethylene-triamine-pentaacetic acid-extractable Pb and Zn) in the soils increased with time despite an increase in soil pH, which might be attributed to soil disturbance and plant rhizospheric processes, as well as a consequence of the enhanced metal accumulation in plants over time; and (iii) the vegetation cover increased rapidly with time, and plant development accelerated the accumulation of major nutrients (organic matter, total and ammonium-N, and available P and K). The 2-y field experiment demonstrates that direct seeding/planting of native plant species in combination with lime and manure amelioration is a practical approach to the initial establishment of a self-sustaining vegetation cover on this metalliferous and sulphide-bearing mine wasteland. However, heavy metal accumulation in the soil-plant system should be of great concern, and long-term monitoring of ecological risk must be an integral part of such a restoration scheme. PMID:20580409

  18. Interaction of Gas Phase Oxalic Acid with Ammonia and its Atmospheric Implications

    SciTech Connect

    Peng, Xiu-Qiu; Liu, Yi-Rong; Huang, Teng; Jiang, Shuai; Huang, Wei

    2015-04-14

    Oxalic acid is believed to play an important role in the formation and growth of atmospheric organic aerosols. However, as a common organic acid, the understanding of the larger clusters formed by gas phase oxalic acid with multiple ammonia molecules is incomplete. In this work, the structural characteristics and thermodynamics of oxalic acid clusters with up to six ammonia molecules have been investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that oxalic acid forms relatively stable clusters with ammonia molecules, and that ionization events play a key role. The analyses of the thermodynamics and atmospheric relevance indicate that the heterodimer (H2C2O4)(NH3) shows an obvious relative concentration in the atmosphere, and thus likely participates in new particle formation. However, with increasing number of ammonia molecules, the concentration of clusters decreases gradually. Additionally, clusters of oxalic acid with ammonia molecules are predicted to form favorably in low temperature conditions and show high Rayleigh scattering intensities.

  19. Mobility of Transgenic Nucleic Acids and Proteins within Grafted Rootstocks for Agricultural Improvement

    PubMed Central

    Haroldsen, Victor M.; Szczerba, Mark W.; Aktas, Hakan; Lopez-Baltazar, Javier; Odias, Mar Joseph; Chi-Ham, Cecilia L.; Labavitch, John M.; Bennett, Alan B.; Powell, Ann L. T.

    2012-01-01

    Grafting has been used in agriculture for over 2000 years. Disease resistance and environmental tolerance are highly beneficial traits that can be provided through use of grafting, although the mechanisms, in particular for resistance, have frequently been unknown. As information emerges that describes plant disease resistance mechanisms, the proteins, and nucleic acids that play a critical role in disease management can be expressed in genetically engineered (GE) plant lines. Utilizing transgrafting, the combination of a GE rootstock with a wild-type (WT) scion, or the reverse, has the potential to provide pest and pathogen resistance, impart biotic and abiotic stress tolerance, or increase plant vigor and productivity. Of central importance to these potential benefits is the question of to what extent nucleic acids and proteins are transmitted across a graft junction and whether the movement of these molecules will affect the efficacy of the transgrafting approach. Using a variety of specific examples, this review will report on the movement of organellar DNA, RNAs, and proteins across graft unions. Attention will be specifically drawn to the use of small RNAs and gene silencing within transgrafted plants, with a particular focus on pathogen resistance. The use of GE rootstocks or scions has the potential to extend the horticultural utility of grafting by combining this ancient technique with the molecular strategies of the modern era. PMID:22645583

  20. Parallel transport of an organic acid by solid-phase and macropore diffusion in a weakly basic ion exchanger

    SciTech Connect

    Yoshida, Hiroyuki; Takatsuji; Wataru

    2000-04-01

    The parallel transport of an organic acid by solid-phase and macropore diffusion within a porous ion exchanger was studied by measuring equilibrium isotherms and uptake curves for adsorption of acetic acid and lactic acid on a weakly basic ion exchanger, DIAION WA30. Experimental adsorption isotherms were correlated by the Langmuir equation. The Langmuir equilibrium constant of acetic acid was close to that of lactic acid, and the saturation capacity of acetic acid was about 84% that of lactic acid. Intraparticle effective diffusivity D{sub eff} was determined using the homogeneous Fickian diffusion model. The value of D{sub eff} for acetic acid was about 1.5 times lactic acid. Because D{sub eff} increased with linearly increasing bulk phase concentration C{sub 0}, D{sub eff} was separated to the solid-phase diffusivity D{sub s} and the macropore diffusivity D{sub P} by applying the parallel diffusion model. The model agreed well with the experimental curves. The values of D{sub S} and D{sub P} for acetic acid were about 2 and 1.5 times those of lactic acid, respectively. The acetic acid and the lactic acid may be separated by the difference of the diffusion rates.

  1. EnEnvironmental Mobility of Pu(IV) in the Presence of Ethylenediaminetetraacetic Acid: Myth or Reality

    SciTech Connect

    Rai, Dhanpat; Moore, Dean A.; Rosso, Kevin M.; Felmy, Andrew R.; Bolton, Harvey

    2008-07-01

    Ethylenediaminetetracetic acid (EDTA), which was co-disposed with Pu at several U. S. Department of Energy sites, has been reported to enhance the solubility and transport of Pu. It is generally assumed that this enhanced transport of Pu in geologic environments is a result of complexation of Pu(IV) with EDTA. However, the fundamental bases for this assumption have never been fully explored. Whether EDTA can mobilize Pu(IV) in geologic environments is dependent on many factors, chief among them are not only the complexation constants of Pu with EDTA and dominant oxidation state and the nature of Pu solids, but also 1) the complexation constants of environmentally important metal ions (e.g. Fe, Al, Ca, Mg) that compete with Pu for EDTA and 2) EDTA interactions with geomedia (e.g., adsorption, biodegradation) that reduce effective EDTA concentrations available for complexation. Extensive studies over a large range of pH values (1 to 14) and EDTA concentrations (0.0001 to 0.01 M) as a function of time were conducted on the solubility of 2-line ferrihydrite (Fe(OH)3(s)), PuO2(am) in the presence of different concentrations of Ca ions, and mixtures of PuO2(am) and Fe(OH)3(s). The solubility data were interpreted using Pitzer’s ion-interaction approach to determine/validate the solubility product of Fe(OH)3(s), the complexation constants of Pu(IV)-EDTA and Fe(III)-EDTA, and to determine the affect of EDTA in solubilizing Pu(IV) from PuO2(am) in the presence of Fe(III) compounds and aqueous Ca concentrations. Predictions based on these extensive fundamental data show that environmental mobility of Pu as a result of Pu(IV)-EDTA complexation as reported/implied in the literature is a myth rather than the reality.

  2. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  3. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  4. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  5. Characterization and Acid-Mobilization Study of Iron-Containing Mineral Dust Source Materials

    SciTech Connect

    Cwiertny, David M.; Baltrusaitis, Jonas; Hunter, Gordon J.; Laskin, Alexander; Scherer, Michelle; Grassian, Vicki H.

    2008-03-04

    Processes that solubilize the iron in mineral dust aerosols may increase the amount of iron supplied to ocean surface waters, and thereby stimulate phytoplankton productivity. It was recently proposed that mixing of mineral dusts with SO2 and HNO3 produces extremely acidic environments that favor the formation of bioavailable Fe(II). Here, four authentic mineral dust source materials (Saudi Beach sand (SB), Inland Saudi sand (IS), Saharan Sand (SS) and China Loess (CL)) and one commercial reference material (Arizona Test Dust (AZTD)) were spectroscopically characterized, and their dissolution at pH 1 was examined in aqueous batch systems. Spectroscopic analyses indicated that the bulk and near-surface region of all samples possessed similar elemental compositions and that iron was unevenly distributed among dust 10 particles. Mössbauer spectroscopy revealed Fe(III) in all samples, although SB, CL and AZTD also contained appreciable Fe(II). Both Fe(II) and Fe(III) were primarily substituted into aluminosilicates, although CL, AZTD and IS also contained Fe(III) oxides. Total iron solubility (defined as the summed concentration of dissolved Fe(II) and Fe(III) measured after 24 h) ranged 14 between 4-12% of the source materials’ iron content, but did not scale with either the surface area or the iron content of the samples. This suggests that other factors such as iron speciation and mineralogy may play a key role in iron solubility. Also, the elevated nitrate concentrations encountered from nitric acid at pH 1 suppressed dissolution of Fe(II) from AZTD, CL and SB particles, which we propose results from the surface-mediated, non-photochemical reduction of nitrate by Fe(II).

  6. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. PMID:27443453

  7. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams.

  8. An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor.

    PubMed

    Ma, Siwei; Liao, Qingliang; Liu, Hanshuo; Song, Yu; Li, Ping; Huang, Yunhua; Zhang, Yue

    2012-10-21

    An excellent biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor (HEMT) was used to detect lactic acid. Due to the new structure, addition of the Si-doped GaAs cap layer, the HEMT biosensor could detect a wide range of lactic acid concentrations from 0.03 nM to 300 mM. The novel biosensor exhibiting good performance along with fast response, high sensitivity, wide detection range, and long-term stability, can be integrated with a commercially available transmitter to realize lactic acid detection. PMID:22951602

  9. An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Ma, Siwei; Liao, Qingliang; Liu, Hanshuo; Song, Yu; Li, Ping; Huang, Yunhua; Zhang, Yue

    2012-09-01

    An excellent biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor (HEMT) was used to detect lactic acid. Due to the new structure, addition of the Si-doped GaAs cap layer, the HEMT biosensor could detect a wide range of lactic acid concentrations from 0.03 nM to 300 mM. The novel biosensor exhibiting good performance along with fast response, high sensitivity, wide detection range, and long-term stability, can be integrated with a commercially available transmitter to realize lactic acid detection.

  10. Calculation of the hole mobilities of the three homopolynucleotides, poly(guanilic acid), poly(adenilic acid), and polythymidine in the presence of water and Na+ ions.

    PubMed

    Bende, Attila; Bogár, Ferenc; Beleznay, Ferenc; Ladik, János

    2008-12-01

    Recent high resolution x-ray diffraction experiments have determined the structure of nucleosomes. In it 147 base pair long DNA B superhelix is wrapped around the eight nucleohistone proteins. They have found that there are many hydrogen-bonds (H-bonds) between the negative sites phosphate (PO4-) groups DNA, and first of all there is the positively charged lysine and arginine side chains of the histones. This means that there is a non-negligible charge transfer from DNA to the proteins causing a hole current in DNA and an electronic one in the proteins. If the relative positions of the two macromolecules change due to some external disturbances, the DNA moves away from the protein and can be read. If this happens simultaneously at several nucleosomes and at many places in chromatin (built up from the nucleosomes), undesired genetic information becomes readable. This final end can cause the occurrence of oncoproteins at an undesired time point which most probably disturbs the self-regulation of a differentiated cell. The connection of these chain of events with the initiation of cancer is obvious. To look into the details of these events we have used the detailed band structures of the four homopolynucleotides in the presence of water and natrium (Na+) ions calculated previously with the help of the ab initio Hartree-Fock crystal orbital method. We have found that in the case of three homopolynucleotides the width of their valence band is broad enough (approximately 10 times broader than the thermal energy at 300K) for the application of the simple deformation potential approximation for transport calculations. With the help of this we have determined the hole mobilities at 300K and 180K of poly(guanilic acid), poly(adenilic acid), and polythimidine (polycytidine has a too narrow valence band for the application of the deformation potential method). The obtained mobilities are large enough to allow Bloch-type conduction in these systems. At the end of the paper we

  11. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    SciTech Connect

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2014-09-15

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  12. Use of oleic-acid functionalized nanoparticles for the magnetic solid-phase microextraction of alkylphenols in fruit juices using liquid chromatography-tandem mass spectrometry.

    PubMed

    Viñas, Pilar; Pastor-Belda, Marta; Torres, Aitor; Campillo, Natalia; Hernández-Córdoba, Manuel

    2016-05-01

    Magnetic nanoparticles of cobalt ferrite with oleic acid as the surfactant (CoFe2O4/oleic acid) were used as sorbent material for the determination of alkylphenols in fruit juices. High sensitivity and specificity were achieved by liquid chromatography and detection using both diode-array (DAD) and electrospray-ion trap-tandem mass spectrometry (ESI-IT-MS/MS) in the selected reaction monitoring (SRM) mode of the negative fragment ions for alkylphenols (APs) and in positive mode for ethoxylate APs (APEOs). The optimized conditions for the different variables influencing the magnetic separation procedure were: mass of magnetic nanoparticles, 50mg, juice volume, 10mL diluted to 25mL with water, pH 6, stirring for 10min at room temperature, separation with an external neodymium magnet, desorption with 3mL of methanol and orbital shaking for 5min. The enriched organic phase was evaporated and reconstituted with 100µL acetonitrile before injecting 30µL into a liquid chromatograph with a mobile phase composed of acetonitrile/0.1% (v/v) formic acid under gradient elution. Quantification limits were in the range 3.6 to 125ngmL(-1). The recoveries obtained were in the 91-119% range, with RSDs lower than 14%. The ESI-MS/MS spectra permitted the correct identification of both APs and APEOs in the fruit juice samples. PMID:26946030

  13. Mobility of Po and U-isotopes under acid mine drainage conditions: an experimental approach with samples from Río Tinto area (SW Spain).

    PubMed

    Barbero, L; Gázquez, M J; Bolívar, J P; Casas-Ruiz, M; Hierro, A; Baskaran, M; Ketterer, M E

    2014-12-01

    Under acid mine drainage (AMD) conditions, the solubilities and mobilities of many elements are vastly different from conditions prevailing in most natural waters. Studies are underway in the Río Tinto area (Iberian Pyrite Belt), in order to understand the behavior and mobility of long-lived U-series radionuclides under AMD conditions. A set of leaching experiments utilizing typical country rocks from the Tinto River basin, waste rock pile composite materials, iron-rich riverbed sediments and gossan (weathered naturally rock) were performed towards this purpose. Initial leaching experiments using distilled water kept in contact with solid material for 300, 100, 50 and 1 h resulted in very low concentrations of U with (234)U/(238)U activity ratios close to equilibrium and activity concentrations of (210)Po < 0.03 mBq/g. Leaching experiments performed with sulfuric acid media (0.1 and 0.01 M), and contact times between the solid and solution for 24 h were conducted to quantify the amount of U-isotopes and (210)Po leached, and the radioactive disequilibria generated between the radionuclides in the leachate. These experiments show that Po mobility in acidic conditions (pH around 1-2) is very low, with (210)Po activity in the leachate to be 6% in average for the solid sample. By contrast, mobility of U-isotopes is higher than that of Po, around 1.2%.

  14. Mobility of Po and U-isotopes under acid mine drainage conditions: an experimental approach with samples from Río Tinto area (SW Spain).

    PubMed

    Barbero, L; Gázquez, M J; Bolívar, J P; Casas-Ruiz, M; Hierro, A; Baskaran, M; Ketterer, M E

    2014-12-01

    Under acid mine drainage (AMD) conditions, the solubilities and mobilities of many elements are vastly different from conditions prevailing in most natural waters. Studies are underway in the Río Tinto area (Iberian Pyrite Belt), in order to understand the behavior and mobility of long-lived U-series radionuclides under AMD conditions. A set of leaching experiments utilizing typical country rocks from the Tinto River basin, waste rock pile composite materials, iron-rich riverbed sediments and gossan (weathered naturally rock) were performed towards this purpose. Initial leaching experiments using distilled water kept in contact with solid material for 300, 100, 50 and 1 h resulted in very low concentrations of U with (234)U/(238)U activity ratios close to equilibrium and activity concentrations of (210)Po < 0.03 mBq/g. Leaching experiments performed with sulfuric acid media (0.1 and 0.01 M), and contact times between the solid and solution for 24 h were conducted to quantify the amount of U-isotopes and (210)Po leached, and the radioactive disequilibria generated between the radionuclides in the leachate. These experiments show that Po mobility in acidic conditions (pH around 1-2) is very low, with (210)Po activity in the leachate to be 6% in average for the solid sample. By contrast, mobility of U-isotopes is higher than that of Po, around 1.2%. PMID:24308958

  15. Normal phase LC coupled with direct analysis in real time MS for the chiral analysis of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and jasmonic acid.

    PubMed

    Chang, Cuilan; Zhou, Zhigui; Yang, Youyou; Han, Yehua; Bai, Yu; Zhao, Meiping; Liu, Huwei

    2012-11-01

    Normal phase chiral LC (NPLC) has been proved to be powerful and efficient for chiral separation. However, the combination of NPLC with ESI or atmospheric pressure chemical ionization MS is restricted by the poor ionization efficiency and thermal fragmentations of analytes to some extent. Direct analysis in real time MS (DART-MS) is an ambient ionization technique that shows high ionization efficiency of the analytes in the normal phase mobile phase. In this work, we coupled chiral NPLC to DART-MS for the chiral qualitative and quantitative analysis of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and jasmonic acid enantiomers. Satisfactory results for the enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol operating in the positive mode were obtained in terms of linearity (2.5-250 μg/mL, R(2) , 0.999-1.000) and repeatability (25 μg/mL, RSDs, 4.7-5.6%). Moreover, chiral NPLC-DART-MS resulted in the simultaneous chiral separation and detection of jasmonic acid enantiomers, which are very difficult to be analyzed by NPLC-ESI-MS and NPLC-APCI-MS. Compared with the coupled techniques of NPLC-ESI-MS and NPLC-APCI-MS, NPLC-DART-MS showed advantages in increasing the ionization efficiency and reducing the in-source thermal fragmentation of analytes.

  16. The singular gas-phase structure of 1-aminocyclopropanecarboxylic acid (Ac3c).

    PubMed

    Jiménez, Ana I; Vaquero, Vanesa; Cabezas, Carlos; López, Juan C; Cativiela, Carlos; Alonso, José L

    2011-07-13

    The natural nonproteinogenic α-amino acid 1-aminocyclopropanecarboxylic acid (Ac(3)c) has been vaporized by laser ablation and studied in the gas phase by molecular-beam Fourier transform microwave spectroscopy. Comparison of the experimental rotational and (14)N nuclear quadrupole coupling constants with the values predicted ab initio for these parameters has allowed the unambiguous identification of three Ac(3)c conformers differing in the hydrogen bonding pattern. Two of them resemble those characterized before for the coded aliphatic α-amino acids. Remarkably, a third conformer predicted to be energetically accessible for all of these amino acids but never observed (the so-called "missing conformer") has been found for Ac(3)c, close in energy to the global minimum. This is the first time that such a conformer, stabilized by an N-H···O(H) hydrogen bond, is detected in the rotational spectrum of a gaseous α-amino acid with a nonpolar side chain. The conjugative interaction established between the cyclopropane ring and the adjacent carbonyl group seems to be responsible for the unique conformational properties exhibited by Ac(3)c.

  17. Kinetic study of esterification of sulfuric acid with alcohols in aerosol bulk phase

    NASA Astrophysics Data System (ADS)

    Li, J.; Jang, M.

    2013-09-01

    In this study, we hypothesize that the formation of organosulfates through the reactions between sulfuric acid and alcohols in the aerosol bulk phase is more efficient than that in solution chemistry. To prove this hypothesis, the kinetics of the organosulfate formation was investigated for both aliphatic alcohol with single OH group (e.g., 1-heptanol) and the multialcohols ranging from semivolatiles (e.g., hydrated-glyoxal and glycerol) to nonvolatiles (e.g., sucrose) using analytical techniques directly monitoring aerosol bulk phase. Both the forward (k1) and the backward (k-1) reaction rate constants of organosulfate formation via the particle phase esterification of 1-heptanol with sulfuric acid were estimated using a Fourier Transform Infrared (FTIR) spectrometer equipped with a flow chamber under varying humidities. Both k1 and k-1 are in orders of 10-3 L mol-1 min-1, which are three orders of magnitude higher than the reported values obtained in solution chemistry. The formation of organosulfate in the H2SO4 aerosol internally mixed with multialcohols was studied by measuring the proton concentration of the aerosol collected on the filter using a newly developed Colorimetry integrated with a Reflectance UV-Visible spectrometer (C-RUV). The formation of organosulfate significantly decreases aerosol acidity due to the transformation of H2SO4 into dialkylsulfates. The forward reaction rate constants for the dialkylsulfate formation in the multialcohol-H2SO4 aerosols were also three orders of magnitude greater than the reported values in solution chemistry. The water content (MH2O) in the multialcohol-H2SO4 particle was monitored using the FTIR spectrometer. A large reduction of MH2O accords with the high yield of organosulfate in aerosol. Based on this study, we conclude that organosulfate formation in atmospheric aerosol, where both alcohols and sulfuric acid are found together, is significant.

  18. Application of solid phase microextraction for quantitation of polyunsaturated fatty acids in biological fluids.

    PubMed

    Birjandi, Afsoon Pajand; Mirnaghi, Fatemeh Sadat; Bojko, Barbara; Wąsowicz, Marcin; Pawliszyn, Janusz

    2014-12-16

    Development of a straightforward strategy for simultaneous quantitative analysis of nonesterified fatty acids (NEFA) species in biofluids is a challenging task because of the extreme complexity of fatty acid distribution in biological matrices. In this study, we present a direct immersion solid phase microextraction method coupled to a liquid chromatography-mass spectrometry platform (DI-SPME- HPLC-ESI -MS) for determination of unconjugated fatty acids (FA) in fish and human plasma. The proposed method was fully validated according to bioanalytical method validation guidelines. The LOD and LOQ were in the range of 0.5-2 and 5-12 ng/mL, respectively, with a linear dynamic range of 100 fold for each compound. Absolute and relative matrix effects were comprehensively evaluated and found to be in the acceptable range of 91-116%. The affinity constant (Ka) of individual FAs to protein albumin was determined to be 9.2 × 10(4) to 4.3 × 10(5) M(-1). The plasma protein binding (PPB%) was calculated and found to be in the range of 98.0-99.7% for different polyunsaturated fatty acids (PUFAs). The PUFAs under study were found at a high concentration range in fish plasma, whereas only a few were within quantification range in control human plasma. The method was successfully applied for monitoring PUFA changes during the operation in plasma samples obtained from patients undergoing cardiac surgery with the use of cardiopulmonary bypass (CPB). The most significant contribution induced by surgery was noticed in the concentration level of α-linolenic acid (18:3, ALA), arachidonic acid (20:4, AA), and docosahexanoic acid (22:6, DHA) soon after administration of CPB in all cases. PMID:25403310

  19. Defect-mediated relaxation in the random tiling phase of a binary mixture: Birth, death and mobility of an atomic zipper

    SciTech Connect

    Tondl, Elisabeth; Ramsay, Malcolm; Harrowell, Peter; Widmer-Cooper, Asaph

    2014-03-14

    This paper describes the mechanism of defect-mediated relaxation in a dodecagonal square-triangle random tiling phase exhibited by a simulated binary mixture of soft discs in 2D. We examine the internal transitions within the elementary mobile defect (christened the “zipper”) that allow it to move, as well as the mechanisms by which the zipper is created and annihilated. The structural relaxation of the random tiling phase is quantified and we show that this relaxation is well described by a model based on the distribution of waiting times for each atom to be visited by the diffusing zipper. This system, representing one of the few instances where a well defined mobile defect is capable of structural relaxation, can provide a valuable test case for general theories of relaxation in complex and disordered materials.

  20. Defect-mediated relaxation in the random tiling phase of a binary mixture: Birth, death and mobility of an atomic zipper

    NASA Astrophysics Data System (ADS)

    Tondl, Elisabeth; Ramsay, Malcolm; Harrowell, Peter; Widmer-Cooper, Asaph

    2014-03-01

    This paper describes the mechanism of defect-mediated relaxation in a dodecagonal square-triangle random tiling phase exhibited by a simulated binary mixture of soft discs in 2D. We examine the internal transitions within the elementary mobile defect (christened the "zipper") that allow it to move, as well as the mechanisms by which the zipper is created and annihilated. The structural relaxation of the random tiling phase is quantified and we show that this relaxation is well described by a model based on the distribution of waiting times for each atom to be visited by the diffusing zipper. This system, representing one of the few instances where a well defined mobile defect is capable of structural relaxation, can provide a valuable test case for general theories of relaxation in complex and disordered materials.

  1. [The resolution of racemic sec-phenethyl alcohol on cellulose tribenzoate-based CSP: influence of different alcohols in the mobile phase].

    PubMed

    Wang, L; Lü, S; Gao, P; Li, S

    1999-07-01

    Several primary and secondary alcohols (ethanol, 1-propanol, 2-propanol, 1-butanol) were used as the mobile phase components separately, to investigate their effects on the capacity factor and stereoselectivity of sec-phenethyl alcohol enantiomers on cellulose tribenzoate-based CSP. The chiral recognition mechanism for the enantiomeric aromatic alcohols studied may involve: (1) the aromatic portion of the solute may insert into a chiral cavity of the CSP through a hydrogen bonding interaction between the solute's alcoholic hydrogen and the ester carbonyl group on the CSP; (2) the mobile phase modifiers (various alcohols) compete with the solutes for chiral, as well as achiral, binding sites on the CSP; (3) the structure of the modifier has some effect on stereoselectivity through an alteration of the steric environment of the chiral cavity.

  2. Amino Acids Involved in Polyphosphate Synthesis and Its Mobilization Are Distinct in Polyphosphate Kinase-1 from Mycobacterium tuberculosis

    PubMed Central

    Mittal, Payal; Karthikeyan, Subramanian; Chakraborti, Pradip K.

    2011-01-01

    Background In bacteria polyphosphates (poly-P) are involved in cellular metabolism and development especially during stress. The enzyme, principally involved in polyphosphate biosynthesis and its mobilization leading to generation of NTPs, is known as polyphosphate kinase (PPK). Principal Findings Among two genes of polyphosphate kinases present in Mycobacterium tuberculosis, we cloned and expressed PPK1 in Escherichia coli as histidine-tagged protein. This ∼86 kDa protein is capable of autophosphorylation and synthesis of poly-P as well as NTP. Among 22 conserved histidine residues, we found only His-491 is autophosphorylated and crucial for any enzymatic activity. Substitution of His-510 caused mPPK1 protein deficient but not defective in autophosphorylation, thereby contrary to earlier reports negating any role of this residue in the process. However, mutation of His-510 with either Ala or Gln affected ATP or poly-P synthesis depending on the substitution; while such effects were severe with H510A but mild with H510Q. Furthermore, mPPK1 also renders auxiliary nucleotide diphosphate kinase function by synthesizing virtually all NTPs/dNTPs from their cognate NDPs/dNDPs by utilizing poly-P as the phosphate donor albeit with varied efficiency. To assess the influence of other catalytic domain residues of mPPK1 towards its functionality, we designed mutations based on E. coli PPK1 crystal structure since it owes 68% amino acid sequence similarity with mPPK1. Interestingly, our results revealed that mutations in mPPK1 affecting poly-P synthesis always affected its ATP synthesizing ability; however, the reverse may not be true. Conclusions/Significance We conclude that amino acid residues involved in poly-P and ATP synthesizing activities of mPPK1 are distinct. Considering conserved nature of PPK1, it seems our observations have broader implications and not solely restricted to M. tuberculosis only. PMID:22110640

  3. X-ray diffraction study of a recently identified phase transition in fatty acid Langmuir monolayers

    SciTech Connect

    Durbin, M.K.; Malik, A.; Ghaskadvi, R.; Dutta, P. ); Shih, M.C. ); Zschack, P. )

    1994-02-17

    Using Brewster angle microscopy to study fatty acid Langmuir monolayers, Overbeck and Mobius (J. Phys. Chem. 1993, 97, 7999) have observed changes of texture indicating a new phase boundary not visible in monolayer isotherms. We have studied Langmuir monolayers of CH[sub 3](CH[sub 2])[sub 17]COOH at 30[degrees]C using X-ray diffraction. We find that the monolayer undergoes a first-order phase transition from the known L[sub 2] phase in which molecules tilt toward a nearest neighbor to a phase with tilt toward a next-nearest neighbor. Both before and after the transition, the structures are hexagonal in the plane perpendicular to the molecules. Neither the intermolecular spacing in this plane ([approx] 4.85 [angstrom], close to that seen in the Rotator II phase) nor the tilt magnitude has an observable discontinuity at this transition; only the tilt direction changes. As a result, the isotherm area/molecule is also continuous across the transition. 10 refs., 5 figs.

  4. The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy

    2012-12-28

    A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed).

  5. Improvement of Nicotinic Acid and Nicotinamide Analysis in Meats and Meat Products by HPLC and LC-MS/MS with Solid-Phase Extraction.

    PubMed

    Hiki, Asako; Yamajima, Yukiko; Uematsu, Yoko

    2016-01-01

    A method for nicotinic acid (NA) and nicotinamide (NAA) analysis in meats was developed. NA and NAA were extracted from meats or meat products with metaphosphate aqueous solution. The extract was cleaned up with an Oasis MCX cartridge. The cartridge was washed with 2% acetic acid (v/v) and acetic acid-methanol solution. NA and NAA were eluted with ammonia-methanol solution. NA and NAA in the eluate were chromatographed on a Scherzo SM-C18 (3.0×150 mm, 3.0 μm) column with 20 mmol/L ammonium acetate containing 0.1% acetic acid-acetonitrile (97 : 3) as a mobile phase and were monitored at 261 nm. Quantification was performed by LC and LC-MS/MS. Calibration curves showed high linearity (correlation coefficient>0.998) between 1-25 μg/mL for LC and LC-MS/MS. Recoveries were 84-108% (CV≦5.8%) by HPLC and 79-105% (CV≦9.0%) by LC-MS/MS. The limit of quantitation for NA was 0.005-0.01 g/kg and that for NAA was 0.01-0.02 g/kg. PMID:27558227

  6. Improvement of Nicotinic Acid and Nicotinamide Analysis in Meats and Meat Products by HPLC and LC-MS/MS with Solid-Phase Extraction.

    PubMed

    Hiki, Asako; Yamajima, Yukiko; Uematsu, Yoko

    2016-01-01

    A method for nicotinic acid (NA) and nicotinamide (NAA) analysis in meats was developed. NA and NAA were extracted from meats or meat products with metaphosphate aqueous solution. The extract was cleaned up with an Oasis MCX cartridge. The cartridge was washed with 2% acetic acid (v/v) and acetic acid-methanol solution. NA and NAA were eluted with ammonia-methanol solution. NA and NAA in the eluate were chromatographed on a Scherzo SM-C18 (3.0×150 mm, 3.0 μm) column with 20 mmol/L ammonium acetate containing 0.1% acetic acid-acetonitrile (97 : 3) as a mobile phase and were monitored at 261 nm. Quantification was performed by LC and LC-MS/MS. Calibration curves showed high linearity (correlation coefficient>0.998) between 1-25 μg/mL for LC and LC-MS/MS. Recoveries were 84-108% (CV≦5.8%) by HPLC and 79-105% (CV≦9.0%) by LC-MS/MS. The limit of quantitation for NA was 0.005-0.01 g/kg and that for NAA was 0.01-0.02 g/kg.

  7. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid

    PubMed Central

    Choi, Hyong Woo; Manohar, Murli; Manosalva, Patricia; Tian, Miaoying; Moreau, Magali; Klessig, Daniel F.

    2016-01-01

    Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor. PMID:27007252

  8. Activation of Plant Innate Immunity by Extracellular High Mobility Group Box 3 and Its Inhibition by Salicylic Acid.

    PubMed

    Choi, Hyong Woo; Manohar, Murli; Manosalva, Patricia; Tian, Miaoying; Moreau, Magali; Klessig, Daniel F

    2016-03-01

    Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.

  9. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.

    PubMed

    Shimada, T; Morgenroth, E; Tandukar, M; Pavlostathis, S G; Smith, A; Raskin, L; Kilian, R E

    2011-01-01

    The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production

  10. Fatty-acid monolayers at the nematic/water interface: phases and liquid-crystal alignment.

    PubMed

    Price, Andrew D; Schwartz, Daniel K

    2007-02-01

    The two-dimensional (2D) phases of fatty-acid monolayers (hexadecanoic, octadecanoic, eicosanoic, and docosanoic acids) have been studied at the interface of a nematic liquid crystal (LC) and water. When observed between crossed polarizers, the LC responds to monolayer structure owing to mesoscopic alignment of the LC by the adsorbed molecules. Similar to Langmuir monolayers at the air/water interface, the adsorbed monolayer at the nematic/water interface displays distinct thermodynamic phases. Observed are a 2D gas, isotropic liquid, and two condensed mesophases, each with a characteristic anchoring of the LC zenithal tilt and azimuth. By varying the monolayer temperature and surface concentration we observe reversible first-order phase transitions from vapor to liquid and from liquid to condensed. A temperature-dependent transition between two condensed phases appears to be a reversible swiveling transition in the tilt azimuth of the monolayer. Similar to monolayers at the air/water interface, the temperature of the gas/liquid/condensed triple-point temperature increased by about 10 degrees C for a two methylene group increase in chain length. However, the absolute value of the triple-point temperatures are depressed by about 40 degrees C compared to those of analogous monolayers at the air/water interface. We also observe a direct influence by the LC layer on the mesoscopic and macroscopic structure of the monolayer by analyzing the shapes and internal textures of gas domains in coexistence with a 2D liquid. An effective anisotropic line tension arises from elastic forces owing to deformation of the nematic director across phase boundaries. This results in the deformation of the domain from circular to elongated, with a distinct singularity. The LC elastic energy also gives rise to transition zones displaying mesoscopic realignment of the director tilt or azimuth between adjacent regions with a sudden change in anchoring.

  11. Solid-Phase Formation Of Isovaline, A Non-Biological, Meteoritic Amino Acid

    NASA Astrophysics Data System (ADS)

    Hudson, Reggie L.; Lewis, A. S.; Moore, M. H.; Dworkin, J. P.; Glavin, D. P.

    2007-10-01

    Among the Murchison (CM) meteoritic amino acids, isovaline stands out as being non-biological (nonprotein) and having a high abundance. Approximately equal amounts of D- and L-isovaline have been reported in CM meteorites, but the molecule's structure appears to prohibit racemization in aqueous solutions. While it is possible that isovaline could be made by the oft-studied Strecker reaction, laboratory experiments have seldom been able to produce this molecule from realistic molecular precursors. Recently we have investigated the low-temperature solid-phase chemistry of isovaline with an eye toward the molecule's formation, its stability, and the interconversion of its D- and L-enantiomers. Ion-irradiated isovaline-containing ices were examined by IR spectroscopy and highly-sensitive LC/ToF-MS methods to assess both amino acid destruction and racemization. Samples were studied both in the presence and absence of water-ice, and the destruction of isovaline was measured as a function of radiation dose. In addition, we have continued our earlier work on solid-phase amino acid formation, extending it to cover isovaline. In this presentation we will report the results of these newer investigations. This work was supported by a grant to the Goddard Center for Astrobiology through the NASA Astrobiology Institute. AL was supported by an award from the Summer Undergraduate Internship in Astrobiology program.

  12. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  13. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG. PMID:26353580

  14. Effects of organic phase, fermentation media, and operating conditions on lactic Acid extraction.

    PubMed

    Hossain, Md Monwar; Maisuria, J L

    2008-01-01

    Lactic acid has extensive uses in the food, pharmaceutical, cosmetic and chemical industry. Lately, its use in producing biodegradable polymeric materials (polylactate) makes the production of lactic acid from fermentation broths very important. The major part of the production cost accounts for the cost of separation from very dilute reaction media where productivity is low as a result of the inhibitory nature of lactic acid. The current method of extraction/separation is both expensive and unsustainable. Therefore, there is great scope for development of alternative technology that will offer efficiency, economic, and environmental benefits. One of the promising technologies for recovery of lactic acid from fermentation broth is reactive liquid-liquid extraction. In this paper the extraction and recovery of lactic acid based on reactive processes is examined and the performance of a hydrophobic microporous hollow-fiber membrane module (HFMM) is evaluated. First, equilibrium experiments were conducted using organic solutions consisting of Aliquat 336/trioctylamine (as a carrier) and tri-butyl phosphate (TBP)/sunflower oil (as a solvent) The values of the distribution coefficient were obtained as a function of feed pH, composition of the organic phase (ratio of carrier to solvent), and temperature (range 8-40 degrees C). The optimum extraction was obtained with the organic phase consisting of a mixture of 15 wt % tri-octylamine (TOA) and 15% Aliquat 336 and 70% solvent. The organic phase with TBP performed best but is less suitable because of its damaging properties (toxicity and environmental impact) and cost. Sunflower oil, which performed moderately, can be regarded as a better option as it has many desirable characteristics (nontoxic, environment- and operator-friendly) and it costs much less. The percentage extraction was approximately 33% at pH 6 and at room temperature (can be enhanced by operating at higher temperatures) at a feed flow rate of 15-20 L

  15. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-01

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  16. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions.

    PubMed

    Peng, Zhou; Pilo, Alice L; Luongo, Carl A; McLuckey, Scott A

    2015-10-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  17. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-06-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward's reagent K (wrk) in both positive and negative mode. Woodward's reagent K, N-ethyl-3-phenylisoxazolium-3'-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide.

  18. [Intersection point rule for the retention value with mobile phase composition and boiling point of the homologues and chlorobenzenes in soil leaching column chromatography].

    PubMed

    Xu, F; Liang, X; Lin, B; Su, F

    1999-03-01

    Based on the linear retention equation of the logarithm of the capacity factor (logk') vs. the methanol volume fraction (psi) of aqueous binary mobile phase in soil leaching column chromatography, the intersection point rule for the logk' of homologues and weak polar chlorobenzenes, with psi, as well as with boiling point, has been derived due to existence of the similar interactions among solutes of the same series, stationary phase (soil) and eluent (methanol-water). These rules were testified by experimental data of homologues (n-alkylbenzenes, methylbenzenes) and weak polar chlorobenzenes.

  19. Investigation of the structure-selectivity relationships and van't Hoff analysis of chromatographic stereoisomer separations of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on Cinchona alkaloid-based chiral stationary phases.

    PubMed

    Ilisz, István; Gecse, Zsanett; Lajkó, Gyula; Nonn, Melinda; Fülöp, Ferenc; Lindner, Wolfgang; Péter, Antal

    2015-03-01

    The enantiomers of four unusual, rather rigid isoxazoline-fused 2-aminocyclopentanecarboxylic acids were directly separated on a quinine- or a quinidine-based zwitterionic ion-exchanger as chiral selector. The effects of the mobile phase composition, the structures of the analytes and temperature on the separations were investigated. Experiments were performed at constant mobile phase composition in the temperature range 10-50°C to study the effects of temperature, and thermodynamic parameters were calculated from plots of ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantiomer separations were in most cases predominantly enthalpy-driven, but entropically-driven separations were also observed. The sequence of elution of the enantiomers was determined in all cases.

  20. Simultaneous determination of fangchinoline and tetrandrine in Stephania tetrandra S. Moore by using 1-alkyl-3-methylimidazolium-based ionic liquids as the RP-HPLC mobile phase additives.

    PubMed

    Tang, Yan; Sun, Ailing; Liu, Renmin; Zhang, Yongqing

    2013-03-12

    A reversed phase high performance liquid chromatography (RP-HPLC) method for simultaneous determination of fangchinoline (FAN) and tetrandrine (TET) in Stephania tetrandra S. Moore was established by using 1-hexyl-3-methylimidazolium tetrafluoroborate as the mobile phase additives in this paper. Four types of 1-alkyl-3-methylimidazolium-based ionic liquids (ILs) were used as additives of the mobile phase to separate FAN and TET by RP-HPLC. The effects of the length of the alkyl group on the imidazolium ring and its counterion, the concentrations of IL and the pH of the mobile phase, which influenced the chromatographic behaviors of FAN and TET, were investigated in detail. The linearity, sensitivity, accuracy and repeatability of the proposed method were also investigated. The probable mechanism of the separation with ILs as the mobile phase additives was explored and discussed. PMID:23452799

  1. Effect of solvent strength and temperature on retention for a polar-endcapped, octadecylsiloxane-bonded silica stationary phase with methanol-water mobile phases.

    PubMed

    Kiridena, Waruna; Poole, Colin F; Koziol, Wladyslaw W

    2004-12-10

    Synergi Hydro-RP is a new type of polar-endcapped, octadecylsiloxane-bonded silica packing for reversed-phase liquid chromatography. Its retention properties as a function of solvent strength and temperature are evaluated from the change in retention factors over the composition range (0-70% v/v methanol) and temperature range (25-65 degrees C) using the solvation parameter model and response surface methodologies. The main factors that affect retention are solute size and hydrogen-bond basicity, with minor contributions from solute hydrogen-bond acidity, dipole-type and electron lone pair interactions. Within the easily accessible range for both temperature and solvent strength, the ability to change selectivity is much greater for solvent strength than temperature. Also, a significant portion of the effect of increasing temperature is to reduce retention without changing selectivity. Response surfaces for the system constants are smooth and non-linear, except for cavity formation and dispersion interactions (v system constant), which is linear. Modeling of the response surfaces suggests that solvent strength and temperature are not independent factors for the b, s and e system constants and for the model intercept (c term). PMID:15628160

  2. A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry.

    PubMed

    Bragg, William; Shamsi, Shahab A

    2012-12-01

    The work presented here demonstrates the incorporation of vinylbenzyl trimethylammonium (VBTA) as a novel positively charged achiral co-monomer to a glycidyl methacrylate-beta cyclodextrin (GMA/β-CD) based monolith, providing anion exchange sites with reversed electroosmotic flow (EOF) for capillary electrochromatography (CEC). The monolithic phases, GMA/β-CD-VBTA and GMA/β-CD (without co-monomer) were characterized by scanning electron microscopy, optical microscopy, pressure drop/flow-rate curves and nitrogen adsorption analysis. After optimizing the stationary phase and mobile phase parameters, chiral separations of 41 pairs of structurally diverse anionic chiral analytes were compared individually using the GMA/β-CD-VBTA and GMA/β-CD monolithic columns. The GMA/β-CD-VBTA monolith chiral stationary phase separated significantly more acidic compounds compared to the GMA/β-CD column. To-date there has been limited work in the development of chiral monolithic column for CEC-mass spectrometry (MS). Because of good electrodriven flow characteristics, which allow the column to maintain a stable current in the absence of outlet vial, GMA/β-CD-VBTA column was successfully coupled to single quadrupole mass spectrometer for CEC-MS of several chiral test compounds. In addition, the same monolithic CEC column when coupled to a triple quadrupole MS instrument, two orders of magnitude higher sensitivity was observed compared to a single quadrupole MS instrument.

  3. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.

    PubMed

    Jong, Tony; Parry, David L

    2004-04-01

    Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be

  4. Gas-phase acidities of o-, m- and p-dehydrobenzoic acid radicals. Determination of the substituent constants for a phenyl radical site

    NASA Astrophysics Data System (ADS)

    Wenthold, Paul G.; Squires, Robert R.

    1998-05-01

    Reaction of CO2 with o-, m-, and p-benzyne radical anions in the gas phase produces o-, m-, and p-dehydrobenzoate radical anions, respectively. The (oxygen) gas-phase basicities of these ions, which are equivalent to the gas-phase acidities of the corresponding dehydrobenzoic acid radicals, [Delta]Gacid(o-, m-, or p-C6H4CO2-H), have been determined with a flowing afterglowtriple quadrupole apparatus by means of the kinetic method. The measured values are (in kcal mol-1): [Delta]Gacid(o-C6H4CO2H) = 330.4 +/- 0.4, [Delta]Gacid(m-C6H4CO2H) = 330.2 +/- 0.4, and [Delta]Gacid(p-C6H4CO2H) = 331.6 +/- 0.4 kcal mol-1. All three radicals are more acidic than benzoic acid ([Delta]Gacid = 333.1 +/- 2.0 kcal mol-1). The measured gas-phase acidities for the meta and para isomers suggest values for the resonance-effect substituent constant, [sigma]R, and the field/inductive effect substituent constant, [sigma]F, for a phenyl radical site of - 0.47 and 0.57, respectively. This classifies a phenyl radical site as a strong inductive withdrawing, and strong resonance donating substituent. Density functional calculations of the gas-phase acidities of dehydrobenzoic acids are in good agreement with the experimental results. The increased acidities of the dehydrobenzoic acids are shown to arise from a balance between the electron withdrawing effect of the electronegative radical site, and a compensating polarization of the [pi] system which mimics the effect of a resonance donor group located at the radical carbon.

  5. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    PubMed

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons.

  6. Reactivity of D-fructose and D-xylose in acidic media in homogeneous phases.

    PubMed

    Fusaro, Maxime B; Chagnault, Vincent; Postel, Denis

    2015-05-29

    Chemistry development of renewable resources is a real challenge. Carbohydrates from biomass are complex and their use as substitutes for fossil materials remains difficult (European involvement on the incorporation of 20% raw material of plant origin in 2020). Most of the time, the transformation of these polyhydroxylated structures are carried out in acidic conditions. Recent reviews on this subject describe homogeneous catalytic transformations of pentoses, specifically toward furfural, and also the transformation of biomass-derived sugars in heterogeneous conditions. To complete these informations, the objective of this review is to give an overview of the structural variety described during the treatment of two monosaccharides (D-Fructose and D-xylose) in acidic conditions in homogeneous phases. The reaction mechanisms being not always determined with certainty, we will also provide a brief state of the art regarding this. PMID:25889471

  7. Arsenic removal from contaminated brackish sea water by sorption onto Al hydroxides and Fe phases mobilized by land-use.

    PubMed

    Yu, Changxun; Peltola, Pasi; Nystrand, Miriam I; Virtasalo, Joonas J; Österholm, Peter; Ojala, Antti E K; Hogmalm, Johan K; Åström, Mats E

    2016-01-15

    This study examines the spatial and temporal distribution patterns of arsenic (As) in solid and aqueous materials along the mixing zone of an estuary, located in the south-eastern part of the Bothnian Bay and fed by a creek running through an acid sulfate (AS) soil landscape. The concentrations of As in solution form (<1 kDa) increase steadily from the creek mouth to the outer estuary, suggesting that inflowing seawater, rather than AS soil, is the major As source in the estuary. In sediments at the outer estuary, As was accumulated and diagenetically cycled in the surficial layers, as throughout much of the Bothnian Bay. In contrast, in sediments in the inner estuary, As concentrations and accumulation rates showed systematical peaks at greater depths. These peaks were overall consistent with the temporal trend of past As discharges from the Rönnskär smelter and the accompanied As concentrations in past sea-water of the Bothnian Bay, pointing to a connection between the historical smelter activities and the sediment-bound As in the inner estuary. However, the concentrations and accumulation rates of As peaked at depths where the smelter activities had already declined, but a large increase in the deposition of Al hydroxides and Fe phases occurred in response to intensified land-use in the mid 1960's and early 1970's. This correspondence suggests that, apart from the inflowing As-contaminated seawater, capture by Al hydroxides, Fe hydroxides and Fe-organic complexes is another important factor for As deposition in the inner estuary. After accumulating in the sediment, the solid-phase As was partly remobilized, as reflected by increased pore-water As concentrations, a process favored by As(V) reduction and high concentrations of dissolved organic matter.

  8. Arsenic removal from contaminated brackish sea water by sorption onto Al hydroxides and Fe phases mobilized by land-use.

    PubMed

    Yu, Changxun; Peltola, Pasi; Nystrand, Miriam I; Virtasalo, Joonas J; Österholm, Peter; Ojala, Antti E K; Hogmalm, Johan K; Åström, Mats E

    2016-01-15

    This study examines the spatial and temporal distribution patterns of arsenic (As) in solid and aqueous materials along the mixing zone of an estuary, located in the south-eastern part of the Bothnian Bay and fed by a creek running through an acid sulfate (AS) soil landscape. The concentrations of As in solution form (<1 kDa) increase steadily from the creek mouth to the outer estuary, suggesting that inflowing seawater, rather than AS soil, is the major As source in the estuary. In sediments at the outer estuary, As was accumulated and diagenetically cycled in the surficial layers, as throughout much of the Bothnian Bay. In contrast, in sediments in the inner estuary, As concentrations and accumulation rates showed systematical peaks at greater depths. These peaks were overall consistent with the temporal trend of past As discharges from the Rönnskär smelter and the accompanied As concentrations in past sea-water of the Bothnian Bay, pointing to a connection between the historical smelter activities and the sediment-bound As in the inner estuary. However, the concentrations and accumulation rates of As peaked at depths where the smelter activities had already declined, but a large increase in the deposition of Al hydroxides and Fe phases occurred in response to intensified land-use in the mid 1960's and early 1970's. This correspondence suggests that, apart from the inflowing As-contaminated seawater, capture by Al hydroxides, Fe hydroxides and Fe-organic complexes is another important factor for As deposition in the inner estuary. After accumulating in the sediment, the solid-phase As was partly remobilized, as reflected by increased pore-water As concentrations, a process favored by As(V) reduction and high concentrations of dissolved organic matter. PMID:26558848

  9. A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility

    NASA Astrophysics Data System (ADS)

    Frigeri, Sergio; Grasselli, Maurizio; Rocca, Elisabetta

    2015-05-01

    We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective non-local Cahn-Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of a global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective non-local Cahn-Hilliard equation with degenerate mobility and singular potential in dimension three.

  10. Solubility and phase separation of benzocaine and salicylic acid in 1,4-dioxane-water mixtures at several temperatures.

    PubMed

    Peña, M Angeles; Bustamante, Pilar; Escalera, Begoña; Reíllo, Aurora; Bosque-Sendra, Juan Manuel

    2004-11-15

    The solubilities of benzocaine and salicylic acid were determined in water-dioxane mixtures at several temperatures (5-40 degrees C for benzocaine and 10-40 degrees C for salicylic acid). The solubility curves as a function of dioxane ratio showed a maximum at 90% dioxane at all temperatures. Above 25 degrees C, the homogeneous mixture splits into two liquid immiscible phases. For benzocaine, the initial dioxane concentration range at which phase separation takes place increased with temperature (50-60% at 25 degrees C, 50-70% at 30-35 degrees C and 40-70% at 40 degrees C). For salicylic acid, the dioxane concentration required for phase separation (40-60% dioxane) did not change with temperature. Phase separation was not related to solid phase changes (polymorphism or solvates). The phase composition and drug extraction at the drug-rich phase were determined. The apparent enthalpies of the solution process were a nonlinear function of the dioxane ratio for both drugs. The apparent enthalpy of solution of benzocaine was larger than that expected at the upper limit of phase separation (70% dioxane), whereas for salicylic acid the apparent enthalpy of solution decreased abruptly at the region corresponding to phase separation (40-70% dioxane). Both drugs showed a nonlinear pattern of enthalpy-entropy compensation.

  11. Phase II trial of weekly Docetaxel, Zoledronic acid, and Celecoxib for castration-resistant prostate cancer.

    PubMed

    Kattan, Joseph; Bachour, Marwan; Farhat, Fadi; El Rassy, Elie; Assi, Tarek; Ghosn, Marwan

    2016-08-01

    Background Treatment options for patients with metastatic castration-resistance prostate cancer are unsatisfactory. Docetaxel monotherapy offers promising results with a tolerable toxicity profile. However, enhancing the clinical index of Docetaxel-based therapy remains the ultimate goal. Methods We conducted a phase II, open label, multinational prospective trial to evaluate the efficacy of weekly Docetaxel combined with Zoledronic acid and Celecoxib. Eligible patients received 25 mg/m(2) Docetaxel weekly for 3 consecutive weeks every 4 weeks, 4 mg Zoledronic acid every 4 weeks, and 200 mg oral Celecoxib twice daily. Enrollment was terminated prematurely upon the publication of reports of cardiac toxicity associated with cyclooxygenase (COX) 2 inhibitors. Results Our study enrolled 22 patients with a median of 4.7 cycles per patient. The median overall survival (OS) was 9.8 months (range 0.7 to 24.1 months) with 36 % and 4.5 % survival rates at 1 and 2 years, respectively. Our patients had a biologic response in 40.1 % of cases and a palliative response in 72.7 %. Among the eight patients with measurable disease, three had partial responses, two had stable disease, and three had progressive disease, leading to a response rate (RR) of 62.5 %. The observed toxicities were mild and limited to grade 3 events. Nine patients had anemia (40.1 %), 5 had sensory neuropathy (22.7 %) and 2 had stomatitis (9.1 %). Conclusion The combination of Docetaxel, Celecoxib, and Zoledronic acid failed to improve OS or to offer an acceptable biologic response. We do not believe that there is compelling evidence to include either Celecoxib or Zoledronic acid in further phase II/III trials. PMID:27159981

  12. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    PubMed

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency. PMID:22519122

  13. A practical application of Driscoll's equation for predicting the acid-neutralizing capacity in acidic natural waters equilibria with the mineral phase gibbsite.

    PubMed

    Bi, S P; An, S Q; Liu, F

    2001-05-01

    A practical application of Driscoll's equation for predicting the acid-neutralizing capacity (ANC) in acidic waters equilibria with the mineral phase gibbsite is reported in this paper. Theoretical predication values of ANC are compared with the experimental data obtained from different literatures. The effect of aluminum (Al) on the value of ANC is investigated. It indicates that Al plays an important role in regulating the buffering effects in acidic natural waters. Failure to consider Al in acidic waters may bias assessment results in certain situations so as to overestimate the ANC values in response to increase in atmospheric deposition.

  14. Potentiodynamic polarization effect on phase and microstructure of SAC305 solder in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Zaini, Nurwahida Binti Mohd; Nazeri, Muhammad Firdaus Bin Mohd

    2016-07-01

    The corrosion analysis of SAC305 lead free solder was investigated in Hydrochloric acid (HCl) solution. Potentiodynamic polarization was used to polarize the SAC305. The effect of polarization on the phase and microstructure were compared to as-prepared SAC305 solder. Potentiodynamic polarization introduces mixed corrosion products on the surface of SAC305 solder. The XRD analysis confirms that the mixed corrosion products emerged on the surface after polarization by formation of SnO and SnO2 of which confirmed that dissolution of Sn was dominant during polarization. Microstructure analysis reveal the presence of gap and porosities produced limits the protection offered by the passivation film.

  15. Raman study of the molecular motions of pivalic acid: the liquid—plastic phase transition

    NASA Astrophysics Data System (ADS)

    Balevičius, V.; Orel, B.; Hadži, D.

    Raman spectra of pivalic acid in the plastic and liquid phase have been measured. The reorientational correlation times have been evaluated from the ν asCH, νCO and νCC bands as a function of temperature. The reorientational correlation time corresponding to ν as CH and νCC bands is τ < 10 -11 s whilst for the νCO band τ = 4ps ( T = 20°C). The calculated activation energy is 26 KJ mol -1. The reorientation of the carboxylic groups which may be assisted by the proton transfer along the hydrogen bonds in dimers is discussed.

  16. Experimental and computational thermochemical study and solid-phase structure of 5,5-dimethylbarbituric acid.

    PubMed

    Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P

    2010-03-18

    This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations. PMID:20180529

  17. Experimental and computational thermochemical study and solid-phase structure of 5,5-dimethylbarbituric acid.

    PubMed

    Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P

    2010-03-18

    This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.

  18. Pulse respirometry in two-phase partitioning bioreactors: case study of terephthalic acid biodegradation.

    PubMed

    Ordaz, Alberto; Quijano, Guillermo; Thalasso, Frederic; Garibay-Orijel, Claudio

    2013-02-01

    Two-phase partitioning bioreactors (TPPBs) are based on the addition of an organic phase, often called vector, to a bioreactor in order to increase mass transfer of oxygen or gaseous substrates from the gaseous phase to the aqueous phase. In TPPBs, like in any other reactor design, the characterization of the bioprocess is often required for design, control, and operation purposes. Pulse respirometry is a method that allows for microbial processes characterization through the determination of several stoichiometric and kinetic parameters with relatively little experimental effort. Despite its interest and its previous application in countless applications, pulse respirometry has never been applied in TPPBs. In this work, pulse respirometry was assessed in a model TPPB degrading terephthalic acid and using Elvax™ as solid vector to enhance oxygen transfer. The results indicated that the addition of 10 to 20% Elvax increased oxygen transfer by up to 97%, compared to control with no vector. Pulse respirometry was successfully applied and allowed for the determination of the growth yield, the substrate affinity constant, and the maximum growth rate, within other. It is concluded that pulse respirometry is a useful method, not only for the characterization of processes in TPPBs but also for the selection of a vector within several brands commercially available.

  19. The study of aluminum loss and consequent phase transformation in heat-treated acid-leached kaolin

    SciTech Connect

    Foo, Choo Thye; Mahmood, Che Seman; Mohd Salleh, Mohamad Amran

    2011-04-15

    This study investigates the effect of Al leaching during Fe removal from kaolin to mullite. Heat-treated kaolin was obtained by heating natural kaolin at 400, 500, 600, 700, 800 and 900 deg. C. The heat-treated kaolin was then leached at 100 deg. C with 4 M, 3 M, 2 M, 1 M, 0.2 M solution of H{sub 2}SO{sub 4} and 0.2 M solution of oxalic acid. The dried samples were sintered to 1300 deg. C for 4 h at a heating rate of 10 deg. C min{sup -1}. X-ray diffractometry and differential thermal analysis were used to study the phase transformation of kaolin to mullite. It was found that 700 deg. C is the optimum preheat-treatment temperature to leach out Fe and also Al for both types of the acids used. The majority of the 4 M sulfuric acid-treated kaolins formed the cristobalite phase when sintered. On the other hand, 1 M, 0.2 M sulfuric acid and 0.2 M oxalic acid leached heat-treated kaolin formed mullite and quartz phase after sintering. - Research Highlights: {yields} Preheat-treatment of kaolin improves the leachability of unwanted iron. {yields} The optimum preheat-treatment temperature is 700 deg. C. {yields} Sintered 4 M sulfuric acid-treated kaolin majorly formed the cristobalite phase. {yields} Sintered 0.2 M oxalic acid-treated kaolin formed lesser amorphous silicate phase.

  20. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  1. Structural and temperature effects on enantiomer separations of bicyclo[2.2.2]octane-based 3-amino-2-carboxylic acids on cinchona alkaloid-based zwitterionic chiral stationary phases.

    PubMed

    Ilisz, István; Grecsó, Nóra; Palkó, Márta; Fülöp, Ferenc; Lindner, Wolfgang; Péter, Antal

    2014-09-01

    Procedures for the direct high-performance liquid chromatographic enantiomer separation of four bicyclo[2.2.2]octane-based 3-amino-2-carboxylic acids were developed in polar-ionic mode on zwitterionic chiral stationary phases (CSPs) based on cinchonane alkaloide quinine, quinidine and chiral sulfonic acid motifs. The effects of the mobile phase composition including the type of acid and base additives, the structures of the analytes and temperature were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10-50°C in order to study the effects of temperature, and thermodynamic parameters were calculated from plots of ln k or ln α vs. 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantiomeric separations were in most cases enthalpically driven, but entropically driven separation was also observed. The sequence of elution of the enantiomers on the pseudo-enantiomerically behaving CSPs was determined in all cases.

  2. Liquid phase separation of proteins based on electrophoretic effects in an electrospray setup during sample introduction into a gas-phase electrophoretic mobility molecular analyzer (CE–GEMMA/CE–ES–DMA)

    PubMed Central

    Weiss, Victor U.; Kerul, Lukas; Kallinger, Peter; Szymanski, Wladyslaw W.; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Nanoparticle characterization is gaining importance in food technology, biotechnology, medicine, and pharmaceutical industry. An instrument to determine particle electrophoretic mobility (EM) diameters in the single-digit to double-digit nanometer range receiving increased attention is the gas-phase electrophoretic mobility molecular analyzer (GEMMA) separating electrophoretically single charged analytes in the gas-phase at ambient pressure. A fused-silica capillary is used for analyte transfer to the gas-phase by means of a nano electrospray (ES) unit. The potential of this capillary to separate analytes electrophoretically in the liquid phase due to different mobilities is, at measurement conditions recommended by the manufacturer, eliminated due to elevated pressure applied for sample introduction. Measurements are carried out upon constant feeding of analytes to the system. Under these conditions, aggregate formation is observed for samples including high amounts of non-volatile components or complex samples. This makes the EM determination of individual species sometimes difficult, if not impossible. With the current study we demonstrate that liquid phase electrophoretic separation of proteins (as exemplary analytes) occurs in the capillary (capillary zone electrophoresis, CE) of the nano ES unit of the GEMMA. This finding was consecutively applied for on-line desalting allowing EM diameter determination of analytes despite a high salt concentration within samples. The present study is to our knowledge the first report on the use of the GEMMA to determine EM diameters of analytes solubilized in the ES incompatible electrolyte solutions by the intended use of electrophoresis (in the liquid phase) during sample delivery. Results demonstrate the proof of concept of such an approach and additionally illustrate the high potential of a future on-line coupling of a capillary electrophoresis to a GEMMA instrument. PMID:25109866

  3. Effects of lipid-analog detergent solubilization on the functionality and lipidic cubic phase mobility of the Torpedo californica nicotinic acetylcholine receptor.

    PubMed

    Padilla-Morales, Luis F; Morales-Pérez, Claudio L; De La Cruz-Rivera, Pamela C; Asmar-Rovira, Guillermo; Báez-Pagán, Carlos A; Quesada, Orestes; Lasalde-Dominicci, José A

    2011-10-01

    Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β(2)-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility.

  4. Advantages of the AlGaN spacer in InAlN high-electron-mobility transistors grown using metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yamada, Atsushi; Ishiguro, Tetsuro; Kotani, Junji; Tomabechi, Shuichi; Nakamura, Norikazu; Watanabe, Keiji

    2016-05-01

    We demonstrate the advantages of an AlGaN spacer layer in an InAlN high-electron-mobility transistor (HEMT). We investigated the effects of the growth parameters of the spacer layer on electron mobility in InAlN HEMTs grown by metalorganic vapor phase epitaxy, focusing on the surface roughness of the spacer layer and sharpness of the interface with the GaN channel layer. The electron mobility degraded, as evidenced by the formation of a graded AlGaN layer at the top of the GaN channel layer and the surface roughness of the AlN spacer layer. We believe that the short migration length of aluminum atoms is responsible for the observed degradation. An AlGaN spacer layer was employed to suppress the formation of the graded AlGaN layer and improve surface morphology. A high electron mobility of 1550 cm2 V-1 s-1 and a low sheet resistance of 211 Ω/sq were achieved for an InAlN HEMT with an AlGaN spacer layer.

  5. High-performance liquid chromatographic enantioseparation of cyclic β-aminohydroxamic acids on zwitterionic chiral stationary phases based on Cinchona alkaloids.

    PubMed

    Lajkó, Gyula; Orosz, Tímea; Grecsó, Nóra; Fekete, Beáta; Palkó, Márta; Fülöp, Ferenc; Lindner, Wolfgang; Péter, Antal; Ilisz, István

    2016-05-19

    Cyclic β-aminohydroxamic acid enantiomer pairs were stereoselectively separated by high-performance liquid chromatography on the recently developed Cinchona alkaloid-based zwitterionic chiral stationary phases Chiralpak ZWIX(+)™, ZWIX(-)™, ZWIX(+A) and ZWIX(-A). The results of variation of the applied chromatographic conditions, such as the bulk solvent composition, the concentrations and ratio of the acid and base additives, the presence of water as mobile phase additive and the counter-ion concentration furnished a better understanding of the retention mechanism. A thermodynamic study in the temperature range 5-50 °C revealed enthalpy-controlled enantiodiscrimination in all cases. The structure-selectivity relationships clearly indicated the importance of the strereochemistry of the functional groups. From an enantiorecognition aspect, the diexo position of the functional groups always proved more favorable than the diendo position. The elution sequence was determined in all cases and was found to reversed when ZWIX(+)™ was changed to ZWIX(-)™ or ZWIX(+A) to ZWIX(-A).

  6. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatography, part 1: optimization of the mobile phase.

    PubMed

    Rodriguez-Aller, Marta; Guillarme, Davy; Beck, Alain; Fekete, Szabolcs

    2016-01-25

    The goal of this work is to provide some recommendations for method development in HIC using monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) as model drug candidates. The effects of gradient steepness, mobile phase pH, salt concentration and type, as well as organic modifier were evaluated for tuning selectivity and retention in HIC. Except the nature of the stationary phase, which was not discussed in this study, the most important parameter for modifying selectivity was the gradient steepness. The addition of organic solvent (up to 15% isopropanol) in the mobile phase was also found to be useful for mAbs analysis, since it could provide some changes in elution order, in some cases. On the contrary, isopropanol was not beneficial with ADCs, since the most hydrophobic DAR species (DAR6 and DAR8) cannot be eluted from the stationary phase under these conditions. This study also illustrates the possibility to perform HIC method development using optimization software, such as Drylab. The optimum conditions suggested by the software were tested using therapeutic mAbs and commercial cysteine linked ADC (brentuximab-vedotin) and the average retention time errors between predicted and experimental retention times were ∼ 1%.

  7. The hydrophilicity vs. ion interaction selectivity plot revisited: The effect of mobile phase pH and buffer concentration on hydrophilic interaction liquid chromatography selectivity behavior.

    PubMed

    Iverson, Chad D; Gu, Xinyun; Lucy, Charles A

    2016-08-01

    This work systematically investigates the selectivity changes on many HILIC phases from w(w)pH 3.7-6.8, at 5 and 25mM buffer concentrations. Hydrophilicity (kcytosine/kuracil) vs. ion interaction (kBTMA/kuracil) selectivity plots developed by Ibrahim et al. (J. Chromatogr. A 1260 (2012) 126-131) are used to investigate the effect of mobile phase changes on the selectivity of 18 HILIC columns from various classes. "Selectivity change plots" focus on the change in hydrophilicity and ion interaction that the columns exhibit upon changing mobile phase conditions. In general, the selectivity behavior of most HILIC columns is dominated by silanol activity. Minimal changes in selectivity are observed upon changing pH between w(w)pH 5 and 6.8. However, a reduction in ionic interaction is observed when the buffer concentration is increased at w(w)pH≥5.0 due to ionic shielding. Reduction of the w(w)pH to<5.0 results in decreasing cation exchange activity due to silanol protonation. Under all eluent conditions, the majority of phases show little change in their hydrophilicity.

  8. Understanding the importance of the viscosity contrast between the sample solvent plug and the mobile phase and its potential consequences in two-dimensional high-performance liquid chromatography

    SciTech Connect

    Shalliker, R. Andrew; Guiochon, Georges A

    2009-01-01

    The effect of solvent viscosity mismatch on elution performance in reversed-phase HPLC was studied using moment analysis. Two conditions were tested: (1) the mobile phase viscosity was less than the injection plug viscosity, and (2) the mobile phase viscosity was greater than the injection plug viscosity. Under the first condition, retention time and elution performance decreased as the viscosity contrast between the mobile phase and injection plug increased. The effect on performance was more marked as the injection volume increased. A decrease in performance of 12% for compounds with retention factors up to 2.8 was apparent even when the viscosity contrast was only 0.165 cP. In the second set of conditions, elution performance was actually observed to increase, by as much as 25% for a 40 {micro}L injection, as the viscosity contrast between the mobile phase and the solute plug increased. No change in the retention factor was observed. This behaviour was attributed to the shape of an injection plug as it enters into the column, whereby a low viscosity plug permeates away from the wall when the column contains a higher viscosity mobile phase, and vice a versa for a high viscosity plug entering a low viscosity mobile phase. At no stage was either a band splitting or shoulders observed with viscosity contrasts up to 1.283 cP, as could have been expected.

  9. Phenylboronic acid modified solid-phase extraction column: Preparation, characterization, and application to the analysis of amino acids in sepia capsule by removing the maltose.

    PubMed

    Guo, Mengzhe; Yin, Dengyang; Han, Jie; Zhang, Liyan; Li, Xiao; He, Dandan; Du, Yan; Tang, Daoquan

    2016-09-01

    Maltose, a common auxiliary material of pharmaceutical preparation, may disturb the analysis of total amino acids in sepia capsule by aldolization. Therefore, it is necessary to remove the maltose through a convenient method. In this work, a phenylboronic acid modified solid-phase extraction column has been synthesized and used to remove the maltose. The materials were synthesized by one step "thiol-ene" reaction and the parameters of the column such as absorption capacity, recovery, and absorption specificity have been investigated. The results showed the column (0.5 cm of length × 0.5 cm of inner diameter) can absorb 4.6 mg maltose with a linear absorption and absorption specificity. Then this technique was applied in the quantification of amino acids in sepia capsule. After the optimization of the method, four kinds of amino acids, which were the most abundant, were quantified by high-performance liquid chromatography with diode array detection. The amounts of the four kinds of amino acids are 1.5∼2 times more than that without the treatment of solid-phase extraction column, which almost overcomes the influence of the maltose. All the results indicate that the phenylboronic acid modified solid-phase extraction column can successfully help to accurately quantify the total amino acids in sepia capsule.

  10. Induced Smectic-G Phase through Intermolecular Hydrogen Bonding, Part XII: Thermal and Phase Behaviour of p-aminobenzonitrile: p-n-alkoxybenzoic acids

    NASA Astrophysics Data System (ADS)

    Kumar, P. A.; Pisipati, V. G. K. M.; Rajeswari, A. V.; Sreehari Sastry, S.

    2002-04-01

    New liquid crystalline compounds involving intermolecular hydrogen bonding between mesogenic p-n-alkoxybenzoic acids (nABA) (where n denotes the alkoxy carbon number varying from propylto decyl- and dodecyl-) and p-aminobenzonitrile (ABN) are synthesized. The thermal and phase behaviour of these materials is studied by Thermal Microscopy and Differential Scanning Calorimetry. Adetailed IR spectral investigation in solid and solution states confirms the formation of H-bonding between cyano and -COOH groups of ABN and nABA, respectively. Comparative thermal analyses of both free p-n alkoxybenzoic acids and H-bonded complexes suggest the induction of smectic-G phase in all the complexes.

  11. Separation of triacylglycerols and free fatty acids in microalgal lipids by solid-phase extraction for separate fatty acid profiling analysis by gas chromatography.

    PubMed

    Paik, Man-Jeong; Kim, Hoon; Lee, Jinwoo; Brand, Jerry; Kim, Kyoung-Rae

    2009-07-31

    Microalgal lipids were separated into two fractions, triacylglycerols (TAGs) and free fatty acids (FFAs), by solid-phase extraction employing sodium carbonate as the sorbent and dichloromethane (20% by volume) in n-hexane as the extracting solvent. The TAG fraction was then saponified, followed by acidification, extraction and tert-butyldimethylsilyl esterification. The FFA fraction was directly acidified, extracted and derivatized. From the lipid extracts of eight microalgal species examined, a total of 13 fatty acids were detected in the TAG fractions and nine were found in the FFA fractions, with at much higher total TAG content in all microalgae. Oleic acid was the most prominent fatty acid in three species, alpha-linolenic acid was more abundant in two others, and palmitic acid was present in highest concentration in the remaining three species.

  12. Low-temperature phase transformation studies in the stearic acid: C form

    NASA Astrophysics Data System (ADS)

    de Sousa, F. F.; Freire, P. T. C.; de Menezes, A. S.; Pinheiro, G. S.; Cardoso, L. P.; Alcantara, P.; Moreira, S. G. C.; Melo, F. E. A.; Mendes Filho, J.; Saraiva, G. D.

    2015-09-01

    This paper reports the temperature-dependent measurements in the C form of stearic acid. Raman scattering, X-ray diffraction, and differential scanning calorimetry measurements were performed at low temperatures. The polarized Raman spectra were measured for temperatures ranging from 8 to 300 K over the spectral range of 30-3000 cm-1. The spectral changes observed in both the lattice vibrational modes and the internal vibrational modes regions of the Raman spectrum, allowed to identify a phase transition undergone by the stearic acid crystal occurring between 210 and 170 K and a change in the structure continues to be observed down to 8 K. The anharmonicity of some vibrational modes and the possible space groups presented by the crystal at low temperatures were also discussed. Low-temperature X-ray diffraction measurements were performed from 290 to 80 K and the results showed slight changes in the lattice parameters at ∼200 K. Furthermore, the evidence of the phase transformation was provided by the differential scanning calorimetry measurements, which identified an enthalpic anomaly at about 160 K.

  13. Low-temperature phase transformation studies in the stearic acid: C form.

    PubMed

    de Sousa, F F; Freire, P T C; de Menezes, A S; Pinheiro, G S; Cardoso, L P; Alcantara, P; Moreira, S G C; Melo, F E A; Mendes Filho, J; Saraiva, G D

    2015-09-01

    This paper reports the temperature-dependent measurements in the C form of stearic acid. Raman scattering, X-ray diffraction, and differential scanning calorimetry measurements were performed at low temperatures. The polarized Raman spectra were measured for temperatures ranging from 8 to 300 K over the spectral range of 30-3000 cm(-1). The spectral changes observed in both the lattice vibrational modes and the internal vibrational modes regions of the Raman spectrum, allowed to identify a phase transition undergone by the stearic acid crystal occurring between 210 and 170 K and a change in the structure continues to be observed down to 8 K. The anharmonicity of some vibrational modes and the possible space groups presented by the crystal at low temperatures were also discussed. Low-temperature X-ray diffraction measurements were performed from 290 to 80 K and the results showed slight changes in the lattice parameters at ∼200 K. Furthermore, the evidence of the phase transformation was provided by the differential scanning calorimetry measurements, which identified an enthalpic anomaly at about 160 K.

  14. Dynamics of propionic acid degradation in a two-phase anaerobic system.

    PubMed

    Xiao, Keke; Zhou, Yan; Guo, Chenghong; Maspolim, Yogananda; Ng, Wun-Jern

    2015-12-01

    This paper reports on propionic acid (HPr) degradation in a laboratory scale two-phase anaerobic system, where HPr was accumulated in the acidogenic reactor and degraded in the methanogenic reactor. Batch tests using biomass from the two-phase anaerobic system showed HPr degradation was rarely detectable in the acidogenic reactor when HPr concentration ranged from 639 to 4531mgHPrL(-1) and at pH 4.50 to 6.50. Biomass from the methanogenic reactor could, however, successfully degrade HPr at its initial concentration of up to 4585mgHPrL(-1) at pH 6.40-7.30. ATP results showed that differences in the degradation ability of HPr by the acidogenic and methanogenic biomass may be related with their respective different biomass activities. Results from pyrosequencing showed that the predominant propionic acid oxidizing bacteria (POB) in the methanogenic reactor were Smithella (2.68%) and Syntrophobacter (0.35%); while poor degradation of HPr in the acidogenic reactor may be associated with the low abundance of POB (0.02% Desulfacinum and 0.08% Desulfobulbus). This might have been induced by the long-term unfavorable environment for POB growth in the acidogenic reactor.

  15. The effects of environmental factors on acid-phase digestion of sewage sludge

    SciTech Connect

    Henry, M.P.; Sajjad, A.; Ghosh, S.

    1987-01-01

    The two-phase anaerobic digestion process consists of two fermenters operated in series, wherein the acidification and gasification reactions are optimized in separate reactors to improve the overall system conversion efficiency. This paper discusses the results of tests conducted with bench-scale complete-mix acid-phase digesters to determine the effects of culture pH, temperature, and hydraulic retention time (HRT) on the efficiency of sewage sludge digestion. Tests were conducted at culture pH's of 5, 5.5, 6, and 7 at mesophilic (35/degree/C) and thermophilic (55/degree/C) temperatures and at HRT's of 1.3 and 2 days. Digestion efficiencies were determined on the basis of volatile acid production, gas production, and the reduction of the major particulate components of the feed sludge (crude protein, carbohydrates, and lipids). Efficiencies were highly dependent on each of the three control factors and were generally optimized at the higher extremes of pH, temperature, and HRT tested. 9 refs., 2 figs., 10 tabs.

  16. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  17. Conformations and spectroscopic properties of laccaic acid A in the gas phase and in implicit water.

    PubMed

    Dokmaisrijan, Supaporn; Payaka, Apirak; Tantishaiyakul, Vimon; Chairat, Montra; Nimmanpipug, Piyarat; Lee, Vannajan Sanghiran

    2013-03-15

    Conformations and spectroscopic properties of laccaic acid A (lacA) were studied by means of the experimental and theoretical approaches. The minimum energy conformers of lacA in the gas phase and in implicit water obtained from the B3LYP/6-311G(d,p) calculations displayed the same orientation of the COOH and OH groups on the anthraquinone-based component. The intramolecular hydrogen bonds (H-bonds) formed between the COOH, C=O and OH groups are very strong. In contrast, the orientations of the Ph(OH)CH(2)CH(2)NHCOCH(3) substituent moiety on the anthraquinone-based component in the gas phase and in implicit water are completely different. The substituent prefers to bind with the anthraquinone-based component in the gas phase while it moves away from the anthraquinone-based component in implicit water. The calculated IR spectra of the two lowest-lying energy conformers of lacA in the gas phase fit to the experimental FTIR spectrum. The full assignments of the vibrational modes with the correlated vibrational wavenumbers of those conformers were proposed here, for the first time. The intramolecular H-bond formations in lacA can cause the shift of the vibrational wavenumber for the COOH, C=O, OH and NH groups as compared to the normal vibrations of these groups. The NMR spectra showed that the stabilities of the two lowest-lying energy conformers of lacA in the gas phase are comparable and this is consistent with their computational energies. The UV-Vis spectra of the lowest-lying energy conformers of lacA in implicit water were compared with the experimental UV-Vis spectrum. The calculations suggested that the electronic transition in the visible region involves with the singlet π→π(*) excitation which the electron density transfers to a COOH group on the anthraquinone ring.

  18. Dissociation of carbonic acid: gas phase energetics and mechanism from ab initio metadynamics simulations.

    PubMed

    Kumar, P Padma; Kalinichev, Andrey G; Kirkpatrick, R James

    2007-05-28

    A comprehensive metadynamics study of the energetics, stability, conformational changes, and mechanism of dissociation of gas phase carbonic acid, H2CO3, yields significant new insight into these reactions. The equilibrium geometries, vibrational frequencies, and conformer energies calculated using the density functional theory are in good agreement with the previous theoretical predictions. At 315 K, the cis-cis conformer has a very short life time and transforms easily to the cis-trans conformer through a change in the O=C-O-H dihedral angle. The energy difference between the trans-trans and cis-trans conformers is very small (approximately 1 kcal/mol), but the trans-trans conformer is resistant to dissociation to carbon dioxide and water. The cis-trans conformer has a relatively short path for one of its hydroxyl groups to accept the proton from the other end of the molecule, resulting in a lower activation barrier for dissociation. Comparison of the free and potential energies of dissociation shows that the entropic contribution to the dissociation energy is less than 10%. The potential energy barrier for dissociation of H2CO3 to CO2 and H2O from the metadynamics calculations is 5-6 kcal/mol lower than in previous 0 K studies, possibly due to a combination of a finite temperature and more efficient sampling of the energy landscape in the metadynamics calculations. Gas phase carbonic acid dissociation is triggered by the dehydroxylation of one of the hydroxyl groups, which reorients as it approaches the proton on the other end of the molecule, thus facilitating a favorable H-O-H angle for the formation of a product H2O molecule. The major atomic reorganization of the other part of the molecule is a gradual straightening of the O=C=O bond. The metadynamics results provide a basis for future simulation of the more challenging carbonic acid-water system.

  19. Hydrothermal hexagonal SrFe12O19 ferrite powders: Phase composition, microstructure and acid washing

    NASA Astrophysics Data System (ADS)

    Xia, Ailin; Hu, Xuzhao; Li, Diankai; Chen, Lu; Jin, Chuangui; Zuo, Conghua; Su, Shubing

    2014-03-01

    A series of hexagonal m-type SrFe12O19 ferrite powders were hydrothermally synthesized, and their phase composition, microstructure and magnetic properties before/after acid washing were studied. In the synthesis of these specimens, the atomic ratio of Fe/Sr ( R F/S ) in starting materials was set to 4, 5 and 12, respectively. When R F/S = 12, the specimen has morphology of round flat cakes, not typical hexagonal plate-like structure. The results of SEM images and XRD patterns indicate that the specimen with R F/S = 12 was mostly composed of Fe2O3. When R F/S = 4 or 5, the hexagonal plate-like SrFe12O19 ferrite powders were successfully synthesized with only a small quantity of Fe2O3 and SrCO3 impurities. It is also found that acid washing can eliminate the impurities in as-synthesized specimens effectively, and also change their topography, which enhances the saturation magnetization. However, the coercivity changed irregularly after acid washing, which is ascribed to the combination of the changed morphology, introduced stress and lattice defects.

  20. Measurements of gas phase acids in diesel exhaust: a relevant source of HNCO?

    PubMed

    Wentzell, Jeremy J B; Liggio, John; Li, Shao-Meng; Vlasenko, A; Staebler, Ralf; Lu, Gang; Poitras, Marie-Josée; Chan, Tak; Brook, Jeffrey R

    2013-07-16

    Gas-phase acids in light duty diesel (LDD) vehicle exhaust were measured using chemical ionization mass spectrometry (CIMS). Fuel based emission factors (EF) and NOx ratios for these species were determined under differing steady state engine operating conditions. The derived HONO and HNO3 EFs agree well with literature values, with HONO being the single most important acidic emission. Of particular importance is the quantification of the EF for the toxic species, isocyanic acid (HNCO). The emission factors for HNCO ranged from 0.69 to 3.96 mg kgfuel(-1), and were significantly higher than previous biomass burning emission estimates. Further ambient urban measurements of HNCO demonstrated a clear relationship with the known traffic markers of benzene and toluene, demonstrating for the first time that urban commuter traffic is a source of HNCO. Estimates based upon the HNCO-benzene relationship indicate that upward of 23 tonnes of HNCO are released annually from commuter traffic in the Greater Toronto Area, far exceeding the amount possible from LDD alone. Nationally, 250 to 770 tonnes of HNCO may be emitted annually from on-road vehicles, likely representing the dominant source of exposure in urban areas, and with emissions comparable to that of biomass burning. PMID:23781923

  1. The existence region and composition of a polymer-induced liquid precursor phase for DL-glutamic acid crystals.

    PubMed

    Jiang, Yuan; Gower, Laurie; Volkmer, Dirk; Cölfen, Helmut

    2012-01-14

    The existence region of a polymer-induced liquid precursor (PILP) phase for crystals of an organic compound (DL-glutamic acid, Glu) was determined for the first time in the phase diagram of the Glu-polyethyleneimine-water-ethanol system. The existence region and the amount of PILP phase relative to the thermodynamically stable crystal phase were very small. Other phases detected in the phase diagram were coacervates, homogenous mixtures, and crystals obtained via a clear solution. The PILP phase is rich in the polymeric additive, which helps to explain the long induction period of PILP before crystallization occurs. Volume measurements indicated that its amount is <1 vol%, showing that this precursor phase is only a minor component.

  2. Separation of clavulanic acid from fermented broth of amino acids by an aqueous two-phase system and ion-exchange adsorption.

    PubMed

    da Silva, Clovis Sacardo; Cuel, Maressa Fabiano; Barreto, Verônica Orlandin; Kwong, Wu Hong; Hokka, Carlos O; Barboza, M

    2012-02-15

    The clavulanic acid is a substance which inhibits the β-lactamases used with penicillins for therapeutic treatment. After the fermentation, by-products of low molecular weight such as amino acids lysine, histidine, proline and tyrosine are present in the fermented broth. To remove these impurities the techniques of extraction by an aqueous two-phase system of 17% polyethylene glycol molecular weight 600 and 15% potassium phosphate were used for a partial purification. A subsequent ion-exchange adsorption was used for the recuperation of the clavulanic acid of the top phase and purification getting a concentration factor of 2 and purification of 100% in relation to the amino acids lysine, histidine, proline and tyrosine.

  3. Click N-benzyl iminodiacetic acid: novel silica-based tridentate zwitterionic stationary phase for hydrophilic interaction liquid chromatography.

    PubMed

    Yin, Wei; Chai, Huihui; Liu, Renhua; Chu, Changhu; Palasota, John A; Cai, Xiaohui

    2015-01-01

    Iminodiacetic acid (IDA) is dicarboxylic acid amine, which may produce stronger interaction with polar or charged compounds than bidentate α,β-amino acid. In this article, a novel type of tridentate zwitterionic HILIC stationary phase was prepared by covalently bonding N-benzyl IDA on silica gel via copper(I) catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition (CuAAC). The structure of this stationary phase and all related intermediates was confirmed by NMR, FT-IR, MS spectrum and elemental analysis. The new stationary phase showed good HILIC characteristics and high column efficiency (the theoretical plate number is up to 44000 plates m(-1) in the case of guanosine) in the application of separation of polar compounds, including organic acids, organic bases, as well as highly polar and hydrophilic compounds, such as cephalosporins and carbapenems. Most of them displayed good peak shape and selectivity. PMID:25476290

  4. Portable solid phase micro-extraction coupled with ion mobility spectrometry system for on-site analysis of chemical warfare agents and simulants in water samples.

    PubMed

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples.

  5. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    PubMed Central

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  6. Portable solid phase micro-extraction coupled with ion mobility spectrometry system for on-site analysis of chemical warfare agents and simulants in water samples.

    PubMed

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  7. Recent Selected Ion Flow Tube (SIFT) Studies Concerning the Formation of Amino Acids in the Gas Phase

    NASA Technical Reports Server (NTRS)

    Jackson, Douglas M.; Adams, Nigel G.; Babcock, Lucia M.

    2006-01-01

    Recently the simplest amino acid, glycine, has been detected in interstellar clouds, ISC, although this has since been contested. In order to substantiate either of these claims, plausible routes to amino acids need to be investigated. For gas phase synthesis, the SIFT technique has been employed to study simple amino acids via ion-molecule reactions of several ions of interstellar interest with methylamine, ethylamine, formic acid, acetic acid, and methyl formate. Carboxylic acid type ions were considered in the reactions involving the amines. In reactions where the carboxylic acid and methyl formate neutrals were studied, the reactant ions were primarily amine ion fragments. It was observed that the amines and acids preferentially fragment or accept a proton whenever energetically possible. NH3(+), however, uniquely reacted with the neutrals via atom abstraction to form NH4(+). These studies yielded a body of data relevant to astrochemistry, supplementing the available literature. However, the search for gas phase routes to amino acids using conventional molecules has been frustrated. Our most recent research investigates the fragmentation patterns of several amino acids and several possible routes have been suggested for future study.

  8. Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers.

    PubMed

    Liu, Kai; Zheng, Lifei; Liu, Qing; de Vries, Jan Willem; Gerasimov, Jennifer Y; Herrmann, Andreas

    2014-10-01

    DNA-incorporating hydrophobic moieties can be synthesized by either solid-phase or solution-phase coupling. On a solid support the DNA is protected, and hydrophobic units are usually attached employing phosphoramidite chemistry involving a DNA synthesizer. On the other hand, solution coupling in aqueous medium results in low yields due to the solvent incompatibility of DNA and hydrophobic compounds. Hence, the development of a general coupling method for producing amphiphilic DNA conjugates with high yield in solution remains a major challenge. Here, we report an organic-phase coupling strategy for nucleic acid modification and polymerization by introducing a hydrophobic DNA-surfactant complex as a reactive scaffold. A remarkable range of amphiphile-DNA structures (DNA-pyrene, DNA-triphenylphosphine, DNA-hydrocarbon, and DNA block copolymers) and a series of new brush-type DNA side-chain homopolymers with high DNA grafting density are produced efficiently. We believe that this method is an important breakthrough in developing a generalized approach to synthesizing functional DNA molecules for self-assembly and related technological applications.

  9. Relation between phase diagram, crystallization, and optical properties of cyanine dye/stearic acid mixed monolayers

    SciTech Connect

    Duschl, C.; Kemper, D.; Frey, W.; Meller, P.; Ringsdorf, H.; Knoll, W. Johannes-Gutenberg-Universitaet, Mainz Technische Universitaet Muenchen, Garching )

    1989-06-01

    The phase behavior of cyanine dye monolayers mixed with stearic acid as cosurfactant was investigated at various mole fractions, x, by recording pressure-area isotherms at the water-air interface. The resulting pressure-composition phase diagram shows a eutectic behavior with mixed crystal formation. In the miscibility gap ranging from x {approx} 0.3 to x {approx} 0.95 above the eutectic pressure {pi}{sub e} = 40 mN{center dot}m{sup {minus}1} the two coexisting crystal modifications are characterized (among other techniques) by fluorescence microscopy and, after transfer to a suitable substrate, by electron diffraction. The dye-rich (x = 0.95) crystals show all the characteristic features of the brick-stone arrangement proposed for the molecular packing of the dye chromophores in J aggregates. The x = 0.3 phase boundary with a distinctly different crystal habit is stabilized by the areal match between the chromophore headgroups and the densely packed hydrocarbon chains. These thermodynamic and structural data are discussed in relation to the optical properties of the J-band aggregates.

  10. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.

    PubMed

    Dennis-Smither, Benjamin J; Hanford, Kate L; Kwamena, Nana-Owusua A; Miles, Rachael E H; Reid, Jonathan P

    2012-06-21

    Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.

  11. ArF negative resist system using androsterone structure with δ-hydroxy acid for 100-nm phase shifting lithography

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshiyuki; Hattori, Takashi; Kimura, Kaori; Tanaka, Toshihiko P.; Shiraishi, Hiroshi

    2001-08-01

    A negative resist system utilizing acid-catalyzed intramolecular esterification of (delta) -hydroxy acid has been developed for ArF phase-shifting lithography. The system is made up of an acrylate polymer with pendant structure of androsterone derivative with (delta) -hydroxy acid and a photo-acid generator. We investigated the effect of the comonomer and found that it changes the affinity of the resist polymer to the aqueous base developer. The change of the polarity of the comonomer was found to drastically affect the dissolution properties and the resolution capability. Optimization of the (delta) -hydroxy acid content and the developer concentration prevented pattern deformation such as winding lines and scum between the lines. The improved resist formulation combined with an ArF excimer-laser stepper with a phase-shifting mask produced a clearly resolved 100-nm line-and-space patterns.

  12. Determination of conjugated bile acids in human bile and duodenal fluid by reverse-phase high-performance liquid chromatography.

    PubMed

    Bloch, C A; Watkins, J B

    1978-05-01

    A simple mehtod using reverse-phase liquid chromatography is presented for resolution and quantitation of the major conjugated bile acids of man, including the glycine and taurine conjugates of the dihydroxy bile acids, chenodeoxycholic and deoxycholic acid. Using modern, high-performance chromatographic equipment, analysis time is less than 30 minutes. The quantitative range of the method, with detection by refractive index, is 0.05 to 0.1 mumol of bile acid and the limit of detection for an injection sample is 0.01 mumol. This provides a sensitivity sufficient for analysis of dilute duodenal and gallbladder bile with minimal sample preparation.

  13. Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere.

    PubMed

    Da Pieve, Fabiana; Stankowski, Martin; Hogan, Conor

    2014-09-15

    Mercury is a hazardous environmental pollutant mobilized from natural sources, and anthropogenically contaminated and disturbed areas. Current methods to assess mobility and environmental impact are mainly based on field measurements, soil monitoring, and kinetic modelling. In order to understand in detail the extent to which different mineral sources can give rise to mercury release it is necessary to investigate the complexity at the microscopic level and the possible degradation/dissolution processes. In this work, we investigated the potential for mobilization of mercury structurally trapped in three relevant minerals occurring in hot spring environments and mining areas, namely, cinnabar (α-HgS), corderoite (α-Hg3S2Cl2), and mercuric chloride (HgCl2). Quantum chemical methods based on density functional theory as well as more sophisticated approaches are used to assess the possibility of a) direct photoreduction and formation of elemental Hg at the surface of the minerals, providing a path for ready release in the environment; and b) reductive dissolution of the minerals in the presence of solutions containing halogens. Furthermore, we study the use of TiO2 as a potential photocatalyst for decontamination of polluted waters (mainly Hg(2+)-containing species) and air (atmospheric Hg(0)). Our results partially explain the observed pathways of Hg mobilization from relevant minerals and the microscopic mechanisms behind photocatalytic removal of Hg-based pollutants. Possible sources of disagreement with observations are discussed and further improvements to our approach are suggested.

  14. Socio-Technical Dimensions of an Outdoor Mobile Learning Environment: A Three-Phase Design-Based Research Investigation

    ERIC Educational Resources Information Center

    Land, Susan M.; Zimmerman, Heather Toomey

    2015-01-01

    This design-based research project examines three iterations of Tree Investigators, a learning environment designed to support science learning outdoors at an arboretum and nature center using mobile devices (iPads). Researchers coded videorecords and artifacts created by children and parents (n = 53) to understand how both social and…

  15. 78 FR 56875 - Tribal Mobility Fund Phase I Auction Rescheduled for December 19, 2013; Notice and Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... service support through reverse competitive bidding. The USF/ICC Transformation Order, 76 FR 73830, November 29, 2011 and 76 FR 81562, December 28, 2011, established the Mobility Fund as a universal service... program details. On March 29, 2013, the Bureaus released the Auction 902 Comment Public Notice, 78...

  16. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.

    PubMed

    Stoumpos, Constantinos C; Malliakas, Christos D; Kanatzidis, Mercouri G

    2013-08-01

    A broad organic-inorganic series of hybrid metal iodide perovskites with the general formulation AMI3, where A is the methylammonium (CH3NH3(+)) or formamidinium (HC(NH2)2(+)) cation and M is Sn (1 and 2) or Pb (3 and 4) are reported. The compounds have been prepared through a variety of synthetic approaches, and the nature of the resulting materials is discussed in terms of their thermal stability and optical and electronic properties. We find that the chemical and physical properties of these materials strongly depend on the preparation method. Single crystal X-ray diffraction analysis of 1-4 classifies the compounds in the perovskite structural family. Structural phase transitions were observed and investigated by temperature-dependent single crystal X-ray diffraction in the 100-400 K range. The charge transport properties of the materials are discussed in conjunction with diffuse reflectance studies in the mid-IR region that display characteristic absorption features. Temperature-dependent studies show a strong dependence of the resistivity as a function of the crystal structure. Optical absorption measurements indicate that 1-4 behave as direct-gap semiconductors with energy band gaps distributed in the range of 1.25-1.75 eV. The compounds exhibit an intense near-IR photoluminescence (PL) emission in the 700-1000 nm range (1.1-1.7 eV) at room temperature. We show that solid solutions between the Sn and Pb compounds are readily accessible throughout the composition range. The optical properties such as energy band gap, emission intensity, and wavelength can be readily controlled as we show for the isostructural series of solid solutions CH3NH3Sn(1-x)Pb(x)I3 (5). The charge transport type in these materials was characterized by Seebeck coefficient and Hall-effect measurements. The compounds behave as p- or n-type semiconductors depending on the preparation method. The samples with the lowest carrier concentration are prepared from solution and are n-type; p

  17. Development and application of a specially designed heating system for temperature-programmed high-performance liquid chromatography using subcritical water as the mobile phase.

    PubMed

    Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H

    2006-05-01

    A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min. PMID:16530210

  18. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase.

    PubMed

    Poully, Jean-Christophe; Vizcaino, Violaine; Schwob, Lucas; Delaunay, Rudy; Kocisek, Jaroslav; Eden, Samuel; Chesnel, Jean-Yves; Méry, Alain; Rangama, Jimmy; Adoui, Lamri; Huber, Bernd

    2015-08-01

    Collisions between O(3+) ions and neutral clusters of amino acids (alanine, valine and glycine) as well as lactic acid are performed in the gas phase, in order to investigate the effect of ionizing radiation on these biologically relevant molecular systems. All monomers and dimers are found to be predominantly protonated, and ab initio quantum-chemical calculations on model systems indicate that for amino acids, this is due to proton transfer within the clusters after ionization. For lactic acid, which has a lower proton affinity than amino acids, a significant non-negligible amount of the radical cation monomer is observed. New fragment-ion channels observed from clusters, as opposed to isolated molecules, are assigned to the statistical dissociation of protonated molecules formed upon ionization of the clusters. These new dissociation channels exhibit strong delayed fragmentation on the microsecond time scale, especially after multiple ionization.

  19. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters.

    PubMed

    Thomas, Jikku M; He, Siqin; Larriba-Andaluz, Carlos; DePalma, Joseph W; Johnston, Murray V; Hogan, Christopher J

    2016-08-17

    We applied an atmospheric pressure differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer to examine the stability, mass-mobility relationship, and extent of hydration of dimethylamine-sulfuric acid cluster ions, which are of relevance to nucleation in ambient air. Cluster ions were generated by electrospray ionization and were of the form: [H((CH3)2NH)x(H2SO4)y](+) and [(HSO4)((CH3)2NH)x(H2SO4)y](-), where 4 ≤ x ≤ 8, and 5 ≤ y ≤ 12. Under dry conditions, we find that positively charged cluster ions dissociated via loss of both multiple dimethylamine and sulfuric acid molecules after mobility analysis but prior to mass analysis, and few parent ions were detected in the mass spectrometer. Dissociation also occurred for negative ions, but to a lesser extent than for positive ions for the same mass spectrometer inlet conditions. Under humidified conditions (relative humidities up to 30% in the DMA), positively charged cluster ion dissociation in the mass spectrometer inlet was mitigated and occurred primarily by H2SO4 loss from ions containing excess acid molecules. DMA measurements were used to infer collision cross sections (CCSs) for all identifiable cluster ions. Stokes-Millikan equation and diffuse/inelastic gas molecule scattering predicted CCSs overestimate measured CCSs by more than 15%, while elastic-specular collision model predictions are in good agreement with measurements. Finally, cluster ion hydration was examined by monitoring changes in CCSs with increasing relative humidity. All examined cluster ions showed a modest amount of water molecule adsorption, with percentage increases in CCS smaller than 10%. The extent of hydration correlates directly with cluster ion acidity for positive ions. PMID:27485283

  20. Community mobilization and social marketing to promote weekly iron-folic acid supplementation: a new approach toward controlling anemia among women of reproductive age in Vietnam.

    PubMed

    Khan, Nguyen Cong; Thanh, Hoang Thi Kim; Berger, Jacques; Hoa, Pham Thuy; Quang, Nguyen Dinh; Smitasiri, Suttilak; Cavalli-Sforza, Tommaso

    2005-12-01

    Community-based social marketing and mobilization increased knowledge and participation in preventive weekly iron-folic acid supplementation among women of reproductive age in Vietnam. Rates of buying and taking the weekly supplement containing 60 mg elemental iron and 3.5 mg folic acid among non-pregnant women of reproductive age was between 55% and 92%. Free distribution to pregnant women of the weekly supplement containing 120 mg iron and 3.5 mg folic acid covered almost all pregnant women during the project. In developing countries where community women's groups and health networks are strong, preventive supplementation can be successfully promoted to encourage active participation in the prevention and control of iron-deficiency anemia. PMID:16466084

  1. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    PubMed

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.