Science.gov

Sample records for acidic ph addition

  1. Acid loading test (pH)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  2. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  3. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  4. Acid Rain Analysis by Standard Addition Titration.

    ERIC Educational Resources Information Center

    Ophardt, Charles E.

    1985-01-01

    The standard addition titration is a precise and rapid method for the determination of the acidity in rain or snow samples. The method requires use of a standard buret, a pH meter, and Gran's plot to determine the equivalence point. Experimental procedures used and typical results obtained are presented. (JN)

  5. pH [Measure of Acidity].

    ERIC Educational Resources Information Center

    Henderson, Paula

    This autoinstructional program deals with the study of the pH of given substances by using litmus and hydrion papers. It is a learning activity directed toward low achievers involved in the study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for further pH testing). The equipment…

  6. Acidic stream mitigation by limestone sand addition

    SciTech Connect

    Brant, D.L.; Marich, A.J. Jr.; Largent, K.L.

    1996-12-31

    The Town Line Run watershed comprises an area of 3,600 wooded acres. The tributaries feeding the stream consist of sandstone springs that do not contribute alkalinity to the watershed, leaving the stream susceptible to acid precipitation. This has a negative affect on Iser`s Run, a native brook trout fishery above the confluence with Town Line Run. The objective in stream liming is to improve water chemistry by increasing pH, alkalinity, and reducing acidity, aluminum, and iron. Introducing crushed limestone directly into a stream from a dump truck is an inexpensive but temporary solution to accomplish this objective. In this type of liming operation, a bed of limestone is spread down the stream channel by the momentum of the stream from the introduction point, rather than manually. Water moving across this bed dissolves the limestone, increasing the pH, alkalinity, and calcium while decreasing the acidity, iron, and aluminum concentrations of the water. The size of the limestone particles is important for this purpose because particles that are too small (<150 microns) will carried away, while particles that are too large (>1000 microns) will remain at the introduction point. Our study placed 80 tons of sand-sized limestone (85% calcite) in the stream channel at a single point. Water samples were collected monthly at the following sites (1) directly upstream of the addition site, (2) 100 yards downstream of the site, and (3) 2500 yards downstream of the site. Other sample locations include (4) upstream and (5) downstream of the Town Line Run- Iser`s Run confluence and the Casselman River upstream (6) and downstream (7) of Town Line Run. The samples were analyzed for pH. Specific conductivity, Alkalinity, Acidity, Iron, Manganese, Aluminum, and Sulfate.

  7. Intracellular pH of acid-tolerant ruminal bacteria.

    PubMed Central

    Russell, J B

    1991-01-01

    Acid-tolerant ruminal bacteria (Bacteroides ruminicola B1(4), Selenomonas ruminantium HD4, Streptococcus bovis JB1, Megasphaera elsdenii B159, and strain F) allowed their intracellular pH to decline as a function of extracellular pH and did not generate a large pH gradient across the cell membrane until the extracellular pH was low (less than 5.2). This decline in intracellular pH prevented an accumulation of volatile fatty acid anions inside the cells. PMID:1781695

  8. Titratable acidity of beverages influences salivary pH recovery.

    PubMed

    Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido

    2015-01-01

    A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  9. Dual effect of organic acids as a function of external pH in Oenococcus oeni.

    PubMed

    Augagneur, Yoann; Ritt, Jean-François; Linares, Daniel M; Remize, Fabienne; Tourdot-Maréchal, Raphaëlle; Garmyn, Dominique; Guzzo, Jean

    2007-08-01

    In this study we analyzed under various pH conditions including low pH, the effects of L-malic acid and citric acid, combined or not, on the growth, the proton motive force components and the transcription level of selected genes of the heterolactic bacterium Oenococcus oeni. It is shown here that L-malate enhanced the growth yield at pH equal or below 4.5 while the presence of citrate in media led to a complete and unexpected inhibition of the growth at pH 3.2. Nevertheless, whatever the growth conditions, both L-malate and citrate participated in the enhancement of the transmembrane pH gradient, whereas the membrane potential decreased with the pH. These results suggested that it was not citrate that was directly responsible for the inhibition observed in cultures done at low pH, but probably its end products. This was confirmed since, in media containing L-malate, the addition of acetate substantially impaired the growth rate of the bacterium and slightly the membrane potential and pH gradient. Finally, study of the expression of genes involved in the metabolism of organic acids showed that at pH 4.5 and 3.2 the presence of L-malate led to an increased amount of mRNA of mleP encoding a malate transporter.

  10. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids.

    PubMed

    Neta, E R D; Johanningsmeier, S D; Drake, M A; McFeeters, R F

    2009-01-01

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on sour taste of equimolar protonated organic acid solutions and to investigate the potential roles of organic anions and sodium ions on sour taste perception. Despite equal concentrations of protonated acid species, sour taste intensity decreased significantly with increased pH for acetic, lactic, malic, and citric acids (P < 0.05). Total organic anion concentration did not explain the suppression of sour taste in solutions containing a blend of 3 organic acids with constant concentration of protonated organic acid species and hydrogen ions and variable organic anion concentrations (R(2)= 0.480, P = 0.12). Sour taste suppression in these solutions seemed to be more closely related to sodium ions added in the form of NaOH (R(2)= 0.861, P = 0.007). Addition of 20 mM NaCl to acid solutions resulted in significant suppression of sour taste (P = 0.016). However, sour taste did not decrease with further addition of NaCl up to 80 mM. Presence of sodium ions was clearly shown to decrease sour taste of organic acid solutions. Nonetheless, suppression of sour taste in pH adjusted single acid solutions was greater than what would be expected based on the sodium ion concentration alone, indicating an additional suppression mechanism may be involved.

  11. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  12. Autoinducer-2 detection among commensal oral streptococci is dependent on pH and boric acid.

    PubMed

    Cuadra, Giancarlo A; Frantellizzi, Ashley J; Gaesser, Kimberly M; Tammariello, Steven P; Ahmed, Anika

    2016-07-01

    Autoinducer-2, considered a universal signaling molecule, is produced by many species of bacteria; including oral strains. Structurally, autoinducer-2 can exist bound to boron (borated autoinducer-2). Functionally, autoinducer-2 has been linked to important bacterial processes such as virulence and biofilm formation. In order to test production of autoinducer-2 by a given bacterial strain, a bioassay using marine bioluminescent bacteria Vibrio harveyi as a reporter for autoinducer-2 has been designed. We hypothesize that pH adjustment and addition of boron are required for optimal bioluminescence and accurate autoinducer-2 detection. Using this reporter strain we tested autoinducer-2 activity from two oral commensal species, Streptococcus gordonii DL1 and Streptococcus oralis 34. Spent broth was collected and adjusted to pH 7.5 and supplemented with boric acid prior to measuring autoinducer- 2 activity. Results show that low pH inhibits bioluminescence of the reporter strain, but pH 7.5 allows for bioluminescence induction and proper readings of autoinducer-2 activity. Addition of boric acid also has a positive effect on bioluminescence allowing for a more sensitive detection of autoinducer-2 activity. Our data suggests that although autoinducer-2 is present in spent broth, low pH and/or low levels of boric acid become an obstacle for proper autoinducer-2 detection. For proper autoinducer-2 detection, we propose a protocol using this bioassay to include pH adjustment and boric acid addition to spent broth. Studies on autoinducer-2 activity in several bacteria species represent an important area of study as this universal signaling molecule is involved in critical bacterial phenotypes such as virulence and biofilm formation.

  13. Autoinducer-2 detection among commensal oral streptococci is dependent on pH and boric acid.

    PubMed

    Cuadra, Giancarlo A; Frantellizzi, Ashley J; Gaesser, Kimberly M; Tammariello, Steven P; Ahmed, Anika

    2016-07-01

    Autoinducer-2, considered a universal signaling molecule, is produced by many species of bacteria; including oral strains. Structurally, autoinducer-2 can exist bound to boron (borated autoinducer-2). Functionally, autoinducer-2 has been linked to important bacterial processes such as virulence and biofilm formation. In order to test production of autoinducer-2 by a given bacterial strain, a bioassay using marine bioluminescent bacteria Vibrio harveyi as a reporter for autoinducer-2 has been designed. We hypothesize that pH adjustment and addition of boron are required for optimal bioluminescence and accurate autoinducer-2 detection. Using this reporter strain we tested autoinducer-2 activity from two oral commensal species, Streptococcus gordonii DL1 and Streptococcus oralis 34. Spent broth was collected and adjusted to pH 7.5 and supplemented with boric acid prior to measuring autoinducer- 2 activity. Results show that low pH inhibits bioluminescence of the reporter strain, but pH 7.5 allows for bioluminescence induction and proper readings of autoinducer-2 activity. Addition of boric acid also has a positive effect on bioluminescence allowing for a more sensitive detection of autoinducer-2 activity. Our data suggests that although autoinducer-2 is present in spent broth, low pH and/or low levels of boric acid become an obstacle for proper autoinducer-2 detection. For proper autoinducer-2 detection, we propose a protocol using this bioassay to include pH adjustment and boric acid addition to spent broth. Studies on autoinducer-2 activity in several bacteria species represent an important area of study as this universal signaling molecule is involved in critical bacterial phenotypes such as virulence and biofilm formation. PMID:27350615

  14. Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling.

    PubMed

    Nadtochiy, Sergiy M; Schafer, Xenia; Fu, Dragony; Nehrke, Keith; Munger, Joshua; Brookes, Paul S

    2016-09-16

    2-Hydroxyglutarate (2-HG) is an important epigenetic regulator, with potential roles in cancer and stem cell biology. The d-(R)-enantiomer (d-2-HG) is an oncometabolite generated from α-ketoglutarate (α-KG) by mutant isocitrate dehydrogenase, whereas l-(S)-2-HG is generated by lactate dehydrogenase and malate dehydrogenase in response to hypoxia. Because acidic pH is a common feature of hypoxia, as well as tumor and stem cell microenvironments, we hypothesized that pH may regulate cellular 2-HG levels. Herein we report that cytosolic acidification under normoxia moderately elevated 2-HG in cells, and boosting endogenous substrate α-KG levels further stimulated this elevation. Studies with isolated lactate dehydrogenase-1 and malate dehydrogenase-2 revealed that generation of 2-HG by both enzymes was stimulated severalfold at acidic pH, relative to normal physiologic pH. In addition, acidic pH was found to inhibit the activity of the mitochondrial l-2-HG removal enzyme l-2-HG dehydrogenase and to stimulate the reverse reaction of isocitrate dehydrogenase (carboxylation of α-KG to isocitrate). Furthermore, because acidic pH is known to stabilize hypoxia-inducible factor (HIF) and 2-HG is a known inhibitor of HIF prolyl hydroxylases, we hypothesized that 2-HG may be required for acid-induced HIF stabilization. Accordingly, cells stably overexpressing l-2-HG dehydrogenase exhibited a blunted HIF response to acid. Together, these results suggest that acidosis is an important and previously overlooked regulator of 2-HG accumulation and other oncometabolic events, with implications for HIF signaling.

  15. Effects of saliva on starch-thickened drinks with acidic and neutral pH.

    PubMed

    Hanson, Ben; Cox, Ben; Kaliviotis, Efstathios; Smith, Christina H

    2012-09-01

    Powdered maize starch thickeners are used to modify drink consistency in the clinical management of dysphagia. Amylase is a digestive enzyme found in saliva which breaks down starch. This action is dependent on pH, which varies in practice depending on the particular drink. This study measured the effects of human saliva on the viscosity of drinks thickened with a widely used starch-based thickener. Experiments simulated a possible clinical scenario whereby saliva enters a cup and contaminates a drink. Citric acid (E330) was added to water to produce a controlled range of pH from 3.0 to 7.0, and several commercially available drinks with naturally low pH were investigated. When saliva was added to thickened water, viscosity was reduced to less than 1% of its original value after 10-15 min. However, lowering pH systematically slowed the reduction in viscosity attributable to saliva. At pH 3.5 and below, saliva was found to have no significant effect on viscosity. The pH of drinks in this study ranged from 2.6 for Coca Cola to 6.2 for black coffee. Again, low pH slowed the effect of saliva. For many popular drinks, having pH of 3.6 or less, viscosity was not significantly affected by the addition of saliva. PMID:22210234

  16. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  17. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  18. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  19. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  20. Sensitization of Listeria monocytogenes to Low pH, Organic Acids, and Osmotic Stress by Ethanol

    PubMed Central

    Barker, Clive; Park, Simon F.

    2001-01-01

    The killing of Listeria monocytogenes following exposure to low pH, organic acids, and osmotic stress was enhanced by the addition of 5% (vol/vol) ethanol. At pH 3, for example, the presence of this agent stimulated killing by more than 3 log units in 40 min of exposure. The rate of cell death at pH 3.0 was dependent on the concentration of ethanol. Thus, while the presence 10% (vol/vol) ethanol at pH 3.0 stimulated killing by more than 3 log units in just 5 min, addition of 1.25% (vol/vol) ethanol resulted in less than 1 log unit of killing in 10 min. The ability of 5% (vol/vol) ethanol to stimulate killing at low pH and at elevated osmolarity was also dependent on the amplitude of the imposed stress, and an increase in the pH from 3.0 to 4.0 or a decrease in the sodium chloride concentration from 25 to 2.5% led to a marked reduction in the effectiveness of 5% (vol/vol) ethanol as an augmentative agent. Combinations of organic acids, low pH, and ethanol proved to be particularly effective bactericidal treatments; the most potent combination was pH 3.0, 50 mM formate, and 5 % (vol/vol) ethanol, which resulted in 5 log units of killing in just 4 min. Ethanol-enhanced killing correlated with damage to the bacterial cytoplasmic membrane. PMID:11282610

  1. Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles.

    PubMed

    Chen, Irene A; Szostak, Jack W

    2004-05-25

    Electrochemical proton gradients are the basis of energy transduction in modern cells, and may have played important roles in even the earliest cell-like structures. We have investigated the conditions under which pH gradients are maintained across the membranes of fatty acid vesicles, a model of early cell membranes. We show that pH gradients across such membranes decay rapidly in the presence of alkali-metal cations, but can be maintained in the absence of permeable cations. Under such conditions, when fatty acid vesicles grow through the incorporation of additional fatty acid, a transmembrane pH gradient is spontaneously generated. The formation of this pH gradient captures some of the energy released during membrane growth, but also opposes and limits further membrane area increase. The coupling of membrane growth to energy storage could have provided a growth advantage to early cells, once the membrane composition had evolved to allow the maintenance of stable pH gradients.

  2. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  3. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-06-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive

  4. Acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

    PubMed

    Allam, Uday Sankar; Krishna, M Gopala; Sen, Minakshi; Thomas, Rony; Lahiri, Amit; Gnanadhas, Divya Prakash; Chakravortty, Dipshikha

    2012-01-01

    During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the ΔSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The ΔSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the ΔSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the ΔSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.

  5. Influences of biochar addition on vegetable soil nitrogen balance and pH buffering capacity

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Odindo, AO; Xue, L.; Yang, L.

    2016-08-01

    Leaching is a major path for chemical nitrogen fertilizer loss from in vegetable soil, which would destroy soil pH buffering capacity soil and result in acidification. It has been a common phenomenon in Tai Lake Region, China. However, few study focused on the change soil pH buffering capacity, especially the effect of soil amendment on pH buffering capacity. In this study, a pot experiment was conducted to research the effects of biochar addition to a vegetable soil on nitrogen leaching and pH buffering capacity with pakchoi (B.chinensis L.) growth as the experimental crop. The results showed that biochar could significantly increase the pakchoi nitrogen utilization efficiency, decrease 48%-65% nitrogen loss from leaching under the urea continuous applied condition. Biochar also could effectively maintain the content of soil organic matter and base cations. Therefore, it rose up soil pH buffering capacity by 9.4%-36.8% and significantly slowed down acidification rate. It was suggested that 1%-2% addition ratio was recommended from this study when used as similar soil condition.

  6. Human saliva and taste responses to acids varying in anions, titratable acidity, and pH.

    PubMed

    Norris, M B; Noble, A C; Pangborn, R M

    1984-02-01

    Twenty subjects recorded perceived sourness of solutions of citric + fumaric and of citric + tartaric acids, at pH 3.5 and titratable acidity (TiA) of 4.0 g/l on a moving chart, while parotid saliva flow was recorded via a sialometer . Sourness intensity and flow were greater when citric was the minor acid than when it was dominant. Subjects varied widely in calculated volume of saliva reservoir, but not flow rate (time to 2/3 reservoir vol.). In tartaric-fumaric acid mixtures varying in pH (3.0-3.75) at a constant TiA of 4.0 g/l, and varying in TiA (3.7-4.6 g/l) at a constant pH of 3.5, sourness intensity and parotid flow increased with acidity and decreased with pH. However, eight subjects with a high flow (HF = 1.2 +/- 0.28 g/2 min) and nine subjects with a low flow (LF = 0.43 +/- 0.11 g/2 min) differed widely: (a) In response to variation in stimulus pH and TiA, HF demonstrated marked alteration in flow, but little change in sourness ; LF responded at a lower absolute level, but showed marked changes in sourness and little change in flow; (b) Salivary pH was higher and Na+ was three times greater for the HF than for the LF subjects; and (c) Salivary Ca++ showed a direct relationship with flow and pH among the HF, but an inverse relationship for the LF subjects.

  7. Immobilized pH gradients (IPG) simulator--an additional step in pH gradient engineering: II. Nonlinear pH gradients.

    PubMed

    Righetti, P G; Tonani, C

    1991-12-01

    While in the companion paper (Tonani, C. & Righetti, P. G., Electrophoresis 1991, 12, 1011-1021) we gave the general outline of our new computer program, immobilized pH gradients (IPG) simulator, able to simulate and optimize linear pH gradients for isoelectric focusing in immobilized pH gradients, in the present report we extend the application of such a program to: (i) convex exponential gradients, (ii) logarithmic and (iii) polynomial gradients. Such gradients are meant to give equal space to protein spots in complex protein mixtures (e.g., cell lysates, biological fluids) and follow the statistical distribution of protein pI values along the pH axis. They will prove of fundamental importance in two-dimensional maps, both because they optimize the spreading of spots in the two-dimensional plane and because of the excellent reproducibility of immobilized pH gradients. The following concave exponential recipes are given: pH 3-8, pH 3-9, pH 3-10, pH 3-11, pH 4-7, pH 4-8, pH 4-9, pH 4-10, pH 4-11, pH 5-8, pH 5-9, and pH 5-10, as well as the most extended pH 2.5-11 interval. Two interesting logarithmic gradients are described: pH 3-6 and pH 3-7 and one sigmoidal (derived with a polynomial of 5th degree): pH 3-11.

  8. Recovery of carboxylic acids at pH greater than pK{sub a}

    SciTech Connect

    Tung, L.A.

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pK{sub a} and regenerability depend on sorbent basicity; apparent pK{sub a} and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  9. Mixture additives inhibit the dermal permeation of the fatty acid, ricinoleic acid.

    PubMed

    Baynes, R E; Riviere, J E

    2004-02-28

    Ricinoleic acid (RA) like many of the ingredients in machine cutting fluids and other industrial formulations are potential dermal irritants, yet very little is known about its permeability in skin. 3H-ricinoleic acid mixtures were formulated with three commonly used cutting fluid additives; namely, triazine (TRI), linear alkylbenzene sulfonate (LAS), and triethanolamine (TEA) and topically applied to inert silastic membranes and porcine skin in vitro as aqueous mineral oil (MO) or polyethylene glycol (PEG) mixtures. These additives significantly decreased ricinoleic acid partitioning from the formulation into the stratum corneum (SC) in PEG-based mixtures. Except for LAS, all other additives produced a more basic formulation (pH = 9.3-10.3). In silastic membranes and porcine skin, individual additives or combination of additives significantly reduced ricinoleic permeability. This trend in ricinoleic acid disposition in both membranes suggests that the mixture interaction is more physicochemical in nature and probably not related to the chemical-induced changes in the biological membrane as may be assumed with topical exposures to potentially irritant formulations.

  10. pH-Sensitive Polymeric Micelle-based pH Probe for Detecting and Imaging Acidic Biological Environments

    PubMed Central

    Lee, Young Ju; Kang, Han Chang; Hu, Jun; Nichols, Joseph W.; Jeon, Yong Sun; Bae, You Han

    2012-01-01

    To overcome the limitations of monomeric pH probes for acidic tumor environments, this study designed a mixed micelle pH probe composed of polyethylene glycol (PEG)-b- poly(L-histidine) (PHis) and PEG-b-poly(L-lactic acid) (PLLA), which is well-known as an effective antitumor drug carrier. Unlike monomeric histidine and PHis derivatives, the mixed micelles can be structurally destabilized by changes in pH, leading to a better pH sensing system in nuclear magnetic resonance (NMR) techniques. The acidic pH-induced transformation of the mixed micelles allowed pH detection and pH mapping of 0.2–0.3 pH unit differences by pH-induced “on/off”-like sensing of NMR and magnetic resonance spectroscopy (MRS). The micellar pH probes sensed pH differences in non-biological phosphate buffer and biological buffers such as cell culture medium and rat whole blood. In addition, the pH-sensing ability of the mixed micelles was not compromised by loaded doxorubicin. In conclusion, PHis-based micelles could have potential as a tool to simultaneously treat and map the pH of solid tumors in vivo. PMID:22861824

  11. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. PMID:26024614

  12. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties.

  13. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.

  14. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  15. Effect of systemic pH on pH sub i and lactic acid generation in exhaustive forearm exercise

    SciTech Connect

    Hood, V.L.; Schubert, C.; Keller, U.; Mueller, S. Univ. of Vermont College of Medicine, Burlington )

    1988-09-01

    To investigate whether changes in systemic pH affect intracellular pH (pH{sub i}), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH{sub 4}Cl (acidosis; A) or NaHCO{sub 3} (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pH{sub i} and phosphocreatine (PCr) content were measured with {sup 31}P-nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis than alkalosis and intermediate in control. Lactic acid output during recovery was less with A than B and intermediate in C. PCr utilization and resynthesis were not affected by extracellular pH changes. pH{sub i} did not differ before exercise or at its end. Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability.

  16. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation.

  17. [Effects of thiourea on pH and availability of metal ions in acid red soil].

    PubMed

    Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong

    2014-03-01

    Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.

  18. Iron-control additives improve acidizing

    SciTech Connect

    Walker, M.; Dill, W. ); Besler, M. )

    1989-07-24

    Iron sulfide and sulfur precipitation in sour wells can be controlled with iron-sequestering agents and sulfide modifiers. Oil production has been routinely increased in sour wells where precipitation of iron sulfide and elemental sulfur has been brought under control. Production increases have been especially noteworthy on wells that had a history of rapid production decline after acid stimulation. Twenty-fold production increases have been recorded. Key to the production increase has been to increase permeability with: Iron chelating agents that control precipitation of iron sulfide. A sulfide modifier that reduces precipitation of solids in the presence of excessive amounts of hydrogen sulfide and prevents precipitation of elemental sulfur.

  19. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  20. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  1. Implications of pH manipulation methods for metal toxicity: not all acidic environments are created equal.

    PubMed

    Esbaugh, A J; Mager, E M; Brix, K V; Santore, R; Grosell, M

    2013-04-15

    The toxicity of many metals is impacted by environmental pH, through both competition and complexation by hydroxide and carbonate ions. To establish safe environmental regulation it is important to properly define the relationship between pH and metal toxicity, a process that involves manipulating the pH of test water in the lab. The current study compares the effects of the three most common pH manipulation methods (carbon dioxide, acid-base addition, and chemical buffers) on acute Pb toxicity of a model fish species, Pimephales promelas. Acidification of test water revealed that the Pb and Pb(2+) LC50 values were impacted by the pH manipulation method, with the following order of effects: HClpH was alkalinized using MOPS or NaOH. The different impacts of pH manipulation methods on Pb toxicity are likely due to different physiological stresses resulting from the respective methods; the physiological implications of each method are discussed. The results suggest that when studying the impacts of pH on metal toxicity it is important to properly replicate the ambient conditions of interest as artificial buffering using CO2 environments or organic buffers significantly affects the physiology of the test organisms above and beyond what is expected from pH alone. Thus, using CO2 and organic buffers overestimates the impact of acid pH on Pb toxicity.

  2. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    NASA Astrophysics Data System (ADS)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  3. [Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values].

    PubMed

    Zhu, Peng; Miao, Xiao-lei; Chen, Yong

    2016-01-01

    The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA. PMID:27405173

  4. Flocculation and Membrane Binding of Outer Membrane Protein F, Porin, at Acidic pH

    NASA Astrophysics Data System (ADS)

    Suzuki, Keiko; Nakae, Taiji; Mitaku, Shigeki

    1998-04-01

    Outer membrane protein F (OmpF), porin, of Escherichia coli is an intrinsic membrane protein made of a β-sheet barrel, the amino acid sequence being as hydrophilic as many soluble proteins in spite of its location in the hydrophobic region of membrane. The binding of porin molecules with a lipid membrane and the flocculation of the protein were studied at various pH, using the combination of centrifugation and intrinsic fluorescence measurements. The binding of porin with the lipid membrane occurred in the pH range below 7, whereas the flocculation of porin in the absence of the membrane was observed only at pH below 5. Porin molecules in the pH range between 5 and 7 were stable as a colloid but spontaneously bound with the lipid membrane soon after the addition of lipid vesicles. The possible mechanism of the structural formation of porin in the outer membrane was discussed based on the pH dependence of the membrane binding ability of this protein.

  5. Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes.

    PubMed

    Toyomizu, Masaaki; Okamoto, Katsuyuki; Akiba, Yukio; Nakatsu, Tetsuo; Konishi, Tetsuya

    2002-01-01

    We have previously shown that anacardic acid has an uncoupling effect on oxidative phosphorylation in rat liver mitochondria using succinate as a substrate (Life Sci. 66 (2000) 229-234). In the present study, for clarification of the physicochemical characteristics of anacardic acid, we used a cyanine dye (DiS-C3(5)) and 9-aminoacridine (9-AA) to determine changes of membrane potential (DeltaPsi) and pH difference (DeltapH), respectively, in a liposome suspension in response to the addition of anacardic acid to the suspension. The anacardic acid quenched DiS-C3(5) fluorescence at concentrations higher than 300 nM, with the degree of quenching being dependent on the log concentration of the acid. Furthermore, the K(+) diffusion potential generated by the addition of valinomycin to the suspension decreased for each increase in anacardic acid concentration used over 300 nM, but the sum of the anacardic acid- and valinomycin-mediated quenching was additively increasing. This indicates that the anacardic acid-mediated quenching was not due simply to increments in the K(+) permeability of the membrane. Addition of anacardic acid in the micromolar range to the liposomes with DeltaPsi formed by valinomycin-K(+) did not significantly alter 9-AA fluorescence, but unexpectedly dissipated DeltaPsi. The DeltaPsi preformed by valinomycin-K(+) decreased gradually following the addition of increasing concentrations of anacardic acid. The DeltaPsi dissipation rate was dependent on the pre-existing magnitude of DeltaPsi, and was correlated with the logarithmic concentration of anacardic acid. Furthermore, the initial rate of DeltapH dissipation increased with logarithmic increases in anacardic acid concentration. These results provide the evidence for a unique function of anacardic acid, dissimilar to carbonylcyanide p-trifluoromethoxyphenylhydrazone or valinomycin, in that anacardic acid behaves as both an electrogenic (negative) charge carrier driven by DeltaPsi, and a 'proton

  6. The PH gene determines fruit acidity and contributes to the evolution of sweet melons.

    PubMed

    Cohen, Shahar; Itkin, Maxim; Yeselson, Yelena; Tzuri, Galil; Portnoy, Vitaly; Harel-Baja, Rotem; Lev, Shery; Sa'ar, Uzi; Davidovitz-Rikanati, Rachel; Baranes, Nadine; Bar, Einat; Wolf, Dalia; Petreikov, Marina; Shen, Shmuel; Ben-Dor, Shifra; Rogachev, Ilana; Aharoni, Asaph; Ast, Tslil; Schuldiner, Maya; Belausov, Eduard; Eshed, Ravit; Ophir, Ron; Sherman, Amir; Frei, Benedikt; Neuhaus, H Ekkehard; Xu, Yimin; Fei, Zhangjun; Giovannoni, Jim; Lewinsohn, Efraim; Tadmor, Yaakov; Paris, Harry S; Katzir, Nurit; Burger, Yosef; Schaffer, Arthur A

    2014-06-05

    Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.

  7. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.

    PubMed

    Hu, Xingyun; He, Mengchang; Li, Sisi

    2015-03-01

    Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62×10(4) mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9×10(3) mg/kg) was 3000 times that in uncontaminated soils (2.7±1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions.

  8. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  9. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    PubMed

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility.

  10. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  11. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.

    PubMed Central

    Russell, J B

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation. PMID:2036013

  12. Disruption of the transmembrane pH gradient--a possible mechanism for the antibacterial action of azelaic acid in Propionibacterium acnes and Staphylococcus epidermidis.

    PubMed

    Bojar, R A; Cunliffe, W J; Holland, K T

    1994-09-01

    The effect of the topical acne treatment azelaic acid on the transmembrane proton gradient (delta pH) of Propionibacterium acnes and Staphylococcus epidermidis was studied in vitro at external pH values found on human skin (pH 4.0-6.0). Bacteria were grown in defined media using continuous culture and delta pH was estimated by measuring the accumulation of [14C] benzoic by the cells using flow dialysis. In both P. acnes and S. epidermidis the addition of 30 mM azelaic acid and the membrane active inhibitors nigericin (150 microM) and CCCP (150 microM) resulted in a rapid release of [14C] label into the dialysate indicating the dissipation of delta pH between external pH values of 4.0-6.0. The addition of 60 mM NaCl as an iso-osmotic control and 150 microM valinomycin did not induce the release of [14C] label. The addition of 30 mM azelaic acid reduced the delta pH of P. acnes by 44% at external pH 4.0 and 28% at external pH 6.0. In S. epidermidis 30 mM azelaic acid reduced delta pH by 88% at external pH 5.0 and 20% at external pH 6.0. Rapid loss of viability occurred in suspensions of P. acnes and S. epidermidis containing 30 mM azelaic acid at pH 4.0 with no viable cells recovered after 60 min incubation. At pH 6.0 little change in viable numbers of P. acnes and S. epidermidis were observed over a 2 h incubation period. The results indicate that the antibacterial activity of azelaic acid is associated with the perturbation of intracellular pH.

  13. Disruption of the transmembrane pH gradient--a possible mechanism for the antibacterial action of azelaic acid in Propionibacterium acnes and Staphylococcus epidermidis.

    PubMed

    Bojar, R A; Cunliffe, W J; Holland, K T

    1994-09-01

    The effect of the topical acne treatment azelaic acid on the transmembrane proton gradient (delta pH) of Propionibacterium acnes and Staphylococcus epidermidis was studied in vitro at external pH values found on human skin (pH 4.0-6.0). Bacteria were grown in defined media using continuous culture and delta pH was estimated by measuring the accumulation of [14C] benzoic by the cells using flow dialysis. In both P. acnes and S. epidermidis the addition of 30 mM azelaic acid and the membrane active inhibitors nigericin (150 microM) and CCCP (150 microM) resulted in a rapid release of [14C] label into the dialysate indicating the dissipation of delta pH between external pH values of 4.0-6.0. The addition of 60 mM NaCl as an iso-osmotic control and 150 microM valinomycin did not induce the release of [14C] label. The addition of 30 mM azelaic acid reduced the delta pH of P. acnes by 44% at external pH 4.0 and 28% at external pH 6.0. In S. epidermidis 30 mM azelaic acid reduced delta pH by 88% at external pH 5.0 and 20% at external pH 6.0. Rapid loss of viability occurred in suspensions of P. acnes and S. epidermidis containing 30 mM azelaic acid at pH 4.0 with no viable cells recovered after 60 min incubation. At pH 6.0 little change in viable numbers of P. acnes and S. epidermidis were observed over a 2 h incubation period. The results indicate that the antibacterial activity of azelaic acid is associated with the perturbation of intracellular pH. PMID:7829407

  14. pH dependence of methyl phosphonic acid, dipicolinic acid, and cyanide by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.

    2004-03-01

    U.S. and Coalition forces fighting terrorism in Afghanistan and Iraq must consider a wide range of attack scenarios in addition to car bombings. Among these is the intentional poisoning of water supplies to obstruct military operations. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of methyl phosphonic acid and cyanide as a function of pH, an important factor affecting quantitation measurements, which to our knowledge has not been examined. In addition, dipicolinic acid, a chemical signature associated with anthrax-causing spores, is also presented.

  15. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.

    PubMed

    Grant-Preece, Paris; Schmidtke, Leigh M; Barril, Celia; Clark, Andrew C

    2017-01-15

    Glyoxylic acid is a tartaric acid degradation product formed in model wine solutions containing iron and its production is greatly increased by exposure to UV-visible light. In this study, the combined effect of sulfur dioxide, caffeic acid, pH and temperature on the light-induced (⩾300nm) production of glyoxylic acid in model wine containing tartaric acid and iron was investigated using a Box-Behnken experimental design and response surface methodology (RSM). Glyoxylic acid produced in the irradiated model wine was present in free and hydrogen sulfite adduct forms and the measured total, free and percentage free glyoxylic acid values were modeled using RSM. Sulfur dioxide significantly decreased the total amount of glyoxylic acid produced, but could not prevent its production, while caffeic acid showed no significant impact. The interaction between pH and temperature was significant, with low pH values and low temperatures giving rise to higher levels of total glyoxylic acid.

  16. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.

    PubMed

    Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K

    2013-05-17

    Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.

  17. Acid-induced folding of yeast alcohol dehydrogenase under low pH conditions.

    PubMed

    Le, W P; Yan, S X; Zhang, Y X; Zhou, H M

    1996-04-01

    Under conditions of low pH, the conformational states of holo-YADH and apo-YADH were examined by protein intrinsic fluorescence, ANS fluorescence, and far-UV CD measurements. The results obtained show that a low ionic strength, with the addition of HCl, the holo- and apo- YADH denatured gradually to reach the ultimate unfolded conformation in the vicinity of pH 2.0 and 2.5, respectively. With the decrease of pH from 7.0 to 2.0, the fluorescence emission decreased markedly, with its emission maximum red-shifting from 335 to 355 nm, indicating complete exposure of the buried tryptophan residues to the solvent. The far-UV CD spectra show the loss of the arrayed secondary structure, though the acid-denatured enzyme still maintained a partially arrayed secondary structure. A further decrease in pH by increasing the concentration of HClO4 induced a cooperative folding of the denatured enzyme to a compact conformation with the properties of a molten globule, described previously by Goto et al. [Proc. Natl. Acad. Sci. USA 87, 573-577 (1990)]. More extensive studies showed that although apo-YADH and holo-YADH exhibited similar behavior, the folding cooperative ability of apo-YADH was lower than that of the holo-enzyme. From the above results, it is suggested that the zinc ion plays an important role in the proper folding of YADH and in stabilizing its native conformation.

  18. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    PubMed

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor.

  19. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain.

    PubMed

    Senouci-Rezkallah, Khadidja; Schmitt, Philippe; Jobin, Michel P

    2011-05-01

    This study investigated the involvement of glutamate-, arginine- and lysine-dependent systems in the Acid Tolerance Response (ATR) of Bacillus cereus ATCC14579 strain. Cells were grown in a chemostat at external pH (pH(e)) 7.0 and 5.5. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted) compared with cells grown at pH 7.0 (unadapted), indicating that B. cereus cells grown at low pH(e) were able to induce a marked ATR. Glutamate, arginine and lysine enhanced the resistance of unadapted cells to pH 4.0 acid shock of 1-log or 2-log populations, respectively. Amino acids had no detectable effect on acid resistance in acid-adapted cells. An acid shock at pH 4.0 resulted in a marked drop in internal pH (pH(i)) in unadapted cells compared with acid-adapted cells. When acid shock was achieved in the presence of glutamate, arginine or lysine, pH(i) was maintained at higher values (6.31, 6.69 or 6.99, respectively) compared with pH(i) in the absence of amino acids (4.88). Acid-adapted cells maintained their pH(i) at around 6.4 whatever the condition. Agmatine (a competitive inhibitor of arginine decarboxylase) had a negative effect on the ability of B. cereus cells to survive and maintain their pH(i) during acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. This adaptation depends on pH(i) homeostasis and is enhanced in the presence of glutamate, arginine and lysine. Hence evaluations of the pathogenicity of B. cereus must take into account its ability to adapt to acid stress.

  20. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH.

    PubMed

    Wang, Kun; Yin, Jun; Shen, Dongsheng; Li, Na

    2014-06-01

    Food waste anaerobic fermentation was carried out under acidic conditions using inocula based on aerobic activated sludge (Inoculum AE) or anaerobic activated sludge (Inoculum AN) for volatile fatty acids (VFAs) production. The results showed that food waste hydrolysis increased obviously when Inoculum AN was used relative to Inoculum AE at any pH investigated. Hydrolysis at pH 4.0 and uncontrolled pH was higher than that at other pHs when either inoculum was used. Additionally, VFAs production at pH 6.0 was the highest, regardless of the inoculum used. The optimum VFA yields were 0.482g/gVSSremoval with Inoculum AE and 0.918g/gVSSremoval with Inoculum AN, which were observed after 4d and 20d of fermentation, respectively. VFAs composition analysis showed that butyrate acid was the prevalent acid at pH 6.0, followed by acetate acid and propionic acid.

  1. Modeling the combined effects of pH, temperature and ascorbic acid concentration on the heat resistance of Alicyclobacillus acidoterrestis.

    PubMed

    Bahçeci, K Savaş; Acar, Jale

    2007-12-15

    In this study, thermal inactivation parameters (D- and z-values) of Alicyclobacillus acidoterrestris spores in McIlvaine buffers at different pH, apple juice and apple nectar produced with and without ascorbic acid addition were determined. The effects of pH, temperature and ascorbic acid concentration on D-values of A. acidoterrestris spores were also investigated using response surface methodology. A second order polynomial equation was used to describe the relationship between pH, temperature, ascorbic acid concentration and the D-values of A. acidoterrestris spores. Temperature was the most important factor on D-values, and its effect was three times higher than those of pH. Although the statistically significant, heat resistance of A. acidoterrestris spores was not so influenced from the ascorbic acid within the concentration studied. D-values in apple juice and apple nectars were higher than those in buffers as heating medium at similar pH. The D-values ranged from 11.1 (90 degrees C) to 0.7 min (100 degrees C) in apple juice, 14.1 (90 degrees C) to 1.0 min (100 degrees C) in apple nectar produced with ascorbic acid addition, and 14.4 (90 degrees C) to 1.2 min (100 degrees C) in apple nectar produced without ascorbic acid addition. However, no significant difference in z-values was observed among spores in the juices and buffers at different pH, and it was between 8.2 and 9.2 degrees C. The results indicated that the spores of A. acidoterrestris may survive in fruit juices and nectars after pasteurization treatment commonly applied in the food industry.

  2. Selective production of lactic acid in continuous anaerobic acidogenesis by extremely low pH operation.

    PubMed

    Itoh, Yuya; Tada, Kiyoshi; Kanno, Tohru; Horiuchi, Jun-Ichi

    2012-11-01

    The selective production of lactic acid by anaerobic acidogenesis with low pH control was examined using a chemostat culture. By decreasing culture pH to 3.5 in a chemostat culture containing mixed microbial populations for anaerobic acidogenesis, heterolactic fermentation became dominant, resulting in the selective production of lactic acid and ethanol. This phenomenon was reversible between the acidic and neutral conditions, and was not affected by the dilution rate. The extremely low pH operation was effective for selective lactic acid production in anaerobic acidogenesis.

  3. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.

    PubMed

    Fornero, Jeffrey J; Rosenbaum, Miriam; Cotta, Michael A; Angenent, Largus T

    2010-04-01

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance contributes to BES potential losses and, therefore, power losses. Here, we report that adding carbon dioxide (CO(2)) gas to the cathode, which creates a CO(2)/bicarbonate buffered catholyte system, can diminish microbial fuel cell (MFC) pH imbalances in contrast to the CO(2)/carbonate buffered catholyte system by Torres, Lee, and Rittmann [Environ. Sci. Technol. 2008, 42, 8773]. We operated an air-cathode and liquid-cathode MFC side-by-side. For the air-cathode MFC, CO(2) addition resulted in a stable catholyte film pH of 6.61 +/- 0.12 and a 152% increase in steady-state power density. By adding CO(2) to the liquid-cathode system, we sustained a steady catholyte pH (pH = 5.94 +/- 0.02) and a low pH imbalance (DeltapH = 0.65 +/- 0.18) over a 2-week period without external salt buffer addition. By migrating bicarbonate ions from the cathode to the anode (with an anion-exchange membrane), we increased the anolyte pH (DeltapH = 0.39 +/- 0.31), total alkalinity (494 +/- 6 to 582 +/- 6 as mg CaCO(3)/L), and conductivity (1.53 +/- 0.49 to 2.16 +/- 0.03 mS/cm) relative to the feed properties. We also verified with a phosphate-buffered MFC that our reaction rates were limited mainly by the reactor configuration rather than limitations due to the bicarbonate buffer.

  4. Rhizosphere pH responses to simulated acid rain as measured with glass microelectrodes

    SciTech Connect

    Conkling, B.L.

    1988-01-01

    The objectives of this study were to develop a useful experimental system for studying the rhizosphere of growing roots, and to investigate the effects of bulk soil pH and foliar acid rain application on the rhizosphere pH of alfalfa, corn and soybeans. First, a study was done to compare soil pH measurements made with a standard glass pH electrode with those made using an antimony (Sb) microelectrode. Because of uncertainty with the Sb microelectrodes' response, glass pH-sensitive microelectrodes were made and tested for rhizosphere pH measurements. The influence of soil water pressure gradients in the range of {minus}10 to {minus}1500 kPa in the proximity of the pH and reference electrodes on pH measurements made with microelectrodes was studied. The effect of foliar acid rain application on the rhizosphere pH of alfalfa, corn, and soybean as a function of soil pH were studied. Alfalfa, corn, and soybean were grown into minirhizotrons containing reformed samples of both Seymour A and Bt soil horizons, and the rhizosphere pH measured. The measured in situ bulk soil pH ranged from 4.9 to 6.2 in the A horizon and from 4.0 to 5.7 in the Bt horizon. Plants received acid or non-acid foliar rain applications. Rhizosphere pH was measured using a glass pH-sensitive microelectrode. Acid rain applications caused foliar damage, but had little effect on the rhizosphere pH. The general trend was for the lateral root pH values to be slightly higher than the main root values.

  5. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  6. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts. II: Salicylic acid, theophylline, and benzoic acid.

    PubMed

    Serajuddin, A T; Jarowski, C I

    1985-02-01

    The pH-solubility profiles of salicylic acid and theophylline, as determined by the addition of HCl or NaOH to their aqueous suspensions, were identical with those of their sodium salts except during phase transitions from acid to salt or vice versa. Supersaturated solutions were formed during phase transitions. Unlike the solubility profiles, the pH-intrinsic dissolution rate profiles of an acid and its salt differed greatly. Good conformity with the Noyes-Whitney equation was demonstrated when the solubility values under pH conditions as the diffusion layer thickness, h, approaches zero (Cs,h = 0) were used rather than solubilities under pH conditions of the bulk media (Cs). The pH when h approaches zero (pHh = 0) was estimated by equilibration of a dissolution medium with an excess of material. Good correlation was shown between the pHh = 0 values of benzoic acid estimated according to this method and the pHh = 0 values reported in the literature. The intrinsic dissolution rate constant, the ratio of the diffusion coefficient to the diffusion layer thickness (D/h), may be assumed constant when comparing the dissolution rates of salicylic acid, theophylline and sodium theophylline. On the other hand, D/h decreased significantly during dissolution of sodium salicylate due to a large increase in Cs,h = 0 and the consequent increase in viscosity in the diffusion layer. A simple method of predicting the dissolution rate of an acid or a salt at different pH values has been developed.

  7. Negative pH and extremely acidic mine waters from Iron Mountain, California

    SciTech Connect

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-15

    Extremely acidic mine waters with pH values as low as {minus}3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as {minus}4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  8. Negative pH and extremely acidic mine waters from Iron Mountain, California

    USGS Publications Warehouse

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-01

    Extremely acidic mine waters with pH values as low as -3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as -4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  9. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    PubMed

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-01

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy.

  10. Disruption of bovine oocytes and preimplantation embryos by urea and acidic pH.

    PubMed

    Ocon, O M; Hansen, P J

    2003-04-01

    Feeding cattle diets high in degradable crude protein (CP) or in excess of requirements can reduce fertility and lower uterine pH. Objectives were to determine direct effects of urea and acidic pH during oocyte maturation and embryonic development. For experiment 1, oocytes were matured in medium containing 0, 5, 7.5, or 10 mM urea (0, 14, 21, or 28 mg/dl urea nitrogen, respectively). Cleavage rate was not reduced by any concentration of urea. However, the proportion of oocytes developing to the blastocyst stage at d 8 after insemination was reduced by 7.5 mM urea. In addition, the proportion of cleaved oocytes becoming blastocysts was decreased by 5 and 7.5 mM urea. For experiment 2, putative zygotes were collected -9 h after insemination and cultured in modified Potassium Simplex Optimized Medium (KSOM). Urea did not reduce the proportion of oocytes developing to the blastocyst stage, although 10 mM urea reduced cleavage rate slightly. For experiment 3, dimethadione (DMD), a weak nonmetabolizable acid, was used to decrease culture medium pH. Putative zygotes were cultured in modified KSOM containing 0, 10, 15, or 20 mM DMD for 8 d. DMD reduced cleavage rate at 15 and 20 mM and development to the blastocyst stage at all concentrations. Results support the idea that feeding diets rich in highly degradable CP compromises fertility through direct actions of urea on the oocyte and through diet-induced alterations in uterine pH.

  11. Graphene quantum dots as additives in capillary electrophoresis for separation cinnamic acid and its derivatives.

    PubMed

    Sun, Yaming; Bi, Qing; Zhang, Xiaoli; Wang, Litao; Zhang, Xia; Dong, Shuqing; Zhao, Liang

    2016-05-01

    A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid.

  12. Effect of pH on corrosion inhibition of steel by polyaspartic acid

    SciTech Connect

    Silverman, D.C.; Kalota, D.J.; Stover, F.S.

    1995-10-01

    Polyaspartic acid, a polymeric form of aspartic acid has been examined as a corrosion inhibitor for steel as a function of pH, temperature, and hydrodynamic conditions. The temperature ranged from 25 C to 95 C and the concentration ranged from less than 1% to about 10% by weight. Experimental procedures included electrochemical impedance spectroscopy, the rotating cylinder electrode, and coupon immersion. At low to neutral pH values, polyaspartic acid increases the corrosion rate of steel. At high pH above about 10, polyaspartic acid is a reasonably robust corrosion inhibitor. Between a pH of 7 and 10, corrosion in the presence of polyaspartic acid is a complex function of temperature, concentration, water quality, and hydrodynamic conditions. By combining corrosion potential measurements with speciation diagrams as obtained by titration, a reasonably cohesive explanation of the behavior has been developed.

  13. Effect of pH on corrosion inhibition of steel by polyaspartic acid

    SciTech Connect

    Silverman, D.C.; Kalota, D.J.; Stover, F.S.

    1995-11-01

    Polyaspartic acid, a polymeric form of aspartic acid (C{sub 4}H{sub 7}NO{sub 4}), was examined as a corrosion inhibitor for steel as a function of pH, temperature, and hydrodynamic conditions. The temperature ranged from 25 C to 95 C, and the concentration ranged from < 1 wt% to {approximately} 10 wt%. Experimental procedures included electrochemical impedance spectroscopy (EIS), the rotating cylinder electrode (RCE), and coupon immersion. At low to neutral pH values, polyaspartic acid increased the corrosion rate of steel. At high pH (< {approximately} 10), polyaspartic acid was a reasonably robust corrosion inhibitor. Between pH 7 and 10, corrosion in the presence of polyaspartic acid was a complex function of temperature concentration, water quality, and hydrodynamic conditions. By combining corrosion potential measurements with speciation diagrams obtained by titration, a reasonably cohesive explanation of the behavior was developed.

  14. Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid.

    PubMed

    Qu, Yan; Zhang, Chao-Jie; Chen, Pei; Zhou, Qi; Zhang, Wei-Xian

    2014-07-01

    The effects of initial solution pH on the decomposition of perfluorooctanoic acid (PFOA) with hydrated electrons as reductant were investigated. The reductive decomposition of PFOA depends strongly on the solution pH. In the pH range of 5.0-10.0, the decomposition and defluorination rates of PFOA increased with the increase of the initial solution pH. The rate constant was 0.0295 min(-1) at pH 10.0, which was more than 49.0 times higher than that at pH 5.0. Higher pH also inhibits the generation of toxic intermediates during the PFOA decomposition. For example, the short-chain PFCAs reached a lower maximum concentration in shorter reaction time as pH increasing. The peak areas of accumulated fluorinated and iodinated hydrocarbons detected by GC/MS under acidic conditions were nearly 10-100 times more than those under alkaline conditions. In short, alkaline conditions were more favorable for photo-induced reduction of PFOA as high pH promoted the decomposition of PFOA and inhibited the accumulation of intermediate products. The concentration of hydrated electron, detected by laser flash photolysis, increased with the increase of the initial pH. This was the main reason why the decomposition of PFOA in the UV-KI system depended strongly on the initial pH.

  15. X-ray absorption and resonance raman spectroscopy of human myeloperoxidase at neutral and acid pH.

    PubMed

    Yue, K T; Taylor, K L; Kinkade, J M; Sinclair, R B; Powers, L S

    1997-04-01

    Myeloperoxidase (MPO), an important enzyme in the oxygen-dependent host defense system of human polymorphonuclear leukocytes, utilizes hydrogen peroxide to catalyze the production of hypochlorous acid, an oxidizing bactericidal agent. While MPO shows significant sequence homology with other peroxidases and this homology is particularly striking among the active-site residues, MPO exhibits unusual spectral features and the unique ability to catalyze the oxidation of chloride ions. We have investigated the MPO active-site with X-ray absorption (XAS) and resonance Raman (RRS) spectroscopies at neutral pH and also at the physiological acidic pH (pH approximately 3) and have compared these results with those of horseradish peroxidase (HRP). At pH 7.5, XAS results show that the iron heme active site is 6-coordinate where the distal ligand is likely nitrogen or oxygen, but not sulfur. The heme is distorted compared to HRP, other peroxidases, and heme compounds, but at pH approximately 3, the distal ligand is lost and the heme is less distorted. RRS results under identical pH conditions show that the skeletal core-size sensitive modes and v3 are shifted to higher frequency at pH approximately 3 indicating a 6- to 5-coordination change of high spin ferric heme. In addition, a new band at 270 cm(-1) is observed at pH approximately 3 which is consistent with the loss of the sixth ligand. The higher symmetry of the heme at pH approximately 3 is reflected by a single v4 mode in the (RRS) spectrum. HRP also loses its loosely associated distal water at this pH, but little change in heme distortion is observed. This change suggests that loss of the distal ligand in MPO releases stress on the heme which may facilitate binding of chloride ion.

  16. Conformational stability of human erythrocyte transglutaminase. Patterns of thermal unfolding at acid and alkaline pH.

    PubMed

    Bergamini, C M; Dean, M; Matteucci, G; Hanau, S; Tanfani, F; Ferrari, C; Boggian, M; Scatturin, A

    1999-12-01

    Tissue-type transglutaminase is irreversibly inactivated during heat treatment. The rate of inactivation is low at pH 7.5; it increases slightly at acid pH (6.1) but much more at alkaline pH (9.0-9.5), suggesting that specific effects take place in the alkaline range, possibly in relation to decreased stability of the transition-state intermediate as pH is raised above 9.0. Differential scanning calorimetry experiments indicate that thermal unfolding of the protein occurs with two separate transitions, involving independent regions of the enzyme. They are assigned to domains 1 and 2 and domains 3 and 4, respectively, by a combination of calorimetric and spectroscopic techniques. When considering the effects of pH, we noted that transglutaminase was unfolded via different pathways at the different pH values considered. At acid pH, the whole structure of the protein was lost irreversibly, with massive aggregation. At neutral and, even more so, at alkaline pH, aggregation was absent (or very limited at high protein concentration) and the loss of secondary structure was dependent on the ionization state of crucial lysine residues. Unfolding at pH 9.5 apparently chiefly involved the N-terminal region, as testified by changes in protein intrinsic fluorescence. In addition, the C-terminal region was destabilized at each pH value tested during thermal unfolding, as shown by digestion with V8 proteinase, which is inactive on the native protein. Evidence was obtained that the N-terminal and C-terminal regions interact with each other in determining the structure of the native protein. PMID:10561600

  17. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    PubMed Central

    2012-01-01

    Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i) non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii) specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The

  18. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure.

  19. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. PMID:24637445

  20. [Determination of arsanilic acid and sulfanilic acid as adulterant in feed additives by reversed-phase high performance liquid chromatography].

    PubMed

    Xu, Jinping; He, Heng; Xu, Mengyi; Qu, Yanhua

    2010-02-01

    A reversed-phase high performance liquid chromatographic (RP-HPLC) method was established for the determination of arsanilic acid and sulfanilic acid as adulterant in the feed additives. The separation was carried out on a Waters Bondapak C18 column, and methanol-water (pH 2.9 adjusted by 0.01 mol/L phosphoric acid) (1 : 4, v/v) was used as the mobile phase with a flow rate of 1.0 mL/min. A diode array detector was used at 244 nm as the detection wavelength. Arsanilic acid and sulfanilic acid were separated within 3 min. The linear ranges all were 5 - 200 mg/L and the detection limits (S/N = 3) were 0.20 and 0.15 mg/L for arsanilic acid and sulfanilic acid, respectively. This method is simple and rapid, and suitable for the simultaneous determination of arsanilic acid and sulfanilic acid in feed additives.

  1. Modeling uranium transport in acidic contaminated groundwater with base addition

    SciTech Connect

    Zhang, Fan; Luo, Wensui; Parker, Jack C.; Brooks, Scott C; Watson, David B; Jardine, Philip; Gu, Baohua

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  2. Modeling uranium transport in acidic contaminated groundwater with base addition.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO(3)(-), SO(4)(2-), U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  3. Impact of a Glycolic Acid-Containing pH 4 Water-in-Oil Emulsion on Skin pH.

    PubMed

    Behm, Barbara; Kemper, Michael; Babilas, Philipp; Abels, Christoph; Schreml, Stephan

    2015-01-01

    The skin pH is crucial for physiological skin functions. A decline in stratum corneum acidity, as observed in aged or diseased skin, may negatively affect physiological skin functions. Therefore, glycolic acid-containing water-in-oil (W/O) emulsions adjusted to pH 4 were investigated regarding their effect on normal or increased skin pH. A pH 4 W/O emulsion was applied on three areas with pathologically increased skin surface pH in diabetics (n = 10). Further, a 28-day half-side trial (n = 30) was performed to test the long-term efficacy and safety of a pH 4 W/O emulsion (n = 30). In summary, the application of a pH 4 W/O emulsion reduced the skin pH in healthy, elderly and diabetic subjects, which may improve epidermal barrier functions.

  4. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  5. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  6. Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes.

    PubMed

    Badugu, Ramachandram; Lakowicz, Joseph R; Geddes, Chris D

    2005-04-30

    We describe the pH response of a set of isomeric water-soluble fluorescent probes based on both the 6-aminoquinolinium and boronic acid moieties. These probes show spectral shifts and intensity changes with pH, in a wavelength-ratiometric and colorimetric manner. Subsequently, changes in pH can readily be determined around the physiological level. Although boronic acid containing probes are known to exhibit pH sensitivity along with an ability for saccharide binding/chelating, the new probes reported here are considered to be unique and show an unperturbed pH response, even in the presence of high concentrations of background saccharide, such as with glucose and fructose, allowing for the predominant pH sensitivity. The response of the probes is based on the ability of the boronic acid group to interact with strong bases like OH(-), changing from the neutral form of the boronic acid group, R-B(OH)(2), to the anionic ester, R-B(-)(OH)(3), form, which is an electron donating group. The presence of an electron deficient quaternary heterocyclic nitrogen center and a strong electron donating amino group in the 6-position of the quinolinium backbone, provides for the spectral changes observed upon OH(-) complexation. In addition, by comparing the results obtained with systems separately incorporating 6-methoxy or 6-methyl substituents, the suppressed response towards monosaccharides, such as with glucose and fructose, can clearly be observed for these systems. Finally we compare our results to those of a control compound, BAQ, which does not contain the boronic acid group, allowing a rationale of the spectral changes to be made.

  7. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

    PubMed

    Matsushika, Akinori; Sawayama, Shigeki

    2012-12-01

    The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH. PMID:23076570

  8. Molecular Dynamics Simulations Capture the Misfolding of the Bovine Prion Protein at Acidic pH

    PubMed Central

    Cheng, Chin Jung; Daggett, Valerie

    2014-01-01

    Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process. PMID:24970211

  9. The cell transmembrane pH gradient in tumors enhances cytotoxicity of specific weak acid chemotherapeutics.

    PubMed

    Kozin, S V; Shkarin, P; Gerweck, L E

    2001-06-15

    The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor while its intracellular pH, evaluated by (31)P magnetic resonance spectroscopy, remained virtually unchanged. The resulting increase in the average cell pH gradient caused a parallel increase in tumor growth delay by the weak acid chlorambucil (CHL). Regardless of glucose administration, the effect of CHL was significantly greater in tumors preirradiated with a large dose of ionizing radiation. This suggests that CHL was especially pronounced in radioresistant hypoxic cells possessing a larger transmembrane pH gradient. These results indicate that the naturally occurring cell pH gradient difference between tumor and normal tissue is a major and exploitable determinant of the uptake of weak acids in the complex tumor microenvironment. The use of such drugs may be especially effective in combination with radiation.

  10. Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH.

    PubMed

    Cheng, Chin Jung; Daggett, Valerie

    2014-01-01

    Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process. PMID:24970211

  11. Effect of pH on acid production from sorbitol in washed cell suspensions of oral bacteria.

    PubMed

    Kalfas, S; Maki, Y; Birkhed, D; Edwardsson, S

    1990-01-01

    The acid production from sorbitol and glucose was studied under anaerobic conditions in resting cell suspensions of bacteria from the predominant sorbitol-fermenting human dental plaque flora, belonging to the genera Streptococcus, Lactobacillus and Actinomyces. The acid production activity of the bacterial cells was followed by titration with alkali, at environmental pH 7.0, 6.0 and 5.0 after addition of carbohydrate solution. The metabolic end products formed in the suspensions were analyzed thereafter by isotachophoretic and enzymatic methods. The results showed that sorbitol was fermented at a slower rate than glucose. Lowering the environmental pH decreased the acid production activity from the two carbohydrates. Compared with glucose, the catabolism of sorbitol was affected to greater extent by the pH conditions. The total amount of acids formed from sorbitol was considerably less than from glucose. Lactic acid, which was the major end product in glucose-challenged suspensions, was produced only in low concentrations from sorbitol by all strains tested. The ratio strong (formic + lactic)/weak acids was moreover lower for sorbitol than for glucose. The present results further illustrate some of the mechanisms behind the low cariogenic potential of this sugar substitute.

  12. Aminocarminic acid in E120-labelled food additives and beverages.

    PubMed

    Sabatino, Leonardo; Scordino, Monica; Gargano, Maria; Lazzaro, Francesco; Borzì, Marco A; Traulo, Pasqualino; Gagliano, Giacomo

    2012-01-01

    An analytical method was developed for investigating aminocarminic acid occurrence in E120-labelled red-coloured-beverages and in E120 additives, with the aim of controlling the purity of the carmine additive in countries where the use of aminocarminic acid is forbidden. The carminic acid and the aminocarminic acid were separated by high-performance liquid chromatography-photodiode array-tandem mass spectrography (HPLC-PDA-MS/MS). The method was statistically validated. The regression lines, ranging from 10 to 100 mg/L, showed r(2 )> 0.9996. Recoveries from 97% to 101% were obtained for the fortification level of 50 mg/L; the relative standard deviations did not exceed 3%. The LODs were below 2 mg/L, whereas the LOQs did not exceed 4 mg/L. The method was successfully applied to 27 samples of commercial E120-labelled red-coloured beverages and E120 additives, collected in Italy during quality control investigations conducted by the Ministry. The results demonstrated that more than 50% of the samples contained aminocarminic acid, evidencing the alarming illicit use of this semi-synthetic carmine acid derivative. PMID:24786412

  13. Aminocarminic acid in E120-labelled food additives and beverages.

    PubMed

    Sabatino, Leonardo; Scordino, Monica; Gargano, Maria; Lazzaro, Francesco; Borzì, Marco A; Traulo, Pasqualino; Gagliano, Giacomo

    2012-01-01

    An analytical method was developed for investigating aminocarminic acid occurrence in E120-labelled red-coloured-beverages and in E120 additives, with the aim of controlling the purity of the carmine additive in countries where the use of aminocarminic acid is forbidden. The carminic acid and the aminocarminic acid were separated by high-performance liquid chromatography-photodiode array-tandem mass spectrography (HPLC-PDA-MS/MS). The method was statistically validated. The regression lines, ranging from 10 to 100 mg/L, showed r(2 )> 0.9996. Recoveries from 97% to 101% were obtained for the fortification level of 50 mg/L; the relative standard deviations did not exceed 3%. The LODs were below 2 mg/L, whereas the LOQs did not exceed 4 mg/L. The method was successfully applied to 27 samples of commercial E120-labelled red-coloured beverages and E120 additives, collected in Italy during quality control investigations conducted by the Ministry. The results demonstrated that more than 50% of the samples contained aminocarminic acid, evidencing the alarming illicit use of this semi-synthetic carmine acid derivative.

  14. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine

    PubMed Central

    Pellegrini, Paola; Strambi, Angela; Zipoli, Chiara; Hägg-Olofsson, Maria; Buoncervello, Maria; Linder, Stig; De Milito, Angelo

    2014-01-01

    Acidic pH is an important feature of tumor microenvironment and a major determinant of tumor progression. We reported that cancer cells upregulate autophagy as a survival mechanism to acidic stress. Inhibition of autophagy by administration of chloroquine (CQ) in combination anticancer therapies is currently evaluated in clinical trials. We observed in 3 different human cancer cell lines cultured at acidic pH that autophagic flux is not blocked by CQ. This was consistent with a complete resistance to CQ toxicity in cells cultured in acidic conditions. Conversely, the autophagy-inhibiting activity of Lys-01, a novel CQ derivative, was still detectable at low pH. The lack of CQ activity was likely dependent on a dramatically reduced cellular uptake at acidic pH. Using cell lines stably adapted to chronic acidosis we could confirm that CQ lack of activity was merely caused by acidic pH. Moreover, unlike CQ, Lys-01 was able to kill low pH-adapted cell lines, although higher concentrations were required as compared with cells cultured at normal pH conditions. Notably, buffering medium pH in low pH-adapted cell lines reverted CQ resistance. In vivo analysis of tumors treated with CQ showed that accumulation of strong LC3 signals was observed only in normoxic areas but not in hypoxic/acidic regions. Our observations suggest that targeting autophagy in the tumor environment by CQ may be limited to well-perfused regions but not achieved in acidic regions, predicting possible limitations in efficacy of CQ in antitumor therapies. PMID:24492472

  15. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry. PMID:3681570

  16. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  17. The absorption of acetylsalicylic acid from the stomach in relation to intragastric pH.

    PubMed

    Dotevall, G; Ekenved, G

    1976-01-01

    A comparative study on the effect of a buffered (pH 6.5) and an unbuffered (pH 2.9) solution of acetylsalicylic acid (ASA) on gastric pH, gastric emptying, and gastric absorption of ASA was performed in 10 healthy volunteers. Gastric pH was recorded using radiotelemetry. Gastric emptying and gastric absorption was studied with an aspiration technique and phenol red as nonabsorbable marker. Administration of the unbuffered solution to the fasting subjects resulted in a gastric pH of about 2 and absorption of ASA from the stomach was found to occur. The buffered solution of ASA increased gastric pH to above 5 and gastric absorption of ASA was found to be significantly less than after the unbuffered solution. The buffered solution was emptied from the stomach more rapidly than the unbuffered one. PMID:12558

  18. Adaptive enhancement of amino acid uptake and exodus by thymic lymphocytes: influence of pH.

    PubMed

    Peck, W A; Rockwell, L H; Lichtman, M A

    1976-11-01

    Entry of certain free amino acids (alpha aminoisobutyric acid (AIB), alanine and proline), but not of leucine into rat thymic lymphocytes increased progressively when the cells were incubated in amino acid deficient medium. Actinomycin D, cycloheximide, or a high concentration of AIB abolished the time-related increase in AIB accumulation, whereas exposure to a high concentration of leucine had no effect. This phenomenon could not be attributed to a progressive alteration in the nature of the incubation medium nor to reduced transinhibition of AIB uptake. The exodus of AIB also increased with time, but to a smaller degree than AIB entry. Initial rates of AIB entry and exodus increased with increases in the pH of the incubation medium over the range 6.5-8.0. The effects of pH on entry and exodus were time-related, increasing progressively oveb nullified the magnified time related increments in AIB transport caused by prolonged incubation at pH 8.0. The influence of a given pH on transport of AIB decreased rapidly when the cells were transferred to medium of another pH, but this tendency diminished the longer the cells were exposed to the initial pH. pH influenced the entry of alanine and proline in the same fashion as that of AIB, but did not affect leucine entry. These results indicate that thymic lymphocytes exhibit adaptive enhancement in the accumulation of free amino acids that are transported largley by the A or alanine-preferring system, and that the adaptive process involves both entry and exodus. Moreover, alterations in pH modify entry and exodus of these same amino acids, profoundly affect the magnitude of time-released increases, and may induce fundamental changes in the mechanism(s) serving amino acid transport.

  19. Determination of Free Acid by Standard Addition with Potassium Thiocyanate as Complexant

    SciTech Connect

    Baumann, E.W.

    2001-05-29

    A method is described for determination of free acid in solutions containing the hydrolyzable ions Al (III), Cr(III), Fe(III), Hg(II), Ni(II), Th(IV), and U(VI). The concentration of the sample is calculated either by solving three simultaneous Nernst equations, by the Gran plot procedure, or by means of a microprocessor pH meter. Molar concentrations of metal ion up to 2.5 times that of the acid can be tolerated. The method has been applied to analysis of nuclear processing solutions that contain Pu(III), in addition to the ions listed above.

  20. Measurement of luminal pH of acidic stores as a readout for NAADP action.

    PubMed

    Galione, Antony; Chuang, Kai-Ting; Funnell, Tim M; Davis, Lianne C; Morgan, Anthony J; Ruas, Margarida; Parrington, John; Churchill, Grant C

    2014-10-01

    In addition to mobilizing Ca²⁺, NAADP plays a role in modulating the luminal pH (pHL) of acidic stores of the endolysosomal system. The effects of NAADP on pHL have been most extensively studied in the sea urchin egg, both in the intact egg and in egg homogenates. Related observations have also been made in mammalian systems (e.g., guinea pig atrial myocytes and pancreatic acinar cells). Although the connection between Ca²⁺ mobilization and increase in pHL is not understood, pHL can be a useful parameter to measure when studying NAADP-mediated signaling. This protocol describes the fluorescent measurement of pHL of acidic stores. It relies on the use of acridine orange (AO), a standard dye for pHL. AO selectively accumulates to high concentrations in the lumen of organelles as a function of acidity; at these high concentrations it self-quenches. When pHL increases, some AO is lost from the vesicle. As a result, the lower luminal AO concentration relieves the quenching and fluorescence increases in the lumen.

  1. Food Additives Permitted for Direct Addition to Food for Human Consumption; Folic Acid. Final rule.

    PubMed

    2016-04-15

    The Food and Drug Administration (FDA or we) is amending the food additive regulations to provide for the safe use of folic acid in corn masa flour. We are taking this action in response to a food additive petition filed jointly by Gruma Corporation, Spina Bifida Association, March of Dimes Foundation, American Academy of Pediatrics, Royal DSM N.V., and National Council of La Raza.

  2. Food Additives Permitted for Direct Addition to Food for Human Consumption; Folic Acid. Final rule.

    PubMed

    2016-04-15

    The Food and Drug Administration (FDA or we) is amending the food additive regulations to provide for the safe use of folic acid in corn masa flour. We are taking this action in response to a food additive petition filed jointly by Gruma Corporation, Spina Bifida Association, March of Dimes Foundation, American Academy of Pediatrics, Royal DSM N.V., and National Council of La Raza. PMID:27101640

  3. [Highly efficient and rapid capillary electrophoretic analysis of seven organic acid additives in beverages using polymeric ionic liquid as additive].

    PubMed

    Han, Haifeng; Wang, Qing; Liu, Xi; Jiang, Shengxiang

    2012-05-01

    A new capillary electrophoretic method for the rapid and direct separation of seven organic acids in beverages was developed, with poly (1-vinyl-3-butylimidazolium bromide) as the reliable background electrolyte modifier to reverse the direction of anode electroosmotic flow (EOF) severely. Several factors that affected the separation efficiency were investigated in detail. The optimal running buffer consisted of 125 mmol/L sodium dihydrogen phosphate (pH 6.5) and 0.01 g/L poly (1-vinyl-3-butylimidazolium bromide). Highly efficient separation (105,000 to 636,000 plates/m) was achieved within 4 min and standard deviations of the migration times (n=3) were lower than 0.0213 min under optimal conditions. The limits of detection (S/N = 3) ranged from 0.001 to 0.05 g/L. The present method was applied to determine a beverage sample (Mirinda) for sodium citrate, benzoic acid and sorbic acid with concentration of 2.64, 0.10 and 0.08 g/L, respectively. The recoveries of the three analytes in the sample were 100.3%, 100.7% and 131.7%, respectively. The method is simple, rapid, inexpensive, and can be applied to determine organic acids as additives in beverages.

  4. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.

    PubMed

    Grant-Preece, Paris; Schmidtke, Leigh M; Barril, Celia; Clark, Andrew C

    2017-01-15

    Glyoxylic acid is a tartaric acid degradation product formed in model wine solutions containing iron and its production is greatly increased by exposure to UV-visible light. In this study, the combined effect of sulfur dioxide, caffeic acid, pH and temperature on the light-induced (⩾300nm) production of glyoxylic acid in model wine containing tartaric acid and iron was investigated using a Box-Behnken experimental design and response surface methodology (RSM). Glyoxylic acid produced in the irradiated model wine was present in free and hydrogen sulfite adduct forms and the measured total, free and percentage free glyoxylic acid values were modeled using RSM. Sulfur dioxide significantly decreased the total amount of glyoxylic acid produced, but could not prevent its production, while caffeic acid showed no significant impact. The interaction between pH and temperature was significant, with low pH values and low temperatures giving rise to higher levels of total glyoxylic acid. PMID:27542478

  5. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; Ye, X. Philip; Borole, Abhijeet P.; Tsouris, Costas

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  6. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity. PMID:20069869

  7. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity.

  8. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism. PMID:21887891

  9. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  10. Acidic pH promotes oligomerization and membrane insertion of the BclXL apoptotic repressor.

    PubMed

    Bhat, Vikas; Kurouski, Dmitry; Olenick, Max B; McDonald, Caleb B; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2012-12-01

    Solution pH is believed to serve as an intricate regulatory switch in the induction of apoptosis central to embryonic development and cellular homeostasis. Herein, using an array of biophysical techniques, we provide evidence that acidic pH promotes the assembly of BclXL apoptotic repressor into a megadalton oligomer with a plume-like appearance and harboring structural features characteristic of a molten globule. Strikingly, our data reveal that pH tightly modulates not only oligomerization but also ligand binding and membrane insertion of BclXL in a highly subtle manner. Thus, while oligomerization and the accompanying molten globular content of BclXL is least favorable at pH 6, both of these structural features become more pronounced under acidic and alkaline conditions. However, membrane insertion of BclXL appears to be predominantly favored under acidic conditions. In a remarkable contrast, while ligand binding to BclXL optimally occurs at pH 6, it is diminished by an order of magnitude at lower and higher pH. This reciprocal relationship between BclXL oligomerization and ligand binding lends new insights into how pH modulates functional versatility of a key apoptotic regulator and strongly argues that the molten globule may serve as an intermediate primed for membrane insertion in response to apoptotic cues. PMID:22960132

  11. Effect of Additives and pH on the Formation of Carbonate Mineral by CO2 Sequestration of Cement Paste

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hwang, J.; Lee, H.; Son, B. S.; Oh, J.

    2015-12-01

    CO2 in the atmosphere causes a global warming that is a big issue nowadays. Many studies of CO2 capture and storage (CCS) technologies have been studied all over the world. Waste cement is a good source for aqueous carbonation because it is rich in calcium. Therefore, this study was performed to develop the aqueous carbonation method for waste cement powder. Cement paste was made with water/cement ratio of 6:4 and cured for 28 days in water bath. The cement paste was pulverized into a fine powder sizing less than 0.15 mm. To study effect of additives and pH on the formation of carbonate minerals, aqueous carbonation experiments were conducted. The mineral compositions and morphology of carbonate mineral were identified by XRD and SEM/EDS analysis. 1.0 M NaCl and 0.25 M MgCl2 were applied as additives. Aqueous carbonation experiment was conducted with injecting pure CO2 gas (99.9%) to a reactor containing 200 ㎖ of reacting solution. The pH of reacting solution was controled to determine formational condition of carbonate minerals. In 0.25 M MgCl2 solution, calcite was dominant mineral at high pH. More aragonite, however, formed as decreasing pH of solution with injection of CO2. The presence of Mg2+ in solution makes aragonite more dominant than calcite. Aragonite was mainly formed at the high pH of solution with 1.0 M NaCl additive, whereas calcite was more preponderant mineral than aragonite as falling pH. It show that unstable aragonite transformed to calcite as decreasing pH. In no additive solution, vaterite was dominantly formed at the initial stage of experiement, but unstable vaterite transformed to well crystallized calcite with further carbonation.

  12. Copper-catalyzed oxidation of a structured lipid-based emulsion containing alpha-tocopherol and citric acid: influence of pH and NaCl.

    PubMed

    Osborn-Barnes, Hannah T; Akoh, Casimir C

    2003-11-01

    The effects of salt and pH on copper-catalyzed lipid oxidation in structured lipid-based emulsions were evaluated. Ten percent oil-in-water emulsions were formulated with a canola oil/caprylic acid structured lipid and stabilized with 0.5% whey protein isolate. alpha-Tocopherol and citric acid were added to the emulsions to determine how changes in pH or the addition of NaCl affected their antioxidant activity. The peroxide values and anisidine values of emulsions stored at 50 degrees C were measured over an 8-day period. Increased lipid oxidation occurred in the pH 7.0 emulsions and when 0.5 M NaCl was added to the pH 3.0 samples. Adding alpha-tocopherol, citric acid, or a combination of the two compounds slowed the formation of hydroperoxides and their subsequent decomposition products in pH 3.0 emulsions.

  13. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  14. Microbial degradation of isosaccharinic acid at high pH

    PubMed Central

    Bassil, Naji M; Bryan, Nicholas; Lloyd, Jonathan R

    2015-01-01

    Intermediate-level radioactive waste (ILW), which dominates the radioactive waste inventory in the United Kingdom on a volumetric basis, is proposed to be disposed of via a multibarrier deep geological disposal facility (GDF). ILW is a heterogeneous wasteform that contains substantial amounts of cellulosic material encased in concrete. Upon resaturation of the facility with groundwater, alkali conditions will dominate and will lead to the chemical degradation of cellulose, producing a substantial amount of organic co-contaminants, particularly isosaccharinic acid (ISA). ISA can form soluble complexes with radionuclides, thereby mobilising them and posing a potential threat to the surrounding environment or ‘far field'. Alkaliphilic microorganisms sampled from a legacy lime working site, which is an analogue for an ILW-GDF, were able to degrade ISA and couple this degradation to the reduction of electron acceptors that will dominate as the GDF progresses from an aerobic ‘open phase' through nitrate- and Fe(III)-reducing conditions post closure. Furthermore, pyrosequencing analyses showed that bacterial diversity declined as the reduction potential of the electron acceptor decreased and that more specialised organisms dominated under anaerobic conditions. These results imply that the microbial attenuation of ISA and comparable organic complexants, initially present or formed in situ, may play a role in reducing the mobility of radionuclides from an ILW-GDF, facilitating the reduction of undue pessimism in the long-term performance assessment of such facilities. PMID:25062127

  15. Microbial degradation of isosaccharinic acid at high pH.

    PubMed

    Bassil, Naji M; Bryan, Nicholas; Lloyd, Jonathan R

    2015-02-01

    Intermediate-level radioactive waste (ILW), which dominates the radioactive waste inventory in the United Kingdom on a volumetric basis, is proposed to be disposed of via a multibarrier deep geological disposal facility (GDF). ILW is a heterogeneous wasteform that contains substantial amounts of cellulosic material encased in concrete. Upon resaturation of the facility with groundwater, alkali conditions will dominate and will lead to the chemical degradation of cellulose, producing a substantial amount of organic co-contaminants, particularly isosaccharinic acid (ISA). ISA can form soluble complexes with radionuclides, thereby mobilising them and posing a potential threat to the surrounding environment or 'far field'. Alkaliphilic microorganisms sampled from a legacy lime working site, which is an analogue for an ILW-GDF, were able to degrade ISA and couple this degradation to the reduction of electron acceptors that will dominate as the GDF progresses from an aerobic 'open phase' through nitrate- and Fe(III)-reducing conditions post closure. Furthermore, pyrosequencing analyses showed that bacterial diversity declined as the reduction potential of the electron acceptor decreased and that more specialised organisms dominated under anaerobic conditions. These results imply that the microbial attenuation of ISA and comparable organic complexants, initially present or formed in situ, may play a role in reducing the mobility of radionuclides from an ILW-GDF, facilitating the reduction of undue pessimism in the long-term performance assessment of such facilities. PMID:25062127

  16. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  17. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  18. Biogas Production on Demand Regulated by Butyric Acid Addition

    NASA Astrophysics Data System (ADS)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  19. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  20. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  1. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  2. Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

    PubMed Central

    Hiatt, A. J.

    1967-01-01

    Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506

  3. Function of aspartic acid residues in optimum pH control of L-arabinose isomerase from Lactobacillus fermentum.

    PubMed

    Xu, Zheng; Li, Sha; Feng, Xiaohai; Zhan, Yijing; Xu, Hong

    2014-05-01

    L-Arabinose isomerase (L-AI) catalyzes the isomerization of L-arabinose to L-ribulose and D-galactose to D-tagatose. Most reported L-AIs exhibit neutral or alkaline optimum pH, which is less beneficial than acidophilic ones in industrial D-tagatose production. Lactobacillus fermentum L-AI (LFAI) is a thermostable enzyme that can achieve a high conversion rate for D-galactose isomerization. However, its biocatalytic activity at acidic conditions can still be further improved. In this study, we report the single- and multiple-site mutagenesis on LFAI targeting three aspartic acid residues (D268, D269, and D299). Some of the lysine mutants, especially D268K/D269K/D299K, exhibited significant optimum pH shifts (from 6.5 to 5.0) and enhancement of pH stability (half-life time increased from 30 to 62 h at pH 6.0), which are more favorable for industrial applications. With the addition of borate, D-galactose was isomerized into D-tagatose by D268K/D269K/D299K at pH 5.0, resulting in a high conversion rate of 62 %. Based on the obtained 3.2-Å crystal structure of LFAI, the three aspartic acid residues were found to be distant from the active site and possibly did not participate in substrate catalysis. However, they were proven to possess similar optimum pH control ability in other L-AI, such as that derived from Escherichia coli. This study sheds light on the essential residues of L-AIs that can be modified for desired optimum pH and better pH stability, which are useful in D-tagatose bioproduction.

  4. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGES

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominatedmore » community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).« less

  5. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  6. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  7. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). PMID:25333313

  8. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    PubMed

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-01

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy. PMID:25412478

  9. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. PMID:26895544

  10. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    PubMed

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates.

  11. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers.

  12. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers. PMID:15961743

  13. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  14. Optimization of pH values to formulate the bireagent kit for serum uric acid assay.

    PubMed

    Huang, Ya; Chen, Yuanxiang; Yang, Xiaolan; Zhao, Hua; Hu, Xiaolei; Pu, Jun; Liao, Juan; Long, Gaobo; Liao, Fei

    2015-01-01

    A new formulation of the bireagent kit for serum uric acid assay was developed based on the effects of pH on enzyme stability. At 4 °C, half-lives of uricases from Bacillus fastidious and Arthrobacter globiforms were longer than 15 months at pH 9.2, but became shorter at pH below 8.0; half-lives of ascorbate oxidase and peroxidase were comparable at pH 6.5 and 7.0, but became much shorter at pH higher than 7.4. In the new formulation of the bireagent kit, Reagent A contained peroxidase, 4-aminoantipyrine, and ascorbate oxidase in 50 mM phosphate buffer at pH 6.5; Reagent B contained B. fastidious or A. globiforms uricase in 50 mM sodium borate buffer at pH 9.2; Reagents A and B were mixed at 4:1 to produce a final pH from 7.2 to 7.6 for developing a stable color. The new bireagent kit consumed smaller quantities of three enzymes for the same shelf life. With the new bireagent kit, there were linear responses of absorbance at 546 nm to uric acid up to 34 mM in reaction mixtures and a good correlation of uric acid levels in clinical sera with those by a commercial kit, but stronger resistance to ascorbate. Therefore, the new formulation was advantageous.

  15. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    PubMed

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  16. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds.

    PubMed

    Oja, M; Maran, U

    2015-01-01

    Absorption in gastrointestinal tract compartments varies and is largely influenced by pH. Therefore, considering pH in studies and analyses of membrane permeability provides an opportunity to gain a better understanding of the behaviour of compounds and to obtain good permeability estimates for prediction purposes. This study concentrates on relationships between the chemical structure and membrane permeability of acidic and basic drugs and drug-like compounds. The membrane permeability of 36 acidic and 61 basic compounds was measured using the parallel artificial membrane permeability assay (PAMPA) at pH 3, 5, 7.4 and 9. Descriptive and/or predictive single-parameter quantitative structure-permeability relationships were derived for all pH values. For acidic compounds, membrane permeability is mainly influenced by hydrogen bond donor properties, as revealed by models with r(2) > 0.8 for pH 3 and pH 5. For basic compounds, the best (r(2) > 0.7) structure-permeability relationships are obtained with the octanol-water distribution coefficient for pH 7.4 and pH 9, indicating the importance of partition properties. In addition to the validation set, the prediction quality of the developed models was tested with folic acid and astemizole, showing good matches between experimental and calculated membrane permeabilities at key pHs. Selected QSAR models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.166 ). PMID:26383235

  17. Uric acid plasma level and urine pH in rats treated with ambroxol.

    PubMed

    Drewa, Tomasz; Wolski, Zbigniew; Gruszka, Marzena; Misterek, Bartosz; Lysik, Joanna

    2007-01-01

    It was a chance discovery that ambroxol parenteral administration led to urinary bladder stone formation in rats. This study was undertaken to examine the serum uric acid levels and urine pH in rats after ambroxol parenteral treatment. Ambroxol influence on the uric acid level was measured in 5 rats (Rattus sp.) treated with 60 mg/kg (dissolved in injection water, sc, daily) during 2 weeks. Ambroxol influence on urine pH was examined on 45 rats divided into 3 groups. Rats from the 1st and 2nd group received 30 and 60 mg/kg/24h ambroxol, respectively. Urine was collected once daily and measured with strip kit. All values were presented as the means with standard deviations. The Student t test was used to compare the means, p < 0.05 was considered as significant. Dynamics of pH changes was measured in 4 rats treated with 60 mg/kg/24h of ambroxol. Controls received 1 mL of injection water sc. Serum uric acid level increased up to 8.7 +/- 1.0 mg/dL vs. 5.7 +/- 1.0 mg/dL in control (p < 0.002). In the 1st and 2nd group urine pH increased up to 7.5 +/- 0.5 and 7.6 +/- 0.5 vs. 6.7 +/- 0.4 (p < 0.05). Ambroxol withdrawal resulted in sequential urine pH decrease. 11 days after interruption of ambroxol therapy pH reached the starting value. Urine pH changes and possible disturbances in uric acid metabolic pathway may influence on the stone formation in rats after ambroxol parenteral treatment. The influence of ambroxol on urinary tract GAG layer and the balance between xanthine and CaOx in the urine should be checked.

  18. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    SciTech Connect

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

  19. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    PubMed Central

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  20. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  1. Metal Interactions with Microbial Biofilms in Acidic and Neutral pH Environments

    PubMed Central

    Ferris, F. G.; Schultze, S.; Witten, T. C.; Fyfe, W. S.; Beveridge, T. J.

    1989-01-01

    Microbial biofilms were grown on strips of epoxy-impregnated filter paper submerged at four sites in water contaminated with metals from mine wastes. At two sample stations, the water was acidic (pH 3.1); the other sites were in a lake restored to a near neutral pH level by application of a crushed limestone slurry. During a 17-week study period, planktonic bacterial counts increased from 101 to 103 CFU/ml at all sites. Biofilm counts increased rapidly over the first 5 weeks and then leveled to 104 CFU/cm2 in the neutral pH system and 103 CFU/cm2 at the acidic sites. In each case, the biofilms bound Mn, Fe, Ni, and Cu in excess of the amounts adsorbed by control strips covered with nylon filters (pore size, 0.22 μm) to exclude microbial growth; Co bound under neutral conditions but not under acidic conditions. Conditional adsorption capacity constants, obtained graphically from the data, showed that biofilm metal uptake at a neutral pH level was enhanced by up to 12 orders of magnitude over acidic conditions. Similarly, adsorption strength values were usually higher at elevated pH levels. In thin sections of the biofilms, encapsulated bacterial cells were commonly found enmeshed together in microcolonies. The extracellular polymers often contained iron oxide precipitates which generated weak electron diffraction patterns with characteristic reflections for ferrihydrite (Fe2O3 · H2O) at d equaling 0.15 and 0.25 nm. At neutral pH levels, these deposits incorporated trace amounts of Si and exhibited a granular morphology, whereas acicular crystalloids containing S developed under acidic conditions. Images PMID:16347914

  2. Influence of pH, type of acid and recovery media on the thermal inactivation of Listeria innocua.

    PubMed

    Miller, Fátima A; Ramos, Bárbara; Gil, Maria M; Brandão, Teresa R S; Teixeira, Paula; Silva, Cristina L M

    2009-07-31

    Acidification of foods with organic acids, either by fermentation or by intentional addition, is an important and common mechanism for controlling foodborne pathogens in a diversity of food products. The objective of this work was to study thermal inactivation of Listeria innocua, an acid tolerant microorganism, at 52.5, 60.0 and 65.0 degrees C, at different pH values (4.5, 6.0 and 7.5), using three types of acid (lactic, acetic and hydrochloric) and three different plating media (Tryptic Soy Agar with 0.6% yeast extract-TSAYE; TSAYE plus 5% NaCl-TSAYE+5%NaCl; and Palcam Agar with selective supplement-Palcam Agar), according to a 3(4) factorial experimental design. Survival data experimentally obtained were fitted with a Gompertz-inspired model and kinetic parameters (shoulder, maximum inactivation rate-k(max), and tail) were estimated for all conditions considered. The influence of temperature, pH, type of acid and enumeration media on kinetic parameters was assessed. Results showed that, with the exception of the type of acid, all the remaining factors and their combinations significantly affected the shoulder period and k(max). In relation to tail, temperature and recovery media were the affectable factors. It was concluded that the survival of this bacteria is higher when combining low temperature with neutral pH, and when TSAYE is the enumeration medium. Bigelow-inspired models were successfully developed and describe accurately the temperature and pH effects on the kinetic parameters.

  3. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased

  4. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids.

    PubMed

    Eick, M J; Grossl, P R; Golden, D C; Sparks, D L; Ming, D W

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased

  5. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    PubMed

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  6. The pH at the First Equivalence Point in the Titration of a Diprotic Acid

    NASA Astrophysics Data System (ADS)

    Ault, Addison

    2003-12-01

    Some readers will note a similarity between this approach and the one I took in a paper entitled “Do pH in Your Head” (2). In an example in that article the isoelectric pH of glycine (the pH at which the average charge of a glycine molecule is zero), has the value of 6.0, which is exactly half-way between 2.4, the pKa of the carboxyl group of glycine, and 9.6, the pKa of the ammonium group of glycine. This is what one would expect when realizing that a solution of neutral glycine right out of the bottle is equivalent to glycine obtained by titration of the conjugate acid of glycine to the first equivalence point. Those who are interested might want to consider why the isoelectric pH of an “acidic” amino acid, such as alanine, is exactly half-way between the pKa values of the two carboxyl groups, and why the isoelectric pH of a “basic” amino acid such as lysine is exactly half-way between the pKa values of the two ammonium groups.

  7. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    NASA Astrophysics Data System (ADS)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  8. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH. PMID:21957966

  9. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.

  10. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  11. Similar bacterial community composition in acidic mining lakes with different pH and lake chemistry.

    PubMed

    Kampe, Heike; Dziallas, Claudia; Grossart, Hans-Peter; Kamjunke, Norbert

    2010-10-01

    As extreme environmental conditions strongly affect bacterial community composition (BCC), we examined whether differences in pH-even at low pH-and in iron and sulfate concentrations lead to changes in BCC of acidic mining lakes. Thereby, we tested the following hypotheses: (1) diversity of the bacterial community in acidic lakes decreases with reducing pH, (2) BCC differs between epilimnion and hypolimnion, and (3) BCC in extremely acidic environments does not vary much over time. Therefore, we investigated the BCC of three acidic lakes with different pH values (2.3, 2.7, and 3.2) by denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of DGGE bands as well as catalyzed reporter deposition-FISH (CARD-FISH). BCC did not significantly vary among the studied lakes nor differ much between water layers. In contrast, BCC significantly changed over time, which is contradictory to our hypotheses. Bacterial communities were dominated by Alpha-, Beta-, and Gammaproteobacteria, whereas Actino- and Acidobacteria rarely occurred. Cell numbers of both free and attached bacteria were positively related to DOC concentration. Overall, low pH and extreme chemical conditions of the studied lakes led to similar assemblages of bacteria with pronounced temporal differences. This notion indicates that temporal changes in environmental conditions including food web structure also affect unique communities of bacteria thriving at low pH.

  12. Structural and thermotropic properties of calcium-dimyristoylphosphatidic acid complexes at acidic and neutral pH conditions.

    PubMed Central

    Takahashi, H.; Yasue, T.; Ohki, K.; Hatta, I.

    1995-01-01

    Two kinds of calcium-dimyristoylphosphatidic acid (DMPA) complexes at acidic and neutral pH conditions were prepared in the following ways. The complex at pH 4 was obtained by adding Ca2+ to DMPA dispersion in pure water. On the other hand, the complex at pH 7.4 was obtained by adding Ca2+ to DMPA dispersion in the presence of NaOH. The stoichiometries of Ca2+ ion to DMPA molecule are 0.5-0.67 and approximately 1 for the complexes at pH 4 and 7.4, respectively. Static x-ray diffraction shows that the hydrocarbon chains of the Ca(2+)-DMPA complex at pH 4 at 20 degrees C are more tightly packed than those of the complex at pH 7.4 at 20 degrees C. Furthermore, the complex at pH 4 at 20 degrees C gives rise to several reflections that might be related to the ordered arrangement of the Ca2+ ions. These results indicate that the structure of the complex at pH 4 is crystalline-like. In the differential scanning calorimetry (DSC) thermogram, the complex at pH 7.4 undergoes no phase transition in a temperature range between 30 and 80 degrees C. On the other hand, in the DSC thermogram for the complex at pH 4, a peak appears at 65.8 degrees C in the first heating scan. In the successive second heating scan, a transition peak appears at 63.5 degrees C. In connection with the DSC results, the structural changes associated with these phase transitions were studied with temperature-scan x-ray diffraction. In the first heating scan, although a peak appears at 65.80C in the DSC thermogram, the hydrocarbon chain packing gradually converts from an orthorhombic lattice to a hexagonal lattice near 52 degree C, and successively the chain melting phase transition occurs near 670C. In the second heating scan, the hydrocarbon chains are packed in a hexagonal lattice over the whole temperature range and the chain melting phase transition occurs near 63.5 degree C. Therefore,the Ca2+-DMPA complex at pH 4 has a metastable state. The metastable state transforms to a stable state by

  13. Control of diapause by acidic pH and ammonium accumulation in the hemolymph of Antarctic copepods.

    PubMed

    Schründer, Sabine; Schnack-Schiel, Sigrid B; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 (+)) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 (+)). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  14. Effects of Environmental pH on Antioxidant Interactions between Rosmarinic Acid and α-Tocopherol in Oil-in-Water (O/W) Emulsions.

    PubMed

    Kittipongpittaya, Ketinun; Panya, Atikorn; Phonsatta, Natthaporn; Decker, Eric A

    2016-08-31

    Antioxidant regeneration could be influenced by various factors such as antioxidant locations and pH conditions. The effects of environmental pH on the antioxidant interaction between rosmarinic acid and α-tocopherol in oil-in-water (O/W) emulsions were investigated. Results showed that the combined antioxidants at pH 7 exhibited the strongest synergistic antioxidant activity in comparison with the combinations at other pH conditions as indicated by the interaction index. A drop in pH from 7 to 3 resulted in a reduction in the synergistic effect. However, in the case of pH 3, an additive effect was obtained. Moreover, the effect of the pH on the regeneration of α-tocopherol by rosmarinic acid in heterogeneous Tween 20 solutions was studied using EPR spectrometer. The same was true for the regeneration efficiency, where the reaction at pH 7 exhibited the highest regeneration efficiency of 0.3 mol of α-tocopheroxyl radicals reduced/mol of phenolics. However, the study on depletions of rosmarinic acid and α-tocopherol revealed that the formation of caffeic acid, an oxidative degradation product of rosmarinic acid, could be involved in enhancing the antioxidant activity observed at pH 7 rather than the antioxidant regeneration. This study has highlighted that the importance of pH-dependent antioxidant interactions does not solely rely on antioxidant regeneration. In addition, the formation of other oxidative products from an antioxidant should be taken into account. PMID:27494424

  15. Bilayers and wormlike micelles at high pH in fatty acid soap systems.

    PubMed

    Xu, Wenlong; Liu, Huizhong; Song, Aixin; Hao, Jingcheng

    2016-03-01

    Bilayers at high pH in the fatty acid systems of palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O and stearic acid/CsOH/H2O can form spontaneously (Xu et al., 2014, 2015). In this work, the bilayers can still be observed at 25°C with an increase of the concentration of fatty acids. We found that wormlike micelles can also be prepared in the fatty acid soap systems at high pH, even though the temperature was increased to be 50°C. The viscoelasticity, apparent viscosity, yield stress of the bilayers were determined by the rheological measurements. Wormlike micelles were identified by cryogenic transmission electron microscopy (cryo-TEM) and emphasized by the rheological characterizations, which are in accordance with the Maxwell fluids with good fit of Cole-Cole plots. The phase transition temperature was determined by differential scanning calorimetry (DSC) and the transition process was recorded. The regulating role of counterions of fatty acids were discussed by (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) as comparison, concluding that counterions with appropriate hydrated radius were the vital factor in the formation wormlike micelles.

  16. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  17. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  18. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  19. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    SciTech Connect

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-09-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H/sub 2/S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H/sub 2/S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by (/sup 14/C)glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake.

  20. Preparation of acidic and alkaline macrocapsules for pH control.

    PubMed

    Flora, Joseph R V; Baker, Benjamin; Wybenga, Daniel; Zhu, Huiying; Aelion, C Marjorie

    2008-01-01

    A series of experiments was performed to prepare acidic macroencapsulated buffers composed of 20% Ca(H2PO4)(2) and 80% Eudragit S 100 polymer and alkaline macrocapsules composed of 65% K2HPO4 and 35% Eudragit E PO polymer (the powdered form of Eudragit E 100). Eudragit S 100 was shown to be soluble at a pH greater than 7.0, while Eudragit E 100 was soluble at a pH less than 7.0. Both polymers did not impart significant biochemical oxygen demand. The Eudragit E PO polymer solution showed low toxicity (EC50=91%) based on the Microtox Acute Toxicity Test compared to the 0.1mM background phosphate buffer solution (EC50=100%) while the Eudragit S 100 polymer solution showed higher toxicity (EC50=53%). Batch tests showed that the acidic macrocapsules reduced the pH of a 0.1mM phosphate solution from 11 to neutral, while the alkaline macrocapsules increased the pH of a 0.1mM phosphate solution from 3 to neutral. The macrocapsules could potentially be used as an in situ proportional pH controller for groundwater remediation.

  1. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors1

    PubMed Central

    Schornack, Paul A; Gillies, Robert J

    2003-01-01

    Abstract The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, and not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines. PMID:12659686

  2. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...

  3. Effect of short-chain organic acids and pH on the behaviors of pyrene in soil-water system.

    PubMed

    An, Chunjiang; Huang, Guohe; Yu, Hui; Wei, Jia; Chen, Wei; Li, Gongchen

    2010-12-01

    The effects of five short-chain organic acids (SCOAs) on the behaviors of pyrene in soil-water system were investigated. The influences of the quantity and species of organic acids, pH, and soil dissolved organic matter were considered. The results showed the presence of SCOAs inhibited the adsorption and promoted the desorption of pyrene in the following order: citric acid>oxalic acid>tartaric acid>lactic acid>acetic acid. The decreased extents of pyrene adsorption performance enhanced with increasing SCOA concentrations, while the decreasing rate became less pronounced at high SCOA concentrations. In the presence of organic acids, the adsorption ability of pyrene decreased with increasing pH. However, there was a slight increase of pyrene adsorption with the addition of oxalic acid, tartaric acid and citric acid above pH 8. The capacity for pyrene retention differentiated significantly between the soils with and without dissolved organic matter. The presence of SCOAs was also favorable for the decrease of pyrene adsorption on soil without dissolved organic matter. The results of this study have important implications for the remediation of persistent organic pollutants in soil and groundwater.

  4. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Doulgeris, Charalampos; McCarthy, Alan J.; Rooks, Dave J.; Loughnane, J. Paul; Laws, Andrew P.; Humphreys, Paul N.

    2015-01-01

    One design concept for the long-term management of the UK’s intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  5. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    PubMed

    Rout, Simon P; Charles, Christopher J; Doulgeris, Charalampos; McCarthy, Alan J; Rooks, Dave J; Loughnane, J Paul; Laws, Andrew P; Humphreys, Paul N

    2015-01-01

    One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  6. Synthesis and characterization of a pH responsive folic acid functionalized polymeric drug delivery system.

    PubMed

    Li, Xia; McTaggart, Matt; Malardier-Jugroot, Cecile

    2016-01-01

    We report the computational analysis, synthesis and characterization of folate functionalized poly(styrene-alt-maleic anhydride), PSMA for drug delivery purpose. The selection of the proper linker between the polymer and the folic acid group was performed before conducting the synthesis using Density Functional Theory (DFT). The computational results showed the bio-degradable linker 2, 4-diaminobutyric acid, DABA as a good candidate allowing flexibility of the folic acid group while maintaining the pH sensitivity of PSMA, used as a trigger for drug release. The synthesis was subsequently carried out in multi-step experimental procedures. The functionalized polymer was characterized using InfraRed spectroscopy, Nuclear Magnetic Resonance and Dynamic Light Scattering confirming both the chemical structure and the pH responsiveness of PSMA-DABA-Folate polymers. This study provides an excellent example of how computational chemistry can be used in selection process for the functional materials and product characterization. The pH sensitive polymers are expected to be used in delivering anti-cancer drugs to solid tumors with overly expressed folic acid receptors. PMID:27183249

  7. Effects of polyphosphate additives on the pH of processed chicken exudates and the survival of Campylobacter.

    PubMed

    Gunther, Nereus W; He, Yiping; Fratamico, Pina

    2011-10-01

    Campylobacter spp. are nutritionally fastidious organisms that are sensitive to normal atmospheric oxygen levels and lack homologues of common cold shock genes. At first glance, these bacteria seem ill equipped to persist within food products under processing and storage conditions; however, they survive in numbers sufficient to cause the largest number of foodborne bacterial disease annually. A mechanism proposed to play a role in Campylobacter survival is the addition of polyphosphate-containing marinades during poultry processing. Campylobacter jejuni and Campylobacter coli strains incubated in chicken exudates collected from poultry treated with a marinade demonstrated considerable survival advantages (1 to 4 log CFU/ml) over the same strains incubated in chicken exudate from untreated birds. Polyphosphates, which constitute a large portion of the commercial poultry marinades, were shown to account for a majority of the observed influence of the marinades on Campylobacter survival. When six different food grade polyphosphates (disodium pyrophosphate, tetrasodium pyrophosphate, pentasodium triphosphate, sodium polyphosphate, monosodium phosphate, and trisodium phosphate) were utilized to compare the survival of Campylobacter strains in chicken exudate, significant differences were observed with regard to Campylobacter survival between the different polyphosphates. It was then determined that the addition of polyphosphates to chicken exudate increased the pH of the exudate, with the more sodiated polyphosphates increasing the pH to a greater degree than the less sodiated polyphosphates. It was confirmed that the change in pH mediated by polyphosphates is responsible for the observed increases in Campylobacter survival.

  8. Humic Acid Effects on the Transport of Colloidal Particles in Unsaturated Porous Media: Humic Acid Dosage, pH, and Ionic Strength Dependence

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Gao, B.; Steenhuis, T. S.

    2008-12-01

    Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column

  9. Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids.

    PubMed

    Sowalsky, R A; Noble, A C

    1998-06-01

    The separate effects of concentration, pH and anion species on intensity of sourness and astringency of organic acids were evaluated. Judges rated sourness and astringency intensity of lactic, malic, tartaric and citric acid solutions at three levels of constant pH varying in normality and at three levels of constant concentration varying in pH. To assess the comparative sourness and astringency of the organic acid anions of study, binary acid solutions matched in pH and titratable acidity were also rated. As pH was decreased in equinormal solutions, both sourness and astringency increased significantly (P < 0.001). By contrast, as the normality of the equi-pH solutions was increased, only sourness demonstrated significant increases (P < 0.001) while astringency remained constant or decreased slightly. At the lowest normality tested, all solutions were more astringent than sour (P < 0.05). Although lactic acid was found to be significantly more sour than citric acid (P < 0.05), no other sourness or astringency differences among the organic acid anions were noted. This study demonstrates for the first time that astringency elicited by acids is a function of pH and not concentration or anion species, and confirms that sourness is independently influenced by concentration, pH and anion species of the acid.

  10. 2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge.

    PubMed

    Vivijs, Bram; Moons, Pieter; Geeraerd, Annemie H; Aertsen, Abram; Michiels, Chris W

    2014-04-01

    The mechanisms by which Enterobacteriaceae can survive or grow at low pH are of interest because members of this family are increasingly linked to problems of spoilage and foodborne infection related to mildly acidic foods. In this work, we investigated the contribution of the 2,3-butanediol fermentation pathway in coping with specific forms of acid stress in Serratia plymuthica RVH1. This pathway consumes intracellular protons, similar to the amino acid decarboxylases which are involved in acid resistance in Enterobacteriaceae. While its role in preventing excessive acidification in media with an initial neutral pH but containing fermentable sugars has been established, we here addressed the question whether it supports survival of severe acid challenge (pH2.5-3.5) and/or enhances the ability to initiate growth at moderately low pH (pH4.0-5.0) in acidified LB medium and in tomato juice. Using a budAB::cat mutant, deficient in 2,3-butanediol fermentation, we showed that the pathway did not influence survival in simulated gastric fluid and is not involved in the acid tolerance response (ATR) in S. plymuthica RVH1. On the other hand, the pathway promoted growth at moderately low pH. In acidified LB medium, the mutant stopped growing at a lower final cell density than the wild-type strain. In tomato juice, additionally, the minimal pH at which the mutant could grow (pH4.20-4.30) was increased compared to that of the wild-type (pH4.10). Growth of the wild-type strain was often accompanied by a pH increase, in contrast to the budAB::cat mutant, where the opposite was observed. However, the differences in growth between the wild-type and budAB::cat mutant could not only be explained by external pH, suggesting that the 2,3-butanediol fermentation contributed to intracellular pH homeostasis. Based on these data, we propose the contribution to growth at low pH as a novel biological function of 2,3-butanediol fermentation in Enterobacteriaceae.

  11. Production of Retrovirus-Based Vectors in Mildly Acidic pH Conditions.

    PubMed

    Holic, Nathalie; Fenard, David

    2016-01-01

    Gene transfer vectors based on retroviridae are increasingly becoming a tool of choice for biomedical research and for the development of biotherapies in rare diseases or cancers. To meet the challenges of preclinical and clinical production, different steps of the production process of self-inactivating γ-retroviral (RVs) and lentiviral vectors (LVs) have been improved (e.g., transfection, media optimization, cell culture conditions). However, the increasing need for mass production of such vectors is still a challenge and could hamper their availability for therapeutic use. Recently, we observed that the use of a neutral pH during vector production is not optimal. The use of mildly acidic pH conditions (pH 6) can increase by two- to threefold the production of RVs and LVs pseudotyped with the vesicular stomatitis virus G (VSV-G) or gibbon ape leukemia virus (GALV) glycoproteins. Here, we describe the production protocol in mildly acidic pH conditions of GALVTR- and VSV-G-pseudotyped LVs using the transient transfection of HEK293T cells and the production protocol of GALV-pseudotyped RVs produced from a murine producer cell line. These protocols should help to achieve higher titers of vectors, thereby facilitating experimental research and therapeutic applications. PMID:27317171

  12. Effect of ph on the Electrodeposition of Cu(In, Al)Se2 from Aqueous Solution in Presence of Citric Acid as Complexing Agent

    NASA Astrophysics Data System (ADS)

    Ganjkhanlou, Yadolah; Ebadzadeh, Touradj; Kazemzad, Mahmood; Maghsoudipour, Amir; Kianpour-Rad, Mansoor

    2015-05-01

    Effect of pH on the one-step electrodeposition of Cu(In, Al)Se2 chalcopyrite layer in the presence of citric acid has been investigated by applying different electrochemical and characterization techniques. It has been observed that at pH of 1.5, nanocrystalline phase of chalcopyrite and small amount of binary phase of Cu2Se with overall composition of Cu0.91In0.32Al0.39Se2 have been deposited. On the other hand, at pH of 4, the film composition changed to Cu1.9In0.05Al0.21Se2 and an additional binary phase of copper selenide (CuSe) has also been formed. Morphological investigation illustrated that smooth and compact layer with fine spherical particles having the size of 20 nm has been obtained at pH of 1.5 whereas mixture of planar and spherical particles with size of 450-550 nm have been formed at pH of 4. In alkaline environment (pH 9), the deposition current has been noticeably decreased and no deposition occurred due to the formation of a stable complex of citric acid with metal ions. The mechanism of citric acid interaction with metal ions at different pH has also been studied by cyclic voltammetry measurement.

  13. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils

    SciTech Connect

    Fu, Minhong.

    1989-01-01

    The effect of pH (4, 6, and 8) on nitrogen mineralization was evaluated in three Iowa surface soils treated with crop residues (corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and sorghum (Sorghum vulgare Pers.), or alfalfa (Medicago sativa L.)) and incubated in leaching columns under aerobic conditions at 30C for 20 weeks. In general, N mineralization was significantly depressed at soil pH 4, compared with pH 6 or 8. The types of crop residues added influenced the pattern and amount of N mineralization. A study on the effect of 19 trace elements on the nitrate red activity of four Iowa surface soils showed that most trace elements inhibited this enzyme in acid and neutral soils. The trace elements Ag(I), Cd(II), Se(IV), As(V), and W(VI) were the most effective inhibitors, with >75% inhibition. Mn(II) was the least effective inhibitor, with <10% inhibition. Other trace elements included Cu(I), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), Al(III), As(III), Cr(III), Fe(III), V(IV), Mo(VI), and Se(VI). The application of high-performance liquid chromatography (HPLC) showed that, when coupled to a refractive index detector, it is a rapid, sensitive, and accurate method for determining organic acids in soils. Three organic acids, acetic (2-20 mM), propionic (0-3 mM), and n-butyric (0-1.4 mM), were identified with HPLC and confirmed by gas chromatography in crop-residue-treated soils incubated under waterlogged conditions at 25C for 72 h. No organic acids were detected under aerobic conditions. Four mineral acids and 29 organic acids were studied for their effect on N mineralization and metal dissolution in soils incubated under waterlogged conditions at 30C for 10 days.

  14. Salinity and pH affect Na+-montmorillonite dissolution and amino acid adsorption: a prebiotic chemistry study

    NASA Astrophysics Data System (ADS)

    Farias, Ana Paula S. F.; Tadayozzi, Yasmin S.; Carneiro, Cristine E. A.; Zaia, Dimas A. M.

    2014-06-01

    The adsorption of amino acids onto minerals in prebiotic seas may have played an important role for their protection against hydrolysis and formation of polymers. In this study, we show that the adsorption of the prebiotic amino acids, glycine (Gly), α-alanine (α-Ala) and β-alanine (β-Ala), onto Na+-montmorillonite was dependent on salinity and pH. Specifically, adsorption decreased from 58.3-88.8 to 0-48.9% when salinity was increased from 10 to 100-150% of modern seawater. This result suggests reduced amino acid adsorption onto minerals in prebiotic seas, which may have been even more saline than the tested conditions. Amino acids also formed complexes with metals in seawater, affecting metal adsorption onto Na+-montmorillonite, and amino acid adsorption was enhanced when added before Na+-montmorillonite was exposed to high saline solutions. Also, the dissolution of Na+-montmorillonite was reduced in the presence of amino acids, with β-Ala being the most effective. Thus, prebiotic chemistry experiments should also consider the integrity of minerals in addition to their adsorption capacity.

  15. Influence of temperature and humidity on rumen pH and fatty acids in dairy cows.

    PubMed

    Gianesella, M; Piccione, G; Cannizzo, C; Casella, S; Morgante, M

    2012-11-01

    The aim of this study was to investigate the variations of rumen pH and fatty acids (acetic acid, propionic acid, iso-butyric acid, n-butyric acid, iso-valerianic acid, n-valerianic, caproic acid and total fatty acids) in 245 early lactating dairy cows under different temperature and humidity conditions. The animals were divided into six groups and rumen fluid was collected by rumenocentesis on 22 dairy cows in April (Group A), 33 in May (Group B), 43 in June (Group C), 48 in July (Group D), 36 in September (Group E) and 60 in October (Group F). One-way analysis of variance (ANOVA), followed by the Bonferroni's test, showed a significant effect of environmental variations on all studied parameters (P < 0.0001). Changes in studied parameters can be explained in relation to the microbial population and shift in the optima for rumen conditions associated with variations of environmental conditions. We can affirm that the microbial assemblages that underlie energy and protein supply to wild ruminant are evident especially in relation to temperature and humidity conditions.

  16. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  17. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  18. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  19. Investigation of pH Influence on Skin Permeation Behavior of Weak Acids Using Nonsteroidal Anti-Inflammatory Drugs.

    PubMed

    Chantasart, Doungdaw; Chootanasoontorn, Siriwan; Suksiriworapong, Jiraphong; Li, S Kevin

    2015-10-01

    As a continuing effort to understand the skin permeation behavior of weak acids and bases, the objectives of the present study were to evaluate skin permeation of nonsteroidal anti-inflammatory drugs (NSAIDs) under the influence of pH, investigate the mechanism of pH effect, and examine a previous hypothesis that the effective skin pH for drug permeation is different from donor solution pH. In vitro permeability experiments were performed in side-by-side diffusion cells with diclofenac, ibuprofen, flurbiprofen, ketoprofen, and naproxen and human skin. The donor solution pH significantly affected skin permeation of NSAIDs, whereas no effect of the receiver pH was observed. Similar to previous observations, the apparent permeability coefficient versus donor solution pH relationships deviated from the predictions (fractions of unionized NSAIDs) according to the acid/base theory. The influences of the viable epidermis barrier, polar pathway transport, ion permeation across skin, and effective skin pH were investigated. The effective pH values for skin permeation determined using the NSAIDs (weak acids) in this study were different from those obtained previously with a weak base at the same donor solution pH conditions, suggesting that the observed permeability-pH relationships could not be explained solely by possible pH differences between skin and donor solution.

  20. Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, Pterygoplichthys pardalis.

    PubMed

    Harter, T S; Shartau, R B; Baker, D W; Jackson, D C; Val, A L; Brauner, C J

    2014-08-01

    Preferential intracellular pH (pHi) regulation, where pHi is tightly regulated in the face of a blood acidosis, has been observed in a few species of fish, but only during elevated blood PCO2. To determine whether preferential pHi regulation may represent a general pattern for acid-base regulation during other pH disturbances we challenged the armoured catfish, Pterygoplichthys pardalis, with anoxia and exhaustive exercise, to induce a metabolic acidosis, and bicarbonate injections to induce a metabolic alkalosis. Fish were terminally sampled 2-3 h following the respective treatments and extracellular blood pH, pHi of red blood cells (RBC), brain, heart, liver and white muscle, and plasma lactate and total CO2 were measured. All treatments resulted in significant changes in extracellular pH and RBC pHi that likely cover a large portion of the pH tolerance limits of this species (pH 7.15-7.86). In all tissues other than RBC, pHi remained tightly regulated and did not differ significantly from control values, with the exception of a decrease in white muscle pHi after anoxia and an increase in liver pHi following a metabolic alkalosis. Thus preferential pHi regulation appears to be a general pattern for acid-base homeostasis in the armoured catfish and may be a common response in Amazonian fishes.

  1. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

    PubMed

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín

    2015-11-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.

  2. [Short-term changes of pH value and Al activity in acid soils after urea fertilization].

    PubMed

    Zeng, Qingru; Liao, Bohan; Jiang, Zhaohui; Zhou, Xihong; Tang, Can; Zhong, Ning

    2005-02-01

    Acidic soils are widely distributed in South China, and their acidity is the major environmental stress factor limiting the growth of most crops. It is well known that soil Al solubilized at low pH is a main toxic factor for plant growth. Our study with three acidic soils showed that soil pH increased quickly, while soil exchangeable Al decreased sharply with the increasing concentrations of applied urea. The time-course experiment revealed that the increase of soil pH was short-lived, with a subsequently slow drop after reached its maximum. Urea fertilization caused a drastic change of soil pH during 2-4 weeks of the experimental period. There was a negative relationship between soil pH and soil exchangeable Al. Biological toxicity test demonstrated that applying urea to acidic soils could obviously decrease the aluminum toxicity of maize in a short-term period.

  3. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    PubMed Central

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  4. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  5. Ammonium addition (and aerosol pH) has a dramatic impact on the volatility and yield of glyoxal secondary organic aerosol.

    PubMed

    Ortiz-Montalvo, Diana L; Häkkinen, Silja A K; Schwier, Allison N; Lim, Yong B; McNeill, V Faye; Turpin, Barbara J

    2014-01-01

    Glyoxal is an important precursor to secondary organic aerosol (SOA) formed through aqueous chemistry in clouds, fogs, and wet aerosols, yet the gas-particle partitioning of the resulting mixture is not well understood. This work characterizes the volatility behavior of the glyoxal precursor/product mix formed after aqueous hydroxyl radical oxidation and droplet evaporation under cloud-relevant conditions for 10 min, thus aiding the prediction of SOA via this pathway (SOACld). This work uses kinetic modeling for droplet composition, droplet evaporation experiments and temperature-programmed desorption aerosol-chemical ionization mass spectrometer analysis of gas-particle partitioning. An effective vapor pressure (p'L,eff) of ∼10(-7) atm and an enthalpy of vaporization (ΔHvap,eff) of ∼70 kJ/mol were estimated for this mixture. These estimates are similar to those of oxalic acid, which is a major product. Addition of ammonium until the pH reached 7 (with ammonium hydroxide) reduced the p'L,eff to <10(-9) atm and increased the ΔHvap,eff to >80 kJ/mol, at least in part via the formation of ammonium oxalate. pH 7 samples behaved like ammonium oxalate, which has a vapor pressure of ∼10(-11) atm. We conclude that ammonium addition has a large effect on the gas-particle partitioning of the mixture, substantially enhancing the yield of SOACld from glyoxal. PMID:24328102

  6. Ammonium addition (and aerosol pH) has a dramatic impact on the volatility and yield of glyoxal secondary organic aerosol.

    PubMed

    Ortiz-Montalvo, Diana L; Häkkinen, Silja A K; Schwier, Allison N; Lim, Yong B; McNeill, V Faye; Turpin, Barbara J

    2014-01-01

    Glyoxal is an important precursor to secondary organic aerosol (SOA) formed through aqueous chemistry in clouds, fogs, and wet aerosols, yet the gas-particle partitioning of the resulting mixture is not well understood. This work characterizes the volatility behavior of the glyoxal precursor/product mix formed after aqueous hydroxyl radical oxidation and droplet evaporation under cloud-relevant conditions for 10 min, thus aiding the prediction of SOA via this pathway (SOACld). This work uses kinetic modeling for droplet composition, droplet evaporation experiments and temperature-programmed desorption aerosol-chemical ionization mass spectrometer analysis of gas-particle partitioning. An effective vapor pressure (p'L,eff) of ∼10(-7) atm and an enthalpy of vaporization (ΔHvap,eff) of ∼70 kJ/mol were estimated for this mixture. These estimates are similar to those of oxalic acid, which is a major product. Addition of ammonium until the pH reached 7 (with ammonium hydroxide) reduced the p'L,eff to <10(-9) atm and increased the ΔHvap,eff to >80 kJ/mol, at least in part via the formation of ammonium oxalate. pH 7 samples behaved like ammonium oxalate, which has a vapor pressure of ∼10(-11) atm. We conclude that ammonium addition has a large effect on the gas-particle partitioning of the mixture, substantially enhancing the yield of SOACld from glyoxal.

  7. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    NASA Technical Reports Server (NTRS)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  8. Spontaneous aggregation of humic acid observed with AFM at different pH.

    PubMed

    Colombo, Claudio; Palumbo, Giuseppe; Angelico, Ruggero; Cho, Hyen Goo; Francioso, Ornella; Ertani, Andrea; Nardi, Serenella

    2015-11-01

    Atomic force microscopy in contact (AFM-C) mode was used to investigate the molecular dynamics of leonardite humic acid (HA) aggregate formed at different pH values. HA nanoparticles dispersed at pH values ranging from 2 to 12 were observed on a mica surface under dry conditions. The most clearly resolved and well-resulted AFM images of single particle were obtained at pH 5, where HA appeared as supramolecular particles with a conic shape and a hole in the centre. Those observations suggested that HA formed under these conditions exhibited a pseudo-amphiphilic nature, with secluded hydrophobic domains and polar subunits in direct contact with hydrophilic mica surface. Based on molecular simulation methods, a lignin-carbohydrate complex (LCC) model was proposed to explain the HA ring-like morphology. The LCC model optimized the parameters of β-O-4 linkages between 14 units of 1-4 phenyl propanoid, and resulted in an optimized structure comprising 45-50 linear helical molecules looped spirally around a central cavity. Those results added new insights on the adsorption mechanism of HA on polar surfaces as a function of pH, which was relevant from the point of view of natural aggregation in soil environment. PMID:26295541

  9. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance. PMID:26059505

  10. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  11. A novel "off-on" colorimetric and fluorescent rhodamine-based pH chemosensor for extreme acidity

    NASA Astrophysics Data System (ADS)

    Tan, Jia-Lian; Zhang, Mu-Xue; Zhang, Fang; Yang, Ting-Ting; Liu, Yu; Li, Zhu-Bo; Zuo, Hua

    2015-04-01

    A novel "off-on" colorimetric and fluorescent rhodamine analogue was synthesized and characterized, and used to monitor extreme acidity (below pH 3.5) via the photophysical response to pH. The colorless spirocyclic structure at high pH (pH ⩾ 7.0) opened to the colored and highly fluorescent form at very low pH (pH < 3.0). This sensitive pH probe was characterized with short response time, good reversibility and no interaction with interfering metal ions, and the quantitative relationship between the fluorescence intensity and pH value was consistent with the equilibrium equation pH = pKa - log[(Imax - I)/(I - Imin)]. The fluorescent response to strong acidity was further verified by fluorescent imaging of bacteria, Escherichia coli, which contributed to the development of more useful colorimetric and fluorescent sensors based on the rhodamine platform for measuring intracellular pH in extremely acidic conditions.

  12. High-rate volatile fatty acid (VFA) production by a granular sludge process at low pH.

    PubMed

    Tamis, J; Joosse, B M; Loosdrecht, M C M van; Kleerebezem, R

    2015-11-01

    Volatile fatty acids (VFA) are proposed platform molecules for the production of basic chemicals and polymers from organic waste streams. In this study we developed a granular sludge process to produce VFA at high rate, yield and purity while minimizing potential operational costs. A lab-scale anaerobic sequencing batch reactor (ASBR) was fed with 10 g l(-1) glucose as model substrate. Inclusion of a short (2 min) settling phase before effluent discharge enabled effective granulation and very high volumetric conversion rates of 150-300 gCOD l(-1)  d(-1) were observed during glucose conversion. The product spectrum remained similar at the tested pH range with acetate and butyrate as the main products, and a total VFA yield of 60-70% on chemical oxygen demand (COD) basis. The requirement for base addition for pH regulation could be reduced from 1.1 to 0.6 mol OH(-) (mol glucose)(-1) by lowering the pH from 5.5 to 4.5. Solids concentrations in the effluent were 0.6 ± 0.3 g l(-1) but could be reduced to 0.02 ± 0.01 g l(-1) by introduction of an additional settling period of 5 min. The efficient production of VFA at low pH with a virtually solid-free effluent increases the economic feasibility of waste-based chemicals and polymer production. Biotechnol.

  13. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.

    PubMed

    Del Rio, Beatriz; Linares, Daniel; Ladero, Victor; Redruello, Begoña; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2016-11-01

    Lactococcus lactis subsp. cremoris CECT 8666 is a lactic acid bacterium that synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The AGDI genes cluster includes aguR. This encodes a transmembrane protein that functions as a one-component signal transduction system, the job of which is to sense the agmatine concentration of the medium and accordingly regulate the transcription of the catabolic operon aguBDAC. The latter encodes the proteins necessary for agmatine uptake and its conversion into putrescine. This work reports the effect of extracellular pH on putrescine biosynthesis and on the genetic regulation of the AGDI pathway. Increased putrescine biosynthesis was detected at acidic pH (pH5) compared to neutral pH. Acidic pH induced the transcription of the catabolic operon via the activation of the aguBDAC promoter PaguB. However, the external pH had no significant effect on the activity of the aguR promoter PaguR, or on the transcription of the aguR gene. The transcriptional activation of the AGDI pathway was also found to require a lower agmatine concentration at pH5 than at neutral pH. Finally, the following of the AGDI pathway counteracted the acidification of the cytoplasm under acidic external conditions, suggesting it to provide protection against acid stress.

  14. Rational Design of a Colorimetric pH Sensor from a Soluble Retinoic Acid Chaperone

    PubMed Central

    Berbasova, Tetyana; Nosrati, Meisam; Vasileiou, Chrysoula; Wang, Wenjing; Lee, Kin Sing Stephen; Yapici, Ipek; Geiger, James H.; Borhan, Babak

    2014-01-01

    Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474–640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor. PMID:24059243

  15. Rational design of a colorimetric pH sensor from a soluble retinoic acid chaperone.

    PubMed

    Berbasova, Tetyana; Nosrati, Meisam; Vasileiou, Chrysoula; Wang, Wenjing; Lee, Kin Sing Stephen; Yapici, Ipek; Geiger, James H; Borhan, Babak

    2013-10-30

    Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474-640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor. PMID:24059243

  16. Mycorrhizal Response to Experimental pH and P Manipulation in Acidic Hardwood Forests

    PubMed Central

    Kluber, Laurel A.; Carrino-Kyker, Sarah R.; Coyle, Kaitlin P.; DeForest, Jared L.; Hewins, Charlotte R.; Shaw, Alanna N.; Smemo, Kurt A.; Burke, David J.

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  17. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    PubMed Central

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  18. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  19. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  20. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    PubMed Central

    Maas, Ronald H. W.; Bakker, Robert R.; Jansen, Mickel L. A.; Visser, Diana; de Jong, Ed; Eggink, Gerrit

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral l(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime. PMID:18247027

  1. Leaching of organic acids from irradiated EVA plastic as a function of solution pH and polarity.

    PubMed

    Jenke, Dennis; Zietlow, David; Sadain, Salma

    2004-01-01

    The leaching of several target organic acids from an irradiated ethylene vinyl acetate material, such as those used as a solution product container, is examined as a function of solution pH and polarity. The targeted compounds included highly soluble weak acids such as acetic and formic acids, and larger, more lipophillic acids such as myristic, palmitic, and stearic acids. The leaching of these compounds was examined over a pH range of 3 to 11 and in various ethanol/water proportions. While pH and solution polarity had only a modest impact on the accumulation of the acetic and formic acids, the accumulation of the fatty acids was greatly affected by both factors. It is suggested that the accumulation of these leachables at high pH is influenced by two processes. The first process, partitioning, the speciation of the acidic leachables (protonated versus dissociated form) contributes to the pH trends observed. In this case, entities that already exist in the plastic partition themselves between the plastic and solution via migration. A second, more important, contributor to the leaching of these acids is a pH-dependent increase in their availability arising from an unspecified reactive process.

  2. Intracellular pH regulation by acid-base transporters in mammalian neurons

    PubMed Central

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  3. Rapid 3D Patterning of Poly(acrylic acid) Ionic Hydrogel for Miniature pH Sensors.

    PubMed

    Yin, Ming-Jie; Yao, Mian; Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Wai, Ping-Kong A

    2016-02-17

    Poly(acrylic acid) (PAA), as a highly ionic conductive hydrogel, can reversibly swell/deswell according to the surrounding pH conditions. An optical maskless -stereolithography technology is presented to rapidly 3D pattern PAA for device fabrication. A highly sensitive miniature pH sensor is demonstrated by in situ printing of periodic PAA micropads on a tapered optical microfiber.

  4. Influence of five neutralizing products on intra-oral pH after rinsing with simulated gastric acid.

    PubMed

    Lindquist, Birgitta; Lingström, Peter; Fändriks, Lars; Birkhed, Dowen

    2011-08-01

    The aetiology of dental erosion may be of both extrinsic and intrinsic origin. The aim of the present study was to test the ability of various neutralizing products to raise the low intra-oral pH after an erosive exposure, in this case to gastric acid, which was simulated using hydrochloric acid (HCl). Eleven adults participated. They rinsed with 10 ml of 10 mM HCl (pH 2) or 10 ml of 100 mM HCl (pH 1) for 1 min, after which the pH was measured intra-orally for up to 30 min at four sites (two approximal, one buccal, and the dorsum of the tongue). After rinsing with the two acid solutions (pH 1 and pH 2), the following products were used: (i) antacid tablet; (ii) gum arabic lozenge; (iii) mineral water; (iv) milk; and (v) tap water (positive control). The negative control was no product use. The five test products were used for 2 min after the erosive challenge. All the products produced an initially higher pH compared with the negative control. The antacid tablet resulted in the greatest and most rapid increase in pH, followed by the lozenge. In dental practice, the use of any of the neutralizing products tested, especially the antacid tablet, could be recommended in order to increase the intra-oral pH after an erosive challenge. PMID:21726291

  5. pH-, Lactic Acid-, and Non-Lactic Acid-Dependent Activities of Probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium

    PubMed Central

    Fayol-Messaoudi, Domitille; Berger, Cédric N.; Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L.

    2005-01-01

    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect. PMID:16204515

  6. The role of low molecular weight organic acids on controlling pH in coastal sea water

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-12-01

    Series investigation of the Jiaozhou Bay, China, observed existences of three low molecular weight organic acids (LMWOAs), including lactic acid, acetic acid and formic acid, with high concentration in the sea water. Generally, their amount accounted for about 20% of DOC in the sea water of the bay. Human activities around the bay were considered as the major source of the LMWOAs. Also, long term detection showed that the pH value in the Jiaozhou Bay was lower than that in the adjacent Yellow Sea. On average, the difference of pH values between the bay and the Yellow was about 0.2. Due to higher concentrations of the LMWOAs, their contribution to lower pH value of the bay should not be ignored. To validate the effect of LMWOAs on the pH value of the bay, a new software was developed to calculate the pH value in the sea water samples based on alkalinity by adding three items of the three organic acids in the expression. Compared to the traditional pH calculating software, the new software could improve the calculating results significantly. Our results confirmed that LMWOAs was an important control factor to adjust pH values in coastal area.

  7. Basis of antimalarial action: non-weak base effects of chloroquine on acid vesicle pH

    SciTech Connect

    Krogstad, D.J.; Schlesinger, P.H.

    1987-03-01

    Biologically active concentrations of chloroquine increase the pH of the parasite's acid vesicles within 3-5 min. This increase in pH results from two mechanisms, one of which is markedly reduced in chloroquine-resistant parasites. Because chloroquine is a weak base, it increases vesicle pH by that mechanism in chloroquine-susceptible and resistant parasites and mammalian cells (based on its two pKs and on the delta pH between the acid vesicle and the extracellular environment). In chloroquine-susceptible parasites, but not resistant parasites or mammalian cells, chloroquine increases the pH of acid vesicles 700- to 800-fold more than can be accounted for by its properties as a weak base. The increase in acid vesicle pH caused by these non-weak base effects of nanomolar chloroquine in susceptible parasites suggests that chloroquine acts by interfering with acid vesicle functions in the parasite such as the endocytosis and proteolysis of hemoglobin, and the intracellular targeting of lysosomal enzymes. The non-weak base effects of nanomolar chloroquine on parasite vesicle pH are also responsible for its safety because these chloroquine concentrations do not affect mammalian cells.

  8. Ratiometric emission fluorescent pH probe for imaging of living cells in extreme acidity.

    PubMed

    Niu, Weifen; Fan, Li; Nan, Ming; Li, Zengbo; Lu, Dongtao; Wong, Man Shing; Shuang, Shaomin; Dong, Chuan

    2015-03-01

    A novel ratiometric emission fluorescent probe, 1,1-dimethyl-2-[2-(quinolin-4-yl)vinyl]-1H-benzo[e]indole (QVBI), is facilely synthesized via ethylene bridging of benzoindole and quinoline. The probe exhibits ratiometric fluorescence emission (F(522nm)/F(630nm)) characteristics with pKa 3.27 and linear response to extreme-acidity range of 3.8-2.0. Also, its high fluorescence quantum yield (Φ = 0.89) and large Stokes shift (110 nm) are favorable. Moreover, QVBI possesses highly selective response to H(+) over metal ions and some bioactive molecules, good photostability, and excellent reversibility. The probe has excellent cell membrane permeability and is further applied successfully to monitor pH fluctuations in live cells and imaging extreme acidity in Escherichia coli cells without influence of autofluorescence and native cellular species in biological systems. PMID:25664606

  9. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation.

    PubMed

    Anderson, Catherine; Malambo, Dennis Hanjalika; Perez, Maria Eliette Gonzalez; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; de Vossenberg, Jack van; Greya, Wilson; Thole, Bernard; van Lier, Jules B; Brdjanovic, Damir

    2015-10-29

    In this research, three faecal sludge sanitizing methods-lactic acid fermentation, urea treatment and lime treatment-were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m³ of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment.

  10. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation

    PubMed Central

    Anderson, Catherine; Malambo, Dennis Hanjalika; Gonzalez Perez, Maria Eliette; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; van de Vossenberg, Jack; Greya, Wilson; Thole, Bernard; van Lier, Jules B.; Brdjanovic, Damir

    2015-01-01

    In this research, three faecal sludge sanitizing methods—lactic acid fermentation, urea treatment and lime treatment—were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m3 of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment. PMID:26528995

  11. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation.

    PubMed

    Anderson, Catherine; Malambo, Dennis Hanjalika; Perez, Maria Eliette Gonzalez; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; de Vossenberg, Jack van; Greya, Wilson; Thole, Bernard; van Lier, Jules B; Brdjanovic, Damir

    2015-11-01

    In this research, three faecal sludge sanitizing methods-lactic acid fermentation, urea treatment and lime treatment-were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m³ of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment. PMID:26528995

  12. A new method for determining gastric acid output using a wireless ph sensing capsule

    PubMed Central

    Weinstein, D.H.; deRijke, S.; Chow, C. C.; Foruraghi, L.; Zhao, X.; Wright, E.C.; Whatley, M.; Maass-Moreno, R.; Chen, C. C.; Wank, S. A.

    2013-01-01

    BACKGROUND Gastroesophageal reflux disease (GERD) and gastric acid hypersecretion respond well to suppression of gastric acid secretion. However, clinical management and research in diseases of acid secretion have been hindered by the lack of a non-invasive, accurate and reproducible tool to measure gastric acid output (GAO). Thus, symptoms or, in refractory cases, invasive testing may guide acid suppression therapy. AIM To present and validate a novel, non-invasive method of GAO analysis in healthy subjects using a wireless pH sensor, SmartPill® (SP) (SmartPill® Corporation, Buffalo, NY). METHODS Twenty healthy subjects underwent conventional GAO studies with a nasogastric tube. Variables impacting liquid meal-stimulated GAO analysis were assessed by modeling and in vitro verification. Buffering capacity of Ensure Plus® was empirically determined. SP GAO was calculated using the rate of acidification of the Ensure Plus® meal. Gastric emptying scintigraphy and GAO studies with radiolabeled Ensure Plus® and SP assessed emptying time, acidification rate and mixing. Twelve subjects had a second SP GAO study to assess reproducibility. RESULTS Meal stimulated SP GAO analysis was dependent on acid secretion rate and meal buffering capacity but not on gastric emptying time. On repeated studies, SP GAO strongly correlated with conventional BAO (r=0.51, P=0.02), MAO (r=0.72, P=0.0004) and PAO; (r=0.60, P=0.006). The SP sampled the stomach well during meal acidification. CONCLUSIONS SP GAO analysis is a non-invasive, accurate and reproducible method for the quantitative measurement of GAO in healthy subjects. SP GAO analysis could facilitate research and clinical management of GERD and other disorders of gastric acid secretion. PMID:23639004

  13. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    SciTech Connect

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J.; Purdue

    2010-07-27

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

  14. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~ 4 and ~ 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH ~ 14 and brown at pH ~ 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH ~ 14 and Forms "A", "D", and "P" at pH ~ 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH ~ 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at ~ 1548 cm- 1 in NRS while in the SERS window this appears at ~ 1580 cm- 1. Similar observation was also made for CZA at pH ~ 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at ~ 447 cm- 1 in the SERS spectrum as well as other bands at ~ 850, ~ 1067 and ~ 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH ~ 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH ~ 14). The DFT

  15. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these

  16. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. PMID:24240104

  17. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  18. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. PMID:26116387

  19. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  20. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  1. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH

    PubMed Central

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  2. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-03-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  3. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-01-08

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism.

  4. Is it possible to produce succinic acid at a low pH?

    PubMed

    Yuzbashev, Tigran V; Yuzbasheva, Evgeniya Y; Laptev, Ivan A; Sobolevskaya, Tatiana I; Vybornaya, Tatiana V; Larina, Anna S; Gvilava, Ilia T; Antonova, Svetlana V; Sineoky, Sergey P

    2011-01-01

    Bio-based succinate is still a matter of special emphasis in biotechnology and adjacent research areas. The vast majority of natural and engineered producers are bacterial strains that accumulate succinate under anaerobic conditions. Recently, we succeeded in obtaining an aerobic yeast strain capable of producing succinic acid at low pH. Herein, we discuss some difficulties and advantages of microbial pathways producing "succinic acid" rather than "succinate." It was concluded that the peculiar properties of the constructed yeast strain could be clarified in view of a distorted energy balance. There is evidence that in an acidic environment, the majority of the cellular energy available as ATP will be spent for proton and anion efflux. The decreased ATP:ADP ratio could essentially reduce the growth rate or even completely inhibit growth. In the same way, the preference of this elaborated strain for certain carbon sources could be explained in terms of energy balance. Nevertheless, the opportunity to exclude alkali and mineral acid waste from microbial succinate production seems environmentally friendly and cost-effective.

  5. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ∆G o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  6. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    PubMed

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  7. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  8. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system. PMID:19968099

  9. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin. PMID:6124639

  10. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  11. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    PubMed

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-01

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB

  12. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    PubMed

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-01

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB

  13. Effect of amino acids on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in creatinine/phenylalanine and creatinine/phenylalanine/4-oxo-2-nonenal reaction mixtures.

    PubMed

    Zamora, Rosario; Alcón, Esmeralda; Hidalgo, Francisco J

    2013-12-15

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation in mixtures of creatinine, phenylalanine, amino acids and 4-oxo-2-nonenal was studied, to analyse the role of amino acids on the generation of this heterocyclic aromatic amine. When oxidised lipid was absent, cysteine, serine, aspartic acid, threonine, asparagine, tryptophan, tyrosine, proline, and methionine increased significantly (p < 0.05) the amount of PhIP formed in comparison to the control. When lipid was present, only the addition of methionine, glycine, and serine increased significantly (p < 0.05) the amount of PhIP produced, while histidine, cysteine, lysine, tryptophan, tyrosine, and alanine reduced significantly (p < 0.05) PhIP. These results may be a consequence of the different competitive reactions that occur. Thus, in the absence of lipids, thermal decomposition of the amino acids produced reactive carbonyls that converted phenylalanine into phenylacetaldehyde as a key step in the formation of PhIP. When oxidised lipid was present, amino acids competed with phenylalanine for the lipid, and amino acid degradation products were formed, among which alpha-keto acids seemed to play a role in these reactions. These results suggest that PhIP can be produced by several alternative reaction pathways from all major food components, including amino acids and lipids, in addition to carbohydrates. PMID:23993611

  14. Effect of amino acids on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in creatinine/phenylalanine and creatinine/phenylalanine/4-oxo-2-nonenal reaction mixtures.

    PubMed

    Zamora, Rosario; Alcón, Esmeralda; Hidalgo, Francisco J

    2013-12-15

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation in mixtures of creatinine, phenylalanine, amino acids and 4-oxo-2-nonenal was studied, to analyse the role of amino acids on the generation of this heterocyclic aromatic amine. When oxidised lipid was absent, cysteine, serine, aspartic acid, threonine, asparagine, tryptophan, tyrosine, proline, and methionine increased significantly (p < 0.05) the amount of PhIP formed in comparison to the control. When lipid was present, only the addition of methionine, glycine, and serine increased significantly (p < 0.05) the amount of PhIP produced, while histidine, cysteine, lysine, tryptophan, tyrosine, and alanine reduced significantly (p < 0.05) PhIP. These results may be a consequence of the different competitive reactions that occur. Thus, in the absence of lipids, thermal decomposition of the amino acids produced reactive carbonyls that converted phenylalanine into phenylacetaldehyde as a key step in the formation of PhIP. When oxidised lipid was present, amino acids competed with phenylalanine for the lipid, and amino acid degradation products were formed, among which alpha-keto acids seemed to play a role in these reactions. These results suggest that PhIP can be produced by several alternative reaction pathways from all major food components, including amino acids and lipids, in addition to carbohydrates.

  15. Faecal pH, bile acid and sterol concentrations in premenopausal Indian and white vegetarians compared with white omnivores.

    PubMed

    Reddy, S; Sanders, T A; Owen, R W; Thompson, M H

    1998-06-01

    Faecal bulk, pH, water content, the concentrations of neutral sterols and bile acids and dietary intakes were measured in twenty-two Indian vegetarian, twenty-two white omnivorous and eighteen white vegetarian premenopausal women. Faecal bulk and water content were greater and pH lower in the Indian vegetarians. Total faecal animal sterol and coprostanol concentrations expressed on a dry-weight basis were lower in the vegetarians compared with the omnivores. The faecal sterol concentrations were correlated with dietary cholesterol intake. Primary bile acids were detected in six Indian vegetarians, two white vegetarians and two white omnivores; secondary bile acids were detected in all the white omnivores and vegetarian subjects but not in two of the Indian vegetarians. Total faecal free bile acid and conjugated bile acid concentrations were lower in the white vegetarians compared with the omnivores. Faecal lithocholic acid concentrations were lower in both Indian and white vegetarians. The lithocholic: deoxycholic acid ratio and coprostanol: total animal sterols ratio were significantly lower in the Indian vegetarians compared with the omnivores. Both ratios were positively correlated with faecal pH. Stepwise multiple regression analyses were undertaken in order to identify which nutrients influenced faecal pH, lithocholic and deoxycholic acid concentrations. The intakes of starch and dietary fibre were negatively associated with faecal concentrations of lithocholic and deoxycholic acid. Starch intake alone was negatively associated with faecal pH. The results of this study confirm that diets high in dietary fibre decrease faecal bile acid concentrations and suggest that the complex carbohydrates present in Indian vegetarian diets influence faecal pH and inhibit the degradation of faecal steroids.

  16. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies.

    PubMed

    Pellegrini, Paola; Strambi, Angela; Zipoli, Chiara; Hägg-Olofsson, Maria; Buoncervello, Maria; Linder, Stig; De Milito, Angelo

    2014-04-01

    Acidic pH is an important feature of tumor microenvironment and a major determinant of tumor progression. We reported that cancer cells upregulate autophagy as a survival mechanism to acidic stress. Inhibition of autophagy by administration of chloroquine (CQ) in combination anticancer therapies is currently evaluated in clinical trials. We observed in 3 different human cancer cell lines cultured at acidic pH that autophagic flux is not blocked by CQ. This was consistent with a complete resistance to CQ toxicity in cells cultured in acidic conditions. Conversely, the autophagy-inhibiting activity of Lys-01, a novel CQ derivative, was still detectable at low pH. The lack of CQ activity was likely dependent on a dramatically reduced cellular uptake at acidic pH. Using cell lines stably adapted to chronic acidosis we could confirm that CQ lack of activity was merely caused by acidic pH. Moreover, unlike CQ, Lys-01 was able to kill low pH-adapted cell lines, although higher concentrations were required as compared with cells cultured at normal pH conditions. Notably, buffering medium pH in low pH-adapted cell lines reverted CQ resistance. In vivo analysis of tumors treated with CQ showed that accumulation of strong LC3 signals was observed only in normoxic areas but not in hypoxic/acidic regions. Our observations suggest that targeting autophagy in the tumor environment by CQ may be limited to well-perfused regions but not achieved in acidic regions, predicting possible limitations in efficacy of CQ in antitumor therapies. PMID:24492472

  17. pH at the micellar interface: synthesis of pH probes derived from salicylic acid, acid-base dissociation in sodium dodecyl sulfate micelles, and Poisson-Boltzmann simulation.

    PubMed

    Souza, T P; Zanette, D; Kawanami, A E; de Rezende, L; Ishiki, H M; do Amaral, A T; Chaimovich, H; Agostinho-Neto, A; Cuccovia, I M

    2006-05-01

    The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumundecanoyl)benzoate; 2-hydroxy-5-acetylbenzoic acid; and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pK(ap). The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pK(ap)'s of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis.

  18. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    PubMed

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity.

  19. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  20. Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH.

    PubMed

    Droghetti, Enrica; Sumithran, Suganya; Sono, Masanori; Antalík, Marián; Fedurco, Milan; Dawson, John H; Smulevich, Giulietta

    2009-09-01

    The heme iron coordination of ferric myoglobin (Mb) in the presence of 9.0M urea and 8.0M acetic acid at acidic pH values has been probed by electronic absorption, magnetic circular dichroism and resonance Raman spectroscopic techniques. Unlike Mb at pH 2.0, where heme is not released from the protein despite the acid denaturation and the loss of the axial ligand, upon increasing the concentration of either urea or acetic acid, a spin state change is observed, and a novel, non-native six-coordinated high-spin species prevails, where heme is released from the protein.

  1. Effects of urea and acetic acid on the heme axial ligation structure of ferric myoglobin at very acidic pH

    PubMed Central

    Droghetti, Enrica; Sumithran, Suganya; Sono, Masanori; Antalík, Marián; Fedurco, Milan; Dawson, John H.; Smulevich, Giulietta

    2009-01-01

    The heme iron coordination of ferric myoglobin (Mb) in the presence of 9.0 M urea and 8.0 M acetic acid at acidic pH values has been probed by electronic absorption, magnetic circular dichroism and resonance Raman spectroscopic techniques. Unlike Mb at pH 2.0, where heme is not released from the protein despite the acid denaturation and the loss of the axial ligand, upon increasing the concentration of either urea or acetic acid, a spin state change is observed, and a novel, non-native six-coordinated high spin species prevails, where heme is released from the protein. PMID:19622342

  2. Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors

    PubMed Central

    Garbern, Jessica C.; Hoffman, Allan S.; Stayton, Patrick S.

    2010-01-01

    A new sharply pH- and temperature-responsive hydrogel system was designed for delivering drugs to regions of local acidosis, as found in wound healing, tumor sites, or sites of ischemia. The reversible addition fragmentation chain transfer (RAFT) polymerization technique was used to synthesize copolymers of N-isopropylacrylamide (NIPAAM) and propylacrylic acid (PAA) with feed ratios of PAA between 0 and 20 mol %. The pH-responsive viscoelastic properties of these materials as a function of pH and temperature were quantified by rheometry. At physiologic pH (7.4) and 5 wt %, the polymer did not form gels, but rather remained soluble at temperatures as high as 50 °C. At lower pH values (pH ca. 5.5 and below) the polymer was liquid at 20 °C but exhibited a sol-gel phase transformation with increasing temperature and existed as a physical gel at 37 °C. Incorporation of the hydrophobic monomer, butyl acrylate, into the random copolymer raised the pH of gel formation to greater than 6.0 at 37 °C. Drug loading studies demonstrated that p(NIPAAm-co-PAA) hydrogels are able to maintain the bioactivity of basic fibroblast growth factor following storage in hydrogel for 40 h and can provide sustained pH-dependent release of vascular endothelial growth factor over a period of at least three weeks. This hydrogel system will thus gel at controllable acidic pH values upon injection, and is designed to undergo gradual dissolution as it performs its drug delivery function and the ischemic site returns to physiological pH. PMID:20509687

  3. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  4. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  5. Zeolite-catalyzed additions of aromatic compounds to oleic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is significant research interest in developing new materials from vegetable oils and animal fats. Biobased materials can be more environmentally friendly because they tend to have good biodegradability and are derived from renewable resources. In this talk, efficient approaches for the addit...

  6. Soybean Root Elongation Response to Magnesium Additions to Acid Subsoil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additions of micromolar concentrations of Mg2+ to hydroponic solutions enhance Al tolerance of soybean [Glycine max (L.) Merr.] by increasing citrate secretion from roots and external complexation of toxic Al species in solution. The objective of this study was to assess the ameliorative effect of M...

  7. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    PubMed

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries.

  8. Intracellular pH modulates taste receptor cell volume and the phasic part of the chorda tympani response to acids.

    PubMed

    Lyall, Vijay; Pasley, Hampton; Phan, Tam-Hao T; Mummalaneni, Shobha; Heck, Gerard L; Vinnikova, Anna K; DeSimone, John A

    2006-01-01

    The relationship between cell volume and the neural response to acidic stimuli was investigated by simultaneous measurements of intracellular pH (pHi) and cell volume in polarized fungiform taste receptor cells (TRCs) using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) in vitro and by rat chorda tympani (CT) nerve recordings in vivo. CT responses to HCl and CO2 were recorded in the presence of 1 M mannitol and specific probes for filamentous (F) actin (phalloidin) and monomeric (G) actin (cytochalasin B) under lingual voltage clamp. Acidic stimuli reversibly decrease TRC pHi and cell volume. In isolated TRCs F-actin and G-actin were labeled with rhodamine phalloidin and bovine pancreatic deoxyribonuclease-1 conjugated with Alexa Fluor 488, respectively. A decrease in pHi shifted the equilibrium from F-actin to G-actin. Treatment with phalloidin or cytochalasin B attenuated the magnitude of the pHi-induced decrease in TRC volume. The phasic part of the CT response to HCl or CO2 was significantly decreased by preshrinking TRCs with hypertonic mannitol and lingual application of 1.2 mM phalloidin or 20 microM cytochalasin B with no effect on the tonic part of the CT response. In TRCs first treated with cytochalasin B, the decrease in the magnitude of the phasic response to acidic stimuli was reversed by phalloidin treatment. The pHi-induced decrease in TRC volume induced a flufenamic acid-sensitive nonselective basolateral cation conductance. Channel activity was enhanced at positive lingual clamp voltages. Lingual application of flufenamic acid decreased the magnitude of the phasic part of the CT response to HCl and CO2. Flufenamic acid and hypertonic mannitol were additive in inhibiting the phasic response. We conclude that a decrease in pHi induces TRC shrinkage through its effect on the actin cytoskeleton and activates a flufenamic acid-sensitive basolateral cation conductance that is involved in eliciting the phasic part of the CT response to

  9. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    PubMed

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  10. Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil.

    PubMed

    Rooney, Deirdre C; Clipson, Nicholas J W

    2009-01-01

    Agricultural improvement (addition of fertilizers, liming) of seminatural acidic grasslands across Ireland and the UK has resulted in significant shifts in floristic composition, soil chemistry, and microbial community structure. Although several factors have been proposed as responsible for driving shifts in microbial communities, the exact causes of such changes are not well defined. Phosphate was added to grassland microcosms to investigate the effect on fungal and bacterial communities. Plant species typical of unimproved grasslands (Agrostis capillaris, Festuca ovina) and agriculturally improved grasslands (Lolium perenne) were grown, and phosphate was added 25 days after seed germination, with harvesting after a further 50 days. Phosphate addition significantly increased root biomass (p < 0.001) and shoot biomass (p < 0.05), soil pH (by 0.1 U), and microbial activity (by 5.33 mg triphenylformazan [TPF] g(-1) soil; p < 0.001). A slight decrease (by 0.257 mg biomass-C g(-1) soil; p < 0.05) in microbial biomass after phosphate addition was found. The presence of plant species significantly decreased soil pH (p < 0.05; by up to 0.2 U) and increased microbial activity (by up to 6.02 mg TPF g(-1) soil) but had no significant effect on microbial biomass. Microbial communities were profiled using automated ribosomal intergenic spacer analysis. Multidimensional scaling plots and canonical correspondence analysis revealed that phosphate addition and its interactions with upland grassland plant species resulted in considerable changes in the fungal and bacterial communities of upland soil. The fungal community structure was significantly affected by both phosphate (R = 0.948) and plant species (R = 0.857), and the bacterial community structure was also significantly affected by phosphate (R = 0.758) and plant species (R = 0.753). Differences in microbial community structure following P addition were also revealed by similarity percentage analysis. These data suggest

  11. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  12. Boronate-Phenolic Network Capsules with Dual Response to Acidic pH and cis-Diols.

    PubMed

    Guo, Junling; Sun, Huanli; Alt, Karen; Tardy, Blaise L; Richardson, Joseph J; Suma, Tomoya; Ejima, Hirotaka; Cui, Jiwei; Hagemeyer, Christoph E; Caruso, Frank

    2015-08-26

    Dual-responsive boronate-phenolic network (BPN) capsules are fabricated by the complexation of phenylborate and phenolic materials. The BPN capsules are stable in the presence of competing carbohydrates, but dissociate at acidic pH or in the presence of competing cis-diols at physiological pH. This engineered capsule system provides a platform for a wide range of biological and biomedical applications.

  13. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control.

    PubMed

    Kwak, E-J; Lim, S-I

    2004-08-01

    The color intensities was determined of Maillard reaction products (MRPs) prepared by heating each of five sugars (maltose, fructose, glucose, arabinose, and xylose) with each of 12 amino acids (aspartic acid, glutamic acid, alanine, leucine, isoleucine, valine, proline, serine, cysteine, phenylalanine, arginine, and lysine). The remaining percentages of glucose and rate of change of color intensity due to the addition of a metal ion and NaCl were monitored for nine MRPs that had been formed between glucose and each of nine amino acids (aspartic acid, glutamic acid, alanine, valine, serine, cysteine, phenylalanine, arginine, and lysine). Model MRPs were prepared in a block heater at 100 degrees C for 1-12 h with the pH value controlled at 6.5. The resulting color intensity of each MRPs formed from the basic amino acids was greater due to the higher reactivity than those from the acidic amino acids. The remaining percentage of glucose in each MRPs from the basic amino acids was lower than those from the acidic amino acids. The MRPs from the nonpolar amino acids showed an intermediate color intensity and remaining percentages of glucose between those formed from the basic and acidic amino acids. Browning tended to be accelerated in the presence of metal ions, especially Fe2+ and Cu2+, although it was affected by the property of the amino acid and heating time as well as by the type of metal ion. On the other hand, browning was greatly inhibited by a high concentration of NaCl.

  14. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.

    PubMed

    Ho, L; Ho, G

    2012-09-15

    High free ammonia released during anaerobic digestion of livestock wastes is widely known to inhibit methanogenic microorganisms and result in low methane production. This was encountered during our earlier thermophilic semi-continuously fed continuously-stirred tank reactor (CSTR) treatment of piggery wastewater. This study explored chemical and biological means to mitigate ammonia inhibition on thermophilic anaerobic treatment of piggery wastewater with the aim to increase organic volatile carbon reduction and methane production. A series of thermophilic anaerobic batch experiments were conducted on the digested piggery effluent to investigate the effects of pH reduction (pH 8.3 to 7.5, 7.0 and 6.5) and additions of biomass (10% v/v and 19% v/v anaerobic digested piggery biomass and aerobic-anaerobic digested municipal biomass), natural zeolite (10, 15 and 20 g/L) and humic acid (1, 5 and 10 g/L) on methane production at 55 °C for 9-11 days. Reduction of the wastewater pH from its initial pH of 8.3 to 6.5 produced the greatest stimulation of methane production (3.4 fold) coupled with reductions in free ammonia (38 fold) and total volatile fatty acids (58% TVFA), particularly acetate and propionate. Addition of 10-20 g/L zeolite to piggery wastewater with and without pH reduction to 6.5 further enhanced total VFA reduction and methane production over their respective controls, with 20 g/L zeolite producing the highest enhancement effect despite the ammonia-nitrogen concentrations of the treated wastewaters remaining high. Without pH reduction, zeolite concentration up to 20 g/L was required to achieve comparable methane enhancement as the pH-reduced wastewater at pH 6.5. Although biomass (10% v/v piggery and municipal wastes) and low humic acid (1 and 5 g/L) additions enhanced total VFA reduction and methane production, they elevated the residual effluent total COD concentrations over the control wastewaters (pH-unadjusted and pH-reduced) unlike zeolite

  15. First-principles calculation of thermodynamic stability of acids and bases under pH environment: A microscopic pH theory

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Kwiseon; Zhang, S. B.

    2012-04-01

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H+, OH-, NH3, NH4+, HCOOH, and HCOO- in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH3 and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  16. First-Principles Calculation of Thermodynamic Stability of Acids and Bases under pH Environment: A Microscopic pH Theory

    SciTech Connect

    Kim, Y. H.; Kim, K.; Zhang, S. B.

    2012-04-07

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H{sup +}, OH{sup -}, NH{sub 3}, NH{sub 4}{sup +}, HCOOH, and HCOO{sup -} in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH{sub 3} and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  17. First-principles calculation of thermodynamic stability of acids and bases under pH environment: a microscopic pH theory.

    PubMed

    Kim, Yong-Hyun; Kim, Kwiseon; Zhang, S B

    2012-04-01

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H(+), OH(-), NH(3), NH(4)(+), HCOOH, and HCOO(-) in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH(3) and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability. PMID:22482545

  18. Temperature and pH responsiveness of poly-(DMAA-co-unsaturated carboxylic acid) hydrogels synthesized by UV-irradiation

    NASA Astrophysics Data System (ADS)

    Kakinoki, Sachiro; Kaetsu, Isao; Nakayama, Masashi; Sutani, Kouichi; Uchida, Kumao; Yukutake, Kouji

    2003-07-01

    Stimuli-responsive polyampholyte hydrogels were synthesized by the copolymerization of dimethylaminoethyl methacrylate (DMAA) and acrylic acid (AAc) or itaconic acid (IAc) by UV-irradiation. Temperature and pH responsiveness of these hydrogels were studied. The temperature responsiveness of poly-(DMAA-co-AAc, IAc) hydrogels shown in change of water content became dull compared to that of DMAA homo-polymer hydrogel. The water content of the poly-(DMAA-co-AAc, IAc) hydrogels showed a minimum at pH 8, and increased in more acidic and alkaline regions. This fact can be attributed to the coexistence of anions and cations in the poly-(DMAA-co-AAc, IAc) hydrogels. The poly-(DMAA-co-AAc, IAc) hydrogels were polyampholyte having both temperature responsiveness and pH responsiveness.

  19. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  20. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  1. Development of On-Line Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes

    SciTech Connect

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.; Levitskaia, Tatiana G.; Peterson, James M.; Smith, Frances N.; Bryan, Samuel A.

    2015-05-19

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.

  2. Acid-extrusion from tissue: the interplay between membrane transporters and pH buffers.

    PubMed

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2012-01-01

    The acid-base balance of cells is related to the concentration of free H⁺ ions. These are highly reactive, and their intracellular concentration must be regulated to avoid detrimental effects to the cell. H⁺ ion dynamics are influenced by binding to chelator substances ('buffering'), and by the production, diffusion and membrane-transport of free H⁺ ions or of the H⁺-bound chelators. Intracellular pH (pHi) regulation aims to balance this system of diffusion-reaction-transport processes at a favourable steady-state pHi. The ability of cells to regulate pHi may set a limit to tissue growth and can be subject to selection pressures. Cancer cells have been postulated to respond favourably to such selection pressures by evolving a better means of pHi regulation. A particularly important feature of tumour pHi regulation is acid-extrusion, which involves H⁺-extrusion and HCO₃⁻-uptake by membrane-bound transporter-proteins. Extracellular CO₂/HCO₃⁻ buffer facilitates these membrane-transport processes. As a mobile pH-buffer, CO₂/HCO₃⁻ protects the extracellular space from excessive acidification that could otherwise inhibit further acid-extrusion. CO₂/HCO₃⁻ also provides substrate for HCO₃⁻-transporters. However, the inherently slow reaction kinetics of CO₂/HCO₃⁻ can be rate-limiting for acid-extrusion. To circumvent this, cells can express extracellular-facing carbonic anhydrase enzymes to accelerate the attainment of equilibrium between CO₂, HCO₃⁻ and H⁺. The acid-extrusion apparatus has been proposed as a target for anti-cancer therapy. The major targets include H⁺ pumps, Na⁺/H⁺ exchangers and carbonic anhydrases. The effectiveness of such therapy will depend on the correct identification of rate-limiting steps in pHi regulation in a specific type of cancer. PMID:22360560

  3. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. PMID:25710573

  4. On the Mechanism by which Alkaline pH Prevents Expression of an Acid-Expressed Gene

    PubMed Central

    Espeso, Eduardo A.; Arst, Herbert N.

    2000-01-01

    Previous work has shown that zinc finger transcription factor PacC mediates the regulation of gene expression by ambient pH in the fungus Aspergillus nidulans. This regulation ensures that the syntheses of molecules functioning in the external environment, such as permeases, secreted enzymes, and exported metabolites, are tailored to the pH of the growth environment. A direct role for PacC in activating the expression of an alkaline-expressed gene has previously been demonstrated, but the mechanism by which alkaline ambient pH prevents the expression of any eukaryotic acid-expressed gene has never been reported. Here we show that a double PacC binding site in the promoter of the acid-expressed gabA gene, encoding γ-aminobutyrate (GABA) permease, overlaps the binding site for the transcriptional activator IntA, which mediates ω-amino acid induction. Using bacterially expressed fusion proteins, we have shown that PacC competes with IntA for DNA binding in vitro at this site. Thus, PacC repression of GABA permease synthesis is direct and occurs by blocking induction. A swap of IntA sites between promoters for gabA and amdS, a gene not subject to pH regulation, makes gabA expression pH independent and amdS acid expressed. PMID:10779325

  5. Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage

    SciTech Connect

    Senko, J.M.; Zhang, G.X.; McDonough, J.T.; Bruns, M.A.; Burgos, W.D.

    2009-07-01

    We isolated an acid-tolerant sulfate-reducing bacterium, GBSRB4.2, from coal mine-derived acidic mine drainage (AMD)-derived sediments. Sequence analysis of partial 16S rRNA gene of GBSRB4.2 revealed that it was affiliated with the genus Desulfosporosinus. GBSRB4.2 reduced sulfate, Fe(III) (hydr)oxide, Mn(IV) oxide, and U(VI) in acidic solutions (pH 4.2). Sulfate, Fe(III), and Mn(IV) but not U(VI) bioreduction led to an increase in the pH of acidic solutions and concurrent hydrolysis and precipitation of dissolved Al{sup 3+}. Reduction of Fe(III), Mn(IV), and U(VI) in sulfate-free solutions revealed that these metals are enzymatically reduced by GBSRB4.2. GBSRB4.2 reduced U(VI) in groundwater from a radionuclide-contaminated aquifer more rapidly at pH 4.4 than at pH 7.1, possibly due to the formation of poorly bioreducible Ca-U(VI)-CO{sub 3} complexes in the pH 7.1 groundwater.

  6. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence

    PubMed Central

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-01-01

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQW104C-A128C is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQW104C-A128C Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence. DOI: http://dx.doi.org/10.7554/eLife.06792.001 PMID:26002083

  7. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  8. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P < 0.01) due to acid adaptation. In acidified juices, the highest tolerance was observed in acid-adapted E. coli in samples adjusted to pH 3.7 with malic acid (D54 °C of 9 ± 2 min and z-value of 5.4 °C) and the lowest in unadapted E. coli at pH 3.3 acidified with acetic acid (D58 °C of 0.03 ± 0.01 min and z-value of 10.4 °C). For juices acidified to the same endpoint pH with different acids, E. coli was found to be more tolerant in samples acidified with malic acid, followed by lactic and acetic acids. Increasing the soluble solids content from 9.4 to 11.5 °Brix showed no

  9. Boronic Acid-Catalyzed, Highly Enantioselective Aza-Michael Additions of Hydroxamic Acid to Quinone Imine Ketals.

    PubMed

    Hashimoto, Takuya; Gálvez, Alberto Osuna; Maruoka, Keiji

    2015-12-30

    Boronic acid is one of the most versatile organic molecules in chemistry. Its uses include organic reactions, molecular recognition, assembly, and even medicine. While boronic acid catalysis, which utilizes an inherent catalytic property, has become an important research objective, it still lags far behind other boronic acid chemistries. Here, we report our discovery of a new boronic acid catalysis that enables the aza-Michael addition of hydroxamic acid to quinone imine ketals. By using 3-borono-BINOL as a chiral boronic acid catalyst, this reaction could be implemented in a highly enantioselective manner, paving the way to densely functionalized cyclohexanes.

  10. Composition and Flow Behavior of F-Canyon Tank 804 Sludge following Manganese Addition and pH Adjustment

    SciTech Connect

    Poirier, M. R.; Stallings, M. E.; Burket, P.R.; Fink, S. D.

    2005-11-30

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, SDD requested assistance from Savannah River National Laboratory (SRNL) personnel to examine the composition and flow characteristics of the Tank 804 sludge slurry after diluting it 10:1 with water, adding manganese nitrate to produce a slurry containing 5.5 wt % manganese (40:1 ratio of Mn:Pu), and adding sufficient 8 M caustic to raise the pH to 7, 10, and 14. Researchers prepared slurries containing one part Tank 804 sludge and 10 parts water. The water contained 5.5 wt % manganese (which SDD will add to poison the plutonium in Tank 804) and was pH adjusted to 3, 7, 10, or 14. They hand mixed (i.e., shook) these slurries and allowed them to sit overnight. With the pH 3, 7, and 10 slurries, much of the sludge remained stuck to the container wall. With the pH 14 slurry, most of the sludge appeared to be suspended in the slurry. They collected samples from the top and bottom of each container, which were analyzed for plutonium, manganese, and organic constituents. Following sampling, they placed the remaining material into a viscometer and measured the relationship between applied shear stress and shear rate. The pH 14 slurry was placed in a spiral ''race track'' apparatus and allowed to gravity drain.

  11. Fermentation quality and chemical composition of shrub silage treated with lactic acid bacteria inoculants and cellulase additives.

    PubMed

    Sun, Qizhong; Gao, Fengqin; Yu, Zhu; Tao, Ya; Zhao, Shufen; Cai, Yimin

    2012-04-01

    Effects of lactic acid bacteria (LAB) inoculants and cellulase additives on fermentation quality and chemical compositions of shrub silages were studied by using a small-scale fermentation system. Two LAB inoculants of Qingbao (Lactobacillus plantarum, Pediococcus acidilacticii, Lactobacillus casei and Clostridium phage) and Caihe (Lactobacillus plantarum, Lactobacillus brevis and Pediococcus acidilactici) and a commercial cellulase made from Trichoderma reesei were used as additives for intermediate pea-shrub, rush bushclover, arborescent ceratoides and shrubby silage preparation. The crude protein, neutral detergent fiber and water-soluble carbohydrate contents of the four shrub materials were 10.1-14.2, 62.6-67.2 and 1.9-3.5% on a dry matter basis, respectively. All shrub silages had pH 3.40-4.43, ammonia-N 0.1-0.2% g/kg and lactic acid 1.3-2.9% on a fresh matter basis. The silage quality of LAB-inoculated silages did not have a greater effect than control silages, except shrubby silage preparation. Silages treated with the cellulase, the pH of rush bushclover and shrubby sweetvetch silage were significantly (P < 0.05) lower and the lactic acid content were significantly (P < 0.05) higher than the control silages. The results confirmed that shrub contained a relatively high content of crude protein; its silages can be preserved in good quality, and they are new potential resources for livestock feed. PMID:22515690

  12. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    PubMed

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE. PMID:27434592

  13. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  14. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core-hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  15. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    PubMed

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products.

  16. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    NASA Astrophysics Data System (ADS)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  17. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.

    PubMed

    Yang, Hui; Hu, Yuanan; Cheng, Hefa

    2016-10-01

    Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm(2)) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the "loosely bound" water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a "coating layer" on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream. PMID:27364487

  18. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.

    PubMed

    Yang, Hui; Hu, Yuanan; Cheng, Hefa

    2016-10-01

    Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm(2)) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the "loosely bound" water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a "coating layer" on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream.

  19. Solid-phase microextraction with pH adjustment for the determination of aromatic acids and bases in water.

    PubMed

    van Doorn, H; Grabanski, C B; Miller, D J; Hawthorne, S B

    1998-12-31

    Adjusting the pH of water samples before performing solid-phase microextraction (SPME) analysis can be used to selectively extract organic acids (at pH 2) and bases (at pH 12). Sorption behavior of test organics is predictable based on the acid dissociation constant in water. In general, polyacrylate (PA) and Carbowax-divinylbenzene (CW-DVB) show substantially higher fiber/water sorption coefficients (Kd values) than a polydimethylsiloxane (PDMS) coated fiber. Gas chromatography-flame ionization detection (GC-FID) detection limits with the CW-DVB sorbent are approximately 0.5 to 10 ng/ml in a 2-ml water sample for a variety of aromatic amines, phenols, and chlorinated phenols, and are approximately 1 to 50 ng/ml for the same solutes using the PA sorbent. However, the PA fiber is more selective (depending on the water pH) for the acid or base components than the CW-DVB fiber. With proper pH adjustment, the recovery of spiked aromatic amines and phenols from a surface wetlands water ranged from 73 to 118% of the known values, with a precision (R.S.D.) of approximately 5 to 20%. SPME quantitation of phenols in a coal gasification wastewater using a PA fiber also gave excellent agreement with conventional methylene chloride extraction, although continued use of a single fiber with this wastewater led to poorer precision.

  20. Benzimidazole-based ratiometric two-photon fluorescent probes for acidic pH in live cells and tissues.

    PubMed

    Kim, Hyung Joong; Heo, Cheol Ho; Kim, Hwan Myung

    2013-11-27

    Many aspects of cell metabolism are controlled by acidic pH. We report a new family of small molecule and ratiometric two photon (TP) probes derived from benzimidazole (BH1-3 and BH1L) for monitoring acidic pH values. These probes are characterized by a strong two-photon excited fluorescence, a marked blue-to-green emission color change in response to pH, pKa values ranging from 4.9 to 6.1, a distinctive isoemissive point, negligible cytotoxicity, and high photostability, thereby allowing quantitative analysis of acidic pH. Moreover, we show that BH1L optimized as a lysosomal-targeted probe allows for direct, real-time estimation of the pH values inside lysosomal compartments in live cells as well as in living mouse brain tissues through the use of two-photon microscopy. These findings demonstrate that these probes will find useful applications in biomedical research.

  1. Why Not Replace pH and pOH by Just One Real Acidity Grade, AG?

    NASA Astrophysics Data System (ADS)

    van Lubeck, Henk

    1999-07-01

    The definition of pH according to Sörensen (1909) as pH = -log [H+] offers some striking disadvantages to beginning students in a chemistry course, especially those with no knowledge of logarithms. They will face some puzzling consequences of this definition such as (i) pH of a neutral solution equals 7.0, a value which changes with temperature, and (ii) pH of an acidic solution will rise after dilution. The corresponding disadvantages hold good for pOH in alkaline solutions. These disadvantages disappear after replacing pH and pOH by AG, the acidity grade: AG = log [H+]/[OH-]. AG of neutral solutions equals 0 at all temperatures, whereas AG of acidic solutions is positive and of alkaline solutions, negative. AG offers some other minor advantages as well. Anybody using AG in calculations needs some knowledge of chemical equilibrium, in particular the reversible heterolytic dissociation of water. However, breaking with a long tradition appears to be the major obstacle to an introduction of AG.

  2. Acidic intracellular pH shift during Caenorhabditis elegans larval development

    SciTech Connect

    Wadsworth, W.G.; Riddle, D.L. )

    1988-11-01

    During recovery from the developmentally arrested, nonfeeding dauer stage of the nemotode Caenorhabditis elegans, metabolic activation is accompanied by a decrease in intracellular pH (pH{sub i}). Phosphorus-31 nuclear magnetic resonance ({sup 31}P NMR) analyses of perchloric acid extracts show that inorganic phosphate predominates in dauer larvae, whereas ATP and other high-energy metabolites are abundant within 6 hr after dauer larvae have been placed in food to initiate development. Although metabolic activation has been associated with an alkaline pH{sub i} shift in other organisms, in vivo {sup 31}P NMR analysis of recovering dauer larvae shows a pH{sub i} decrease from {approx} 7.3 to {approx} 6.3 within 3 hr after the animals encounter food. This shift occurs before feeding begins, and it coincides with, or soon follows, the developmental commitment to recover from the dauer stage, suggesting that control of pH{sub i} may be important in the regulation of larval development in nematodes.

  3. Pulse radiolytic and product analysis studies of the reaction of hydroxyl radicals with cinnamic acid. The relative extent of addition to the ring and side chain

    SciTech Connect

    Bobrowski, K.; Raghavan, N.V.

    1982-10-28

    Using pulse radiolysis with optical detection and high-pressure liquid chromatography (HPCL), it has been shown that reaction of OH radicals with cinnamic acid (CA in aqueous solutions leads to addition to both the ring and the olefinic group. The relative extent of the above two pathways was estimated as 3:7, respectively. Benzyl- and hydroxycyclohexadienyl-type radicals were observed with absorption maxima at 320 (310) and 370 (365) nm depending on the pH of the solution. In the pH region 4.9 to 5.7 the absorption at 305 to 315 nm decays during the first 5 ..mu..s after the pulse. The dependence of the rate constants and absorption spectra on pH suggests that this decay is due to an equilibration process between acid-base forms of benzyl-type radicals formed through OH addition to te olefinic group.

  4. On the use of dimensionless parameters in acid-base theory. IV. The pH of water solutions of acids, bases, and simple ampholytes.

    PubMed

    Rilbe, H

    1993-10-01

    Exact relations between pH and concentrations of water solutions of acids, bases, and simple ampholytes are presented in the form of computer-created curves. These are mathematically analysed with respect to linearity and inflexion points. The extreme invariance of pH in the immediate vicinity of the isoelectric points of ampholytes is demonstrated in curves of the logarithm of molarity as a function of the logarithm of magnitude of pH-pI magnitude of. These considerations include a discussion of the suitability of ampholytes as pH standards. PMID:8125066

  5. On the use of dimensionless parameters in acid-base theory. IV. The pH of water solutions of acids, bases, and simple ampholytes.

    PubMed

    Rilbe, H

    1993-10-01

    Exact relations between pH and concentrations of water solutions of acids, bases, and simple ampholytes are presented in the form of computer-created curves. These are mathematically analysed with respect to linearity and inflexion points. The extreme invariance of pH in the immediate vicinity of the isoelectric points of ampholytes is demonstrated in curves of the logarithm of molarity as a function of the logarithm of magnitude of pH-pI magnitude of. These considerations include a discussion of the suitability of ampholytes as pH standards.

  6. Acid-coated Textiles (pH 5.5-6.5)--a New Therapeutic Strategy for Atopic Eczema?

    PubMed

    Jaeger, Teresa; Rothmaier, Markus; Zander, Holger; Ring, Johannes; Gutermuth, Jan; Anliker, Mark D

    2015-07-01

    Increased transepidermal water loss (TEWL) and decreased skin capacitance are characteristic features of the disturbed epidermal barrier in atopic eczema (AE). The "acid mantle", which is a slightly acidic film on the surface of the skin has led to the development of acidic emollients for skin care. In this context, the effect of citric acid-coated textiles on atopic skin has not been examined to date. A textile carrier composed of cellulose fibres was coated with a citric acid surface layer by esterification, ensuring a constant pH of 5.5-6.5. Twenty patients with AE or atopic diathesis were enrolled in the study. In a double-blind, half-side experiment, patients had to wear these textiles for 12 h a day for 14 days. On day 0 (baseline), 7 and 14, tolerability (erythema, pruritus, eczema, wearing comfort) and efficacy on skin barrier were assessed by TEWL skin hydration (corneometry/capacitance), pH and clinical scoring of eczema (SCORAD). Citric acid-coated textiles were well tolerated and improved eczema and objective parameters of skin physiology, including barrier function and a reduced skin surface pH, with potential lower pathogenic microbial colonisation.

  7. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  8. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  9. Rat epididymal luminal fluid acid beta-D-galactosidase optimally hydrolyses glycoprotein substrate at neutral pH.

    PubMed Central

    Skudlarek, M D; Tulsiani, D R; Orgebin-Crist, M C

    1992-01-01

    Several glycosidases, purified and characterized from mammalian tissues, have been shown to be optimally active under acidic conditions when p-nitrophenyl (PNP) or 4-methylumbelliferyl glycosides are used as substrates. Although high levels of the glycosidases are present in the epididymal lumen, their physiological role remains uncertain. To be functional, the glycosidases are expected to be enzymatically active at or near the physiological pH of luminal fluid. In this report, we demonstrate that the rat epididymal luminal fluid beta-D-galactosidase, optimally active toward PNP beta-D-galactoside at pH 3.5, shows maximum activity towards a glycoprotein substrate ([Gal-3H]fetuin) at neutral pH. Several lines of evidence, including immunoprecipitation studies using antibody to the acid beta-D-galactosidase, and substrate competition studies, indicate that PNP galactosidase and [3H]Gal galactosidase activities are caused by a single enzyme, and that the two substrates are probably cleaved by the same catalytic site(s). Competition studies with various disaccharides indicate that this enzyme is capable of cleaving a variety of galactose linkages found in both O- and N-linked oligosaccharides. Molecular-sieve column chromatography of the beta-D-galactosidase of luminal fluid under several conditions of buffer and pH show that, whereas the enzyme eluted as a tetramer (apparent M(r) 320,000) under acidic conditions (pH 3.5-4.3), only dimers and monomers (apparent M(r) 180,000 and 92,000 respectively) were observed in neutral conditions (pH 6.8). This aggregation/dissociation phenomenon is reversible. These studies indicate that beta-D-galactosidase is present in the luminal fluid in dissociated forms, and is therefore optimally active towards glycoprotein substrates at physiological pH. The potential role of the enzyme in modification of sperm surface glycoproteins is discussed. PMID:1417750

  10. Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells.

    PubMed

    Khajah, Maitham A; Mathew, Princy M; Alam-Eldin, Nada S; Luqmani, Yunus A

    2015-04-01

    De novo and acquired resistance to endocrine-based therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER- breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER- or ER+ breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin. PMID:25672508

  11. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media

    PubMed Central

    2013-01-01

    Background Lack of accounting for proton uptake and secretion has confounded interpretation of the stoichiometry of photosynthetic growth of algae. This is also problematic for achieving growth of microalgae to high cell concentrations which is necessary to improve productivity and the economic feasibility of commercial-scale chemical production systems. Since microalgae are capable of consuming both nitrate and ammonium, this represents an opportunity to balance culture pH based on a nitrogen feeding strategy that does not utilize gas-phase CO2 buffering. Stoichiometry suggests that approximately 36 weight%N-NH4+ (balance nitrogen as NO3-) would minimize the proton imbalance and permit high-density photoautotrophic growth as it does in higher plant tissue culture. However, algal media almost exclusively utilize nitrate, and ammonium is often viewed as ‘toxic’ to algae. Results The microalgae Chlorella vulgaris and Chlamydomonas reinhardtii exclusively utilize ammonium when both ammonium and nitrate are provided during growth on excess CO2. The resulting proton imbalance from preferential ammonium utilization causes the pH to drop too low to sustain further growth when ammonium was only 9% of the total nitrogen (0.027 gN-NH4+/L). However, providing smaller amounts of ammonium sequentially in the presence of nitrate maintained the pH of a Chlorella vulgaris culture for improved growth on 0.3 gN/L to 5 gDW/L under 5% CO2 gas-phase supplementation. Bioreactor pH dynamics are shown to be predictable based on simple nitrogen assimilation as long as there is sufficient CO2 availability. Conclusions This work provides both a media formulation and a feeding strategy with a focus on nitrogen metabolism and regulation to support high-density algal culture without buffering. The instability in culture pH that is observed in microalgal cultures in the absence of buffers can be overcome through alternating utilization of ammonium and nitrate. Despite the highly regulated

  12. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. PMID:27091863

  13. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general.

  14. Effect of calcium chloride addition and draining pH on the microstructure and texture of full fat Cheddar cheese during ripening.

    PubMed

    Soodam, Kevany; Ong, Lydia; Powell, Ian B; Kentish, Sandra E; Gras, Sally L

    2015-08-15

    Calcium chloride is commonly added to cheese-milk to improve coagulum formation and to increase cheese yield but high concentrations of calcium ions can have adverse effects. In this study, confocal laser scanning microscopy and cryo-scanning electron microscopy were coupled with textural and chemical analyses to observe microstructural and biochemical changes that occur in cheese during ripening when calcium chloride is added or the draining pH altered. For the cheese prepared with no additional calcium at a draining pH of 6.0, the cheese porosity increased with ripening time and the number of protein vertices in the microscopy images declined, indicative of protein solubilisation. As the amount of CaCl2 added was increased, however, these changes became less significant. Our findings show that calcium chloride addition can be used, together with a lower draining pH, to alter the manufacturing process without significantly impacting on the quality of the mature cheese.

  15. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus

    NASA Astrophysics Data System (ADS)

    Sang, Min; Wang, Ming; Liu, Jianhui; Zhang, Chengwu; Li, Aifen

    2012-06-01

    The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20°C with the temperature being set at 20, 24, and 28°C. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100 μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.

  16. The effect of terebinth (Pistacia terebinthus L.) coffee addition on the chemical and physical characteristics, colour values, organic acid profiles, mineral compositions and sensory properties of ice creams.

    PubMed

    Yüksel, Arzu Kavaz; Şat, Ihsan Güngör; Yüksel, Mehmet

    2015-12-01

    The aim of this research was to evaluate the effect of terebinth (Pistacia terebinthus L.) coffee addition (0.5, 1 and 2 %) on the chemical and physical properties, colour values, organic acid profiles, mineral contents and sensory characteristics of ice creams. The total solids, fat, titratable acidity, viscosity, first dripping time and complete melting time values, a (*) and b (*) colour properties, citric, lactic, acetic and butyric acid levels and Ca, Cu, Mg, Fe, K, Zn and Na concentrations of ice creams showed an increase with the increment of terebinth coffee amount, while protein, pH, L (*), propionic acid and orotic acid values decreased. However, Al and malic acid were not detected in any of the samples. The overall acceptability scores of the sensory properties showed that the addition of 1 % terebinth coffee to the ice cream was more appreciated by the panellists.

  17. The effect of terebinth (Pistacia terebinthus L.) coffee addition on the chemical and physical characteristics, colour values, organic acid profiles, mineral compositions and sensory properties of ice creams.

    PubMed

    Yüksel, Arzu Kavaz; Şat, Ihsan Güngör; Yüksel, Mehmet

    2015-12-01

    The aim of this research was to evaluate the effect of terebinth (Pistacia terebinthus L.) coffee addition (0.5, 1 and 2 %) on the chemical and physical properties, colour values, organic acid profiles, mineral contents and sensory characteristics of ice creams. The total solids, fat, titratable acidity, viscosity, first dripping time and complete melting time values, a (*) and b (*) colour properties, citric, lactic, acetic and butyric acid levels and Ca, Cu, Mg, Fe, K, Zn and Na concentrations of ice creams showed an increase with the increment of terebinth coffee amount, while protein, pH, L (*), propionic acid and orotic acid values decreased. However, Al and malic acid were not detected in any of the samples. The overall acceptability scores of the sensory properties showed that the addition of 1 % terebinth coffee to the ice cream was more appreciated by the panellists. PMID:26604374

  18. Coal ash basin effects (particulates, metals, acidic pH) upon aquatic biota: an eight-year evaluation. [Gambusia affinis; Plathemis lydia; Libellula spp

    SciTech Connect

    Cerry, D.S.; Guthrie, R.K.; Davis, E.M.; Harvey, R.S.

    1984-08-01

    Coal ash effluent effects including particulates, acidic pH excursions, elemental concentrations and bioconcentration in selected organisms have been studied as changes in water quality and densities of benthic macroinvertebrate and mosquitofish (Gambusia affinis) populations in a swanmp drainage system over an eight-year period. Initial density of the aquatic biota was altered severely by heavy ash siltation, followed by acidic pH excursions, and perhaps overall by elemental concentrations and bioaccumulation. Heavy ash siltation, followed by acidic pH excursions after the addition of fly ash to the original settling basin system, had the most profound effect on biota. Dipterans (chironomids) and some odonates (Plathemis lydia and Libellula spp.) were resistant to heavy ash siltation, while mosquitofish, which showed no discernible responses to ash siltation, were absent at acidic pH along with the few previously surviving invertebrate populations. Elemental concentrations of arsenic, cadmium, chromium, copper, selenium, and zinc did not appear to limit aquatic flora and fauna on a short-term, acute basis. Long-chronic elemental exposures may have been instrumental in retarding the recovery of all forms of aquatic life in the receiving system. Elemental concentrations (except for arsenic and selenium) in the receiving system were generally one to two orders of magnitude higher than the Water Quality Criteria set by the US Environmental Protection Agency (1980) for protection of aquatic life for the minimum and 24-hour mean values. By 1978, when the new settling basin systems were operating effectively, invertebrate populations were largely recovered, and mosquito-fish populations recovered within one year afterward.

  19. Effect of heat treatment, pH, sugar concentration, and metal addition on green color retention in homogenized puree of Thompson seedless grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homogenized puree of Thompson seedless (Vitis vinifera ‘Thompson Seedless’) grape was treated under different conditions, including heating time (5-30 min), temperature (20-80°C) and pH (2-10). Treatments with separate additions of glucose, fructose, and sucrose at concentrations of 100-600 g/L and ...

  20. Effect of the eluent pH and acidic modifiers in high-performance liquid chromatography retention of basic analytes.

    PubMed

    LoBrutto, R; Jones, A; Kazakevich, Y V; McNair, H M

    2001-04-13

    The retention of ionogenic bases in liquid chromatography is strongly dependent upon the pH of the mobile phase. Chromatographic behavior of a series of substituted aniline and pyridine basic compounds has been studied on C18 bonded silica using acetonitrile-water (10:90) as the eluent with different pHs and at various concentrations of the acidic modifier counter anions. The effect of different acidic modifiers on solute retention over a pH range from 1.3 to 8.6 was studied. Ionized basic compounds showed increased retention with a decrease of the mobile phase pH. This increase in retention was attributed to the interaction with counter anions of the acidic modifiers. The increase in retention is dependent on the nature of the counter anion and its concentration in the mobile phase. It was shown that altering the concentration of counter anion of the acidic modifier allows the optimization of the selectivity between basic compounds as well as for neutral and acidic compounds. PMID:11355811

  1. The effect of degradation on κ-carrageenan/locust bean gum/konjac glucomannan gels at acidic pH.

    PubMed

    Yang, Kun; Wang, Zheng; Nakajima, Tetsuya; Nishinari, Katsuyoshi; Brenner, Tom

    2013-10-15

    The feasibility of textural and rheological modification of gels containing κ-carrageenan (KC) and locust bean gum (LBG) by addition of konjac glucomannan (KGM) was investigated. Special attention was paid to the effect of polysaccharide degradation during heating at acidic pH. The general effect of polysaccharide degradation was to decrease the Young's modulus, while the fracture strain in extension was scarcely affected unless the degradation was very severe. Differential scanning calorimetry showed that the melting peak corresponding to dissociation of KC-KGM bonds decreased faster than the melting peak of KC-only bonds with increasing degree of polysaccharide degradation. The implication is that as degradation proceeds, fewer KGM molecules can interact with KC to form elastic bonds, and the excess of KGM which reinforces the existing elastic network and increases the fracture strain actually increases. For this reason, the fracture strain remains nearly unchanged with increasing degradation levels. A decrease in fracture strain is thus observed only at very severe degradations, where KC no longer forms a self-supporting gel by itself.

  2. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2.

    PubMed Central

    Carbonnaux, C.; Ries-Kautt, M.; Ducruix, A.

    1995-01-01

    The effects of various anions on decreasing the solubility of acidic Hypoderma lineatum collagenase at pH 7.2 and 18 degrees C were qualitatively defined by replacing the crystallizing agent of known crystallization conditions by various ammonium salts. The solubility curves measured in the presence of the sulfate, phosphate, citrate, and chloride ammonium salts gave the following ranking of anions: HPO4(2-)/H2PO4- > SO4(2-) > citrate 3-/citrate2- >> Cl-. This order is in agreement with the Hofmeister series. In a previous study on the solubility at pH 4.5 of lysozyme, a basic protein, the effectiveness of anions in decreasing the solubility was found to be in the reverse order. This suggests that the effectiveness of anions in the crystallization of proteins is dependent on the net charge of the protein, i.e., depending on whether a basic protein is crystallized at acidic pH or an acidic protein at basic pH. PMID:8535249

  3. [Effects of solution pH and simulated acid rain on the behavior of two sulfonylurea herbicides in soil].

    PubMed

    Zhang, Wei; Wang, Jin-Jun

    2007-03-01

    By the methods of batch equilibration and leaching, this paper studied the effects of solution pH and simulated acid rain on the behavior of bensulfuron-methyl and metsulfuron-methyl in soil. The results showed that the adsorption isotherms of these two herbicides fitted Freundlich equation well, and their adsorbed amounts reduced obviously with the increasing pH of water-soil system, which in turn promoted the translocation of the herbicides in soil. The adsorption coefficient (Kf) was positively correlated with soil organic matter and clay contents, while negatively correlated with soil pH. The higher pH of simulated acid rain had a greater contribution on the leaching of the two sulfonylurea herbicides, and their leached amount was increased with increasing acid rain. There was a close relationship between the leaching of the herbicides and the properties of soil. The soils with higher contents of organic matter and clay had a greater retention capability to the herbicides. PMID:17552202

  4. [Effects of solution pH and simulated acid rain on the behavior of two sulfonylurea herbicides in soil].

    PubMed

    Zhang, Wei; Wang, Jin-Jun

    2007-03-01

    By the methods of batch equilibration and leaching, this paper studied the effects of solution pH and simulated acid rain on the behavior of bensulfuron-methyl and metsulfuron-methyl in soil. The results showed that the adsorption isotherms of these two herbicides fitted Freundlich equation well, and their adsorbed amounts reduced obviously with the increasing pH of water-soil system, which in turn promoted the translocation of the herbicides in soil. The adsorption coefficient (Kf) was positively correlated with soil organic matter and clay contents, while negatively correlated with soil pH. The higher pH of simulated acid rain had a greater contribution on the leaching of the two sulfonylurea herbicides, and their leached amount was increased with increasing acid rain. There was a close relationship between the leaching of the herbicides and the properties of soil. The soils with higher contents of organic matter and clay had a greater retention capability to the herbicides.

  5. Potentiometric pH Measurements of Acidity Are Approximations, Some More Useful than Others

    ERIC Educational Resources Information Center

    de Levie, Robert

    2010-01-01

    A recent article by McCarty and Vitz "demonstrating that it is not true that pH = -log[H+]" is examined critically. Then, the focus shifts to underlying problems with the IUPAC definition of pH. It is shown how the potentiometric method can provide "estimates" of both the IUPAC-defined hydrogen activity "and" the hydrogen ion concentration, using…

  6. Short-chain fatty acids and L-lactate as feed additives to control Campylobacter jejuni infections in broilers.

    PubMed

    Van Deun, Kim; Haesebrouck, Freddy; Van Immerseel, Filip; Ducatelle, Richard; Pasmans, Frank

    2008-08-01

    The usefulness of butyrate, acetate, propionate and l-lactate for the control of Campylobacter jejuni infections in broilers was assessed. For this purpose, the effect of these acids on the growth of C. jejuni in broth and intestinal mucous was determined, as well as their influence on the invasiveness of C. jejuni in intestinal epithelial cells. From these in vitro obtained results, one acid was retained for use as a feed additive in an in vivo trial. Butyrate was the most successful of the short-chain fatty acids, with 12.5 mM being bactericidal for C. jejuni at pH 6.0. Propionate and acetate had a bacteriostatic effect at 50 mM. None of the short-chain fatty acids had a bactericidal effect at pH 7.5 at a maximum concentration of 50 mM. Mucous increased the minimum bactericidal concentration of butyrate, but not the bacteriostatic concentrations of propionate or acetate. When C. jejuni was incubated in growth subinhibitory concentrations of butyrate, acetate or propionate or 25 mM L-lactate, no alteration in the invasive capabilities of C. jejuni in Caco-2 cells was observed. The addition of butyrate-coated micro-beads to the feed was unsuccessful to reduce C. jejuni caecal colonization in a seeder model using 2-week-old broilers. In conclusion, despite the marked bactericidal effect of butyrate towards C. jejuni in vitro, butyrate-coated micro-beads do not protect broilers from caecal colonization with C. jejuni in the applied test conditions. This might be partially ascribed to the protective effect of mucous and the rapid absorption of butyrate by the enterocytes. PMID:18622853

  7. Second-Generation DBFOX Ligands for the Synthesis of β-Substituted α-Amino Acids via Enantioselective Radical Conjugate Additions

    PubMed Central

    Banerjee, Biplab; Capps, Steven G.; Kang, Junghoon; Robinson, Joshua W.; Castle, Steven L.

    2009-01-01

    A set of second-generation DBFOX ligands possessing extended aryl or benzyl-type groups was synthesized. The requisite amino alcohols were either commercially available (DBFOX/Bn) or constructed via Sharpless asymmetric aminohydroxylation (DBFOX/Nap, DBFOX/t-BuPh, DBFOX/Pip) or phase-transfer-catalyzed asymmetric alkylation (DBFOX/MeNap). Complexes of the ligands with Mg(NTf2)2 were evaluated as promoters of enantioselective radical conjugate additions to α,β-unsaturated α-nitro amides and esters. Reactions employing the DBFOX/Nap ligand exhibited improved enantioselectivity relative to previously published additions mediated by DBFOX/Ph. However, the relatively modest increase in diastereomeric ratio suggests that our substrate–Lewis acid binding model, which was formulated based on results from DBFOX/Ph-promoted radical conjugate additions, is in need of revision. PMID:18947256

  8. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    PubMed

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils.

  9. Suitability of histopathology as an additional endpoint to the Isolated Chicken Eye Test for classification of non-extreme pH detergent and cleaning products.

    PubMed

    Cazelle, Elodie; Eskes, Chantra; Hermann, Martina; Jones, Penny; McNamee, Pauline; Prinsen, Menk; Taylor, Hannah; Wijnands, Marcel V W

    2014-06-01

    A.I.S.E. investigated the suitability of histopathological evaluations as an additional endpoint to the regulatory adopted ICE in vitro test method (OECD TG 438) to identify non-extreme pH detergent and cleaning products that require classification as EU CLP/UN GHS Category 1 (serious eye damage). To this aim, a total of 30 non-extreme pH products covering the range of in vivo classifications for eye irritation, and representing various product categories were tested. Epithelium vacuolation (mid and lower layers) and erosion (at least moderate) were found to be the most relevant histopathological effects induced by products classified in vivo as Category 1. Histopathology criteria specifically developed for non-extreme pH detergent and cleaning products were shown to correctly identify materials classified as Category 1 based on in vivo persistent effects, and to significantly increase the overall sensitivity of the standard ICE prediction model for Category 1 identification (to 75%) whilst maintaining a good concordance (73%). In contrast, use of EU CLP additivity approach for classification of mixtures was considerably less predictive, with a concordance of only 27%, and 100% over-predictions of non-Category 1 products. As such, use of histopathology as an addition to the ICE test method was found suitable to identify EU CLP/UN GHS Category 1 non-extreme pH detergent and cleaning products and to allow a better discrimination from Category 2 products.

  10. Bile acids and pH values in total feces and in fecal water from habitually omnivorous and vegetarian subjects.

    PubMed

    van Faassen, A; Hazen, M J; van den Brandt, P A; van den Bogaard, A E; Hermus, R J; Janknegt, R A

    1993-12-01

    Twenty habitually omnivorous subjects and 19 habitually lactoovovegetarian subjects aged 59-65 y collected feces during 4 consecutive days. The concentrations of bile acids in total feces did not differ between the omnivores and vegetarians, but the bile acid concentrations in fecal water were significantly lower in the vegetarians. The concentration of the colorectal cancer-predicting bile acid deoxycholic acid in fecal water was explained by the intake of saturated fat and the daily fecal wet weight (r2 = 0.50). Fecal pH did not differ between the omnivores and vegetarians. This variable was significantly (P < 0.05) explained by the intake of calcium (r2 = 0.30); 24-h fecal wet weight and defecation frequency were significantly higher in the vegetarians. In conclusion, our vegetarian subjects had a lower concentration of deoxycholic acid in fecal water, higher fecal wet weight, and higher defecation frequency than the omnivorous subjects.

  11. Three-dimensional nuclear magnetic resonance structures of mouse epidermal growth factor in acidic and physiological pH solutions.

    PubMed

    Kohda, D; Inagaki, F

    1992-12-01

    The three-dimensional structures of epidermal growth factors (EGF) previously reported were all in acidic solutions (pH 2.0-3.2), at which pHs EGF cannot bind to the receptor. Here we studied the structure of mouse EGF at pH 6.8, where EGF is physiologically active, and compared it with the structure at pH 2.0 by CD and NMR. From pH dependence of CD spectra and a comparison between the chemical shifts of the proton resonances at pH 6.8 and 2.0, the conformations at two pHs were found to be nearly identical except for the C-terminal tail region. The three-dimensional structures at pH 6.8 and 2.0 were determined independently by a combination of two-dimensional 1H NMR and stimulated annealing calculations using the program XPLOR. The calculations were based on 261 distance constraints at pH 6.8 and 355 distance and 24 torsion angle constraints at pH 2.0. The conformational difference of the C-terminal domain (residues 33-50) was detected between the two structures, which were supported by CD and the chemical shift comparison. The positions of the side chains of Leu47, Arg48, Trp49, and Trp50 are changed probably by the effect of the deprotonation of Asp46. Considering the fact that Leu47 is essential in EGF binding to the receptor, this conformational difference may be important in receptor recognition.

  12. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-01

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred.

  13. Extraction and sorption of acetic acid at pH above pK{sub a} to form calcium magnesium acetate

    SciTech Connect

    Reisinger, H.; King, C.J.

    1995-03-01

    The use of rock salt for deicing roads has many negative effects on automobiles, highway systems, and the environment. Calcium magnesium acetate, hence-forth denoted CMA, has been identified as a more desirable, environmentally benign solid deicer for high-ways, airport runaways, and similar applications. CMA is also of interest as an additive for scavenging sulfur in combustion processes so as to reduce emissions of sulfur oxides and as a catalyst for coal gasification. Different extractants (trioctylphosphine oxide and secondary, tertiary, and quaternary amines) and solid sorbents (tertiary and quaternary amines) were investigated as agents for recovery of acetic acid as part of a process for production of CMA from fermentation acetic acid. The pH and temperature dependencies for uptake of acetic acid by these extractants and sorbents were measured, along with the degrees of regeneration by aqueous suspensions of slaked dolomitic lime. These results enable identification of agents having optimal basicity. Among the extractants, the secondary amine Amberlite LA-2 gave the best combined performance for extraction and regeneration. Among the sorbents, a tertiary amine, Amberlite IRA-35, gave the best performance. Trioctylphosphine oxide does not maintain capacity in the pH range (about 6) most attractive for acetic acid fermentation. Slurred crushed dolomite is not sufficiently basic to accomplish regeneration.

  14. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  15. pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect.

    PubMed

    Fan, Xiaohong; Zhao, Xuesong; Qu, Xinkai; Fang, Jun

    2015-12-30

    Cisplatin (CDDP) is widely used anticancer drug for various solid tumors including lung cancer. However, its indiscriminate distribution causes serious adverse effects and limits its therapeutic effect. In this study, by using hyaluronic acid (HA) we synthesized a complex of CDDP (HA-CDDP), by utilizing ionic interaction between Pt(2+) of CDDP with carboxyl group of HA. The mean HA-CDDP particle size was 208.5nm in PBS according to dynamic light scattering which was also confirmed by TEM, which could exert tumor-targeting property by enhanced permeability and retention (EPR) effect. The CDDP loading in this preparation was 13% (w/w), and release rate of free CDDP from the HA-CDDP complex at physiological pH (7.4) was ∼20%/day. However, in acidic pH the release was much faster, i.e., ∼95% of CDDP was released in 72h at pH 5.5. Moreover, HA-CDDP showed a 2.5-fold higher tumor accumulation than free CDDP whereas no increase of distribution was found in most normal tissues. In addition, because HA receptor CD44 is overexpressed in many tumor cells, we also observed CD44-based endocytosis of HA-CDDP in mouse lung carcinoma LCC cells. These findings together suggest that HA-CDDP may show tumor-selective cytotoxicity by taking advantage of EPR effect, weak acidic environment of tumor tissues (e.g., pH 6∼7), as well as CD44-based intracellular uptake. As expected, HA-CDDP exhibited much improved therapeutic effect than free CDDP in mouse LCC tumor model, whereas no apparent side effect was found. These findings may shed some light on the potential utility of HA for development of tumor-targeted polymeric CDDP drugs, which need further investigations. PMID:26529576

  16. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  17. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  18. Tandem bis-aza-Michael addition reaction of amines in aqueous medium promoted by polystyrenesulfonic Acid

    EPA Science Inventory

    An efficient and environmentally benign tandem bis-aza-Michael addition of amines catalyzed by polystyrene sulfonic acid (PSSA) is described. This operationally simple high yielding microwave assisted synthetic protocol proceeded in water in the absence of any organic solvent.

  19. Process for lowering the dielectric constant of polyimides using diamic acid additives

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    Linear aromatic polyimides with low dielectric constants are produced by adding a diamic acid additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. The resulting modified polyimide is a better electrical insulator than state-of-the-art commercially available polyimides.

  20. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  1. Additive-free decarboxylative coupling of cinnamic acid derivatives in water: synthesis of allyl amines.

    PubMed

    Park, Kyungho; Lee, Sunwoo

    2015-03-01

    The first example of an additive-free decarboxylative coupling of cinnamic acid derivatives with formaldehyde and amines to afford the corresponding allyl amines is reported. This reaction is highly environmentally friendly because it was conducted in H2O and without any additives, releasing only CO2 and H2O as byproducts. This reaction showed a broad substrate scope including cyclic and acyclic amines and high functional group tolerance. Moreover, phenyl dienoic acid participated in this type of decarboxylative coupling reaction.

  2. pH- and ionic-strength-induced structural changes in poly(acrylic acid)-lipid-based self-assembled materials.

    SciTech Connect

    Crisci, A.; Hay, D. N. T.; Seifert, S.; Firestone, M. A.

    2009-01-01

    The effect of a polyanion introduced as a lipid conjugate (poly(acrylic acid)- dimyristoyl-sn-glycero-3-phosphoethanolamine, PAA-DMPE) on the structure of a self-assembled, biomembrane mimetic has been evaluated using synchrotron small-angle X-ray scattering (SAXS). At high grafting density (8-11 mol.%), the PAA chains were found to produce significant changes in structure in response to changes in pH and electrolyte composition. At low pH and in the absence of salt (NaCl), the neutral PAA chains adopt a coil conformational state that leads to the formation of a swollen lamellar structure. Upon the addition of salt at low to intermediate pH values, two lamellar phases, a collapsed and an expanded structure, coexist. Finally, when the polymer is fully ionized (at high pH), the extended conformation of the polymer generates a cubic phase. The results of this study contribute to an understanding of how polyelectrolytes may ultimately be harnessed for the preparation of self-assembling materials responsive to external stimuli.

  3. pH dependence of iron photoreduction in a rocky mountain stream affected by acid mine drainage

    USGS Publications Warehouse

    McKnight, Diane M.; Kimball, B.A.; Runkel, R.L.

    2001-01-01

    The redox speciation of dissolved iron and the transport of iron in acidic, metal-enriched streams is controlled by precipitation and dissolution of iron hydroxides, by photoreduction of dissolved ferric iron and hydrous iron oxides, and by oxidation of the resulting dissolved ferrous iron. We examined the pH dependence of these processes in an acidic mine-drainage stream, St Kevin Gulch, Colorado, by experimentally increasing the pH of the stream from about 4.0 to 6.5 and following the downstream changes in iron species. We used a solute transport model with variable flow to evaluate biogeochemical processes controlling downstream transport. We found that at pH 6.4 there was a rapid and large initial loss of ferrous iron concurrent with the precipitation of aluminium hydroxide. Below this reach, ferrous iron was conservative during the morning but there was a net downstream loss of ferrous iron around noon and in the afternoon. Calculation of net oxidation rates shows that the noontime loss rate was generally much faster than rates for the ferrous iron oxidation at pH 6 predicted by Singer and Stumm (1970. Science 167: 1121). The maintenance of ferrous iron concentrations in the morning is explained by the photoreduction of photoreactive ferric species, which are then depleted by noon. Copyright ?? 2001 John Wiley & Sons, Ltd.

  4. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    PubMed

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  5. Influence of pH on colloidal properties and surface activity of polyglycerol fatty acid ester vesicles.

    PubMed

    Duerr-Auster, N; Eisele, T; Wepf, R; Gunde, R; Windhab, E J

    2008-11-15

    Certain polyglycerol esters of fatty acids (PGE) form dispersions of uni- or multilamellar vesicles in dilute aqueous solution. These self-assembled aggregates reduce the surface-activity of PGE monomers such that interfacial films may take several hours to form. This is undesirable for processes, which rely on rapid surfactant adsorption, for example foaming. In the present work, we study the effect of pH on the colloidal (size distribution, morphology, surface charge) and interfacial (adsorption kinetics) properties of a commercial, non-purified PGE. Using dynamic light scattering, zeta-potential measurements and cryo-SEM, we show that changing the pH of the dispersion media can cause agglomeration and eventually osmotic rupture of PGE vesicles. The change in dispersion state also impacts the adsorption behavior at the water surface. Direct evidence that destabilized vesicle dispersion are more surface-active is provided by comparing the dynamic surface tension of solutions of different pH. The faster adsorption kinetics at low pH correlate with a remarkably increased foaming power. We suggest that an osmotic shock induced by changes in pH causes vesicles to deform and partially open, so that their hydrocarbon core is exposed to the dispersion media. This energetically unfavorable condition promotes the hydrophobically driven adsorption of surfactant monomers at surfaces and hence stimulates the foaming ability.

  6. Short-chain fatty acids and acidic pH upregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats.

    PubMed

    Lu, Zhongyan; Gui, Hongbing; Yao, Lei; Yan, Lei; Martens, Holger; Aschenbach, Jörg R; Shen, Zanming

    2015-02-15

    Currently, the mechanism(s) responsible for the regulation of urea transporter B (UT-B) expression levels in the epithelium of the rumen remain unclear. We hypothesized that rumen fermentation products affect ruminal UT-B expression. Therefore, the effects of short-chain fatty acids (SCFA), pH, ammonia, and urea on mRNA and protein levels of UT-B were assayed in primary rumen epithelial cell cultures and in rumen epithelium obtained from intact goats. In vitro, SCFA and acidic pH were found to synergetically stimulate both mRNA and protein expression of UT-B, whereas NH4Cl decreased mRNA and protein levels of UT-B at pH 6.8. Treatment with urea increased both levels at pH 7.4. When goats received a diet rich in nitrogen (N) and nonfiber carbohydrates (NFC), their rumen epithelium had higher levels of UT-B, and the rumen contained higher concentrations of SCFA and NH3-N with a lower pH. An increase in plasma urea-N concentration was also observed compared with the plasma of the goats that received a diet low in N and NFC. In a second feeding trial, goats that received a NFC-rich, but isonitrogenous, diet had higher mRNA and protein levels of UT-B, and higher levels of G protein-coupled receptor (GPR) 41 and GPR4, in their rumen epithelium. The ruminal concentrations of SCFA and NH3-N also increased, while a lower pH was detected. In contrast, the serum urea-N concentrations remained unchanged. These data indicate that ruminal SCFA and pH are key factors, via GPR4 and GPR41, in the dietary regulation of UT-B expression, and they have priority over changes in plasma urea.

  7. Enantioselective Rh(I)-Catalyzed Addition of Arylboronic Acids to Cyclic Ketimines.

    PubMed

    Kong, Jongrock; McLaughlin, Mark; Belyk, Kevin; Mondschein, Ryan

    2015-11-20

    A method for the enantioselective synthesis of chiral α-tertiary amines via Rh-catalyzed 1,2-addition of arylboronic acids to cyclic ketimines is described. The products are efficiently accessed in good yields and excellent enantioselectivities using a commercially available chiral ligand. The reaction scope includes vinyl, aryl, and heteroarylboronic acids with yields ranging from 40% to 99% and enantiomeric excesses from 88% to 99%. Conversion of an addition product into an α,α-diaryl-substituted amino acid is also demonstrated.

  8. A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins.

    PubMed

    Fiorica, Calogero; Pitarresi, Giovanna; Palumbo, Fabio Salvatore; Di Stefano, Mauro; Calascibetta, Filippo; Giammona, Gaetano

    2013-11-30

    Atom transfer radical polymerization (ATRP) has been successfully employed to obtain a new derivative of hyaluronic acid (HA) able to change its solubility as a function of external pH and then to be potentially useful for intestinal release of bioactive molecules, included enzymes and proteins. In particular, a macroinitiator has been prepared by linking 2-bromo-2-methypropionic acid (BMP) to the amino groups of ethylenediamino derivative of tetrabutyl ammonium salt of HA (HA-TBA-EDA). This macroinititor, named HA-TBA-EDA-BMP has been used for the ATRP of sodium methacrylate (MANa) using a complex of Cu(I) and 2,2'-bipyridyl (Byp) as a catalyst. The resulting copolymer, named HA-EDA-BMP-MANa, has been characterized by (1)H NMR and size exclusion chromatography (SEC) analyses. A turbidimetric analysis has showed its pH sensitive behavior, being insoluble in simulated gastric fluid but soluble when pH increases more than 2.5. To confirm the ability of HA-EDA-BMP-MANa in protecting peptides or proteins from denaturation in acidic medium, α-chymotrypsin has been chosen as a model of protein molecule and its activity has been evaluated after entrapment into HA-EDA-BMP-MANa chains and treatment under simulated gastric conditions. Finally, cell compatibility has been evaluated by performing a MTS assay on murine dermal fibroblasts cultured with HA-EDA-BMP-MANa solutions. PMID:24060369

  9. The effects of addition of citric acid on the morphologies of ZnO nanorods

    SciTech Connect

    Yang Zao . E-mail: yangzao888@tom.com; Liu Quanhui; Yang Lei

    2007-02-15

    ZnO nanorods of 25-100 nm in diameter and 0.2-1 {mu}m in length were fabricated through citric acid assisted annealing process. The microstructure of ZnO nanorods was characterized by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and field-emission scanning electron microscopy, respectively. As a result, it was found that ZnO nanorods were single crystalline and pure. The effects of the growth conditions such as addition of citric acid, annealing temperature on the morphologies of ZnO nanostructures have also been investigated. At the given temperature the length decreased but the diameter increased with addition of the mass of citric acid. With the rising of the calcining heat, the shape of ZnO changed from rod to granule for a given amount of citric acid. Finally, the mechanism for citric acid assisted annealing synthesis of the ZnO nanostructure is discussed.

  10. Improving impurities clearance by amino acids addition to buffer solutions for chromatographic purifications of monoclonal antibodies.

    PubMed

    Ishihara, Takashi; Hosono, Mareto

    2015-07-15

    The performance of amino acids in Protein A affinity chromatography, anion exchange chromatography and cation exchange chromatography for monoclonal antibody purification was investigated. Glycine, threonine, arginine, glutamate, and histidine were used as buffer components in the equilibration, washing, and elution steps of these chromatographies. Improved clearance of impurity, high molecular weight species (HMW) and host cell proteins (HCP) was observed in the purification processes when using the amino acids as base-buffer constituents, additives or eluents compared with that of buffers without these amino acids. In addition, we designed a buffer system in which the mobile phases were composed of only a single amino acid, histidine, and applied it to the above three chromatographies. Effective HMW and HCP clearance was also obtained in this manner. These results suggest that amino acids may enhance impurity clearance during the purification of monoclonal antibodies. PMID:26057847

  11. Addition of amino acids and dipeptides to fullerene C{sub 60} giving rise to monoadducts

    SciTech Connect

    Romanova, V.S.; Tsyryapkin, V.A.; Vol`pin, M.E.

    1994-12-01

    The authors have developed a general method for the direct addition of amino acids and dipeptides of various structures to fullerene C{sub 60}. In all cases the addition involves the amino group. The reaction proceeds when the solutions of fullerene and an amino acid (or dipeptide) are mixed at 50-100 {degrees}C. The fullerene derivatives of the following amino acids and dipeptides have been obtained: glycine, p-aminobenzoic acid, {omega}-aminocaproic acid, L-proline, L-alanine, L-alanyl-Lalanine, D,L-alanyl-D,L-alanine, glycyl-L-valine. The adduct of methyl L-ananinate with C{sub 60} was also prepared.

  12. The PH gene determines fruit acidity and contributes to the evolution of sweet melons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acids are one of the three major components of fleshy fruit taste, together with sugars and volatile flavor compounds. However, the molecular-genetic control of acid accumulation in fruit is poorly understood and, to date, no genes responsible for acid accumulation in fleshy fruit have been function...

  13. Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH.

    PubMed Central

    Garidel, P; Johann, C; Blume, A

    1997-01-01

    The miscibilities of phosphatidic acids (PAs) and phosphatidylcholines (PCs) with different chain lengths (n = 14, 16) at pH 4, pH 7, and pH 12 were examined by differential scanning calorimetry. Simulation of heat capacity curves was performed using a new approach that incorporates changes of cooperativity of the transition in addition to nonideal mixing in the gel and the liquid-crystalline phase as a function of composition. From the simulations of the heat capacity curves, first estimates for the nonideality parameters for nonideal mixing as a function of composition were obtained, and phase diagrams were constructed using temperatures for onset and end of melting, which were corrected for the broadening effect caused by a decrease in cooperativity. In all cases the composition dependence of the nonideality parameters indicated nonsymmetrical mixing behavior. The phase diagrams were therefore further refined by simulations of the coexistence curves using a four-parameter approximation to account for nonideal and nonsymmetrical mixing in the gel and the liquid-crystalline phase. The mixing behavior was studied at three different pH values to investigate how changes in headgroup charge of the PA influences the miscibility. The experiments showed that at pH 7, where the PA component is negatively charged, the nonideality parameters are in most cases negative, indicating that electrostatic effects favor a mixing of the two components. Partial protonation of the PA component at pH 4 leads to strong changes in miscibility; the nonideality parameters for the liquid-crystalline phase are now in most cases positive, indicating clustering of like molecules. The phase diagram for 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid:1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine mixtures at pH 4 indicates that a fluid-fluid immiscibility is likely. The results show that a decrease in ionization of PAs can induce large changes in mixing behavior. This occurs because of a

  14. Chemical and biological consequences of using carbon dioxide versus acid additions in ocean acidification experiments

    USGS Publications Warehouse

    Yates, Kimberly K.; DuFore, Christopher M.; Robbins, Lisa L.

    2013-01-01

    Use of different approaches for manipulating seawater chemistry during ocean acidification experiments has confounded comparison of results from various experimental studies. Some of these discrepancies have been attributed to whether addition of acid (such as hydrochloric acid, HCl) or carbon dioxide (CO2) gas has been used to adjust carbonate system parameters. Experimental simulations of carbonate system parameter scenarios for the years 1766, 2007, and 2100 were performed using the carbonate speciation program CO2SYS to demonstrate the variation in seawater chemistry that can result from use of these approaches. Results showed that carbonate system parameters were 3 percent and 8 percent lower than target values in closed-system acid additions, and 1 percent and 5 percent higher in closed-system CO2 additions for the 2007 and 2100 simulations, respectively. Open-system simulations showed that carbonate system parameters can deviate by up to 52 percent to 70 percent from target values in both acid addition and CO2 addition experiments. Results from simulations for the year 2100 were applied to empirically derived equations that relate biogenic calcification to carbonate system parameters for calcifying marine organisms including coccolithophores, corals, and foraminifera. Calculated calcification rates for coccolithophores, corals, and foraminifera differed from rates at target conditions by 0.5 percent to 2.5 percent in closed-system CO2 gas additions, from 0.8 percent to 15 percent in the closed-system acid additions, from 4.8 percent to 94 percent in open-system acid additions, and from 7 percent to 142 percent in open-system CO2 additions.

  15. Soybean root growth in acid subsoils in relation to magnesium additions and soil solution ionic strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroponic studies with soybean [Glycine max (L.) Merr.] have shown that µM additions of Mg2+ were as effective in ameliorating Al rhizotoxicity as additions of Ca2+ in the mM concentration range. The objectives of this study were to assess ameliorative effects of Mg on soybean root growth in acidic...

  16. The effects of CO₂ addition along a pH gradient on wastewater microalgal photo-physiology, biomass production and nutrient removal.

    PubMed

    Sutherland, Donna L; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-03-01

    Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity, particularly in summer. This paper investigates the effects of CO₂ addition along a pH gradient on the performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, electron transport rate, photosynthetic efficiency, biomass production and nutrient removal efficiency. Light absorption by the microalgae increased by up to 128% with increasing CO₂ supply, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. CO₂ augmentation increased the maximum rate of both electron transport and photosynthesis by up to 256%. This led to increased biomass, with the highest yield occurring at the highest dissolved inorganic carbon/lowest pH combination tested (pH 6.5), with a doubling of chlorophyll-a (Chl-a) biomass while total microalgal biovolume increased by 660% in Micractinium bornhemiense and by 260% in Pediastrum boryanum dominated cultures. Increased microalgal biomass did not off-set the reduction in ammonia volatilisation in the control and overall nutrient removal was lower with CO₂ than without. Microalgal nutrient removal efficiency decreased as pH decreased and may have been related to decreased Chl-a per cell. This experiment demonstrated that CO₂ augmentation increased microalgal biomass in two distinct communities, however, care must be taken when interpreting results from standard biomass measurements with respect to CO₂ augmentation.

  17. A Dual Colorimetric/Fluorescence System for Determining pH Based on the Nucleophilic Addition Reaction of an o-Hydroxymerocyanine Dye.

    PubMed

    Yue, Yongkang; Huo, Fangjun; Lee, Songyi; Yin, Caixia; Yoon, Juyoung; Chao, Jianbin; Zhang, Yongbin; Cheng, Fangqin

    2016-01-22

    Owing to their ability to monitor pH in a precise and rapid manner, optical probes have widely been developed for biological and nonbiological applications. The strategies thus far employed to determine pH rely on two types of processes including reversible protonation of amine nitrogen atoms and deprotonation of phenols. We have developed a novel dual, colorimetric/fluorescence system for determining the pH of a solution. This system utilizes an o-hydroxymerocyanine dye that undergoes a nucleophilic addition reaction that subsequently causes reversible structural changes interconverting a merocyanine to a spirocyanine and a spirocyanine to a spiropyran. It was demonstrated that the dye can be employed to measure the pH of solutions in the 2.5-5.75 and 9.6-11.8 ranges with color changes from yellow to dark blue and then to lavender. Moreover, the fluorescence response associated with the spirocyanine-spiropyran transformation of the dye occurring in alkaline solutions provides a precise method. PMID:26603952

  18. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  19. Brønsted Acid/Lewis Acid Cooperatively Catalyzed Addition of Diazoester to 2H-chromene Acetals

    PubMed Central

    Luan, Yi; Qi, Yue; Gao, Hongyi; Ma, Qianqian; Schaus, Scott E.

    2014-01-01

    A novel Brønsted acid/Lewis acid dual catalyst system has been developed to promote an efficient C–C bond formation between a range of oxocarbenium precursors derived from chromene acetals and ethyl diazoacetate. The reaction proceeds under mild conditions and is tolerant of common functionalized 2H-chromene and isochromene acetals. In addition, an asymmetric variant of diazoacetate addition towards 2H-chromene acetal is described. Continued investigations include the further optimization of asymmetric induction towards the formation of diazo ester substituted 2H-chromene. PMID:25411552

  20. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    PubMed

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature. PMID:26706930

  1. Potentiometric investigation of the effect of the pH on the ionic transfer of some amino acids at the interface between two immiscible electrolyte solutions.

    PubMed

    Spătaru, Tanta; Spătaru, Nicolae; Bonciocat, Nicolae; Luca, Constantin

    2004-04-01

    The effect of the pH on the ionic transfer of glycine and beta-alanine at the interface between two immiscible electrolyte solutions (ITIES) was investigated by a simple potentiometric method. Upon addition of small amounts of solution containing the investigated amino acids, a variation of the potential drop across the interface was recorded, which was found to be pH-dependent. This behavior was explained in terms of a preferential orientation of the amino acid molecules at the ITIES, induced by the different lipoficility of the functional groups. The results enabled the measurement of this voltage variation to be used as the basis for a simple and rapid method for determining the isoelectric point of the investigated compounds. The agreement between the pH(i) values thus estimated and those reported in the literature suggests the possibility of using the method for the interpretation of processes occurring at the level of biological membranes. PMID:14990327

  2. Pre-industrial atmospheric pollution: was it important for the pH of acid-sensitive Swedish lakes?

    PubMed

    Bindler, Richard; Korsman, Tom; Renberg, Ingemar; Högberg, Peter

    2002-09-01

    Acid rain has caused extensive surface water acidification in Sweden since the mid-20th century. Sulfur emissions from fossil-fuel burning and metal production were the main sources of acid deposition. In the public consciousness, acid deposition is strongly associated with the industrial period, in particular the last 50 years. However, studies of lake-water pH development and atmospheric pollution, based on analyses of lake sediment deposits, have shown the importance of a long-term perspective. Here, we present a conceptual argument, using the sediment record, that large-scale atmospheric acid deposition has impacted the environment since at least Medieval times. Sulfur sources were the pre-industrial mining and metal industries that produced silver, lead and other metals from sulfide ores. This early excess sulfur deposition in southern Sweden did not cause surface water acidification; on the contrary, it contributed to alkalization, i.e. increased pH and productivity of the lakes. Suggested mechanisms are that the excess sulfur caused enhanced cation exchange in catchment soils, and that it altered iron-phosphorus cycling in the lakes, which released phosphorus and increased lake productivity.

  3. Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH).

    PubMed

    Zhang, Guangshan; Wang, Qiao; Zhang, Wen; Li, Tian; Yuan, Yixing; Wang, Peng

    2016-08-01

    This work investigated the effects of organic acids and initial solution pH on the photodegradation of BPA in a photo-Fenton-like process using α-FeOOH as a catalyst. The results showed that the addition of different organic acids affected the formation of the ferric-carboxylate complexes and free radicals, which in turn varied the photodegradation efficacy. Compared with the other acids, oxalic acid (OA) was found to be the most effective in enhancing the photodegradation of BPA, which strongly depends on the OA concentration. Particularly, the addition of OA could significantly extend the working pH from an acidic to a neutral range for the photocatalytic process and thus the acidification pretreatment may not be needed. A high photocatalytic degradation of BPA occurred at pH 6.0, due to the formation of ferric-oxalate complexes and ˙OH radicals in the synergistic interactions of OA and α-FeOOH. This finding highlights that the oxalate-promoted photo-Fenton-like process using the α-FeOOH catalyst may be used for wastewater treatment without pH adjustment.

  4. Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH).

    PubMed

    Zhang, Guangshan; Wang, Qiao; Zhang, Wen; Li, Tian; Yuan, Yixing; Wang, Peng

    2016-08-01

    This work investigated the effects of organic acids and initial solution pH on the photodegradation of BPA in a photo-Fenton-like process using α-FeOOH as a catalyst. The results showed that the addition of different organic acids affected the formation of the ferric-carboxylate complexes and free radicals, which in turn varied the photodegradation efficacy. Compared with the other acids, oxalic acid (OA) was found to be the most effective in enhancing the photodegradation of BPA, which strongly depends on the OA concentration. Particularly, the addition of OA could significantly extend the working pH from an acidic to a neutral range for the photocatalytic process and thus the acidification pretreatment may not be needed. A high photocatalytic degradation of BPA occurred at pH 6.0, due to the formation of ferric-oxalate complexes and ˙OH radicals in the synergistic interactions of OA and α-FeOOH. This finding highlights that the oxalate-promoted photo-Fenton-like process using the α-FeOOH catalyst may be used for wastewater treatment without pH adjustment. PMID:27436621

  5. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  6. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    SciTech Connect

    Cingolani, Gino Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26 forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.

  7. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  8. Effect of calcium chloride addition and draining pH on the microstructure and texture of full fat Cheddar cheese during ripening.

    PubMed

    Soodam, Kevany; Ong, Lydia; Powell, Ian B; Kentish, Sandra E; Gras, Sally L

    2015-08-15

    Calcium chloride is commonly added to cheese-milk to improve coagulum formation and to increase cheese yield but high concentrations of calcium ions can have adverse effects. In this study, confocal laser scanning microscopy and cryo-scanning electron microscopy were coupled with textural and chemical analyses to observe microstructural and biochemical changes that occur in cheese during ripening when calcium chloride is added or the draining pH altered. For the cheese prepared with no additional calcium at a draining pH of 6.0, the cheese porosity increased with ripening time and the number of protein vertices in the microscopy images declined, indicative of protein solubilisation. As the amount of CaCl2 added was increased, however, these changes became less significant. Our findings show that calcium chloride addition can be used, together with a lower draining pH, to alter the manufacturing process without significantly impacting on the quality of the mature cheese. PMID:25794728

  9. Diamine-catalyzed addition of ZnEt2 to PhC(O)CF3 : two mechanisms and autocatalytic asymmetric enhancement.

    PubMed

    Calvillo-Barahona, Mercedes; Casares, Juan A; Cordovilla, Carlos; Genov, Miroslav N; Martínez-Ilarduya, Jesús M; Espinet, Pablo

    2014-11-01

    NMR spectroscopic studies of the catalytic addition reaction of ZnEt2 to PhC(O)CF3 in the presence of three very efficient catalysts [TMEDA, tBuBOX, and L; where L is a chiral diamine synthesized from optically pure (R,R)-1,2-diphenylethylenediamine and (S)-2,2'-bis-(bromomethyl)-1,1'-binaphthalene] reveal large differences in their behavior. For the ligands TMEDA and tBuBOX, the catalysis shows no unusual features and proceeds via [(NN)Zn(Et){OC(CF3 )(Et)Ph}]. For NNL, the observation of autocatalytic asymmetric enhancement during the catalysis, and unusual inverse concentration dependence on the reaction rate, indicate the participation of an additional novel catalytic cycle that goes through a dinuclear intermediate containing one ZnEt2 and one ZnEt fragment connected by NN and OR bridges. Interestingly, the (19) F NMR signals of the main product of the reaction ([Zn(Et){OC*(CF3 )(Et)Ph}]2 ) allowed us to assess the enantioselectivity of the processes in situ without the assistance of chiral chromatography. PMID:25223511

  10. The ANAMMOX reactor under transient-state conditions: process stability with fluctuations of the nitrogen concentration, inflow rate, pH and sodium chloride addition.

    PubMed

    Yu, Jin-Jin; Jin, Ren-Cun

    2012-09-01

    The process stability of an anaerobic ammonium oxidation (ANAMMOX) was investigated in an upflow anaerobic sludge blanket reactor subjected to overloads of 2.0- to 3.0-fold increases in substrate concentrations, inflow rates lasting 12 or 24h, extreme pH levels of 4 and 10 for 12h and a 12-h 30 g l(-1) NaCl addition. During the overloads, the nitrogen removal rate improved, and the shock period was an important factor affecting the reactor performance. In the high pH condition, the reactor performance significantly degenerated; while in the low pH condition, it did not happen. The NaCl addition caused the most serious deterioration in the reactor, which took 108 h to recover and was accompanied by a stoichiometric ratio divergence. There are well correlations between the total nitrogen and the electrical conductivity which is considered to be a convenient signal for controlling and monitoring the ANAMMOX process under transient-state conditions.

  11. Neutralization of an acidic surface mine lake using organic additives. Final research report, 1 July 1991-1 October 1993

    SciTech Connect

    Brugam, R.B.

    1993-10-01

    We added 9.1 metric tons of manure to a pH 2.9 acid coal mine lake in Southern Illinois to test whether the added organic matter would support sulfate and iron reduction by anaerobic bacteria resulting in the production of alkalinity and a rise in pH. The added organic matter did cause a rise in pH in the deep water of the lake, but the effect did not increase the pH of the whole lake. Experiments in laboratory microcosms at 23 C show that lake sediment treated with manure can permanently raise the pH of acid mine drainage. In the open lake diffusion of oxygen into the anaerobic zones of the water column and low water temperatures in the winter limited the effects of sulfate and iron reduction to the deep water of the lake during summer thermal stratification.

  12. Ecto-alkaline phosphatase activity identified at physiological pH range on intact P19 and HL-60 cells is induced by retinoic acid.

    PubMed

    Scheibe, R J; Kuehl, H; Krautwald, S; Meissner, J D; Mueller, W H

    2000-01-01

    The activity of membrane-bound alkaline phosphatase (ALP) expressed on the external surface of cultured murine P19 teratocarcinoma and human HL-60 myeloblastic leukemia cells was studied at physiological pH using p-nitrophenylphosphate (pNPP) as substrate. The rate of substrate hydrolysis catalyzed by intact viable cells remained constant for eight successive incubations of 30 min and was optimal at micromolar substrate concentrations over the pH range 7.4-8.5. The value of apparent K(m) for pNPP in P19 and HL-60 cells was 120 microM. Hydrolytic activity of the ecto-enzyme at physiological pH decreased by the addition of levamisole, a specific and noncompetitive inhibitor of ALP (K(i) P19 = 57 microM; K(i) HL-60 = 50 microM). Inhibition of hydrolysis was reversed by removal of levamisole within 30 min. Retinoic acid (RA), which promotes the differentiation of P19 and HL-60 cells, induced levamisole-sensitive ecto-phosphohydrolase activity at pH 7.4. After its autophosphorylation by ecto-kinase activity, a 98-kDa membrane protein in P19 cells was found to be sensitive to ecto-ALP, and protein dephosphorylation increased after incubation of cells with RA for 24 h and 48 h. Orthovanadate, an inhibitor of all phosphatase activities, blocked the levamisole-sensitive dephosphorylation of the membrane phosphoproteins, while (R)-(-)-epinephrine reversed the effect by complexation of the inhibitor. The results demonstrate that the levamisole-sensitive phosphohydrolase activity on the cell surface is consistent with ecto-ALP activity degrading both physiological concentrations of exogenously added substrate and endogenous surface phosphoproteins under physiological pH conditions. The dephosphorylating properties of ecto-ALP are induced by RA, suggesting a specific function in differentiating P19 teratocarcinoma and HL-60 myeloblastic leukemia cells. PMID:10649440

  13. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and β-cyclodextrin (β-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with β-CD is analysed by UV-vis, fluorimetry, FT-IR, 1H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with β-CD and COOH group present in the β-CD cavity. A mechanism is proposed to explain the inclusion process.

  14. In vivo measurements of changes in pH triggered by oxalic acid in leaf tissue of transgenic oilseed rape.

    PubMed

    Zou, Qiu-Ju; Liu, Sheng-Yi; Dong, Xu-Yan; Bi, Yan-Hua; Cao, Yuan-Cheng; Xu, Qiao; Zhao, Yuan-Di; Chen, Hong

    2007-01-01

    Oxalic acid (OA), a non-host-specific toxin secreted by Sclerotinia sclerotiorum during pathogenesis, has been demonstrated to be a major phytotoxic and pathogenic factor. Oxalate oxidase (OXO) is an enzyme associated with the detoxification of OA, and hence the introduction of an OXO gene into oilseed rape (Brassica napus L.) to break down OA may be an alternative way of increasing the resistance of the plant to Sclerotinia sclerotiorum. In order to investigate the activation of OXO in transgenic oilseed rape, a convenient and accessible method was used to monitor changes in pH in response to stress induced by OA. The pH sensor, a platinum microcylinder electrode modified using polyaniline film, exhibited a linear response within the pH range from 3 to 7, with a Nernst response slope of 70 mV/pH at room temperature. The linear correlation coefficient was 0.9979. Changes induced by OA in the pH values of leaf tissue of different oilseed rape species from Brassica napus L. were monitored in real time in vivo using this electrode. The results clearly showed that the transgenic oilseed rape was more resistant to OA than non-transgenic oilseed rape.

  15. Key role of pH in the photochemical conversion of NO2 to HONO on humic acid

    NASA Astrophysics Data System (ADS)

    Han, Chong; Yang, Wangjin; Wu, Qianqian; Yang, He; Xue, Xiangxin

    2016-10-01

    The heterogeneous photochemical reactions of NO2 with humic acid (HA) were performed using a flow tube reactor coupled to a NOx analyzer. The effects of the pH on the uptake coefficient (γ) of NO2 and HONO and NO yields were investigated in detail. With increasing the pH in the range of 2-12, γ was almost constant with an average value of (4.21 ± 0.46) × 10-6, whereas the HONO yield and NO yield linearly decreased from (81.07 ± 4.07)% and (10.35 ± 3.86)% to (13.87 ± 9.15)% and (1.51 ± 0.94)%, respectively. According to the characterization of HA compositions and possible reaction paths, it can be concluded that the pH may influence the transfer of protons and the equilibrium of HONO with NO2- by varying the contents of carboxyl and phenol groups in HA, which should primarily contribute to the change in the HONO yield with the pH.

  16. Effects of pH and fulvic acids concentration on the stability of fulvic acids--cerium (IV) oxide nanoparticle complexes.

    PubMed

    Oriekhova, Olena; Stoll, Serge

    2016-02-01

    The behavior of cerium (IV) oxide nanoparticles has been first investigated at different pH conditions. The point of zero charge was determined as well as the stability domains using dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. A baseline hydrodynamic diameter of 180 nm was obtained indicating that individual CeO2 nanoparticles are forming small aggregates. Then we analyzed the particle behavior at variable concentrations of fulvic acids for three different pH-electrostatic scenarios corresponding to positive, neutral and negative CeO2 surface charges. The presence of fulvic acids was found to play a key role on the CeO2 stability via the formation of electrostatic complexes. It was shown that a small amount of fulvic acids (2 mg L(-1)), representative of environmental fresh water concentrations, is sufficient to stabilize CeO2 nanoparticles (50 mg L(-1)). When electrostatic complexes are formed between negatively charged FAs and positively charged CeO2 NPs the stability of such complexes is obtained with time (up to 7 weeks) as well as in pH changing conditions. Based on zeta potential variations we also found that the fulvic acids are changing the CeO2 acid-base surface properties. Obtained results presented here constitute an important outcome in the domain of risk assessment, transformation and removal of engineered nanomaterials released into the environment. PMID:26347935

  17. Five Additional Genes Are Involved in Clavulanic Acid Biosynthesis in Streptomyces clavuligerus

    PubMed Central

    Jensen, S. E.; Paradkar, A. S.; Mosher, R. H.; Anders, C.; Beatty, P. H.; Brumlik, M. J.; Griffin, A.; Barton, B.

    2004-01-01

    An approximately 12.5-kbp region of DNA sequence from beyond the end of the previously described clavulanic acid gene cluster was analyzed and found to encode nine possible open reading frames (ORFs). Involvement of these ORFs in clavulanic acid biosynthesis was assessed by creating mutants with defects in each of the ORFs. orf12 and orf14 had been previously reported to be involved in clavulanic acid biosynthesis. Now five additional ORFs are shown to play a role, since their mutation results in a significant decrease or total absence of clavulanic acid production. Most of these newly described ORFs encode proteins with little similarity to others in the databases, and so their roles in clavulanic acid biosynthesis are unclear. Mutation of two of the ORFs, orf15 and orf16, results in the accumulation of a new metabolite, N-acetylglycylclavaminic acid, in place of clavulanic acid. orf18 and orf19 encode apparent penicillin binding proteins, and while mutations in these genes have minimal effects on clavulanic acid production, their normal roles as cell wall biosynthetic enzymes and as targets for β-lactam antibiotics, together with their clustered location, suggest that they are part of the clavulanic acid gene cluster. PMID:14693539

  18. Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces.

    PubMed

    Zhao, Yingjie; Cotelle, Yoann; Avestro, Alyssa-Jennifer; Sakai, Naomi; Matile, Stefan

    2015-09-16

    Here we provide experimental evidence for anion-π catalysis of enamine chemistry and for asymmetric anion-π catalysis. A proline for enamine formation on one side and a glutamic acid for nitronate protonation on the other side are placed to make the enamine addition to nitroolefins occur on the aromatic surface of π-acidic naphthalenediimides. With increasing π acidity of the formally trifunctional catalysts, rate and enantioselectivity of the reaction increase. Mismatched and more flexible controls reveal that the importance of rigidified, precisely sculpted architectures increases with increasing π acidity as well. The absolute configuration of stereogenic sulfoxide acceptors at the edge of the π-acidic surface has a profound influence on asymmetric anion-π catalysis and, if perfectly matched, affords the highest enantio- and diastereoselectivity.

  19. Okadaic acid: An additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter

    SciTech Connect

    Suganuma, Masami; Fujiki, Hirota; Suguri, Hiroko; Yoshizawa, Shigeru; Hirota, Mitsuru; Nakayasu, Michie ); Ojika, Makoto; Wakamatsu, Kazumasa; Yamada, Kiyoyuki ); Sugimura, Takashi )

    1988-03-01

    Okadaic acid is a polyether compound of a C{sub 38} fatty acid, isolated from a black sponge, Halichondria okadai. Previous studies showed that okadaic acid is a skin irritant and induces ornithine decarboxylase in mouse skin 4 hr after its application to the skin. This induction was strongly inhibited by pretreatment of the skin with 13-cis-retinoic acid. A two-stage carcinogenesis experiment in mouse skin initiated by a single application of 100 {mu}g of 7,12-dimethylbenz(a)anthracene (DMBA) and followed by application of 10 {mu}g of okadaic acid twice a week revealed that okadaic acid is a potent additional tumor promoter: tumors developed in 93% of the mice treated with DMBA and okadaic acid by week 16. In contrast, tumors were found in only one mouse each in the groups treated with DMBA alone or okadaic acid alone. An average of 2.6 tumors per mouse was found in week 30 in the group treated with DMBA and okadaic acid. Unlike phorbol 12-tetradecanoate 13-acetate (TPA), teleocidin, and aplysiatoxin, okadaic acid did not inhibit the specific binding of ({sup 3}H)TPA to a mouse skin particulate fraction when added up to 100 {mu}M or activate calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in vitro when added up to 1.2 {mu}M. Therefore, the actions of okadaic acid and phorbol ester may be mediated in different ways. These results show that okadaic acid is a non-TPA-type tumor promoter in mouse skin carcinogenesis.

  20. L-ascorbic acid addition to chitosan reduces body weight in overweight women.

    PubMed

    Jung, Eun Young; Jun, Sung Chul; Chang, Un Jae; Suh, Hyung Joo

    2014-01-01

    Previously, we have found that the addition of L-ascorbic acid to chitosan enhanced the reduction in body weight gain in guinea pigs fed a high-fat diet. We hypothesized that the addition of L-ascorbic acid to chitosan would accelerate the reduction of body weight in humans, similar to the animal model. Overweight subjects administered chitosan with or without L-ascorbic acid for 8 weeks, were assigned to three groups: Control group (N=26, placebo, vehicle only), Chito group (N=27, 3 g/day chitosan), and Chito-vita group (N=27, 3 g/day chitosan plus 2 g/day L-ascorbic acid). The body weights and body mass index (BMI) of the Chito and Chito-vita groups decreased significantly (p<0.05) compared to the Control group. The BMI of the Chito-vita group decreased significantly compared to the Chito group (Chito: -1.0 kg/m2 vs. Chito-vita: -1.6 kg/m2, p<0.05). The results showed that the chitosan enhanced reduction of body weight and BMI was accentuated by the addition of L-ascorbic acid. The fat mass, percentage body fat, body circumference, and skinfold thickness in the Chito and Chito-vita groups decreased more than the Control group; however, these parameters were not significantly different between the three groups. Chitosan combined with L-ascorbic acid may be useful for controlling body weight.

  1. The renal response to chronic mineral acid feeding: a re-examination of the role of systemic pH.

    PubMed

    Madias, N E; Zelman, S J

    1986-03-01

    It has been widely held that systemic acidemia represents the proximate event signaling the kidney to elicit its acidification response to chronic metabolic acidosis. However, a previous study from this laboratory has cast serious doubt on the validity of this conventional viewpoint. When a large acid load (7 mEq/kg/day) was fed chronically to dogs as HCl, H2SO4 or HNO3, net acid excretion increased similarly in all three groups of animals despite wide variability in the prevailing systemic acid-base composition. Marked or moderate hypobicarbonatemia and acidemia were observed in the HCl- or H2SO4-fed animals respectively, but strikingly, plasma [HCO3-] and pH did not change significantly from the control in the HNO3-fed animals. That study concluded that the renal response to chronic mineral acid feeding appears to be triggered, not by acidemia, but by the interplay of sodium delivery to and sodium avidity of the distal nephron as modulated by the reabsorbability of the "acid" anion. We have re-examined the above provocative conclusion in the light of the observation that the only evidence for a dissociation of the renal response from systemic acidemia in that study was derived from preprandial (8:00 a.m.) blood samples obtained some 23 hr after the ingestion of the daily acid load (administered at 9:00 a.m.). We investigated the diurnal variation of plasma acid-base composition in two groups of dogs fed chronically a large acid load (7 mEq/kg/day) as either HCl or HNO3. Both groups exhibited significant diurnal oscillations of plasma acid-base composition.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3009955

  2. Increased intestinal amino-acid retention from the addition of carbohydrates to a meal.

    PubMed

    Deutz, N E; Ten Have, G A; Soeters, P B; Moughan, P J

    1995-12-01

    Carbohydrates, added to a protein meal, are known to enhance the efficiency of dietary protein utilisation. However, the respective roles of the gut and liver in relation to this enhanced efficiency are not known. Therefore, we studied amino-acid, ammonia, urea, glucose and lactate fluxes for 6 h across the portal drained viscera and liver in conscious, multi-catheterised pigs of approximately 25 kg body weight after receiving a protein meal with added carbohydrates, a pure protein meal or a control meal. Additional carbohydrate caused a net glucose efflux in the portal drained viscera and increased arterial blood insulin levels. The appearance of amino-acids in the portal blood declined by some 30%, in spite of the dietary true amino-acid digestibility being approximately 95%. Liver uptake of most amino-acids was lower and there was a lower liver urea production. Finally, there was a smaller postprandial increase in the arterial blood concentration for most of the amino-acids. The results of this study suggest that inclusion of maltodextrin in the diet increases the net retention of meal-derived amino-acids in the portal drained viscera. The lower urea production and liver amino-acid uptake suggest a lower nitrogen loss. The gut could be an important site for nitrogen retention induced by the addition of carbohydrates to a protein meal.

  3. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response. PMID:25967171

  4. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores

    PubMed Central

    Nerandzic, Michelle M.; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J.

    2016-01-01

    Background. Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5–2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods. We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results. Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200–2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions. Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  5. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    PubMed

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  6. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    PubMed

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin.

  7. Unfolding and refolding of Coprinus cinereus peroxidase at high pH, in urea, and at high temperature. Effect of organic and ionic additives on these processes.

    PubMed

    Tams, J W; Welinder, K G

    1996-06-11

    The unfolding and refolding rates of the heme-and Ca2+ -containing Coprinus cinereus peroxidase (CIP) have been measured at pH 12.1, in 4 M urea, and at 61.2 degrees C. The change in peroxidase activity paralleled the change in the Soret band absorbance of the heme group. The unfolding rate constant (ku), was determined independently in thermolysin digestion and EDTA experiments at 59.4 degrees C. Both gave ku values of 1.5 ms-1, and also showed that the presence of 4 mM EDTA made CIP unfolding practically irreversible. Unfolding and refolding rates could therefore be determined under identical conditions of denaturation having either EDTA or Ca2+ in excess. The refolding rates at high pH and in 4 M urea were measured by adding Ca2+ to the unfolded CIP, whereas refolding at 61.2 degrees C was evaluated by comparing the unfolding carried out under reversible (excess of Ca2+) and irreversible conditions (excess EDTA). The activation energies for the unfolding at 61.2 degrees C are approximately delta G++(u) 100, T delta S++(u) 200, and delta H++(u) 300 kJ/mol. Five different additives, glycerol, EtOH, Na2SO4, guanidinium chloride (GdmCl), and NaCl, all at 100 mM, were used as probes to evaluate the mechanism of base, urea, and heat on unfolding and refolding. Salts destabilized CIP at high pH, primarily by enhancing the unfolding rate but also by decreasing the refolding rate. Glycerol had the reverse effects and thus stabilized CIP at high pH. The unfolding rate in urea was only slightly affected by the additives, with the exception of GdmCl which enhanced the unfolding rate. The refolding rate was decreased in urea by EtOH and GdmCl, in contrast to glycerol and Na2SO4 which increased the refolding rate. At high temperature the unfolding was affected only slightly by the additives, except for GdmCl, and to a lesser extent NaCl, which enhanced the unfolding rate. The refolding rates were greatly decreased by Na2SO4, EtOH, and GdmCl, whereas glycerol and Nacl enhanced

  8. Reclamation of acidic mine residues by creation of technosoils with the addition of biochar and marble waste

    NASA Astrophysics Data System (ADS)

    Moreno-Barriga, Fabián; Díaz, Vicente; Acosta, José; Faz, Ángel; Zornoza, Raul

    2016-04-01

    This study reports the short-term effect of biochar and marble waste addition for the reclamation of acidic mine residues. A lab incubation was carried out for 90 days. Biochars derived from pig manure (PM), crop residues (CR) and municipal solid waste (MSW) were added to the soil at a rate of 20 g kg-1. The marble waste (MW) was added at a rate of 200 g kg-1. Bochars and MW were applied independently and combined. A control soil was used without application of amendments. The evolution of different physical, chemical and biochemical properties and availability of heavy metals was periodically monitored. Results showed that original pH (2.8) was increased with all amendments, those samples containing MW being the ones with the highest pH (~8.0). The electrical conductivity (EC) decreased from 6.6 to 3.0-4.5 mS cm-1 in all the treatments receiving MW. Soil organic C (SOC) increased in all samples receiving biochar up to 18-20 g kg-1, with no shifts during the 90 d incubation, indicating the high stability of the C supplied. Recalcitrant organic C accounted for ~90-98% of the SOC. No significant effect of amendment addition was observed for carbohydrates, soluble C, microbial biomass C and β-glucosidase activity. However, arylesterase activity increased with amendments, highly related to pH. The availability of heavy metals decreased up to 90-95% owing to the addition of amendments, mainly in samples containing MW. The MW provided conditions to increase pH and decrease EC and metals mobility. Biochar was an effective strategy to increase SOC, recalcitrant C and AS, essential to create soil structure. However, a labile source of organic matter should be added together with the proposed amendments to promote the activation of microbial communities. Acknowledgement : This work has been funded by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain) by the project 18920/JLI/13

  9. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH.

    PubMed

    Hasanzadeh, Mohammad; Sadeghi, Sattar; Bageri, Leyla; Mokhtarzadeh, Ahad; Karimzadeh, Ayub; Shadjou, Nasrin; Mahboob, Soltanali

    2016-12-01

    A novel nanobiopolymer film was electrodeposited on the surface of glassy carbon through cyclic voltammetry from dopamine, β-cyclodextrin, and phosphate buffer solution in physiological pH (7.40). The electrochemical behavior of polydopamine-Beta-cyclodextrin modified glassy carbon electrode was investigated for electro-oxidation and determination of some amino acids (l-Cysteine, l-Tyrosine, l-Glycine, and l-Phenylalanine). The modified electrode was applied for selected amino acid detection at physiological pH using cyclic voltammetry, differential pulse voltammetry and chronoamperometry, chronocoulometery. The linear concentration range of the proposed sensor for the l-Glycine, l-Cysteine, l-Tyrosine, and l-Phenylalanine were 0.2-70, 0.06-0.2, 0.01-0.1, and 0.2-10μM, while low limit of quantifications were 0.2, 0.06, 0.01, and 0.2μM, respectively. The modified electrode shows many advantages as an amino acid sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, good sensitivity, short response time, and long term stability. PMID:27612722

  10. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH.

    PubMed

    Hasanzadeh, Mohammad; Sadeghi, Sattar; Bageri, Leyla; Mokhtarzadeh, Ahad; Karimzadeh, Ayub; Shadjou, Nasrin; Mahboob, Soltanali

    2016-12-01

    A novel nanobiopolymer film was electrodeposited on the surface of glassy carbon through cyclic voltammetry from dopamine, β-cyclodextrin, and phosphate buffer solution in physiological pH (7.40). The electrochemical behavior of polydopamine-Beta-cyclodextrin modified glassy carbon electrode was investigated for electro-oxidation and determination of some amino acids (l-Cysteine, l-Tyrosine, l-Glycine, and l-Phenylalanine). The modified electrode was applied for selected amino acid detection at physiological pH using cyclic voltammetry, differential pulse voltammetry and chronoamperometry, chronocoulometery. The linear concentration range of the proposed sensor for the l-Glycine, l-Cysteine, l-Tyrosine, and l-Phenylalanine were 0.2-70, 0.06-0.2, 0.01-0.1, and 0.2-10μM, while low limit of quantifications were 0.2, 0.06, 0.01, and 0.2μM, respectively. The modified electrode shows many advantages as an amino acid sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, good sensitivity, short response time, and long term stability.

  11. Effects of the food additive, citric acid, on kidney cells of mice.

    PubMed

    Chen, Xg; Lv, Qx; Liu, Ym; Deng, W

    2015-01-01

    Citric acid is a food additive that is widely used in the food and drink industry. We investigated the effects of citric acid injection on mouse kidney. Forty healthy mice were divided into four groups of 10 including one control group and three citric acid-treated groups. Low dose, middle dose and high dose groups were given doses of 120, 240 and 480 mg/kg of citric acid, respectively. On day 7, kidney tissues were collected for histological, biochemical and molecular biological examination. We observed shrinkage of glomeruli, widened urinary spaces and capillary congestion, narrowing of the tubule lumen, edema and cytoplasmic vacuolated tubule cells, and appearance of pyknotic nuclei. The relation between histopathological changes and citric acid was dose dependent. Compared to the control, T-SOD and GSH-Px activities in the treated groups decreased with increasing doses of citric acid, NOS activity tended to increase, and H2O2 and MDA contents gradually decreased, but the differences between any treated group and the control were not statistically significant. The apoptosis assay showed a dose-dependent increase of caspase-3 activity after administering citrate that was statistically significant. DNA ladder formation occurred after treatment with any dose of citric acid. We concluded that administration of citric acid may cause renal toxicity in mice.

  12. The effect of lactic acid bacterial starter culture and chemical additives on wilted rice straw silage.

    PubMed

    Wang, Yan-Su; Shi, Wei; Huang, Lin-Ting; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-04-01

    Lactic acid bacteria (LAB) are suitable for rice straw silage fermentation, but have been studied rarely, and rice straw as raw material for ensiling is difficult because of its disadvantages, such as low nutrition for microbial activities and low abundances of natural populations of LAB. So we investigated the effect of application of LAB and chemical additives on the fermentation quality and microbial community of wilted rice straw silage. Treatment with chemical additives increased the concentrations of crude protein (CP), water soluble carbohydrate (WSC), acetic acid and lactic acid, reduced the concentrations of acid detergent fiber (ADF) and neutral detergent fiber (NDF), but did not effectively inhibit the growth of spoilage organisms. Inoculation with LABs did not improve the nutritional value of the silage because of poor growth of LABs in wilted rice straw. Inoculation with LAB and addition of chemical materials improved the quality of silage similar to the effects of addition of chemical materials alone. Growth of aerobic and facultatively anaerobic bacteria was inhibited by this mixed treatment and the LAB gradually dominated the microbial community. In summary, the fermentation quality of wilted rice straw silage had improved by addition of LAB and chemical materials. PMID:26429595

  13. The effect of lactic acid bacterial starter culture and chemical additives on wilted rice straw silage.

    PubMed

    Wang, Yan-Su; Shi, Wei; Huang, Lin-Ting; Ding, Cheng-Long; Dai, Chuan-Chao

    2016-04-01

    Lactic acid bacteria (LAB) are suitable for rice straw silage fermentation, but have been studied rarely, and rice straw as raw material for ensiling is difficult because of its disadvantages, such as low nutrition for microbial activities and low abundances of natural populations of LAB. So we investigated the effect of application of LAB and chemical additives on the fermentation quality and microbial community of wilted rice straw silage. Treatment with chemical additives increased the concentrations of crude protein (CP), water soluble carbohydrate (WSC), acetic acid and lactic acid, reduced the concentrations of acid detergent fiber (ADF) and neutral detergent fiber (NDF), but did not effectively inhibit the growth of spoilage organisms. Inoculation with LABs did not improve the nutritional value of the silage because of poor growth of LABs in wilted rice straw. Inoculation with LAB and addition of chemical materials improved the quality of silage similar to the effects of addition of chemical materials alone. Growth of aerobic and facultatively anaerobic bacteria was inhibited by this mixed treatment and the LAB gradually dominated the microbial community. In summary, the fermentation quality of wilted rice straw silage had improved by addition of LAB and chemical materials.

  14. AN HPLC METHOD WITH UVDETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chlorinated isocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabiliz...

  15. AN HPLC METHOD WITH UV DETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chloroisocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. ...

  16. Effect of ascorbic acid on the properties of ammonia caramel colorant additives and acrylamide formation.

    PubMed

    Chen, Hongxing; Gu, Zhengbiao

    2014-09-01

    Ammonia caramels are among the most widely used colorant additives in the food industry. They are commonly prepared through the Maillard reaction and caramelization of mixtures of reducing sugars with ammonia or ammonium salts. Antioxidants are known to inhibit acrylamide formation during the Maillard reaction, and they may affect the properties of the ammonia caramel products. Thus, the objective of this study was to investigate the effect of the antioxidant ascorbic acid on the properties of ammonia caramel. A mixture of glucose and ammonia was allowed to react at 120 °C for 60 min in the presence of ascorbic acid at final concentrations of 0 to 0.08 M. The ammonia caramels obtained from these reactions were all positively charged. As the concentration of ascorbic acid increased, the color intensity of the ammonia caramel showed a decreasing trend, while the intensity of the fluorescence and total amount of pyrazines in the volatiles showed a tendency to increase. The addition of ascorbic acid did not result in obvious changes in the UV-visible spectra of the ammonia caramels and the types of pyrazines in the volatiles were also unchanged. It is noteworthy that the addition of 0.02 to 0.08 M ascorbic acid did reduce the formation of the by-product acrylamide, a harmful substance in food. When the concentration of ascorbic acid added reached 0.04 M, the content of acrylamide in the ammonia caramel was 20.53 μg/L, which was approximately 44% lower than that without ascorbic acid. As a result, ascorbic acid can be considered to improve the quality and safety of ammonia caramels.

  17. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the

  18. FIA acid-base titrations with a new flow-through pH detector.

    PubMed

    Kahlert, H; Pörksen, J R; Behnert, J; Scholz, F

    2005-08-01

    A pH-sensitive detector for flow-through potentiometry based on a graphite/quinhydrone composite electrode was applied for flow-injection analysis (FIA) titrations. Hydrochloric acid and acetic acid were titrated by injection of samples into a sodium hydroxide carrier solution. System conditions were optimised by variation of flow rate, injection volume and titrant concentration. The parameters sampling frequency, residence time and dispersion coefficient were determined. The evaluation of peak width (time between the two inflection points on each side of the peak), peak area and slope of the raising edge of the peak lead were studied with respect to their use for calibration. Hydrochloric acid and acetic acid could be titrated down to a concentration of 2 x 10(-4) mol L(-1) using 150-microL injection volumes, which is almost ten times lower than can be achieved using colour indicators and a spectrophotometric detection.

  19. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH

    PubMed Central

    Cotter, Paul D.; Hill, Colin

    2003-01-01

    Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the reponses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments. PMID:12966143

  20. Tetramerization of the LexA repressor in solution: implications for gene regulation of the E.coli SOS system at acidic pH.

    PubMed

    Sousa, Francisco J R; Lima, Luis M T R; Pacheco, Ana B F; Oliveira, Cristiano L P; Torriani, Iris; Almeida, Darcy F; Foguel, Debora; Silva, Jerson L; Mohana-Borges, Ronaldo

    2006-06-16

    Structural changes on LexA repressor promoted by acidic pH have been investigated. Intense protein aggregation occurred around pH 4.0 but was not detected at pH values lower than pH 3.5. The center of spectral mass of the Trp increased 400 cm(-1) at pH 2.5 relatively to pH 7.2, an indication that LexA has undergone structural reorganization but not denaturation. The Trp fluorescence polarization of LexA at pH 2.5 indicated that its hydrodynamic volume was larger than its dimer at pH 7.2. 4,4'-Dianilino-1,1'-binaphthyl-5,5'- disulfonic acid (bis-ANS) experiments suggested that the residues in the hydrophobic clefts already present at the LexA structure at neutral pH had higher affinity to it at pH 2.5. A 100 kDa band corresponding to a tetramer was obtained when LexA was subject to pore-limiting native polyacrylamide gel electrophoresis at this pH. The existence of this tetrameric state was also confirmed by small angle X-ray scattering (SAXS) analysis at pH 2.5. 1D 1H NMR experiments suggested that it was composed of a mixture of folded and unfolded regions. Although 14,000-fold less stable than the dimeric LexA, it showed a tetramer-monomer dissociation at pH 2.5 from the hydrostatic pressure and urea curves. Albeit with half of the affinity obtained at pH 7.2 (Kaff of 170 nM), tetrameric LexA remained capable of binding recA operator sequence at pH 2.5. Moreover, different from the absence of binding to the negative control polyGC at neutral pH, LexA bound to this sequence with a Kaff value of 1415 nM at pH 2.5. A binding stoichiometry experiment at both pH 7.2 and pH 2.5 showed a [monomeric LexA]/[recA operator] ratio of 2:1. These results are discussed in relation to the activation of the Escherichia coli SOS regulon in response to environmental conditions resulting in acidic intracellular pH. Furthermore, oligomerization of LexA is proposed to be a possible regulation mechanism of this regulon. PMID:16701697

  1. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, Helicobacter pylori, and bile acids.

    PubMed

    Mukaisho, Ken-Ichi; Nakayama, Takahisa; Hagiwara, Tadashi; Hattori, Takanori; Sugihara, Hiroyuki

    2015-01-01

    Gastric cancer can be classified as cardia and non-cardia subtypes according to the anatomic site. Although the gastric cancer incidence has decreased steadily in several countries over the past 50 years, the incidence of cardia cancers and esophageal adenocarcinoma (EAC) continue to increase. The etiological factors involved in the development of both cardia cancers and EACs are associated with high animal fat intake, which causes severe obesity. Central obesity plays roles in cardiac-type mucosa lengthening and partial hiatus hernia development. There are two distinct etiologies of cardia cancer subtypes: one associated with gastroesophageal reflux (GER), which predominantly occurs in patients without Helicobacter pylori (H. pylori) infection and resembles EAC, and the other associated with H. pylori atrophic gastritis, which resembles non-cardia cancer. The former can be developed in the environment of high volume duodenal content reflux, including bile acids and a higher acid production in H. pylori-negative patients. N-nitroso compounds, which are generated from the refluxate that includes a large volume of bile acids and are stabilized in the stomach (which has high levels of gastric acid), play a pivotal role in this carcinogenesis. The latter can be associated with the changing colonization of H. pylori from the distal to the proximal stomach with atrophic gastritis because a high concentration of soluble bile acids in an environment of low acid production is likely to act as a bactericide or chemorepellent for H. pylori in the distal stomach. The manuscript introduces new insights in causative factors of adenocarcinoma of the cardia about the role of bile acids in gastro-esophageal refluxate based upon robust evidences supporting interactions among pH, H. pylori, and bile acids. PMID:26029176

  2. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  3. Effects of root medium pH on water transport in paper birch (Betula papyrifera) seedlings in relation to root temperature and abscisic acid treatments.

    PubMed

    Kamaluddin, M; Zwiazek, Janusz J

    2004-10-01

    We investigated the effects of root medium pH on water transport in whole-plant and detached roots of paper birch (Betula papyrifera Marsh.). Exposure of seedling roots to pH 4 and 8 significantly decreased root hydraulic conductivity (Lp) and stomatal conductance (gs), compared with pH 6. When roots of solution-culture-grown (pH 6) seedlings were transferred to pH 4 or 8, their steady-state water flow (Qv) declined within minutes, followed by a decline in gs. The root oxygen uptake rates were not significantly affected by the pH treatments. Treatment of roots with mercuric chloride resulted in a large decrease in Qv at pH 6; the extent of this decrease was similar to that brought about by pH 4 and 8. Lowering root temperature from 21 to 4 degrees C decreased Qv irrespective of medium pH. Low root temperatures did not offset the effects of medium pH 4 on Qv and the roots in this treatment had a high activation energy for water flow. Conversely, roots exposed to pH 8 had a low activation energy, similar to that at pH 6. When 2 micro M abscisic acid, (+/-)-cis-trans-ABA, was added to the root medium, Qv increased in roots that were incubated at pH 6. It also increased slightly in roots incubated at pH 4, but not at pH 8. The increase at pH 4 and 6 was temperature-dependent, occurring at 21 degrees C, but not 4 degrees C. We suggest that the pH treatments are responsible for altering root water flow properties through their effects on the activity of water channels. These results support the concept that ABA effects on water channels are modulated by other, possibly metabolic- and pH-dependent factors.

  4. Experimental evaluation of the contribution of acidic pH and Fe concentration to the structure, function and tolerance to metals (Cu and Zn) exposure in fluvial biofilms.

    PubMed

    Luís, Ana Teresa; Bonet, Berta; Corcoll, Natàlia; Almeida, Salomé F P; da Silva, Eduardo Ferreira; Figueira, Etelvina; Guasch, Helena

    2014-09-01

    An indoor channel system was colonised with fluvial biofilms to study the chronic effects of high Fe and SO4(2-) concentrations and acidic pH, the water chemistry in the surrounding streams of Aljustrel mining area (Alentejo, Portugal), and their contribution to community (in)tolerance to metal toxicity by short-term experiments with Cu and Zn. Biofilms were subjected to four different treatments during 8 weeks: high Fe and SO4(2-) concentrations (1 mg Fe l(-1)+ 700 mg SO4(2-) l(-1)) and acidic pH, high Fe and SO4(2-) at alkaline pH; lower Fe and SO4(2-) at acidic pH: and lower Fe and SO4(2-) concentrations at alkaline pH as negative control. During chronic exposure, acidic pH affected growth negatively, based on low values of algal biomass and the autotrophic index, high values of the antioxidant enzyme activities and low diversity diatom communities, dominated by acidophilic species (Pinnularia aljustrelica) in acidic treatments, being the effects more marked with high Fe and SO4(2-). Co-tolerance to metals (Cu and Zn) was also shown in biofilms from the acidic treatments, contrasting with the higher sensitivity observed in the alkaline treatments. We can conclude that the Aljustrel mining area acidic environment limits algal growth and exerts a strong selection pressure on the community composition which is in turn, more tolerant to metal exposure. PMID:25011920

  5. pH and ionic strength effects on the binding constant between a nitrogen-containing polycyclic aromatic compound and humic acid.

    PubMed

    Chang, Kuei-Chen; Lee, Chon-Lin; Hsieh, Ping-Chieh; Brimblecombe, Peter; Kao, Shu-Min

    2015-09-01

    Polycyclic aromatic compounds (PACs) are widespread environmental pollutants with a high potential to act as human carcinogens and mutagens. The behavior of PACs is significantly affected by their interactions with dissolved organic matter (DOM), such as their transport, solubility, bioavailability, and bioaccumulation in the aquatic environment. Being a basic PAC, benzo(h)quinoline (BQ) is the dominant species, as the solution's pH value is higher than BQ's pK a (pK a of BQ = 4.2). In contrast, benzo(h)quinolinium (BQH(+)) is the major species, as the solution's pH value is lower than its pK a. The binding constant (K DOC), measured by fluorescence quenching, between BQ/BQH(+) and Leonardite humic acid (LHA) would decrease 70 to 95 % and 20 to 90 % when increasing the ionic strength in acidic and neutral to basic conditions, respectively. The results can be attributed to the added cation (Na(+) and Mg(2+)), which forms a bridge with LHA and enhances the intramolecular reaction among these functional groups, therefore inducing the coiling up within the LHA molecule. In addition, the decrease of the K DOC with added MgCl2/MgSO4 (75-95 %) is higher than that with added NaCl/Na2SO4 (20-75 %), indicating that the K DOC was affected by the charge density of cations. The fluorescence intensity of BQH(+) in the absence of LHA (F 0) was found to decay only in the acidic solution with Cl(-), suggesting that Cl(-) might be a heavy atom serving as a quencher in an acidic solution. PMID:25940463

  6. Whey protein/polysaccharide-stabilized emulsions: Effect of polymer type and pH on release and topical delivery of salicylic acid.

    PubMed

    Combrinck, Johann; Otto, Anja; du Plessis, Jeanetta

    2014-06-01

    Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.

  7. The effects of temperature, pH and redox state on the stability of glutamic acid in hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Lee, Namhey; Foustoukos, Dionysis I.; Sverjensky, Dimitri A.; Cody, George D.; Hazen, Robert M.

    2014-06-01

    Natural hydrothermal vent environments cover a wide range of physicochemical conditions involving temperature, pH and redox state. The stability of simple biomolecules such as amino acids in such environments is of interest in various fields of study from the origin of life to the metabolism of microbes at the present day. Numerous previous experimental studies have suggested that amino acids are unstable under hydrothermal conditions and decompose rapidly. However, previous studies have not effectively controlled the redox state of the hydrothermal fluids. Here we studied the stability of glutamate with and without reducing hydrothermal conditions imposed by 13 mM aqueous H2 at temperatures of 150, 200 and 250 °C and initial (25 °C) pH values of 6 and 10 in a flow-through hydrothermal reactor with reaction times from 3 to 36 min. We combined the experimental measurements with theoretical calculations to model the in situ aqueous speciation and pH values. As previously observed under hydrothermal conditions, the main reaction involves glutamate cyclizing to pyroglutamate through a simple dehydration reaction. However, the amounts of decomposition products of the glutamate detected, including succinate, formate, carbon dioxide and ammonia depend on the temperature, the pH and particularly the redox state of the fluid. In the absence of dissolved H2, glutamate decomposes in the sequence glutamate, glutaconate, α-hydroxyglutarate, ketoglutarate, formate and succinate, and ultimately to CO2 and micromolar quantities of H2(aq). Model speciation calculations indicate the CO2, formate and H2(aq) are not in metastable thermodynamic equilibrium. However, with 13 mM H2(aq) concentrations, the amounts of decomposition products are suppressed at all temperatures and pH values investigated. The small amounts of CO2 and formate present are calculated to be in metastable equilibrium with the H2. It is further proposed that there is a metastable equilibrium between glutamate

  8. Simultaneous separation of acidic and basic proteins using gemini pyrrolidinium surfactants and hexafluoroisopropanol as dynamic coating additives in capillary electrophoresis.

    PubMed

    Tian, Yu; Li, Yunfang; Mei, Jie; Cai, Bo; Dong, Jinfeng; Shi, Zhiguo; Xiao, Yuxiu

    2015-09-18

    The separation of acidic and basic proteins using CE has been limited in part due to the adsorption of proteins onto the capillary wall. In this work, the efficient control of EOF and the simultaneous separation of acidic and basic proteins are achieved by use of C18-4-C18PB as a dynamic coating additive, which is a representative surfactant for 1,1'-(butane-1,s-alkyl)bis(1-alkylpyrrolidinium) bromide (Cn-4-CnPB, n=10, 12, 14, 16 and 18). C18-4-C18PB exhibits a powerful capability in the reversal of EOF, and a low concentration even less than 0.001 mM is sufficient to reverse EOF at the tested pH values (3.0-9.0). Baseline separation of eight proteins with sharp peaks and high efficiencies (54,000-297,000 plates/m) is obtained with 30 mM NaH2PO4 buffer (pH 5.0) containing 4 mM C18-4-C18PB. At the same buffer condition, the Cn-4-CnPB with shorter alkyl chain (n=10, 12, 14, 16) cannot achieve the same effective protein separation as C18-4-C18PB. However, the combined use of small amounts (≤0.5%, v/v) of hexafluoroisopropanol (HFIP) and Cn-4-CnPB (n=10, 12, 14, 16) as additives can completely separate all eight proteins with high efficiencies of 81,000-318,000 plates/m. The RSDs of migration time are less than 0.80% and 5.84% for run-to-run and day-to-day assays (n=5), respectively, and the protein recoveries are larger than 90.15%. To the best of our knowledge, this is the first report on the simultaneous separation of acidic and basic proteins using Cn-4-CnPB surfactants or Cn-4-CnPB surfactants combined with HFIP as dynamic coating additives.

  9. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  10. The influence of UV-irradiation on chitosan modified by the tannic acid addition.

    PubMed

    Sionkowska, A; Kaczmarek, B; Gnatowska, M; Kowalonek, J

    2015-07-01

    The influence of UV-irradiation with the wavelength 254 nm on the properties of chitosan modified by the tannic acid addition was studied. Tannic acid was added to chitosan solution in different weight ratios and after solvent evaporation thin films were formed. The properties of the films such as thermal stability, Young modulus, ultimate tensile strength, moisture content, swelling behavior before and after UV-irradiation were measured and compared. Moreover, the surface properties were studied by contact angle measurements and by the use of atomic force microscopy. The results showed that UV-irradiation caused both, the degradation of the specimen and its cross-linking. The surface of the films made of chitosan modified by the addition of tannic acid was altered by UV-irradiation.

  11. Testing for departures from additivity in mixtures of perfluoroalkyl acids (PFAAs)

    EPA Science Inventory

    This study is a follow-up to a paper by Carr, et al. that determined a design structure to optimally test for departures from additivity in a fixed ratio mixture of four perfluoroalkyl acids (PFAAs) using an in vitro transiently-transfected COS- 1 PPARa reporter model with an NHA...

  12. Lewis base additives improve the zeolite ferrierite-catalyzed synthesis of isostearic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isostearic acid (IA) is of interest for industrial purposes especially in the area of biolubricants, such as cosmetics and slip additives for polyolefin and related copolymer films. This study was designed to develop a zeolitic catalysis process for IA production through isomerization of fatty aci...

  13. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis.

    PubMed

    Ruiz Espelt, Laura; McPherson, Iain S; Wiensch, Eric M; Yoon, Tehshik P

    2015-02-25

    We report the highly enantioselective addition of photogenerated α-amino radicals to Michael acceptors. This method features a dual-catalyst protocol that combines transition metal photoredox catalysis with chiral Lewis acid catalysis. The combination of these two powerful modes of catalysis provides an effective, general strategy to generate and control the reactivity of photogenerated reactive intermediates.

  14. Addition of omega-3 carboxylic acids to statin therapy in patients with persistent hypertriglyceridemia.

    PubMed

    Davidson, Michael H; Phillips, Alyssa K; Kling, Douglas; Maki, Kevin C

    2014-09-01

    The incidence of hypertriglyceridemia has grown alongside that of obesity. Statin therapy has been widely recommended for the treatment of dyslipidemias. Omega-3 (OM3) fatty acid concentrates are commonly prescribed concurrently with statins in patients with persistent hypertriglyceridemia for additional lowering of triglyceride and non-HDL cholesterol. The bioavailability of currently available OM3 ethyl ester drugs is limited by their need for hydrolysis by pancreatic lipases, largely stimulated by dietary fat, prior to intestinal absorption. This review will discuss the chemistry, pharmacokinetics and clinical efficacy of a novel OM3 carboxylic acid drug that provides polyunsaturated docosahexaenoic and eicosapentaenoic acids in the free fatty acid form, which is readily absorbed by the intestine. This drug was approved in May 2014 as an adjunct to diet to reduce triglyceride levels in adults with severe (≥500 mg/dl) hypertriglyceridemia.

  15. Standard addition method for free acid determination in solutions with hydrolyzable ions

    SciTech Connect

    Baumann, E.W.

    1981-01-01

    The free acid content of solutions containing hydrolyzable ions has been determined potentiometrically by a standard addition method. Two increments of acid are added to the sample in a 1M potassium thiocyanate solution. The sample concentration is calculated by solution of three simultaneous Nernst equations. The method has been demonstrated for solutions containing Al/sup 3 +/, Cr/sup 3 +/, Fe/sup 3 +/, Ni/sup 2 +/, Th/sup 4 +/, or UO/sub 2//sup 2 +/ with a metal-to-acid ratio of < 2.5. The method is suitable for determination of 10 ..mu..moles acid in 10 mL total volume. The accuracy is verifiable by reasonable agreement of the Nerst slopes found in the presence and absence of hydrolyzable ions. The relative standard deviation is < 2.5 percent.

  16. Clastogenic effects of food additive citric acid in human peripheral lymphocytes

    PubMed Central

    Ünal, Fatma; Yüzbaşıoğlu, Deniz; Aksoy, Hüseyin

    2008-01-01

    Clastogenic properties of the food additive citric acid, commonly used as an antioxidant, were analysed in human peripheral blood lymphocytes. Citric acid induced a significant increase of chromosomal aberrations (CAs) at all the concentrations and treatment periods tested. Citric acid significantly decreased mitotic index (MI) at 100 and 200 μg ml−1 concentrations at 24 h, and in all concentrations at 48 h. However, it did not decrease the replication index (RI) significantly. Citric acid also significantly increased sister chromatid exchanges (SCEs) at 100 and 200 μg ml−1 concentrations at 24 h, and in all concentrations at 48 h. This chemical significantly increased the micronuclei frequency (MN) compared to the negative control. It also decreased the cytokinesis-block proliferation index (CBPI), but this result was not statistically significant. PMID:19002851

  17. Addition of Grape Seed Extract Renders Phosphoric Acid a Collagen-stabilizing Etchant.

    PubMed

    Liu, Y; Dusevich, V; Wang, Y

    2014-08-01

    Previous studies found that grape seed extract (GSE), which is rich in proanthocyanidins, could protect demineralized dentin collagen from collagenolytic activities following clinically relevant treatment. Because of proanthocyanidin's adverse interference to resin polymerization, it was believed that GSE should be applied and then rinsed off in a separate step, which in effect increases the complexity of the bonding procedure. The present study aimed to investigate the feasibility of combining GSE treatment with phosphoric acid etching to address the issue. It is also the first attempt to formulate collagen-cross-linking dental etchants. Based on Fourier-transformed infrared spectroscopy and digestion assay, it was established that in the presence of 20% to 5% phosphoric acid, 30 sec of GSE treatment rendered demineralized dentin collagen inert to bacterial collagenase digestion. Based on this positive result, the simultaneous dentin etching and collagen protecting of GSE-containing phosphoric acid was evaluated on the premise of a 30-second etching time. According to micro-Raman spectroscopy, the formulation containing 20% phosphoric acid was found to lead to overetching. Based on scanning and transmission electronic microscopy, this same formulation exhibited unsynchronized phosphoric acid and GSE penetration. Therefore, addition of GSE did render phosphoric acid a collagen-stabilizing etchant, but the preferable phosphoric acid concentration should be <20%. PMID:24935065

  18. The Use of Ascorbic Acid as a Food Additive: Technical-Legal Issues

    PubMed Central

    Varvara, Michele; Bozzo, Giancarlo; Celano, Giuseppe; Disanto, Chiara; Pagliarone, Cosimo Nicola

    2016-01-01

    Ascorbic acid (C6H8O6) is an organic compound belonging to the family of monosaccharide. It is highly soluble in water, and is often called one of the secrets of the Mediterranean diet. Its use is widespread in the food industry is also important, having always been exploited for its antioxidant and stabilising ability. Many indeed are the additive formulations that take advantage of these properties. The purpose of this paper is to explain the characteristics that make ascorbic acid an important food additive and to emphasise the technical and legal issues related to its use in food productions. In particular, in the course of this employment, laws and scientific studies have been applied to the resolution of a lawsuit, having as its object the use of ascorbic acid in preparations of ground beef sold at a butcher shop. The views expressed in court by the technical consultant have led to the acquittal of the accused, in the light of the demonstrated and proven non-toxicity of the molecule and the use of a mixture of additives for the production of sausage. The European and national legislations, supported by numerous scientific studies, define the possible use of ascorbic acid according to the principle of quantum satis, and it can be used in foods for children. Our work aims to represent further evidence of the safety of use of ascorbic acid as a food additive, and – as confirmed by the legal decision reported – it wants to bring out the prospects for use of ascorbic acid for technological purposes even by registered establishments. PMID:27800425

  19. Novel dry powder inhaler formulation of glucagon with addition of citric acid for enhanced pulmonary delivery.

    PubMed

    Onoue, Satomi; Yamamoto, Kiyoshi; Kawabata, Yohei; Hirose, Mariko; Mizumoto, Takahiro; Yamada, Shizuo

    2009-12-01

    Glucagon, a gut hormone, is one of the key regulatory elements in glucose homeostasis, and is clinically used for treatment of hypoglycemia and premedication in peroral endoscopy. Dry powder inhaler (DPI) form of glucagon is believed to be a promising new dosage form, and the present study aimed to develop a novel glucagon-DPI using absorption enhancer for improved pharmacological effects. The cytotoxicity of citric and capric acids, the potential absorption enhancers, at 1 and 10 mM was assessed by monitoring extracellular LDH levels in rat alveolar L2 cells, and a concentration- and time-dependent release of LDH was observed in capric acid, but not in citric acid-treated cells. DPI form of glucagon containing citric acid was prepared with a jet mill, and laser diffraction and cascade impactor analyses of the newly developed glucagon-DPI suggested high dispersion and deposition in the respiratory organs with an emitted dose and fine particle fraction of 99.5 and 25%, respectively. Addition of citric acid in glucagon-DPI improved the dissolution behavior, and did not impair the solid-state stability of glucagon-DPI. Intratracheal administration of glucagon-DPI (50 microg-glucagon/kg body weight of rat) containing citric acid led to 2.9-fold more potent hyperglycemic effect in rats, as compared to inhaled glucagon-DPI without citric acid. Based on these physicochemical and pharmacological characterization, the dry powder inhaler of glucagon with addition of citric acid would be of use as an alternative to injection form.

  20. Effect of pH and succinic acid on the morphology of α-calcium sulfate hemihydrate synthesized by a salt solution method

    NASA Astrophysics Data System (ADS)

    Li, Fan; Liu, Jianli; Yang, Guangyong; Pan, Zongyou; Ni, Xiao; Xu, Huazi; Huang, Qing

    2013-07-01

    Well-crystallized α-calcium sulfate hemihydrate (α-CSH) powders useful for bone defect filling were synthesized using a salt solution method and their morphologies were effectively modified by adjusting the pH of the reaction solutions or by adding succinic acid. The effect and its mechanism of the pH and the succinic acid on the phase composition and the morphology of the crystals were discussed in detail.

  1. Nickel toxicity to microbes: effect of pH and implications for acid rain

    SciTech Connect

    Babich, H.; Stotzky, G.

    1982-12-01

    A broad spectrum of microorganisms, including eubacteria (nonmarine and marine), actinomycetes, yeasts, and filamentous fungi, were evaluated for their sensitivities to nickel. Wide extremes in sensitivity to Ni were noted among the filamentous fungi, whereas the range of tolerance to Ni of the yeasts, eubacteria, and actinomycetes was narrower. With all microorganisms, the toxicity of Ni has not been defined, although the formation of hydroxylated Ni species with differing toxicities was not involved. The enhanced toxicity of Ni at acidic levels may have implications for the toxicity of Ni in environments stressed by acid precipitation.

  2. Systematics and species-specific response to pH of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) from acid mining lakes

    PubMed Central

    Weisse, Thomas; Moser, Michael; Scheffel, Ulrike; Stadler, Peter; Berendonk, Thomas; Weithoff, Guntram; Berger, Helmut

    2013-01-01

    We investigated the morphology, phylogeny of the 18S rDNA, and pH response of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) isolated from two chemically similar acid mining lakes (pH ∼ 2.6) located at Langau, Austria, and in Lusatia, Germany. Oxytricha acidotolerans sp. nov. from Langau has 18 frontal-ventral-transverse cirri but a very indistinct kinety 3 fragmentation so that the assignment to Oxytricha is uncertain. The somewhat smaller species from Lusatia has a highly variable cirral pattern and the dorsal kineties arranged in the Urosomoida pattern and is, therefore, preliminary designated as Urosomoida sp. The pH response was measured as ciliate growth rates in laboratory experiments at pH ranging from 2.5 to 7.0. Our hypothesis was that the shape of the pH reaction norm would not differ between these closely related (3% difference in their SSU rDNA) species. Results revealed a broad pH niche for O. acidotolerans, with growth rates peaking at moderately acidic conditions (pH 5.2). Cyst formation was positively and linearly related to pH. Urosomoida sp. was more sensitive to pH and did not survive at circumneutral pH. Accordingly, we reject our hypothesis that similar habitats would harbour ciliate species with virtually identical pH reaction norm. PMID:23021638

  3. Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake

    SciTech Connect

    Phelps, T.J.; Zeikus, J.G.

    1984-12-01

    The carbon and electron flow pathways and the bacterial populations responsible for transformation of H/sub 2/-CO/sub 2/, formate, methanol, methylamine, acetate, glycine, ethanol, and lactate were examined in sediments collected from Knaack Lake, Wisconsin. The sediments were 60% organic matter (pH 6.2) and did not display detectable sulfate-reducing activity, but they contained the following average concentration (in micromoles per liter of sediment) of metabolites and end products: sulfide, 10; methane, 1540; CO/sub 2/, 3950; formate, 25; acetate, 157; ethanol, 174; and lactate, 138. Methane was produced predominately from acetate, and only 4% of the total CH/sub 4/ was derived from CO/sub 2/. Methanogenesis was limited by low environmental temperature and sulfide levels and more importantly by low pH. Increasing in vitro pH to neutral values enhanced total methane production rates and the percentage of CO/sub 2/ transformed to methane but did not alter the amount of /sup 14/CO/sub 2/ produced from (2-/sup 14/C)acetate (approx. 24%). Analysis of both carbon transformation parameters with /sup 14/C-labeled tracers and bacterial trophic group enumerations indicated that methanogenesis from acetate and both heterolactic- and acetic acid-producing fermentations were important to the anaerobic digestion process.

  4. Sorption of toluene by humic acids derived from lake sediment and mountain soil at different pH.

    PubMed

    Chang Chien, S W; Chen, C Y; Chang, J H; Chen, S H; Wang, M C; Mannepalli, Madhava Rao

    2010-05-15

    Contamination of soil and groundwater with BTEX compounds (benzene, toluene, ethylbenzene, and xylene) depends on the sorption behavior of these compounds by soil organic matter (SOM) and humic acids (HAs). In this study sorption of toluene by HAs extracted from lake sediment and mountain soil was investigated. HA suspensions were adjusted to pH 4.00, 6.00, or 8.00 and made to the concentration of 200 mg L(-1). Each HA suspension or solution was subjected to particle size analysis using high performance particle sizer (HPPS). The particle size of HA from lake sediment was around 1000-1200 nm while that from mountain soil was 220-320 nm at suspension pH 4.00. Kinetic studies showed that sorption of toluene by the two HAs followed pseudo-first-order and mainly pseudo-zero-order kinetics. At suspension pH 4.00, the sorption of toluene by the two HAs was best described by Langmuir and Temkin adsorption isotherm models. Further, sorption of toluene by the lake sediment HA was significantly greater than that by mountain soil HA. It was thus suggested that the lake sediment HA with larger particle size may develop beneficially chemical conformation for sorption of toluene and related compounds in soil and associated environments.

  5. Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro

    PubMed Central

    Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K

    2012-01-01

    Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901

  6. Stability of nystatin in mouthrinses; effect of pH temperature, concentration and colloidal silver addition, studied using an in vitro antifungal activity.

    PubMed

    Vermerie, N; Malbrunot, C; Azar, M; Arnaud, P

    1997-08-01

    Alkaline low concentration nystatin mouthrinses extemporanely prepared can be used to treat oropharyngeal candidiasis in immunodeficient patients. However, their expiration dates are not distinctly determined. The stability of nystatin, added (as Mycostatine) at a concentration of 14,400 U/ml in 10-4N hydrochloric acid, purified water and 1.4% injectable sodium hydrogen carbonate with or without 0.002% colloidal silver (an antiseptic agent added because of its known antifungal potency) was studied after storage in tinted glass bottles at 5 degrees C and 22 degrees C over 11 days, and compared with reconstituted 100,000 U/ml aqueous Mycostatine oral suspension. At 2, 4, 7, 9, and 11 days after preparation. Samples were tested for pH, microbial contamination, and assayed by an in vitro microbiological test. Neither significant variation of pH nor microbial contamination were in evidence. Nystatin 14400 U/ml maintained at least 90% of its initial concentration for 4 days in acid at both temperatures, for 7 days (5 degrees C) and 4 days (22 degrees C) in aqueous and alkaline environments, for 9 days (5 degrees C) and 7 days (22 degrees C) in 1.4% injectable sodium hydrogen carbonate containing colloidal silver which showed an antifungal potency. The 100,000 U/ml aqueous Mycostatine oral suspension was stable for 9 days and 4 days at 5 degrees C and 22 degrees C respectively. An ambulant patient can keep a low concentration alkaline antifungal mouthrinse at home for a week at 5 degrees C.

  7. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases

    PubMed

    Espinosa; Bosch; Roses

    2000-11-01

    The pH calibration procedures that lead to the different pH scales in acetonitrile-water mixtures used as mobile phases in reversed-phase liquid chromatography are discussed. Appropriate buffers of known pH value in acetonitrile-water mixtures are selected and used to establish the relationship (delta values) between the two rigorous acetonitrile-water pH scales: sspH and wspH (pH measured in acetonitrile-water mixtures and referred to acetonitrile-water or water, respectively, as standard state). These delta values allow one to convert pH values measured in acetonitrile-water with electrode systems calibrated with aqueous buffers (wspH scale) to sspH values, which are directly related to the thermodynamic acid-base constants. This offers an easy way to measure the pH of acetonitrile-water mobile phases and to relate this pH to the chromatographic retention of acids and bases through the thermodynamic acid-base constants. The relationships are tested for the variation of the retention of acids and bases with the pH of the mobile phase at several mobile-phase compositions and favorably compared with the relationships obtained with the common wwpH scale (pH measured in the aqueous buffer before mixing it with the organic modifier). The use of the rigorous sspH and wspH scales allows one to explain the retention behavior of bases, which in many instances cannot be justified from the pH measurement in the ill-founded wwpH scale. PMID:11080863

  8. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases

    PubMed

    Espinosa; Bosch; Roses

    2000-11-01

    The pH calibration procedures that lead to the different pH scales in acetonitrile-water mixtures used as mobile phases in reversed-phase liquid chromatography are discussed. Appropriate buffers of known pH value in acetonitrile-water mixtures are selected and used to establish the relationship (delta values) between the two rigorous acetonitrile-water pH scales: sspH and wspH (pH measured in acetonitrile-water mixtures and referred to acetonitrile-water or water, respectively, as standard state). These delta values allow one to convert pH values measured in acetonitrile-water with electrode systems calibrated with aqueous buffers (wspH scale) to sspH values, which are directly related to the thermodynamic acid-base constants. This offers an easy way to measure the pH of acetonitrile-water mobile phases and to relate this pH to the chromatographic retention of acids and bases through the thermodynamic acid-base constants. The relationships are tested for the variation of the retention of acids and bases with the pH of the mobile phase at several mobile-phase compositions and favorably compared with the relationships obtained with the common wwpH scale (pH measured in the aqueous buffer before mixing it with the organic modifier). The use of the rigorous sspH and wspH scales allows one to explain the retention behavior of bases, which in many instances cannot be justified from the pH measurement in the ill-founded wwpH scale.

  9. Effect of pH(24h), curing salts and muscle types on the oxidative stability, free amino acids profile and vitamin B2, B3 and B6 content of dry-cured ham.

    PubMed

    Gratacós-Cubarsí, M; Sárraga, C; Castellari, M; Valero, A; García Regueiro, J A; Arnau, J

    2013-12-01

    The effects of a curing salt composition (with and without nitrifying salts), and the pH at 24h postmortem (pH24>6.0, 5.5<pH24<6.0 and pH24<5.5) were evaluated in the Semimembranosus (SM) and Biceps femoris (BF) muscles of pork legs for compositional and nutritional attributes at the end of dry-cured ham ageing. The muscles free amino acid profile (FAA) was not influenced by nitrifying salts. The pH24 was the factor which had the greatest consequences on the dry-cured ham characteristics analysed. The increase in nicotinamide and decrease in pyridoxine by curing salts and the decrease in both vitamins by pH24, had no major effect on the nutritional value of the dry-cured ham because the remaining amounts were within the intervals found in the nutritional data base for dry-cured ham. The results obtained suggested a cooperative action of vitamins B3 and B6 and the antioxidant enzyme system against oxidation. Thiobarbituric acid reactive substances (TBARS) were reduced by the addition of curing salts but were low in all cases, suggesting high antioxidant stability in dry-cured ham which was corroborated by the low volatile aldehyde contents.

  10. Effect of Organic Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

    SciTech Connect

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Ilevbare, G O; Rebak, R B

    2007-08-28

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightly higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

  11. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.

    PubMed

    Başpinar, M Serhat; Kahraman, Erhan; Görhan, Gökhan; Demir, Ismail

    2010-01-01

    The increase of power plant capacity has led to the production of an increasing amount of fly ash that causes high environmental impact in Turkey. Some of the fly ash is utilized within the fired brick industry but high sulfate-containing fly ash creates severe problems during sintering of the fired brick. This study attempted to investigate the potential for converting high sulfate-containing fly ash into useful material for the construction industry by the addition of boric acid. The chemical and mineralogical composition of fly ash and clay were investigated. Boric acid (H(3)BO(3)) was added to fly ash-clay mixtures with up to 5 wt.%. Six different series of test samples were produced by uniaxial pressing. The samples were fired at the industrial clay-brick firing temperatures of 800, 900 and 1000 degrees C. The microstructures of the fired samples were investigated by scanning electron microscopy and some physical and mechanical properties were measured. It was concluded that the firing at conventional brick firing temperature of high sulfate fly ash without any addition of boric acid resulted in very weak strength bricks. The addition of boric acid and clay simultaneously to the high sulfate- containing fly ash brick dramatically increased the compressive strength of the samples at a firing temperature of 1000 degrees C by modifying the sintering behaviour of high sulfate fly ash.

  12. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.

    PubMed

    Başpinar, M Serhat; Kahraman, Erhan; Görhan, Gökhan; Demir, Ismail

    2010-01-01

    The increase of power plant capacity has led to the production of an increasing amount of fly ash that causes high environmental impact in Turkey. Some of the fly ash is utilized within the fired brick industry but high sulfate-containing fly ash creates severe problems during sintering of the fired brick. This study attempted to investigate the potential for converting high sulfate-containing fly ash into useful material for the construction industry by the addition of boric acid. The chemical and mineralogical composition of fly ash and clay were investigated. Boric acid (H(3)BO(3)) was added to fly ash-clay mixtures with up to 5 wt.%. Six different series of test samples were produced by uniaxial pressing. The samples were fired at the industrial clay-brick firing temperatures of 800, 900 and 1000 degrees C. The microstructures of the fired samples were investigated by scanning electron microscopy and some physical and mechanical properties were measured. It was concluded that the firing at conventional brick firing temperature of high sulfate fly ash without any addition of boric acid resulted in very weak strength bricks. The addition of boric acid and clay simultaneously to the high sulfate- containing fly ash brick dramatically increased the compressive strength of the samples at a firing temperature of 1000 degrees C by modifying the sintering behaviour of high sulfate fly ash. PMID:19423597

  13. Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain

    PubMed

    Pennanen; Fritze; Vanhala; Kiikkila; Neuvonen; Baath

    1998-06-01

    Humus samples were collected 12 growing seasons after the start of a simulated acid rain experiment situated in the subarctic environment. The acid rain was simulated with H2SO4, a combination of H2SO4 and HNO3, and HNO3 at two levels of moderate acidic loads close to the natural anthropogenic pollution levels of southern Scandinavia. The higher levels of acid applications resulted in acidification, as defined by humus chemistry. The concentrations of base cations decreased, while the concentrations of exchangeable H+, Al, and Fe increased. Humus pH decreased from 3.83 to 3.65. Basal respiration decreased with decreasing humus pH, and total microbial biomass, measured by substrate-induced respiration and total amount of phospholipid fatty acids (PLFA), decreased slightly. An altered PLFA pattern indicated a change in the microbial community structure at the higher levels of acid applications. In general, branched fatty acids, typical of gram-positive bacteria, increased in the acid plots. PLFA analysis performed on the bacterial community growing on agar plates also showed that the relative amount of PLFA specific for gram-positive bacteria increased due to the acidification. The changed bacterial community was adapted to the more acidic environment in the acid-treated plots, even though bacterial growth rates, estimated by thymidine and leucine incorporation, decreased with pH. Fungal activity (measured as acetate incorporation into ergosterol) was not affected. This result indicates that bacteria were more affected than fungi by the acidification. The capacity of the bacterial community to utilize 95 different carbon sources was variable and only showed weak correlations to pH. Differences in the toxicities of H2SO4 and HNO3 for the microbial community were not found.

  14. Effect of salicylic acid upon trace-metal sorption (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite as a function of pH

    SciTech Connect

    Benyahya, L.; Garnier, J.M.

    1999-05-01

    The sorption of four trace metals (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite, in the presence or absence of salicylic acid was investigated in batch experiments in the pH range from 4 to 9. The sorption was interpreted in terms of surface complexation using the diffuse layer model (DLM). Equilibrium parameters were optimized using the FITEQL program. The salicylic acid was only significantly sorbed onto the alumina and the sorption was modeled using the anionic monodentate surface complex. In the absence of salicylic acid, the sorption of the trace metals presented different pH edge behaviors, depending on the substrate. Using the cationic monodendate surface complex, the model fitted the experimental data well. In the presence of salicylic acid, at a given pH and depending on the substrate, the sorption of metals was (1) increased, suggesting the occurrence of ternary complexes; (2) reduced (sometimes totally inhibited), due to the complexation with dissolved salicylic acid; or (3) very weakly changed in terms of net effect compared to free-organic-ligand systems. Modeling of the trace-metal sorption in the presence of salicylic acid was performed using ternary surface complexes. In the acidic pH range, this allowed the experimental data to be simulated, but in the alkaline pH range, the model failed to simulate the decrease in sorption. Probable causes of the discrepancies between the experimental data and modeling results are discussed.

  15. Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. [Lactobacillus; Clostridium; Sarcina ventriculi

    SciTech Connect

    Goodwin, S.; Zeikus, G.J.

    1987-01-01

    The dynamics of anaerobic digestion were examined in the low-pH sediments of Crystal Bog in Wisconsin. The sediments (pH 4.9) contained 71% organic matter and the following concentrations of dissolved gases (micromoles per liter):CO/sub 2/, 1140; CH/sub 4/, 490; and H/sub 2/, 0.01. The rate of methane production was 6.2 ..mu..mol/liter of sediment per h, which is slower than eutrophic, neutral sediments. Microbial metabolic processes displayed the following pH optima: hydrolysis reactions, between 4.2 and 5.6; aceticlastic methanogenesis, 5.2; and hydrogen-consuming reactions, 5.6. The turnover rate constants for key intermediary metabolites were (h/sup -1/): glucose, 1.10; lactate, 0.277; acetate, 0.118; and ethanol, 0.089. The populations of anaerobes were low, with hydrolytic groups (10/sup 6//ml) several orders of magnitude higher than methanogens (10/sup 2//ml). The addition of carbon electron donors to the sediment resulted in the accumulation of hydrogen, whereas the addition of hydrogen resulted in the accumulation of fatty acids and the inhibition of hydrogen-producing acetogenic reactions. Strains of Lactobacillus, Clostridium, and Sarcina ventriculi were isolated from the bog, and their physiological attributes were characterized in relation to hydrolytic process functions in the sediments. The present studies provide evidence that the pH present in the bog sediments alter anaerobic digestion processes s, that total biocatalytic activity is lower bu the general carbon and electron flow pathways are similar to those of neutral anoxic sediments.

  16. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  17. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  18. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.

    PubMed

    Peretyazhko, Tanya S; Zhang, Qingbo; Colvin, Vicki L

    2014-10-21

    Silver nanoparticles (Ag(NP)) are widely utilized in increasing number of medical and consumer products due to their antibacterial properties. Once released to aquatic system, Ag(NP) undergoes oxidative dissolution leading to production of toxic Ag(+). Dissolved Ag(+) can have a severe impact on various organisms, including indigenous microbial communities, fungi, alga, plants, vertebrates, invertebrates, and human cells. Therefore, it is important to investigate fate of Ag(NP) and determine physico-chemicals parameters that control Ag(NP) behavior in the natural environment. Nanoparticle size might have a dominant effect on Ag(NP) dissolution in natural waters. In this work, we investigated size-dependent dissolution of AgNP exposed to ultrapure deionized water (pH ≈ 7) and acetic acid (pH 3) and determined changes in nanoparticle size after dissolution. Silver nanoparticles stabilized by thiol functionalized methoxyl polyethylene glycol (PEGSH) of 6 nm (Ag(NP_)6), 9 nm (Ag(NP_)9), 13 nm (Ag(NP_)13), and 70 nm (Ag(NP_)70) were prepared. The results of dissolution experiments showed that the extent of AgNP dissolution in acetic acid was larger than in water. Solubility of Ag(NP) increased with the size decrease and followed the order Ag(NP_)6 > Ag(NP_)9 > Ag(NP_)13 > Ag(NP_)70 in both water and acetic acid. Transmission electron microscopy (TEM) was applied to characterize changes in size and morphology of the AgNP after dissolution in water. Analysis of Ag(NP) by TEM revealed that the particle morphology did not change during dissolution. The particles remained approximately spherical in shape, and no visible aggregation was observed in the samples. TEM analysis also demonstrated that Ag(NP_)6, Ag(NP_)9, and Ag(NP_)13 increased in size after dissolution likely due to Ostwald ripening. PMID:25265014

  19. Desorption of 137Cs from Brachythecium mildeanum moss using acid solutions with pH 4.60-6.50

    NASA Astrophysics Data System (ADS)

    Čučulović, Ana; Veselinović, Dragan

    2015-12-01

    The desorption of 137Cs from the moss Brachythecium mildeanum (Schimp.) was performed using the following solutions: H2SO4 ( I), HNO3 ( II), H2SO4 + HNO3 ( III) with pH values of 4.60, 5.15, and 5.75, respectively, as well as distilled water (D) with pH 6.50. After five successive desorptions, each lasting 24 h, 20.5-37.6% 137Cs was desorbed from the moss using these solutions, while 30.7% of the starting content was desorbed using distilled water. The first desorption removed the highest percent of the original content of 137Cs in the moss (11.3-18.4%). This was determined by measuring 137Cs activity. If the current results are compared with those obtained earlier it may be concluded that 137Cs desorption from mosses is not species-dependent. The obtained results indicate the necessity of investigating the influence of acid rain, or rather, of H+ ions, on desorption of other ions from biological systems, i.e., the role of H+ ions in spreading other polluting compounds and thus producing secondary environmental pollution. From the results of this study it follows that acid rain will lead, through H+ ion action, to a similar increasing pollution of fallout waters with other ionic compounds which may not be present in the water before the contact with the plants and thus enable the pollution spreading. In the investigated system, the replacement of H+ ions from acid rains by more dangerous radioactive ions occured, increasing the concentration of the radioactive ions in the water, which demonstrates that the same process takes place in fallout water.

  20. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    PubMed

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.

  1. Stereo- and Temporally Controlled Coordination Polymerization Triggered by Alternating Addition of a Lewis Acid and Base.

    PubMed

    Liu, Bo; Cui, Dongmei; Tang, Tao

    2016-09-19

    Significant progress has been made with regard to temporally controlled radical and ring-opening polymerizations, for example, by means of chemical reagents, light, and voltage, whereas quantitative switch coordination polymerization is still challenging. Herein, we report the temporally and stereocontrolled 3,4-polymerization of isoprene through allosterically regulating the active metal center by alternating addition of Lewis basic pyridine to "poison" the Lewis acidic active metal species through acid-base interactions and Lewis acidic Al(i) Bu3 to release the original active species through pyridine abstraction. This process is quick, quantitative, and can be repeated multiple times while maintaining high 3,4-selectivity. Moreover, this strategy is also effective for the switch copolymerization of isoprene and styrene with dual 3,4- and syndiotactic selectivity. Tuning the switch cycles and intervals enables the isolation of various copolymers with different distributions of 3,4-polyisoprene and syndiotactic polystyrene sequences. PMID:27539866

  2. The effect of diamic acid additives on the dielectric constant of polyimides

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M.; St. Clair, Anne K.

    1988-01-01

    The effect of six selected diamic acids additives (including 2,2-prime bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride-aniline (An); 4,4-prime-oxydiphthalic anhydride-An, 3,3-prime diaminodiphenyl sulfone-phthalic anhydride (PA); 4,4-prime-oxydianiline-PA; 2,2-bis 4(4-aminophenoxy)phenyl hexafluoropropane-PA; and 2,2-bis 4(3-aminophenoxy)phenyl hexafluoropropane-PA) on the dielectric constants of low-dielectric-constant polyimide resins was evaluated. It was found that the effect of the incorporation of the diamic acids on reducing the dielectric constant of polyimides may be limited as the dielectric constant of the base resin itself becomes very low. The additives were found to lower the resin's values of glass transition temperature, with no effect on thermooxidative stability.

  3. Rhodium-catalyzed asymmetric addition of arylboronic acids to cyclic N-sulfonyl ketimines towards the synthesis of α,α-diaryl-α-amino acid derivatives.

    PubMed

    Takechi, Ryosuke; Nishimura, Takahiro

    2015-05-01

    Rhodium/chiral diene complex-catalyzed asymmetric addition of arylboronic acids to cyclic ketimines having an ester group proceeded to give the corresponding α-amino acid derivatives in high yields with high enantioselectivity. The cyclic amino acid derivative was transformed into a linear α,α-diaryl-substituted α-N-methylamino acid ester.

  4. Modeling the effects of sodium chloride, acetic acid and intracellular pH on the survival of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primar...

  5. Effects of the addition of dimer acid alkyl esters on the properties of ethyl cellulose.

    PubMed

    Lee, Sangjun; Ko, Kwang-Hwan; Shin, Jihoon; Kim, Nam-Kyun; Kim, Young-Wun; Kim, Joon-Seop

    2015-05-01

    In this study, we synthesized dimer acid (DA) esters, having short to long alkyl chains, (DA-Cn) by the Diels-Alder reaction and subsequent esterification reaction of fatty acids that were prepared by the hydrolysis of waste vegetable oil. It was found that the DA-Cn were thermally more stable than common petroleum-based plasticizer DOP. When the DOP, DA, or DA-Cn with short alkyl chains were added to ethyl cellulose (EC), the optical clarity and SEM images of the samples showed their good miscibility with those additives in a micro-scale. It was also found that the rubbery modulus of the EC decreased with increasing amount of additives; the type of the additives did not affect the rates of the decrease in the rubbery modulus. The main transition temperatures of the EC containing either DA or DA-C1 or DA-C4 decreased with increasing amounts of those additives and were comparable to that of the DOP-containing EC. The above findings suggested that the DA and its esters with short alkyl chains could act as effective plasticizer and, thus, could be used instead of the DOP. In addition, the results obtained from tensile testing and leaching experiments implied that the DA might be better plasticizer than the DA-C1 and DA-C4, at least in some cases, because of hydrogen-bonding with the EC.

  6. Estimated daily intake of benzoic acid through food additives in adult population of South East Serbia.

    PubMed

    Lazarević, Konstansa; Stojanović, Dusica; Rancić, Natasa

    2011-12-01

    The aim of this study is to estimate dietary intake of benzoic acid and its salts through food additives in adult population of South East Serbia. Information on dietary intake among 620 adults (aged 18-65) was collected using a food frequency questionnaire, and 748 food samples were analyzed. The mean estimated intake of benzoic acid -0.32 mg/kg of body weight (bw) per day was below acceptable daily intake (ADI). Dietary exposure to benzoic acid (0.36 mg/kg of bw/day; 7.2% ADI) (consumer only), also did not exceed ADI. The main contributors of benzoic acid to dietary intake were non alcoholic beverages (43.1%), ketchup and tomato products (36.1%), and domestic pickled vegetables (19.4%). The results of this study indicate that dietary exposure to benzoic acid and its salts through food preservatives does not represent a public health risk for the adult population of South East Serbia. PMID:22432399

  7. Ingested acidic food and liquids may lead to misinterpretation of 24-hour ambulatory pH tests: focus on measurement of extra-esophageal reflux.

    PubMed

    Koskenvuo, Juha W; Pärkkä, Jussi P; Hartiala, Jaakko J; Kinnunen, Ilpo; Peltola, Matti; Sala, Eeva

    2007-07-01

    Normal values of extra-esophageal reflux are difficult to determine owing to variation in the location of the proximal electrode, limited information on the ingestion of acidic food, different exclusion periods for meals, and poor reproducibility of measurement of extra-esophageal reflux. We studied whether ambulatory esophageal pH testing is disturbed by acidic food ingestion. Eighteen healthy subjects were enrolled in standard dual-channel esophageal pH tests (recorder 1). Ten subjects were equipped with another pH device (recorder 2), positioned to measure extra-esophageal reflux. The subjects were exposed to controlled ingestion of different acidic food or liquid for five 1-min periods. The present study showed that acidic food ingestion for 5 min has a significant effect on the outcome of standard dual-channel ambulatory pH testing. Reflux occurs equally on proximal channels during ingestion of acidic food, whether the proximal channel position is normal or 2 cm above the upper esophageal sphincter. We recommend avoiding acidic food intake during esophageal pH testing.

  8. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  9. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    PubMed

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated.

  10. Effects of Ethanol Addition on the Efficiency of Subcritical Water Extraction of Proteins and Amino Acids from Porcine Placenta

    PubMed Central

    2015-01-01

    In a previous study, hydrolysates of porcine placenta were obtained and the extraction efficiency for proteins and amino acids was compared between sub- and super-critical water extraction systems; optimum efficiency was found to be achieved using subcritical water (170℃, 10 bar). In this study, the effects of adding ethanol to the subcritical water system were investigated. The lowest-molecular-weight extraction product detected weighed 434 Da, and the efficiency of extraction for low-molecular-weight products was increased when either the concentration of ethanol was decreased, or the extraction time was lengthened from 10 min to 30 min. The highest concentration of free amino acids (approximately 8 mM) was observed following 30 min extraction using pure distilled water. The concentration of free amino acids was significantly lower when ethanol was added or a shorter extraction time was used (p<0.05). Color change of the solution following extraction was measured. There were no significant differences in color between lysates produced with different extraction times when using distilled water (p>0.05); however, using different extraction times produced significant differences in color when using 20% or 50% ethanol solution for subcritical extraction (p<0.05). The range of pH for the hydrolysate solutions was 6.4-7.5. In conclusion, the investigated extraction system was successful in the extraction of ≤ 500 Da hydrolysates from porcine placenta, but addition of ethanol did not yield higher production of low-molecular-weight hydrolysates than that achieved by DW alone. PMID:26761837

  11. Effects of Ethanol Addition on the Efficiency of Subcritical Water Extraction of Proteins and Amino Acids from Porcine Placenta.

    PubMed

    Park, Sung Hee; Kim, Jae-Hyeong; Min, Sang-Gi; Jo, Yeon-Ji; Chun, Ji-Yeon

    2015-01-01

    In a previous study, hydrolysates of porcine placenta were obtained and the extraction efficiency for proteins and amino acids was compared between sub- and super-critical water extraction systems; optimum efficiency was found to be achieved using subcritical water (170℃, 10 bar). In this study, the effects of adding ethanol to the subcritical water system were investigated. The lowest-molecular-weight extraction product detected weighed 434 Da, and the efficiency of extraction for low-molecular-weight products was increased when either the concentration of ethanol was decreased, or the extraction time was lengthened from 10 min to 30 min. The highest concentration of free amino acids (approximately 8 mM) was observed following 30 min extraction using pure distilled water. The concentration of free amino acids was significantly lower when ethanol was added or a shorter extraction time was used (p<0.05). Color change of the solution following extraction was measured. There were no significant differences in color between lysates produced with different extraction times when using distilled water (p>0.05); however, using different extraction times produced significant differences in color when using 20% or 50% ethanol solution for subcritical extraction (p<0.05). The range of pH for the hydrolysate solutions was 6.4-7.5. In conclusion, the investigated extraction system was successful in the extraction of ≤ 500 Da hydrolysates from porcine placenta, but addition of ethanol did not yield higher production of low-molecular-weight hydrolysates than that achieved by DW alone. PMID:26761837

  12. Continuous monitoring of salivary flow rate and pH at the surface of the dentition following consumption of acidic beverages.

    PubMed

    Millward, A; Shaw, L; Harrington, E; Smith, A J

    1997-01-01

    Use of a splint-mounted flexible pH electrode has allowed reliable continuous monitoring of pH at the surface of the dentition whilst still enabling subjects to drink normally. pH was monitored at the palatal upper left central incisor and upper right first permanent molar sites after drinking 1% (w/v) citric acid. A maximal decrease in pH to values of 2-3 was observed after 1 min followed by a slower recovery which was above pH 5.5 within 2 min at the former site and in 4-5 min at the latter site. A sharp rise in parotid saliva flow rate was seen at 1 min after drinking the same concentration of citric acid by glass, straw or feeder cup, which returned to resting levels within 6 min although the fall-off of flow rate was slower with the feeder cup. Thus, after dietary acid intake the pH at the surface of the dentition is below the critical pH for enamel dissolution for shorter periods than previously suggested, which is probably a reflection of salivary neutralisation and washing. PMID:8955994

  13. Effect of protein concentration, pH, lactose content and pasteurization on thermal gelation of acid caprine whey protein concentrates.

    PubMed

    Bordenave-Juchereau, Stéphanie; Almeida, Bruno; Piot, Jean-Marie; Sannier, Frédéric

    2005-02-01

    The influence of pH (4.5-6.5), sodium chloride content (125-375 mM), calcium chloride content (10-30 mM), protein concentration (70-90 g/l) and lactose content on the gel hardness of goat whey protein concentrate (GWPC) in relation to the origin of the acid whey (raw or pasteurized milk) was studied using a factorial design. Gels were obtained after heat treatment (90 degrees C, 30 min). Gel hardness was measured using texture analyser. Only protein concentration and pH were found to have a statistically significant effect on the gel hardness. An increase in the protein concentration resulted in an increase in the gel hardness. GWPC containing 800g/kg protein formed gels with a hardness maximum at the pHi, whereas GWPC containing 300 g/kg protein did not form true gels. Whey from pasteurized milk formed softer gels than whey from raw milk. A high lactose content (approximately 360 g/kg) also reduced the gelation performance of GWPC. PMID:15747729

  14. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate.

    PubMed

    Jiang, Jianguo; Zhang, Yujing; Li, Kaimin; Wang, Quan; Gong, Changxiu; Li, Menglu

    2013-09-01

    The effects of pH, temperature, and organic loading rate (OLR) on the acidogenesis of food waste have been determined. The present study investigated their effects on soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), volatile solids (VS), and ammonia nitrogen (NH4(+)-N). Both the concentration and yield of VFAs were highest at pH 6.0, acetate and butyrate accounted for 77% of total VFAs. VFAs concentration and the VFA/SCOD ratio were highest, and VS levels were lowest, at 45 °C, but the differences compared to the values at 35 °C were slight. The concentrations of VFAs, SCOD, and NH4(+)-N increased as OLR increased, whereas the yield of VFAs decreased from 0.504 at 5 g/Ld to 0.306 at 16 g/Ld. Acetate and butyrate accounted for 60% of total VFAs. The percentage of acetate and valerate increased as OLR increased, whereas a high OLR produced a lower percentage of propionate and butyrate.

  15. Kinetics of Antibody Aggregation at Neutral pH and Ambient Temperatures Triggered by Temporal Exposure to Acid.

    PubMed

    Imamura, Hiroshi; Honda, Shinya

    2016-09-15

    The purification process of an antibody in manufacturing involves temporal exposure of the molecules to low pH followed by neutralization-pH-shift stress-which causes aggregation. It remains unclear how aggregation triggered by pH-shift stress grows at neutral pH and how it depends on the temperature in an ambient range. We used static and dynamic light scattering to monitor the time-dependent evolution of the aggregate size of the pH-shift stressed antibody between 4.0 and 40.0 °C. A power-law relationship between the effective molecular weight and the effective hydrodynamic radius was found, indicating that the aggregates were fractal with a dimension of 1.98. We found that the aggregation kinetics in the lower-temperature range, 4.0-25.0 °C, were well described by the Smoluchowski aggregation equation. The temperature dependence of the effective aggregation rate constant gave 13 ± 1 kcal/mol of endothermic activation energy. Temporal acid exposure creates an enriched population of unfolded protein molecules that are competent of aggregating. Therefore, the energetically unfavorable unfolding step is not required and the aggregation proceeds faster. These findings provide a basis for predicting the growth of aggregates during storage under practical, ambient conditions. PMID:27537343

  16. Efficient interrupting skills of amino acid metallointercalators with DNA at physiological pH: Evaluation of biological assays

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Selvaganapathy, Muthusamy; Radhakrishnan, Srinivasan

    2014-06-01

    The 4-aminoantipyrine derivatives (sbnd NO2, sbnd OCH3) and their mixed-ligand complexes with amino acids have been synthesized and investigated for their binding with CT DNA using UV-visible spectroscopy, cyclic voltammetry, and viscosity measurements under physiological conditions of pH (stomach 4.7; blood 7.4). The results from all techniques i.e. binding constant (Kb), and free energy change (ΔG) were in good agreement and inferred spontaneous compound-DNA complexes formation via intercalation. Among all the compounds 1 and 4 showed comparatively greater binding at pH 7.4 as evident from its greater Kb values. All the complexes exhibit oxidative cleavage of supercoiled (SC) pBR322 plasmid DNA in the presence of H2O2 as an activator. It is remarkable that at 25 μM concentration 1 and 4 completely degrade SC DNA into undetectable minor fragments and thus they act as efficient chemical nucleases. Among the new complexes, complexes 1 and 4 have highest potential against all the microorganisms tested. The results of the above biological experiments also reveal that the choice of different metal ions has little influence on the DNA binding, DNA cleavage and antimicrobial assay.

  17. Isotope fractionation of Si in protonation/deprotonation reaction of silicic acid: A new pH proxy

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiyuki; Pringle, Emily A.; Chaussidon, Marc; Moynier, Frédéric

    2015-11-01

    Isotopic fractionation of Si in protonation/deprotonation reactions of monomeric silicic acids was theoretically and experimentally studied. The reduced partition function ratio for Si (as 1000 ln β) complexes was theoretically estimated by ab initio methods. Three permil of isotope fractionation was estimated to be possible for the 28Si-30Si isotope pair. This prediction was experimentally demonstrated by multi-collector inductively coupled plasma mass spectrometer measurements of Si-bearing aqueous solutions, for which equilibrated Si(OH)4 and SiO(OH)3- were separated using an anionic exchange column. The results create a new possibility for the application of Si isotopes as proxies for paleo-pH in the 9 < pH < 12 range.

  18. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  19. The binding of CpG-oligodeoxynucleotides to cell-surface and its immunostimulatory activity are modulated by extracellular acidic pH.

    PubMed

    Hu, Zhenlin; Sun, Shuhan; Zhou, Fengjuan

    2003-01-17

    Both the binding of CpG-oligodeoxynucleotides (CpG-ODNs) to cell-surface and its immunostimulatory activity were modulated by extracellular pH in present study. At neutral pH (pH 7.4), the binding of CpG-ODN to splenocyte-surface, as well as that of non-CpG-ODN, was competitively inhibited by non-specific DNA-Herring sperm DNA in a dose dependent manner, indicating their binding sites have no specificity for CpG-motif. When the extracellular pH shifted to acidic (pH 6.4), however, their binding to cell-surface markedly increased, and only the binding of non-CpG-ODN instead of CpG-ODN was inhibited by Herring sperm DNA, implying such pH change enabled CpG-ODN bind to its specific binding-site. Consistently, lymphocytes appeared more sensitive to the stimulation of CpG-ODN at acidic pH, and Herring sperm DNA inhibited the CpG-ODN-induced TNF production from splenocytes at pH 7.4, but not at pH 6.4. These results suggest the existence of membrane receptor that specifically engages CpG-ODN with high affinity only at acidic pH, and support the hypothesis that the binding CpG-ODN to its specific membrane receptor and subsequently triggering of CpG-related signaling occurred within acidified endosomes.

  20. Sorption behavior of 17 phthalic acid esters on three soils: effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study.

    PubMed

    Yang, Fen; Wang, Meng; Wang, Zunyao

    2013-09-01

    This work studies the sorption behaviors of phthalic acid esters (PAEs) on three soils by batch equilibration experiments and quantitative structure property relationship (QSPR) methodology. Firstly, the effects of soil type, dissolved organic matter and pH on the sorption of four PAEs (DMP, DEP, DAP, DBP) are investigated. The results indicate that the soil organic carbon content has a crucial influence on sorption progress. In addition, a negative correlation between pH values and the sorption capacities was found for these four PAEs. However, the effect of DOM on PAEs sorption may be more complicated. The sorption of four PAEs was promoted by low concentrations of DOM, while, in the case of high concentrations, the influence of DOM on the sorption was complicated. Then the organic carbon content normalized sorption coefficient (logKoc) values of 17 PAEs on three soils were measured, and the mean values ranged from 1.50 to 7.57. The logKoc values showed good correlation with the corresponding logKow values. Finally, two QSPR models were developed with 13 theoretical parameters to get reliable logKoc predictions. The leave-one-out cross validation (CV-LOO) indicated that the internal predictive power of the two models was satisfactory.

  1. The role of calcium ions in the photocatalytic oxidation of humic acid at neutral pH.

    PubMed

    Mariquit, Eden G; Salim, Chris; Hinode, Hirofumi

    2008-10-01

    Humic acids (HAs) are natural organic matter derived from the decomposition of plant, algal, and microbial materials. They belong to the group of the most predominant type of natural organic matter present in ground and surface waters. HAs affect the mobility and bioavailability of aquatic contaminants. However, if they are left unremoved from the water before water treatment processes, they can form carcinogenic disinfection by-products, such as trihalomethanes, haloacetic acids, and other halogenated disinfection by-products, that can pose a threat to human beings. An advanced oxidation process using UV light and a commercially available titanium dioxide was used to oxidize HA at a pH that is similar to that of natural water. The effect of adding calcium ions to the adsorption and the photocatalytic oxidation of HAs was studied. The effect of varying the TiO(2) load was also investigated. The experiment was done using a photochemical batch reactor equipped with a mercury lamp emitting light with wavelengths of 310-580 nm. The absorbances by the samples were determined at wavelengths of 254 nm and 436 nm, which represent the aromatic-compound content of and the color of the solution, respectively. Results indicated calcium ions have an effect on both the adsorption and the photocatalytic oxidation of HA at a pH within 8.0 +/- 0.5. Calcium ions facilitated adsorption of HA onto the surface of TiO(2) and resulted to faster photocatalytic oxidation. The data were plotted with respect to the normalized absorbances and irradiation time. PMID:18991939

  2. Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection.

    PubMed

    Fernández-Rubio, C; Ordóñez, C; Abad-González, J; Garcia-Gallego, A; Honrubia, M Pilar; Mallo, J Jose; Balaña-Fouce, R

    2009-05-01

    Sodium butyrate is a sodium salt of a volatile short-chain fatty acid (butyric acid) used to prevent Salmonella Enteritidis infection in birds. Three groups of fifty 1-d-old broilers each were fed the following diets: T0 = standard broiler diet (control); T1 = standard broiler diet supplemented with 0.92 g/kg of an additive with free sodium butyrate (Gustor XXI B92); and T2 = standard broiler diet supplemented with 0.92 g/kg of an additive with sodium butyrate partially protected with vegetable fats (Gustor XXI BP70). Twenty percent of the birds were orally infected with Salmonella Enteritidis at d 5 posthatching and fecal Salmonella shedding was assessed at d 6, 9, 13, 20, 27, 34, and 41 of the trial. At d 42, all birds were slaughtered and 20 of them dissected: crop, cecum, liver, and spleen were sampled for bacteriological analyses. Both butyrate-based additives showed a significant reduction (P < 0.05) of Salmonella Enteritidis infection in birds from d 27 onward. However, the partially protected butyrate additive was more effective at the late phase of infection. Partially protected butyrate treatment successfully decreased infection not only in the crop and cecum but also in the liver. There were no differences in the spleen. These results suggest that sodium butyrate partially protected with vegetable fats offers a unique balance of free and protected active substances effective all along the gastrointestinal tract because it is slowly released during digestion.

  3. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage.

    PubMed

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor A P; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-06-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including 'ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called 'ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  4. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    PubMed Central

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor AP; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  5. Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes.

    PubMed

    Meier, Jutta; Piva, Angela; Fortin, Danielle

    2012-01-01

    Acid mine drainage sites are extreme environments with high acidity and metal ion concentrations. Under anoxic conditions, microbial sulfate reduction may trigger the formation of secondary minerals as a result of H2S production and pH increase. This process was studied in batch experiments with enrichment cultures from acidic sediments of a pit lake using growth media set at different pH values and containing elevated concentrations of Fe²⁺ and Al³⁺. At initial pH values of 5 and 6, sulfate reduction occurred shortly after inoculation. Sulfate- reducing bacteria affiliated to the genus Desulfosporosinus predominated the microbial communities as shown by 16S rRNA gene analysis performed at the end of the incubation. At initial pH values of 3 and 4, sulfate reduction and cell growth occurred only after an extended lag phase, however, at a higher rate than in the less acidic assays. At the end of the growth phase, enrichments were dominated by Thermodesulfobium spp. suggesting that these sulfate reducers were better adapted to acidic conditions. Iron sulfides in the bulk phase were common in all assays, but specific aluminum precipitates formed in close association with cell surfaces and may function as a detoxification mechanism of dissolved Al species at low pH.

  6. Bilayers at High pH in the Fatty Acid Soap Systems and the Applications for the Formation of Foams and Emulsions.

    PubMed

    Xu, Wenlong; Zhang, Heng; Zhong, Yingping; Jiang, Liwen; Xu, Mengxin; Zhu, Xionglu; Hao, Jingcheng

    2015-08-20

    In our previous work, we reported bilayers at high pH in the stearic acid/CsOH/H2O system, which was against the traditional viewpoint that fatty acid (FA) bilayers must be formed at the pKa of the fatty acid. Herein, the microstructures at high pH of several fatty acid soap systems were investigated systematically. We found that palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O, and stearic acid/CsOH/H2O systems can form bilayers at high pH. The bilayer structure was demonstrated by cryogenic transmission electron microscopy (cryo-TEM) and deuterium nuclear magnetic resonance ((2)H NMR), and molecular dynamics simulation was used to confirm the formation of bilayers. The influence of fatty acids with different chain lengths (n = 10, 12, 14, 16, and 18) and different counterions including Li(+), Na(+), K(+), Cs(+), (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) on the formation of bilayers was discussed. The stability of foam and emulsification properties were compared between bilayers and micelles, drawing the conclusion that bilayer structures possess a much stronger ability to foam and stronger emulsification properties than micelles do.

  7. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  8. Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1983-01-01

    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.

  9. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus

    PubMed Central

    Dvorak, Katerina; Payne, Claire M; Chavarria, Melissa; Ramsey, Lois; Dvorakova, Barbora; Bernstein, Harris; Holubec, Hana; Sampliner, Richard E; Guy, Naihsuan; Condon, Amanda; Bernstein, Carol; Green, Sylvan B; Prasad, Anil; Garewal, Harinder S

    2007-01-01

    Background Barrett's oesophagus is a premalignant condition associated with an increased risk for the development of oesophageal adenocarcinoma (ADCA). Previous studies indicated that oxidative damage contributes to the development of ADCA. Objective To test the hypothesis that bile acids and gastric acid, two components of refluxate, can induce oxidative stress and oxidative DNA damage. Methods Oxidative stress was evaluated by staining Barrett's oesophagus tissues with different degrees of dysplasia with 8‐hydroxy‐deoxyguanosine (8‐OH‐dG) antibody. The levels of 8‐OH‐dG were also evaluated ex vivo in Barrett's oesophagus tissues incubated for 10 min with control medium and medium acidified to pH 4 and supplemented with 0.5 mM bile acid cocktail. Furthermore, three oesophageal cell lines (Seg‐1 cells, Barrett's oesophagus cells and HET‐1A cells) were exposed to control media, media containing 0.1 mM bile acid cocktail, media acidified to pH 4, and media at pH 4 supplemented with 0.1 mM bile acid cocktail, and evaluated for induction of reactive oxygen species (ROS). Results Immunohistochemical analysis showed that 8‐OH‐dG is formed mainly in the epithelial cells in dysplastic Barrett's oesophagus. Importantly, incubation of Barrett's oesophagus tissues with the combination of bile acid cocktail and acid leads to increased formation of 8‐OH‐dG. An increase in ROS in oesophageal cells was detected after exposure to pH 4 and bile acid cocktail. Conclusions Oxidative stress and oxidative DNA damage can be induced in oesophageal tissues and cells by short exposures to bile acids and low pH. These alterations may underlie the development of Barrett's oesophagus and tumour progression. PMID:17145738

  10. Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage.

    PubMed

    Cao, Y; Cai, Y; Takahashi, T; Yoshida, N; Tohno, M; Uegaki, R; Nonaka, K; Terada, F

    2011-08-01

    The objective of this study was to determine the effect of beet pulp (BP) and lactic acid bacteria (LAB) on silage fermentation quality and in vitro ruminal dry matter (DM) digestion of vegetable residues, including white cabbage, Chinese cabbage, red cabbage, and lettuce. Silage was prepared using a small-scale fermentation system, and treatments were designed as control silage without additive or with BP (30% fresh matter basis), LAB inoculant Chikuso-1 (Lactobacillus plantarum, 5mg/kg, fresh matter basis), and BP+LAB. In vitro incubation was performed using rumen fluid mixed with McDougall's artificial saliva (at a ratio of 1:4, vol/vol) at 39°C for 6h to determine the ruminal fermentability of the vegetable residue silages. These vegetable residues contained high levels of crude protein (20.6-22.8% of DM) and moderate levels of neutral detergent fiber (22.7-33.6% of DM). In all silages, the pH sharply decreased and lactic acid increased, and the growth of bacilli, coliform bacteria, molds, and yeasts was inhibited by the low pH at the early stage of ensiling. The silage treated with BP or LAB had a lower pH and a higher lactic acid content than the control silage. After 6h of incubation, all silages had relatively high DM digestibility (38.6-44.9%); in particular, the LAB-inoculated silage had the highest DM digestibility and the lowest methane production. The vegetable residues had high nutritional content and high in vitro DM digestibility. Also, both the addition of a LAB inoculant and moisture adjustment with BP improved the fermentation quality of the vegetable residue silages. In addition, LAB increased DM digestibility and decreased ruminal methane production. PMID:21787927

  11. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  12. The Influence of Prefermentative Addition of Gallic Acid on the Phenolic Composition and Chromatic Characteristics of Cabernet Sauvignon Wines.

    PubMed

    Liu, Yue; Zhang, Bo; He, Fei; Duan, Chang-Qing; Shi, Ying

    2016-07-01

    In this study, the prefermentative addition of gallic acid in Cabernet Sauvignon red winemaking was performed. The influence of gallic acid addition on wine phenolic composition, the ratio of copigmentation, and the color parameters were monitored throughout the winemaking process. The results showed that the prefermentative addition of gallic acid enhanced the extraction of total anthocyanins and the copigmentation effect, producing wines with more darkness, redness, yellowness, and saturation. Moreover, the addition of gallic acid contributed to the concentration of total phenolic acids. However, it had a negative effect on the concentrations of flavonols and flavan-3-ols in the final wines. Thus, the prefermentative addition of gallic acid at appropriate levels might be a promising enological technology to obtain wines with high color quality and aging potential.

  13. Spectroscopic studies of nucleic acid additions during seed-mediated growth of gold nanoparticles

    PubMed Central

    Tapp, Maeling; Sullivan, Rick; Dennis, Patrick; Naik, Rajesh R.

    2015-01-01

    The effect of adding nucleic acids to gold seeds during the growth stage of either nanospheres or nanorods was investigated using UV-Vis spectroscopy to reveal any oligonucleotide base or structure-specific effects on nanoparticle growth kinetics or plasmonic signatures. Spectral data indicate that the presence of DNA duplexes during seed ageing drastically accelerated nanosphere growth while the addition of single-stranded polyadenine at any point during seed ageing induces nanosphere aggregation. For seeds added to a gold nanorod growth solution, single-stranded polythymine induces a modest blue-shift in the longitudinal peak wavelength. Moreover, a particular sequence comprised of 50% thymine bases was found to induce a faster, more dramatic blue-shift in the longitudinal peak wavelength compared to any of the homopolymer incubation cases. Monomeric forms of the nucleic acids, however, do not yield discernable spectral differences in any of the gold suspensions studied. PMID:25960601

  14. Effects of solvent, pH, salts and resin fatty acids on the dechlorination of pentachlorophenol using magnesium-silver and magnesium-palladium bimetallic systems.

    PubMed

    Patel, Upendra D; Suresh, Sumathi

    2008-08-15

    The effects of pH, organic co-solvent, salts such as sodium chloride, sodium sulfate, and co-pollutants, resin and fatty acids (RFAs) on the dechlorination of pentachlorophenol (PCP) by magnesium/silver (Mg/Ag) and magnesium/palladium (Mg/Pd) systems were examined in the present investigations. Such studies provide relevant information about the applicability of bimetallic systems for remediation of raw wastewaters (such as pulp bleaching effluents) or groundwater. Removal efficiencies of 10 mg L(-1) PCP by Mg/Pd and Mg/Ag systems at the end of 1 h reaction were 93% and 78%, respectively, in the presence of acetone (1% v/v). On the other hand, the removal efficiencies were 86% and 70% for reactions conducted in alcoholic solvents (1% v/v) using Mg/Pd and Mg/Ag systems, respectively. The efficiencies of PCP removal by the two bimetallic systems could be correlated to the dipole moments of co-solvents used. The second order reaction rate constant for PCP removal by Mg/Ag system was highest (0.03 L mg(-1) min(-1)) in the absence of any pH-control mechanism. Optimum pH for the dechlorination of PCP by Mg/Pd system was found to be approximately 5.5 and >92% of the compound was removed within 15 min of reaction. Presence of chlorinated and non-chlorinated resin fatty acids (RFAs) resulted in substantial reduction in the rate and extent of PCP removal by Mg/Ag system whereas dechlorination by Mg/Pd remained unaffected. Presence of sodium sulfate or sodium chloride in the reaction phase reduced the rate and extent of PCP removal by Mg/Ag system. PCP dechlorination by Mg/Pd system was adversely impacted by the addition of sodium chloride and unaffected by the presence of sodium sulfate.

  15. Improving clarity and stability of skim milk powder dispersions by dissociation of casein micelles at pH 11.0 and acidification with citric acid.

    PubMed

    Pan, Kang; Zhong, Qixin

    2013-09-25

    Casein micelles in milk cause turbidity and have poor stability at acidic conditions. In this study, skim milk powder dispersions were alkalized to pH 10.0 or 11.0, corresponding to reduced particle mass. In the following acidification with hydrochloric or citric acid, the re-formation of casein particles was observed. The combination of treatment at pH 11.0 and acidification with citric acid resulted in dispersions with the lowest turbidity and smallest particles, which enabled translucent dispersions at pH 5.5-7.0, corresponding to discrete nanoparticles. The concentration of ionic calcium was lower when acidified with citric acid than hydrochloric acid, corresponding to smaller particles with less negative zeta potential. The pH 11.0 treatment followed by acidification with citric acid also resulted in smaller particles than the simple chelating effects (directly implementing sodium citrate). The produced casein nanoparticles with reduced dimensions can be used for beverage and other novel applications.

  16. The effect of calcium salts, ascorbic acid and peptic pH on calcium, zinc and iron bioavailabilities from fortified human milk using an in vitro digestion/Caco-2 cell model.

    PubMed

    Etcheverry, Paz; Wallingford, John Charles; Miller, Dennis Dean; Glahn, Raymond Philip

    2005-05-01

    The calcium, zinc, and iron bioavailabilities of human milk with commercial and noncommercial human milk fortifiers (HMFs) were evaluated under a variety of conditions: peptic digestion at pH 2 and pH 4, supplementation of ascorbic acid, and addition of three calcium salts. The noncommercial HMFs consisted of casein phosphopeptides (CPPs), alpha-lactalbumin, colostrum, and hydrolyzed whey protein concentrate (WPC). They were mixed with human milk (HM) and calcium, zinc, and iron were added. Ascorbic acid (AA) was added in certain studies. The commercial HMFs were Nestlé FM-85, Similac HMF (SHMF), and Enfamil HMF (EHMF). All HMFs were compared to S-26/SMA HMF. Results showed that the peptic pH (2 vs. 4) had no effect on mineral bioavailability. Addition of different calcium salts had no effect on calcium cell uptake and cell ferritin levels (an indicator of iron uptake), however, the addition of calcium glycerophosphate/gluconate increased zinc uptake by Caco-2 cells. Addition of AA significantly increased ferritin levels, with no effect on calcium or zinc uptake. Among the commercial HMFs, FM-85 was significantly lower in zinc uptake than S-26/SMA, and HM+EHMF was significantly higher than HM+S-26/SMA. Cell ferritin levels were significantly higher for HM+S-26/SMA than for all other commercial fortifiers. None of the commercial HMFs were different from HM+S-26/SMA in calcium uptake.

  17. Activation of aryl and heteroaryl halides by an iron(I) complex generated in the reduction of [Fe(acac)₃] by PhMgBr: electron transfer versus oxidative addition.

    PubMed

    Lefèvre, Guillaume; Jutand, Anny

    2014-04-14

    The mechanism of the reactions of aryl/heteroaryl halides with aryl Grignard reagents catalyzed by [Fe(III)(acac)3] (acac=acetylacetonate) has been investigated. It is shown that in the presence of excess PhMgBr, [Fe(III)(acac)3] affords two reduced complexes: [PhFe(II)(acac)(thf)n] (n=1 or 2) (characterized by (1)H NMR and cyclic voltammetry) and [PhFe(I)(acac)(thf)](-) (characterized by cyclic voltammetry, (1)H NMR, EPR and DFT). Whereas [PhFe(II)(acac)(thf)n] does not react with any of the investigated aryl or heteroaryl halides, the Fe(I) complex [PhFe(I)(acac)(thf)](-) reacts with ArX (Ar=Ph, 4-tolyl; X=I, Br) through an inner-sphere monoelectronic reduction (promoted by halogen bonding) to afford the corresponding arene ArH together with the Grignard homocoupling product PhPh. In contrast, [PhFe(I)(acac)(thf)](-) reacts with a heteroaryl chloride (2-chloropyridine) to afford the cross-coupling product (2-phenylpyridine) through an oxidative addition/reductive elimination sequence. The mechanism of the reaction of [PhFe(I)(acac)(thf)](-) with the aryl and heteroaryl halides has been explored on the basis of DFT calculations. PMID:24596072

  18. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate.

    PubMed

    Takeuchi, T L; Suzuki, I

    1994-02-01

    The oxidation of sulfite by Thiobacillus thiooxidans was studied at various pH values with changing concentrations of potassium sulfite. The optimal pH for sulfite oxidation by cells was a function of sulfite concentrations, rising with increasing substrate concentrations, while that by the cell extracts was unaffected. The sulfite oxidation by cells was inhibited at high sulfite concentrations, particularly at low pH values. The results from kinetic studies show that the fully protonated form of sulfite, sulfurous acid or sulfur dioxide, is the form which penetrates the cells for the oxidation.

  19. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study

    PubMed Central

    2010-01-01

    Background The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis. The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults. Methods Design: Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index. Results There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders. Conclusion Urine pH and urine acid excretion do not predict osteoporosis risk. PMID:20459740

  20. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.

  1. Enhancement of zinc oxide-mediated solar light decoloration of Acid Yellow 99 dye by addition of β-CD

    NASA Astrophysics Data System (ADS)

    Pitchaimuthu, Sakthivel; Rajalakshmi, Subramanian; Kannan, Nagarathinam; Velusamy, Ponnusamy

    2015-06-01

    In the current work, the commercially available ZnO photocatalyst was used to investigate the photodecoloration of Acid yellow 99 (AY99) dye under solar light radiation. Promising enhancement of photodecoloration of AY99 dye was also achieved by the addition of β-cyclodextrin (β-CD) with the ZnO (ZnO-β-CD). The effects of process parameters such as initial concentration, pH, catalyst loading, and illumination time on the extent of decoloration were investigated. The optimum catalyst loading was observed at 2.0 g/L. The higher photoactivity of ZnO-β-CD/solar light system than ZnO/solar light system can be ascribed due to the ligand to metal charge transfer (LMCT) from β-CD to ZnII. The complexation patterns have been confirmed with UV-visible and FT-IR spectroscopy and the interaction between ZnO and β-CD has been characterized by FE-SEM, powder XRD analysis, and UV-visible diffuse reflectance spectroscopy.

  2. Evaluation of NaCl, pH, and lactic acid on the growth of Shiga toxin-producing Escherichia coli in a liquid Cheddar cheese extract.

    PubMed

    Oh, Jee-Hwan; Vinay-Lara, Elena; McMinn, Russell; Glass, Kathleen A; Johnson, Mark E; Steele, James L

    2014-11-01

    A Cheddar cheese model system, Cheddar cheese extract, was used to examine how different levels of known microbial hurdles (NaCl, pH, and lactic acid) in Cheddar cheese contribute to inhibition of bacterial pathogens. This knowledge is critical to evaluate the safety of Cheddar varieties with altered compositions. The range of levels used covered the lowest and highest level of these factors present in low-sodium, low-fat, and traditional Cheddar cheeses. Four pathogens were examined in this model system at 11 °C for 6 wk, with the lowest levels of these inhibitory factors that would be encountered in these products. The 4 pathogens examined were Salmonella enterica, Staphylococcus aureus, Listeria monocytogenes, and Shiga toxin-producing Escherichia coli (STEC). None of these organisms were capable of growth under these conditions. The STEC exhibited the highest survival and hence was used to examine which of these inhibitory factors (NaCl, pH, and lactic acid) was primarily responsible for the observed inhibition. The STEC survival was examined in Cheddar cheese extract varying in NaCl (1.2 vs. 4.8%), lactic acid (2.7 vs. 4.3%), and pH (4.8 vs. 5.3) at 11 °C for 6 wk. The microbial hurdle found to have the greatest effect on STEC survival was pH. The interactions between pH and levels of protonated lactic acid and anionic lactic acid with STEC survival was also evaluated; only the concentration of protonated lactic acid was determined to have a significant effect on STEC survival. These results indicate that, of the pathogens examined, STEC is of the greatest concern in Cheddar varieties with altered compositions and that pH is the microbial hurdle primarily responsible for controlling STEC in these products. PMID:25200778

  3. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

    NASA Technical Reports Server (NTRS)

    Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.

    2016-01-01

    Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.

  4. Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH

    NASA Astrophysics Data System (ADS)

    Gammons, Christopher H.; Wood, Scott A.; Nimick, David A.

    2005-08-01

    Diel (24-h) changes in concentrations of rare earth elements (REE) were investigated in Fisher Creek, a mountain stream in Montana that receives acid mine drainage in its headwaters. Three simultaneous 24-h samplings were conducted at an upstream station (pH = 3.3), an intermediate station (pH = 5.5), and a downstream station (pH = 6.8). The REE were found to behave conservatively at the two upstream stations. At the downstream station, REE partitioned into suspended particles to a degree that varied with the time of day, and concentrations of dissolved REE were 2.9- to 9.4-fold (190% to 830%) higher in the early morning vs. the late afternoon. The decrease in dissolved REE concentrations during the day coincided with a corresponding increase in the concentration of REE in suspended particles, such that diel changes in the total REE concentrations were relatively minor (27% to 55% increase at night). Across the lanthanide series, the heavy REE partitioned into the suspended solid phase to a greater extent than the light REE. Filtered samples from the downstream station showed a decrease in shale-normalized REE concentration across the lanthanide series, with positive anomalies at La and Gd, and a negative Eu anomaly. As the temperature of the creek increased in the afternoon, the slope of the REE profile steepened and the magnitude of the anomalies increased. The above observations are explained by cyclic adsorption of REE onto suspended particles of hydrous ferric and aluminum oxides (HFO, HAO). Conditional partition coefficients for each REE between the suspended solids and the aqueous phase reached a maximum at 1700 hours and a minimum at 0700 hours. This pattern is attributed to diel variations in stream temperature, possibly reinforced by kinetic factors (i.e., slower rates of reaction at night than during the day). Estimates of the enthalpy of adsorption of each REE onto suspended particles based on the field results averaged +82 kJ/mol and are similar in

  5. Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH

    USGS Publications Warehouse

    Gammons, C.H.; Wood, S.A.; Nimick, D.A.

    2005-01-01

    Diel (24-h) changes in concentrations of rare earth elements (REE) were investigated in Fisher Creek, a mountain stream in Montana that receives acid mine drainage in its headwaters. Three simultaneous 24-h samplings were conducted at an upstream station (pH = 3.3), an intermediate station (pH = 5.5), and a downstream station (pH = 6.8). The REE were found to behave conservatively at the two upstream stations. At the downstream station, REE partitioned into suspended particles to a degree that varied with the time of day, and concentrations of dissolved REE were 2.9- to 9.4-fold (190% to 830%) higher in the early morning vs. the late afternoon. The decrease in dissolved REE concentrations during the day coincided with a corresponding increase in the concentration of REE in suspended particles, such that diel changes in the total REE concentrations were relatively minor (27% to 55% increase at night). Across the lanthanide series, the heavy REE partitioned into the suspended solid phase to a greater extent than the light REE. Filtered samples from the downstream station showed a decrease in shale-normalized REE concentration across the lanthanide series, with positive anomalies at La and Gd, and a negative Eu anomaly. As the temperature of the creek increased in the afternoon, the slope of the REE profile steepened and the magnitude of the anomalies increased. The above observations are explained by cyclic adsorption of REE onto suspended particles of hydrous ferric and aluminum oxides (HFO, HAO). Conditional partition coefficients for each REE between the suspended solids and the aqueous phase reached a maximum at 1700 hours and a minimum at 0700 hours. This pattern is attributed to diel variations in stream temperature, possibly reinforced by kinetic factors (i.e., slower rates of reaction at night than during the day). Estimates of the enthalpy of adsorption of each REE onto suspended particles based on the field results averaged +82 kJ/mol and are similar in

  6. Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition.

    PubMed

    Hahn, Sei Kwang; Oh, Eun Ju; Miyamoto, Hajime; Shimobouji, Tsuyoshi

    2006-09-28

    A novel sustained release formulation of erythropoietin (EPO) was successfully developed using hyaluronic acid (HA) hydrogels crosslinked by Michael addition. Adipic acid dihydrazide grafted HA (HA-ADH) was prepared and then modified into methacrylated HA (HA-MA). (1)H NMR analysis showed that the degrees of HA-ADH and HA-MA modification were 69 and 29 mol%, respectively. Using the specific crosslinkers of dithiothreitol (DTT) and peptide linker, EPO was loaded during HA-MA hydrogel preparation by Michael addition chemistry between thiol and methacrylate groups. The amount of EPO recovered from both hydrogels after degradation with hyaluronidase SD (HAse SD) was about 90%. The crosslinking reaction with peptide linker (GCYKNRDCG) was faster than that with DTT. The gelation time was about 30 min for peptide linker and 180 min for DTT. In vitro release test of EPO from HA-MA hydrogel at 37 degrees C showed that EPO was released rapidly for 2 days and then slowly up to 7 days from HA-MA hydrogels. The released EPO appeared to be intact from the analysis with RP-HPLC. According to in vivo release test of EPO from HA-MA hydrogels crosslinked with the peptide linker in Sprague-Dawley (SD) rats, elevated plasma concentration of EPO was maintained up to 7 days. There was no adverse effect during and after the in vivo tests. PMID:16781096

  7. PhTX-II a Basic Myotoxic Phospholipase A2 from Porthidium hyoprora Snake Venom, Pharmacological Characterization and Amino Acid Sequence by Mass Spectrometry

    PubMed Central

    Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Marangoni, Sergio

    2014-01-01

    A monomeric basic PLA2 (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA2 enzyme class and displays conserved domains as the catalytic network, Ca2+-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA2 showed an allosteric behavior and its enzymatic activity was dependent on Ca2+. Examination of PhTX-II PLA2 by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA2 causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA2 that contributes with toxic actions caused by P. hyoprora venom. PMID:25365526

  8. Production and stability of chlorine dioxide in organic acid solutions as affected by pH, type of acid, and concentration of sodium chlorite, and its effectiveness in inactivating Bacillus cereus spores.

    PubMed

    Kim, Hoikyung; Kang, Youngjee; Beuchat, Larry R; Ryu, Jee-Hoon

    2008-12-01

    We studied the production and stability of chlorine dioxide (ClO(2)) in organic acid solutions and its effectiveness in killing Bacillus cereus spores. Sodium chlorite (5000, 10,000, or 50,000 microg/ml) was added to 5% acetic, citric, or lactic acid solution, adjusted to pH 3.0, 4.0, 5.0, or 6.0, and held at 21 degrees C for up to 14 days. The amount of ClO(2) produced was higher as the concentration of sodium chlorite was increased and as the pH of the acid solutions was decreased. However, the stability in producti