Science.gov

Sample records for acidic ph ph

  1. Acid loading test (pH)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  2. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  3. pH [Measure of Acidity].

    ERIC Educational Resources Information Center

    Henderson, Paula

    This autoinstructional program deals with the study of the pH of given substances by using litmus and hydrion papers. It is a learning activity directed toward low achievers involved in the study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for further pH testing). The equipment…

  4. Reduction of dehydroascorbic acid at low pH.

    PubMed

    Wechtersbach, Luka; Cigić, Blaz

    2007-08-01

    Ascorbic acid and dehydroascorbic acid are unstable in aqueous solution in the presence of copper and iron ions, causing problems in the routine analysis of vitamin C. Their stability can be improved by lowering the pH below 2, preferably with metaphosphoric acid. Dehydroascorbic acid, an oxidised form of vitamin C, gives a relatively low response on the majority of chromatographic detectors, and is therefore routinely determined as the increase of ascorbic acid formed after reduction. The reduction step is routinely performed at a pH that is suboptimal for the stability of both forms. In this paper, the reduction of dehydroascorbic acid with tris-[2-carboxyethyl] phosphine (TCEP) at pH below 2 is evaluated. Dehydroascorbic acid is fully reduced with TCEP in metaphosphoric acid in less than 20 min, and yields of ascorbic acid are the same as at higher pH. TCEP and ascorbic acid formed by reduction, are more stable in metaphosphoric acid than in acetate or citrate buffers at pH 5, in the presence of redox active copper ions. The simple experimental procedure and low probability of artefacts are major benefits of this method, over those currently applied in a routine assay of vitamin C, performed on large number of samples.

  5. Acidic pH environment induces autophagy in osteoblasts

    PubMed Central

    Zhang, Zhichao; Lai, Qingguo; Li, Yanan; Xu, Chao; Tang, Xiaopeng; Ci, Jiangbo; Sun, Shaolong; Xu, Bingbing; Li, Yan

    2017-01-01

    Osteoblasts (OBs) play an important role in bone fracture healing, yet the extreme adverse microenvironment in fracture sites has a negative impact on the survival of OBs. Therefore, it is important to study how OBs behave in the complex fracture microenvironment. Studies have shown that autophagy plays a pivotal role in maintaining cellular homeostasis and defending the cell against adverse microenvironments. In this study we found the induction of autophagy in OBs at femoral bone fracture sites, which may be a result of ischemia, oxidative stress and hypoxia within the local area. At fracture sites a low pH environment also developed. Until now it has been unclear whether the induction of autophagy in osteoblasts is triggered by the acidic pH environment. Therefore, we cultured OBs in vitro in media of different pH values, and found both autophagy and apoptosis increased in OBs in acidic conditions. However, when autophagy inhibitor chloroquine (CQ) was used, apoptosis increased significantly compared with that without CQ. Thus indicating that inhibition of autophagy may promote apoptosis in OBs in an acidic environment, which may provide a new therapeutic strategy to decrease cell apoptosis in OBs through the use of drugs that modulate the autophagic state. PMID:28382973

  6. Effect of systemic pH on pH sub i and lactic acid generation in exhaustive forearm exercise

    SciTech Connect

    Hood, V.L.; Schubert, C.; Keller, U.; Mueller, S. Univ. of Vermont College of Medicine, Burlington )

    1988-09-01

    To investigate whether changes in systemic pH affect intracellular pH (pH{sub i}), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH{sub 4}Cl (acidosis; A) or NaHCO{sub 3} (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pH{sub i} and phosphocreatine (PCr) content were measured with {sup 31}P-nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis than alkalosis and intermediate in control. Lactic acid output during recovery was less with A than B and intermediate in C. PCr utilization and resynthesis were not affected by extracellular pH changes. pH{sub i} did not differ before exercise or at its end. Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability.

  7. Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria.

    PubMed

    Kihara, M; Macnab, R M

    1981-03-01

    Bacteria migrate away from an acid pH and from a number of chemicals, including organic acids such as acetate; the basis for detection of these environmental cues has not been demonstrated. Membrane-permeant weak acids caused prolonged tumbling when added to Salmonella sp. or Escherichia coli cells at pH 5.5. Tethered Salmonella cells went from a prestimulus behavior of 14% clockwise rotation to 80% clockwise rotation when 40 mM acetate was added and remained this way for more than 30 min. A low external pH in the absence of weak acid did not markedly affect steady-state tumbling frequency. Among the weak acids tested, the rank for acidity (salicylate greater than benzoate greater than acetate greater than 5,5-dimethyl-2,4-oxazolidinedione) was the same as the rank for the ability to collapse the transmembrane pH gradient and to cause tumbling. At pH 7.0, the tumbling responses caused by the weak acids were much briefer. Indole, a non-weak-acid repellent, did not cause prolonged tumbling at low pH. Two chemotaxis mutants (a Salmonella mutant defective in the chemotaxis methylesterase and an E. coli mutant defective in the methyl-accepting protein in MCP I) showed inverse responses of enhanced counterclockwise rotation in the first 1 min after acetate addition. The latter mutant had been found previously to be defective in the sensing of gradients of extracellular pH and (at neutral pH) of acetate. We conclude (i) that taxes away from acid pH and membrane-permeant weak acids are both mediated by a pH-sensitive component located either in the cytoplasm or on the cytoplasmic side of the membrane, rather than by an external receptor (as in the case of the attractants), and (ii) that both of these taxes involve components of the chemotaxis methylation system, at least in the early phase of the response.

  8. Organic acids make Escherichia coli more resistant to pulsed electric fields at acid pH.

    PubMed

    Somolinos, M; García, D; Mañas, P; Condón, S; Pagán, R

    2010-01-01

    Stationary growth phase cells of Escherichiacoli were more pulsed electric fields (PEF) resistant in citrate-phosphate McIlvaine buffer at pH 4.0 than at pH 7.0. The greater PEF resistance was also confirmed in fruit juices of similar acid pH. In this work we studied whether the higher PEF resistance of E. coli at acid pH was due to the low pH itself or to the interaction of the components of the treatment medium with the cells. The protective effect on E. coli cells was due to the presence of organic acids such as citric, acetic, lactic or malic at pH 4.0. The protective effect of citric acid at pH 4.0 depended on its concentration. A linear relationship was observed between the Log(10) of the citric acid concentration and the degree of inactivation. Organic acids contained in laboratory treatment media (citrate-phosphate buffer) or in fruit juices did not sensitize E. coli cells to PEF but, on the contrary, they induced a protective effect that made E. coli cells more resistant at pH 4.0 than at neutral pH. This work could be useful for improving food preservation by PEF technology and it contributes to the knowledge of the mechanism of microbial inactivation by PEF.

  9. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  10. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  11. The PH gene determines fruit acidity and contributes to the evolution of sweet melons.

    PubMed

    Cohen, Shahar; Itkin, Maxim; Yeselson, Yelena; Tzuri, Galil; Portnoy, Vitaly; Harel-Baja, Rotem; Lev, Shery; Sa'ar, Uzi; Davidovitz-Rikanati, Rachel; Baranes, Nadine; Bar, Einat; Wolf, Dalia; Petreikov, Marina; Shen, Shmuel; Ben-Dor, Shifra; Rogachev, Ilana; Aharoni, Asaph; Ast, Tslil; Schuldiner, Maya; Belausov, Eduard; Eshed, Ravit; Ophir, Ron; Sherman, Amir; Frei, Benedikt; Neuhaus, H Ekkehard; Xu, Yimin; Fei, Zhangjun; Giovannoni, Jim; Lewinsohn, Efraim; Tadmor, Yaakov; Paris, Harry S; Katzir, Nurit; Burger, Yosef; Schaffer, Arthur A

    2014-06-05

    Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.

  12. Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid.

    PubMed

    Qu, Yan; Zhang, Chao-Jie; Chen, Pei; Zhou, Qi; Zhang, Wei-Xian

    2014-07-01

    The effects of initial solution pH on the decomposition of perfluorooctanoic acid (PFOA) with hydrated electrons as reductant were investigated. The reductive decomposition of PFOA depends strongly on the solution pH. In the pH range of 5.0-10.0, the decomposition and defluorination rates of PFOA increased with the increase of the initial solution pH. The rate constant was 0.0295 min(-1) at pH 10.0, which was more than 49.0 times higher than that at pH 5.0. Higher pH also inhibits the generation of toxic intermediates during the PFOA decomposition. For example, the short-chain PFCAs reached a lower maximum concentration in shorter reaction time as pH increasing. The peak areas of accumulated fluorinated and iodinated hydrocarbons detected by GC/MS under acidic conditions were nearly 10-100 times more than those under alkaline conditions. In short, alkaline conditions were more favorable for photo-induced reduction of PFOA as high pH promoted the decomposition of PFOA and inhibited the accumulation of intermediate products. The concentration of hydrated electron, detected by laser flash photolysis, increased with the increase of the initial pH. This was the main reason why the decomposition of PFOA in the UV-KI system depended strongly on the initial pH.

  13. Acidic pH of the lateral intercellular spaces of MDCK cells cultured on permeable supports.

    PubMed

    Chatton, J Y; Spring, K R

    1994-06-01

    The pH of the lateral intercellular space (LIS) of Madin-Darby canine kidney (MDCK) cell monolayers grown on permeable supports was investigated by microspectrofluorimetry using BCECF (2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein). The permeability of the support was selectively reduced by growing Zn-Al-silicate crystals inside its pores. The diffusion of BCECF across the filter was sufficiently retarded to allow measurements of fluorescence in the LIS. The LIS pH and intracellular pH of the cells surrounding them were determined in HEPES-buffered solutions. When the perfusate pH was 7.4, the LIS pH was more acidic (7.06 +/- 0.02) and equaled the cytoplasmic pH (7.08 +/- 0.05). When perfusate was changed to pH 7.0 or 7.8, the LIS changed linearly by about half the magnitude of the perfusate pH. Intracellular pH followed LIS pH variations between perfusate pH 7.0 and 7.4 but was significantly higher when perfusate pH was 7.8. Tight junctional H+ permeability was undetectably low. The low steady-state pH in the LIS was not altered by inhibitors of acid transport or low temperature. Rapid perturbations of pH in the LIS showed that protons were not immobilized in the LIS. The acidic microenvironment within the LIS may be the result of buffering by the cell surface proteins.

  14. Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH

    PubMed Central

    Vrabl, Pamela; Fuchs, Viktoria; Pichler, Barbara; Schinagl, Christoph W.; Burgstaller, Wolfgang

    2012-01-01

    Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH. We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions, or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi. In this study we explored this hypothesis using ammonium-limited chemostat cultivations (pH 2–7), and ammonium or phosphate-limited bioreactor batch cultivations (pH 5 and 7). Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids. Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation, and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e., overflow metabolism, charge balance, and aggressive acidification hypothesis. PMID:22493592

  15. Continuous intra-arterial blood pH monitoring in rabbits with acid-base disorders.

    PubMed

    Jin, Weizhong; Jiang, Jinjun; Wang, Xun; Zhu, Xiaodan; Wang, Guifang; Song, Yuanlin; Bai, Chunxue

    2011-07-31

    The acid-base balance of arterial blood is important for the clinical management of seriously ill patients, especially patients with acute lung injury or acute respiratory distress syndrome. We developed a novel fluorosensor for continuous blood pH monitoring and evaluated its performance both in vitro and in vivo in rabbits with acid-base disorders. The pH sensor is made of N-allyl-4-piperazinyl-1, 8-napthalimide and 2-hydroxyethyl methacrylate, which were bonded at the distal end of the optical fiber. The fluorescence intensity increased as the pH decreased with good reproducibility, selectivity and linearity in the pH range of 6-8. The pH measurement precision was 0.03 ± 0.03 pH units with a bias of -0.02 ± 0.04 (n = 105) and -0.00 ± 0.05 pH units (n=189) in rabbits with metabolic and respiratory acid-base orders, respectively. The optical pH sensor can accurately measure pH fluctuations with a fast response and is a promising candidate for continuous in-line measurements of blood pH in critical care patients.

  16. Dissociation energies of PH and PH+.

    NASA Astrophysics Data System (ADS)

    Reddy, R. R.; Nazeer Ahammed, Y.; Srinivasa Rao, A.; Rao, T. V. R.

    1995-12-01

    Dissociation energies for the ground electronic states of diatomic PH and PH+ are determined by fitting empirical potential functions to the respective RKRV curves using correlation coefficients. The estimated ground state dissociation energies of PH and PH+ are 3.10 and 3.20 eV respectively by the curve fitting procedure using the Lippincott potential function. The computed values are in good agreement with experimental values.

  17. A structural transition in class II major histocompatibility complex proteins at mildly acidic pH

    PubMed Central

    1996-01-01

    Peptide binding by class II major histocompatibility complex proteins is generally enhanced at low pH in the range of hydrogen ion concentrations found in the endosomal compartments of antigen- presenting cells. We and others have proposed that class II molecules undergo a reversible conformational change at low pH that is associated with enhanced peptide loading. However, no one has previously provided direct evidence for a structural change in class II proteins in the mildly acidic pH conditions in which enhanced peptide binding is observed. In this study, susceptibility to denaturation induced by sodium dodecyl sulfate (SDS) detergent or heat was used to probe the conformation of class II at different hydrogen ion concentrations. Class II molecules became sensitive to denaturation at pH 5.5-6.5 depending on the allele and experimental conditions. The observed structural transition was fully reversible if acidic pH was neutralized before exposure to SDS or heat. Experiments with the environment- sensitive fluorescent probe ANS (8-anilino-1-naphthalene-sulfonic acid) provided further evidence for a reversible structural transition at mildly acidic pH associated with an increase in exposed hydrophobicity in class II molecules. IAd conformation was found to change at a higher pH than IEd, IEk, or IAk, which correlates with the different pH optimal for peptide binding by these molecules. We conclude that pH regulates peptide binding by influencing the structure of class II molecules. PMID:8551215

  18. Negative pH and extremely acidic mine waters from Iron Mountain, California

    USGS Publications Warehouse

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-01

    Extremely acidic mine waters with pH values as low as -3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as -4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  19. Combined impact of pH and organic acids on iron uptake by Caco-2 cells.

    PubMed

    Salovaara, Susan; Sandberg, Ann-Sofie; Andlid, Thomas

    2003-12-17

    Previous studies have shown that organic acids have an impact on both Fe(II) and Fe(III) uptake in Caco-2 cell. However, to what extent this effect is correlated with the anion of organic acids per se, or with the resulting decrease in pH, has not yet been clarified. Therefore, we studied the effect of five organic acids (tartaric, succinic, citric, oxalic, and propionic acid) on the absorption of Fe(II) and Fe(III) in Caco-2 cells and compared this with sample solutions without organic acids but set to equivalent pH by HCl. The results showed that the mechanisms behind the enhancing effect of organic acids differed for the two forms of iron. For ferric iron the organic acids promoted uptake both by chelation and by lowering the pH, whereas for ferrous iron the promoting effect was caused only by the lowered pH.

  20. A novel acidic pH fluorescent probe based on a benzothiazole derivative.

    PubMed

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-15

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H(+) in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  1. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  2. Insulin Fibrillization at Acidic and Physiological pH Values is Controlled by Different Molecular Mechanisms.

    PubMed

    Noormägi, Andra; Valmsen, Karin; Tõugu, Vello; Palumaa, Peep

    2015-12-01

    Formation of amyloid-like fibrils by insulin was studied at different insulin concentrations, pH and temperatures. At low pH (pH 2.5) the insulin fibrillization occurred only at high ([10 lM) peptide concentrations, whereas at physiological pH values the fibril formation is inhibited at higher insulin concentrations. The enthalpy of activation Ea of the fibril growth at pH 2.5 equals to 33 kJ/mol, which is considerably lower than 84 kJ/mol at physiological pH. The fibrillization rate of insulin decreases with increasing pH at high, 250 lM concentration, which was opposite to the pH effect observed in 2.5 lM insulin solutions. The latter effect indicates that protonation of histidine residues seems to be important for the fibrillization of monomeric insulin, whereas the pH effect at high concentration may result from off-pathway oligomerization propensity. Together, the different effect of environmental factors on the insulin fibrillization suggest that the reaction rate is controlled by different molecular events in acidic conditions and at physiological pH values.

  3. Formation of elastic whey protein gels at low pH by acid equilibration.

    PubMed

    Vardhanabhuti, Bongkosh; Khayankan, Worarat; Foegeding, E Allen

    2010-06-01

    Whey protein gels have a weak/brittle texture when formed at pH pH is required to produce a high-protein, shelf-stable product. We investigated if gels could be made under conditions that produced strong/elastic textural properties then adjusted to pH pH 7.5). Equilibration in acid solutions caused gel swelling and lowered pH because of the diffusion of water and H(+) into the gels. The type and concentration of acid, and presence of other ions, in the equilibrating solutions influenced pH, swelling ratio, and fracture properties of the gels. Swelling of gels decreased fracture stress (because of decreased protein network density) but caused little change to fracture strain, thus maintaining a desirable strong/elastic fracture pattern. We have shown that whey protein isolate gels can be made at pH acid type, acid concentration, pH of equilibrating solution, and equilibrating time.

  4. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target

    PubMed Central

    Gilbert, Hamish T. J.; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M.; Hoyland, Judith A.

    2016-01-01

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration. PMID:27853274

  5. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    PubMed Central

    2012-01-01

    Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i) non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii) specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The

  6. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    PubMed

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage.

  7. A neutral ceramidase homologue from Dictyostelium discoideum exhibits an acidic pH optimum.

    PubMed Central

    Monjusho, Hatsumi; Okino, Nozomu; Tani, Motohiro; Maeda, Mineko; Yoshida, Motonobu; Ito, Makoto

    2003-01-01

    The nucleotide sequence reported for the Dictyostelium discoideum ceramidase is available on the DNA Data Bank of Japan (DDBJ). Ceramidases (CDases) are currently classified into three categories (acid, neutral and alkaline) based on their optimal pHs and primary structures. Here, we report the first exception to this rule. We cloned the CDase cDNA, consisting of 2142 nucleotides encoding 714 amino-acid residues, from the slime mould, Dictyostelium discoideum. The putative amino-acid sequence indicates 32-42% identity with various neutral CDases, but does not show any similarity to the acid and alkaline CDases, indicating the enzyme should be classified as a neutral CDase. However, overexpression of the cDNA in D. discoideum resulted in increased CDase activity at an acidic, but not a neutral pH range. Knockout of the gene in slime mould eliminated CDase activity at acidic pH. The recombinant enzyme expressed in the slime mould was purified and then characterized. Consequently, the purified CDase was found to exhibit the maximal activity at approx. pH 3.0. The singular pH dependency of slime mould CDase is not derived from the specific post-translational modification in the slime mould, because the enzyme showed an acidic pH optimum even when expressed in Chinese hamster ovary cells, whereas rat neutral-CDase exhibited a neutral pH optimum when expressed in slime mould. PMID:12943537

  8. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan12

    PubMed Central

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Obando, Alina Soto; Hoxha, Sany; Ja, William W

    2015-01-01

    Background: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. Objectives: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. Methods: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. Results: An acidic diet increased Drosophila gustatory responses (40–230%) and food intake (5–50%) and extended survival (10–160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5–20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Conclusions: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and

  9. Volatile fatty acids distribution during acidogenesis of algal residues with pH control.

    PubMed

    Li, Yan; Hua, Dongliang; Zhang, Jie; Zhao, Yuxiao; Xu, Haipeng; Liang, Xiaohui; Zhang, Xiaodong

    2013-06-01

    The anaerobic acidification of protein-rich algal residues with pH control (4, 6, 8, 10) was studied in batch reactors, which was operated at mesophilic(35 °C) condition. The distribution of major volatile fatty acids (VFAs) during acidogenesis was emphasized in this paper. The results showed that the acidification efficiency and VFAs distribution in the acid reactor strongly depended on the pH. The main product for all the runs involved acetic acid except that the proportion of butyric acid acidified at pH 6 was relatively higher. The other organic acids remained at lower levels. The VFAs yield reached the maximum value with about 0.6 g VFAs/g volatile solid (VS) added as pH was 8, and also the content of total ammonia nitrogen (TAN) reached the highest values of 9,629 mg/l. Low acidification degrees were obtained under the conditions at pH 4 and 10, which was not suitable for the metabolism of acidogens. Hydralic retention time (HRT) required for different conditions varied. As a consequence, it was indicated that pH was crucial to the acidification efficiency and products distribution. The investigation of acidogenesis process, which was producing the major substrates, short-chain fatty acids, would play the primary role in the efficient operation of methanogenesis.

  10. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae.

    PubMed

    Stratford, Malcolm; Nebe-von-Caron, Gerhard; Steels, Hazel; Novodvorska, Michaela; Ueckert, Joerg; Archer, David B

    2013-02-15

    Weak-acid preservatives commonly used to prevent fungal spoilage of low pH foods include sorbic and acetic acids. The "classical weak-acid theory" proposes that weak acids inhibit spoilage organisms by diffusion of undissociated acids through the membrane, dissociation within the cell to protons and anions, and consequent acidification of the cytoplasm. Results from 25 strains of Saccharomyces cerevisiae confirmed inhibition by acetic acid at a molar concentration 42 times higher than sorbic acid, in contradiction of the weak-acid theory where all acids of equal pK(a) should inhibit at equimolar concentrations. Flow cytometry showed that the intracellular pH fell to pH 4.7 at the growth-inhibitory concentration of acetic acid, whereas at the inhibitory concentration of sorbic acid, the pH only fell to pH 6.3. The plasma membrane H⁺-ATPase proton pump (Pma1p) was strongly inhibited by sorbic acid at the growth-inhibitory concentration, but was stimulated by acetic acid. The H⁺-ATPase was also inhibited by lower sorbic acid concentrations, but later showed recovery and elevated activity if the sorbic acid was removed. Levels of PMA1 transcripts increased briefly following sorbic acid addition, but soon returned to normal levels. It was concluded that acetic acid inhibition of S. cerevisiae was due to intracellular acidification, in accord with the "classical weak-acid theory". Sorbic acid, however, appeared to be a membrane-active antimicrobial compound, with the plasma membrane H⁺-ATPase proton pump being a primary target of inhibition. Understanding the mechanism of action of sorbic acid will hopefully lead to improved methods of food preservation.

  11. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  12. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists.

    PubMed

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun; Ezawa, Tatsuhiro

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.

  13. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    PubMed Central

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  14. Effects of saliva on starch-thickened drinks with acidic and neutral pH.

    PubMed

    Hanson, Ben; Cox, Ben; Kaliviotis, Efstathios; Smith, Christina H

    2012-09-01

    Powdered maize starch thickeners are used to modify drink consistency in the clinical management of dysphagia. Amylase is a digestive enzyme found in saliva which breaks down starch. This action is dependent on pH, which varies in practice depending on the particular drink. This study measured the effects of human saliva on the viscosity of drinks thickened with a widely used starch-based thickener. Experiments simulated a possible clinical scenario whereby saliva enters a cup and contaminates a drink. Citric acid (E330) was added to water to produce a controlled range of pH from 3.0 to 7.0, and several commercially available drinks with naturally low pH were investigated. When saliva was added to thickened water, viscosity was reduced to less than 1% of its original value after 10-15 min. However, lowering pH systematically slowed the reduction in viscosity attributable to saliva. At pH 3.5 and below, saliva was found to have no significant effect on viscosity. The pH of drinks in this study ranged from 2.6 for Coca Cola to 6.2 for black coffee. Again, low pH slowed the effect of saliva. For many popular drinks, having pH of 3.6 or less, viscosity was not significantly affected by the addition of saliva.

  15. Properties of acid whey as a function of pH and temperature.

    PubMed

    Chandrapala, Jayani; Duke, Mikel C; Gray, Stephen R; Zisu, Bogdan; Weeks, Mike; Palmer, Martin; Vasiljevic, Todor

    2015-07-01

    Compositional differences of acid whey (AW) in comparison with other whey types limit its processability and application of conventional membrane processing. Hence, the present study aimed to identify chemical and physical properties of AW solutions as a function of pH (3 to 10.5) at 4 different temperatures (15, 25, 40, or 90°C) to propose appropriate membrane-processing conditions for efficient use of AW streams. The concentration of minerals, mainly calcium and phosphate, and proteins in centrifuged supernatants was significantly lowered with increase in either pH or temperature. Lactic acid content decreased with pH decline and rose at higher temperatures. Calcium appeared to form complexes with phosphates and lactates mainly, which in turn may have induced molecular attractions with the proteins. An increase in pH led to more soluble protein aggregates with large particle sizes. Surface hydrophobicity of these particles increased significantly with temperature up to 40°C and decreased with further heating to 90°C. Surface charge was clearly pH dependent. High lactic acid concentrations appeared to hinder protein aggregation by hydrophobic interactions and may also indirectly influence protein denaturation. Processing conditions such as pH and temperature need to be optimized to manipulate composition, state, and surface characteristics of components of AW systems to achieve an efficient separation and concentration of lactic acid and lactose.

  16. Natively unfolded human prothymosin alpha adopts partially folded collapsed conformation at acidic pH.

    PubMed

    Uversky, V N; Gillespie, J R; Millett, I S; Khodyakova, A V; Vasiliev, A M; Chernovskaya, T V; Vasilenko, R N; Kozlovskaya, G D; Dolgikh, D A; Fink, A L; Doniach, S; Abramov, V M

    1999-11-09

    Prothymosin alpha has previously been shown to be unfolded at neutral pH, thus belonging to a growing family of "natively unfolded" proteins. The structural properties and conformational stability of recombinant human prothymosin alpha were characterized at neutral and acidic pH by gel filtration, SAXS, circular dichroism, ANS fluorescence, (1)H NMR, and resistance to urea-induced unfolding. Interestingly, prothymosin alpha underwent a cooperative transition from the unfolded state into a partially folded conformation on lowering the pH. This conformation of prothymosin alpha is a compact denatured state, with structural properties different from those of the molten globule. The formation of alpha-helical structure by the glutamic acid-rich elements of the protein accompanied by the partial hydrophobic collapse is expected at lower pH due to the neutralization of the negatively charged residues. It is possible that such conformational changes may be associated with the protein function.

  17. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  18. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain.

    PubMed

    Senouci-Rezkallah, Khadidja; Schmitt, Philippe; Jobin, Michel P

    2011-05-01

    This study investigated the involvement of glutamate-, arginine- and lysine-dependent systems in the Acid Tolerance Response (ATR) of Bacillus cereus ATCC14579 strain. Cells were grown in a chemostat at external pH (pH(e)) 7.0 and 5.5. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted) compared with cells grown at pH 7.0 (unadapted), indicating that B. cereus cells grown at low pH(e) were able to induce a marked ATR. Glutamate, arginine and lysine enhanced the resistance of unadapted cells to pH 4.0 acid shock of 1-log or 2-log populations, respectively. Amino acids had no detectable effect on acid resistance in acid-adapted cells. An acid shock at pH 4.0 resulted in a marked drop in internal pH (pH(i)) in unadapted cells compared with acid-adapted cells. When acid shock was achieved in the presence of glutamate, arginine or lysine, pH(i) was maintained at higher values (6.31, 6.69 or 6.99, respectively) compared with pH(i) in the absence of amino acids (4.88). Acid-adapted cells maintained their pH(i) at around 6.4 whatever the condition. Agmatine (a competitive inhibitor of arginine decarboxylase) had a negative effect on the ability of B. cereus cells to survive and maintain their pH(i) during acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. This adaptation depends on pH(i) homeostasis and is enhanced in the presence of glutamate, arginine and lysine. Hence evaluations of the pathogenicity of B. cereus must take into account its ability to adapt to acid stress.

  19. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  20. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  1. Optimization of pH values to formulate the bireagent kit for serum uric acid assay.

    PubMed

    Huang, Ya; Chen, Yuanxiang; Yang, Xiaolan; Zhao, Hua; Hu, Xiaolei; Pu, Jun; Liao, Juan; Long, Gaobo; Liao, Fei

    2015-01-01

    A new formulation of the bireagent kit for serum uric acid assay was developed based on the effects of pH on enzyme stability. At 4 °C, half-lives of uricases from Bacillus fastidious and Arthrobacter globiforms were longer than 15 months at pH 9.2, but became shorter at pH below 8.0; half-lives of ascorbate oxidase and peroxidase were comparable at pH 6.5 and 7.0, but became much shorter at pH higher than 7.4. In the new formulation of the bireagent kit, Reagent A contained peroxidase, 4-aminoantipyrine, and ascorbate oxidase in 50 mM phosphate buffer at pH 6.5; Reagent B contained B. fastidious or A. globiforms uricase in 50 mM sodium borate buffer at pH 9.2; Reagents A and B were mixed at 4:1 to produce a final pH from 7.2 to 7.6 for developing a stable color. The new bireagent kit consumed smaller quantities of three enzymes for the same shelf life. With the new bireagent kit, there were linear responses of absorbance at 546 nm to uric acid up to 34 mM in reaction mixtures and a good correlation of uric acid levels in clinical sera with those by a commercial kit, but stronger resistance to ascorbate. Therefore, the new formulation was advantageous.

  2. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  3. Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions.

    PubMed

    Kurniawan, James; Suga, Keishi; Kuhl, Tonya L

    2017-02-01

    Oleic acid is known to interact with saturated lipid molecules and increase the fluidity of gel phase lipid membranes. In this work, the thermodynamic properties of mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and oleic acid at the air-water interface were determined using Langmuir isotherms. The isotherm study revealed an attractive interaction between oleic acid and DPPC. The incorporation of oleic acid also monotonically decreased the elastic modulus of the monolayer indicative of higher fluidity with increasing oleic acid content. Using the surface force apparatus, intermembrane force-distance profiles were obtained for substrate supported DPPC membranes containing 30mol% oleic acid at pH5.8 and 7.4. Three different preparation conditions resulted in distinct force profiles. Membranes prepared in pH5.8 subphase had a low number of nanoscopic defects ≤1% and an adhesion magnitude of ~0.6mN/m. A slightly higher defect density of 1-4% was found for membranes prepared in a physiological pH7.4 subphase. The presence of the exposed hydrophobic moieties resulted in a higher adhesion magnitude of 2.9mN/m. Importantly, at pH7.4, some oleic acid deprotonates resulting in a long-range electrostatic repulsion. Even though oleic acid increased the DPPC bilayer fluidity and the number of defects, no membrane restructuring was observed indicating that the system maintained a stable configuration.

  4. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGES

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; ...

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominatedmore » community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).« less

  5. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  6. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). PMID:25333313

  7. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  8. Uric acid plasma level and urine pH in rats treated with ambroxol.

    PubMed

    Drewa, Tomasz; Wolski, Zbigniew; Gruszka, Marzena; Misterek, Bartosz; Lysik, Joanna

    2007-01-01

    It was a chance discovery that ambroxol parenteral administration led to urinary bladder stone formation in rats. This study was undertaken to examine the serum uric acid levels and urine pH in rats after ambroxol parenteral treatment. Ambroxol influence on the uric acid level was measured in 5 rats (Rattus sp.) treated with 60 mg/kg (dissolved in injection water, sc, daily) during 2 weeks. Ambroxol influence on urine pH was examined on 45 rats divided into 3 groups. Rats from the 1st and 2nd group received 30 and 60 mg/kg/24h ambroxol, respectively. Urine was collected once daily and measured with strip kit. All values were presented as the means with standard deviations. The Student t test was used to compare the means, p < 0.05 was considered as significant. Dynamics of pH changes was measured in 4 rats treated with 60 mg/kg/24h of ambroxol. Controls received 1 mL of injection water sc. Serum uric acid level increased up to 8.7 +/- 1.0 mg/dL vs. 5.7 +/- 1.0 mg/dL in control (p < 0.002). In the 1st and 2nd group urine pH increased up to 7.5 +/- 0.5 and 7.6 +/- 0.5 vs. 6.7 +/- 0.4 (p < 0.05). Ambroxol withdrawal resulted in sequential urine pH decrease. 11 days after interruption of ambroxol therapy pH reached the starting value. Urine pH changes and possible disturbances in uric acid metabolic pathway may influence on the stone formation in rats after ambroxol parenteral treatment. The influence of ambroxol on urinary tract GAG layer and the balance between xanthine and CaOx in the urine should be checked.

  9. Acidic duodenal pH alters gene expression in the cystic fibrosis mouse pancreas.

    PubMed

    Kaur, Simran; Norkina, Oxana; Ziemer, Donna; Samuelson, Linda C; De Lisle, Robert C

    2004-08-01

    The duodenum is abnormally acidic in cystic fibrosis (CF) due to decreased bicarbonate ion secretion that is dependent on the CF gene product CFTR. In the CFTR null mouse, the acidic duodenum results in increased signaling from the intestine to the exocrine pancreas in an attempt to stimulate pancreatic bicarbonate ion secretion. Excess stimulation is proposed to add to the stress/inflammation of the pancreas in CF. DNA microarray analysis of the CF mouse revealed altered pancreatic gene expression characteristic of stress/inflammation. When the duodenal pH was corrected genetically (crossing CFTR null with gastrin null mice) or pharmacologically (use of the proton pump inhibitor omeprazole), expression levels of genes measured by quantitative RT-PCR were significantly normalized. It is concluded that the acidic duodenal pH in CF contributes to the stress on the exocrine pancreas and that normalizing duodenal pH reduces this stress.

  10. Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, Pterygoplichthys pardalis.

    PubMed

    Harter, T S; Shartau, R B; Baker, D W; Jackson, D C; Val, A L; Brauner, C J

    2014-08-01

    Preferential intracellular pH (pHi) regulation, where pHi is tightly regulated in the face of a blood acidosis, has been observed in a few species of fish, but only during elevated blood PCO2. To determine whether preferential pHi regulation may represent a general pattern for acid-base regulation during other pH disturbances we challenged the armoured catfish, Pterygoplichthys pardalis, with anoxia and exhaustive exercise, to induce a metabolic acidosis, and bicarbonate injections to induce a metabolic alkalosis. Fish were terminally sampled 2-3 h following the respective treatments and extracellular blood pH, pHi of red blood cells (RBC), brain, heart, liver and white muscle, and plasma lactate and total CO2 were measured. All treatments resulted in significant changes in extracellular pH and RBC pHi that likely cover a large portion of the pH tolerance limits of this species (pH 7.15-7.86). In all tissues other than RBC, pHi remained tightly regulated and did not differ significantly from control values, with the exception of a decrease in white muscle pHi after anoxia and an increase in liver pHi following a metabolic alkalosis. Thus preferential pHi regulation appears to be a general pattern for acid-base homeostasis in the armoured catfish and may be a common response in Amazonian fishes.

  11. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    PubMed

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization.

  12. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures.

    PubMed Central

    Montville, T J; Parris, N; Conway, L K

    1985-01-01

    The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs. PMID:4004207

  13. [Effects of thiourea on pH and availability of metal ions in acid red soil].

    PubMed

    Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong

    2014-03-01

    Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.

  14. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Doulgeris, Charalampos; McCarthy, Alan J.; Rooks, Dave J.; Loughnane, J. Paul; Laws, Andrew P.; Humphreys, Paul N.

    2015-01-01

    One design concept for the long-term management of the UK’s intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  15. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  16. Autoinducer-2 detection among commensal oral streptococci is dependent on pH and boric acid.

    PubMed

    Cuadra, Giancarlo A; Frantellizzi, Ashley J; Gaesser, Kimberly M; Tammariello, Steven P; Ahmed, Anika

    2016-07-01

    Autoinducer-2, considered a universal signaling molecule, is produced by many species of bacteria; including oral strains. Structurally, autoinducer-2 can exist bound to boron (borated autoinducer-2). Functionally, autoinducer-2 has been linked to important bacterial processes such as virulence and biofilm formation. In order to test production of autoinducer-2 by a given bacterial strain, a bioassay using marine bioluminescent bacteria Vibrio harveyi as a reporter for autoinducer-2 has been designed. We hypothesize that pH adjustment and addition of boron are required for optimal bioluminescence and accurate autoinducer-2 detection. Using this reporter strain we tested autoinducer-2 activity from two oral commensal species, Streptococcus gordonii DL1 and Streptococcus oralis 34. Spent broth was collected and adjusted to pH 7.5 and supplemented with boric acid prior to measuring autoinducer- 2 activity. Results show that low pH inhibits bioluminescence of the reporter strain, but pH 7.5 allows for bioluminescence induction and proper readings of autoinducer-2 activity. Addition of boric acid also has a positive effect on bioluminescence allowing for a more sensitive detection of autoinducer-2 activity. Our data suggests that although autoinducer-2 is present in spent broth, low pH and/or low levels of boric acid become an obstacle for proper autoinducer-2 detection. For proper autoinducer-2 detection, we propose a protocol using this bioassay to include pH adjustment and boric acid addition to spent broth. Studies on autoinducer-2 activity in several bacteria species represent an important area of study as this universal signaling molecule is involved in critical bacterial phenotypes such as virulence and biofilm formation.

  17. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    SciTech Connect

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-09-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H/sub 2/S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H/sub 2/S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by (/sup 14/C)glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake.

  18. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  19. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids.

    PubMed

    Neta, E R D; Johanningsmeier, S D; Drake, M A; McFeeters, R F

    2009-01-01

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on sour taste of equimolar protonated organic acid solutions and to investigate the potential roles of organic anions and sodium ions on sour taste perception. Despite equal concentrations of protonated acid species, sour taste intensity decreased significantly with increased pH for acetic, lactic, malic, and citric acids (P < 0.05). Total organic anion concentration did not explain the suppression of sour taste in solutions containing a blend of 3 organic acids with constant concentration of protonated organic acid species and hydrogen ions and variable organic anion concentrations (R(2)= 0.480, P = 0.12). Sour taste suppression in these solutions seemed to be more closely related to sodium ions added in the form of NaOH (R(2)= 0.861, P = 0.007). Addition of 20 mM NaCl to acid solutions resulted in significant suppression of sour taste (P = 0.016). However, sour taste did not decrease with further addition of NaCl up to 80 mM. Presence of sodium ions was clearly shown to decrease sour taste of organic acid solutions. Nonetheless, suppression of sour taste in pH adjusted single acid solutions was greater than what would be expected based on the sodium ion concentration alone, indicating an additional suppression mechanism may be involved.

  20. Cut-off net acid generation pH in predicting acid-forming potential in mine spoils.

    PubMed

    Liao, B; Huang, L N; Ye, Z H; Lan, C Y; Shu, W S

    2007-01-01

    Acidification of mine wastes can lead to a series of environmental problems, such as acid drainage, heavy metal mobilization, and ecosystem degradation. Prediction of acid-forming potential is one of the key steps in management of sulfide-bearing mine wastes. In this paper, the acid-forming potential of 180 mine waste samples collected from 17 mine sites in China were studied using a net acid generation (NAG) method. The samples contained different contents of total sulfur (ranging from 0.6 to 200 g kg(-1)), pyritic sulfur (ranging from 0 to 100 g kg(-1)), and acid neutralization capacity (ANC, ranging from -41 to 274 kg H2SO4 t(-1)). Samples with high acid-forming potential are generally due to their high sulfur content or low acid neutralization capacity. After the samples were oxidized by H2O2, the amounts of acid generation and the final NAG pH were measured. Results indicated that the final NAG pH gave a well-defined demarcation between acid-forming and non-acid-forming materials. Samples with final NAG pH >or= 5 could be classified as non-acid-forming materials, while those with NAG pH acid-forming materials. Materials with NAG pH > 2.5, but < 5, had low risk of being acid-forming. The confirmation of cut-off NAG pH will be used as a rapid and cost-effective operational monitoring tool for the in-pit prediction of acid-forming potential of mine wastes and classification of waste types.

  1. Similar bacterial community composition in acidic mining lakes with different pH and lake chemistry.

    PubMed

    Kampe, Heike; Dziallas, Claudia; Grossart, Hans-Peter; Kamjunke, Norbert

    2010-10-01

    As extreme environmental conditions strongly affect bacterial community composition (BCC), we examined whether differences in pH-even at low pH-and in iron and sulfate concentrations lead to changes in BCC of acidic mining lakes. Thereby, we tested the following hypotheses: (1) diversity of the bacterial community in acidic lakes decreases with reducing pH, (2) BCC differs between epilimnion and hypolimnion, and (3) BCC in extremely acidic environments does not vary much over time. Therefore, we investigated the BCC of three acidic lakes with different pH values (2.3, 2.7, and 3.2) by denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of DGGE bands as well as catalyzed reporter deposition-FISH (CARD-FISH). BCC did not significantly vary among the studied lakes nor differ much between water layers. In contrast, BCC significantly changed over time, which is contradictory to our hypotheses. Bacterial communities were dominated by Alpha-, Beta-, and Gammaproteobacteria, whereas Actino- and Acidobacteria rarely occurred. Cell numbers of both free and attached bacteria were positively related to DOC concentration. Overall, low pH and extreme chemical conditions of the studied lakes led to similar assemblages of bacteria with pronounced temporal differences. This notion indicates that temporal changes in environmental conditions including food web structure also affect unique communities of bacteria thriving at low pH.

  2. A colorimetric pH indicators and boronic acids ensemble array for quantitative sugar analysis.

    PubMed

    Ghosh, Krishna Kanta; Yap, Eunice; Kim, Hanjo; Lee, Jun-Seok; Chang, Young-Tae

    2011-04-07

    The colorimetric response patterns of pH indicators and boronic acids ensemble array were used to analyze serial concentrations of mono-, disaccharides quantitatively. Furthermore, this ensemble array was successfully applied to quantify the sugar content in clinically used saline solutions.

  3. Effect of pH on conjugated linoleic acid (CLA) formation of linolenic acid biohydrogenation by ruminal microorganisms.

    PubMed

    Lee, Yongjae

    2013-08-01

    Conventional beliefs surrounding the linolenic acid (LNA; cis-9 cis-12 cis-15 C18:3) biohydrogenation (BH) pathway propose that it converts to stearic acid (SA) without the formation of conjugated linoleic acid (CLA) as intermediate isomers. However, an advanced study (Lee and Jenkins, 2011) verified that LNA BH yields multiple CLAs. This study utilized the stable isotope tracer to investigate the BH intermediates of (13)C-LNA with different pH conditions (5.5 and 6.5). The (13)C enrichment was calculated as a (13)C/(12)C ratio of labeled minus unlabeled. After 24 h, eight CLA isomers were significantly enriched on both pH treatment, this result verifies that these CLAs originated from (13)C-LNA BH which supports the results of Lee and Jenkins (2011). The enrichment of cis-cis double bond CLAs (cis-9 cis-11 and cis-10 cis-12 CLA) were significantly higher at low pH conditions. Furthermore, the concentration of cis-10 cis-12 CLA at low pH was four times higher than at high pH conditions after a 3 h incubation. These differences support the LNA BH pathways partial switch under different pH conditions, with a strong influence on the cis-cis CLA at low pH. Several mono-, di-, and tri-enoic fatty acid isomers were enriched during 24 h of incubation, but the enrichment was decreased or restricted at low pH treatment. Based on these results, it is proposed that low pH conditions may cause a changed or limited capacity of the isomerization and reduction steps in BH.

  4. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  5. Vaginal pH and Microbicidal Lactic Acid When Lactobacilli Dominate the Microbiota

    PubMed Central

    O’Hanlon, Deirdre E.; Moench, Thomas R.; Cone, Richard A.

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid. PMID:24223212

  6. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    PubMed

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  7. Indomethacin inhibits tetrodotoxin-resistant Na(+) channels at acidic pH in rat nociceptive neurons.

    PubMed

    Nakamura, Michiko; Jang, Il-Sung

    2016-06-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are well-known inhibitors of cyclooxygenases (COXs) and are widely used for the treatment of inflammatory pain; however several NSAIDs display COX-independent analgesic action including the inhibition of voltage-gated Na(+) channels expressed in primary afferent neurons. In the present study, we examined whether NSAIDs modulate tetrodotoxin-resistant (TTX-R) Na(+) channels and if this modulation depends on the extracellular pH. The TTX-R Na(+) currents were recorded from small-sized trigeminal ganglion neurons by using a whole-cell patch clamp technique. Among eight NSAIDs tested in this study, several drugs, including aspirin and ibuprofen, did not affect TTX-R Na(+) channels either at pH 7.4 or at pH 6.0. However, we found that indomethacin, and, to a lesser extent, ibuprofen and naproxen potently inhibited the peak amplitude of TTX-R Na(+) currents at pH 6.0. The indomethacin-induced inhibition of TTX-R Na(+) channels was more potent at depolarized membrane potentials. Indomethacin significantly shifted both the voltage-activation and voltage-inactivation relationships to depolarizing potentials at pH 6.0. Indomethacin accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels at pH 6.0. Given that indomethacin and several other NSAIDs could further suppress local nociceptive signals by inhibiting TTX-R Na(+) channels at an acidic pH in addition to the classical COX inhibition, these drugs could be particularly useful for the treatment of inflammatory pain.

  8. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  9. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    PubMed

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg(2+)) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu(2+)) are therefore not beneficial places for peptide bond formation on the primitive

  10. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive

  11. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form.

    PubMed

    Khan, Javed M; Qadeer, Atiyatul; Ahmad, Ejaz; Ashraf, Raghib; Bhushan, Bharat; Chaturvedi, Sumit K; Rabbani, Gulam; Khan, Rizwan H

    2013-01-01

    Banana lectin (BL) is a homodimeric protein categorized among jacalin-related family of lectins. The effect of acidic pH was examined on conformational stability of BL by using circular dichroism, intrinsic fluorescence, 1-anilino-8-napthalene sulfonate (ANS) binding, size exclusion chromatography (SEC) and dynamic light scattering (DLS). During acid denaturation of BL, the monomerization of native dimeric protein was found at pH 2.0. The elution profile from SEC showed two different peaks (59.65 ml & 87.98 ml) at pH 2.0 while single peak (61.45 ml) at pH 7.4. The hydrodynamic radii (R h) of native BL was 2.9 nm while at pH 2.0 two species were found with R h of 1.7 and 3.7 nm. Furthermore at, pH 2.0 the secondary structures of BL remained unaltered while tertiary structure was significantly disrupted with the exposure of hydrophobic clusters confirming the existence of molten globule like state. The unfolding of BL with different subunit status was further evaluated by urea and temperature mediated denaturation to check their stability. As inferred from high Cm and ΔG values, the monomeric form of BL offers more resistance towards chemical denaturation than the native dimeric form. Besides, dimeric BL exhibited a Tm of 77°C while no loss in secondary structures was observed in monomers even up to 95°C. To the best of our knowledge, this is the first report on monomeric subunit of lectins showing more stability against denaturants than its native dimeric state.

  12. pH responsive poly amino-acid hydrogels formed via silk sericin templating.

    PubMed

    Kurland, Nicholas E; Ragland, Robert B; Zhang, Aolin; Moustafa, Mahmoud E; Kundu, Subhas C; Yadavalli, Vamsi K

    2014-09-01

    Poly(amino acid) hydrogels have attracted a great deal of attention as biodegradable biomaterials that can limit products of synthetic polymer degradation. Here we report on a stimuli-responsive, porous, composite biomaterial based on the protein templating of the poly(amino acid) hydrogel from poly(aspartic acid) with the silk protein sericin. This low-cost, biocompatible and biodegradable hydrogel demonstrates a greatly increased porosity and improvement in volumetric swelling over networks formed from pure poly(aspartic acid). The swelling capacity measured over a range of pH values surrounding physiological pH 7.0 demonstrates a linear profile, in which hydrogel volume and mass increase to a maximum, with an increase as a function of higher sericin content. In comparison to pure poly(aspartic acid), this demonstrates a nearly 3-fold increase in retention volume at basic pH. The increase in swelling is also demonstrated by the increase in porosity and internal micro-architecture of the hydrogel networks. The biomaterial is then shown to perform well as a scaffold for cells with high mechanical strength and integrity. This protein- and homo poly(amino acid)-based super-swelling hydrogel has applications in drug delivery and tissue engineering as an economical and environmentally friendly biomaterial, in addition to ensuring the species incorporated maintain their biocompatibility during processing.

  13. [Effect of pH and fermentation time on yield and optical purity of lactic acid from kitchen wastes fermentation].

    PubMed

    Zhang, Bo; He, Pin-Jing; Shao, Li-Ming

    2007-04-01

    Batch experiments were carried out to analyze the effect of pH and fermentation time on the yield of total lactic acid and the distribution of L- and D-lactic acid among total lactic acid during the non-sterilized fermentation of kitchen wastes. The results show that the concentration of reduced sugar (calculated as organic carbon) is low, and its concentration was higher at neutral and alkali conditions (pH 6 - 8) than at acidic conditions (non-controlled pH and pH = 5). The maximum total lactic acid production rate and yield is 0.59 g x (L x h)(-1) and 0.62 g per gram VS at pH 7, respectively. The proportion of lactic acid (calculated as organic carbon) among the TOC reaches 78% and 89% at controlled pH 7 and 8, respectively. The L-lactic acid is the predominant isomer form at pH 8. Lactic acid concentration depends on pH, fermentation time and interaction from the response surface analysis. pH and fermentation time have a significant effect on the optical purity of lactic acid. At acidic conditions, the ratio of L-lactic acid to the total lactic acid increases with the fermentation time before 120 h, and the ratio reaches 0.9 at 120 h. At alkaline conditions, the ratio keeps at above 0.86 in the whole experimental fermentation time and reachs the maximum value (0.93) at 48 h. It decreases with fermentation time at pH 7. To obtain high lactic acid yield and optical purity simultaneously, it is suggested that pH should be contralled at 8.

  14. Investigation of pH Influence on Skin Permeation Behavior of Weak Acids Using Nonsteroidal Anti-Inflammatory Drugs.

    PubMed

    Chantasart, Doungdaw; Chootanasoontorn, Siriwan; Suksiriworapong, Jiraphong; Li, S Kevin

    2015-10-01

    As a continuing effort to understand the skin permeation behavior of weak acids and bases, the objectives of the present study were to evaluate skin permeation of nonsteroidal anti-inflammatory drugs (NSAIDs) under the influence of pH, investigate the mechanism of pH effect, and examine a previous hypothesis that the effective skin pH for drug permeation is different from donor solution pH. In vitro permeability experiments were performed in side-by-side diffusion cells with diclofenac, ibuprofen, flurbiprofen, ketoprofen, and naproxen and human skin. The donor solution pH significantly affected skin permeation of NSAIDs, whereas no effect of the receiver pH was observed. Similar to previous observations, the apparent permeability coefficient versus donor solution pH relationships deviated from the predictions (fractions of unionized NSAIDs) according to the acid/base theory. The influences of the viable epidermis barrier, polar pathway transport, ion permeation across skin, and effective skin pH were investigated. The effective pH values for skin permeation determined using the NSAIDs (weak acids) in this study were different from those obtained previously with a weak base at the same donor solution pH conditions, suggesting that the observed permeability-pH relationships could not be explained solely by possible pH differences between skin and donor solution.

  15. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Ostergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing.

  16. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  17. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.

  18. Recovery of carboxylic acids at pH greater than pKa

    SciTech Connect

    Tung, Lisa A.

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pKa and regenerability depend on sorbent basicity; apparent pKa and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  19. Urine pH test

    MedlinePlus

    ... pubmed/7797810 . Read More Acid loading test (pH) Acute kidney failure Alkalosis Chronic obstructive pulmonary disease Diabetic ketoacidosis Diarrhea - overview Distal renal tubular acidosis Gastric suction Interstitial nephritis Kidney stones ...

  20. Sensitivity of greenback cutthroat trout to acidic pH and elevated aluminum

    SciTech Connect

    Woodward, D.F. ); Farag, A.M. ); Little E.E.; Steadman, B. ); Yancik, R. )

    1991-01-01

    The greenback cutthroat trout Oncorhynchus clarki stomias is a threatened subspecies native to the upper South Platte and Arkansas rivers between Denver and Fort Collins, Colorado, an area also susceptible to acid deposition. In laboratory studies, the authors exposed this subspecies to nominal pHs of 4.5-6.5 and to nominal aluminum concentrations of 0, 50, 100, and 300 {mu}g/L; the control was pH 6.5 treatment without Al. The authors used soft water that contained 1.3 mg Ca/L. Exposures of 7 days each were made for four early life stages: fertilized egg, eyed embryo, alevin, and swim-up larva. Effects were measured at the end of exposure and again after a recovery period lasting until 40 days posthatch. The alevin stage was the most sensitive: at pH 5.0 with no Al, survival was reduced by 68% and swimming duration by 76%, at pH 6.0 and 50 {mu}g Al/L, swimming duration was reduced by 62%, but survival was not affected. Reductions in whole-body concentrations of Na, K, and Ca indicated organism stress. Sodium was reduced most-about 50% in alevins exposed to pH 5.0 without Al and to pH 6.0 with 50 {mu}g Al/L. Growth and the ratio of RNA to DNA were not affected by any exposure. All responses that were affected during exposure returned to normal by 40 days posthatch. Overall, it appeared that pH 6.0 and 50 {mu}g Al/L might be detrimental to greenback cutthroat trout populations.

  1. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects.

    PubMed

    Zhao, Yanping; Geng, Jinju; Wang, Xiaorong; Gu, Xueyuan; Gao, Shixiang

    2011-07-01

    Contamination of environmental matrixes by human and animal wastes containing antibiotics is a growing health concern. Because tetracycline is one of the most widely-used antibiotics in the world, it is important to understand the factors that influence its mobility in soils. This study investigated the effects of pH, background electrolyte cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), heavy metal Cu(2+) and humic acid (HA) on tetracycline adsorption onto kaolinite. Results showed that tetracycline was greatly adsorbed by kaolinite over pH 3-6, then decreased with the increase of pH, indicating that tetracycline adsorption mainly through ion exchange of cations species and complexation of zwitterions species. In the presence of five types of cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), tetracycline adsorption decreased in accordance with the increasing of atomic radius and valence of metal cations, which suggested that outer-sphere complexes formed between tetracycline and kaolinite, and the existence of competitor ions lead to the decreasing adsorption. The presence of Cu(2+) greatly enhanced the adsorption probably by acting as a bridge ion between tetracycline species and the edge sites of kaolinite. HA also showed a major effect on the adsorption: at pH < 6, the presence of HA increased the adsorption, while the addition of HA showed little effect on tetracycline adsorption at higher pH. The soil environmental conditions, like pH, metal cations and soil organic matter, strongly influence the adsorption behavior of tetracycline onto kaolinite and need to be considered when assessing the environmental toxicity of tetracycline.

  2. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide.

    PubMed

    Zhang, Y; Scorpio, A; Nikaido, H; Sun, Z

    1999-04-01

    Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosis are unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistant M. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosis to PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.

  3. A partly folded state of acidic fibroblast growth factor at low pH.

    PubMed

    Sanz, J M; Giménez-Gallego, G

    1997-06-01

    Acid denaturation of acidic fibroblast growth factor (aFGF) at low ionic strength was monitored by far-ultraviolet circular dichroism and intrinsic fluorescence. The two spectroscopic probes displayed non-coincident transitions, which suggested the accumulation of partly folded species around pH 4.0. Although under these conditions the fluorescence of aFGF resembled that of the unfolded form of the protein, far-ultraviolet circular dichroism and proton nuclear magnetic resonance spectra indicated the presence of persistent secondary and tertiary structure. Moreover, at pH 4.0, aFGF showed cooperative thermal denaturation and interacted weakly with the hydrophobic probe N-phenyl-1-naphthylamine, showing a relatively high level of structure that did not fit into the classical molten globule category. This intermediate is also capable of interacting with liposomes and might represent a membrane translocation-competent form.

  4. Kinetic investigation of recombinant human hyaluronidase PH20 on hyaluronic acid.

    PubMed

    Fang, Shiping; Hays Putnam, Anna-Maria A; LaBarre, Michael J

    2015-07-01

    The kinetic investigation of hyaluronidases using physiologically relevant hyaluronic acid (HA or hyaluronan) substrate will provide useful and important clues to their catalytic behavior and function in vivo. We present here a simple and sensitive method for kinetic measurement of recombinant human hyaluronidase PH20 (rHuPH20) on HA substrates with sizes ranging from 90 to 752 kDa. The method is based on 2-aminobenzamide labeling of hydrolyzed HA products combined with separation by size exclusion-ultra performance liquid chromatography coupled with fluorescence detection. rHuPH20 was found to follow Michaelis-Menten kinetics during the initial reaction time. Optimal reaction rates were observed in the pH range of 4.5-5.5. The HA substrate size did not have significant effects on the initial rate of the reaction. By studying HA substrates of 215, 357, and 752 kDa, the kinetic parameters Km, Vmax, and kcat were determined to be 0.87-0.91 mg/ml, 1.66-1.74 NM s(-1), and 40.5-42.4 s(-1), respectively. This method allows for direct measurement of kinetics using physiologically relevant HA substrates and can be applied to other hyaluronidase kinetic measurements.

  5. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

    PubMed

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín

    2015-11-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.

  6. Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons

    PubMed Central

    Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon

    2017-01-01

    The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K+ and Ca2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K+ currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K+ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs+ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions. PMID:28280415

  7. A novel "off-on" colorimetric and fluorescent rhodamine-based pH chemosensor for extreme acidity

    NASA Astrophysics Data System (ADS)

    Tan, Jia-Lian; Zhang, Mu-Xue; Zhang, Fang; Yang, Ting-Ting; Liu, Yu; Li, Zhu-Bo; Zuo, Hua

    2015-04-01

    A novel "off-on" colorimetric and fluorescent rhodamine analogue was synthesized and characterized, and used to monitor extreme acidity (below pH 3.5) via the photophysical response to pH. The colorless spirocyclic structure at high pH (pH ⩾ 7.0) opened to the colored and highly fluorescent form at very low pH (pH < 3.0). This sensitive pH probe was characterized with short response time, good reversibility and no interaction with interfering metal ions, and the quantitative relationship between the fluorescence intensity and pH value was consistent with the equilibrium equation pH = pKa - log[(Imax - I)/(I - Imin)]. The fluorescent response to strong acidity was further verified by fluorescent imaging of bacteria, Escherichia coli, which contributed to the development of more useful colorimetric and fluorescent sensors based on the rhodamine platform for measuring intracellular pH in extremely acidic conditions.

  8. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  9. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    PubMed

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries.

  10. Kinetics of hyaluronan hydrolysis in acidic solution at various pH values.

    PubMed

    Tømmeraas, Kristoffer; Melander, Claes

    2008-06-01

    Hyaluronic acid (HA) was hydrolyzed using varying temperatures (40, 60, and 80 degrees C) and acid concentrations (0.0010, 0.010, 0.10, 0.50, 1.0, and 2.0 M HCl). The degradation process was monitored by determination of weight average molecular weight ( M w) by size-exclusion chromatography with online multiangle laser light scattering, refractive index, and intrinsic viscosity detectors (SEC-MALLS-RI-visc) on samples taken out continuously during the hydrolysis. SEC-MALLS-RI-visc showed that the degradation gave narrow molecular weight distributions with polydispersity indexes ( M w/ M n) of 1.3-1.7. Kinetic plots of 1/ M w versus time gave linear plots showing that acid hydrolysis of HA is a random process and that it follows a first order kinetics. For hydrolysis in HCl at 60 and 80 degrees C, it was shown that the kinetic rate constant ( k h) for the degradation depended linearly on the acid concentration. Further, the dependence of temperature on the hydrolysis in 0.1 M HCl was found to give a linear Arrhenius plot (ln k h vs 1/ T), with an activation energy ( E a) of 137 kJ/mol and Arrhenius constant ( A) of 7.86 x 10 (15) h (-1). (1)H NMR spectroscopy was used to characterize the product of extensive hydrolysis (48 h at 60 degrees C in 0.1 M HCl). No indication of de- N-acetylation of the N-acetyl glucosamine (GlcNAc) units or other byproducts were seen. Additionally, a low molecular weight HA was hydrolyzed in 0.1 M DCl for 4 h at 80 degrees C. It was shown that it was primarily the beta-(1-->4)-linkage between GlcNAc and glucuronic acid (GlcA) that was cleaved during hydrolysis at pH < p K a,GlcA. The dependence of the hydrolysis rate constant was further studied as a function of pH between -0.3 and 5. The degradation was found to be random (linear kinetic plots) over the entire pH range studied. Further, the kinetic rate constant was found to depend linearly on pH in the region -0.3 to 3. Above this pH (around the p K a of HA), the kinetic constant

  11. Implications of pH manipulation methods for metal toxicity: not all acidic environments are created equal.

    PubMed

    Esbaugh, A J; Mager, E M; Brix, K V; Santore, R; Grosell, M

    2013-04-15

    The toxicity of many metals is impacted by environmental pH, through both competition and complexation by hydroxide and carbonate ions. To establish safe environmental regulation it is important to properly define the relationship between pH and metal toxicity, a process that involves manipulating the pH of test water in the lab. The current study compares the effects of the three most common pH manipulation methods (carbon dioxide, acid-base addition, and chemical buffers) on acute Pb toxicity of a model fish species, Pimephales promelas. Acidification of test water revealed that the Pb and Pb(2+) LC50 values were impacted by the pH manipulation method, with the following order of effects: HClpH was alkalinized using MOPS or NaOH. The different impacts of pH manipulation methods on Pb toxicity are likely due to different physiological stresses resulting from the respective methods; the physiological implications of each method are discussed. The results suggest that when studying the impacts of pH on metal toxicity it is important to properly replicate the ambient conditions of interest as artificial buffering using CO2 environments or organic buffers significantly affects the physiology of the test organisms above and beyond what is expected from pH alone. Thus, using CO2 and organic buffers overestimates the impact of acid pH on Pb toxicity.

  12. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    PubMed

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility.

  13. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  14. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-05

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these

  15. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~ 4 and ~ 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH ~ 14 and brown at pH ~ 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH ~ 14 and Forms "A", "D", and "P" at pH ~ 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH ~ 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at ~ 1548 cm- 1 in NRS while in the SERS window this appears at ~ 1580 cm- 1. Similar observation was also made for CZA at pH ~ 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at ~ 447 cm- 1 in the SERS spectrum as well as other bands at ~ 850, ~ 1067 and ~ 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH ~ 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH ~ 14). The DFT

  16. Sulfate reduction at low pH to remediate acid mine drainage.

    PubMed

    Sánchez-Andrea, Irene; Sanz, Jose Luis; Bijmans, Martijn F M; Stams, Alfons J M

    2014-03-30

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

  17. Influence of five neutralizing products on intra-oral pH after rinsing with simulated gastric acid.

    PubMed

    Lindquist, Birgitta; Lingström, Peter; Fändriks, Lars; Birkhed, Dowen

    2011-08-01

    The aetiology of dental erosion may be of both extrinsic and intrinsic origin. The aim of the present study was to test the ability of various neutralizing products to raise the low intra-oral pH after an erosive exposure, in this case to gastric acid, which was simulated using hydrochloric acid (HCl). Eleven adults participated. They rinsed with 10 ml of 10 mM HCl (pH 2) or 10 ml of 100 mM HCl (pH 1) for 1 min, after which the pH was measured intra-orally for up to 30 min at four sites (two approximal, one buccal, and the dorsum of the tongue). After rinsing with the two acid solutions (pH 1 and pH 2), the following products were used: (i) antacid tablet; (ii) gum arabic lozenge; (iii) mineral water; (iv) milk; and (v) tap water (positive control). The negative control was no product use. The five test products were used for 2 min after the erosive challenge. All the products produced an initially higher pH compared with the negative control. The antacid tablet resulted in the greatest and most rapid increase in pH, followed by the lozenge. In dental practice, the use of any of the neutralizing products tested, especially the antacid tablet, could be recommended in order to increase the intra-oral pH after an erosive challenge.

  18. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  19. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.

    PubMed

    Pandey, Rachna; Vischer, Norbert O E; Smelt, Jan P P M; van Beilen, Johan W A; Ter Beek, Alexander; De Vos, Winnok H; Brul, Stanley; Manders, Erik M M

    2016-11-01

    Intracellular pH (pHi) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pHi homeostasis. Unfortunately, accurate pHi quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pHi at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pHi in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pHi and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pHi regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies.

  20. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    PubMed Central

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  1. Mycorrhizal Response to Experimental pH and P Manipulation in Acidic Hardwood Forests

    PubMed Central

    Kluber, Laurel A.; Carrino-Kyker, Sarah R.; Coyle, Kaitlin P.; DeForest, Jared L.; Hewins, Charlotte R.; Shaw, Alanna N.; Smemo, Kurt A.; Burke, David J.

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  2. Effects of pH and acid concentration on erosive dissolution of enamel, dentine, and compressed hydroxyapatite.

    PubMed

    Shellis, R P; Barbour, M E; Jones, S B; Addy, M

    2010-10-01

    The aims of this study were to determine the effects of pH and acid concentration on the dissolution of enamel, dentine, and compressed hydroxyapatite (HA) in citric acid solutions (15.6 and 52.1 mmol l(-1) ; pH 2.45, 3.2, and 3.9), using a pH-stat system. After an initial adjustment period, the dissolution rates of enamel and HA were constant, while that of dentine decreased with time. The dissolution rate increased as the pH decreased, and this was most marked for enamel. To compare substrates, the rate of mineral dissolution was normalized to the area occupied by mineral at the specimen surface. For a given acid concentration, the normalized dissolution rate of HA was always less than that for either dentine or enamel. The dissolution rate for dentine mineral was similar to that for enamel at pH 2.45 and greater at pH 3.2 and pH 3.9. The concentration of acid significantly affected the enamel dissolution rate at pH 2.45 and pH 3.2, but not at pH 3.9, and did not significantly affect the dissolution rates of dentine or HA at any pH. The variation in response of the dissolution rate to acid concentration/buffer capacity with respect to pH and tissue type might complicate attempts to predict erosive potential from solution composition.

  3. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  4. Effect of pH on Penetration of Naphthaleneacetic Acid and Naphthaleneacetamide Through Isolated Pear Leaf Cuticle 1

    PubMed Central

    Norris, Robert F.; Bukovac, Martin J.

    1972-01-01

    Penetration of naphthaleneacetic acid through enzymatically isolated upper pear (Pyrus communis L. cv. Bartlett) leaf cuticle increased as the donor pH was decreased. Naphthaleneacetamide penetration was not influenced by donor pH. The effect of pH on naphthaleneacetic acid penetration was reversible. Higher receiver (simulated leaf interior) pH favored penetration of naphthaleneacetic acid. Changes in the degree of dissociation, and hence polarity, as controlled by hydrogen ion concentration was the prime factor in the response of naphthaleneacetic acid to pH. At pH values lower than the pK (4.2 for naphthaleneacetic acid), the molecule was primarily undissociated, lipophilic, and penetrated into the cuticle; whereas, at pH values above the pK naphthaleneacetic acid was ionized, hydrophilic, and penetrated the cuticle with difficulty or not at all. Data presented are consistent with the hypothesis that naphthaleneacetic acid and naphthaleneacetamide penetration through the cuticle takes place by diffusion. PMID:16658011

  5. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  6. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    NASA Technical Reports Server (NTRS)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  7. Making pH Tangible.

    ERIC Educational Resources Information Center

    McIntosh, Elizabeth; Moss, Robert

    1995-01-01

    Presents a laboratory exercise in which students test the pH of different substances, study the effect of a buffer on acidic solutions by comparing the behavior of buffered and unbuffered solutions upon the addition of acid, and compare common over-the-counter antacid remedies. (MKR)

  8. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    SciTech Connect

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J.; Purdue

    2010-07-27

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

  9. Acidic pH resistance of grafted chitosan on dental implant.

    PubMed

    Campos, Doris M; Toury, Bérengère; D'Almeida, Mélanie; Attik, Ghania N; Ferrand, Alice; Renoud, Pauline; Grosgogeat, Brigitte

    2015-05-01

    Over the last decade, access to dental care has increasingly become a service requested by the population, especially in the case of dental implants. However, the major cause of implant failure is an inflammatory disease: peri-implantitis. Currently, the adhesion strength of antibacterial coatings at implant surfaces remains a problem to solve. In order to propose a functionalized implant with a resistant antibacterial coating, a novel method of chitosan immobilization at implant surface has been investigated. Functionalization of the pre-active titanium (Ti) surface was performed using triethoxysilylpropyl succinic anhydride (TESPSA) as a coupling agent which forms a stable double peptide bond with chitosan. The chitosan presence and the chemical resistibility of the coating under acid pH solutions (pH 5 and pH 3) were confirmed by FTIR-ATR and XPS analyses. Furthermore, peel test results showed high adhesive resistance of the TESPSA/chitosan coating at the substrate. Cytocompatibility was evaluated by cell morphology with confocal imaging. Images showed healthy morphology of human gingival fibroblasts (HGF-1). Finally, the reported method for chitosan immobilization on Ti surface via peptide bindings allows for the improvement of its adhesive capacities and resistibility while maintaining its cytocompatibility. Surface functionalization using the TESPSA/chitosan coupling method is noncytotoxic and stable even in drastic environments as found in oral cavity, thus making it a valuable candidate for clinical implantology applications.

  10. Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Seco, A; Ferrer, J; Serralta, J

    2012-11-01

    Respirometric techniques have been used to determine the effect of pH, free nitrous acid (FNA) and substrate concentration on the activity of the ammonium oxidizing bacteria (AOB) present in an activated sludge reactor. With this aim, bacterial activity has been measured at different pH values (ranging from 6.2 to 9.7), total ammonium nitrogen concentrations (ranging from 0.1 to 10 mg TAN L(-1)) and total nitrite concentrations (ranging from 3 to 43 mg NO(2)-NL(-1)). According to the results obtained, the most appropriate kinetic expression for the growth of AOB in activated sludge reactors has been established. Substrate half saturation constant and FNA and pH inhibition constants have been obtained by adjusting model predictions to experimental results. Different kinetic parameter values and different Monod terms should be used to model the growth of AOB in activated sludge processes and SHARON reactors due to the different AOB species that predominate in both systems.

  11. Evaluation of net acid generation pH as a single indicator for acid forming potential of rocks using geochemical properties.

    PubMed

    Oh, Chamteut; Ji, Sangwoo; Yim, Giljae; Cheong, Youngwook

    2017-04-01

    The main purpose of this research was to evaluate the geochemical properties of rocks for a single indicator of acid-forming potential. The indicators, such as net acid generation (NAG), NAG pH and total S, were applied to 312 rock samples of various geological characteristics. Additional indicators, such as a Modified NAG pH, paste pH and available acid neutralizing capacity (ANC), were applied to 22 selected samples. Among them, NAG pH was considered the most plausible single indicator in evaluating acid-forming potential, as it is simple to measure, widely applicable to various samples and can be used to estimate the NAG value. The acid-forming potential of 287 samples (92% of samples examined in this research) was classified as either non-acid forming (NAF) or potentially acid forming (PAF) by NAG pH, with an NAF criteria of <3.21 and PAF of >4.52. The NAG pH was also a good estimate of the risk of short-term acid release when combined with paste pH information. However, application of NAG pH to coal mine wastes, with high organic carbon contents, produced erroneous results due to the generation of organic acid during the NAG test. In this research, a Modified NAG pH was assessed as an alternative to NAG pH in such situations.

  12. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  13. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  14. pH Titratable Superparamagnetic Iron Oxide for Improved Nanoparticle Accumulation in Acidic Tumor Microenvironments

    PubMed Central

    Crayton, Samuel H.; Tsourkas, Andrew

    2011-01-01

    A wide variety of nanoparticle platforms are being developed for the diagnosis and treatment of malignancy. While many of these are passively targeted or rely on receptor-ligand interactions, metabolically directed nanoparticles provide a complementary approach. It is known that both primary and secondary events in tumorigensis alter the metabolic profile of developing and metastatic cancers. One highly conserved metabolic phenotype is a state of up-regulated glycolysis and reduced use of oxidative phosphorylation, even when oxygen tension is not limiting. This metabolic shift, termed the Warburg effect, creates a “hostile” tumor microenvironment with increased levels of lactic acid and low extracellular pH. In order to exploit this phenomenon and improve the delivery of nanoparticle platforms to a wide variety of tumors, a pH-responsive iron oxide nanoparticle was designed. Specifically, glycol chitosan (GC), a water-soluble polymer with pH titratable charge, was conjugated to the surface of superparamagnetic iron oxide nanoparticles (SPIO) to generate a T2*-weighted MR contrast agent that responds to alterations in its surrounding pH. Compared to control nanoparticles that lack pH sensitivity, these GC-SPIO nanoparticles demonstrated potent pH-dependent cellular association and MR contrast in vitro. In murine tumor models GC-SPIO also generated robust T2*-weighted contrast, which correlated with increased delivery of the agent to the tumor site, measured quantitatively by inductively coupled plasma mass spectrometry. Importantly, the increased delivery of GC-SPIO nanoparticles cannot be solely attributed to the commonly observed enhanced permeability and retention effect, since these nanoparticles have similar physical properties and blood circulation times as control agents. PMID:22035454

  15. Influence of glutamic acid residues and pH on the properties of transmembrane helices.

    PubMed

    Rajagopalan, Venkatesan; Greathouse, Denise V; Koeppe, Roger E

    2017-03-01

    Negatively charged side chains are important for the function of particular ion channels and certain other membrane proteins. To investigate the influence of single glutamic acid side chains on helices that span lipid-bilayer membranes, we have employed GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-amide) as a favorable host peptide framework. We substituted individual Leu residues with Glu residues (L12E or L14E or L16E) and incorporated specific (2)H-labeled alanine residues within the core helical region or near the ends of the sequence. Solid-state (2)H NMR spectra reveal little change for the core labels in GWALP23-E12, -E14 and -E16 over a pH range of 4 to 12.5, with the spectra being broader for samples in DOPC compared to DLPC bilayers. The spectra for samples with deuterium labels near the helix ends on alanines 3 and 21 show modest pH-dependent changes in the extent of unwinding of the helix terminals in DLPC and DOPC bilayers. The combined results indicate minor overall responses of these transmembrane helices to changes in pH, with the most buried residue E12 showing no pH dependence. While the Glu residues E14 and E16 may have high pKa values in the lipid bilayer environment, it is also possible that a paucity of helix response is masking the pKa values. Interestingly, when E16 is present, spectral changes at high pH report significant local unwinding of the core helix. Our results are consistent with the expectation that buried carboxyl groups aggressively hold their protons and/or waters of hydration.

  16. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2006-06-01

    The effects of lactic and acetic acids on ethanol production by Saccharomyces cerevisiae in corn mash, as influenced by pH and dissolved solids concentration, were examined. The lactic and acetic acid concentrations utilized were 0, 0.5, 1.0, 2.0, 3.0 and 4.0% w/v, and 0, 0.1, 0.2, 0.4, 0.8 and 1.6% w/v, respectively. Corn mashes (20, 25 and 30% dry solids) were adjusted to the following pH levels after lactic or acetic acid addition: 4.0, 4.5, 5.0 or 5.5 prior to yeast inoculation. Lactic acid did not completely inhibit ethanol production by the yeast. However, lactic acid at 4% w/v decreased (P<0.05) final ethanol concentration in all mashes at all pH levels. In 30% solids mash set at pH < or =5, lactic acid at 3% w/v reduced (P<0.05) ethanol production. In contrast, inhibition by acetic acid increased as the concentration of solids in the mash increased and the pH of the medium declined. Ethanol production was completely inhibited in all mashes set at pH 4 in the presence of acetic acid at concentrations > or =0.8% w/v. In 30% solids mash set at pH 4, final ethanol levels decreased (P<0.01) with only 0.1% w/v acetic acid. These results suggest that the inhibitory effects of lactic acid and acetic acid on ethanol production in corn mash fermentation when set at a pH of 5.0-5.5 are not as great as that reported thus far using laboratory media.

  17. Effect of pH on complex formation between debranched waxy rice starch and fatty acids.

    PubMed

    Yotsawimonwat, Songwut; Sriroth, Klanarong; Kaewvichit, Sayam; Piyachomkwan, Kaukoon; Jane, Jay-Lin; Sirithunyalug, Jakkapan

    2008-08-15

    Complex formations between debranched waxy rice starch (DBS) and fatty acids (FA) of different hydrocarbon chain lengths (8:0, 10:0, 12:0, 14:0, 16:0, and 18:0) were studied in an aqueous solution by measuring the blue colour stained with iodine. The objective of this study was to understand the effects of the solubility and hydrophobicity of guest molecules (FA) on the complex formation with DBS. Lauric acid (12:0) displayed the greatest complex forming ability with DBS by showing the least blue colour developed with iodine. The effect of pH (3-7) on the DBS/FA complex formation was evaluated by measuring the iodine-scanning spectra of the mixture. Short-chain FA (8:0) displayed less complex formation at pH>or=5, above the pK(a) of fatty acid (approximately 4.8), which suggested that the charge formation of the short-chain FA caused a lower partitioning of the FA into the hydrophobic cavity of the DBS single helix. On the contrary, FA of 10:0-18:0 displayed an increased complex formation at pH>5, which could be attributed to increased solubility of these longer-chain FA at a dissociated and ionized form. The hydrocarbon chain length of the FA had an important impact on the extent of the complex formation. A FA that had a shorter hydrocarbon chain was more soluble in an aqueous solution and more readily formed a complex with DBS. At pH 6 and 7 (above the pK(a)), 10:0 formed less inclusion complexes with DBS than did 12:0. Iodine-scanning spectra showed that the absorbances of all iodine-stained DBS/FA solutions at higher wavelength were substantially lower than that of the iodine-stained DBS alone, suggesting that FA preferentially formed inclusion complexes with DBS of longer chains.

  18. Basis of antimalarial action: non-weak base effects of chloroquine on acid vesicle pH

    SciTech Connect

    Krogstad, D.J.; Schlesinger, P.H.

    1987-03-01

    Biologically active concentrations of chloroquine increase the pH of the parasite's acid vesicles within 3-5 min. This increase in pH results from two mechanisms, one of which is markedly reduced in chloroquine-resistant parasites. Because chloroquine is a weak base, it increases vesicle pH by that mechanism in chloroquine-susceptible and resistant parasites and mammalian cells (based on its two pKs and on the delta pH between the acid vesicle and the extracellular environment). In chloroquine-susceptible parasites, but not resistant parasites or mammalian cells, chloroquine increases the pH of acid vesicles 700- to 800-fold more than can be accounted for by its properties as a weak base. The increase in acid vesicle pH caused by these non-weak base effects of nanomolar chloroquine in susceptible parasites suggests that chloroquine acts by interfering with acid vesicle functions in the parasite such as the endocytosis and proteolysis of hemoglobin, and the intracellular targeting of lysosomal enzymes. The non-weak base effects of nanomolar chloroquine on parasite vesicle pH are also responsible for its safety because these chloroquine concentrations do not affect mammalian cells.

  19. The role of low molecular weight organic acids on controlling pH in coastal sea water

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-12-01

    Series investigation of the Jiaozhou Bay, China, observed existences of three low molecular weight organic acids (LMWOAs), including lactic acid, acetic acid and formic acid, with high concentration in the sea water. Generally, their amount accounted for about 20% of DOC in the sea water of the bay. Human activities around the bay were considered as the major source of the LMWOAs. Also, long term detection showed that the pH value in the Jiaozhou Bay was lower than that in the adjacent Yellow Sea. On average, the difference of pH values between the bay and the Yellow was about 0.2. Due to higher concentrations of the LMWOAs, their contribution to lower pH value of the bay should not be ignored. To validate the effect of LMWOAs on the pH value of the bay, a new software was developed to calculate the pH value in the sea water samples based on alkalinity by adding three items of the three organic acids in the expression. Compared to the traditional pH calculating software, the new software could improve the calculating results significantly. Our results confirmed that LMWOAs was an important control factor to adjust pH values in coastal area.

  20. Sensitivity of acid-adapted and acid-shocked Shigella flexneri to reduced pH achieved with acetic, lactic, and propionic acids.

    PubMed

    Tetteh, G L; Beuchat, L R

    2001-07-01

    Survival and growth characteristics of unadapted, acid-adapted, and acid-shocked Shigella flexneri 2a cells in acidified (pH 3.5 to 5.5) tryptic soy broth with 0.25% glucose (TSB) and tryptic soy agar (TSA) were determined. S. flexneri was grown at 37 degrees C for 18 h in tryptic soy broth without glucose (TSBNG) (unadapted) and TSBNG supplemented with 1% glucose (TSBG) (acid-adapted). Cells grown in TSBNG were acid shocked by adjusting 16-h cultures to pH 5.05 +/- 0.05 with lactic acid. Cells were then inoculated into TSB acidified with acetic, lactic, or propionic acids to pH 5.5, 4.5, or 3.5 and incubated at 37 degrees C for 6 h. The order of lethality at a given pH was lactic acid < acetic acid < propionic acid. Significantly (P < or = 0.05) higher numbers of acid-adapted cells, compared to acid-shocked and unadapted cells, were recovered from TSB acidified (pH 3.5) with lactic or acetic acids. None of the cells survived a 30-min exposure in TSB acidified with propionic acid to pH 3.5. When the three cell types were plated on TSA acidified with lactic, acetic, or propionic acids at pH < or = 4.5, < or = 5.5, and < or = 5.5, respectively, visible colonies were not detected. Viable unadapted, acid-adapted, and acid-shocked cells were, however, recovered from TSA acidified with all three acids at pH > or = 4.5. Acid-adapted and, to a lesser extent, acid-shocked cells survived at lower pH than did unadapted cells, indicating that prior exposure to mild acidic environment results in increased acid resistance. Survival of S. flexneri at a given pH was influenced by the type of acidulant used, a response characteristic exhibited by other gram-negative enteric pathogens.

  1. pH Basics

    ERIC Educational Resources Information Center

    Lunelli, Bruno; Scagnolari, Francesco

    2009-01-01

    The exposition of the pervasive concept of pH, of its foundations and implementation as a meaningful quantitative measurement, in nonspecialist university texts is often not easy to follow because too many of its theoretical and operative underpinnings are neglected. To help the inquiring student we provide a concise introduction to the depth just…

  2. pH optrode

    DOEpatents

    Northrup, M. Allen; Langry, Kevin C.

    1993-01-01

    A process is provided for forming a long-lasting, stable, pH-sensitive dye-acrylamide copolymer useful as a pH-sensitive material for use in an optrode or other device sensitive to pH. An optrode may be made by mechanically attaching the copolymer to a sensing device such as an optical fiber.

  3. Ph.D. shortage

    NASA Astrophysics Data System (ADS)

    The late 1990s will see a shortage of Ph.D. graduates, according to the Association of American Universities, Washington, D.C. AAU's new comprehensive study, “The Ph.D. Shortage: The Federal Role,” reports that competition for new Ph.D.s is already intense and can only intensify because demand is greater than supply in both academic and nonacademic markets.Doctoral education plays an increasingly important role in U.S. research and development programs. Students have a pivotal part in doing research and enriching it with new ideas. The AAU report says that graduate students are “major determinants of the creativity and productivity of U.S. academic research, the source of more than 50% of the nation's basic research.’ The market for doctoral education extends beyond the university. In 1985, about 43% of all Ph.D.s employed in this country were working outside higher education; the demand for doctorate recipients in nonacademic sectors continues to grow.

  4. First-Principles Calculation of Thermodynamic Stability of Acids and Bases under pH Environment: A Microscopic pH Theory

    SciTech Connect

    Kim, Y. H.; Kim, K.; Zhang, S. B.

    2012-04-07

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H{sup +}, OH{sup -}, NH{sub 3}, NH{sub 4}{sup +}, HCOOH, and HCOO{sup -} in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH{sub 3} and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  5. First-principles calculation of thermodynamic stability of acids and bases under pH environment: a microscopic pH theory.

    PubMed

    Kim, Yong-Hyun; Kim, Kwiseon; Zhang, S B

    2012-04-07

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H(+), OH(-), NH(3), NH(4)(+), HCOOH, and HCOO(-) in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH(3) and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  6. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  7. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  8. Relationships between the resistance of yeasts to acetic, propanoic and benzoic acids and to methyl paraben and pH.

    PubMed

    Warth, A D

    1989-07-01

    Minimum inhibitory concentrations of acetic, propanoic and benzoic acids and methyl paraben were determined at pH 3.50 for 22 isolates of 11 yeast species, differing in their resistance to preservatives. Growth in the presence of benzoic acid enhanced the resistance of yeasts to benzoic and the other weak acid preservatives, but not to methyl paraben. Resistance to acetic, propanoic and benzoic acids was strongly correlated, but was not closely related to resistance to methyl paraben. Minimum pH for growth was not related to resistance to the weak acids. The results suggest that growth in the presence of weak-acid preservatives involves a common resistance mechanism.

  9. Potentiometric pH Measurements of Acidity Are Approximations, Some More Useful than Others

    ERIC Educational Resources Information Center

    de Levie, Robert

    2010-01-01

    A recent article by McCarty and Vitz "demonstrating that it is not true that pH = -log[H+]" is examined critically. Then, the focus shifts to underlying problems with the IUPAC definition of pH. It is shown how the potentiometric method can provide "estimates" of both the IUPAC-defined hydrogen activity "and" the hydrogen ion concentration, using…

  10. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  11. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    PubMed

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications.

  12. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  13. Study of metabolic profile of Rhizopus oryzae to enhance fumaric acid production under low pH condition.

    PubMed

    Liu, Ying; Xu, Qing; Lv, Chunwei; Yan, Caixia; Li, Shuang; Jiang, Ling; Huang, He; Ouyang, Pingkai

    2015-12-01

    Ensuring a suitable pH is a major problem in industrial organic acid fermentation. To circumvent this problem, we used a metabolic profiling approach to analyze metabolite changes in Rhizopus oryzae under different pH conditions. A correlation between fumaric acid production and intracellular metabolic characteristics of R. oryzae was revealed by principal component analysis. The results showed that to help cell survival in the presence of low pH, R. oryzae altered amino acid and fatty acid metabolism and promoted sugar or sugar alcohol synthesis, corresponding with a suppressing of energy metabolism, phenylalanine, and tyrosine synthesis and finally resulting in the low performance of fumaric acid production. Based on this observation, 1 % linoleic acid was added to the culture medium in pH 3.0 to decrease the carbon demand for cell survival, and the fumaric acid titer was enhanced by 39.7 % compared with the control (pH 3.0 without linoleic acid addition), reaching 18.3 g/L after 84 h of fermentation. These findings provide new insights into the mechanism by which R. oryzae responds to acidic stress and would be helpful for the development of efficient strategies for fumaric acid production at low pH.

  14. Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12.

    PubMed

    Yang, Xue; Wan, Chunli; Lee, Duu-Jong; Du, Maoan; Pan, Xiangliang; Wan, Fang

    2014-09-01

    This study adopted rapid alkaline treatment at pH 12 to hydrolyze 66% of total chemical oxygen demands. Then the hydrolyzed liquor was fermented in a continuous-flow stirred reactor to produce volatile fatty acids (VFAs) at 8-h hydraulic retention time and at 35 °C. The maximum VFA productivity reached 365 mg VFAs g(-1) volatile suspended solids in a 45-d operation, with most produced VFAs being acetate and propionate, principally produced by protein degradation. The Bacteroidia, ε-proteobacteria and the Clostridia were identified to be the classes correlating with the fermentation processes. The fermented liquor was applied to denitrifying phosphorus removal process as alternative carbon source after excess phosphorus and nitrogen being recycled via struvite precipitation. Fermented liquors from alkaline hydrolysis-acid fermentation on waste activated sludge are a potential renewable resource for applications that need organic carbons.

  15. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  16. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  17. Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation.

    PubMed

    Jankowska, Ewelina; Chwiałkowska, Joanna; Stodolny, Mikołaj; Oleskowicz-Popiel, Piotr

    2015-08-01

    Mixed culture fermentation consists of stable microbial population hence waste could be potentially used as a substrates. The aim of the work was to investigate the impact of pH and retention time on the anaerobic mixed culture fermentation. Trials at different pH (4-12) in unbuffered systems were conducted for 5, 10 and 15days. The highest VFAs concentration was achieved after 15days at pH 10 (0.62g/gVSadded), promising results were also achieved for pH 11 (0.54g/gVSadded). For pH 4 and short retention time propionic acid was the major product instead of acetic acid. For batches run at 15days (besides pH 6) caproic acid presence was noticed whereas at pH 11 occurrence of succinic was quantified. Significant correlation between operational factors and fermentation's effluents was proved. Throughout changing simple operating parameters one could design process to produce desirable concentration and composition of VFAs.

  18. Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent.

    PubMed

    Chang, Chen-Yu; Hsieh, Yung-Hsu; Cheng, Kai-Yuan; Hsieh, Ling-Ling; Cheng, Ta-Chih; Yao, Kuo-Shan

    2008-01-01

    This study estimates the yield of hydroxyl radical using salicylic acid as the trapping reagent and investigates the relationship between hydroxyl radical and pH value. The formation and variation of hydroxyl radical under different pH values were evaluated using reaction products, 2,3-DHBA, 2,5-DHBA, and catechol. The formation rate of hydroxyl radical was dependent on the ratio of ferrous ion to hydrogen peroxide and pH values. The difference between various pH values was explored. The kinetics and mechanisms of hydroxyl radical reactions were established in the Fenton process. Experimental results showed that the best reaction conditions were 8.5 mM H(2)O(2), 1.25 mM Fe(2 + ), Fe(2 + )/H(2)O(2) = 0.147 at pH 3 and the formation rate constant of hydroxyl radical was 1.12 x 10(11) M(-1) s(-1).

  19. Development of On-Line Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes

    SciTech Connect

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.; Levitskaia, Tatiana G.; Peterson, James M.; Smith, Frances N.; Bryan, Samuel A.

    2015-05-19

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.

  20. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  1. 17-4 PH and 15-5 PH

    NASA Technical Reports Server (NTRS)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  2. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.

    PubMed

    Qi, Zewan; Chen, Yang

    2017-01-15

    Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb(3+) ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H(+) is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb(3+). The long luminescence lifetime of Tb(3+) allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H(+) in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands.

  3. Faecal pH, bile acid and sterol concentrations in premenopausal Indian and white vegetarians compared with white omnivores.

    PubMed

    Reddy, S; Sanders, T A; Owen, R W; Thompson, M H

    1998-06-01

    Faecal bulk, pH, water content, the concentrations of neutral sterols and bile acids and dietary intakes were measured in twenty-two Indian vegetarian, twenty-two white omnivorous and eighteen white vegetarian premenopausal women. Faecal bulk and water content were greater and pH lower in the Indian vegetarians. Total faecal animal sterol and coprostanol concentrations expressed on a dry-weight basis were lower in the vegetarians compared with the omnivores. The faecal sterol concentrations were correlated with dietary cholesterol intake. Primary bile acids were detected in six Indian vegetarians, two white vegetarians and two white omnivores; secondary bile acids were detected in all the white omnivores and vegetarian subjects but not in two of the Indian vegetarians. Total faecal free bile acid and conjugated bile acid concentrations were lower in the white vegetarians compared with the omnivores. Faecal lithocholic acid concentrations were lower in both Indian and white vegetarians. The lithocholic: deoxycholic acid ratio and coprostanol: total animal sterols ratio were significantly lower in the Indian vegetarians compared with the omnivores. Both ratios were positively correlated with faecal pH. Stepwise multiple regression analyses were undertaken in order to identify which nutrients influenced faecal pH, lithocholic and deoxycholic acid concentrations. The intakes of starch and dietary fibre were negatively associated with faecal concentrations of lithocholic and deoxycholic acid. Starch intake alone was negatively associated with faecal pH. The results of this study confirm that diets high in dietary fibre decrease faecal bile acid concentrations and suggest that the complex carbohydrates present in Indian vegetarian diets influence faecal pH and inhibit the degradation of faecal steroids.

  4. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    PubMed

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  5. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids

    PubMed Central

    Danhof, Heather A.; Vylkova, Slavena; Vesely, Elisa M.; Ford, Amy E.; Gonzalez-Garay, Manuel

    2016-01-01

    ABSTRACT The opportunistic fungal pathogen Candida albicans thrives within diverse niches in the mammalian host. Among the adaptations that underlie this fitness is an ability to utilize a wide array of nutrients, especially sources of carbon that are disfavored by many other fungi; this contributes to its ability to survive interactions with the phagocytes that serve as key barriers against disseminated infections. We have reported that C. albicans generates ammonia as a byproduct of amino acid catabolism to neutralize the acidic phagolysosome and promote hyphal morphogenesis in a manner dependent on the Stp2 transcription factor. Here, we report that this species rapidly neutralizes acidic environments when utilizing carboxylic acids like pyruvate, α-ketoglutarate (αKG), or lactate as the primary carbon source. Unlike in cells growing in amino acid-rich medium, this does not result in ammonia release, does not induce hyphal differentiation, and is genetically distinct. While transcript profiling revealed significant similarities in gene expression in cells grown on either carboxylic or amino acids, genetic screens for mutants that fail to neutralize αKG medium identified a nonoverlapping set of genes, including CWT1, encoding a transcription factor responsive to cell wall and nitrosative stresses. Strains lacking CWT1 exhibit retarded αKG-mediated neutralization in vitro, exist in a more acidic phagolysosome, and are more susceptible to macrophage killing, while double cwt1Δ stp2Δ mutants are more impaired than either single mutant. Together, our observations indicate that C. albicans has evolved multiple ways to modulate the pH of host-relevant environments to promote its fitness as a pathogen. PMID:27935835

  6. A pH and thermosensitive choline phosphate-based delivery platform targeted to the acidic tumor microenvironment.

    PubMed

    Yu, Xifei; Yang, Xiaoqiang; Horte, Sonja; Kizhakkedathu, Jayachandran N; Brooks, Donald E

    2014-01-01

    Solid tumors generally exhibit an acidic microenvironment which has been recognized as a potential route to distinguishing tumor from normal tissue for purposes of drug delivery or imaging. To this end we describe a pH and temperature sensitive polymeric adhesive that can be derivatized to carry drugs or other agents and can be tuned synthetically to bind to tumor cells at pH 6.8 but not at pH 7.4 at 37 °C. The adhesive is based on the universal reaction between membrane phosphatidyl choline (PC) molecules and polymers derivatized with multiple copies of the inverse motif, choline phosphate (CP). The polymer family we use is a linear copolymer of a CP terminated tetraethoxymethacrylate and dimethylaminoethyl (DMAE) methacrylate, the latter providing pH sensitivity. The copolymer exhibits a lower critical solution temperature (LCST) just below 37 °C when the DMAE is uncharged at pH 7.4 but the LCST does not occur when the group is charged at pH 6.8 due to the ionization hydrophilicity. At 37 °C the polymer binds strongly to mammalian cells at pH 6.8 but does not bind at pH 7.4, potentially targeting tumor cells existing in an acidic microenvironment. We show the binding is strong, reversible if the pH is raised and is followed rapidly by cellular uptake of the fluorescently labeled material. Drug delivery utilizing this dually responsive family of polymers should provide a basis for targeting tumor cells with minimal side reactions against untransformed counterparts.

  7. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  8. Studies on tolfenamic acid-chitosan intermolecular interactions: effect of pH, polymer concentration and molecular weight.

    PubMed

    Ahmed, Sofia; Sheraz, Muhammad Ali; Rehman, Ihtesham Ur

    2013-06-01

    Solid-state properties of tolfenamic acid (TA) and its complexes with chitosan (CT) have been studied. Effect of medium pH, molecular weight of polymer and its different concentrations on these TA-CT complexes were studied in detail. Low and medium molecular weight CT have been used in different ratios at pH ranging from 4 to 6 and freeze-drying technique has been employed to modify the appearance of crystalline TA. Physical properties of the formed complexes have been studied by employing X-ray diffraction, differential scanning calorimetry and scanning electron microscopy; chemical structure has been studied using Fourier transform infrared spectroscopy. The results showed that both forms of the polymer exhibited complete conversion in 1:8 ratio at pH 4, 1:4 at pH 5 and 1:1 at pH 6 indicating a marked effect of pH on drug-polymer complexation. The percent crystallinity calculations indicated low molecular weight CT slightly more effective than the other form. No changes in the complexes have been observed during the 12 week storage under controlled conditions. Both forms of CT at different pH values indicated retardation of recrystallization in TA during cooling of the melt from 1:1 ratios exhibiting formation of strong intermolecular hydrogen bonding between the drug and the polymer.

  9. Measurement of luminal pH of acidic stores as a readout for NAADP action.

    PubMed

    Galione, Antony; Chuang, Kai-Ting; Funnell, Tim M; Davis, Lianne C; Morgan, Anthony J; Ruas, Margarida; Parrington, John; Churchill, Grant C

    2014-10-01

    In addition to mobilizing Ca²⁺, NAADP plays a role in modulating the luminal pH (pHL) of acidic stores of the endolysosomal system. The effects of NAADP on pHL have been most extensively studied in the sea urchin egg, both in the intact egg and in egg homogenates. Related observations have also been made in mammalian systems (e.g., guinea pig atrial myocytes and pancreatic acinar cells). Although the connection between Ca²⁺ mobilization and increase in pHL is not understood, pHL can be a useful parameter to measure when studying NAADP-mediated signaling. This protocol describes the fluorescent measurement of pHL of acidic stores. It relies on the use of acridine orange (AO), a standard dye for pHL. AO selectively accumulates to high concentrations in the lumen of organelles as a function of acidity; at these high concentrations it self-quenches. When pHL increases, some AO is lost from the vesicle. As a result, the lower luminal AO concentration relieves the quenching and fluorescence increases in the lumen.

  10. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  11. A photo Lewis acid generator (PhLAG): controlled photorelease of B(C6F5)3.

    PubMed

    Khalimon, Andrey Y; Piers, Warren E; Blackwell, James M; Michalak, David J; Parvez, Masood

    2012-06-13

    A molecule that releases the strong organometallic Lewis acid B(C(6)F(5))(3) upon irradiation with 254 nm light has been developed. This photo Lewis acid generator (PhLAG) now enables the photocontrolled initiation of several reactions catalyzed by this important Lewis acid. Herein is described the synthesis of the triphenylsulfonium salt of a carbamato borate based on a carbazole function, its establishment as a PhLAG, and the application of the photorelease of B(C(6)F(5))(3) to the fabrication of thin films of a polysiloxane material.

  12. Effect of Acidic pH on Expression of Surface-Associated Proteins of Streptococcus oralis

    PubMed Central

    Wilkins, Joanna C.; Beighton, David; Homer, Karen A.

    2003-01-01

    Streptococcus oralis, a member of the mitis group of oral streptococci, is implicated in the pathogenesis of infective endocarditis and is the predominant aciduric non-mutans-group streptococcus in dental plaque. We undertook to identify the most abundant surface-associated proteins of S. oralis and to investigate changes in protein expression when the organism was grown under acidic culture conditions. Surface-associated proteins were extracted from cells grown in batch culture, separated by two-dimensional gel electrophoresis, excised, digested with trypsin, and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Putative functions were assigned by homology to a translated genomic database of Streptococcus pneumoniae. A total of 27 proteins were identified; these included a lipoprotein, a ribosome recycling factor, and the glycolytic enzymes phosphoglycerate kinase, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and enolase. The most abundant protein, phosphocarrier protein HPr, was present as three isoforms. Neither lactate dehydrogenase nor pyruvate oxidase, dominant intracellular proteins, were present among the proteins on the gels, demonstrating that proteins in the surface-associated pool did not arise as a result of cell lysis. Eleven of the proteins identified were differentially expressed when cells were grown at pH 5.2 versus pH 7.0, and these included superoxide dismutase, a homologue of dipeptidase V from Lactococcus lactis, and the protein translation elongation factors G, Tu, and Ts. This study has extended the range of streptococcal proteins known to be expressed at the cell surface. Further investigations are required to ascertain their functions at this extracellular location and determine how their expression is influenced by other environmental conditions. PMID:12957916

  13. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  14. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation.

  15. Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property.

    PubMed

    Tsega, Moges; Dejene, F B

    2017-02-01

    Titanium dioxide (TiO2) nanoparticles were prepared by the sol-gel method at different pH values (3.2-6.8) with a hydrochloric acid (HCl) solution. Raw samples were calcined at 500 °C for 2 h. The effects of pH on the structural, morphological and optical properties of TiO2 nanoparticles were investigated. At pH 4.4-6.8, only the anatase phase of TiO2 was observed. Under strong acidic condition at pH 3.2 rutile, brookite and anatase co-exist, but rutile is the predominant phase. The strain value increased and the crystallite size decreased as the HCl content increased. The increased crystallite sizes in the range 21-24 nm and enhanced blue emission intensity around 432 nm was obtained for the sample at pH 5.0. Experimental results showed that TiO2 nanoparticles synthesized at pH 5.0 exhibited the best luminescence property with pure anatase phase.

  16. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  17. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  18. Effect of low pH start-up on continuous mixed-culture lactic acid fermentation of dairy effluent.

    PubMed

    Choi, Gyucheol; Kim, Jaai; Lee, Changsoo

    2016-12-01

    Mixed-culture fermentation that does not require an energy-intensive sterilization process is a viable approach for the economically feasible production of lactic acid (LA) due to the potential use of organic waste as feedstock. This study investigated mixed-culture LA fermentation of whey, a high-strength organic wastewater, in continuous mode. Variations in the hydraulic retention time (HRT) from 120 to 8 h under different pH regimes in two thermophilic reactors (55 °C) were compared for their fermentation performance. One reactor was maintained at a low pH (pH 3.0) during operation at HRTs of 120 to 24 h and then adjusted to pH 5.5 in the later phases of fermentation at HRTs of 24 to 8 h (R1), while the second reactor was maintained at pH 5.5 throughout the experiment (R2). Although the LA production in R1 was negligible at low pH, it increased dramatically after the pH was raised to 5.5 and exceeded that in R2 when stabilized at HRTs of 8 and 12 h. The maximum yield (0.62 g LA/g substrate fed as the chemical oxygen demand (COD) equivalent), the production rate (11.5 g/L day), and the selectivity (95 %) of LA were all determined at a 12-h HRT in R1. Additionally, molecular and statistical analyses revealed that changes in the HRT and the pH significantly affected the bacterial community structure and thus the fermentation characteristics of the experimental reactors. Bacillus coagulans was likely the predominant LA producer in both reactors. The overall results suggest that low pH start-up has a positive effect on yield and selectivity in mixed-culture LA fermentation.

  19. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    PubMed

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products.

  20. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.

    PubMed

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-05-23

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

  1. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater.

  2. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence

    PubMed Central

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-01-01

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQW104C-A128C is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQW104C-A128C Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence. DOI: http://dx.doi.org/10.7554/eLife.06792.001 PMID:26002083

  3. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity.

  4. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general.

  5. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops

    NASA Astrophysics Data System (ADS)

    Abdulaha-Al Baquy, M.; Li, Jiu-Yu; Xu, Chen-Yang; Mehmood, Khalid; Xu, Ren-Kou

    2017-02-01

    Soil acidity has become a principal constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study is to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui (SE China) were conducted for wheat and canola crops in a controlled growth chamber. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels from 3.7 (Hunan) and 3.97 (Anhui) to 6.5. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg-1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 1.72 cmol kg-1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, and thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.

  6. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    PubMed

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  7. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ∆G o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  8. An HPLC method with UV detection, pH control, and reductive ascorbic acid for cyanuric acid analysis in water.

    PubMed

    Cantú, R; Evans, O; Kawahara, F K; Shoemaker, J A; Dufour, A P

    2000-12-01

    Every year over 250 million pounds of cyanuric acid (CA) and chlorinated isocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. The method developed for CA using high-performance liquid chromatography (HPLC) with UV detection simplifies and optimizes certain parameters of previous methodologies by effective pH control of the eluent (95% phosphate buffer: 5% methanol, v/v) to the narrow pH range of 7.2-7.4. UV detection was set at the optimum wavelength of 213 nm where the cyanuric ion absorbs strongly. Analysis at the lower pH range of 6.8-7.1 proved inadequate due to CA keto-enol tautomerism, while at pHs of <6.8 there were substantial losses in analytical sensitivity. In contrast, pHs of >7.4 proved more sensitive but their use was rejected because of CA elution at the chromatographic void volume and due to chemical interferences. The complex equilibria of chlorinated isocyanurates and associated species were suppressed by using reductive ascorbic acid to restrict the products to CA. UV, HPLC-UV, and electrospray ionization mass spectrometry techniques were combined to monitor the reactive chlorinated isocyanurates and to support the use of ascorbic acid. The resulting method is reproducible and measures CA in the 0.5-125 mg/L linear concentration range with a method detection limit of 0.05 mg/L in water.

  9. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  10. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    PubMed

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor.

  11. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  12. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase.

    PubMed

    Nicoll, Andrew J; Allemann, Rudolf K

    2004-08-07

    A 31-residue peptide (Art-Est) was designed to catalyse the hydrolysis of p-nitrophenyl esters through histidine catalysis on the solvent exposed face of the alpha-helix of bovine pancreatic polypeptide. NMR spectroscopy indicated that Art-Est adopted a stable 3-dimensional structure in solution. Art-Est was an efficient catalyst with second order rate constants of up to 0.050 M(-1) s(-1). The activity of Art-Est was a consequence of the increased nucleophilicity of His-22, which had a reduced pK(a) value of 5.5 as a consequence of its interaction with His-18 and the positively charged Arg-25 and Arg-26. Mass spectrometry and NMR spectroscopy confirmed that the Art-Est catalysed hydrolysis of p-nitrophenyl esters proceeded through an acyl-enzyme intermediate. A solvent kinetic isotope effect of 1.8 indicated that the transition state preceding the acyl intermediate was stabilised through interaction with the protonated side-chain of His-18 and indicated a reaction mechanism similar to that generally observed for natural esterases. The involvement in the reaction of two histidine residues with different pK(a) values led to a bell-shaped dependence of the reaction rate on the pH of the solution. The catalytic behaviour of Art-Est indicated that designed miniature enzymes can act in a transparent mechanism based fashion with enzyme-like behaviour through the interplay of several amino acid residues.

  13. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure.

  14. Analysis of a mixture of a known and an unknown weak acid by titration to a preset pH.

    PubMed

    Livaska, A

    1975-12-01

    The preset-pH titration method has been used to indicate the presence of a second acid when the titration curve (pH vs. volume of added titrant) seems to indicate only one acid. By use of the method even small amounts of propionic acid can be detected in an acetic acid solution despite the small value of Delta log K(H)(HA) = 0.18. Binary mixtures of acids may bs analysed when one acid is known, and log k(H)(HA) for the unknown acid may be found. Acetic acid, as the known acid, has been determined together with hydrochloric, mandelic, hydroxyacetic or boric acid or ammonium ion, with an error of about 1%. The method can be used in some cases for titration of ternary mixtures of one known and two unknown acids. Only the sum of the unknown acids can then be determined together with the known acid.

  15. Nitrification in a Biofilm at Low pH Values: Role of In Situ Microenvironments and Acid Tolerance

    PubMed Central

    Gieseke, Armin; Tarre, Sheldon; Green, Michal; de Beer, Dirk

    2006-01-01

    The sensitivity of nitrifying bacteria to acidic conditions is a well-known phenomenon and generally attributed to the lack and/or toxicity of substrates (NH3 and HNO2) with decreasing pHs. In contrast, we observed strong nitrification at a pH around 4 in biofilms grown on chalk particles and investigated the following hypotheses: the presence of less acidic microenvironments and/or the existence of acid-tolerant nitrifiers. Microelectrode measurements (in situ and under various experimental conditions) showed no evidence of a neutral microenvironment, either within the highly active biofilm colonizing the chalk surface or within a control biofilm grown on a nonbuffering (i.e., sintered glass) surface under acidic pH. A 16S rRNA approach (clone libraries and fluorescence in situ hybridizations) did not reveal uncommon nitrifying (potentially acid-tolerant) strains. Instead, we found a strongly acidic microenvironment, evidence for a clear adaptation to the low pH in situ, and the presence of nitrifying populations related to subgroups with low Kms for ammonia (Nitrosopira spp., Nitrosomonas oligotropha, and Nitrospira spp.). Acid-consuming (chalk dissolution) and acid-producing (ammonia oxidation) processes are equilibrated on a low-pH steady state that is controlled by mass transfer limitation through the biofilm. Strong affinity to ammonia and possibly the expression of additional functions, e.g., ammonium transporters, are adaptations that allow nitrifiers to cope with acidic conditions in biofilms and other habitats. PMID:16751543

  16. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid.

    PubMed

    Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck

    2010-07-15

    Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable.

  17. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  18. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  19. Effect of acidity consumption/production on the pH of aeration tank during the biodegradation of acetic acid/epichlorohydrin.

    PubMed

    Yoon, Seong-Hoon; Kim, Hyung-Soo; Chung, Yun-Chul

    2002-06-01

    In order to elucidate the biologically driven pH fluctuation phenomena in industrial wastewater treatment, the contrary effects of acetic acid (AA) and epichlorohydrin (ECH) on the pH of aeration tank were investigated. Two simple equations were derived to estimate optimum neutralization pHs for the biological AA/ECH wastewater treatment, and the calculated optimum neutralization pHs were compared with experimental results. The pH in aeration tank was expected to fluctuate sharply with the smallest deviation of neutralization pH from the optimum value. However experimental results showed that real pH fluctuation is smaller than the theoretical one. It was considered that carbonate buffer in aqueous system relieves the pH fluctuation. The deviation between experimental and theoretical optimum neutralization pH could be mainly caused by volatility of AA and ECH. The deviation was larger with ECH wastewater of which volatility is larger than AA. Finally, this theory was successfully applied to the real petrochemical wastewater treatment. The pH of aeration tank was properly maintained when acidified wastewater (pH 3.4) was supplied.

  20. Energy separations for the electronic states of PH -2,PH 2 and PH +2

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    1993-03-01

    All-electron complete-active space multi-configuration self-consistent field (CASSCF) followed by second-order configuration interaction (SOCI) calculations in conjunction with large P(13s10p3d2flg/7s6p3d2flg) and H (10s5p1d/8s5p1d) basis sets are made on the electronic states of PH -2, PH 2 and PH +2. We compute the adiabatic electron affinities of PH 2 and PH. The 3B 1-X 1A 1, 1B 1-X 1A 1 energy separations of PH +2 and the 2A 1-X 2B 1 energy separation of PH 2 are computed.

  1. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  2. Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy.

    PubMed

    Martinez, Keith A; Kitko, Ryan D; Mershon, J Patrick; Adcox, Haley E; Malek, Kotiba A; Berkmen, Melanie B; Slonczewski, Joan L

    2012-05-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no "overshoot" but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.

  3. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH.

    PubMed Central

    Allison, S L; Schalich, J; Stiasny, K; Mandl, C W; Kunz, C; Heinz, F X

    1995-01-01

    The flavivirus envelope protein E undergoes irreversible conformational changes at a mildly acidic pH which are believed to be necessary for membrane fusion in endosomes. In this study we used a combination of chemical cross-linking and sedimentation analysis to show that the envelope proteins of the flavivirus tick-borne encephalitis virus also change their oligomeric structure when exposed to a mildly acidic environment. Under neutral or slightly alkaline conditions, protein E on the surface of native virions exists as a homodimer which can be isolated by solubilization with the nonionic detergent Triton X-100. Solubilization with the same detergent after pretreatment at an acidic pH, however, yielded homotrimers rather than homodimers, suggesting that exposure to an acidic pH had induced a simultaneous weakening of dimeric contacts and a strengthening of trimeric ones. The pH threshold for the dimer-to-trimer transition was found to be 6.5. Because the pH dependence of this transition parallels that of previously observed changes in the conformation and hydrophobicity of protein E and that of virus-induced membrane fusion, it appears likely that the mechanism of fusion with endosomal membranes involves a specific rearrangement of the proteins in the viral envelope. Immature virions in which protein E is associated with the uncleaved precursor (prM) of the membrane protein M did not undergo a low-pH-induced rearrangement. This is consistent with a protective role of protein prM for protein E during intracellular transport of immature virions through acidic compartments of the trans-Golgi network. PMID:7529335

  4. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  5. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids.

  6. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    NASA Astrophysics Data System (ADS)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  7. Investigating Effects of Acidic pH on Proliferation, Invasion and Drug-Induced Apoptosis in Lymphoblastic Leukemia.

    PubMed

    Bohloli, Mahbobeh; Atashi, Amir; Soleimani, Masoud; Kaviani, Saeid; Anbarlou, Azadeh

    2016-12-01

    Some studies have shown that extracellular pH in tumors, which results in tumor progression, is less than that in normal tissues. The aim of this study was to investigate the effects of extracellular acidic pH on proliferation, invasion, and drug-induced apoptosis in acute lymphoblastic cells. The cells were cultured in different pH (pH 6.6 and pH 7.4) for 12 days. Cell proliferation was assessed by MTT assay and cell invasion was assayed by invasion assay and gene expression analysis of MMP-9. Drug-induced apoptosis was evaluated after exposure to doxorubicin for 24 hours by annexin V/PI staining and gene expression analysis of BAX pro-apoptotic protein. The results indicated the enhanced growth and invasion of leukemic cells at pH 6.6 (P ≤ 0.05). Furthermore, the cells at pH 6.6 were resistant to apoptosis by doxorubicin (P ≤ 0.05). It can be concluded that acidic pH increases the proliferation, invasion and reduces the drug-induced apoptosis in acute lymphoblastic leukemia. Extracellular acidity can influence the behavior of leukemic cells and therefore, the manipulation of extracellular liquid can be selected as a therapeutic strategy for leukemia, especially for acute lymphoblastic leukemia.

  8. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2.

    PubMed Central

    Carbonnaux, C.; Ries-Kautt, M.; Ducruix, A.

    1995-01-01

    The effects of various anions on decreasing the solubility of acidic Hypoderma lineatum collagenase at pH 7.2 and 18 degrees C were qualitatively defined by replacing the crystallizing agent of known crystallization conditions by various ammonium salts. The solubility curves measured in the presence of the sulfate, phosphate, citrate, and chloride ammonium salts gave the following ranking of anions: HPO4(2-)/H2PO4- > SO4(2-) > citrate 3-/citrate2- >> Cl-. This order is in agreement with the Hofmeister series. In a previous study on the solubility at pH 4.5 of lysozyme, a basic protein, the effectiveness of anions in decreasing the solubility was found to be in the reverse order. This suggests that the effectiveness of anions in the crystallization of proteins is dependent on the net charge of the protein, i.e., depending on whether a basic protein is crystallized at acidic pH or an acidic protein at basic pH. PMID:8535249

  9. Control of Diapause by Acidic pH and Ammonium Accumulation in the Hemolymph of Antarctic Copepods

    PubMed Central

    Schründer, Sabine; Schnack-Schiel, Sigrid B.; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4+) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4+). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  10. pH. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on the effect of pH on plant growth. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about soil pH and its effect on plants. The following topics are among those discussed: acidity and alkalinity; the…

  11. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    PubMed

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity.

  12. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased

  13. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments.

    PubMed

    Perez, Marta; Calles-Enríquez, Marina; Nes, Ingolf; Martin, Maria Cruz; Fernandez, Maria; Ladero, Victor; Alvarez, Miguel A

    2015-04-01

    Enterococcus faecalis is a commensal bacterium of the human gut that requires the ability to pass through the stomach and therefore cope with low pH. E. faecalis has also been identified as one of the major tyramine producers in fermented food products, where they also encounter acidic environments. In the present work, we have constructed a non-tyramine-producing mutant to study the role of the tyramine biosynthetic pathway, which converts tyrosine to tyramine via amino acid decarboxylation. Wild-type strain showed higher survival in a system that mimics gastrointestinal stress, indicating that the tyramine biosynthetic pathway has a role in acid resistance. Transcriptional analyses of the E. faecalis V583 tyrosine decarboxylase cluster showed that an acidic pH, together with substrate availability, induces its expression and therefore the production of tyramine. The protective role of the tyramine pathway under acidic conditions appears to be exerted through the maintenance of the cytosolic pH. Tyramine production should be considered important in the adaptability of E. faecalis to acidic environments, such as fermented dairy foods, and to survive passage through the human gastrointestinal tract.

  14. Acid-coated Textiles (pH 5.5-6.5)--a New Therapeutic Strategy for Atopic Eczema?

    PubMed

    Jaeger, Teresa; Rothmaier, Markus; Zander, Holger; Ring, Johannes; Gutermuth, Jan; Anliker, Mark D

    2015-07-01

    Increased transepidermal water loss (TEWL) and decreased skin capacitance are characteristic features of the disturbed epidermal barrier in atopic eczema (AE). The "acid mantle", which is a slightly acidic film on the surface of the skin has led to the development of acidic emollients for skin care. In this context, the effect of citric acid-coated textiles on atopic skin has not been examined to date. A textile carrier composed of cellulose fibres was coated with a citric acid surface layer by esterification, ensuring a constant pH of 5.5-6.5. Twenty patients with AE or atopic diathesis were enrolled in the study. In a double-blind, half-side experiment, patients had to wear these textiles for 12 h a day for 14 days. On day 0 (baseline), 7 and 14, tolerability (erythema, pruritus, eczema, wearing comfort) and efficacy on skin barrier were assessed by TEWL skin hydration (corneometry/capacitance), pH and clinical scoring of eczema (SCORAD). Citric acid-coated textiles were well tolerated and improved eczema and objective parameters of skin physiology, including barrier function and a reduced skin surface pH, with potential lower pathogenic microbial colonisation.

  15. Thermodynamics of the interaction of globular proteins with powdered stearic acid in acid pH.

    PubMed

    Mitra, Atanu; Chattoraj, D K; Chakraborty, P

    2006-06-01

    Adsorption isotherms of different globular proteins and gelatin on strearic acid particles have been studied as a function of biopolymer concentration, ionic strength of the medium, and temperature. The effect of neutral salts including CaCl2, Na3PO4, and urea on the adsorption isotherms has been also investigated. It is observed that the extent of adsorption (Gamma2(1)) increases in two steps with the increase of biopolymer concentration (C2) in the bulk. Gamma2(1) increases with an increase of C2 until a steady maximum value Gamma2(m) is reached at a critical concentration C2(m). After initial saturation, Gamma2(1) again increases from Gamma2(m) without reaching any limiting value due to the surface aggregation of the protein. The values of the standard free energy change for adsorption have been calculated on the basis of the Gibbs equation. The standard entropy and enthalpy changes are also calculated.

  16. Exhaled breath condensate pH assays.

    PubMed

    Davis, Michael D; Hunt, John

    2012-08-01

    Airway pH is central to the physiologic function and cellular biology of the airway. The causes of airway acidification include (1) hypopharyngeal gastric acid reflux with or without aspiration through the vocal cords, (2) inhalation of acid fog or gas (such as chlorine), and (3) intrinsic airway acidification caused by altered airway pH homeostasis in infectious and inflammatory disease processes. The recognition that relevant airway pH deviations occur in lung diseases is opening doors to new simple and inexpensive therapies. This recognition has resulted partly from the ability to use exhaled breath condensate as a window on airway acid-base balance.

  17. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core⿿hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  18. Penicillanic acid sulfone: interaction with RTEM beta-lactamase from Escherichia coli at different pH values.

    PubMed

    Kemal, C; Knowles, J R

    1981-06-23

    The interaction of the sulfone of penicillanic acid with the TEM-2 beta-lactamase from Escherichia coli has been investigated as a function of pH between pH 7.0 and 9.6. The first-formed acyl-enzyme suffers one of three fates: deacylation, tautomerization to a bound enamine that transiently inhibited the enzyme, and a process (possibly transimination) that leads to enzyme inactivation. The observed changes in ultraviolet absorbance are consistent with the initially observed product of deacylation being the enamine tautomer (4) of the imine from malonsemialdehyde and penicillamine sulfinate. The same enamine can be generated nonenzymically from the sulfone at high pH. The transiently inhibited enzyme appears to be the same enamine attached to the enzyme by an ester linkage. The rather complex kinetic behavior can be deconvuluted by exploiting the effect of pH on the partitioning of the acyl-enzyme between deacylation and the transiently inhibited form of the enzyme. The pathways followed by penicillanic acid sulfone provide a model for the behavior of a number of other reagents that inactivate the beta-lactamase.

  19. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.

  20. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.

    PubMed

    Pettibone, John M; Cwiertny, David M; Scherer, Michelle; Grassian, Vicki H

    2008-06-01

    In this study, the adsorption of two organic acids, oxalic acid and adipic acid, on TiO2 nanoparticles was investigated at room temperature, 298 K. Solution-phase measurements were used to quantify the extent and reversibility of oxalic acid and adipic acid adsorption on anatase nanoparticles with primary particle sizes of 5 and 32 nm. At all pH values considered, there were minimal differences in measured Langmuir adsorption constants, K ads, or surface-area-normalized maximum adsorbate-surface coverages, Gamma max, between 5 and 32 nm particles. Although macroscopic differences in the reactivity of these organic acids as a function of nanoparticle size were not observed, ATR-FTIR spectroscopy showed some distinct differences in the absorption bands present for oxalic acid adsorbed on 5 nm particles compared to 32 nm particles, suggesting different adsorption sites or a different distribution of adsorption sites for oxalic acid on the 5 nm particles. These results illustrate that molecular-level differences in nanoparticle reactivity can still exist even when macroscopic differences are not observed from solution phase measurements. Our results also allowed the impact of nanoparticle aggregation on acid uptake to be assessed. It is clear that particle aggregation occurs at all pH values and that organic acids can destabilize nanoparticle suspensions. Furthermore, 5 nm particles can form larger aggregates compared to 32 nm particles under the same conditions of pH and solid concentrations. The relative reactivity of 5 and 32 nm particles as determined from Langmuir adsorption parameters did not appear to vary greatly despite differences that occur in nanoparticle aggregation for these two different size nanoparticles. Although this potentially suggests that aggregation does not impact organic acid uptake on anatase particles, these data clearly show that challenges remain in assessing the available surface area for adsorption in nanoparticle aqueous suspensions

  1. Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels.

    PubMed

    Yu, J; Wang, J

    2001-06-20

    Ralstonia eutropha grows on and produces polyhydroxyalkanoates (PHAs) from fermentation acids. Acetic acid, one major organic acid from acidogenesis of organic wastes, has an inhibitory effect on the bacterium at slightly alkaline pH (6 g HAc/L at pH 8). The tolerance of R. eutropha to acetate, however, was increased significantly up to 15 g/L at the slightly alkaline pH level with high cell mass concentration. A metabolic cell model with five fluxes is proposed to depict the detoxification mechanism including mass transfer and acetyl-CoA formation of acetic acid and the formation of three final metabolic products, polyhydroxybutyrate (PHB), active biomass, and CO(2). The fluxes were measured under different conditions such as cell mass concentration, acetic acid concentration, and medium composition. The experimental results indicate that the acetate detoxification by high cell mass concentration is attributed to the increased fluxes at high extracellular acetate concentrations. The fluxes could be doubled to reduce and hence detoxify the accumulated intracellular acetate anions.

  2. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.

    PubMed

    Peterson, Eric C; Daugulis, Andrew J

    2014-03-01

    Production of organic acids in solid-liquid two-phase partitioning bioreactors (TPPBs) is challenging, and highly pH-dependent, as cell growth occurs near neutral pH, while acid sorption occurs only at low pH conditions. CO2 sparging was used to achieve acidic pH swings, facilitating undissociated organic acid uptake without generating osmotic stress inherent in traditional acid/base pH control. A modified cultivation medium was formulated to permit greater pH reduction by CO2 sparging (pH 4.8) compared to typical media (pH 5.3), while still possessing adequate nutrients for extensive cell growth. In situ product recovery (ISPR) of butyric acid (pKa = 4.8) produced by Clostridium tyrobutyricum was achieved through intermittent CO2 sparging while recycling reactor contents through a column packed with absorptive polymer Hytrel® 3078. This polymer was selected on the basis of its composition as a polyether copolymer, and the use of solubility parameters for predicting solute polymer affinity, and was found to have a partition coefficient for butyric acid of 3. Total polymeric extraction of 3.2 g butyric acid with no CO2 mediated pH swings was increased to 4.5 g via CO2 -facilitated pH shifting, despite the buffering capacity of butyric acid, which resists pH shifting. This work shows that CO2 -mediated pH swings have an observable positive effect on organic acid extraction, with improvements well over 150% under optimal conditions in early stage fermentation compared to CO2 -free controls, and this technique can be applied other organic acid fermentations to achieve or improve ISPR.

  3. Pegylated and folic acid functionalized carbon nanotubes as pH controlled carriers of doxorubicin. Molecular dynamics analysis of the stability and drug release mechanism.

    PubMed

    Wolski, Pawel; Nieszporek, Krzysztof; Panczyk, Tomasz

    2017-03-29

    This work deals with an analysis of the covalent functionalization of a carbon nanotube using polyethylene glycol chains terminated by folic acid fragments. The analysis is focused on theoretical predictions, using molecular dynamics simulations, of the properties of such constructs as pH controlled carriers of the anticancer drug doxorubicin. The analyzed systems are expected to hold the doxorubicin in the inner cavity of the carbon nanotube at neutral pH and unload the drug at slightly acidic pH. This property comes from incorporation into the nanotube of some dye molecules (p-phenylenediamine or neutral red) which undergo protonation at slightly acidic pH. We found that both dyes lead to the formation of a stable, co-absorbed phase of a doxorubicin-dye mixture inside the nanotube at physiological pH. At acidic pH we observed a spontaneous release of dyes from the nanotube, leading finally to the state with only doxorubicin encapsulated in the nanotube interior. Thus, the analyzed constructs can be considered as carriers of doxorubicin that are selective to tumor microenvironments (which exhibit reduced pH due to hypoxia and overexpression of folate receptors). However, we also found that the release of doxorubicin from the nanotube at acidic pH is kinetically blocked, at least in the case of the system sizes studied here. Thus, we also discussed some possible ways of reducing the activation barriers against doxorubicin release at acidic pH.

  4. Influence of pH, type of acid and recovery media on the thermal inactivation of Listeria innocua.

    PubMed

    Miller, Fátima A; Ramos, Bárbara; Gil, Maria M; Brandão, Teresa R S; Teixeira, Paula; Silva, Cristina L M

    2009-07-31

    Acidification of foods with organic acids, either by fermentation or by intentional addition, is an important and common mechanism for controlling foodborne pathogens in a diversity of food products. The objective of this work was to study thermal inactivation of Listeria innocua, an acid tolerant microorganism, at 52.5, 60.0 and 65.0 degrees C, at different pH values (4.5, 6.0 and 7.5), using three types of acid (lactic, acetic and hydrochloric) and three different plating media (Tryptic Soy Agar with 0.6% yeast extract-TSAYE; TSAYE plus 5% NaCl-TSAYE+5%NaCl; and Palcam Agar with selective supplement-Palcam Agar), according to a 3(4) factorial experimental design. Survival data experimentally obtained were fitted with a Gompertz-inspired model and kinetic parameters (shoulder, maximum inactivation rate-k(max), and tail) were estimated for all conditions considered. The influence of temperature, pH, type of acid and enumeration media on kinetic parameters was assessed. Results showed that, with the exception of the type of acid, all the remaining factors and their combinations significantly affected the shoulder period and k(max). In relation to tail, temperature and recovery media were the affectable factors. It was concluded that the survival of this bacteria is higher when combining low temperature with neutral pH, and when TSAYE is the enumeration medium. Bigelow-inspired models were successfully developed and describe accurately the temperature and pH effects on the kinetic parameters.

  5. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula.

    PubMed

    Tang, Jialing; Wang, Xiaochang C; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2017-01-01

    Effect of acidic pH (4, 5, 6 and uncontrolled) on lactic acid (LA) fermentation from food waste was investigated by batch fermentation experiments using methanogenic sludge, fresh food waste and anaerobic activated sludge as inocula. Results showed that due to the increase of hydrolysis, substrate degradation rate and enzyme activity, the optimal LA concentration and yield were obtained at pH 5, regardless of the inoculum used. The highest LA concentration (28.4g/L) and yield (0.46g/g-TS) were obtained with fresh food waste as inoculum. Moreover, after the substrate was completely utilized, the lactic acid bacteria population sharply decreased, and the LA produced was converted to volatile fatty acids (VFAs) at pH 6 within a short period. The VFA components varied with the inoculum supplied. Microbial community analysis using high-throughput pyrosequencing revealed that diversity decreased and a high abundance of Lactobacillus (83.4-98.5%) accumulated during fermentation with all inocula.

  6. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred.

  7. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids

    PubMed Central

    Liang, Wanling; Kwok, Philip C.L.; Chow, Michael Y.T.; Tang, Patricia; Mason, A. James; Chan, Hak-Kim; Lam, Jenny. K.W.

    2013-01-01

    Nucleic acids have the potential to be used as therapies or vaccines for many different types of disease but delivery remains the most significant challenge to their clinical adoption. pH responsive peptides containing either histidine or derivatives of 2,3-diaminopropionic acid (Dap) can mediate effective DNA transfection in lung epithelial cells with the latter remaining effective even in the presence of lung surfactant containing bronchoalveolar fluid (BALF), making this class of peptides attractive candidates for delivering nucleic acids to lung tissues. To further assess the suitability of pH responsive peptides for pulmonary delivery by inhalation, dry powder formulations of pH responsive peptides and plasmid DNA, with mannitol as carrier, were produced by either spray drying (SD) or spray freeze drying (SFD). The properties of the two types of powders were characterised and compared using scanning electron microscopy (SEM), next generation impaction (NGI), gel retardation and in vitro transfection via a twin-stage impinger (TSI) following aerosolisation by a dry powder inhaler (Osmohaler™). Although the aerodynamic performance and transfection efficacy of both powders were good, the overall performance revealed SD powders to have a number of advantages over SFD powders and are the more effective formulation with potential for efficient nucleic acid delivery through inhalation. PMID:23702276

  8. The acidic milieu of the horny layer: new findings on the physiology and pathophysiology of skin pH.

    PubMed

    Rippke, Frank; Schreiner, Volker; Schwanitz, Hans-Joachim

    2002-01-01

    The acidic pH of the horny layer, measurable on the skin surface, has long been regarded as a result of exocrine secretion of the skin glands. The 'acid mantle' was thought to regulate the bacterial skin flora and to be sensitive primarily to skin cleansing procedures. In recent years, an increasing number of investigations have been published on the changes in, and constituents and functions of, the pH of the deeper layers of the stratum corneum, as well as on the influence of physiological and pathological factors. A central role for the acidic milieu as a regulating factor in stratum corneum homeostasis is now emerging. This has relevance to the integrity of the barrier function, from normal maturation of the stratum corneum lipids through to desquamation. Changes in the pH and the organic factors influencing it appear to play a role, not only in the pathogenesis, prevention and treatment of irritant contact dermatitis, but also of atopic dermatitis and ichthyosis and in wound healing. On the basis of these findings, a broader concept, exceeding the superficial 'acid mantle' theory, has been formulated.

  9. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.

    PubMed

    Zhu, Miao; Wang, Hongtao; Keller, Arturo A; Wang, Tao; Li, Fengting

    2014-07-15

    With the increasingly widespread use of titanium dioxide nanoparticles (TiO2 NPs), the particles' environmental impacts have attracted concern, making it necessary to understand the fate and transport of TiO2 NPs in aqueous media. In this study, we investigated TiO2 NP aggregation caused by the effects of humic acid (HA), ionic strength (IS) and different pH using dynamic light scattering (DLS) to monitor the size distribution of the TiO2 NPs continuously. It was determined that HA can influence the stability of TiO2 NPs through charge neutralization, steric hindrance and bridging effects. In the absence of IS, aggregation was promoted by adding HA only when the pH (pH=4) is less than the point of zero charge for the TiO2 NPs (pHPZC≈6) because HA reduces the zeta potential of the TiO2 NPs via charge neutralization. At pH=4 and when the concentration of HA is 94.5 μg/L, the zeta potential of TiO2 NPs is close to zero, and they reach an aggregation maximum. A higher concentration of HA results in more negatively charged TiO2 NP surfaces, which hinder their aggregation. When the pH is 5.8, HA enhances the negative zeta potential of the TiO2 NPs and increases their stability via electrostatic repulsion and steric hindrance. When the pH (pH=8) is greater than pHpzc, the zeta potential of the TiO2 NPs is high (~40 mV), and it barely changes with increasing HA concentration. Thus, the TiO2 NPs are notably stable, and their size does not grow at pH8. The increase in the critical coagulation concentration (CCC) of TiO2 NPs indicated that there is steric hindrance after the addition of HA. HA can enhance the coagulation of TiO2 NPs, primarily due to bridging effect. These findings are useful in understanding the size change of TiO2 NPs, as well as the removal of TiO2 NPs and HA from aqueous media.

  10. Structural changes induced by acidic pH in human apolipoprotein B-100

    PubMed Central

    Fernández-Higuero, José A.; Benito-Vicente, Asier; Etxebarria, Aitor; Milicua, José Carlos G.; Ostolaza, Helena; Arrondo, José L. R.; Martín, Cesar

    2016-01-01

    Acidification in the endosome causes lipoprotein release by promoting a conformational change in the LDLR allowing its recycling and degradation of LDL. Notwithstanding conformational changes occurring in the LDLR have expanded considerably, structural changes occurring in LDL particles have not been fully explored yet. The objectives of the present work were to study structural changes occurring in apoB100 by infrared spectroscopy (IR) and also LDL size and morphology by dynamic light scattering (DLS) and electron microscopy (EM) at both pH 7.4 and 5.0. We determined by IR that pH acidification from 7.4 to 5.0, resembling that occurring within endosomal environment, induces a huge reversible structural rearrangement of apoB100 that is characterized by a reduction of beta-sheet content in favor of alpha-helix structures. Data obtained from DLS and EM showed no appreciable differences in size and morphology of LDL. These structural changes observed in apoB100, which are likely implied in particle release from lipoprotein receptor, also compromise the apoprotein stability what would facilitate LDL degradation. In conclusion, the obtained results reveal a more dynamic picture of the LDL/LDLR dissociation process than previously perceived and provide new structural insights into LDL/LDLR interactions than can occur at endosomal low-pH milieu. PMID:27824107

  11. Tolerance of acid-adapted and non-adapted Escherichia coli O157:H7 cells to reduced pH as affected by type of acidulant.

    PubMed

    Deng, Y; Ryu, J H; Beuchat, L R

    1999-02-01

    A study was carried out to determine if three strains of Escherichia coli O157:H7 grown (18 h) in Tryptic Soy Broth (TSB) and TSB supplemented with 1.25% glucose (TSBG), i.e. unadapted and acid-adapted cells, respectively, exhibited changes in tolerance to reduced pH when plated on Tryptic Soy Agar (TSA) acidified (pH 3.9, 4.2, 4.5, 4.8, 5.1 and 5.4) with acetic, citric or malic acids. All test strains grew well on TSA acidified with acetic acid at pH > or = 5.4 or malic acid at pH > or = 4.5; two strains grew on TSA acidified with citric acid at pH > or = 4.5, while the third strain grew at pH > or = 4.8. Acid-adapted and control (unadapted) cells differed little in their ability to form visible colonies on TSA containing the same acid at the same pH. However, on plates not showing visible colonies, acid-adapted cells retained higher viability than unadapted cells when plated on acidified TSA. Growth of acid-adapted and control cells of E. coli O157:H7 inoculated into TSB containing acetic acid (pH 5.4 and 5.7) and citric or malic acids (pH 4.2 and 4.5) was also studied. There was essentially no difference in growth characteristics of the two types of cells in TSB acidified at the same pH with a given acid. Tolerance of acid-adapted and control cells on subsequent exposure to low pH is influenced by the type of acidulant. The order of sensitivity at a given pH is acetic > citric > malic acid. When performing acid challenge studies to determine survival and growth characteristics of E. coli O157:H7 in foods, consideration should be given to the type of acid to which cells have been exposed previously, the procedure used to achieve acidic environments and possible differences in response among strains. The use of strains less affected by pH than type of acidulant or vice versa could result in an underestimation of the potential for survival and growth of E. coli O157:H7 in acid foods.

  12. Structure and oxidation state of hemitite surfaces reacted with aqueous Fe(II) at acidic and neutral pH.

    SciTech Connect

    Catalano, J. G.; Fenter, P.; Park, C.; Zhang, Z.; Rosso, K. M.; Washington Univ.; PNNL

    2010-01-01

    Structural changes and surface oxidation state were examined following the reaction of hematite (0 0 1), (0 1 2), and (1 1 0) with aqueous Fe(II). X-ray reflectivity measurements indicated that Fe(II) induces changes in the structure of all three surfaces under both acidic (pH 3) and neutral (pH 7) conditions. The structural changes were generally independent of pH although the extent of surface transformation varied slightly between acidic and neutral conditions; no systematic trends with pH were observed. Induced changes on the (1 1 0) and (0 1 2) surfaces include the addition or removal of partial surface layers consistent with either growth or dissolution. In contrast, a <1 nm thick, discontinuous film formed on the (0 0 1) surface that appears to be epitaxial yet is not a perfect extension of the underlying hematite lattice, being either structurally defective, compositionally distinct, or nanoscale in size and highly relaxed. Resonant anomalous X-ray reflectivity measurements determined that the surface concentration of Fe(II) present after reaction at pH 7 was below the detection limit of approximately 0.5-1 {micro}mol/m{sup 2} on all surfaces. These observations are consistent with Fe(II) oxidative adsorption, whereby adsorbed Fe(II) is oxidized by structural Fe(III) in the hematite lattice, with the extent of this reaction controlled by surface structure at the atomic scale. The observed surface transformations at pH 3 show that Fe(II) oxidatively adsorbs on hematite surfaces at pH values where little net adsorption occurs, based on historical macroscopic Fe(II) adsorption behavior on fine-grained hematite powders. This suggests that Fe(II) plays a catalytic role, in which an electron from an adsorbed Fe(II) migrates to and reduces a lattice Fe(III) cation elsewhere, which subsequently desorbs in a scenario with zero net reduction and zero net adsorption. Given the general pH-independence and substantial mass transfer involved, this electron and atom

  13. Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH

    SciTech Connect

    Catalano, Jeffrey G.; Fenter, Paul; Park, Changyong; Zhang, Zhan; Rosso, Kevin M.

    2010-03-01

    Structural changes and surface oxidation state were examined following the reaction of hematite (0 0 1), (0 1 2), and (1 1 0) with aqueous Fe(II). X-ray reflectivity measurements indicated that Fe(II) induces changes in the structure of all three surfaces under both acidic (pH 3) and neutral (pH 7) conditions. The structural changes were generally independent of pH although the extent of surface transformation varied slightly between acidic and neutral conditions; no systematic trends with pH were observed. Induced changes on the (1 1 0) and (0 1 2) surfaces include the addition or removal of partial surface layers consistent with either growth or dissolution. In contrast, a <1 nm thick, discontinuous film formed on the (0 0 1) surface that appears to be epitaxial yet is not a perfect extension of the underlying hematite lattice, being either structurally defective, compositionally distinct, or nanoscale in size and highly relaxed. Resonant anomalous X-ray reflectivity measurements determined that the surface concentration of Fe(II) present after reaction at pH 7 was below the detection limit of approximately 0.5–1 μmol/m2 on all surfaces. These observations are consistent with Fe(II) oxidative adsorption, whereby adsorbed Fe(II) is oxidized by structural Fe(III) in the hematite lattice, with the extent of this reaction controlled by surface structure at the atomic scale. The observed surface transformations at pH 3 show that Fe(II) oxidatively adsorbs on hematite surfaces at pH values where little net adsorption occurs, based on historical macroscopic Fe(II) adsorption behavior on fine-grained hematite powders. This suggests that Fe(II) plays a catalytic role, in which an electron from an adsorbed Fe(II) migrates to and reduces a lattice Fe(III) cation elsewhere, which subsequently desorbs in a scenario with zero net reduction and zero net adsorption. Finally, given the general pH-independence and substantial mass transfer involved, this electron and

  14. Key role of pH in the photochemical conversion of NO2 to HONO on humic acid

    NASA Astrophysics Data System (ADS)

    Han, Chong; Yang, Wangjin; Wu, Qianqian; Yang, He; Xue, Xiangxin

    2016-10-01

    The heterogeneous photochemical reactions of NO2 with humic acid (HA) were performed using a flow tube reactor coupled to a NOx analyzer. The effects of the pH on the uptake coefficient (γ) of NO2 and HONO and NO yields were investigated in detail. With increasing the pH in the range of 2-12, γ was almost constant with an average value of (4.21 ± 0.46) × 10-6, whereas the HONO yield and NO yield linearly decreased from (81.07 ± 4.07)% and (10.35 ± 3.86)% to (13.87 ± 9.15)% and (1.51 ± 0.94)%, respectively. According to the characterization of HA compositions and possible reaction paths, it can be concluded that the pH may influence the transfer of protons and the equilibrium of HONO with NO2- by varying the contents of carboxyl and phenol groups in HA, which should primarily contribute to the change in the HONO yield with the pH.

  15. Influence of metal ions and pH on the hydraulic properties of potential acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Le, T. M. H.; Collins, R. N.; Waite, T. D.

    2008-07-01

    SummaryAcid sulfate soils (ASS) cover extensive areas of east Australian coastal floodplains. Upon oxidation, these hydromorphic pyritic sediments produce large quantities of sulfuric acid. In addition, due to their geographic location, these soils may also come in contact with high ionic strength estuarine tidal waters. As a result, there is typically a large variation in acidity (pH) and cation concentrations in soil porewaters and adjacent aquatic systems (e.g., agricultural field drains, rivers, estuaries, etc.). Acid sulfate soils, especially from the unoxidized gelatinous deeper layers, contain a relatively high proportion of montmorillonite, which is wellknown for its shrink-swell properties. Variations in cation concentrations, including H3O+, can influence montmorillonite platelet interactions and may, thus, also significantly affect the hydraulic conductivity of materials containing this clay. In this paper we report on the effect of four common cations, at reasonable environmental concentrations, on the hydraulic properties of potential (unoxidized) acid sulfate soil materials. The natural system was simplified by examining individually the effects of each cation (H+, Ca2+, Fe2+ and Na+) on a soil-water suspension in a filtration cell unit. Moisture ratio, hydraulic conductivity and the consolidation coefficient of the deposited filter cakes were calculated using material coordinates theory. The results indicate that the hydraulic conductivity of potential acid sulfate soils increases at low pH and with cation concentration. Although an increase in the charge of amphoteric edge groups on montmorillonite clays may result in some aggregation between individual clay platelets, we conclude that the extent of these changes are unlikely to cause significant increases in the transportation of acidity (and contaminants) through potential acid sulfate soils as the hydraulic conductivity of these materials remain low (<10-9 m/s) at pH and ionic conditions normally

  16. Characterization of cultures enriched from acidic polycyclic aromatic hydrocarbon-contaminated soil for growth on pyrene at low pH.

    PubMed

    Uyttebroek, Maarten; Vermeir, Steven; Wattiau, Pierre; Ryngaert, Annemie; Springael, Dirk

    2007-05-01

    Two polycyclic aromatic hydrocarbon (PAH)-contaminated soils of pH 2 were successfully used as inoculum to enrich cultures growing on phenanthrene and pyrene at different pHs, including pH 3. Selected pyrene-utilizing cultures obtained at pH 3, pH 5, and pH 7 were further characterized. All showed rapid [14C]pyrene mineralization at pH 3 and pH 5 and grew on pyrene at pH values ranging from 2 to 6. Eubacterial and mycobacterial 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and sequencing indicated that the cultures were dominated by a single bacterium closely related to Mycobacterium montefiorense, belonging to the slow-growing Mycobacterium sp. In contrast, a culture enriched on pyrene at pH 7 from a slightly alkaline soil sampled at the same site was dominated by Pseudomonas putida and a fast-growing Mycobacterium sp. The M. montefiorense-related species dominating the pyrene-utilizing cultures enriched from the acidic soils was also the dominant Mycobacterium species in the acidic soils. Our data indicate that a slow-growing Mycobacterium species is involved in PAH degradation in that culture and show that bacteria able to degrade high-molecular-weight PAHs at low pH are present in acidic PAH-contaminated soil.

  17. A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins.

    PubMed

    Fiorica, Calogero; Pitarresi, Giovanna; Palumbo, Fabio Salvatore; Di Stefano, Mauro; Calascibetta, Filippo; Giammona, Gaetano

    2013-11-30

    Atom transfer radical polymerization (ATRP) has been successfully employed to obtain a new derivative of hyaluronic acid (HA) able to change its solubility as a function of external pH and then to be potentially useful for intestinal release of bioactive molecules, included enzymes and proteins. In particular, a macroinitiator has been prepared by linking 2-bromo-2-methypropionic acid (BMP) to the amino groups of ethylenediamino derivative of tetrabutyl ammonium salt of HA (HA-TBA-EDA). This macroinititor, named HA-TBA-EDA-BMP has been used for the ATRP of sodium methacrylate (MANa) using a complex of Cu(I) and 2,2'-bipyridyl (Byp) as a catalyst. The resulting copolymer, named HA-EDA-BMP-MANa, has been characterized by (1)H NMR and size exclusion chromatography (SEC) analyses. A turbidimetric analysis has showed its pH sensitive behavior, being insoluble in simulated gastric fluid but soluble when pH increases more than 2.5. To confirm the ability of HA-EDA-BMP-MANa in protecting peptides or proteins from denaturation in acidic medium, α-chymotrypsin has been chosen as a model of protein molecule and its activity has been evaluated after entrapment into HA-EDA-BMP-MANa chains and treatment under simulated gastric conditions. Finally, cell compatibility has been evaluated by performing a MTS assay on murine dermal fibroblasts cultured with HA-EDA-BMP-MANa solutions.

  18. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7.

    PubMed

    Hosein, Althea M; Breidt, Frederick; Smith, Charles E

    2011-02-01

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.

  19. Effect of organic acids and temperature on survival of Shigella flexneri in broth at pH 4.

    PubMed

    Zaika, Laura L

    2002-09-01

    The survival of bacterial pathogens in acidified foods depends not only on the hydrogen ion concentration, but also on the type of acid and the storage temperature. Shigella flexneri is a foodborne pathogen that is acid tolerant. The survival of S. flexneri 5348 in brain heart infusion broth supplemented with 0.04 M acetic, citric, lactic, malic, or tartaric acid and adjusted to pH 4 with HCI or NaOH was studied. The control medium was brain heart infusion broth adjusted to pH 4 with HCI. Stationary-phase cells were inoculated into media at initial populations of 6 to 7 log10 CFU/ml and incubated at 4, 19, 28, and 37 degrees C. A two-phase linear inactivation model was applied to plate count data to derive lag times (tL) and slopes of the curves, from which D-values and time required for a 4-log10 decrease in population (T4D) were calculated. In all cases, survival increased with decreasing temperature. For each acid, tL, the D-value, and T4D increased with decreasing temperature. All acids inhibited S. flexneri to some extent but to differing degrees as follows: lactic acid, acetic acid > citric acid, malic acid, tartaric acid > HCl. The T4D values for the control medium and for media containing acetic, citric, lactic, malic, and tartaric acids were 64, 47, 50, 34, 58, and 52 h, respectively, at 37 degrees C and 2,607, 1,498, 1,905, 1,346, 1,726, and 2,134 h, respectively, at 4 degrees C. The results of this study indicate that organic acids may aid in the inactivation of Shigella. However, these data also suggest that foods stored at or below room temperature containing low levels (< 1%) of acids could cause illness if contaminated with Shigella.

  20. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    SciTech Connect

    Cingolani, Gino Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26 forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.

  1. PH dependent adhesive peptides

    SciTech Connect

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  2. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    PubMed

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature.

  3. What Is a pH Probe Study?

    MedlinePlus

    What is a pH Probe Study ? What is pH a probe study? M easuring the pH in the esophagus helps determine whether or not acid is coming up from the stomach. A pH probe study is usually done in patients where ...

  4. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.

    PubMed

    Carpenter, C E; Broadbent, J R

    2009-01-01

    Although the mechanisms by which organic acids inhibit growth of bacteria in mildly acidic foods are not fully understood, it is clear that intracellular accumulation of anions is a primary contributor to inhibition of bacterial growth. We hypothesize that intracellular accumulation of anions is driven by 2 factors, external anion concentration and external acidity. This hypothesis follows from basic chemistry principles that heretofore have not been fully applied to studies in the field, and it has led us to develop a novel approach for predicting internal anion concentration by controlling the external concentration of anions and pH. This approach overcomes critical flaws in contemporary experimental design that invariably target concentration of either protonated acid or total acid in the growth media thereby leaving anion concentration to vary depending on the pK(a) of the acids involved. Failure to control external concentration of anions has undoubtedly confounded results, and it has likely led to misleading conclusions regarding the antimicrobial action of organic acids. In summary, we advocate an approach for directing internal anion levels by controlling external concentration of anions and pH because it presents an additional opportunity to study the mechanisms by which organic acids inhibit bacterial growth. Knowledge gained from such studies would have important application in the control of important foodborne pathogens such as Listeria monocytogenes, and may also facilitate efforts to promote the survival in foods or beverages of desirable probiotic bacteria.

  5. Systematics and species-specific response to pH of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) from acid mining lakes

    PubMed Central

    Weisse, Thomas; Moser, Michael; Scheffel, Ulrike; Stadler, Peter; Berendonk, Thomas; Weithoff, Guntram; Berger, Helmut

    2013-01-01

    We investigated the morphology, phylogeny of the 18S rDNA, and pH response of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) isolated from two chemically similar acid mining lakes (pH ∼ 2.6) located at Langau, Austria, and in Lusatia, Germany. Oxytricha acidotolerans sp. nov. from Langau has 18 frontal-ventral-transverse cirri but a very indistinct kinety 3 fragmentation so that the assignment to Oxytricha is uncertain. The somewhat smaller species from Lusatia has a highly variable cirral pattern and the dorsal kineties arranged in the Urosomoida pattern and is, therefore, preliminary designated as Urosomoida sp. The pH response was measured as ciliate growth rates in laboratory experiments at pH ranging from 2.5 to 7.0. Our hypothesis was that the shape of the pH reaction norm would not differ between these closely related (3% difference in their SSU rDNA) species. Results revealed a broad pH niche for O. acidotolerans, with growth rates peaking at moderately acidic conditions (pH 5.2). Cyst formation was positively and linearly related to pH. Urosomoida sp. was more sensitive to pH and did not survive at circumneutral pH. Accordingly, we reject our hypothesis that similar habitats would harbour ciliate species with virtually identical pH reaction norm. PMID:23021638

  6. Exercise and Pulmonary Hypertension (PH)

    MedlinePlus

    ... Process: Some First Steps Adoption Success Story Watch Classroom Recordings Empowered Patient Online Toolkit Tab 1: Very ... Kathy Groebner Education Programs Patients and Caregivers PHA Classroom PHA on the Road: PH Patients and Families ...

  7. Esophageal pH monitoring

    MedlinePlus

    ... test can also be done during upper GI endoscopy by clipping a pH monitor to the lining of the esophagus. ... esophagitis : Barium swallow Esophagogastroduodenoscopy (also called upper GI endoscopy)

  8. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    PubMed

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  9. PhEDEx Data Service

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-04-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the "SiteDB" service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  10. β2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    PubMed Central

    Goodchild, Sophia C.; Sheynis, Tania; Thompson, Rebecca; Tipping, Kevin W.; Xue, Wei-Feng; Ranson, Neil A.; Beales, Paul A.; Hewitt, Eric W.; Radford, Sheena E.

    2014-01-01

    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of β2-microglobulin (β2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which β2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of β2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that β2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between β2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of β2m amyloid-associated osteoarticular tissue destruction in DRA. PMID:25100247

  11. Antibacterial protection by enterocin AS-48 in sport and energy drinks with less acidic pH values.

    PubMed

    Viedma, Pilar Martinez; Abriouel, Hikmate; Ben Omar, Nabil; López, Rosario Lucas; Valdivia, Eva; Gálvez, Antonio

    2009-04-01

    The low pH and acid content found in sports and energy drinks are a matter of concern in dental health. Raising the pH may solve this problem, but at the same time increase the risks of spoilage or presence of pathogenic bacteria. In the present study, commercial energy drinks were adjusted to pH 5.0 and challenged with Listeria monocytogenes (drinks A to F), Staphylococcus aureus, Bacillus cereus, and Bacillus licheniformis (drink A) during storage at 37 degrees C. L. monocytogenes was able to grow in drink A and survived in drinks D and F for at least 2 days. Addition of enterocin AS-48 (1 microg/ml final concentration) rapidly inactivated L. monocytogenes in all drinks tested. S. aureus and B. cereus also survived quite well in drink A, and were completely inactivated by 12.5 microg/ml enterocin AS-48 after 2 days of storage or by 25 microg/ml bacteriocin after 1 day. B. licheniformis was able to multiply in drink A, but it was completely inactivated by 5 microg/ml enterocin AS-48 after 2 days of storage or by 12.5 microg/ml bacteriocin after 1 day. Results from the present study suggest that enterocin AS-48 could be used as a natural preservative against these target bacteria in less acidic sport and energy drinks.

  12. Scale prevention at high LSI, high cycles, and high pH without the need for acid feed

    SciTech Connect

    Perez, L.A.; Freese, D.T.

    1997-08-01

    Open recirculating cooling water systems are widely used in different industries, such as refineries, petrochemical, fertilizer, air conditioning, manufacturing operations, utility power stations, etc. Scale control at high LSI and high pH without acid feed is difficult to achieve. The problem dramatically increases in cooling towers when PVC tower film fill is used. Compounds that are able to enhance the performance of typical scale inhibitors have been developed. When topped off with these enhancing compounds, typical scale inhibitors are able to control calcium carbonate and silicate-related scale formation on metal heat exchanger and cooling water tower film fill surfaces in cycled waters having high LSI ({approximately} 3.0), high alkalinity (500--700 mg/L as CaCO{sub 3}), and high pH (8.5 or higher). The enhancing compounds have excellent chlorine and soluble iron tolerance and are compatible with traditional biocides.

  13. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

    PubMed

    Matsushika, Akinori; Sawayama, Shigeki

    2012-12-01

    The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH.

  14. Colonic fermentation as affected by antibiotics and acidic pH: Application of an in vitro model.

    PubMed

    Bender, A; Breves, G; Stein, J; Leonhard-Marek, S; Schröder, B; Winckler, C

    2001-11-01

    Antimicrobial substances such as vancomycin or metronidazole suppress normal gut flora, thereby preventing physiological fermentation of colonic substrates that may promote mucosal inflammation. This study was designed to establish an in vitro model of microbial metabolism in the colon under control and disturbed conditions (acidic pH) to investigate specific effects of vancomycin and metronidazole on the production of short chain fatty acids (SCFA), which play a pivotal role in maintaining homeostasis in the colon. The experiments were carried out with the colon simulation technique (Cositec) representing an in vitro model for the semi-continuous incubation of defined colon contents. Inocula and fermentable substrates were sampled from cecal contents of fistulated pigs. Disturbed microbial metabolism was generated by reduction of pH in the fermentation vessels from 6.7 to 5.8 and 5.1. In general, application of either vancomycin or metronidazole resulted in a significant decrease of SCFA production rates indicating substantial disturbance of the homeostasis of microbial metabolism. With low doses of vancomycin acetate and butyrate production rates were reduced and with high doses of the antibiotic propionate production was inhibited to a greater extent. Treatment with metronidazole inhibited butyrate production almost completely. Similarly, low pH caused a reduction in total SCFA production, which was mainly due to respective decrease of acetate synthesis. Metronidazole effects were not consistently changed at low pH. The Cositec system provides an excellent facility to test the effects of different antibiotics under defined conditions. In this study, both vancomycin and metronidazole affected microbial metabolism to a considerable extent. Both substances may thus be responsible for disturbances of colon function in vivo.

  15. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563

    PubMed Central

    Soni, S. K.; Magdum, A.

    2010-01-01

    Aspergillus niger NCIM 563 produced two different extracellular phytases (Phy I and Phy II) under submerged fermentation conditions at 30°C in medium containing dextrin-glucose-sodium nitrate-salts. Both the enzymes were purified to homogeneity using Rotavapor concentration, Phenyl-Sepharose column chromatography and Sephacryl S-200 gel filtration. The molecular mass of Phy I and II as determined by SDS–PAGE and gel filtration were 66, 264, 150 and 148 kDa respectively, indicating that Phy I consists of four identical subunits and Phy II is a monomer. The pI values of Phy I and II were 3.55 and 3.91, respectively. Phy I was highly acidic with optimum pH of 2.5 and was stable over a broad pH range (1.5–9.0) while Phy II showed a pH optimum of 5.0 with stability in the range of pH 3.5–9.0. Phy I exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. Similarly Phy II was strongly inhibited by Ag+, Hg2+ (1 mM) metal ions and Phy I was partially inhibited. Peptide analysis by Mass Spectrometry (MS) MALDI-TOF also indicated that both the proteins were totally different. The Km for Phy I and II for sodium phytate was 2.01 and 0.145 mM while Vmax was 5,018 and 1,671 μmol min−1 mg−1, respectively. The N-terminal amino acid sequences of Phy I and Phy II were FSYGAAIPQQ and GVDERFPYTG, respectively. Phy II showed no homology with Phy I and any other known phytases from the literature suggesting its unique nature. This, according to us, is the first report of two distinct novel phytases from Aspergillus niger. PMID:20976287

  16. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  17. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  18. Effect of salt and acidic pH on the stability of virulence plasmid (pYV) in Yersinia enterocolitica and expression of virulence-associated characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stability of the Yersinia enterocolitica virulence plasmid (pYV) under different NaCl concentrations and under acidic pH conditions was investigated. Exposure of five strains representing five serotypes of pYV-bearing virulent Y. enterocolitica to 0.5, 2 and 5% NaCl and under conditions of pH 4...

  19. Multivariate curve resolution of synchronous fluorescence spectra matrices of fulvic acids obtained as a function of pH.

    PubMed

    Esteves da Silva, Joaquim C G; Tauler, Romá

    2006-11-01

    Synchronous fluorescence spectra (excitation wavelength range between 280 and 510 nm and wavelength interval of 25 nm) of three samples of fulvic acids (FA) were obtained as a function of the pH, in the range from 2.0 to 10.5, and as a function of the FA concentration, in the range from 20 to 180 mg/L. FA were obtained from composted livestock materials (lsFA), composted sewage sludge (csFA), and Laurentian soil (laFA). Three-dimensional spectral matrices were obtained (wavelength, pH, and FA concentration) and multivariate curve resolution (MCR) was used to calculate spectra and fluorescence intensity profiles for the detected components. Cluster analysis of the calculated spectra showed the existence of similar and unique fluorescent properties in the three FA samples. Some of the calculated fluorescence intensity profiles have a shape compatible with acid-base species distribution diagrams, which allowed pKa values to be estimated, namely, a well-defined acid-base equilibrium with pKa 5.7 +/- 0.2 (lsFA), 6.9 +/- 0.4 (csFA), and 5.5 +/- 0.2 (laFA); and other acid-base systems not well defined with pKa at about 3.0 and 8.6. Other spectral variations revealed the existence of inner-filter effects or self-quenching as the concentration of FA increases.

  20. α-Cyclodextrin/aminobenzoic acid binding in salt solutions at different pH: dependence on guest structure.

    PubMed

    Romanova, Anastasia; Chibunova, Ekaterina; Kumeev, Roman; Fedorov, Maxim; Terekhova, Irina

    2013-06-01

    Influence of Na(+) and K(+) cations on α-cyclodextrin guest-host complex formation with isomeric aminobenzoic acids was examined at different pH and temperature of 298.15 K by (1)H NMR and calorimetry methods. More pronounced influence of Na(+) on inclusion complex formation of α-CD with aminobenzoic acid anions compare to the effects of Na(+) on α-CD complex formation with zwitterionic aminobenzoic acid molecules was revealed. For the first time, the dependence of salt effects on the structure, ionization and the hydration state of the guest molecule was demonstrated and analysed on the basis of the obtained thermodynamic parameters of complex formation and calculated free energy of hydration of different ionized forms of aminobenzoic acids.

  1. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH.

    PubMed

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-03-05

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe ) 7.0 or 5.5 and at a growth rate of 0.2 h(-1) . Population reduction and internal pH (pHi ) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells.

  2. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil.

    PubMed

    Chaignon, Valérie; Quesnoit, Marie; Hinsinger, Philippe

    2009-12-01

    We evaluated how root-induced changes in rhizosphere pH varied and interacted with Cu availability and bioavailability in an acidic soil. Rape was grown on a Cu-contaminated acidic soil, which had been limed at 10 rates. Soil Cu bioavailability was not influenced by liming. However, liming significantly decreased CaCl(2)-extracted Cu for pH between 3.7 and 5.1. Little effect was found for pH above 5.1. For soil pH < 4.4, CaCl(2)-Cu contents were smaller in rhizosphere than uncropped soil. Rhizosphere alkalisation occurred at pH < 4.8, while acidification occurred at greater pH. This explained the changes of CaCl(2)-Cu in the rhizosphere at low pH and the absence of pH dependency of Cu bioavailability to rape. In addition, apoplastic Cu in roots increased with increasing soil pH, most probably as a result of increased dissociation and affinity of cell wall compounds for Cu.

  3. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  4. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH.

    PubMed Central

    Tilburn, J; Sarkar, S; Widdick, D A; Espeso, E A; Orejas, M; Mungroo, J; Peñalva, M A; Arst, H N

    1995-01-01

    The pH regulation of gene expression in Aspergillus nidulans is mediated by pacC, whose 678 residue-derived protein contains three putative Cys2His2 zinc fingers. Ten pacCc mutations mimicking growth at alkaline pH remove between 100 and 214 C-terminal residues, including a highly acidic region containing an acidic glutamine repeat. Nine pacC+/- mutations mimicking acidic growth conditions remove between 299 and 505 C-terminal residues. Deletion of the entire pacC coding region mimics acidity but leads additionally to poor growth and conidiation. A PacC fusion protein binds DNA with the core consensus GCCARG. At alkaline ambient pH, PacC activates transcription of alkaline-expressed genes (including pacC itself) and represses transcription of acid-expressed genes. pacCc mutations obviate the need for pH signal transduction. Images PMID:7882981

  5. Measuring Plant Cell Wall Extension (Creep) Induced by Acidic pH and by Alpha-Expansin

    PubMed Central

    Durachko, Daniel M.; Cosgrove, Daniel J.

    2009-01-01

    Growing plant cell walls characteristically exhibit a property known as 'acid growth', by which we mean they are more extensible at low pH (< 5) 1. The plant hormone auxin rapidly stimulates cell elongation in young stems and similar tissues at least in part by an acid-growth mechanism 2, 3. Auxin activates a H+ pump in the plasma membrane, causing acidification of the cell wall solution. Wall acidification activates expansins, which are endogenous cell wall-loosening proteins 4, causing the cell wall to yield to the wall tensions created by cell turgor pressure. As a result, the cell begins to enlarge rapidly. This 'acid growth' phenomenon is readily measured in isolated (nonliving) cell wall specimens. The ability of cell walls to undergo acid-induced extension is not simply the result of the structural arrangement of the cell wall polysaccharides (e.g. pectins), but depends on the activity of expansins 5. Expansins do not have any known enzymatic activity and the only way to assay for expansin activity is to measure their induction of cell wall extension. This video report details the sources and preparation techniques for obtaining suitable wall materials for expansin assays and goes on to show acid-induced extension and expansin-induced extension of wall samples prepared from growing cucumber hypocotyls. To obtain suitable cell wall samples, cucumber seedlings are grown in the dark, the hypocotyls are cut and frozen at -80 °C. Frozen hypocotyls are abraded, flattened, and then clamped at constant tension in a special cuvette for extensometer measurements. To measure acid-induced extension, the walls are initially buffered at neutral pH, resulting in low activity of expansins that are components of the native cell walls. Upon buffer exchange to acidic pH, expansins are activated and the cell walls extend rapidly. We also demonstrate expansin activity in a reconstitution assay. For this part, we use a brief heat treatment to denature the native expansins in the

  6. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  7. pH gradients and a micro-pore filter at the luminal surface affect fluxes of propionic acid across guinea pig large intestine.

    PubMed

    Busche, Roger; von Engelhardt, Wolfgang

    2007-10-01

    A neutral pH microclimate had been shown at the luminal surface of the large intestine. The aim was to estimate to what extent fluxes of propionic acid/propionate are affected by changes of the luminal pH when this microclimate is present, largely reduced or absent. Fluxes of propionic acid/propionate (J(Pr)) across epithelia from the caecum, the proximal and the distal colon of guinea pigs were measured in Ussing chambers with and without a filter at the luminal surface. With bicarbonate and with a neutral or an acid pH of mucosal solutions (pH 7.4 or 6.4), mucosal-to-serosal fluxes (J(ms)(Pr) ) were 1.5 to 1.9-fold higher at the lower pH, in bicarbonate-free solutions and carbonic anhydrase (CA) inhibition 2.1 to 2.6-fold. With a filter at the mucosal surface and with bicarbonate containing solutions, J (ms) (Pr) was not or only little elevated at the lower pH. Without bicarbonate J(ms)(Pr) was clearly higher. We conclude that the higher J(ms)(Pr) after luminal acidification is due to vigorous mixing in Ussing chambers resulting in a markedly reduced unstirred layer. Therefore, an effective pH microclimate at the epithelial surface is missing. J(ms)(Pr) is not or is little affected by lowering of pH because in the presence of bicarbonate the filter maintains the pH microclimate. However, in bicarbonate-free solutions J(ms)(Pr) was higher at pH 6.4 because a pH microclimate does not develop. Findings confirm that 30-60% of J(ms)(Pr) results from non-ionic diffusion.

  8. Lysozyme stability and amyloid fibrillization dependence on Hofmeister anions in acidic pH.

    PubMed

    Poniková, Slavomíra; Antošová, Andrea; Demjén, Erna; Sedláková, Dagmar; Marek, Jozef; Varhač, Rastislav; Gažová, Zuzana; Sedlák, Erik

    2015-09-01

    We have explored an effect of Hofmeister anions, Na2SO4, NaCl, NaBr, NaNO3, NaSCN and NaClO4, on stability and amyloid fibrillization of hen egg white lysozyme at pH 2.7. The stability of the protein was analyzed by differential scanning calorimetry. The Hofmeister effect of the anions was assessed by the parameter dT trs/d[anion] (T trs, transition temperature). We show that dT trs/d[anion] correlates with anion surface tension effects and anion partition coefficients indicating direct interactions between anions and lysozyme. The kinetic of amyloid fibrillization of lysozyme was followed by Thioflavin T (ThT) fluorescence. Negative correlation between dT trs/d[anion] and the nucleation rate of fibrillization in the presence of monovalent anions indicates specific effect of anions on fibrillization rate of lysozyme. The efficiency of monovalent anions to accelerate fibrillization correlates with inverse Hofmeister series. The far-UV circular dichroism spectroscopy and atomic force microscopy findings show that conformational properties of fibrils depend on fibrillization rate. In the presence of sodium chloride, lysozyme forms typical fibrils with elongated structure and with the secondary structure of the β-sheet. On the other hand, in the presence of both chaotropic perchlorate and kosmotropic sulfate anions, the fibrils form clusters with secondary structure of β-turn. Moreover, the acceleration of fibril formation is accompanied by decreased amount of the formed fibrils as indicated by ThT fluorescence. Taken together, our study shows Hofmeister effect of monovalent anions on: (1) lysozyme stability; (2) ability to accelerate nucleation phase of lysozyme fibrillization; (3) amount, and (4) conformational properties of the formed fibrils.

  9. Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Li, Jingye; Hou, Zhengchi; Yao, Side; Shi, Liuqing; Liang, Guoming; Sheng, Kanglong

    2008-07-01

    Polyethersulfone (PES) powder was grafted with acrylic acid (AAc) by simultaneous γ-ray irradiation. The kinetics of the radiation induced graft polymerization was studied and the grafted PES powder was characterized. Then, microfiltration (MF) membranes were prepared from PES-g-PAAc powder with different degrees of grafting (DG) under phase inversion method. The swelling behavior and the mean pore size of MF membranes were measured, and the filtration property was tested. The results showed that the pore size and the flux of MF membranes increased with the increase in DG. And, MF membranes' properties were dependent on the pH value.

  10. The effects of temperature, pH and redox state on the stability of glutamic acid in hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Lee, Namhey; Foustoukos, Dionysis I.; Sverjensky, Dimitri A.; Cody, George D.; Hazen, Robert M.

    2014-06-01

    Natural hydrothermal vent environments cover a wide range of physicochemical conditions involving temperature, pH and redox state. The stability of simple biomolecules such as amino acids in such environments is of interest in various fields of study from the origin of life to the metabolism of microbes at the present day. Numerous previous experimental studies have suggested that amino acids are unstable under hydrothermal conditions and decompose rapidly. However, previous studies have not effectively controlled the redox state of the hydrothermal fluids. Here we studied the stability of glutamate with and without reducing hydrothermal conditions imposed by 13 mM aqueous H2 at temperatures of 150, 200 and 250 °C and initial (25 °C) pH values of 6 and 10 in a flow-through hydrothermal reactor with reaction times from 3 to 36 min. We combined the experimental measurements with theoretical calculations to model the in situ aqueous speciation and pH values. As previously observed under hydrothermal conditions, the main reaction involves glutamate cyclizing to pyroglutamate through a simple dehydration reaction. However, the amounts of decomposition products of the glutamate detected, including succinate, formate, carbon dioxide and ammonia depend on the temperature, the pH and particularly the redox state of the fluid. In the absence of dissolved H2, glutamate decomposes in the sequence glutamate, glutaconate, α-hydroxyglutarate, ketoglutarate, formate and succinate, and ultimately to CO2 and micromolar quantities of H2(aq). Model speciation calculations indicate the CO2, formate and H2(aq) are not in metastable thermodynamic equilibrium. However, with 13 mM H2(aq) concentrations, the amounts of decomposition products are suppressed at all temperatures and pH values investigated. The small amounts of CO2 and formate present are calculated to be in metastable equilibrium with the H2. It is further proposed that there is a metastable equilibrium between glutamate

  11. Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure.

    PubMed

    Bañares-Hidalgo, A; Pérez-Gil, J; Estrada, P

    2014-07-01

    Pulmonary surfactant protein SP-B is synthesized as a larger precursor, proSP-B. We report that a recombinant form of human SP-BN forms a coiled coil structure at acidic pH. The protonation of a residue with pK=4.8±0.06 is the responsible of conformational changes detected by circular dichroism and intrinsic fluorescence emission. Sedimentation velocity analysis showed protein oligomerisation at any pH condition, with an enrichment of the species compatible with a tetramer at acidic pH. Low 2,2,2,-trifluoroethanol concentration promoted β-sheet structures in SP-BN, which bind Thioflavin T, at acidic pH, whereas it promoted coiled coil structures at neutral pH. The amino acid stretch predicted to form β-sheet parallel association in SP-BN overlaps with the sequence predicted by several programs to form coiled coil structure. A synthetic peptide ((60)W-E(85)) designed from the sequence of the amino acid stretch of SP-BN predicted to form coiled coil structure showed random coil conformation at neutral pH but concentration-dependent helical structure at acidic pH. Sedimentation velocity analysis of the peptide indicated monomeric state at neutral pH (s20, w=0.55S; Mr~3kDa) and peptide association (s20, w=1.735S; Mr=~14kDa) at acidic pH, with sedimentation equilibrium fitting to a Monomer-Nmer-Mmer model with N=6 and M=4 (Mr=14692Da). We propose that protein oligomerisation through coiled-coil motifs could then be a general feature in the assembly of functional units in saposin-like proteins in general and in the organization of SP-B in a functional surfactant, in particular.

  12. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  13. Experimental evaluation of the contribution of acidic pH and Fe concentration to the structure, function and tolerance to metals (Cu and Zn) exposure in fluvial biofilms.

    PubMed

    Luís, Ana Teresa; Bonet, Berta; Corcoll, Natàlia; Almeida, Salomé F P; da Silva, Eduardo Ferreira; Figueira, Etelvina; Guasch, Helena

    2014-09-01

    An indoor channel system was colonised with fluvial biofilms to study the chronic effects of high Fe and SO4(2-) concentrations and acidic pH, the water chemistry in the surrounding streams of Aljustrel mining area (Alentejo, Portugal), and their contribution to community (in)tolerance to metal toxicity by short-term experiments with Cu and Zn. Biofilms were subjected to four different treatments during 8 weeks: high Fe and SO4(2-) concentrations (1 mg Fe l(-1)+ 700 mg SO4(2-) l(-1)) and acidic pH, high Fe and SO4(2-) at alkaline pH; lower Fe and SO4(2-) at acidic pH: and lower Fe and SO4(2-) concentrations at alkaline pH as negative control. During chronic exposure, acidic pH affected growth negatively, based on low values of algal biomass and the autotrophic index, high values of the antioxidant enzyme activities and low diversity diatom communities, dominated by acidophilic species (Pinnularia aljustrelica) in acidic treatments, being the effects more marked with high Fe and SO4(2-). Co-tolerance to metals (Cu and Zn) was also shown in biofilms from the acidic treatments, contrasting with the higher sensitivity observed in the alkaline treatments. We can conclude that the Aljustrel mining area acidic environment limits algal growth and exerts a strong selection pressure on the community composition which is in turn, more tolerant to metal exposure.

  14. Reducing activity, glucose metabolism and acid tolerance response of Bacillus cereus grown at various pH and oxydo-reduction potential levels.

    PubMed

    Le Lay, Julien; Bahloul, Halim; Sérino, Sylvie; Jobin, Michel; Schmitt, Philippe

    2015-04-01

    Bacillus cereus is a major foodborne bacterial pathogen able to survive a large number of physical-chemical stresses. B. cereus encounters different pH and redox potential (Eh7) levels during its passage through the gastrointestinal tract. Analysis of the combined influence of pH and redox stresses on B. cereus F4430/73 physiology found that B. cereus F4430/73 growth at pH 7.0 at 37 °C had strong reducing capacities, with a total change of 315 mV from an initial redox value of +214 ± 17 mV. The combination of low Eh7 and low pH led to a drastic reduction of growth parameters compared to oxidative Eh7 and neutral pH. Metabolic analysis showed that low pH significantly modifies glucose fermentative metabolism, with changes including decreased production of acid metabolite (acetate, lactate, formate) and increased production of 2,3-butanediol. Low Eh7 slightly enhanced the acid-tolerance response of B. cereus whereas low pH pre-adaptation led to thermal stress cross-protection. These results highlight new mechanisms that bring fresh insight into B. cereus pH and redox stress adaptations.

  15. Intragastric pH Monitoring,

    DTIC Science & Technology

    1993-10-01

    disposable sensor.. hnt Care 13. Peterson WL. GI bleeding. In: Sleisenger MH, Fordtran IS, Med 1988;14:232-5. ,. eds. Gastrointestinal disease: pathophysiology ... diagnosis and 27. Fimmel CL, Etienne A, Cilluffo T, et al. Long-term ambu- management, Vol I. 4th ed. Philadelphia: WB Saunders, latory gastric pH

  16. Effect of pH, polymer concentration and molecular weight on the physical state properties of tolfenamic acid.

    PubMed

    Sheraz, Muhammad Ali; Ahmed, Sofia; Ur Rehman, Ihtesham

    2015-05-01

    Tolfenamic acid (TA) has been transformed from crystalline to amorphous state through freeze-drying by using varying ratios of polyacrylic acid (PA) at various pH values. The characterization of the films has been carried out using X-ray diffraction, differential scanning calorimetry, Fourier transform infrared (FTIR) spectrometry and scanning electron microscopy. The results showed a gradual change in the solid state properties of TA and a complete transformation into its amorphous form in 1:8, 1:4, 1:2 and 1:1 ratios at pH 3, 4, 5 and 6, respectively. FTIR spectrometry reveals the formation of a yellow polymorphic form of TA. Polymer molecular weight has also been observed to affect the drug transformation and interaction as the low molecular weight PA (Mw ∼ 1800) was found to be most effective followed by its medium (Mv ∼ 450 000) and high molecular weight (Mv ∼ 3 000 000) forms. No signs of recrystallization in the TA-PA films were noted during the 12-week storage period. PA of low molecular weight has also been found more effective in inhibiting the recrystallization of the melt upon cooling thus proving a valuable polymer in producing stable amorphous solid dispersions of TA.

  17. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH

    PubMed Central

    Wang, Runping; Lu, Yongjun; Gunasekar, Susheel; Zhang, Yanhui; Benson, Christopher J.; Chapleau, Mark W.; Sah, Rajan; Abboud, François M.

    2017-01-01

    The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo–conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox–mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate–induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential. PMID:28289711

  18. The volume-regulated anion channel (LRRC8) in nodose neurons is sensitive to acidic pH.

    PubMed

    Wang, Runping; Lu, Yongjun; Gunasekar, Susheel; Zhang, Yanhui; Benson, Christopher J; Chapleau, Mark W; Sah, Rajan; Abboud, François M

    2017-03-09

    The leucine rich repeat containing protein 8A (LRRC8A), or SWELL1, is an essential component of the volume-regulated anion channel (VRAC) that is activated by cell swelling and ionic strength. We report here for the first time to our knowledge its expression in a primary cell culture of nodose ganglia neurons and its localization in the soma, neurites, and neuronal membrane. We show that this neuronal VRAC/SWELL1 senses low external pH (pHo) in addition to hypoosmolarity. A robust sustained chloride current is seen in 77% of isolated nodose neurons following brief exposures to extracellular acid pH. Its activation involves proton efflux, intracellular alkalinity, and an increase in NOX-derived H2O2. The molecular identity of both the hypoosmolarity-induced and acid pHo-conditioned VRAC as LRRC8A (SWELL1) was confirmed by Cre-flox-mediated KO, shRNA-mediated knockdown, and CRISPR/Cas9-mediated LRRC8A deletion in HEK cells and in primary nodose neuronal cultures. Activation of VRAC by low pHo reduces neuronal injury during simulated ischemia and N-methyl-D-aspartate-induced (NMDA-induced) apoptosis. These results identify the VRAC (LRRC8A) as a dual sensor of hypoosmolarity and low pHo in vagal afferent neurons and define the mechanisms of its activation and its neuroprotective potential.

  19. Changes in pH and organic acids in mucilage of Eriophorum angustifolium roots after exposure to elevated concentrations of toxic elements.

    PubMed

    Javed, M Tariq; Stoltz, Eva; Lindberg, Sylvia; Greger, Maria

    2013-03-01

    The presence of Eriophorum angustifolium in mine tailings of pyrite maintains a neutral pH, despite weathering, thus lowering the release of toxic elements into acid mine drainage water. We investigated if the presence of slightly elevated levels of free toxic elements triggers the plant rhizosphere to change the pH towards neutral by increasing organic acid contents. Plants were treated with a combination of As, Pb, Cu, Cd, and Zn at different concentrations in nutrient medium and in soil in a rhizobox-like system for 48-120 h. The pH and organic acids were detected in the mucilage dissolved from root surface, reflecting the rhizospheric solution. Also the pH of root-cell apoplasm was investigated. Both apoplasmic and mucilage pH increased and the concentrations of organic acids enhanced in the mucilage with slightly elevated levels of toxic elements. When organic acids concentration was high, also the pH was high. Thus, efflux of organic acids from the roots of E. angustifolium may induce rhizosphere basification.

  20. Assessment of Envi-Carb™ as a passive sampler binding phase for acid herbicides without pH adjustment.

    PubMed

    Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David

    2014-05-01

    The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling

  1. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites.

    PubMed

    Louisse, Jochem; Bai, Yanqing; Verwei, Miriam; van de Sandt, Johannes J M; Blaauboer, Bas J; Rietjens, Ivonne M C M

    2010-06-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH(i)) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH(i)in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH(i) of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na(+)/H(+)-antiporter, corroborating an important role of the pH(i) in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH(i) may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  2. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    SciTech Connect

    Louisse, Jochem; Verwei, Miriam; Sandt, Johannes J.M. van de; Rietjens, Ivonne M.C.M.

    2010-06-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH{sub i}) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH{sub i}in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH{sub i} of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na{sup +}/H{sup +}-antiporter, corroborating an important role of the pH{sub i} in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH{sub i} may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  3. Effect of ph on the Electrodeposition of Cu(In, Al)Se2 from Aqueous Solution in Presence of Citric Acid as Complexing Agent

    NASA Astrophysics Data System (ADS)

    Ganjkhanlou, Yadolah; Ebadzadeh, Touradj; Kazemzad, Mahmood; Maghsoudipour, Amir; Kianpour-Rad, Mansoor

    2015-05-01

    Effect of pH on the one-step electrodeposition of Cu(In, Al)Se2 chalcopyrite layer in the presence of citric acid has been investigated by applying different electrochemical and characterization techniques. It has been observed that at pH of 1.5, nanocrystalline phase of chalcopyrite and small amount of binary phase of Cu2Se with overall composition of Cu0.91In0.32Al0.39Se2 have been deposited. On the other hand, at pH of 4, the film composition changed to Cu1.9In0.05Al0.21Se2 and an additional binary phase of copper selenide (CuSe) has also been formed. Morphological investigation illustrated that smooth and compact layer with fine spherical particles having the size of 20 nm has been obtained at pH of 1.5 whereas mixture of planar and spherical particles with size of 450-550 nm have been formed at pH of 4. In alkaline environment (pH 9), the deposition current has been noticeably decreased and no deposition occurred due to the formation of a stable complex of citric acid with metal ions. The mechanism of citric acid interaction with metal ions at different pH has also been studied by cyclic voltammetry measurement.

  4. Thermally programmable pH buffers.

    PubMed

    Van Gough, Dara; Bunker, Bruce C; Roberts, Mark E; Huber, Dale L; Zarick, Holly F; Austin, Mariah J; Wheeler, Jill S; Moore, Diana; Spoerke, Erik D

    2012-11-01

    Many reactions in both chemistry and biology rely on the ability to precisely control and fix the solution concentrations of either protons or hydroxide ions. In this report, we describe the behavior of thermally programmable pH buffer systems based on the copolymerization of varying amounts of acrylic acid (AA) groups into N-isopropylacrylamide polymers. Because the copolymers undergo phase transitions upon heating and cooling, the local environment around the AA groups can be reversibly switched between hydrophobic and hydrophilic states affecting the ionization behavior of the acids. Results show that moderate temperature variations can be used to change the solution pH by two units. However, results also indicate that the nature of the transition and its impact on the pH values are highly dependent on the AA content and the degree of neutralization.

  5. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage.

    PubMed

    White, Sarah Jane O; Hussain, Fatima A; Hemond, Harold F; Sacco, Sarah A; Shine, James P; Runkel, Robert L; Walton-Day, Katherine; Kimball, Briant A

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~3, indium concentrations are 6-29μg/L (10,000× those found in natural rivers), and are completely filterable through a 0.45μm filter. During a pH modification experiment, the pH of the system was raised to >8, and >99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

  6. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage

    USGS Publications Warehouse

    White, Sarah Jane O.; Hussain, Fatima A.; Hemond, Harold F.; Sacco, Sarah A.; Shine, James P.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~ 3, indium concentrations are 6–29 μg/L (10,000 × those found in natural rivers), and are completely filterable through a 0.45 μm filter. During a pH modification experiment, the pH of the system was raised to > 8, and > 99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45 μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

  7. Addition of formic acid or starter cultures to liquid feed. Effect on pH, microflora composition, organic acid concentration and ammonia concentration.

    PubMed

    Canibe, N; Miquel, N; Miettinen, H; Jensen, B B

    2001-01-01

    Some of the charateristics of good quality fermented liquid feed (FLF) are low pH, high numbers of lactic acid bacteria, and low numbers of enterobacteria. In order to test strategies to avoid a proliferation of enterobacteria during the initial phase of FLF elaboration, two in vitro studies were carried out. Addition of various doses of formic acid or two different starter cultures were tested. Adding 0.1% formic acid or L. plantarum VTT E-78076 to the liquid feed seemed to be addecuate ways of inhibiting the growth of enterobacteria, without depleting the growth of lactic acid bacteria.

  8. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  9. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  10. The PH gene determines fruit acidity and contributes to the evolution of sweet melons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acids are one of the three major components of fleshy fruit taste, together with sugars and volatile flavor compounds. However, the molecular-genetic control of acid accumulation in fruit is poorly understood and, to date, no genes responsible for acid accumulation in fleshy fruit have been function...

  11. The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures.

    PubMed

    Nielsen, Marina Karelina; Arneborg, Nils

    2007-02-01

    The effects of citric acid at pH values of 3.0, 4.0, and 4.5 on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures were investigated. S. cerevisiae and Z. bailii exhibited similar tolerances to citric acid, as determined by growth measurements, at all three pH values investigated. The citric-acid-induced growth inhibition of both yeast species increased with increasing pH values, indicating that the antimicrobial mechanism of citric acid differs from that of classical weak-acid preservatives. In S. cerevisiae, citric acid shifted the primary energy metabolism towards lower ethanol production and higher glycerol production, thus resulting in lower ATP production. These metabolic changes in S. cerevisiae were pH-dependent; i.e. the higher the pH, the lower the ATP production, and they may explain why growth of S. cerevisiae is more inhibited by citric acid at higher pH values. In Z. bailii, citric acid also caused an increased glycerol production, although to a lesser extent than in S. cerevisiae, but it caused virtually no changes in ethanol and ATP production.

  12. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    PubMed

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache.

  13. PhTX-II a Basic Myotoxic Phospholipase A2 from Porthidium hyoprora Snake Venom, Pharmacological Characterization and Amino Acid Sequence by Mass Spectrometry

    PubMed Central

    Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Marangoni, Sergio

    2014-01-01

    A monomeric basic PLA2 (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA2 enzyme class and displays conserved domains as the catalytic network, Ca2+-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA2 showed an allosteric behavior and its enzymatic activity was dependent on Ca2+. Examination of PhTX-II PLA2 by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA2 causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA2 that contributes with toxic actions caused by P. hyoprora venom. PMID:25365526

  14. pH modulation of transient state kinetics of enzymes. II. Transient state kinetics of plant cell wall acid phosphatase.

    PubMed

    Crasnier, M; Ricard, J

    1984-03-01

    The pre-steady-state kinetics of plant cell wall acid phosphatase has been investigated at different pH values. The approach of the steady stale lasts about 1 or 2 s and may be fitted with two exponential terms. For certain pH values the approach to the steady state exhibits damped oscillations. Plotting the sum and the product of the two time constants of these exponentials as a function of substrate concentration yields two straight lines. From the slopes and intercepts of these lines one may determine the values of rate and ionization constants involved in the reaction scheme. The results obtained are consistent with the view that the binding of the substrate to the enzyme does not induce a 'slow' conformation change of the enzyme. The enzyme reacts with its substrate while being mostly in its ionized form. Release of p-nitrophenol is also favoured by this ionized form of the enzyme. However, the hydrolysis of the phosphoryl-enzyme complex mostly occurs from the protonated form of the enzyme. The ionization constants of the free enzyme and of the various enzyme-ligand complexes are very similar.

  15. Efficient interrupting skills of amino acid metallointercalators with DNA at physiological pH: Evaluation of biological assays

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Selvaganapathy, Muthusamy; Radhakrishnan, Srinivasan

    2014-06-01

    The 4-aminoantipyrine derivatives (sbnd NO2, sbnd OCH3) and their mixed-ligand complexes with amino acids have been synthesized and investigated for their binding with CT DNA using UV-visible spectroscopy, cyclic voltammetry, and viscosity measurements under physiological conditions of pH (stomach 4.7; blood 7.4). The results from all techniques i.e. binding constant (Kb), and free energy change (ΔG) were in good agreement and inferred spontaneous compound-DNA complexes formation via intercalation. Among all the compounds 1 and 4 showed comparatively greater binding at pH 7.4 as evident from its greater Kb values. All the complexes exhibit oxidative cleavage of supercoiled (SC) pBR322 plasmid DNA in the presence of H2O2 as an activator. It is remarkable that at 25 μM concentration 1 and 4 completely degrade SC DNA into undetectable minor fragments and thus they act as efficient chemical nucleases. Among the new complexes, complexes 1 and 4 have highest potential against all the microorganisms tested. The results of the above biological experiments also reveal that the choice of different metal ions has little influence on the DNA binding, DNA cleavage and antimicrobial assay.

  16. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate.

    PubMed

    Jiang, Jianguo; Zhang, Yujing; Li, Kaimin; Wang, Quan; Gong, Changxiu; Li, Menglu

    2013-09-01

    The effects of pH, temperature, and organic loading rate (OLR) on the acidogenesis of food waste have been determined. The present study investigated their effects on soluble chemical oxygen demand (SCOD), volatile fatty acids (VFAs), volatile solids (VS), and ammonia nitrogen (NH4(+)-N). Both the concentration and yield of VFAs were highest at pH 6.0, acetate and butyrate accounted for 77% of total VFAs. VFAs concentration and the VFA/SCOD ratio were highest, and VS levels were lowest, at 45 °C, but the differences compared to the values at 35 °C were slight. The concentrations of VFAs, SCOD, and NH4(+)-N increased as OLR increased, whereas the yield of VFAs decreased from 0.504 at 5 g/Ld to 0.306 at 16 g/Ld. Acetate and butyrate accounted for 60% of total VFAs. The percentage of acetate and valerate increased as OLR increased, whereas a high OLR produced a lower percentage of propionate and butyrate.

  17. Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic?

    PubMed

    Vácha, Robert; Buch, Victoria; Milet, Anne; Devlin, J Paul; Jungwirth, Pavel

    2007-09-14

    Autoionization of water which gives rise to its pH is one of the key properties of aqueous systems. Surfaces of water and aqueous electrolyte solutions are traditionally viewed as devoid of inorganic ions; however, recent molecular simulations and spectroscopic experiments show the presence of certain ions including hydronium in the topmost layer. This raises the question of what is the pH (defined using proton concentration in the topmost layer) of the surface of neat water. Microscopic simulations and measurements with atomistic resolution show that the water surface is acidic due to a strong propensity of hydronium (but not of hydroxide) for the surface. In contrast, macroscopic experiments, such as zeta potential and titration measurements, indicate a negatively charged water surface interpreted in terms of preferential adsorption of OH(-). Here we review recent simulations and experiments characterizing autoionization at the surface of liquid water and ice crystals in an attempt to present and discuss in detail, if not fully resolve, this controversy.

  18. Desorption of 137Cs from Brachythecium mildeanum moss using acid solutions with pH 4.60-6.50

    NASA Astrophysics Data System (ADS)

    Čučulović, Ana; Veselinović, Dragan

    2015-12-01

    The desorption of 137Cs from the moss Brachythecium mildeanum (Schimp.) was performed using the following solutions: H2SO4 ( I), HNO3 ( II), H2SO4 + HNO3 ( III) with pH values of 4.60, 5.15, and 5.75, respectively, as well as distilled water (D) with pH 6.50. After five successive desorptions, each lasting 24 h, 20.5-37.6% 137Cs was desorbed from the moss using these solutions, while 30.7% of the starting content was desorbed using distilled water. The first desorption removed the highest percent of the original content of 137Cs in the moss (11.3-18.4%). This was determined by measuring 137Cs activity. If the current results are compared with those obtained earlier it may be concluded that 137Cs desorption from mosses is not species-dependent. The obtained results indicate the necessity of investigating the influence of acid rain, or rather, of H+ ions, on desorption of other ions from biological systems, i.e., the role of H+ ions in spreading other polluting compounds and thus producing secondary environmental pollution. From the results of this study it follows that acid rain will lead, through H+ ion action, to a similar increasing pollution of fallout waters with other ionic compounds which may not be present in the water before the contact with the plants and thus enable the pollution spreading. In the investigated system, the replacement of H+ ions from acid rains by more dangerous radioactive ions occured, increasing the concentration of the radioactive ions in the water, which demonstrates that the same process takes place in fallout water.

  19. Effect of salicylic acid upon trace-metal sorption (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite as a function of pH

    SciTech Connect

    Benyahya, L.; Garnier, J.M.

    1999-05-01

    The sorption of four trace metals (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite, in the presence or absence of salicylic acid was investigated in batch experiments in the pH range from 4 to 9. The sorption was interpreted in terms of surface complexation using the diffuse layer model (DLM). Equilibrium parameters were optimized using the FITEQL program. The salicylic acid was only significantly sorbed onto the alumina and the sorption was modeled using the anionic monodentate surface complex. In the absence of salicylic acid, the sorption of the trace metals presented different pH edge behaviors, depending on the substrate. Using the cationic monodendate surface complex, the model fitted the experimental data well. In the presence of salicylic acid, at a given pH and depending on the substrate, the sorption of metals was (1) increased, suggesting the occurrence of ternary complexes; (2) reduced (sometimes totally inhibited), due to the complexation with dissolved salicylic acid; or (3) very weakly changed in terms of net effect compared to free-organic-ligand systems. Modeling of the trace-metal sorption in the presence of salicylic acid was performed using ternary surface complexes. In the acidic pH range, this allowed the experimental data to be simulated, but in the alkaline pH range, the model failed to simulate the decrease in sorption. Probable causes of the discrepancies between the experimental data and modeling results are discussed.

  20. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate.

    PubMed Central

    Takeuchi, T L; Suzuki, I

    1994-01-01

    The oxidation of sulfite by Thiobacillus thiooxidans was studied at various pH values with changing concentrations of potassium sulfite. The optimal pH for sulfite oxidation by cells was a function of sulfite concentrations, rising with increasing substrate concentrations, while that by the cell extracts was unaffected. The sulfite oxidation by cells was inhibited at high sulfite concentrations, particularly at low pH values. The results from kinetic studies show that the fully protonated form of sulfite, sulfurous acid or sulfur dioxide, is the form which penetrates the cells for the oxidation. PMID:8300544

  1. Effects of pH, dissolved oxygen, and ionic strength on the survival of Escherichia coli O157:H7 in organic acid solutions.

    PubMed

    Kreske, Audrey C; Bjornsdottir, Kristin; Breidt, Fred; Hassan, Hosni

    2008-12-01

    The ability of Escherichia coli O157:H7 to survive in acidified vegetable products is of concern because of previously documented outbreaks associated with fruit juices. A study was conducted to determine the survival of E. coli O157:H7 in organic acids at pH values typical of acidified vegetable products (pH 3.2 and 3.7) under different dissolved oxygen conditions (< or = 0.05 and 5 mg/liter) and a range of ionic strengths (0.086 to 1.14). All solutions contained 20 mM gluconic acid, which was used as a noninhibitory low pH buffer to compare the individual acid effect to that of pH alone on the survival of E. coli O157:H7. E. coli O157:H7 cells challenged in buffered solution with ca. 5-mg/liter dissolved oxygen (present in tap water) over a range of ionic strengths at pH 3.2 exhibited a decrease in survival over 6 h at 30 degrees C as the ionic strength was increased. Cells challenged in 40 mM protonated L-lactic and acetic acid solutions with ionic strength of 0.684 achieved a > 4.7-log CFU/ml reduction at pH 3.2. However, under oxygen-limiting conditions in an anaerobic chamber, with < or = 0.05-mg/ liter oxygen, E. coli O157:H7 cells showed < or = 1.55-log CFU/ml reduction regardless of pH, acid type, concentration, or ionic strength. Many acid and acidified foods are sold in hermetically sealed containers with oxygen-limiting conditions. Our results demonstrate that E. coli O157:H7 may survive better than previously expected from studies with acid solutions containing dissolved oxygen.

  2. Radiation Synthesis of Poly(Starch/Acrylic acid) pH Sensitive Hydrogel for Rutin Controlled Release.

    PubMed

    Abdel Ghaffar, A M; Radwan, Rasha R; Ali, H E

    2016-11-01

    The copolymerization of starch with acrylic acid AAc using direct gamma radiation technique was performed. The effect of AAc concentrations on the gel (%) and swelling behavior were investigated. It is found that as AAc concentrations increase both gel(%) and swelling behavior increase. The Poly(starch/acrylic acid) (1:10wt%) hydrogel were selected due to its high swelling properties. From the in-vitro release study of the rutin-loaded hydrogel it is observed that it is strong pH-dependent release behavior, thus offering a maximum release as pH increased. The dextran sulphate sodium (DSS)-induced rat colitis model was treated with rutin-loaded Poly(starch/acrylic acid) (1:10wt%) hydrogel and free rutin solution by oral administration. Colitic control group showed a significant elevation in colon/body weight ratio, myeloperoxgidase activity, tumor necrosis factor, nitric oxide and malondialdehyde levels. However, glutathione level was reduced. It was found that the rutin-loaded hydrogel was more efficient than free rutin as evidenced by improvement of all measured parameters. These effects were confirmed histopathologically and may be attributed to its ability to control delivery of rutin to colon with minor early release of rutin before colon. The Poly(starch/acrylic acid) (1:10wt%) can represent a pivotal anti-inflammatory approach for patients with inflammatory bowel disease in order to increase efficacy and reduce toxicity.

  3. Sub-optimal pH Preadaptation Improves the Survival of Lactobacillus plantarum Strains and the Malic Acid Consumption in Wine-Like Medium

    PubMed Central

    Succi, Mariantonietta; Pannella, Gianfranco; Tremonte, Patrizio; Tipaldi, Luca; Coppola, Raffaele; Iorizzo, Massimo; Lombardi, Silvia Jane; Sorrentino, Elena

    2017-01-01

    Forty-two oenological strains of Lb. plantarum were assessed for their response to ethanol and pH values generally encountered in wines. Strains showed a higher variability in the survival when exposed to low pH (3.5 or 3.0) than when exposed to ethanol (10 or 14%). The study allowed to individuate the highest ethanol concentration (8%) and the lowest pH value (4.0) for the growth of strains, even if the maximum specific growth rate (μmax) resulted significantly reduced by these conditions. Two strains (GT1 and LT11) preadapted to 2% ethanol and cultured up to 14% of ethanol showed a higher growth than those non-preadapted when they were cultivated at 8% of ethanol. The evaluation of the same strains preadapted to low pH values (5.0 and 4.0) and then grown at pH 3.5 or 3.0 showed only for GT1 a sensitive μmax increment when it was cultivated in MRS at pH 3 after a preadaptation to pH 5.0. The survival of GT1 and LT11 was evaluated in Ringer's solution at 14% ethanol after a long-term adaptation in MRS with 2% ethanol or in MRS with 2% ethanol acidified at pH 5.0 (both conditions, BC). Analogously, the survival was evaluated at pH 3.5 after a long-term adaptation in MRS at pH 5.0 or in MRS BC. The impact of the physiologic state (exponential phase vs stationary phase) on the survival was also evaluated. Preadapted cells showed the same behavior of non-preadapted cells only when cultures were recovered in the stationary phase. Mathematical functions were individuated for the description of the survival of GT1 and LT11 in MRS at 14% ethanol or at pH 3.5. Finally, a synthetic wine (SW) was used to assess the behavior of Lb. plantarum GT1 and LT11 preadapted in MRS at 2% ethanol or at pH 5.0 or in BC. Only GT1 preadapted to pH 5.0 and collected in the stationary phase showed constant values of microbial counts after incubation for 15 days at 20°C. In addition, after 15 days the L-malic acid resulted completely degraded and the pH value increased of about 0.3 units

  4. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  5. Silica precipitation in acidic solutions: mechanism, pH effect, and salt effect.

    PubMed

    Gorrepati, Elizabeth A; Wongthahan, Pattanapong; Raha, Sasanka; Fogler, H Scott

    2010-07-06

    This study is the first to show that silica precipitation under very acidic conditions ([HCl] = 2-8 M) proceeds through two distinct steps. First, the monomeric form of silica is quickly depleted from solution as it polymerizes to form primary particles approximately 5 nm in diameter. Second, the primary particles formed then flocculate. A modified Smoluchowski equation that incorporates a geometric population balance accurately describes the exponential growth of silica flocs. Variation of the HCl concentration between 2 and 8 M further showed that polymerization to form primary particles and subsequent particle flocculation become exponentially faster with increasing acid concentration. The effect of salt was also studied by adding 1 M chloride salts to the solutions; it was found that salts accelerated both particle formation and growth rates in the order: AlCl(3) > CaCl(2) > MgCl(2) > NaCl > CsCl > no salt. It was also found that ionic strength, over cation identity, determines silica polymerization and particle flocculation rates. This research reveals that precipitation of silica products from acid dissolution of minerals can be studied apart from the mineral dissolution process. Thus, silica product precipitation from mineral acidization follows a two-step process--formation of 5 nm primary particles followed by particle flocculation--which becomes exponentially faster with increasing HCl concentration and with salts accelerating the process in the above order. This result has implications for any study of acid dissolution of aluminosilicate or silicate material. In particular, the findings are applicable to the process of acidizing oil-containing rock formations, a common practice of the petroleum industry where silica dissolution products encounter a low-pH, salty environment within the oil well.

  6. Nickel toxicity to microbes: effect of pH and implications for acid rain

    SciTech Connect

    Babich, H.; Stotzky, G.

    1982-12-01

    A broad spectrum of microorganisms, including eubacteria (nonmarine and marine), actinomycetes, yeasts, and filamentous fungi, were evaluated for their sensitivities to nickel. Wide extremes in sensitivity to Ni were noted among the filamentous fungi, whereas the range of tolerance to Ni of the yeasts, eubacteria, and actinomycetes was narrower. With all microorganisms, the toxicity of Ni has not been defined, although the formation of hydroxylated Ni species with differing toxicities was not involved. The enhanced toxicity of Ni at acidic levels may have implications for the toxicity of Ni in environments stressed by acid precipitation.

  7. The Role of pH Regulation in Cancer Progression.

    PubMed

    McIntyre, Alan; Harris, Adrian L

    Frequently observed phenotypes of tumours include high metabolic activity, hypoxia and poor perfusion; these act to produce an acidic microenvironment. Cellular function depends on pH homoeostasis, and thus, tumours become dependent on pH regulatory mechanisms. Many of the proteins involved in pH regulation are highly expressed in tumours, and their expression is often of prognostic significance. The more acidic tumour microenvironment also has important implications with regard to chemotherapeutic and radiotherapeutic interventions. In addition, we review pH-sensing mechanisms, the role of pH regulation in tumour phenotype and the use of pH regulatory mechanisms as therapeutic targets.

  8. Evaluation of fluorimetric pH sensors for bioprocess monitoring at low pH.

    PubMed

    Janzen, Nils H; Schmidt, Michael; Krause, Christian; Weuster-Botz, Dirk

    2015-09-01

    Optical chemical sensors are the standard for pH monitoring in small-scale bioreactors such as microtiter plates, shaking flasks or other single-use bioreactors. The dynamic pH range of the so far commercially available fluorescent pH sensors applied in small-scale bioreactors is restricted to pH monitoring around neutral pH, although many fermentation processes are performed at pH < 6 on industrial scale. Thus, two new prototype acidic fluorescence pH sensors immobilized in single-use stirred-tank bioreactors, one with excitation at 470 nm and emission at 550 nm (sensor 470/550) and the other with excitation at 505 nm and emission at 600 nm (sensor 505/600), were characterized with respect to dynamic ranges and operational stability in representative fermentation media. Best resolution and dynamic range was observed with pH sensor 505/600 in mineral medium (dynamic range of 3.9 < pH < 7.2). Applying the same pH sensors to complex medium results in a drastic reduction of resolution and dynamic ranges. Yeast extract in complex medium was found to cause background fluorescence at the sensors' operating wavelength combinations. Optical isolation of the sensor by adding a black colored polymer layer above the sensor spot and fixing an aperture made of adhesive photoresistant foil between the fluorescence reader and the transparent bottom of the polystyrene reactors enabled full re-establishment of the sensor's characteristics. Reliability and operational stability of sensor 505/600 was shown by online pH monitoring (4.5 < pH < 5.8) of parallel anaerobic batch fermentations of Clostridium acetobutylicum for the production of acetone, butanol and ethanol (ABE) with offline pH measurements with a standard glass electrode as reference.

  9. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    PubMed

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  10. Relation between blood pH and ionized calcium during acute metabolic alteration of the acid-base balance in vivo.

    PubMed

    Gaiter, A M; Bonfant, G; Manes, M; Belfanti, P; Alloatti, S

    1997-07-01

    We induced metabolic alkalosis and acidosis in 10 healthy volunteers in order to analyse in vivo relation between pH and ionized calcium (cCa2+). In the alkalinization test, 2.7 mol/kg NaHCO3 was injected. In the acidification test, volunteers took 4 mmol/kg NH4Cl. Blood pH and cCa2+ (mmol/l) mean values (SD) baseline, after alkalinization and acidification tests, were: 7.363 (0.018), 7.456 (0.031), 7.244 (0.031), 1.27 (0.03), 1.14 (0.03) and 1.38 (0.04). Mean slope of regression log cCa2+/pH was -0.39 (SD 0.11). Such a slope differs after in vivo or in vitro changes, due to the in vivo rapid restoration of equilibrium between the plasmatic and interstitial compartments following changes in water and electrolyte concentrations. The type of acid-base alteration-respiratory or metabolic-influences pH changes, and consequently the regression slope. The in vivo slope for log cCa2+/pH in normal subjects (-0.21) is much the same as in acute respiratory alterations (-0.17), whereas it differs in acute metabolic alterations (present study). Bicarbonates play different roles: the same changes in pH cause greater changes in cCa2+ after acute metabolic rather than respiratory alterations. Ca2+ homeostasis is maintained in acute respiratory acid-base imbalance, despite wide shifts in pH, whereas in acute metabolic alterations even small pH changes have striking repercussions on cCa2+. The experimental angular coefficient for in vivo acute metabolic acid-base alterations differs from the theoretical one calculated by Thode's differential equation (-0.25).

  11. The fluorescence properties of the phenylated fullerenes C 70Ph 4, C 70Ph 6, C 70Ph 8, and C 70Ph 10 in room temperature solutions

    NASA Astrophysics Data System (ADS)

    Schwell, Martin; Gustavsson, Thomas; Marguet, Sylvie; Vaissière, Benoı̂t de La; Wachter, Norbert K.; Birkett, Paul R.; Mialocq, Jean-Claude; Leach, Sydney

    2001-12-01

    The emission and excitation spectra of four phenylated [70] fullerenes, C 70Ph 4, C 70Ph 6, C 70Ph 8, and C 70Ph 10 in cyclohexane and toluene solutions have been measured. The fluorescence spectra and related excited state properties are found to depend strongly on the number of attached phenyl groups, but with no systematic trends. Quantum yields and fluorescence lifetimes were measured for C 70Ph 6, C 70Ph 8, and C 70Ph 10, allowing the determination of S1 → S0 radiative transition rates kR. It is found that kR for C 70Ph 10 is about six times larger than for the other compounds. This is consistent with measured absorbtivities for these compounds. The particular character of C 70Ph 10 is also manifested by its higher intersystem crossing rate kISC.

  12. Increasing the Brønsted acidity of Ph2PO2H by the Lewis acid B(C6F5)3. Formation of an eight-membered boraphosphinate ring [Ph2POB(C6F5)2O]2.

    PubMed

    Kather, Ralf; Rychagova, Elena; Sanz Camacho, Paula; Ashbrook, Sharon E; Woollins, J Derek; Robben, Lars; Lork, Enno; Ketkov, Sergey; Beckmann, Jens

    2016-09-21

    Autoprotolysis of the metastable acid (C6F5)3BOPPh2OH, prepared in situ by the reaction of the rather weak Brønsted acid Ph2PO2H with the strong Lewis acid B(C6F5)3, gave rise to the formation of the eight-membered ring [Ph2POB(C6F5)2O]2 and C6F5H. The conjugate base was isolated as stable sodium crown ether salt [Na(15-crown-5)][Ph2PO2B(C6F5)3].

  13. Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States

    NASA Astrophysics Data System (ADS)

    Guo, Hongyu; Sullivan, Amy P.; Campuzano-Jost, Pedro; Schroder, Jason C.; Lopez-Hilfiker, Felipe D.; Dibb, Jack E.; Jimenez, Jose L.; Thornton, Joel A.; Brown, Steven S.; Nenes, Athanasios; Weber, Rodney J.

    2016-09-01

    Particle pH is a critical but poorly constrained quantity that affects many aerosol processes and properties, including aerosol composition, concentrations, and toxicity. We assess PM1 pH as a function of geographical location and altitude, focusing on the northeastern U.S., based on aircraft measurements from the Wintertime Investigation of Transport, Emissions, and Reactivity campaign (1 February to 15 March 2015). Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to observed partitioning of inorganic nitrate between the gas and particle phases. Good agreement was found for relative humidity (RH) above 40%; at lower RH observed particle nitrate was higher than predicted, possibly due to organic-inorganic phase separations or nitrate measurement uncertainties associated with low concentrations (nitrate < 1 µg m-3). Including refractory ions in the pH calculations did not improve model predictions, suggesting they were externally mixed with PM1 sulfate, nitrate, and ammonium. Sample line volatilization artifacts were found to be minimal. Overall, particle pH for altitudes up to 5000 m ranged between -0.51 and 1.9 (10th and 90th percentiles) with a study mean of 0.77 ± 0.96, similar to those reported for the southeastern U.S. and eastern Mediterranean. This expansive aircraft data set is used to investigate causes in variability in pH and pH-dependent aerosol components, such as PM1 nitrate, over a wide range of temperatures (-21 to 19°C), RH (20 to 95%), inorganic gas, and particle concentrations and also provides further evidence that particles with low pH are ubiquitous.

  14. Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH

    NASA Astrophysics Data System (ADS)

    Gammons, Christopher H.; Wood, Scott A.; Nimick, David A.

    2005-08-01

    Diel (24-h) changes in concentrations of rare earth elements (REE) were investigated in Fisher Creek, a mountain stream in Montana that receives acid mine drainage in its headwaters. Three simultaneous 24-h samplings were conducted at an upstream station (pH = 3.3), an intermediate station (pH = 5.5), and a downstream station (pH = 6.8). The REE were found to behave conservatively at the two upstream stations. At the downstream station, REE partitioned into suspended particles to a degree that varied with the time of day, and concentrations of dissolved REE were 2.9- to 9.4-fold (190% to 830%) higher in the early morning vs. the late afternoon. The decrease in dissolved REE concentrations during the day coincided with a corresponding increase in the concentration of REE in suspended particles, such that diel changes in the total REE concentrations were relatively minor (27% to 55% increase at night). Across the lanthanide series, the heavy REE partitioned into the suspended solid phase to a greater extent than the light REE. Filtered samples from the downstream station showed a decrease in shale-normalized REE concentration across the lanthanide series, with positive anomalies at La and Gd, and a negative Eu anomaly. As the temperature of the creek increased in the afternoon, the slope of the REE profile steepened and the magnitude of the anomalies increased. The above observations are explained by cyclic adsorption of REE onto suspended particles of hydrous ferric and aluminum oxides (HFO, HAO). Conditional partition coefficients for each REE between the suspended solids and the aqueous phase reached a maximum at 1700 hours and a minimum at 0700 hours. This pattern is attributed to diel variations in stream temperature, possibly reinforced by kinetic factors (i.e., slower rates of reaction at night than during the day). Estimates of the enthalpy of adsorption of each REE onto suspended particles based on the field results averaged +82 kJ/mol and are similar in

  15. Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH

    USGS Publications Warehouse

    Gammons, C.H.; Wood, S.A.; Nimick, D.A.

    2005-01-01

    Diel (24-h) changes in concentrations of rare earth elements (REE) were investigated in Fisher Creek, a mountain stream in Montana that receives acid mine drainage in its headwaters. Three simultaneous 24-h samplings were conducted at an upstream station (pH = 3.3), an intermediate station (pH = 5.5), and a downstream station (pH = 6.8). The REE were found to behave conservatively at the two upstream stations. At the downstream station, REE partitioned into suspended particles to a degree that varied with the time of day, and concentrations of dissolved REE were 2.9- to 9.4-fold (190% to 830%) higher in the early morning vs. the late afternoon. The decrease in dissolved REE concentrations during the day coincided with a corresponding increase in the concentration of REE in suspended particles, such that diel changes in the total REE concentrations were relatively minor (27% to 55% increase at night). Across the lanthanide series, the heavy REE partitioned into the suspended solid phase to a greater extent than the light REE. Filtered samples from the downstream station showed a decrease in shale-normalized REE concentration across the lanthanide series, with positive anomalies at La and Gd, and a negative Eu anomaly. As the temperature of the creek increased in the afternoon, the slope of the REE profile steepened and the magnitude of the anomalies increased. The above observations are explained by cyclic adsorption of REE onto suspended particles of hydrous ferric and aluminum oxides (HFO, HAO). Conditional partition coefficients for each REE between the suspended solids and the aqueous phase reached a maximum at 1700 hours and a minimum at 0700 hours. This pattern is attributed to diel variations in stream temperature, possibly reinforced by kinetic factors (i.e., slower rates of reaction at night than during the day). Estimates of the enthalpy of adsorption of each REE onto suspended particles based on the field results averaged +82 kJ/mol and are similar in

  16. An Na(+)-independent short-chain fatty acid transporter contributes to intracellular pH regulation in murine colonocytes

    PubMed Central

    1995-01-01

    Short-chain fatty acids (SCFAs) are the major anions in the colonic lumen. Experiments studied how intracellular pH (pHi) of isolated colonocytes was affected by exposure to SCFAs normally found in the colon. Isolated crypt fragments were loaded with SNARF-1 (a fluorescent dye with pH-sensitive excitation and emission spectra) and studied in a digital imaging microscope. Intracellular pH was measured in individual colonocytes as the ratio of fluorescence intensity in response to alternating excitation wavelengths (575/505 nm). After exposure to 65 mM acetate, propionate, n-butyrate, or iso-butyrate in isosmotic Na(+)- free media (substituted with tetramethylammonia), all colonocytes acidified rapidly and then > 90% demonstrated a pHi alkalinization (Na(+)-independent pHi recovery). Upon subsequent removal of the SCFA, pHi alkalinized beyond the starting pHi (a pHi overshoot). Using propionate as a test SCFA, experiments demonstrate that the acidification and pHi overshoot are explained by transmembrane influx and efflux of nonionized SCFA, respectively. The basis for the pHi overshoot is shown to be accumulation of propionate during pHi alkalinization. The Na(+)-independent pHi recovery (a) demonstrates saturable propionate activation kinetics; (b) demonstrates substrate specificity for unmodified aliphatic carbon chains; (c) occurs after exposure to SCFAs of widely different metabolic activity, (d) is electroneutral; and (e) is not inhibited by changes in the K+ gradient, Cl- gradient or addition of the anion transport inhibitors DIDS (1 mM), SITS (1 mM), alpha-cyano-4-hydroxycinnamate (4 mM), or probenicid (1 mM). Results suggest that most mouse colonocytes have a previously unreported SCFA transporter which mediates Na(+)-independent pHi recovery. PMID:7658194

  17. Modeling the effects of sodium chloride, acetic acid and intracellular pH on the survival of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primar...

  18. Encapsulation of quercetin and myricetin in cyclodextrins at acidic pH.

    PubMed

    Lucas-Abellán, Carmen; Fortea, Isabel; Gabaldón, José Antonio; Núñez-Delicado, Estrella

    2008-01-09

    The in vitro formation of quercetin- and myricetin-cyclodextrin inclusion complexes in acidic medium has been characterized using the enzymatic system horseradish peroxidase, which oxidizes those flavonols in the presence of H2O2. The presence of cyclodextrins (CDs) in the reaction medium inhibited flavonol oxidation due to the complexation of the flavonol in the hydrophobic cavity of CDs. This inhibitory effect depends on the complexation constant Kc between flavonol and the CD type used. The Kc for quercetin and myricetin with the different types of CD used was calculated by nonlinear regression of the inhibition curves obtained in the presence of CDs. In both cases (quercetin and myricetin), the Kc values obtained followed the order hydroxypropyl-beta-CDs > maltosyl-beta-CDs > beta-CDs, reflecting the greater affinity of modified cyclodextrins for the studied flavonols compared with their parental beta-CDs. Moreover, the complexation efficiency (CE) values for HP-beta-CDs and quercetin or myricetin were calculated (267.4 and 5.3, respectively), indicating that HP-beta-CDs are more efficient for the complexation of quercetin than myricetin in the studied conditions, despite of the K c values being very similar in both cases.

  19. Effect of acidic pH on flow cytometric detection of bacteria stained with SYBR Green I and their distinction from background

    NASA Astrophysics Data System (ADS)

    Baldock, Daniel; Nebe-von-Caron, Gerhard; Bongaerts, Roy; Nocker, Andreas

    2013-12-01

    Unspecific background caused by biotic or abiotic particles, cellular debris, or autofluorescence is a well-known interfering parameter when applying flow cytometry to the detection of microorganisms in combination with fluorescent dyes. We present here an attempt to suppress the background signal intensity and thus to improve the detection of microorganisms using the nucleic acid stain SYBR® Green I. It has been observed that the fluorescent signals from SYBR Green I are greatly reduced at acidic pH. When lowering the pH of pre-stained samples directly prior to flow cytometric analysis, we hypothesized that the signals from particles and cells with membrane damage might therefore be reduced. Signals from intact cells, temporarily maintaining a neutral cytosolic pH, should not be affected. We show here that this principle holds true for lowering background interference, whereas the signals of membrane-compromised dead cells are only affected weakly. Signals from intact live cells at low pH were mostly comparable to signals without acidification. Although this study was solely performed with SYBR® Green I, the principle of low pH flow cytometry (low pH-FCM) might hold promise when analyzing complex matrices with an abundance of non-cellular matter, especially when expanded to non-DNA binding dyes with a stronger pH dependence of fluorescence than SYBR Green I and a higher pKa value.

  20. Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite.

    PubMed

    Wang, Suowei; Hu, Jun; Li, Jiaxing; Dong, Yunhui

    2009-08-15

    This work contributed to the adsorption of Pb(II) onto GMZ bentonite in the absence and presence of soil humic acid (HA)/fulvic acid (FA) using a batch technique. The influences of pH from 2 to 12, ionic strengths from 0.004M to 0.05M NaNO(3), soil HA/FA concentrations from 1.6 mg/L to 20mg/L, foreign cations (Li+, Na+, K+), anions (Cl(-), NO(3)(-)), and addition sequences on the adsorption of Pb(II) onto GMZ bentonite were tested. The adsorption isotherms of Pb(II) were determined at pH 3.6+/-0.1 and simulated with the Langmuir, Freundlich, and D-R adsorption models, respectively. The results demonstrated that the adsorption of Pb(II) onto GMZ bentonite increased with increasing pH from 2 to 6. HA was shown to enhance Pb(II) adsorption at low pH, but to reduce Pb(II) adsorption at high pH, whereas FA was shown to decrease Pb(II) adsorption at pH from 2 to 11. The results also demonstrated that the adsorption was strongly dependent on ionic strength and slightly dependent on the concentration of HA/FA. The adsorption of Pb(II) onto GMZ bentonite was dependent on foreign ions in solution. The addition sequences of bentonite/Pb(II)/HA had no effect on the adsorption of Pb(II).

  1. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-01-08

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism.

  2. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH

    PubMed Central

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  3. 2'-Deoxymugineic acid promotes growth of rice (Oryza sativa L.) by orchestrating iron and nitrate uptake processes under high pH conditions.

    PubMed

    Araki, Ryoichi; Kousaka, Kayoko; Namba, Kosuke; Murata, Yoshiko; Murata, Jun

    2015-01-01

    Poaceae plants release 2'-deoxymugineic acid (DMA) and related phytosiderophores to chelate iron (Fe), which often exists as insoluble Fe(III) in the rhizosphere, especially under high pH conditions. Although the molecular mechanisms behind the biosynthesis and secretion of DMA have been studied extensively, little information is known about whether DMA has biological roles other than chelating Fe in vivo. Here, we demonstrate that hydroponic cultures of rice (Oryza sativa) seedlings show almost complete restoration in shoot height and soil-plant analysis development (SPAD) values after treatment with 3-30 μm DMA at high pH (pH 8.0), compared with untreated control seedlings at normal pH (pH 5.8). These changes were accompanied by selective accumulation of Fe over other metals. While this enhanced growth was evident under high pH conditions, DMA application also enhanced seedling growth under normal pH conditions in which Fe was fairly accessible. Microarray and qRT-PCR analyses revealed that exogenous DMA application attenuated the increased expression levels of various genes related to Fe transport and accumulation. Surprisingly, despite the preferential utilization of ammonium over nitrate as a nitrogen source by rice, DMA application also increased nitrate reductase activity and the expression of genes encoding high-affinity nitrate transporters and nitrate reductases, all of which were otherwise considerably lower under high pH conditions. These data suggest that exogenous DMA not only plays an important role in facilitating the uptake of environmental Fe, but also orchestrates Fe and nitrate assimilation for optimal growth under high pH conditions.

  4. Amino acid determinants conferring stable sialidase activity at low pH for H5N1 influenza A virus neuraminidase.

    PubMed

    Takahashi, Tadanobu; Nidom, Chairul A; Quynh Le, Mai Thi; Suzuki, Takashi; Kawaoka, Yoshihiro

    2012-01-01

    Avian influenza A viruses (IAVs) and human 1918, 1957, and 1968 pandemic IAVs all have neuraminidases (NAs) that are stable at low pH sialidase activity, yet most human epidemic IAVs do not. We examined the pH stability of H5N1 highly pathogenic avian IAV (HPAI) NAs and identified amino acids responsible for conferring stability at low pH. We found that, unlike other avian viruses, most H5N1 IAVs isolated since 2003 had NAs that were unstable at low pH, similar to human epidemic IAVs. These H5N1 viruses are thus already human virus-like and, therefore, have the frequent infections of humans.

  5. An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and Amberlite IRC-50 as pH buffers for nutrient solution studies

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1985-01-01

    All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.

  6. An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and Amberlite IRC-50 as pH buffers for nutrient solution studies.

    PubMed

    Bugbee, B G; Salisbury, F B

    1985-01-01

    All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.

  7. Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1983-01-01

    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.

  8. Effects of Two Traditional Chinese Cooking Oils, Canola and Pork, on pH and Cholic Acid Content of Faeces and Colon Tumorigenesis in Kunming Mice.

    PubMed

    He, Xiao-Qiong; Duan, Jia-Li; Zhou, Jin; Song, Zhong-Yu; Cichello, Simon Angelo

    2015-01-01

    Faecal pH and cholate are two important factors that can affect colon tumorigenesis, and can be modified by diet. In this study, the effects of two Chinese traditional cooking oils (pork oil and canola/rapeseed oil) on the pH and the cholic acid content in feces, in addition to colon tumorigenesis, were studied in mice. Kunming mice were randomized into various groups; negative control group (NCG), azoxymethane control group (ACG), pork oil group (POG), and canola oil Ggroup (COG). Mice in the ACG were fed a basic rodent chow; mice in POG and COG were given 10% cooking oil rodent chow with the respective oil type. All mice were given four weekly AOM (azoxymethane) i.p. injections (10 mg/kg). The pH and cholic acid of the feces were examined every two weeks. Colon tumors, aberrant crypt foci and organ weights were examined 32 weeks following the final AOM injection. The results showed that canola oil significantly decreased faecal pH in female mice (P<0.05), but had no influence on feces pH in male mice (P>0.05). Pork oil significantly increased the feces pH in both male and female mice (P<0.05). No significant change was found in feces cholic acid content when mice were fed 10% pork oil or canola oil compared with the ACG. Although Kunming mice were not susceptible to AOM-induced tumorigenesis in terms of colon tumor incidence, pork oil significantly increased the ACF number in male mice. Canola oil showed no influence on ACF in either male or female mice. Our results indicate that cooking oil effects faecal pH, but does not affect the faecal cholic acid content and thus AOM-induced colon neoplastic ACF is modified by dietary fat.

  9. High serum uric acid level and low urine pH as predictors of metabolic syndrome: a retrospective cohort study in a Japanese urban population.

    PubMed

    Hara, Shigeko; Tsuji, Hiroshi; Ohmoto, Yuki; Amakawa, Kazuhisa; Hsieh, Shiun Dong; Arase, Yasuji; Nakajima, Hiromu

    2012-02-01

    The objective of this study was to evaluate whether hyperuricemia, acidic urine, or their combination predicts metabolic syndrome (MetS). In study 1, 69,094 subjects who received a general health checkup between 1985 and 2005 were included in a cross-sectional study of serum uric acid (SUA) and urine pH in relation to MetS. In study 2, the association of SUA and urine pH with MetS development over a 5-year period was evaluated in 5617 subjects with body mass index less than 25 kg/m(2) at the first examination. In study 1, higher SUA and lower urine pH were both positively correlated to MetS status (P < .001). The combination of high SUA and low urine pH was significantly associated with higher MetS prevalence compared with the combination of low SUA and high urine pH (odds ratio, 3.383; 95% confidence interval [CI], 3.034-3.784 in men; odds ratio, 4.000; 95% CI, 2.992-5.452 in women). In study 2, the top quartile of SUA levels was associated with higher MetS development compared with the bottom quartile during the 5-year period in men (hazard ratio [HR], 1.793; 95% CI, 1.084-2.966; P = .023). In women, the HR was 3.732 (95% CI, 0.391-35.62; P = .252) for the upper vs the lower half of SUA levels. For urine pH, the HR was 1.955 (95% CI, 1.089-3.509; P = .025) for the bottom vs the top quartile in men. A likelihood ratio test confirmed that high SUA and low urine pH act synergistically in the development of MetS. High SUA, low urine pH, and their combination are predictive risk factors for MetS development.

  10. Preparation and pH controlled release of polyelectrolyte complex of poly(L-malic acid-co-D,L-lactic acid) and chitosan.

    PubMed

    Wang, Jie; Ni, Caihua; Zhang, Yanan; Zhang, Meng; Li, Wang; Yao, Bolong; Zhang, Liping

    2014-03-01

    The copolymer of poly(L-malic acid-co-D,L-lactic acid) (PML) was synthesized through a direct polycondensation of L-malic acid (MA) and D,L-lactic acid (LA). Then, a new polyelectrolyte complex (PEC) based on the complexation between the copolymer (PML) and chitosan (CS) was prepared. The PEC formed stable nano particles in aqueous solutions with pH 3-5, and the nano particles had the diameters in a range of 316-590 nm (varied with the components of PML and CS). Doxorubicin (DOX) as a model drug was loaded on the nano particles through the physical adsorption and complexation, and part of DOX formed the secondary particles by self-aggregation. The high drug loading efficiency (16.5%) and the sustained release patterns in acidic media were observed, and the release accelerated in alkaline solutions. The nano particles could be potentially applied as pH sensitive drug vehicles for controlled release.

  11. The pH of antiseptic cleansers

    PubMed Central

    Kulthanan, Kanokvalai; Varothai, Supenya; Nuchkull, Piyavadee

    2014-01-01

    Background Daily bathing with antiseptic cleansers are proposed by some physicians as an adjunctive management of atopic dermatitis (AD). As atopic skin is sensitive, selection of cleansing products becomes a topic of concern. Objective Our purpose is to evaluate the pH of various antiseptic body cleansers to give an overview for recommendation to patients with AD. Methods Commonly bar and liquid cleansers consisted of antiseptic agents were measured for pH using pH meter and pH-indicator strips. For comparison, mild cleansers and general body cleansers were also measured. Results All cleansing bars had pH 9.8-11.3 except syndet bar that had neutral pH. For liquid cleansers, three cleansing agents had pH close to pH of normal skin, one of antiseptic cleansers, one of mild cleansers and another one of general cleansers. The rest of antiseptic cleansers had pH 8.9-9.6 while mild cleansers had pH 6.9-7.5. Syndet liquid had pH 7 and general liquid cleansers had pH 9.6. Conclusion The pH of cleanser depends on composition of that cleanser. Adding antiseptic agents are not the only factor determining variation of pH. Moreover, benefit of antiseptic properties should be considered especially in cases of infected skin lesions in the selection of proper cleansers for patients with AD. PMID:24527408

  12. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.

    PubMed

    Eguchi, Yoko; Utsumi, Ryutaro

    2014-09-01

    Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception.

  13. Listeria monocytogenes varies among strains to maintain intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput microplate-based fluorometry.

    PubMed

    Cheng, Changyong; Yang, Yongchun; Dong, Zhimei; Wang, Xiaowen; Fang, Chun; Yang, Menghua; Sun, Jing; Xiao, Liya; Fang, Weihuan; Song, Houhui

    2015-01-01

    Listeria monocytogenes, a food-borne pathogen, has the capacity to maintain intracellular pH (pHi) homeostasis in acidic environments, but the underlying mechanisms remain elusive. Here, we report a simple microplate-based fluorescent method to determine pHi of listerial cells that were prelabeled with the fluorescent dye carboxyfluorescein diacetate N-succinimidyl ester and subjected to acid stress. We found that L. monocytogenes responds differently among strains toward organic and inorganic acids to maintain pHi homeostasis. The capacity of L. monocytogenes to maintain pHi at extracellular pH 4.5 (pHex) was compromised in the presence of acetic acid and lactic acid, but not by hydrochloric acid and citric acid. Organic acids exhibited more inhibitory effects than hydrochloric acid at certain pH conditions. Furthermore, the virulent stains L. monocytogenes EGDe, 850658 and 10403S was more resistant to acidic stress than the avirulent M7 which showed a defect in maintaining pHi homeostasis. Deletion of sigB, a stress-responsive alternative sigma factor from 10403S, markedly altered intracellular pHi homeostasis, and showed a significant growth and survival defect under acidic conditions. Thus, this work provides new insights into bacterial survival mechanism to acidic stresses.

  14. Listeria monocytogenes varies among strains to maintain intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput microplate-based fluorometry

    PubMed Central

    Cheng, Changyong; Yang, Yongchun; Dong, Zhimei; Wang, Xiaowen; Fang, Chun; Yang, Menghua; Sun, Jing; Xiao, Liya; Fang, Weihuan; Song, Houhui

    2015-01-01

    Listeria monocytogenes, a food-borne pathogen, has the capacity to maintain intracellular pH (pHi) homeostasis in acidic environments, but the underlying mechanisms remain elusive. Here, we report a simple microplate-based fluorescent method to determine pHi of listerial cells that were prelabeled with the fluorescent dye carboxyfluorescein diacetate N-succinimidyl ester and subjected to acid stress. We found that L. monocytogenes responds differently among strains toward organic and inorganic acids to maintain pHi homeostasis. The capacity of L. monocytogenes to maintain pHi at extracellular pH 4.5 (pHex) was compromised in the presence of acetic acid and lactic acid, but not by hydrochloric acid and citric acid. Organic acids exhibited more inhibitory effects than hydrochloric acid at certain pH conditions. Furthermore, the virulent stains L. monocytogenes EGDe, 850658 and 10403S was more resistant to acidic stress than the avirulent M7 which showed a defect in maintaining pHi homeostasis. Deletion of sigB, a stress-responsive alternative sigma factor from 10403S, markedly altered intracellular pHi homeostasis, and showed a significant growth and survival defect under acidic conditions. Thus, this work provides new insights into bacterial survival mechanism to acidic stresses. PMID:25667585

  15. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage.

    PubMed

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor A P; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-06-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including 'ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called 'ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths.

  16. Modulation of Human Cardiac TRPM7 Current by Extracellular Acidic pH Depends upon Extracellular Concentrations of Divalent Cations

    PubMed Central

    Mačianskienė, Regina; Almanaitytė, Mantė; Jekabsone, Aistė; Mubagwa, Kanigula

    2017-01-01

    TRPM7 channels participate in a variety of physiological/pathological processes. TRPM7 currents are modulated by protons but opposing effects of external pH (pHo) (potentiation vs inhibition) have been reported. TRPM7 has been less studied in human cardiomyocytes than in heart-derived non-cardiomyocyte cells. We used the whole-cell patch-clamp technique on isolated human atrial cardiomyocytes to investigate the impact of an acidic pHo on the TRPM7 current. With voltage-dependent and other ion channels inhibited, cardiomyocytes were challenged with external acidification in either the presence or the absence of extracellular divalent cations. TRPM7 outward and inward currents were increased by acidic pHo in extracellular medium containing Ca2+ and Mg2+, but suppressed by acidic pHo in the absence of extracellular Ca2+ and Mg2+. The potentiating effect in the presence of extracellular divalents occurred at pHo below 6 and was voltage-dependent. The inhibitory effect in the absence of extracellular divalents was already marked at pHo of 6 and was practically voltage-independent. TRPM7 current density was higher in cardiomyocytes from patients with history of coronary vascular disease and the difference compared to cardiomyocytes from patients without history of myocardial ischemia increased with acidic pHo. We demonstrate that proton-induced modification of TRPM7 currents depends on the presence of extracellular Ca2+ and Mg2+. Variability of the TRPM7 current density in human cardiomyocytes is related to the clinical history, being higher in atrial fibrillation and in ischemic cardiomyopathy. PMID:28129376

  17. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    PubMed Central

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor AP; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  18. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    PubMed

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  19. Fetal scalp pH testing

    MedlinePlus

    Fetal scalp blood; Scalp pH testing; Fetal blood testing - scalp; Fetal distress - fetal scalp testing; Labor - fetal scalp testing ... a baby. In these cases, testing the scalp pH can help the doctor decide whether the fetus ...

  20. Novel Technique to improve the pH of Acidic Barren Soil using Electrokinetic-bioremediation with the application of Vetiver Grass

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Zahin, A. M. F.

    2016-11-01

    Residual acidic slopes which are not covered by vegetation greatly increases the risk of soil erosion. In addition, low soil pH can bring numerous problems such as Al and Fe toxicity, land degradation issues and some problems related to vegetation. In this research, a series of electrokinetic bioremediation (EK-Bio) treatments using Bacillus sphaericus, Bacillus subtilis and Pseudomonas putida with a combination of Vetiver grass were performed in the laboratory. Investigations were conducted for 14 days and included the observation of changes in the soil pH and the mobilization of microorganism cells through an electrical gradient of 50 V/m under low pH. Based on the results obtained, this study has successfully proven that the pH of soil increases after going through electrokinetic bioremediation (EK-Bio). The treatment using Bacillus sphaericus increases the pH from 2.95 up to 4.80, followed by Bacillus subtilis with a value of 4.66. Based on the overall performance, Bacillus sphaericus show the highest number of bacterial cells in acidic soil with a value of 6.6 × 102 cfu/g, followed by Bacillus subtilis with a value of 5.7 × 102 cfu/g. In conclusion, Bacillus sphaericus and Bacillus subtilis show high survivability and is suitable to be used in the remediation of acidic soil.

  1. Improving clarity and stability of skim milk powder dispersions by dissociation of casein micelles at pH 11.0 and acidification with citric acid.

    PubMed

    Pan, Kang; Zhong, Qixin

    2013-09-25

    Casein micelles in milk cause turbidity and have poor stability at acidic conditions. In this study, skim milk powder dispersions were alkalized to pH 10.0 or 11.0, corresponding to reduced particle mass. In the following acidification with hydrochloric or citric acid, the re-formation of casein particles was observed. The combination of treatment at pH 11.0 and acidification with citric acid resulted in dispersions with the lowest turbidity and smallest particles, which enabled translucent dispersions at pH 5.5-7.0, corresponding to discrete nanoparticles. The concentration of ionic calcium was lower when acidified with citric acid than hydrochloric acid, corresponding to smaller particles with less negative zeta potential. The pH 11.0 treatment followed by acidification with citric acid also resulted in smaller particles than the simple chelating effects (directly implementing sodium citrate). The produced casein nanoparticles with reduced dimensions can be used for beverage and other novel applications.

  2. A residue in the TRPM2 channel outer pore is crucial in determining species-dependent sensitivity to extracellular acidic pH.

    PubMed

    Zou, Jie; Yang, Wei; Beech, David J; Jiang, Lin-Hua

    2011-08-01

    Acidic pH is an important parameter regulating ion channel activity and its biological function. This study investigated inhibition of the hTRPM2 channels by extracellular acidic pH and compared the sensitivity of human (h) and mouse (m) TRPM2 channel to such an inhibition. The initial inhibition of hTRPM2 channel currents was substantially reversible, but the reversibility progressively diminished as the exposure to acidic pH was prolonged and it was essentially lost in the steady state, suggesting that extracellular acidic pH induces initial reversible inhibition and subsequent irreversible inactivation. Like the hTRPM2 channel, the mTRPM2 channel was sensitive to inhibition by pH 4.0-5.5, but the kinetics was significantly slower. Moreover, in contrast to the complete inhibition of the hTRPM2 channel, the mTRPM2 channel was insensitive to pH 6.0. Replacement of residue Gln(992) in the outer pore with the equivalent residue His(995) in the hTRPM2 channel resulted in a mutant mTRPM2 channel with the pH sensitivity and kinetics of inhibition of the wild-type hTRPM2 channel. Conversely, the reciprocal mutation H995Q in the hTRPM2 channel dramatically slowed down the kinetics of inhibition. Swapping other residues in the pore region failed to produce such opposing effects. Taken together, our results suggest a crucial role of residue His(995)/Gln(992) in the outer pore of TRPM2 channels in determining species-dependent effects of extracellular acidic pH.

  3. Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression.

    PubMed

    Yúfera, Manuel; Moyano, Francisco J; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo

    2012-01-01

    Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.

  4. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor.

    PubMed

    Vieira, Bárbara F; Couto, Pâmela T; Sancinetti, Giselle P; Klein, Bernhard; van Zyl, Dirk; Rodriguez, Renata P

    2016-08-23

    The successful use of anaerobic reactors for bioremediation of acid mine drainage has been shown in systems with neutral pH. However, the choice of an efficient and suitable process for such wastewater must consider the capability of operating at acidic pH and in the presence of metals. This work studies the performance of an anaerobic batch reactor, under conditions of varying initial pH for its efficiencies in sulfate removal and metal precipitation from synthetic acid mine drainage. The chemical oxygen demand/sulfate (COD/SO4(2-)) ratio used was 1.00, with ethanol chosen as the only energy and carbon source. The initial pH of the synthetic drainage was progressively set from 7.0 to 4.0 to make it as close as possible to that of real acid mine drainage. Metals were also added starting with iron, zinc, and finally copper. The effectiveness of sulfate and COD removal from the synthetic acid mine drainage increased as the initial pH was reduced. The sulfate removal increased from 38.5 ± 3.7% to 52.2 ± 3%, while the removal of organic matter started at 91.7 ± 2.4% and ended at 99 ± 1%. These results indicate that the sulfate reducing bacteria (SRB) community adapted to lower pH values. The metal removal observed was 88 ± 7% for iron, 98.0 ± 0.5% for zinc and 99 ± 1% for copper. At this stage, an increase in the sulfate removal was observed, which reaches up to 82.2 ± 5.8%. The kinetic parameters for sulfate removal were 0.22 ± 0.04 h(-1) with Fe, 0.26 ± 0.04 h(-1) with Fe and Zn and 0.44 ± 0.04 h(-1) with Fe, Zn, and Cu.

  5. HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli.

    PubMed

    Bi, Hongkai; Sun, Lianle; Fukamachi, Toshihiko; Saito, Hiromi; Kobayashi, Hiroshi

    2009-05-01

    The major histone-like Escherichia coli protein, HU, is composed of alpha and beta subunits respectively encoded by hupA and hupB in Escherichia coli. A mutant deficient in both hupA and hupB grew at a slightly slower rate than the wild type at pH 7.5. Growth of the mutant diminished with a decrease in pH, and no growth was observed at pH 4.6. Mutants of either hupA or hupB grew at all pH levels tested. The arginine-dependent survival at pH 2.5 was diminished approximately 60-fold by the deletion of both hupA and hupB, whereas the survival was slightly affected by the deletion of either hupA or hupB. The mRNA levels of adiA and adiC, which respectively encode arginine decarboxylase and arginine/agmatine antiporter, were low in the mutant deficient in both hupA and hupB. The deletion of both hupA and hupB had little effect on survival at pH 2.5 in the presence of glutamate or lysine, and expression of the genes for glutamate and lysine decarboxylases was not impaired by the deletion of the HU genes. These results suggest that HU regulates expression of the specific set of genes required for growth and survival in acidic environments.

  6. Copper release kinetics from a long-term contaminated acid soil using a stirred flow chamber: effect of ionic strength and pH.

    PubMed

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Garrido-Rodríguez, Beatriz; Peña Rodríguez, Susana; Arias-Estévez, Manuel

    2012-02-01

    The effect of pH and ionic strength on copper release in a long-term Cu-polluted soil was studied using a stirred flow chamber. The presence of Ca(2+) and Na(+) was also evaluated. More copper was released as the ionic strength increased, and it was significantly higher in the presence of Ca(2+) than in the presence of Na(+). The maximum amount of Cu that could be released under experimental conditions increased logarithmically as the ionic strength increased, and the release rate parameters were not significantly correlated with ionic strength values. The maximum amount of Cu that could be released was similar for solutions with pH values between 5.5 and 8.5. For solutions with a pH value below 4.5, the amount of Cu released increased exponentially as the pH decreased. The release rate parameters and Cu release pattern were affected by pH, especially for more acidic solutions (pH values of 2.5 and 3.5).

  7. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    PubMed

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  8. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.

    PubMed

    Yang, Hui; Hu, Yuanan; Cheng, Hefa

    2016-10-01

    Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm(2)) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the "loosely bound" water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a "coating layer" on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream.

  9. pH distributions in spontaneous and isotransplanted rat tumours.

    PubMed Central

    Kallinowski, F.; Vaupel, P.

    1988-01-01

    Spontaneous mammary tumours of the rat with various degrees of malignancy exhibit similar tissue pH distributions. The mean pH (+/- s.d.) of dysplasia is 7.05 +/- 0.20. In benign tumours the mean pH is 6.95 +/- 0.19 and in malignant tumours it is 6.94 +/- 0.19. In contrast, tumours with the same degree of malignancy but different histologies show different pH distributions. Benign tumours with a higher percentage of fibrous tissue exhibit less acidic pH values than those with larger portions of epithelial cells (delta pH = 0.38 pH units). The pH distribution in the benign tumours is independent of the tumour wet weight up to stages of very advanced growth. In the malignant tumours, a trend towards more acidic pH values is observed as the tumour mass enlarges. However, in tissue areas within a malignant tumour with gross, long-established necrosis the pH distribution is shifted towards more alkaline pH values. The pH distributions in spontaneous rat tumours are not significantly different from those obtained in isotransplanted Yoshida sarcomas (6.87 +/- 0.21). In the Yoshida sarcomas, mean pH values do not correlate with tumour size. However, a pH gradient from the rim to the centre of the tumours is found which coincides with the development of small, disseminated necroses in the tumour centre. It is concluded that pathology-related variations of tumour pH may be more important than the mode of tumour origin or the degree of malignancy. PMID:3179183

  10. Non-two-state thermal denaturation of ferricytochrome c at neutral and slightly acidic pH values.

    PubMed

    Varhač, Rastislav; Sedláková, Dagmar; Stupák, Marek; Sedlák, Erik

    2015-01-01

    Thermal denaturation of ferricytochrome c (cyt c) has been methodically studied by absorbance, fluorescence, circular dichroism spectroscopy, viscosimetry and differential scanning calorimetry in pH range from pH 3.5 to 7.5. Thermal transitions have been monitored by intrinsic local probes of heme region such as absorbance at Soret, 620nm and 695nm bands and circular dichroism signals at 417nm. Global conformational changes were analyzed by circular dichroism signal at 222nm, fluorescence of the single tryptophan, reduced viscosity and differential scanning calorimetry. We show that cyt c thermal denaturation above pH ~5 can be described by an apparent two-step transition in which the heme iron stays in a low-spin state. The thermal denaturations of cyt c below pH ~5 proceed in one step to an unfolded highly compact form with a high-spin state of the heme iron. Cyt c conformational plasticity is discussed in regard to its physiological functions.

  11. A unique F-type H⁺-ATPase from Streptococcus mutans: an active H⁺ pump at acidic pH.

    PubMed

    Sasaki, Yuka; Nogami, Eri; Maeda, Masatomo; Nakanishi-Matsui, Mayumi; Iwamoto-Kihara, Atsuko

    2014-01-10

    We have shown previously that the Streptococcus mutans F-type H(+)-ATPase (F(O)F(1)) c subunit gene could complement Escherichia coli defective in the corresponding gene, particularly at acidic pH (Araki et al., (2013) [14]). In this study, the entire S. mutans F(O)F(1) was functionally assembled in the E. coli plasma membrane (SF(O)F(1)). Membrane SF(O)F(1) ATPase showed optimum activity at pH 7, essentially the same as that of the S. mutans, although the activity of E. coli F(O)F(1) (EF(O)F(1)) was optimum at pH≥9. The membranes showed detectable ATP-dependent H(+)-translocation at pH 5.5-6.5, but not at neutral conditions (pH≥7), consistent with the role of S. mutans F(O)F(1) to pump H(+) out of the acidic cytoplasm. A hybrid F(O)F(1), consisting of membrane-integrated F(O) and -peripheral F(1) sectors from S. mutans and E. coli (SF(O)EF(1)), respectively, essentially showed the same pH profile as that of EF(O)F(1) ATPase. However, ATP-driven H(+)-transport was similar to that by SF(O)F(1), with activity at acidic pH. Replacement of the conserved c subunit Glu53 in SF(O)F(1) abolished H(+)-transport at pH 6 or 7, suggesting its role in H(+) transport. Mutations in the SF(O)F(1) c subunit, Ser17Ala or Glu20Ile, changed the pH dependency of H(+)-transport, and the F(O) could transport H(+) at pH 7, as the membranes with EF(O)F(1). Ser17, Glu20, and their vicinity were suggested to be involved in H(+)-transport in S. mutans at acidic pH.

  12. The effect of degradation on κ-carrageenan/locust bean gum/konjac glucomannan gels at acidic pH.

    PubMed

    Yang, Kun; Wang, Zheng; Nakajima, Tetsuya; Nishinari, Katsuyoshi; Brenner, Tom

    2013-10-15

    The feasibility of textural and rheological modification of gels containing κ-carrageenan (KC) and locust bean gum (LBG) by addition of konjac glucomannan (KGM) was investigated. Special attention was paid to the effect of polysaccharide degradation during heating at acidic pH. The general effect of polysaccharide degradation was to decrease the Young's modulus, while the fracture strain in extension was scarcely affected unless the degradation was very severe. Differential scanning calorimetry showed that the melting peak corresponding to dissociation of KC-KGM bonds decreased faster than the melting peak of KC-only bonds with increasing degree of polysaccharide degradation. The implication is that as degradation proceeds, fewer KGM molecules can interact with KC to form elastic bonds, and the excess of KGM which reinforces the existing elastic network and increases the fracture strain actually increases. For this reason, the fracture strain remains nearly unchanged with increasing degradation levels. A decrease in fracture strain is thus observed only at very severe degradations, where KC no longer forms a self-supporting gel by itself.

  13. Growth Limits of Listeria monocytogenes as a Function of Temperature, pH, NaCl, and Lactic Acid

    PubMed Central

    Tienungoon, S.; Ratkowsky, D. A.; McMeekin, T. A.; Ross, T.

    2000-01-01

    Models describing the limits of growth of pathogens under multiple constraints will aid management of the safety of foods which are sporadically contaminated with pathogens and for which subsequent growth of the pathogen would significantly increase the risk of food-borne illness. We modeled the effects of temperature, water activity, pH, and lactic acid levels on the growth of two strains of Listeria monocytogenes in tryptone soya yeast extract broth. The results could be divided unambiguously into “growth is possible” or “growth is not possible” classes. We observed minor differences in growth characteristics of the two L. monocytogenes strains. The data follow a binomial probability distribution and may be modeled using logistic regression. The model used is derived from a growth rate model in a manner similar to that described in a previously published work (K. A. Presser, T. Ross, and D. A. Ratkowsky, Appl. Environ. Microbiol. 64:1773–1779, 1998). We used “nonlinear logistic regression” to estimate the model parameters and developed a relatively simple model that describes our experimental data well. The fitted equations also described well the growth limits of all strains of L. monocytogenes reported in the literature, except at temperatures beyond the limits of the experimental data used to develop the model (3 to 35°C). The models developed will improve the rigor of microbial food safety risk assessment and provide quantitative data in a concise form for the development of safer food products and processes. PMID:11055952

  14. Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.

    PubMed

    Adra, Areej; Morin, Guillaume; Ona-Nguema, Georges; Menguy, Nicolas; Maillot, Fabien; Casiot, Corinne; Bruneel, Odile; Lebrun, Sophie; Juillot, Farid; Brest, Jessica

    2013-11-19

    Ferrihydrite (Fh) is a nanocrystalline ferric oxyhydroxide involved in the retention of pollutants in natural systems and in water-treatment processes. The status and properties of major chemical impurities in natural Fh is however still scarcely documented. Here we investigated the structure of aluminum-rich Fh, and their role in arsenic scavenging in river-bed sediments from a circumneutral river (pH 6-7) impacted by an arsenic-rich acid mine drainage (AMD). Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Fe K-edge shows that Fh is the predominant mineral phase forming after neutralization of the AMD, in association with minor amount of schwertmannite transported from the AMD. TEM-EDXS elemental mapping and SEM-EDXS analyses combined with EXAFS analysis indicates that Al(3+) substitutes for Fe(3+) ions into the Fh structure in the natural sediment samples, with local aluminum concentration within the 25-30 ± 10 mol %Al range. Synthetic aluminous Fh prepared in the present study are found to be less Al-substituted (14-20 ± 5 mol %Al). Finally, EXAFS analysis at the arsenic K-edge indicates that As(V) form similar inner-sphere surface complexes on the natural and synthetic Al-substituted Fh studied. Our results provide direct evidence for the scavenging of arsenic by natural Al-Fh, which emphasize the possible implication of such material for scavenging pollutants in natural or engineered systems.

  15. Aggregation and stability of Fe2O3:Influence of humic acid concentration, Fe2O3 concentration and pH

    NASA Astrophysics Data System (ADS)

    Ahmad, Nur Suraya; Radiman, Shahidan; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The scenario of released nanoparticles from consumer product into the environment especially natural waters are increased concern nowadays. Assessing their aggregation and stability under environmental conditions are important to determining their fate and behavior in natural waters. The aggregation behavior of Fe2O3 nanoparticles (NPs) was investigated at variable concentration of humic acid, Fe2O3 NPs concentration and pH variation in solution using dynamic light scattering to measure their z-average hydrodynamic diameter and zeta potential value. The stability are then evaluated by assessing their aggregation and disaggregation. Increasing humic acid concentration induced the disaggregation of Fe2O3 NPs. At a lower concentrations of Fe2O3 (< 30 mg/L), aggregate formed and disaggregation take place with increasing Fe2O3 concentration (50, 100, 150, 200 mg/L). The maximum aggregation was found in pH 4 at a constant concentration of humic acid of 100 mg/L and concentration of Fe2O3 (100 mg/L). High pH (>5) of solution induced disaggregation of suspensions and make it stable in the solution. TEM imaging have confirmed that Fe2O3 NPs aggregate and disaggregate in the presence of humic acid. Our study result shows that aggregation and stability of Fe2O3 NPs were depends on concentration of humic acid, concentration of NPs itself and the pH of the solutions.

  16. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells.

    PubMed

    Glomski, Ian J; Gedde, Margaret M; Tsang, Albert W; Swanson, Joel A; Portnoy, Daniel A

    2002-03-18

    Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. The pore-forming cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates bacterial escape from vesicles and is approximately 10-fold more active at an acidic than neutral pH. By swapping dissimilar residues from a pH-insensitive orthologue, perfringolysin O (PFO), we identified leucine 461 as unique to pathogenic Listeria and responsible for the acidic pH optimum of LLO. Conversion of leucine 461 to the threonine present in PFO increased the hemolytic activity of LLO almost 10-fold at a neutral pH. L. monocytogenes synthesizing LLO L461T, expressed from its endogenous site on the bacterial chromosome, resulted in a 100-fold virulence defect in the mouse listeriosis model. These bacteria escaped from acidic phagosomes and initially grew normally in cells and spread cell to cell, but prematurely permeabilized the host membrane and killed the cell. These data show that the acidic pH optimum of LLO results from an adaptive mutation that acts to limit cytolytic activity to acidic vesicles and prevent damage in the host cytosol, a strategy also used by host cells to compartmentalize lysosomal hydrolases.

  17. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.

    PubMed

    Jiménez-Rodríguez, A M; Durán-Barrantes, M M; Borja, R; Sánchez, E; Colmenarejo, M F; Raposo, F

    2009-06-15

    Four alternatives (runs A, B, C and D) for heavy metals removal (Fe, Cu, Zn and Al) from acid mine drainage water (AMDW) produced in the mining areas of the Huelva Province, Spain, were evaluated. In run A, the anaerobic effluent from the treatment of acid mine drainage water (cheese whey added as a source of carbon) was mixed with the raw AMDW. The pH increased to 3.5 with the addition of KOH. In run B, biogas with around 30% of hydrogen sulphide obtained in the anaerobic reactor was sparged to the mixture obtained in run A, but in this case at a pH of 5.5. In run C, the pH of the raw AMDW was increased to 3.5 by the addition of KOH solution. Finally, in run D, the pH of the raw AMDW was increased to 5.5 by the addition of KOH solution and further biogas was sparged under the same conditions as in run A. It was found that heavy metal removal was a function of pH. At a pH of 3.5 most of the iron was removed while Zn and Cu were partially removed. At a pH of 5.5 the removal of all metals increased considerably. The best results were obtained in run B where the percentages of removal of Fe, Cu, Zn and Al achieved values of 91.3, 96.1, 79.0 and 99.0%, respectively. According to the experimental results obtained tentative schemas of the flow diagram of the processes were proposed.

  18. Interaction of Pb2+, PbMe22+ and PbPh22+ with 3-(phenyl)-2-sulfanylpropenoic acid: a coordinative and toxicological approach.

    PubMed

    Félix Camiña, M; Casas, José S; Victoria Castaño, M; Couce, María D; Gato, Angeles; Herbello-Hermelo, Paloma; Sánchez, Agustín; Sordo, José; Dolores Torres, M

    2010-05-01

    We investigated the reaction of Pb(2+), PbMe(2)(2+) and PbPh(2)(2+) with 3-(phenyl)-2-sulfanylpropenoic acid (H(2)pspa) to give the complexes [Pb(pspa)], [PbMe(2)(pspa)], [PbPh(2)(pspa)], [HQ](2)[Pb(pspa)(2)] and [HQ[(2)[PbPh(2)(pspa)(2)] (HQ=diisopropylammonium), which were characterized by IR and NMR ((1)H, (13)C and (207)Pb) spectroscopy and by fast atom bombardment (FAB) spectrometry. The structures of [PbMe(2)(pspa)], [PbPh(2)(pspa)], [PbPh(2)(pspa)(dmso)].dmso and [HQ[(2)[PbPh(2)(pspa)(2)] are interesting examples of unexplored Pb coordination kernels and supramolecular association. Pig renal proximal tubule LLC-PK1 culture cells were used to determine in vitro the effect of the pretreatment with H(2)pspa (alone or combined with vitamin B(6)) and [HQ](2)[Zn(pspa)(2)] on the cytotoxicity of PbMe(2)(2+) and PbPh(2)(2+) by comparing the results with those of meso-2,3-dimercaptosuccinic acid (dmsa). The results show that the cell viability was scarcely affected by these agents. The ability of these reagents to decorporate lead was investigated in vivo by analysing the lead levels in the liver, kidney, brain and blood. In the case of the dimethyl derivative, and under certain protocols, undesirable effects such as an increase in brain and liver lead levels were detected. These increases were not detected when the diphenyl derivative was assayed but in this case a positive effect was not identified either. The blood lead levels also increased in the case of the dimethyl derivative and the activity of delta-ALAD was significantly recovered upon treatment with vitamin B(6) or H(2)pspa; neither the blood lead levels nor the delta-ALAD activity was modified in the case of the diphenyl derivative.

  19. Bilayers at High pH in the Fatty Acid Soap Systems and the Applications for the Formation of Foams and Emulsions.

    PubMed

    Xu, Wenlong; Zhang, Heng; Zhong, Yingping; Jiang, Liwen; Xu, Mengxin; Zhu, Xionglu; Hao, Jingcheng

    2015-08-20

    In our previous work, we reported bilayers at high pH in the stearic acid/CsOH/H2O system, which was against the traditional viewpoint that fatty acid (FA) bilayers must be formed at the pKa of the fatty acid. Herein, the microstructures at high pH of several fatty acid soap systems were investigated systematically. We found that palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O, and stearic acid/CsOH/H2O systems can form bilayers at high pH. The bilayer structure was demonstrated by cryogenic transmission electron microscopy (cryo-TEM) and deuterium nuclear magnetic resonance ((2)H NMR), and molecular dynamics simulation was used to confirm the formation of bilayers. The influence of fatty acids with different chain lengths (n = 10, 12, 14, 16, and 18) and different counterions including Li(+), Na(+), K(+), Cs(+), (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) on the formation of bilayers was discussed. The stability of foam and emulsification properties were compared between bilayers and micelles, drawing the conclusion that bilayer structures possess a much stronger ability to foam and stronger emulsification properties than micelles do.

  20. The logistic curve as a tool to describe the daily ruminal pH pattern and its link with milk fatty acids.

    PubMed

    Colman, E; Tas, B M; Waegeman, W; De Baets, B; Fievez, V

    2012-10-01

    Daily ruminal pH variation can be summarized by a cumulative logistic curve based on the amount of time below multiple pH points and characterized by 2 parameters (β(0) and β(1)). Moreover, rumen pH variation affects the rumen microbiome as well as the biohydrogenation pathways resulting in a modified secretion of milk fatty acids (FA). The aims of this study were to assess the shifts in milk FA due to rumen pH changes and to estimate the relationship between milk FA and the 2 parameters of the logistic curve. The data consisted of milk samples of 2 experiments. In experiment 1, 3 cows were subjected to 5 treatments in which the type and amount of concentrate were changed during 33 d: (1) control diet 1, (2) stepwise replacement of a standard concentrate (CONC) by a CONC rich in rapidly fermentable carbohydrates, (3) increase in the total amount of CONC, (4) treatment with a buffer solution, and (5) control diet 2. A 3×3 Latin square design with 3 cows was used in the second experiment. During the first 14 d of each period, the cows received a control diet with a standard CONC, whereas in the last 7 d the standard CONC was replaced step-by-step by a CONC rich in rapidly fermentable carbohydrates and the amount of CONC was increased. During each period, a different buffer treatment was added to the diet. Milk FA and pH reacted similarly in both experiments: decreasing proportions of iso FA and increasing proportions of odd-chain FA were observed. However, an abrupt change to a 76% CONC diet as for one cow of experiment 1 led to almost a 10-fold increase in C18:1 trans-10 (0.79 vs. 6.75 g/100g of FA). In experiment 2, the stepwise approach of adding CONC and the continuous supplementation of buffer led to minimal increases in C18:1 trans-10 and decreases in rumen pH compared with the diet with standard CONC only. Fatty acid proportions were influenced by the level of rumen pH (β(1)) or the rumen pH variation (β(0)), or both. High proportions of C18:1 trans-10

  1. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  2. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.

  3. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    PubMed Central

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  4. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    PubMed

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard.

  5. Small-angle X-ray scattering of BAMLET at pH 12: a complex of α-lactalbumin and oleic acid.

    PubMed

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Knott, Robert B; Church, W Bret

    2014-07-01

    BAMLET (Bovine Alpha-lactalbumin Made LEthal to Tumors) is a member of the family of the HAMLET-like complexes, a novel class of protein-based anti-cancer complexes that incorporate oleic acid and deliver it to cancer cells. Small angle X-ray scattering (SAXS) was performed on the complex at pH 12, examining the high pH structure as a function of oleic acid added. The SAXS data for BAMLET species prepared with a range of oleic acid concentrations indicate extended, irregular, partially unfolded protein conformations that vary with the oleic acid concentration. Increases in oleic acid concentration correlate with increasing radius of gyration without an increase in maximum particle dimension, indicating decreasing protein density. The models for the highest oleic acid content BAMLET indicate an unusual coiled elongated structure that contrasts with apo-α-lactalbumin at pH 12, which is an elongated globular molecule, suggesting that oleic acid inhibits the folding or collapse of the protein component of BAMLET to the globular form. Circular dichroism of BAMLET and apo-α-lactalbumin was performed and the results suggest that α-lactalbumin and BAMLET unfold in a continuum of increasing degree of unfolded states. Taken together, these results support a model in which BAMLET retains oleic acid by non-specific association in the core of partially unfolded protein, and represent a new type of lipoprotein structure.

  6. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.

    PubMed

    Casey, Elizabeth; Sedlak, Miroslav; Ho, Nancy W Y; Mosier, Nathan S

    2010-06-01

    A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L(-1), representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.

  7. Effects of pH, dissolved oxygen, and ionic strength on the survival of Escherichia coli O157:H7 in organic acid solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of Escherichia coli O157:H7 to survive in acidified vegetable products is of concern because of previously documented outbreaks associated with fruit juices. A study was conducted to determine the survival of E. coli O157:H7 in organic acids at pH values typical of acidified vegetable pr...

  8. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    EPA Science Inventory

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  9. The Effect of Level of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    Within high school chemistry the topic of acids, bases, and pH is particularly challenging because robust understanding of the topic depends heavily on the student possessing deep concepts of atoms, molecules, ions, and chemical reactions. Since knowledge is acquired and stored in a dynamic structure, it was investigated in this study how…

  10. [Measurement of intracellular pH].

    PubMed

    Hanaoka, K; Imai, M; Yoshitomi, K

    1992-09-01

    Since various cellular processes depend on changes in pH, the regulation of intracellular pH (pHi) is important both for the individual cell and for the organism. The mechanisms of the regulation of pHi can be investigated by monitoring pHi. In this report, we discuss the four major techniques available for measuring pHi, which are 1) Distribution of weak acids and bases, 2) pH-sensitive microelectrodes, 3) pH-sensitive dyes, and 4) Nuclear magnetic resonance. Among four techniques, the advantage of the microelectrode approach is that it can monitor membrane potential at the same time and be applied to a single cell. The dye technique is a relative new developing technique, which has lots of advantages. It is easy to use, and is capable of monitoring rapid pHi changes, and being applied to a smaller cell, or a single cell.

  11. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the

  12. Barrett's oesophagus: pH profile.

    PubMed

    Gillen, P; Keeling, P; Byrne, P J; Hennessy, T P

    1987-09-01

    Twenty-four patients with a columnar-lined (Barrett's) oesophagus underwent oesophageal manometry and 24 h ambulatory oesophageal pH monitoring. The results were compared with 25 patients with oesophagitis studied in the same fashion. No significant difference in lower oesophageal sphincter pressure was demonstrated between the two groups. The Barrett's patients demonstrated significantly greater acid exposure in the distal oesophagus than oesophagitis patients. Clearance or refluxed acid was poorer in Barrett's patients than oesophagitis patients. Twelve of the Barrett's patients presented with complications of the condition, i.e. ulceration or stricture. No significant difference in acid exposure was demonstrated between Barrett's patients with or without complications. These results suggest that patients with columnar-lined (Barrett's) oesophagus have greater acid exposure than patients with oesophagitis. The development of complications of a Barrett's oesophagus may not be dependent on acid reflux alone.

  13. pH measurement of low-conductivity waters

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, L.N.

    1987-01-01

    pH is an important and commonly measured parameter of precipitation and other natural waters. The various sources of errors in pH measurement were analyzed and procedures for improving the accuracy and precision of pH measurements in natural waters with conductivities of < 100 uS/cm at 25 C are suggested. Detailed procedures are given for the preparation of dilute sulfuric acid standards to evaluate the performance of pH electrodes in low conductivity waters. A daily check of the pH of dilute sulfuric acid standards and deionized water saturated with a gas mixture of low carbon dioxide at partial pressure (air) prior to the measurement of the pH of low conductivity waters is suggested. (Author 's abstract)

  14. Evaluation of buffers toxicity in tobacco cells: Homopiperazine-1,4-bis (2-ethanesulfonic acid) is a suitable buffer for plant cells studies at low pH.

    PubMed

    Borgo, Lucélia

    2017-03-19

    Low pH is an important environmental stressor of plant root cells. Understanding the mechanisms of stress and tolerance to acidity is critical; however, there is no widely accepted pH buffer for studies of plant cells at low pH. Such a buffer might also benefit studies of Al toxicity, in which buffering at low pH is also important. The challenge is to find a buffer with minimal cellular effects. We examined the cytotoxicity and possible metabolic disturbances of four buffers that have adequate pKa values and potential use for studies in the pH range of 4.0-5.0. These were homopipes (homopiperazine-1,4-bis (2-ethanesulfonic acid); pKa1 4.4), 3,3-dimethylglutaric acid (pKa1 3.73), β-alanine (pKa1 3.70) and potassium biphthalate (pKa1 2.95; pKa2 5.41). First, tobacco BY-2 cells were grown in a rich medium containing 10 mM of each buffer or MES (2-(N-morpholino) ethanesulfonic acid) as a control, with the pH initially adjusted to 5.7. β-alanine was clearly toxic and dimethylgluturate and biphthalate were found to be cytostatic, in which no culture growth occurred but cell viability was either unaffected or decreased only after 5 days. Only homopipes allowed normal culture growth and cell viability. Homopipes (10 mM) was then tested in cell cultures with an initial pH of 4.3 ± 0.17 in minimal medium to examine whether its undissociated species (H2A) displayed any cellular effects and no cytotoxic effects were observed. It is possible to conclude that among tested buffers, homopipes is the most suitable for studies at low pH, and may be especially useful for aluminum toxicity experiments.

  15. Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489.

    PubMed Central

    Liu, S Y; Wiegel, J; Gherardini, F C

    1996-01-01

    An unusual xylose isomerase produced by Thermoanaerobacterium strain JW/SL-YS 489 was purified 28-fold to gel electrophoretic homogeneity, and the biochemical properties were determined. Its pH optimum distinguishes this enzyme from all other previously described xylose isomerases. The purified enzyme had maximal activity at pH 6.4 (60 degrees C) or pH 6.8 (80 degrees C) in a 30-min assay, an isoelectric point at 4.7, and an estimated native molecular mass of 200 kDa, with four identical subunits of 50 kDa. Like other xylose isomerases, this enzyme required Mn2+, Co2+, or Mg2+ for thermal stability (stable for 1 h at 82 degrees C in the absence of substrate) and isomerase activity, and it preferred xylose as a substrate. The gene encoding the xylose isomerase was cloned and expressed in Escherichia coli, and the complete nucleotide sequence was determined. Analysis of the sequence revealed an open reading frame of 1,317 bp that encoded a protein of 439 amino acid residues with a calculated molecular mass of 50 kDa. The biochemical properties of the cloned enzyme were the same as those of the native enzyme. Comparison of the deduced amino acid sequence with sequences of other xylose isomerases in the database showed that the enzyme had 98% homology with a xylose isomerase from a closely related bacterium, Thermoanaerobacterium saccharolyticum B6A-RI. In fact, only seven amino acid differences were detected between the two sequences, and the biochemical properties of the two enzymes, except for the pH optimum, are quite similar. Both enzymes had a temperature optimum at 80 degrees C, very similar isoelectric points (pH 4.7 for strain JW/SL-YS 489 and pH 4.8 for T. saccharolyticum B6A-RI), and slightly different thermostabilities (stable for 1 h at 80 and 85 degrees C, respectively). The obvious difference was the pH optimum (6.4 to 6.8 and 7.0 to 7.5, respectively). The fact that the pH optimum of the enzyme from strain JW/SL-YS 489 was the property that differed

  16. The effect of low pH on breast cancer resistance protein (ABCG2)-mediated transport of methotrexate, 7-hydroxymethotrexate, methotrexate diglutamate, folic acid, mitoxantrone, topotecan, and resveratrol in in vitro drug transport models.

    PubMed

    Breedveld, Pauline; Pluim, Dick; Cipriani, Greta; Dahlhaus, Femke; van Eijndhoven, Maria A J; de Wolf, Cornelia J F; Kuil, Annemieke; Beijnen, Jos H; Scheffer, George L; Jansen, Gerrit; Borst, Piet; Schellens, Jan H M

    2007-01-01

    Some cellular uptake systems for (anti)folates function optimally at acidic pH. We have tested whether this also applies to efflux from cells by breast cancer resistance protein (BCRP; ABCG2), which has been reported to transport folic acid, methotrexate, and methotrexate di- and triglutamate at physiological pH. Using Spodoptera frugiperda-BCRP membrane vesicles, we showed that the ATP-dependent vesicular transport of 1 muM methotrexate by BCRP is 5-fold higher at pH 5.5 than at physiological pH. The transport of methotrexate was saturable at pH 5.5, with apparent Km and Vmax values of 1.3 +/- 0.2 mM and 44 +/- 2.5 nmol/mg of protein/min, respectively, but was linear with drug concentration at pH 7.3 up to 6 mM methotrexate. In contrast to recent reports, we did not detect transport of methotrexate diglutamate at physiological pH, but we did find transport at pH 5.5. We also found that 7-hydroxy-methotrexate, the major metabolite of methotrexate, is transported by BCRP both at physiological pH and (more efficiently) at low pH. The pH effect was also observed in intact BCRP-overexpressing cells: we found a 3-fold higher level of resistance to both methotrexate and the prototypical BCRP substrate mitoxantrone at pH 6.5 as at physiological pH. Furthermore, with MDCKII-BCRP monolayers, we found that resveratrol, which is a neutral compound at pH < or = 7.4, is efficiently transported by BCRP at pH 6.0, whereas we did not detect active transport at pH 7.4. We conclude that BCRP transports substrate drugs more efficiently at low pH, independent of the dissociation status of the substrate.

  17. Modulation of Phagosomal pH by Candida albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport

    PubMed Central

    Vylkova, Slavena; Lorenz, Michael C.

    2014-01-01

    Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. PMID:24626429

  18. Quantum dot photoluminescence lifetime-based pH nanosensor.

    PubMed

    Ruedas-Rama, Maria J; Orte, Angel; Hall, Elizabeth A H; Alvarez-Pez, Jose M; Talavera, Eva M

    2011-03-14

    The first CdSe/ZnS quantum dot photoluminescence lifetime-based pH nanosensor has been developed. The average lifetime of mercaptopropionic acid-capped QD nanosensors showed a linear response in the pH range of 5.2-6.9. These nanosensors have been satisfactorily applied for pH estimation in simulated intracellular media, with high sensitivity and high selectivity toward most of the intracellular components.

  19. Past and future seasonal variation in pH and metal concentrations in runoff from river basins on acid sulphate soils in Western Finland.

    PubMed

    Saarinen, Tuomas S; Kløve, Bjørn

    2012-01-01

    Drainage of acid sulphate soils (ASS) increases oxidation, leading to extensive leaching of acidity and metals to rivers (Al, Cd, Cr, Fe, Ni and Zn). This is often apparent during high runoff periods in spring and autumn after long dry periods with low groundwater levels and associated ASS oxidation. Regression models were used to study changes in these water quality variables according to various discharge scenarios. The knowledge of seasonal patterns of water quality variables in future is important for planning land use of the catchments in relation to WFD of European Union. The data showed that river water acidity (pH and metals) increased with discharge, with the correlation being strongest in low runoff periods in winter and summer and less clear in spring. With future climate change, river acidity can increase radically, especially during winters following extremely dry summers, and pH and metal peaks may occur even during winter.

  20. Propagated fixed-bed mixed-acid fermentation: Part I: Effect of volatile solid loading rate and agitation at high pH.

    PubMed

    Golub, Kristina W; Forrest, Andrea K; Mercy, Kevin L; Holtzapple, Mark T

    2011-11-01

    Countercurrent fermentation is a high performing process design for mixed-acid fermentation. However, there are high operating costs associated with moving solids, which is an integral component of this configuration. This study investigated the effect of volatile solid loading rate (VSLR) and agitation in propagated fixed-bed fermentation, a configuration which may be more commercially viable. To evaluate the role of agitation on fixed-bed configuration performance, continuous mixing was compared with periodic mixing. VSLR was also varied and not found to affect acid yields. However, increased VSLR and liquid retention time did result in higher conversions, productivity, acid concentrations, but lower selectivities. Agitation was demonstrated to be important for this fermentor configuration, the periodically-mixed fermentation had the lowest conversion and yields. Operating at a high pH (∼9) contributed to the high selectivity to acetic acid, which might be industrially desirable but at the cost of lower yield compared to a neutral pH.

  1. Functional photoacoustic microscopy of pH

    NASA Astrophysics Data System (ADS)

    Chatni, M. Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, imbalance of pH regulation may result from or result in serious illness. Even though the regulation system of pH is very robust, tissue pH can be altered in many diseases such as cancer, osteoporosis and diabetes mellitus. Traditional high-resolution optical imaging techniques, such as confocal microscopy, routinely image pH in cells and tissues using pH sensitive fluorescent dyes, which change their fluorescence properties with the surrounding pH. Since strong optical scattering in biological tissue blurs images at greater depths, high-resolution pH imaging is limited to penetration depths of 1mm. Here, we report photoacoustic microscopy (PAM) of commercially available pH-sensitive fluorescent dye in tissue phantoms. Using both opticalresolution photoacoustic microscopy (OR-PAM), and acoustic resolution photoacoustic microscopy (AR-PAM), we explored the possibility of recovering the pH values in tissue phantoms. In this paper, we demonstrate that PAM was capable of recovering pH values up to a depth of 2 mm, greater than possible with other forms of optical microscopy.

  2. Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6-10

    SciTech Connect

    Gordon, G.; Tachiyashiki, Satoshi )

    1991-03-01

    The reaction between free chlorine (HOCl/OCl{sup {minus}}) and chlorite ion (ClO{sub 2}{sup {minus}}) has been studied in the pH 6.4-10.0 region. The reaction proceeds through the Cl{sub 2}O{sub 2} intermediate followed by a direct reaction of the intermediate with hypochlorous acid to form chlorate ion. Time-concentration profiles were measured for each chlorine species, resulting in both total chlorine and redox balance. Negligibly small amounts of chlorine dioxide are formed above pH 7. Indirect evidence suggests that, in this pH region, the formation of any chlorine dioxide is primarily due to the presence of concentration gradients or because of the adventitious presence of catalytic metal ion impurities. Details of the overall reaction mechanism for the formation of chlorate ion are presented.

  3. The effect of linoleic acid on pH inside sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles in isooctane and on the enzymic activity of soybean lipoxygenase.

    PubMed

    Rodakiewicz-Nowak, J; Maślakiewicz, P; Haber, J

    1996-06-01

    The effective pH of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles (pHrm), containing buffers of different pH (pHst) and various amounts of linoleic acid, was studied within the range of compositions used to study the activity of soybean lipoxygenase in reverse micelles. Significant shifts of pHrm versus pHst were observed for the solutions of relatively higher pHst, dependent on linoleic acid and buffer concentrations. The effect diminished as pHst became closer to 7. When low-ionic-strength buffers were added to AOT solutions in isooctane, a significant buffering effect of linoleic acid in reverse micelles was observed. Solubilization of > 3 mM linoleic acid in micellar solutions containing 25 mM buffers gave the observed pHrm values almost independent of pHst. This effect diminished with the ionic strength of the buffering solution, but did not vanish even at 200 mM buffer. The observed effects result from the balance between ionization of linoleic acid and its partition between the water pool and the micellar interface. The enzymic activity of soybean lipoxygenase in the AOT reverse micellar solutions of the determined pHrm values was also studied. A significant reduction of the kinetics of the enzymic activity was observed, for all studied reverse micellar solutions. Changes of pHrm, caused by the presence of acidic substrate (linoleic acid) do not explain the observed reduction of activity directly through the effect on the enzyme. Due to unfavourable partition of the substrate between the microphases present in the systems, enhanced by reduction of pH at higher total concentrations of linoleic acid, the saturation of the enzyme with the substrate was not observed in the system and is difficult to attain experimentally in reverse micelles. A shift of the lipoxygenase activity/pHrm profile but negligible shift of the activity/pHst profile, with respect to aqueous buffer solutions, were observed. This indicates that either the information given

  4. Constant pH simulations of pH responsive polymers

    NASA Astrophysics Data System (ADS)

    Sharma, Arjun; Smith, J. D.; Walters, Keisha B.; Rick, Steven W.

    2016-12-01

    Polyacidic polymers can change structure over a narrow range of pH in a competition between the hydrophobic effect, which favors a compact state, and electrostatic repulsion, which favors an extended state. Constant pH molecular dynamics computer simulations of poly(methacrylic acid) reveal that there are two types of structural changes, one local and one global, which make up the overall response. The local structural response depends on the tacticity of the polymer and leads to different cooperative effects for polymers with different stereochemistries, demonstrating both positive and negative cooperativities.

  5. Resilience of sulfate-reducing granular sludge against temperature, pH, oxygen, nitrite, and free nitrous acid.

    PubMed

    Hao, Tianwei; Mackey, Hamish R; Guo, Gang; Liu, Rulong; Chen, Guanghao

    2016-10-01

    Sulfate-reducing granular sludge has recently been developed and characterized in detail as part of the development of the sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process. However, information regarding temperature of granules to environmental fluctuation is lacking, an aspect that is important in dealing with real wastewater. A comprehensive assessment of sulfate-reducing granular sludge performance under various environmental conditions was thus conducted in this study, including temperature, pH, oxygen, nitrite, and free nitrous acid (FNA) as possible encountering conditions in the removal of organics and/or nitrate. Specific chemical oxygen demand removal rate of the granules was determined to be reduced by 65 % when the temperature varied between 10-15 °C, reduced by 70 % when dissolved oxygen (DO) was 0.5 mg/L or greater, and at least, reduced by 75 % when nitrite was 30 mg N/L or above. Nevertheless, the sludge activity recovered by 82, 100, and 86 % from exposure to high oxygen and nitrite and low temperature levels, respectively. Combined inhibition of nitrite and FNA on the sludge is strong and complex, while FNA alone reduced cell viability from 60 to 40 % when its concentration increased to 2.3 mg N/L. The present study demonstrates that sulfate-reducing bacteria (SRB) granules possess high resilience against varying environmental conditions, showing the high application potential of sulfate-reducing granular sludge in dealing with brackish and saline industrial or domestic wastewaters.

  6. Synthesis of sulfonamide- and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH.

    PubMed

    Li, Xiaobao; Pennington, Justin; Stobaugh, John F; Schöneich, Christian

    2008-01-15

    Two new types of boronate affinity solid phases were synthesized and characterized. The materials were prepared by silylation of porous silica gel with monochlorosilane derivatives containing synthetic sulfonyl- and sulfonamide-substituted phenylboronic acids. The new solid phases were evaluated for boronate affinity chromatography with aryl and alkyl cis-diol compounds and were found to be suitable for the retention of cis-diols under acidic conditions. Significant correlations between the retention factor (K) and the pH of the mobile phase demonstrate that the binding of cis-diols to the solid phases is best rationalized by chelation. Based on the lower pKa, caused by the electron-withdrawing effects of the sulfonyl and sulfonamide groups, these media display an enhanced affinity for cis-diols as compared with unsubstituted phenylboronic acid. Using isocratic elution, a mixture of various biologically relevant l-tyrosines, l-DOPA, and several catecholamines were resolved with a mobile phase composed of 0.05M phosphate buffer (pH 5.5). Mono-, di-, and triphosphates of adenosine were also separated at pH 6.0. Hence, the new boronate solid phase offers efficient affinity separation and purification of cis-diol-containing molecules under rather mild pH conditions.

  7. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration.

  8. Modeling the dynamic volatile fatty acids profiles with pH and hydraulic retention time in an anaerobic baffled reactor during the startup period.

    PubMed

    Shi, En; Li, Jianzheng; Leu, Shao-Yuan; Antwi, Philip

    2016-12-01

    To predict the dynamic profiles in volatile fatty acids (VFAs) with pH and hydraulic retention time (HRT) during the startup of a 4-compartment ABR, a mathematical model was constructed by introducing pH and thermodynamic inhibition functions into the biochemical processes derived from the ADM1. The calibration of inhibition parameter for propionate uptake effectively improved the prediction accuracy of VFAs. The developed model could simulate the VFAs profiles very well no matter the observable change of pH or/and HRT. The simulation results indicated that both H2-producing acetogenesis and methanogenesis in the ABR would be inhibited with a pH less than 4.61, and the propionate oxidation could be thermodynamically restricted even with a neutral pH. A decreased HRT would enhanced the acidogenesis and H2-producing acetogenesis in the first 3 compartments, but no observable increase in effluent VFAs could be found due to the synchronously enhanced methanogenesis in the last compartment.

  9. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies

    PubMed Central

    Faes, Seraina; Uldry, Emilie; Planche, Anne; Santoro, Tania; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2016-01-01

    Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments. PMID:27852069

  10. The pH of Enceladus' ocean

    NASA Astrophysics Data System (ADS)

    Glein, Christopher R.; Baross, John A.; Waite, J. Hunter

    2015-08-01

    Enceladus' rocky core has been completely altered by past hydrothermal activity. The presence of native H2 in the plume would provide strong evidence for contemporary aqueous alteration that replenishes this source of energy for possible life. The high pH also suggests that the delivery of strong oxidants from the surface to the ocean has not been significant (otherwise, sulfuric acid would be produced), which would be consistent with geophysical models of episodic resurfacing activity on Enceladus. This paper represents an expansion of chemical oceanography to an "ocean planet" beyond Earth.

  11. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH.

  12. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    PubMed

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling.

  13. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.

    PubMed

    Ho, L; Ho, G

    2012-09-15

    High free ammonia released during anaerobic digestion of livestock wastes is widely known to inhibit methanogenic microorganisms and result in low methane production. This was encountered during our earlier thermophilic semi-continuously fed continuously-stirred tank reactor (CSTR) treatment of piggery wastewater. This study explored chemical and biological means to mitigate ammonia inhibition on thermophilic anaerobic treatment of piggery wastewater with the aim to increase organic volatile carbon reduction and methane production. A series of thermophilic anaerobic batch experiments were conducted on the digested piggery effluent to investigate the effects of pH reduction (pH 8.3 to 7.5, 7.0 and 6.5) and additions of biomass (10% v/v and 19% v/v anaerobic digested piggery biomass and aerobic-anaerobic digested municipal biomass), natural zeolite (10, 15 and 20 g/L) and humic acid (1, 5 and 10 g/L) on methane production at 55 °C for 9-11 days. Reduction of the wastewater pH from its initial pH of 8.3 to 6.5 produced the greatest stimulation of methane production (3.4 fold) coupled with reductions in free ammonia (38 fold) and total volatile fatty acids (58% TVFA), particularly acetate and propionate. Addition of 10-20 g/L zeolite to piggery wastewater with and without pH reduction to 6.5 further enhanced total VFA reduction and methane production over their respective controls, with 20 g/L zeolite producing the highest enhancement effect despite the ammonia-nitrogen concentrations of the treated wastewaters remaining high. Without pH reduction, zeolite concentration up to 20 g/L was required to achieve comparable methane enhancement as the pH-reduced wastewater at pH 6.5. Although biomass (10% v/v piggery and municipal wastes) and low humic acid (1 and 5 g/L) additions enhanced total VFA reduction and methane production, they elevated the residual effluent total COD concentrations over the control wastewaters (pH-unadjusted and pH-reduced) unlike zeolite

  14. The pH of Mars

    NASA Technical Reports Server (NTRS)

    Plumb, R. C.; Bishop, J. L.; Edwards, J. O.

    1993-01-01

    The Viking labeled release (LR) experiments provided data that can be used to determine the acid-base characteristics of the regolith. Constraints on the acid-base properties and redox potentials of the Martian surface material would provide additional information for determining what reactions are possible and defining formation conditions for the regolith. Calculations devised to determine the pH of Mars must include the amount of soluble acid species or base species present in the LR regolith sample and the solubility product of the carbonate with the limiting solubility. This analysis shows that CaCO3, either as calcite or aragonite, has the correct K(sub sp) to have produced the Viking LR successive injection reabsorption effects. Thus CaCO3 or another MeCO3 with very similar solubility characteristics must have been present on Mars. A small amount of soluble acid, but no more than 4 micro-mol per sample, could also have been present. It is concluded that the pH of the regolith is 7.2 +/- 0.1.

  15. AN HPLC METHOD WITH UV DETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chloroisocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. ...

  16. AN HPLC METHOD WITH UVDETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chlorinated isocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabiliz...

  17. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle

    PubMed Central

    GOTO, Hiroko; QADIS, Abdul Qadir; KIM, Yo-Han; IKUTA, Kentaro; ICHIJO, Toshihiro; SATO, Shigeru

    2016-01-01

    Effects of a bacterial probiotic (BP) on ruminal fermentation and plasma metabolites were evaluated in four Holstein cattle (body weight, 645 ± 62 kg; mean ± SD) with induced subacute ruminal acidosis (SARA). SARA was induced by feeding a SARA-inducing diet, and thereafter, 20, 50 or 100 g per head of a commercial BP was administered for 7 consecutive days during the morning feeding. Cattle without BP served as the control. The 24-hr mean ruminal pH in the control was lower, whereas those in the BP groups administered 20 or 50 g were significantly higher compared to the control from days 2 to 7. Circadian patterns of the 1-hr mean ruminal pH were identical (6.4–6.8) among all cattle receiving BP. Although the mean minimum pH in the control on day –7 and day 0 was <5.8, the pH in the treatment groups on day 7 was >5.8 and significantly higher than that of the control group ( >5.2). Ruminal volatile fatty acid (VFA) concentrations were not affected by BP treatment; however, the BP groups had lower lactic acid levels compared with the control group at 20:00 on day 7. Additionally, non-esterified fatty acid levels decreased from 8:00 to 20:00 in all BP groups on day 7. These results suggest that administration of 20 to 50 g of a multi-strain BP for 7 days might improve the low pH and high lactic acid level of the ruminal fluid in SARA cattle. PMID:27430197

  18. Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

    2013-11-01

    This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

  19. High temperature pH measurements using novel pH electrodes. Final report

    SciTech Connect

    Macdonald, D.D.; Song, H.; Hettiarachchi, S.

    1995-12-01

    Researchers used three pH sensors: (1) a yttria-stabilized zirconia, (2) tungsten/tungsten oxide, and (3) platinum hydrogen electrodes to measure the pH in concentrated solutions heated to temperatures from 125-300 C in autoclaves. The studies indicated measurements of pH for solutions containing sodium hydroxide, sodium sulfate, sodium chloride, boric acid, ferrous sulfate, nickel sulfate, and chromous sulfate in various compositions. The solution composition and pH was then calculated by MULTEQ at the experimental conditions. These calculations compared well with the experimental measurements for binary and quaternary systems at temperatures to 300 C and concentrations to 1 molal. The agreement was also excellent for the metal sulfate systems but was poor for chromous sulfate. The agreement for boric acid solutions was adequate for low concentrations of boric acid but was poor for concentrated borate solutions where polyborate ions likely exist. It is not known whether the lack of agreement under these conditions is due to deficiencies in MULTEQ or the experimental measurements.

  20. Acidic pH conditions induce dissociation of the haem from the protein and destabilise the catalase isolated from Aspergillus terreus.

    PubMed

    Vatsyayan, Preety; Goswami, Pranab

    2011-02-01

    The stability (half-life, t(½)) of the large catalase (CAT) isolated from Aspergillus terreus was decreased under acidic conditions (maximum t(½) approximately 8.5 months at pH ≤ 6) versus alkaline conditions (t(½) approximately 15 months at pH 8-12). Acidic conditions induce the dissociation of haem from CAT, as revealed from a reduction in the Soret peak intensity at 405 nm and an increase in the peak current at Fe(3+)/Fe(2+) redox potentials. This increase in current is attributed to the facile electron transfer from the free haem generated on the electrode surface as a result of its disintegration from the insulating protein matrix. The haem isolated from CAT at acidic condition was reconstituted with apo-CAT at alkaline denaturing conditions to regenerate the CAT activity.

  1. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH.

    PubMed

    Sànchez i Nogué, Violeta; Narayanan, Venkatachalam; Gorwa-Grauslund, Marie F

    2013-08-01

    The release of acetic acid due to deacetylation of the hemicellulose fraction during the treatment of lignocellulosic biomass contributes to the inhibitory character of the generated hydrolysates. In the present study, we identified a strain-independent adaptation protocol consisting of pre-cultivating the strain at pH 5.0 in the presence of at least 4 g L⁻¹ acetic acid that enabled aerobic growth and improved fermentation performance of Saccharomyces cerevisiae cells at low pH (3.7) and in the presence of inhibitory levels of acetic acid (6 g L⁻¹). During anaerobic cultivation with adapted cells of strain TMB3500, the specific ethanol production rate was increased, reducing the fermentation time to 48 %.

  2. Improved reliability of pH measurements.

    PubMed

    Spitzer, Petra; Werner, Barbara

    2002-11-01

    Measurements of pH are performed on a large scale at laboratory level, and in industry. To meet the quality-control requirements and other technical specifications there is a need for traceability in measurement results. The prerequisite for the international acceptance of analytical data is reliability. To measure means to compare. Comparability entails use of recognised references to which the standard buffer solutions used for calibration of pH meter-electrode assemblies can be traced. The new recommendation on the measurement of pH recently published as a provisional document by the International Union on Pure and Applied Chemistry (IUPAC) enables traceability for measured pH values to a conventional reference frame which is recognised world-wide. The primary method for pH will be described. If analytical data are to be accepted internationally it is necessary to demonstrate the equivalence of the national traceability structures, including national measurement standards. For the first time key comparisons for pH have been performed by the Consultative Committee for Amount of Substance (CCQM, set up by the International Bureau of Weights and Measures, BIPM) to assess the equivalence of the national measurement procedures used to determine the pH of primary standard buffer solutions. The results of the first key comparison on pH CCQM-K9, and other international initiatives to improve the consistency of the results of measurement for pH, are reported.

  3. pH Meter probe assembly

    DOEpatents

    Hale, C.J.

    1983-11-15

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  4. pH Meter probe assembly

    DOEpatents

    Hale, Charles J.

    1983-01-01

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

  5. Sugar sensing based on induced pH changes.

    PubMed

    Kim, Youngmi; Hilderbrand, Scott A; Weissleder, Ralph; Tung, Ching-Hsuan

    2007-06-14

    A sensory assembly consisting of a pH sensitive NIR dye and an arylboronic acid shows ratiometric absorption changes with increased fluorescence intensity upon addition of sugar in aqueous media; this demonstrates a new signal transduction mechanism for the detection of sugar based on pH changes induced in the microenvironment of the sensory assembly.

  6. Influence of pH and diluent on the ion-pair solvent extraction of aromatic carboxylic acids using quaternary ammonium salts

    SciTech Connect

    Kawamura, K.; Takahashi, K.; Okuwaki, A.

    2006-07-01

    The influence of pH and diluent on the ion-pair solvent extraction of benzene polycarboxylic acids have been investigated for the separation of the coal oxidation products, which are formed by the treatment with alkaline solutions at high temperatures. Although the extent of the solvent extraction of benzoic acid (1BE) with a quaternary ammonium reagent (tri-n-octylmethylammonium chloride) into chloroform and benzene did not change at a very acidic and alkaline solutions, those of 1,2-benzenedicarboxylic acid (12BE) and trimellitic acid (124BE) somewhat decreased at very low pH and very high pH. The magnitudes of the equilibrium constants (K{sub ex}) of 1BE using a different diluent decreased in the order benzene {gt} carbontetrachloride {gt} 1,2-dichloroethane {gt} cyclohexane {gt} hexane {gt} chloroform {gt} 1-octanol and those of 12BE decreased in the order benzene {gt} cyclohexane {gt} carbontetrachloride {gt} hexane {gt} 1,2-dichloroethane {gt} chloroform. The inspection of the correlation between the values of K{sub ex} and several parameters of the diluent implies that the magnitude of K{sub ex} can be described by using the dielectric constant and the solubility parameter of diluent.

  7. Cell wall pH and auxin transport velocity

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  8. Effects of pH and fermentative substrate on ruminal metabolism of fatty acids during short-term in vitro incubation.

    PubMed

    Troegeler-Meynadier, A; Palagiano, C; Enjalbert, F

    2014-08-01

    The ruminal biohydrogenation of c9,c12-18:2 can be affected by the fibre/starch ratio of the diet and the ruminal pH. The objectives of this study were to examine independently in vitro the effects of fermentation substrate (hay vs. corn starch) and buffer pH (6 vs. 7) on the biohydrogenation of c9,c12-18:2 carried out by grape seed oil, focusing on its t11 and t10 pathways, using 6-h ruminal incubations. The experimental design was a 2 × 2 factorial arrangement. Fermentation substrate and pH affected the C18 fatty acid balance in incubated media, but few interactions were observed. Compared with starch, hay as the fermentation substrate favoured the production of 18:0 (×2.3), all trans-18:1 isomers (×12.6) and CLA (×6.1), except c9,t11-CLA, and the disappearance of unsaturated C18 fatty acids, but decreased the production of odd and branched chain fatty acids. Compared with pH 6 buffer, pH 7 buffer resulted in higher c9,c12-18:2 disappearance and CLA production. For c9,t11-CLA, an interaction was noticed between the two factors, leading to the highest production in cultures incubated on hay with the 7 pH buffer. Compared with starch, hay as fermentation substrate favoured the activity of t11 producers, which are fibrolytic bacteria, and the production of t10 isomers, possibly due to the presence of potential t10 producers in hay. Low pH resulted in a decreased t11 isomers production and in a slightly increased t10 isomers production, probably due to a modulation of enzymatic or bacterial activity.

  9. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values.

    PubMed

    Suhr, K I; Nielsen, P V

    2004-08-15

    Inhibition of spoilage organisms from bakery products by weak acid preservatives in concentrations of 0%, 0.003%, 0.03% and 0.3% (w/v) was investigated experimentally on a substrate media with water activity (a(w)) and pH ranging from sourdough-fermented acidic rye bread to alkaline intermediate moisture sponge cake types (a(w) 0.80-0.95, pH 4.7-7.4). Initially, rye bread conditions (a(w) 0.94-0.97 and pH 4.4-4.8) in combination with calcium propionate were investigated. Results showed that the highest concentration of propionate (0.3%) at all conditions apart from high a(w) (0.97) and high pH (4.8) totally inhibited fungal growth for a 2-week period, with the exception of Penicillium roqueforti, Penicillium commune and Eurotium rubrum. Characteristically for the major spoiler of rye bread, P. roqueforti, all three isolates tested were stimulated by propionate and the stimulation was significantly enhanced at high water activity levels. The effect of propionate on production of secondary metabolites (mycophenolic acid, rugulovasine, echinulin, flavoglaucin) was also studied, and variable or isolate dependent results were found. Subsequently, a screening experiment representing a wider range of bakery products was conducted using calcium propionate, potassium sorbate and sodium benzoate. The obtained data was modelled using survival analysis to determine 'spoilage-free time' for the fungi. At the low a(w) level (0.80) only Eurotium species grew within the test period of 30 days. Higher water activity levels as well as higher pH values decreased spoilage-free times of the fungi. The preservative calcium propionate was less effective than potassium sorbate and sodium benzoate.

  10. Controlling the Mesostructure Formation within the Shell of Novel Cubic/Hexagonal Phase Cetyltrimethylammonium Bromide-Poly(acrylamide-acrylic acid) Capsules for pH Stimulated Release.

    PubMed

    Tangso, Kristian J; Patel, Hetika; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick T; Boyd, Ben J

    2015-11-11

    The self-assembly of ordered structures in mixtures of oppositely charged surfactant and polymer systems has been exploited in various cleaning and pharmaceutical applications and continue to attract much interest since their discovery in the late twentieth century. The ability to control the electrostatic and hydrophobic interactions that dictate the formation of liquid crystalline phases in these systems is advantageous in manipulation of structure and rendering them responsive to external stimuli. Nanostructured capsules comprised of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and the diblock copolymer poly(acrylamide-acrylic acid) (PAAm-AA) were prepared to assess their potential as pH responsive nanomaterials. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified coexisting Pm3n cubic and hexagonal phases at the surfactant-polymer interface. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and solution pH, respectively, and were found to influence the liquid crystalline nanostructure formed. The lattice parameter of the mesophases and the fraction of cubic phase in the system decreased upon heating. Acidic conditions resulted in the loss of the highly ordered structures due to protonation of the carboxylic acid group, and subsequent reduction of attractive forces previously present between the oppositely charged molecules. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from nanostructured macro-sized capsules significantly increased when the pH of the solution was adjusted from pH 7 to pH 2. This allowed for immediate release of the compound of interest "on demand", opening new options for structured materials with increased functionality over typical layer-by-layer capsules.

  11. A theoretical kinetic model of the temperature and pH dependent dimerization of orthosilicic acid in aqueous solution.

    PubMed

    McIntosh, Grant J

    2012-01-14

    The first steps in a pH- and temperature-dependent theoretical kinetic model of silicate polymerization and dissolution are examined in this work with a combined ab initio and transition state theory based study of the dimerization of H(4)SiO(4). The role of solvation has been of primary concern in this work, and its influence on theoretical activation energies and pre-exponential factors has been thoroughly benchmarked. Relatively inexpensive MP2/6-31+G(d)//HF/6-31+G(d) calculations of octahydrate clusters, with conductor-like polarizable continuum model corrections obtained in the MP2-level single-point calculations, have been shown to lead to a good description of the limited experimentally determined energetics of dimerization for most elementary reactions. Pre-exponential factors computed from this level of theory are found to be relatively insensitive to the level of theory utilized for geometry optimizations, the number of explicit waters, hindered rotor corrections, and variational effects arising from the minimization of rate constants. Within this framework, a kinetic model of the chemistry of H(4)SiO(4) and H(3)SiO(4)(-), forming H(6)Si(2)O(7) and H(5)Si(2)O(7)(-), has been compiled. Numerical simulations over pH = 3-12 show that a number of pH- and temperature dependent trends in reaction rates and positions of equilibrium are well described with this simple dimerization model. More specifically to the dimerization process, we obtain dimerization constants, log K(dim), of 1.85 and -7.15 for the formation of H(6)Si(2)O(7) and H(5)Si(2)O(7)(-) respectively, which compare well with experimentally determined values of 1.2 and -8.5, respectively.

  12. Ratiometric Imaging of Extracellular pH in Dental Biofilms.

    PubMed

    Schlafer, Sebastian; Dige, Irene

    2016-03-09

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms. pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of extracellular pH. After confocal microscopic image acquisition, the bacterial biomass is removed from all pictures using digital image analysis software, which permits to exclusively calculate extracellular pH. pH ratiometry with the ratiometric dye is well-suited to study extracellular pH in thin biofilms of up to 75 µm thickness, but is limited to the pH range between 4.5 and 7.0.

  13. Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon.

    PubMed

    Reiche, Sylvia; Kowalew, Natalia; Schlögl, Robert

    2015-02-23

    A specific control of the morphology and chemical structure of hydrothermal carbon (HTC) is of crucial importance for its application, both in catalyst supports or electrochemical devices. Here we show how the morphology, that is, particles size and homogeneity, and the distribution of functional groups can be controlled by the control of the synthesis pH of the hydrothermal carbonization. A complementary analysis of liquid byproducts by HPLC provides useful information on the nature of the polymeric species produced during the poly-condensation in the hydrothermal process and reveals the potential implementation of the process into the biorefinery concept. The acidic byproducts levulinic acid and formic acid determine the hydrothermal carbonization autocatalytically by additional supply of protons to the reaction medium. Thus, for a starting pH>3, only minor structural differences can be detected for HTC. The use of oxidizing acids favors higher yields of HTC and improves carbonization towards higher condensed carbon domains. Scaling up the process in a stirred 2 L batch reactor favors carbonization leading to higher condensed carbonaceous products. The relative trends of pH variation are maintained.

  14. Influence of Humic Acid on Stability and Attachment of nTiO2 Particles to Sand at Different pH

    NASA Astrophysics Data System (ADS)

    Cheng, T.

    2015-12-01

    Stability of nano-scale or micro-scale titanium dioxide particles (nTiO2) and their attachment to sediment grains have important implications to the fate and transport of nTiO2 in subsurface environments. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand, with special attention to low HA concentration ranges that are relevant to groundwater conditions. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand were experimentally measured under a range of low HA concentrations at pH 5 and 9. Results showed that HA can either promote or hinder nTiO2 stability, depending on pH and HA concentration. We also found that HA can either enhance or reduce nTiO2 attachment to Fe oxyhydroxide coating at pH 5, depending on HA concentration. Results further showed that at pH 5, Fe oxyhydroxide coating reduced nTiO2 attachment to sand in the absence of HA but increased nTiO2 attachment in the presence of low concentration of HA. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was invoked to analyze particle-to-particle and particle-to-sand interactions in order to elucidate the roles of pH, HA, quartz, and Fe coating in nTiO2 stability and attachment. Overall, this study showed that changes in zeta potential of nTiO2 and Fe coating due to pH changes and/or HA adsorption are the key factors that influence stability and attachment of nTiO2.

  15. STXM/C 1s-NEXAFS study of Eu(III) and Uranyl humic acid aggregates at different pH

    NASA Astrophysics Data System (ADS)

    Plaschke, M.; Rothe, J.; Denecke, M. A.; Geckeis, H.

    2010-04-01

    Humic acids (HA) are chemically heterogeneous and structurally ill-defined biopolymers which are able to bind traces of actinides or lanthanides. Due to their dimensions in the colloidal size range they may affect transport of these elements in aquatic systems. Eu(III)- and UO22+-HA aggregates have been investigated by Scanning Transmission X-ray Microscopy (STXM) and C 1s-NEXAFS under systematic variation of pH. In the Eu(III)- and UO22+-HA systems aggregate morphologies at near neutral pH were similar to those observed in previous studies: optically dense zones (high absorption at the carbon K-edge) are embedded in a matrix of less dense material. C 1s-NEXAFS signatures observed in the different zones, i.e., the intensity of the characteristic complexation feature previously experimentally described and recently theoretically characterized, strongly depends on sample pH. In the alkaline regime (pH 9) with added carbonate, co-precipitation of Eu(III)-carbonate (or ternary carbonate/(oxo)hydroxide complexes) with the Eu(III)-HA majority fraction is observed but Eu(III) binding to HA over carbonate in the dense zones seems to be favoured. The UO22+-HA system exhibits in alkaline solution more compact morphologies combined with a strong metal ion complexation effect in the NEXAFS. Eu(III) and UO22+ polyacrylic acid (PAA) aggregates used as HA model systems show similar spectral trends; these aggregates exhibit highly branched morphologies without segregation into zones with different NEXAFS signatures. The chemical environment such as pH or the type of metal cation strongly influences both HA aggregate morphologies and NEXAFS spectral signatures. These can, in turn, be used as indicators of the strength of lanthanide or actinide ion bound HA interaction.

  16. Middle School and pH?

    ERIC Educational Resources Information Center

    Herricks, Susan

    2007-01-01

    A local middle school requested that the Water Center of Advanced Materials for Purification of Water With Systems (WaterCAMPWS), a National Science Foundation Science and Technology Center, provide an introduction to pH for their seventh-grade water-based service learning class. After sorting through a multitude of information about pH, a…

  17. Inexpensive and Disposable pH Electrodes

    ERIC Educational Resources Information Center

    Goldcamp, Michael J.; Conklin, Alfred; Nelson, Kimberly; Marchetti, Jessica; Brashear, Ryan; Epure, Emily

    2010-01-01

    Inexpensive electrodes for the measurement of pH have been constructed using the ionophore tribenzylamine for sensing H[superscript +] concentrations. Both traditional liquid-membrane electrodes and coated-wire electrodes have been constructed and studied, and both exhibit linear, nearly Nernstian responses to changes in pH. Measurements of pH…

  18. Analysis of low molecular weight acids by monolithic immobilized pH gradient-based capillary isoelectric focusing coupled with mass spectrometry.

    PubMed

    Wang, Tingting; Fekete, Agnes; Gaspar, Andras; Ma, Junfeng; Liang, Zhen; Yuan, Huiming; Zhang, Lihua; Schmitt-Kopplin, Philippe; Zhang, Yukui

    2011-02-01

    A novel method for the separation and detection of low molecular weight (LMW) acids was developed using monolithic immobilized pH gradient-based capillary isoelectric focusing coupled with mass spectrometry. Two main parameters, focusing conditions and delivery buffer conditions, which might affect separation efficiency, were optimized with the focusing time of 7 min at 350 V/cm and the delivery buffer of 50% (v/v) acetonitrile in 10 mmol/L ammonium formate (pH 3.0). Under these conditions, the linear correlation between the volume of delivery solvent and the pK(a) of the model components was observed. In addition, the separation mechanism of LMW acids was proposed as well. We suppose that this method may provide a useful tool for the characterization of LMW components (e.g. natural organic matter of different origins).

  19. Hydrolytically stable, diaminocarboxylic acid-based membranes buffering in the pH range from 6 to 8.5 for isoelectric trapping separations.

    PubMed

    Fleisher, Helen C; Vigh, Gyula

    2005-06-01

    Diaminocarboxylic acid carrier ampholytes, such as L-histidine, 2,3-diaminopropionic acid, L-ornithine, and L-lysine, were reacted with glycerol-1,3-diglycidyl ether (GDGE) and poly(vinyl alcohol) (PVA) in the presence of sodium hydroxide to produce hydrolytically and mechanically stable hydrogels, supported on a PVA substrate, for use as buffering membranes in isoelectric trapping (IET) separations. The pH values of the DACAPVA membranes were determined with the help of small-molecule pI markers and proteins and were found to be in the 6 < pH < 8.5 range. The membranes were successfully used to isoelectrically trap small ampholytes, desalt ampholyte solutions in IET mode, and effect the binary separation of chicken egg white proteins.

  20. Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH.

    PubMed Central

    Garidel, P; Johann, C; Blume, A

    1997-01-01

    The miscibilities of phosphatidic acids (PAs) and phosphatidylcholines (PCs) with different chain lengths (n = 14, 16) at pH 4, pH 7, and pH 12 were examined by differential scanning calorimetry. Simulation of heat capacity curves was performed using a new approach that incorporates changes of cooperativity of the transition in addition to nonideal mixing in the gel and the liquid-crystalline phase as a function of composition. From the simulations of the heat capacity curves, first estimates for the nonideality parameters for nonideal mixing as a function of composition were obtained, and phase diagrams were constructed using temperatures for onset and end of melting, which were corrected for the broadening effect caused by a decrease in cooperativity. In all cases the composition dependence of the nonideality parameters indicated nonsymmetrical mixing behavior. The phase diagrams were therefore further refined by simulations of the coexistence curves using a four-parameter approximation to account for nonideal and nonsymmetrical mixing in the gel and the liquid-crystalline phase. The mixing behavior was studied at three different pH values to investigate how changes in headgroup charge of the PA influences the miscibility. The experiments showed that at pH 7, where the PA component is negatively charged, the nonideality parameters are in most cases negative, indicating that electrostatic effects favor a mixing of the two components. Partial protonation of the PA component at pH 4 leads to strong changes in miscibility; the nonideality parameters for the liquid-crystalline phase are now in most cases positive, indicating clustering of like molecules. The phase diagram for 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid:1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine mixtures at pH 4 indicates that a fluid-fluid immiscibility is likely. The results show that a decrease in ionization of PAs can induce large changes in mixing behavior. This occurs because of a

  1. Determination Of Ph Including Hemoglobin Correction

    DOEpatents

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  2. Endoscopic sensing of alveolar pH

    PubMed Central

    Choudhury, D.; Tanner, M. G.; McAughtrie, S.; Yu, F.; Mills, B.; Choudhary, T. R.; Seth, S.; Craven, T. H.; Stone, J. M.; Mati, I. K.; Campbell, C. J.; Bradley, M.; Williams, C. K. I.; Dhaliwal, K.; Birks, T. A.; Thomson, R. R.

    2016-01-01

    Previously unobtainable measurements of alveolar pH were obtained using an endoscope-deployable optrode. The pH sensing was achieved using functionalized gold nanoshell sensors and surface enhanced Raman spectroscopy (SERS). The optrode consisted of an asymmetric dual-core optical fiber designed for spatially separating the optical pump delivery and signal collection, in order to circumvent the unwanted Raman signal generated within the fiber. Using this approach, we demonstrate a ~100-fold increase in SERS signal-to-fiber background ratio, and demonstrate multiple site pH sensing with a measurement accuracy of ± 0.07 pH units in the respiratory acini of an ex vivo ovine lung model. We also demonstrate that alveolar pH changes in response to ventilation. PMID:28101415

  3. Novel pH control strategy for efficient production of optically active l-lactic acid from kitchen refuse using a mixed culture system.

    PubMed

    Tashiro, Yukihiro; Inokuchi, Shota; Poudel, Pramod; Okugawa, Yuki; Miyamoto, Hirokuni; Miayamoto, Hisashi; Sakai, Kenji

    2016-09-01

    Uninvestigated control factors of meta-fermentation, the fermentative production of pure chemicals and fuels in a mixed culture system, were examined for production of optically pure l-lactic acid (LA) from food waste. In meta-fermentations by pH swing control, l-LA production with 100% optical purity (OPl-LA) was achieved even using unsterilized model kitchen refuse medium with preferential proliferation of l-LA-producing Bacillus coagulans, a minor member in the seed, whereas agitation decreased OPl-LA drastically. pH constant control shortened the fermentation time but decreased OPl-LA and LA selectivity (SLA) by stimulating growth of heterofermentative Bacillus thermoamylovorans. Deliberately switching from pH swing control to constant control exhibited the best performance for l-LA production: maximum accumulation, 39.2gL(-1); OPl-LA, 100%; SLA, 96.6%; productivity, 1.09gL(-1)h(-1). These results present a novel pH control strategy for efficient l-LA production in meta-fermentation based on a concept different from that of pure culture systems.

  4. Combined effects of weak acid preservatives, pH and water activity on growth of Eurotium species on a sponge cake.

    PubMed

    Guynot, M E; Ramos, A J; Sala, D; Sanchis, V; Marín, S

    2002-06-05

    The combined effects of weak acid preservatives (sorbate, benzoate and propionate), pH (6.0, 7.5) and water activity (a(w)) levels (0.80, 0.85, 0.90) on growth of four Eurotium species isolated from bakery products on a sponge cake analogue were studied. Even though it is universally known that these preservatives are much more effective at lower pH values, we chose a 6-7.5 level to correlate with the pH of the Spanish cake product studied. In general, 0.3% doses of all three preservatives were effective only when they were applied at pH 6.0 and at 0.80-0.85 a(w). Potassium sorbate was clearly the most effective in inhibiting growth of all isolates. Under the conditions tested, application of all three preservatives added at 0.03% acted as growth promoter of all isolates rather than having a preservative effect.

  5. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  6. Rate of phosphoantimonylmolybdenum blue complex formation in acidic persulfate digested sample matrix for total dissolved phosphorus determination: importance of post-digestion pH adjustment.

    PubMed

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2008-10-19

    Acidic persulfate oxidation is one of the most common procedures used to digest dissolved organic phosphorus compounds in water samples for total dissolved phosphorus determination. It has been reported that the rates of phosphoantimonylmolybdenum blue complex formation were significantly reduced in the digested sample matrix. This study revealed that the intermediate products of persulfate oxidation, not the slight change in pH, cause the slowdown of color formation. This effect can be remedied by adjusting digested samples pH to a near neural to decompose the intermediate products. No disturbing effects of chlorine on the phosphoantimonylmolybdenum blue formation in seawater were observed. It is noted that the modification of mixed reagent recipe cannot provide near neutral pH for the decomposition of the intermediate products of persulfate oxidation. This study provides experimental evidence not only to support the recommendation made in APHA standard methods that the pH of the digested sample must be adjusted to within a narrow range of sample, but also to improve the understanding of role of residue from persulfate decomposition on the subsequent phosphoantimonylmolybdenum blue formation.

  7. Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents.

    PubMed

    Peng, Xin-Wen; Ren, Jun-Li; Zhong, Lin-Xin; Peng, Feng; Sun, Run-Cang

    2011-08-10

    Exploitation of biomaterials derived from renewable resources is an important approach to address environmental and resource problems in the world today. In this paper, novel ionic hydrogels based on xylan-rich hemicelluloses were prepared by free radical graft copolymerization of acrylic acid (AA) and xylan-rich hemicelluloses (XH) by using N,N-methylene-bis(acrylamide) (MBA) as cross-linker and ammonium persulfate/N,N,N',N'-tetramethylethylenediamine (APS/TMEDA) as redox initiator system. The network characteristics of the ionic hydrogels were investigated by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), as well as by determination of mechanical properties, swelling, and stimuli responses to pH, salts, and organic solvents. The results showed that an increase in the MBA/XH or AA/XH ratio resulted in higher cross-linking density of the network and thus decreased the swelling ratio. Expansion of the network hydrogels took place at high pH, whereas shrinkage occurred at low pH or in salt solutions as well as in organic solvents. The ionic hydrogels had high water adsorption capacity and showed rapid and multiple responses to pH, ions, and organic solvents, which may allow their use in several areas such as adsorption, separation, and drug release systems.

  8. Coal ash basin effects (particulates, metals, acidic pH) upon aquatic biota: an eight-year evaluation. [Gambusia affinis; Plathemis lydia; Libellula spp

    SciTech Connect

    Cerry, D.S.; Guthrie, R.K.; Davis, E.M.; Harvey, R.S.

    1984-08-01

    Coal ash effluent effects including particulates, acidic pH excursions, elemental concentrations and bioconcentration in selected organisms have been studied as changes in water quality and densities of benthic macroinvertebrate and mosquitofish (Gambusia affinis) populations in a swanmp drainage system over an eight-year period. Initial density of the aquatic biota was altered severely by heavy ash siltation, followed by acidic pH excursions, and perhaps overall by elemental concentrations and bioaccumulation. Heavy ash siltation, followed by acidic pH excursions after the addition of fly ash to the original settling basin system, had the most profound effect on biota. Dipterans (chironomids) and some odonates (Plathemis lydia and Libellula spp.) were resistant to heavy ash siltation, while mosquitofish, which showed no discernible responses to ash siltation, were absent at acidic pH along with the few previously surviving invertebrate populations. Elemental concentrations of arsenic, cadmium, chromium, copper, selenium, and zinc did not appear to limit aquatic flora and fauna on a short-term, acute basis. Long-chronic elemental exposures may have been instrumental in retarding the recovery of all forms of aquatic life in the receiving system. Elemental concentrations (except for arsenic and selenium) in the receiving system were generally one to two orders of magnitude higher than the Water Quality Criteria set by the US Environmental Protection Agency (1980) for protection of aquatic life for the minimum and 24-hour mean values. By 1978, when the new settling basin systems were operating effectively, invertebrate populations were largely recovered, and mosquito-fish populations recovered within one year afterward.

  9. Acid tolerance of acid-adapted and nonadapted Escherichia coli O157:H7 following habituation (10 degrees C) in fresh beef decontamination runoff fluids of different pH values.

    PubMed

    Samelis, John; Kendall, Patricia; Smith, Gary C; Sofos, John N

    2004-04-01

    This study evaluated survival of Escherichia coli O157:H7 strain ATCC 43895 during exposure to pH 3.5 following its habituation for 2 or 7 days at 10 degrees in fresh beef decontamination waste runoff fluid mixtures (washings) containing 0, 0.02, or 0.2% of lactic or acetic acids. Meat washings and sterile water (control) were initially inoculated with approximately 5 log CFU/ml of acid- and nonadapted E. coli O157:H7 cells cultured (30 degrees C, 24 h) in broth with and without 1% glucose, respectively. After 2 days, E. coli O157:H7 survivors from acetate washings (pH 3.7 to 4.7) survived at pH 3.5 better than E. coli O157:H7 survivors from lactate washings (pH 3.1 to 4.6), especially when the original inoculum was acid adapted. Also, although E. coli O157:H7 habituated in sterile water for 2 days survived well at pH 3.5, the corresponding survivors from nonacid water meat washings (pH 6.8) were rapidly killed at pH 3.5, irrespective of acid adaptation. After 7 days, E. coli O157:H7 survivors from acetate washings (pH 3.6 to 4.7) continued to resist pH 3.5, whereas those from lactate washings died off. This loss of acid tolerance by E. coli O157:H7 was due to either its low survival in 0.2% lactate washings (pH 3.1) or its acid sensitization in 0.02% lactate washings, in which a Pseudomonas-like natural flora showed extensive growth (> 8 log CFU/ml) and the pH increased to 6.5 to 6.6. Acid-adapted E. coli O157:H7 populations habituated in water washings (pH 7.1 to 7.3) for 7 days continued to be acid sensitive, whereas nonadapted populations increased their acid tolerance, a response merely correlated with their slight (< 1 log) growth at 10 degrees C. These results indicate that the expression of high acid tolerance by acid-adapted E. coli O157:H7 can be maintained or enhanced in acid-diluted meat decontamination waste runoff fluids of pH levels that could permit long-term survival at 10 degrees C. Previous acid adaptation, however, could reduce the growth

  10. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release

    PubMed Central

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  11. Structure formation in sugar containing pectin gels - influence of tartaric acid content (pH) and cooling rate on the gelation of high-methoxylated pectin.

    PubMed

    Kastner, H; Kern, K; Wilde, R; Berthold, A; Einhorn-Stoll, U; Drusch, S

    2014-02-01

    The aim of the study was the application of a recently published method, using structuring parameters calculated from dG'/dt, for the characterisation of the pectin sugar acid gelation process. The influence of cooling rate and pH on structure formation of HM pectin gels containing 65 wt.% sucrose were investigated. The results show that the structure formation process as well as the properties of the final gels strongly depended on both parameters. With increasing cooling rates from 0.5 to 1.0 K/min the initial structuring temperature slightly decreased and the maximum structuring velocity increased. The lower the cooling rates, the firmer and more elastic were the final gels. With increasing acid content (decreasing pH from 2.5-2.0) the initial structuring temperatures were nearly constant. The final gel properties varied visibly but not systematically. Gels with the lowest and highest pH were less elastic and weaker compared to those with medium acid concentrations.

  12. Modelling the effect of temperature, pH, water activity, and organic acids on the germination time of Penicillium camemberti and Penicillium roqueforti conidia.

    PubMed

    Kalai, Safaa; Anzala, Lexane; Bensoussan, Maurice; Dantigny, Philippe

    2017-01-02

    In this study, the influence of environmental factors on the germination time of Penicillium camemberti and Penicillium roqueforti conidia was evaluated. To do so, the effects of i/temperature, pH, water activity, and ii/organic acids were determined using models based on i/cardinal values, and ii/minimum inhibitory concentration (MIC) respectively. Cardinal values for germination of conidia were not observed to be species dependent. Minimum temperatures were estimated to be below the freezing point, with an optimum of 26.9°C, and a maximum of 33.5°C. For both species, minimal and optimal aw values were found to be 0.83 and 0.99, respectively, while for pH these values corresponded to 2.9, and 5.6. MIC values could not be determined for lactic acid because conidia of both species germinated in up to 1M concentrations, the highest concentration tested. At pH5.6, P. camemberti (MIC=0.197M) was more sensitive to propionic acid than P. roqueforti (MIC=0.796M).

  13. Gum arabic and Fe²⁺ synergistically improve the heat and acid stability of norbixin at pH 3.0-5.0.

    PubMed

    Guan, Yongguang; Zhong, Qixin

    2014-12-31

    Thermal and acid stabilities of norbixin are challenges for its application as a food colorant. In this work, gum arabic and Fe(2+) were studied for the possibility to improve the thermal and acid stabilities of norbixin. Norbixin was dissolved at 0.004% w/v in deionized water with and without 0.2% w/v gum arabic and/or 0.15 mM ferrous chloride, adjusted to pH 3.0-5.0, and heated at 90 or 126 °C for 30 min. Before heating, norbixin precipitated at pH 3.0-4.0, which was prevented by gum arabic. The thermal stability of norbixin was improved by the combination of gum arabic and Fe(2+). Fluorescence analyses indicated the complex formation between norbixin and gum arabic with and without Fe(2+). Particle size and atomic force microscopy results suggested Fe(2+) and gum arabic synergistically prevented the aggregation of norbixin at acidic pH and during heating. It was hypothesized that the core of gum arabic-norbixin complexes was strengthened by Fe(2+) to enable the synergy.

  14. Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels.

    PubMed

    Golombieski, Jaqueline Ineu; Koakoski, Gessi; Becker, Alessandra Janaína; Almeida, Ana Paula Gottlieb; Toni, Cândida; Finamor, Isabela Andres; Pavanato, Maria Amália; de Almeida, Tielle Moraes; Baldisserotto, Bernardo

    2013-08-01

    This study examined ammonia, urea, creatinine, protein, nitrite, nitrate, and phosphorus (P) excretion at different water hardness, humic acid, or pH levels in silver catfish (Rhamdia quelen) juveniles. The fish were exposed to different levels of water hardness (4, 24, 50, or 100 mg L(-1) CaCO3), humic acid (0, 2.5, or 5.0 mg L(-1)), or pH (5.0, 6.0, 7.0, 8.0, or 9.0) for 10 days. The overall measured nitrogen excretions were 88.1% (244-423 μmol kg(-1 )h(-1)) for ammonia, 10.9% (30-52 μmol kg(-1 )h(-1)) for creatinine, 0.02% (0.05-0.08 μmol kg(-1 )h(-1)) for protein, 0.001 % (0.002-0.004 μmol kg(-1 )h(-1)) for urea, 0.5% (0.64-3.6 μmol kg(-1 )h(-1)) for nitrite, and 0.5% (0.0-6.9 μmol kg(-1 )h(-1)) for nitrate, and these proportions were not affected by water hardness or humic acid levels. The overall P excretion in R. quelen was 0.14-2.97 μmol kg(-1) h(-1). Ammonia excretion in R. quelen usually was significantly higher in the first 12 h after feeding, and no clear effect of water hardness, humic acid levels, and pH on this daily pattern of ammonia excretion could be observed. Water hardness only affected the ammonia and P excretion of R. quelen juveniles in the initial and fifth days after transfer, respectively. The exposure of this species to humic acid increased ammonia excretion after 10 days of exposure but did not affect P excretion. An increase in pH decreased ammonia and increased creatinine excretion but did not change P excretion in R. quelen. Therefore, when there is any change on humic acid levels or pH in the culture of this species, nitrogenous compounds must be monitored because their excretion rates are variable. On the other hand, P excretion rates determined in the present study are applicable to a wide range of fish culture conditions.

  15. An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete

    USGS Publications Warehouse

    Nimick, D.A.; Gurrieri, J.T.; Furniss, G.

    2009-01-01

    Methods for assessing natural background water quality of streams affected by historical mining are vigorously debated. An empirical method is proposed in which stream-specific estimation equations are generated from relationships between either pH or dissolved Cu concentration in stream water and the Fe/Cu concentration ratio in Fe-precipitates presently forming in the stream. The equations and Fe/Cu ratios for pre-mining deposits of alluvial ferricrete then were used to reconstruct estimated pre-mining longitudinal profiles for pH and dissolved Cu in three acidic streams in Montana, USA. Primary assumptions underlying the proposed method are that alluvial ferricretes and modern Fe-precipitates share a common origin, that the Cu content of Fe-precipitates remains constant during and after conversion to ferricrete, and that geochemical factors other than pH and dissolved Cu concentration play a lesser role in determining Fe/Cu ratios in Fe-precipitates. The method was evaluated by applying it in a fourth, naturally acidic stream unaffected by mining, where estimated pre-mining pH and Cu concentrations were similar to present-day values, and by demonstrating that inflows, particularly from unmined areas, had consistent effects on both the pre-mining and measured profiles of pH and Cu concentration. Using this method, it was estimated that mining has affected about 480 m of Daisy Creek, 1.8 km of Fisher Creek, and at least 1 km of Swift Gulch. Mean values of pH decreased by about 0.6 pH units to about 3.2 in Daisy Creek and by 1-1.5 pH units to about 3.5 in Fisher Creek. In Swift Gulch, mining appears to have decreased pH from about 5.5 to as low as 3.6. Dissolved Cu concentrations increased due to mining almost 40% in Daisy Creek to a mean of 11.7 mg/L and as much as 230% in Fisher Creek to 0.690 mg/L. Uncertainty in the fate of Cu during the conversion of Fe-precipitates to ferricrete translates to potential errors in pre-mining estimates of as much as 0.25 units

  16. Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid.

    PubMed

    Arneborg, N; Jespersen, L; Jakobsen, M

    2000-01-01

    The effects of perfusion with 2.7 and 26 mM undissociated acetic acid in the absence or presence of glucose on short-term intracellular pH (pH(i)) changes in individual Saccharormyces cerevisiae and Zygosaccharomyces bailii cells were studied using fluorescence-ratio-imaging microscopy and a perfusion system. In the S. cerevisiae cells, perfusion with acetic acid induced strong short-term pH(i) responses, which were dependent on the undissociated acetic acid concentration and the presence of glucose in the perfusion solutions. In the Z. bailii cells, perfusion with acetic acid induced only very weak short-term pH(i) responses, which were neither dependent on the undissociated acetic acid concentration nor on the presence of glucose in the perfusion solutions. These results clearly show that Z. bailii is more resistant than S. cerevisiae to short-term pH(i) changes caused by acetic acid.

  17. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  18. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  19. Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves.

    PubMed

    Qadis, Abdul Qadir; Goya, Satoru; Ikuta, Kentaro; Yatsu, Minoru; Kimura, Atsushi; Nakanishi, Shusuke; Sato, Shigeru

    2014-06-01

    Twelve ruminally cannulated Holstein calves (age, 12 ± 3 weeks) were used to identify the effect of a probiotic comprised of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum on ruminal components. The calves were adapted to a diet containing a 50% high-concentrate (standard diet) for 1 week, and then, the probiotic was given once daily for 5 days (day 1-5) at 1.5 or 3.0 g/100 kg body weight to groups of four calves each. Four additional calves fed the standard diet without probiotic served as the corresponding control. Ruminal pH was measured continuously throughout the 15-day experimental period. Ruminal fluid was collected via a fistula at a defined time predose and on days 7 and 14 to assess volatile fatty acid (VFA), lactic acid and ammonia-nitrogen concentrations, as well as the bacterial community. The probiotic at either dose improved the reduced 24-hr mean ruminal pH in calves. The circadian patterns of the 1 hr mean ruminal pH were identical between the probiotic doses. In both probiotic groups, ruminal lactic acid concentrations remained significantly lower than that of the control. Probiotic did not affect ruminal VFA concentrations. L. plantarum and C. butyricum were not detected in the rumen of calves given the high-dose probiotic, whereas Enterococcus spp. remained unchanged. These results suggest that calves given a probiotic had stable ruminal pH levels (6.6-6.8), presumably due to the effects of the probiotic on stabilizing rumen-predominant bacteria, which consume greater lactate in the rumen.

  20. Effects of pH and dissolved oxygen on the photodegradation of 17α-ethynylestradiol in dissolved humic acid solution.

    PubMed

    Ren, Dong; Huang, Bin; Bi, Tingting; Xiong, Dan; Pan, Xuejun

    2016-01-01

    To probe the mechanisms responsible for pH and dissolved oxygen (DO) affecting the photodegradation of 17α-ethynylestradiol (EE2) in dissolved humic acid (HA) solution, EE2 aqueous solutions with pH values ranging from 3.0 to 11.0 and different DO conditions were irradiated by using a 300 W mercury lamp equipped with 290 nm light cutoff filters. In 5.0 mg L(-1) HA solutions (pH 8.0), EE2 was degraded at a rate of 0.0739 h(-1) which was about 4-fold faster than that in Milli-Q water. The degradation of EE2 was mainly caused by the oxidation of photogenerated reactive species (RS), and the contribution of direct photodegradation to EE2 degradation was always lower than 27%. Both the direct and indirect photodegradation of EE2 were closely dependent on the EE2 initial concentration, pH value and DO concentration. The photodegradation rate of EE2 decreased with increased initial concentration of EE2 due to the limitation of photon flux. With pH and DO increasing, the degradation rate of EE2 increased significantly due to the increase in the yields of excited EE2 and RS. Among the photogenerated RS, HO˙ and (3)HA* were determined to be the key contributors, and their global contribution to EE2 photodegradation was about 50%. Although HA could generate more (1)O2 than HO˙, the contribution of (1)O2 to EE2 degradation was lower than 13% due to its low reactivity towards EE2. This study could enlarge our knowledge on the photochemical behaviors of steroid estrogens in natural sunlit waters.

  1. Free nitrous acid and pH determine the predominant ammonia-oxidizing bacteria and amount of N2O in a partial nitrifying reactor.

    PubMed

    Kinh, Co Thi; Ahn, Johwan; Suenaga, Toshikazu; Sittivorakulpong, Nakanya; Noophan, Pongsak; Hori, Tomoyuki; Riya, Shohei; Hosomi, Masaaki; Terada, Akihiko

    2017-02-01

    We investigated the effects of free ammonia (FA) and free nitrous acid (FNA) concentrations on the predominant ammonia-oxidizing bacteria (AOB) and the emission of nitrous oxide (N2O) in a lab-scale sequencing batch reactor for partial nitrification. The reactor was operated with stepwise increases in the NH4(+) loading rate, which resulted in a maximum FA concentration of 29.3 mg-N/L at pH 8.3. Afterwards, FNA was increased by a gradual decrease of pH, reaching its maximum concentration of 4.1 mg-N/L at pH 6.3. Fluorescence in situ hybridization indicated that AOB remained predominant during the operation, achieving specific nitrification rates of 1.04 and 0.99 g-N/g-VSS/day at the highest accumulations of FA and FNA, respectively. These rates were in conjunction with partial nitrification efficiencies of >84%. The N2O emission factor of oxidized NH4(+) was 0.90% at pH 7.0, which was higher than those at pH 8.3 (0.11%) and 6.3 (0.12%), the pHs with the maximum FA and FNA concentrations, respectively. High-throughput sequencing of 16S ribosomal RNA genes showed that increases in FNA drastically changed the predominant AOB species, although increased FA produced no significant changes. This study demonstrates that the FNA concentration and pH are the main drivers that determine the predominant AOB species and N2O-emission in a partial nitrifying bioreactor.

  2. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.

    PubMed

    Chen, Z L; Huang, R Q

    2014-06-20

    Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission

  3. Nanomechanical DNA Origami pH Sensors

    PubMed Central

    Kuzuya, Akinori; Watanabe, Ryosuke; Yamanaka, Yusei; Tamaki, Takuya; Kaino, Masafumi; Ohya, Yuichi

    2014-01-01

    Single-molecule pH sensors have been developed by utilizing molecular imaging of pH-responsive shape transition of nanomechanical DNA origami devices with atomic force microscopy (AFM). Short DNA fragments that can form i-motifs were introduced to nanomechanical DNA origami devices with pliers-like shape (DNA Origami Pliers), which consist of two levers of 170-nm long and 20-nm wide connected at a Holliday-junction fulcrum. DNA Origami Pliers can be observed as in three distinct forms; cross, antiparallel and parallel forms, and cross form is the dominant species when no additional interaction is introduced to DNA Origami Pliers. Introduction of nine pairs of 12-mer sequence (5′-AACCCCAACCCC-3′), which dimerize into i-motif quadruplexes upon protonation of cytosine, drives transition of DNA Origami Pliers from open cross form into closed parallel form under acidic conditions. Such pH-dependent transition was clearly imaged on mica in molecular resolution by AFM, showing potential application of the system to single-molecular pH sensors. PMID:25325338

  4. The long-term effect of initial pH control on the enrichment culture of phosphorus- and glycogen-accumulating organisms with a mixture of propionic and acetic acids as carbon sources.

    PubMed

    Zhang, Chao; Chen, Yinguang; Liu, Yan

    2007-11-01

    In most studies on phosphorus- and glycogen-accumulating organisms (PAO and GAO), pH was controlled constantly throughout the entire anaerobic and aerobic periods, and acetic acid was used as the carbon source. In this paper, the effect of long-term initial pH values on PAO and GAO was investigated with mixed propionic and acetic acids as carbon sources. It was observed that with pH increasing from 6.4 to 8.0, the anaerobic propionic acid uptake rate by PAO linearly increased but that by GAO proportionally decreased. At pH 6.70 and pH 7.51, PAO and GAO exhibited the same acetic and propionic acid uptake rates, respectively. The acetic acid uptake rate by PAO was greater than that by GAO at pH>6.70, and the propionic acid uptake rate by PAO was higher than that by GAO at pH>7.51, which indicated that PAO would take predominance over GAO at pH>7.51. Poly-3-hydroxybutyrate, poly-3-hydroxyvalerate and poly-3-hydroxy-2-methylvalerate shared 7%, 62% and 31%, respectively in the PAO system, and 11%, 44% and 45% respectively in the GAO system, and these fractions were observed independent of pH either in the PAO or in the GAO system. In the PAO system, with the increase of pH, the phosphorus removal efficiency was improved greatly, and a phosphorus removal efficiency of 100% was achieved at 8.0. Further investigation showed that the higher phosphorus removal efficiency at higher pH was mainly caused by a biological effect instead of chemical one.

  5. A polycarboxylic/amino functionalized hyaluronic acid derivative for the production of pH sensible hydrogels in the prevention of bacterial adhesion on biomedical surfaces.

    PubMed

    Palumbo, Fabio Salvatore; Bavuso Volpe, Antonella; Cusimano, Maria Grazia; Pitarresi, Giovanna; Giammona, Gaetano; Schillaci, Domenico

    2015-01-15

    A graft copolymer derivative of hyaluronic acid bearing pendant amino and short polymethacrylate portions (HA-EDA-BMP-MANa) has been employed for the production of a pH sensible vancomycin releasing hydrogel and studied in vitro to test its potential anti adhesive property against Staphylococcus aureus colonization. The copolymer obtained through atom transfer radical polymerization bears chargeable (carboxyl and amino groups) portions and it could be formulated as a hydrogel at a concentration of 10%w/v. The HA-EDA-BMP-MANa hydrogels, produced at three different pH values (5, 6 and 7, respectively), were formulated with or without the addition of vancomycin (2%w/v). The vancomycin release profiles were detected and related to the starting hydrogel pH values, demonstrating that the systems were able to sustain the release of drug for more than 48 h. S. aureus adhesion tests were performed on glass culture plates and hydroxyapatite doped titanium surfaces, comparing the performances of HA-EDA-BMP-MANa hydrogel formulations (obtained with and without vancomycin) with similar formulations obtained using unmodified hyaluronic acid. The non fouling property of a selected HA-EDA-BMP-MANa hydrogel (without vancomycin) was also assayed with a BSA adsorption test. We found that the HA-EDA-BMP-MANa hydrogel even without vancomycin prevented bacterial adhesion on investigated surfaces.

  6. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities.

    PubMed

    Mandotra, S K; Kumar, Pankaj; Suseela, M R; Nayaka, S; Ramteke, P W

    2016-02-01

    The present study dealt with biomass, lipid concentration, fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under different phosphate concentrations, pH and light intensities, one at a time. Among different phosphate concentrations, higher biomass (770.10±11.0mg/L) and lipid concentration (176.87±4.6mg/L) were at the concentration of 60mg/L. Light intensity at 6000lux yielded higher biomass and lipid concentration of 742.0±9.7 and 243.15±9.1mg/L, respectively. The biomass (769.0±12.3mg/L) and lipid (179.47±5.5mg/L) concentration were highest at pH 8 and pH 6, respectively. All the culture treatments showed marked effect on the fatty acid profile and biodiesel properties of the extracted oil. FAME derived biodiesel properties were compared with European biodiesel standards (EN 14214), Indian biodiesel standards (IS 15607) and American biodiesel standards (ASTM D 6751-08) to assess the suitability of algal oil as biodiesel feedstock.

  7. Impact of Plasma-Lyte pH 7.4 on acid-base status and hemodynamics in a model of controlled hemorrhagic shock

    PubMed Central

    Noritomi, Danilo Teixeira; Pereira, Adriano José; Bugano, Diogo Diniz Gomes; Rehder, Paulo Sergio; Silva, Eliézer

    2011-01-01

    OBJECTIVE: Intravenous infusion of crystalloid solutions is a cornerstone of the treatment of hemorrhagic shock. However, crystalloid solutions can have variable metabolic acid-base effects, perpetuating or even aggravating shock-induced metabolic acidosis. The aim of this study was to compare, in a controlled volume–driven porcine model of hemorrhagic shock, the effects of three different crystalloid solutions on the hemodynamics and acid-base balance. METHODS: Controlled hemorrhagic shock (40% of the total blood volume was removed) was induced in 18 animals, which were then treated with normal saline (0.9% NaCl), Lactated Ringer's Solution or Plasma-Lyte pH 7.4, in a blinded fashion (n = 6 for each group). Using a predefined protocol, the animals received three times the volume of blood removed. RESULTS: The three different crystalloid infusions were equally capable of reversing the hemorrhage-induced low cardiac output and anuria. The Lactated Ringer's Solution and Plasma-Lyte pH 7.4 infusions resulted in an increased standard base excess and a decreased serum chloride level, whereas treatment with normal saline resulted in a decreased standard base excess and an increased serum chloride level. The Plasma-Lyte pH 7.4 infusions did not change the level of the unmeasured anions. CONCLUSION: Although the three tested crystalloid solutions were equally able to attenuate the hemodynamic and tissue perfusion disturbances, only the normal saline induced hyperchloremia and metabolic acidosis. PMID:22086530

  8. Ambulatory pH Monitoring: New Advances and Indications

    PubMed Central

    Lutsi, Brant

    2006-01-01

    Ambulatory pH monitoring is currently used to objectively demonstrate abnormal degrees of esophageal acid exposure in patients with suspected gastroesophageal reflux disease. The development of wireless pH capsule recording has improved the tolerability and increased the duration of pH recording. Use of symptom-reflux correlation measures and pH testing, combining periods off and on PPI therapy, serves to optimize the performance of conventional pH testing. On the other hand, devices that measure bile reflux as well as nonacid reflux (esophageal impedance testing) have broadened the definition of gastroesophageal reflux and present potential explanations for patients with continued symptoms despite high-dose PPI therapy. These advances and their current and future clinical applications are reviewed

  9. Modelling the unexpected effect of acetic and lactic acid in combination with pH and aw on the growth/no growth interface of Zygosaccharomyces bailii.

    PubMed

    Vermeulen, A; Dang, T D T; Geeraerd, A H; Bernaerts, K; Debevere, J; Van Impe, J; Devlieghere, F

    2008-05-10

    Microbial spoilage of shelf-stable acidified sauces is predominantly caused by lactic acid bacteria and yeasts. A specific spoilage yeast in these products is Zygosaccharomyces bailii, as this fructophilic, osmotolerant, and weak acid resistant yeast is difficult to control. A growth/no growth model was developed describing the influence of (i) pH in a range from pH 3.0 to pH 5.0 (5 levels), (ii) acetic acid in a range from 0 to 3.5% (w/v), and (iii) lactic acid in a range from 0 to 3.0% (w/v). aw was fixed at a level of 0.95 which is representative for acidified sauces with high sugar content. Modified Sabouraud medium was inoculated at +/- 10(4) CFU/ml, incubated at 30 degrees C and growth was assessed by optical density measurements. All combinations of environmental conditions were tested in at least twelve replicates, yielding precise values for the probability of growth. Results showed that replacing acetic acid by lactic acid, which has a milder taste, may imply some risks on food spoilage because, under some conditions, stimulation of growth by lactic acid was observed. This stimulation had also consequences on the model development: (i) only ordinary logistic regression models were able to describe this phenomenon due to their flexible behaviour, (ii) it was necessary to split up the data set into two subsets to have the best description of the obtained data. Two different ordinary logistic regression models were fitted on these data sets taking either the total acid concentration as one of the explanatory variables or differentiating between the undissociated and dissociated acid concentrations. The obtained models were compared with the CIMSCEE code [CIMSCEE, 1992. Code for the production of microbiologically safe and stable emulsified and non-emulsified sauces containing acetic acid. Comité des Industries des Mayonnaise et Sauces Condimentaires, de la Communauté Economique Européenne, Brussels, Belgium], a formula which is nowadays often used by the

  10. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  11. The Semen pH Affects Sperm Motility and Capacitation.

    PubMed

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  12. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation

    PubMed Central

    Gleghorn, Michael L.; Zhao, Jianbo; Turner, Douglas H.; Maquat, Lynne E.

    2016-01-01

    We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA7 forms well-ordered crystals, whereas rA6 forms fragile crystalline-like structures, and rA5, rA8 and rA11 fail to crystallize. Our findings support studies from ∼50 years ago: one showed using spectroscopic methods that duplex formation at pH 4.5 largely starts with rA7 and begins to plateau with rA8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP−rAMP helix base pair. Our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor. PMID:27288442

  13. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism.

    PubMed

    Smith, E A; Macfarlane, G T

    1996-09-01

    Concentrations of phenolic compounds in human gut contents were more than fourfold higher in the distal colon (6.2 mmol kg-1) compared to the proximal bowel (1.4 mmol kg-1). Tryptophan metabolites were never found in more than trace amounts in large intestinal contents and phenol substituted fatty acids were the major products of aromatic amino acid fermentation that accumulated in the proximal colon, whereas phenol and p-cresol were more important in the distal gut, accounting for 70% of all products of dissimilatory aromatic amino acid metabolism. In vitro incubations of colonic material showed that phenol was produced most rapidly (1.0 mumol g-1 h-1), whereas indole was formed comparatively slowly (0.06 mumol g-1 h-1). Most probable number (MPN) estimations demonstrated that large populations of phenol and indole producing bacteria occur in the large intestine (range log10 9.8-11.5 (g dry wt faeces)-1, mean 10.6, N = 7). With respect to phenolic compounds, phenylacetate and phenylpropionate producers predominated, while indoleacetate-forming bacteria were the major tryptophan-utilizing organisms. Quantitation of products of dissimilatory aromatic amino acid metabolism in MPN tubes showed that phenol and phenylpropionate mainly accumulated at low sample dilutions, whereas phenylacetate, p-cresol, indoleacetate and indolepropionate were formed in greatest amounts at high sample dilutions. The significance of pH and carbohydrate availability with respect to aromatic amino acid metabolism was shown in batch culture fermentation studies, where net production of phenolic compounds by mixed populations of intestinal bacteria was reduced by approximately 33% during growth at pH 5.5 compared to pH 6.8, and by 60% in the presence of a fermentable carbohydrate. Experiments with 16 species of intestinal bacteria belonging to six different genera showed that environmental factors such as low pH and high carbohydrate availability markedly reduced dissimilatory aromatic amino

  14. Development of a pH sensor based on a nanostructured filter adding pH-sensitive fluorescent dye for detecting acetic acid in photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Asaka, Takashi; Itayama, Tomohiro; Nagasaki, Hideaki; Iwami, Kentaro; Yamamoto, Chizuko; Hara, Yukiko; Masuda, Atsushi; Umeda, Norihiro

    2015-08-01

    Acetic acid formed via the hydrolysis of ethylene vinyl acetate (EVA) as an encapsulant in photovoltaic (PV) modules causes a decrease in the conversion efficiency of such modules by grid corrosion. Here, a nondestructive and simple optical method for evaluating the condition of PV modules is proposed. This method uses a dual-wavelength pH-sensitive fluorescent dye to detect acetic acid in PV modules using a change in pH. The change in pH induced by the formation of acetic acid is detected by the change in the ratio of the fluorescent intensities of two peaks of the dye. A pH-sensitive fluorescent dye showed sensitivity for small amounts of acetic acid such as that produced from EVA. Furthermore, a membrane filter dyed with a pH-sensitive fluorescent dye was confirmed to detect acetic acid in aged EVA after a damp-heat test (85 °C, 85%) for 5000 h in PV modules.

  15. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    NASA Astrophysics Data System (ADS)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  16. Modification of the wettability of a polymeric substrate by pH effect. Determination of the surface acid dissociation constant by contact angle measurements.

    PubMed

    Badre, Chantal; Mayaffre, Alain; Letellier, Pierre; Turmine, Mireille

    2006-09-26

    The wetting properties of a substrate can be changed by chemical reaction. Here, we studied simple materials with acid-base properties, by preparing poly(vinyl chloride) films containing lauric acid. These substrates constitute simple polymeric surfaces the wettability of which can be easily controlled by the acid-base equilibrium. The roughness of the material was then varied by adding Aerosil (hydrophobic fumed silica). We then studied the wettability of these materials toward aqueous buffer solutions between pH 2 and 12 from contact angle measurements. The variation of the contact angle of a droplet of buffer solution with the pH of the solution was described by a simple thermodynamic model requiring only two parameters. Thus, we could characterize the acid polymer by an effective surface acid dissociation constant the value of which was consistent with those obtained with a similar surface. We showed that the behavior of any substrate could be described even if the surface geometry was not well-known.

  17. Effects of ionic liquid as additive and the pH of the mobile phase on the retention factors of amino benzoic acids in RP-HPLC.

    PubMed

    Zheng, J; Polyakova, Y; Row, K H

    2007-01-01

    As an organic salt, ionic liquids are widely used as new solvent media. In this paper, three positional isomers, such as o-amino benzoic acid, m-amino benzoic acid, and p-amino benzoic acid are separated with four different ionic liquids as additives to the mobile phase using reversed-phase (RP) high-performance liquid chromatography (HPLC). Amino benzoic acids are biologically active substances; the p-isomer is present in a group of water-soluble vitamins and is widely known as a sunscreen agent. The ionic liquids used are 1-butyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium methylsulfate, and 1-octyl-3-methylimidazolium methylsulfate. The effects of the length of the alkyl group on the imidazolium ring and its counterion, the concentrations of the ionic liquid, and the effect of the pH of the mobile phase on the retention factor of the amino benzoic acid isomers are studied. Separation with the ionic liquid in the eluent was better than the separation without the ionic liquid. The pH mainly affected the retention and elution order of the solutes in RP-HPLC.

  18. Variation of ocean pH in the Indonesia waters

    NASA Astrophysics Data System (ADS)

    Putri, Mutiara Rachmat; Setiawan, Agus; Safitri, Mediana

    2015-09-01

    The variation of ocean acidity (pH) in the Indonesia waters is strongly influenced by monsoon. Since the climate change tends to potentially change monsoonal variation over the Indonesian region, it will give also implication to the ocean pH variation. Moreover, changes of ocean pH will give effects to the marine lifes and their environment. In order to investigate this issue, we tried to calculate monthly variation of sea surface pH in the Indonesia waters based on monthly average temperature and salinity over past 18 years data. Temperature and salinity data used in this study were taken from the hydrodynamic model of Hamburg Shelf Ocean Model (HAMSOM), while alkalinity and dissolved inorganic carbon (DIC) were from World Ocean Atlas 2009 (WOA 2009). Algorithm from Ocean Carbon Model Intercomparison Project-version.3 (OCMIP-3) was used to calculate the pH. The estimation results indicate that pH variation in the Indonesia waters changes insignificantly over 18 years. El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) contribute to physical changes of seawater, but did not affect the pH significantly. The average pH of seawater is higher during northwest monsoon than during southeast monsoon.

  19. Evanescent-wave spectroscopic fiber optic pH sensor

    NASA Astrophysics Data System (ADS)

    Egami, C.; Takeda, K.; Isai, M.; Ogita, M.

    1996-02-01

    We demonstrate a new type of fiber optic pH sensor, which is the application of evanescent-wave spectroscopic technique. A methyl red (MR)-doped-poly(methyl methacrylate) (PMMA) film that coated as part of cladding does function as a pH sensor probe. In this system MR doped in PMMA is used as indicator dye for pH measurement. The absorption spectrum shift in wavelength of indicator dye enables us to get the pH value. The sensor probe is immersed in water solution containing a small proportion of acetic acid over the wide pH range of 5.0 to 7.0. The chemical interaction between MR in sensor probe and hydrogen ion in the water solution causes a change in the dipole moment of MR, that is, the absorption spectrum macroscopically. The evanescent-wave spectroscopic technique provides the measurement of the absorption spectrum shift over a broad range of visible wavelength. The result of experiment was that MR absorption spectrum shifted by 40 nm every increase of 1.0 in pH. The small change in the pH value can be sensed as a large wavelength shift of pH indicator absorption spectrum.

  20. Coping with PH over the Long Term

    MedlinePlus

    ... Process: Some First Steps Adoption Success Story Watch Classroom Recordings Empowered Patient Online Toolkit Tab 1: Very ... Kathy Groebner Education Programs Patients and Caregivers PHA Classroom PHA on the Road: PH Patients and Families ...

  1. Effect of two mouthwashes on salivary ph.

    PubMed

    Belardinelli, Paola A; Morelatto, Rosana A; Benavidez, Tomás E; Baruzzi, Ana M; López de Blanc, Silvia A

    2014-01-01

    To analyze the effect of two mouthwashes on salivary pH and correlate it with age, buffer capacity and saliva flow rate in healthy volunteers, a crossover phase IV clinical study involving three age-based groups was designed. Two commercial mouthwashes (MW), Cool Mint ListerineR (MWa) and Periobacter R (MWb) were used. The unstimulated saliva of each individual was first characterized by measuring flow rate, pH, and buffer capacity. Salivary pH was evaluated before rinsing with a given MW, immediately after rinsing, 5 minutes later, and then every 10 min (at 15, 25, 35 min) until the baseline pH was recovered. Paired t-test, ANOVA with a randomized block design, and Pearson correlation tests were used. Averages were 0.63 mL/min, 7.06, and 0.87 for flow rate, pH, and buffer capacity, respectively. An immediate significant increase in salivary pH was observed after rinsing, reaching average values of 7.24 (MWb) and 7.30 (MWa), which declined to an almost stable value 15 minutes. The great increase in salivary pH, after MW use shows that saliva is a dynamic system, and that the organism is capable of responding to a stimulus with changes in its composition. It is thus evident that pH of the external agent alone is not a good indicator for its erosive potential because biological systems tend to neutralize it. The results of this study enhance the importance of in vivo measurements and reinforce the concept of the protective action of saliva.

  2. Method for producing rapid pH changes

    DOEpatents

    Clark, John H.; Campillo, Anthony J.; Shapiro, Stanley L.; Winn, Kenneth R.

    1981-01-01

    A method of initiating a rapid pH change in a solution by irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.

  3. Method for producing rapid pH changes

    DOEpatents

    Clark, J.H.; Campillo, A.J.; Shapiro, S.L.; Winn, K.R.

    A method of initiating a rapid pH change in a solution comprises irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.

  4. Mildly Acidic Conditions Eliminate Deamidation Artifact during Proteolysis: Digestion with Endoprotease Glu-C at pH 4.5

    PubMed Central

    Liu, Shanshan; Moulton, Kevin Ryan; Auclair, Jared Robert; Zhou, Zhaohui Sunny

    2016-01-01

    Common yet often overlooked, deamidation of peptidyl asparagine (Asn or N) generates aspartic acid (Asp or D) or isoaspartic acid (isoAsp or isoD). Being a spontaneous, non-enzymatic protein post-translational modification, deamidation artifact can be easily introduced during sample preparation, especially proteolysis where higher-order structures are removed. This artifact not only complicates the analysis of bona fide deamidation but also affects a wide range of chemical and enzymatic processes; for instance, the newly generated Asp and isoAsp residues may block or introduce new proteolytic sites, and also convert one Asn peptide into multiple species that affect quantification. While the neutral to mildly basic conditions for common proteolysis favor deamidation, mildly acidic conditions markedly slow down the process. Unlike other commonly used endoproteases, Glu-C remains active under mildly acid conditions. As such, as demonstrated herein, deamidation artifact during proteolysis was effectively eliminated by simply performing Glu-C digestion at pH 4.5 in ammonium acetate, a volatile buffer that is compatible with mass spectrometry. Moreover, nearly identical sequence specificity was observed at both pH’s (8.0 for ammonium bicarbonate), rendering Glu-C as effective at pH 4.5. In summary, this method is generally applicable for protein analysis as it requires minimal sample preparation and uses the readily available Glu-C protease. PMID:26748652

  5. Propagated fixed-bed mixed-acid fermentation: effect of volatile solid loading rate and agitation at near-neutral pH.

    PubMed

    Golub, Kristina W; Golub, Stacey R; Meysing, Daniel M; Holtzapple, Mark T

    2012-11-01

    To increase conversion and product concentration, mixed-acid fermentation can use a countercurrent strategy where solids and liquids pass in opposite directions through a series of fermentors. To limit the requirement for moving solids, this study employed a propagated fixed-bed fermentation, where solids were stationary and only liquid was transferred. To evaluate the role of agitation, continuous mixing was compared with periodic mixing. The periodically mixed fermentation had similar conversion, but lower yield and selectivity. Increasing volatile solid loading rate from 1.5 to 5.1g non-acid volatile solids/(L(liq)·d) and increasing liquid retention time decreased yield, conversion, selectivity, but increased product concentrations. Compared to a previous study at high pH (~9), this study achieved higher performance at near neutral pH (~6.5) and optimal C-N ratios. Compared to countercurrent fermentation, propagated fixed-bed fermentations have similar selectivities and produce similar proportions of acetic acid, but have lower yields, conversion, productivities, and acid concentrations.

  6. Chemical and photophysical mechanism of fluorescence enhancement of 3-quinolineboronic acid upon change of pH and binding with carbohydrates.

    PubMed

    Shen, Qian Jin; Jin, Wei Jun

    2011-01-01

    The free 3-quinolineboronic acid (3-QBA) with the lowest (n-π*) excited singlet is non- or weakly fluorescent while protonated 3-QBA has the lowest (π-π*) excited singlet state and is highly fluorescent. The hybridization of boronic atom or charge transfer from aromatic ring to boronic acid group plays a secondary role in affecting fluorescence intensity. Binding with carbohydrate at a proper acidity, the hybridization of boron atom changes from sp(2) to sp(3) and the nitrogen atom in the quinoline ring is partially protonated, resulting in large enhancement of fluorescence. Meanwhile, the fluorescent lifetime of 3-QBA produces obvious change by binding with carbohydrates. Quinoline boronic acid is an important water-soluble fluorescence sensor for carbohydrate recognition. Both the remarkable changes in intensity and lifetime of 3-QBA can act as working parameters in recognition of carbohydrates at physiological pH.

  7. Effect of pH, fluoride and hydrofluoric acid concentration on ion release from NiTi wires with various coatings.

    PubMed

    Katic, Visnja; Curkovic, Lidija; Bosnjak, Magdalena Ujevic; Peros, Kristina; Mandic, Davor; Spalj, Stjepan

    2017-03-31

    Aim was to determine effect of pH, fluoride (F(-)) and hydrofluoric acid concentration (HF) on dynamic of nickel (Ni(2+)) and titanium (Ti(4+)) ions release. Nickel-titanium wires with untreated surface (NiTi), rhodium (RhNiTi) and nitride (NNiTi) coating were immersed once a week for five min in remineralizing agents, followed by immersion to artificial saliva. Ion release was recorded after 3, 7, 14, 21 and 28 days. Pearson correlations and linear regression were used for statistical analysis. Release of Ni(2+) from NiTi and NNiTi wires correlated highly linearly positively with HF (r=0.948 and 0.940, respectively); for RhNiTi the correlation was lower and negative (r=-0.605; p<0.05). The prediction of Ti(4+) release was significant for NiTi (r=0.797) and NNiTi (r=0.788; p<0.05) wire. Association with F(-) was lower; for pH it was not significant. HF predicts the release of ions from the NiTi wires better than the pH and F(-) of the prophylactic agents.

  8. Compartment-specific pH monitoring in Bacillus subtilis using fluorescent sensor proteins: a tool to analyze the antibacterial effect of weak organic acids.

    PubMed

    van Beilen, Johan W A; Brul, Stanley

    2013-01-01

    The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5' end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0-7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations.

  9. Self-assembly and bilayer-micelle transition of fatty acids studied by replica-exchange constant pH molecular dynamics.

    PubMed

    Morrow, Brian H; Koenig, Peter H; Shen, Jana K

    2013-12-03

    Recent interest in the development of surfactant-based nanodelivery systems targeting tumor sites has sparked our curiosity in understanding the detailed mechanism of the self-assembly and phase transitions of pH-sensitive surfactants. Toward this goal, we applied a state-of-the-art simulation technique, continuous constant pH molecular dynamics (CpHMD) with the hybrid-solvent scheme and pH-based replica-exchange protocol, to study the de novo self-assembly of 30 and 40 lauric acids, a simple model titratable surfactant. We observed the formation of a gel-state bilayer at low and intermediate pH and a spherical micelle at high pH, with the phase transition starting at 20-30% ionization and being completed at 50%. The degree of cooperativity for the transition increases from the 30-mer to the 40-mer. The calculated apparent or bulk pKa value is 7.0 for the 30-mer and 7.5 for the 40-mer. Congruent with experiment, these data demonstrate that CpHMD is capable of accurately modeling large conformational transitions of surfactant systems while allowing the simultaneous proton titration of constituent molecules. We suggest that CpHMD simulations may become a useful tool in aiding in the design and development of pH-sensitive nanocarriers for a variety of biomedical and technological applications.

  10. "Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH".

    PubMed

    Ulloa, G; Collao, B; Araneda, M; Escobar, B; Álvarez, S; Bravo, D; Pérez-Donoso, J M

    2016-12-01

    The use of bacterial cells to produce fluorescent semiconductor nanoparticles (quantum dots, QDs) represents a green alternative with promising economic potential. In the present work, we report for the first time the biosynthesis of CdS QDs by acidophilic bacteria of the Acidithiobacillus genus. CdS QDs were obtained by exposing A. ferrooxidans, A. thiooxidans and A. caldus cells to sublethal Cd(2+) concentrations in the presence of cysteine and glutathione. The fluorescence of cadmium-exposed cells moves from green to red with incubation time, a characteristic property of QDs associated with nanocrystals growth. Biosynthesized nanoparticles (NPs) display an absorption peak at 360nm and a broad emission spectra between 450 and 650nm when excited at 370nm, both characteristic of CdS QDs. Average sizes of 6 and 10nm were determined for green and red NPs, respectively. The importance of cysteine and glutathione on QDs biosynthesis in Acidithiobacillus was related with the generation of H2S. Interestingly, QDs produced by acidophilic bacteria display high tolerance to acidic pH. Absorbance and fluorescence properties of QDs was not affected at pH 2.0, a condition that totally inhibits the fluorescence of QDs produced chemically or biosynthesized by mesophilic bacteria (stable until pH 4.5-5.0). Results presented here constitute the first report of the generation of QDs with improved properties by using extremophile microorganisms.

  11. Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: suboptimal pH growth inhibition of a lactic acid bacterium.

    PubMed

    Wolf, Barry F; Fogler, H Scott

    2005-01-05

    Bacterial profile modification (BPM), a form of tertiary oil recovery, diverts water from the water-flooded high-permeability zone into the oil-bearing low-permeability zone. During field use, exopolymer-producing bacteria plug the high-permeability zone only in the immediate vicinity of the injection point (the near-well bore region). For effective BPM the plug must penetrate far into the formation. Slowing the specific growth rate, lengthening the lag phase, and slowing the polymerization rate are techniques that can prolong the onset of biopolymer gelation and extend the depth of the biological plug. In batch experiments, the growth of Leuconostoc mesenteroides NRRL-B523 was inhibited by the synergistic effects of high substrate loading and an alkaline pH. Exponential growth was delayed up to 190 h. It was observed that cell division was significantly retarded until the medium pH, reduced by the acid byproducts of fermentation, reached a critical value of 6.79 +/- 0.06. A mathematical model was developed to describe the relationship between specific growth rate, lag time, and medium pH.

  12. Reactivity and acid-base behavior of ring-methoxylated arylalkanoic acid radical cations and radical zwitterions in aqueous solution. Influence of structural effects and pH on the benzylic C-H deprotonation pathway.

    PubMed

    Bietti, Massimo; Capone, Alberto

    2006-07-07

    A product and time-resolved kinetic study of the one-electron oxidation of ring-methoxylated phenylpropanoic and phenylbutanoic acids (Ar(CH2)nCO2H, n = 2, 3) has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations (Ar.+(CH2)nCO2H) or radical zwitterions (Ar.+(CH2)nCO2-) depending on pH, and pKa values for the corresponding acid-base equilibria have been measured. In the radical cation, the acidity of the carboxylic proton decreases by increasing the number of methoxy ring substituents and by increasing the distance between the carboxylic group and the aromatic ring. At pH 1.7 or 6.7, the radical cations or radical zwitterions undergo benzylic C-H deprotonation as the exclusive side-chain fragmentation pathway, as clearly shown by product analysis results. At pH 1.7, the first-order deprotonation rate constants measured for the ring-methoxylated arylalkanoic acid radical cations are similar to those measured previously in acidic aqueous solution for the alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations. In basic solution, the second-order rate constants for reaction of the radical zwitterions with (-)OH (k-OH)) have been obtained. These values are similar to those obtained previously for the (-)OH-induced alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations, indicating that under these conditions the radical zwitterions undergo benzylic C-H deprotonation. Very interestingly, with 3,4-dimethoxyphenylethanoic acid radical zwitterion, that was previously observed to undergo exclusive decarboxylation up to pH 10, competition between decarboxylation and benzylic C-H deprotonation is observed above pH 11.

  13. Effect of UV irradiation on the aggregation of TiO2 in an aquatic environment: Influence of humic acid and pH.

    PubMed

    Wang, Peifang; Qi, Ning; Ao, Yanhui; Hou, Jun; Wang, Chao; Qian, Jin

    2016-05-01

    The behavior of photoactive TiO2 nanoparticles in an aquatic environment under UV irradiation was investigated. When there was no UV light irradiation, the attachment of humic acid (HA) onto the TiO2 nanoparticles improved their stability due to an increase in the electrostatic and steric repulsions between the particles. However, our study demonstrated that UV light clearly influenced the aggregation of TiO2 nanoparticles. Half an hour of UV irradiation caused the particles to aggregate from 331.0 nm to 1505.0 nm at a pH of 3.0. Similarly, the particles aggregated from 533.2 nm to 1037.0 nm at a pH of 6.5 and from 319.0 nm to 930.0 nm at a pH of 9.0. The aggregation continued with increased irradiation time, except for the condition at pH 3.0, which demonstrated disaggregation. Furthermore, we determined that the photocatalytic degradation of the HA dominated the behavior of TiO2 in our study. From the results of HA removal and 3DEEM fluorescence spectra data for the solution, a change in the HA was in accordance with the size change of the TiO2. The results illustrated that the UV irradiation affected the behavior of light-active nanomaterial (such as TiO2) in an aquatic system, thus influencing their bioavailability and reactivity.

  14. Low pH increases the yield of exosome isolation.

    PubMed

    Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2015-05-22

    Exosomes are the extracellular vesicles secreted by various cells. Exosomes mediate intercellular communication by delivering a variety of molecules between cells. Cancer cell derived exosomes seem to be related with tumor progression and metastasis. Tumor microenvironment is thought to be acidic and this low pH controls exosome physiology, leading to tumor progression. Despite the importance of microenvironmental pH on exosome, most of exosome studies have been performed without regard to pH. Therefore, the difference of exosome stability and yield of isolation by different pH need to be studied. In this research, we investigated the yield of total exosomal protein and RNA after incubation in acidic, neutral and alkaline conditioned medium. Representative exosome markers were investigated by we