Sample records for acidic ph range

  1. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  2. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  3. Acid precipitation effects on soil pH and base saturation of exchange sites

    Treesearch

    W. W. McFee; J. M. Kelly; R. H. Beck

    1976-01-01

    The typical values and probable ranges of acid-precipitation are evaluated in terms of their theoretical effects on pH and cation exchange equilibrium of soils characteristic of the humid temperature region. The extent of probable change in soil pH and the time required to cause such a change are calculated for a range of common soils. Hydrogen ion input by acid...

  4. Role of pH on the stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Khokhar, M. I.; Beck, F. H.; Fontana, M. G.

    1973-01-01

    Stress corrosion cracking (SCC) experiments were conducted on Ti-8-1-1 wire specimens in hydrochloric and sulfuric acids of variable pH in order to determine the effect of pH on the susceptibility to cracking. The alloy exhibited increasing susceptibility with decreasing pH. By varying the applied potential, it was observed that susceptibility zones exist both in the cathodic and the anodic ranges. In the cathodic range, susceptibility also increased with decreasing applied potential. Corrosion potential-time data in hydrochloric acid (pH 1.7) and sulfuric acid (pH 1.7) indicate that chloride ions lower the corrosion potential of the specimen which, in turn, increases the susceptibility.

  5. Cytoplasmic pH Response to Acid Stress in Individual Cells of Escherichia coli and Bacillus subtilis Observed by Fluorescence Ratio Imaging Microscopy

    PubMed Central

    Martinez, Keith A.; Kitko, Ryan D.; Mershon, J. Patrick; Adcox, Haley E.; Malek, Kotiba A.; Berkmen, Melanie B.

    2012-01-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no “overshoot” but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms. PMID:22427503

  6. Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy.

    PubMed

    Martinez, Keith A; Kitko, Ryan D; Mershon, J Patrick; Adcox, Haley E; Malek, Kotiba A; Berkmen, Melanie B; Slonczewski, Joan L

    2012-05-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no "overshoot" but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.

  7. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D. Kirk; Taylor, Howard E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  8. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    PubMed

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation.

    PubMed

    Sakarika, Myrsini; Kornaros, Michael

    2016-11-01

    The goal of the present study was to investigate the pH range that can support the growth of C. vulgaris, and, more specifically, to identify the optimal pH for the microalga's growth, under heterotrophic conditions. Furthermore, the effect of pH on the accumulation of intracellular lipids was studied. A wide range of pH values was tested using the respective buffer solutions. The optimal pH for biomass growth and lipid accumulation under sulfur limitation was found to be 7.5, resulting in maximum specific growth rate of 0.541days(-1) and maximum total lipid content of 53.43%ggDW(-1). The fatty acid composition of C. vulgaris was found to be unrelated to pH, as the lipid content did not present significant variations in the pH values tested. The fatty acid profile was mainly composed of monounsaturated fatty acids (MUFAs) with the dominant one being oleic acid (C18:1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.

    PubMed

    Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung

    2017-03-01

    The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

  11. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase.

    PubMed

    West, Caroline; Melin, Jodie; Ansouri, Hassna; Mengue Metogo, Maïly

    2017-04-07

    The mobile phases employed in current supercritical fluid chromatography (SFC) are usually composed of a mixture of pressurized carbon dioxide and a co-solvent. The co-solvent is most often an alcohol and may contain a third component in small proportions, called an additive (acid, base or salt). The polarity of such mobile phase compositions is here re-evaluated with a solvatochromic dye (Nile Red), particularly to assess the contribution of additives. It appears that additives, when employed in usual concentration range (0.1% or 20mM) do not modify the polarity in the immediate environment of the probe. In addition, the combination of carbon dioxide and an alcohol is known to form alkoxylcarbonic acid, supposedly conferring some acidic character to SFC mobile phases. Direct measurements of the apparent pH are impossible, but colour indicators of pH can be used to define the range of apparent pH provided by carbon dioxide-alcohol mixtures, with or without additives. Five colour indicators (Thymol Blue, Bromocresol Green, Methyl Red, Bromocresol Purple, and Bromothymol Blue) were selected to provide a wide range of aqueous pK a values (from 1.7 to 8.9). UV-vis absorption spectra measured in liquid phases of controlled pH were compared to those measured with a diode-array detector employed in SFC, with the help of chemometric methods. Based on these observations, it is concluded that the apparent pH range in carbon dioxide-methanol mobile phases is close to 5. Increasing the proportion of methanol (in the course of a gradient elution for instance) causes decreasing apparent pH. Strong acids can further decrease the apparent pH below 1.7; strong bases have little influence on the apparent pH, probably because, in this range of concentrations, they are titrated by alkoxylcarbonic acid or form ion pairs with alkoxycarbonate. However, bases and salts could stabilize the acidity in the course of gradient runs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    PubMed Central

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID:27755574

  13. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists.

    PubMed

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun; Ezawa, Tatsuhiro

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.

  14. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    PubMed

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Recovery and characterization of proteins from pangas (Pangasius pangasius) processing waste obtained through pH shift processing.

    PubMed

    Surasani, Vijay Kumar Reddy; Kudre, Tanaji; Ballari, Rajashekhar V

    2018-04-01

    Study was conducted to recover proteins from pangas (Pangasius pangasius) processing waste (fillet frames) using pH shift method and to characterize the recovered isolates. pH 2.0 from acidic range and pH 13.0 from alkaline range were found to have maximum protein recovery (p < 0.05). During the recovery process, acidic pH (pH 2.0) was found to have minimal effect on proteins resulting in more stable isolates and strong protein gels. Alkaline pH (pH 13.0) caused protein denaturation resulting in less stable proteins and poor gel network. Both acidic and alkaline-aided processing caused significant (p < 0.05) reductions in total lipid, myoglobin, and pigment content thus by resulting in whiter protein isolates and gels. The content of total essential amino acids increased during pH shift processing, indicating the enrichment of essential amino acids. No microbial counts were detected in any of the isolates prepared using acid and alkaline extraction methods. pH shift processing was found to be promising in the utilization of fish processing waste for the recovery of functional proteins from pangas processing waste thus by reducing the supply demand gap as well pollution problems.

  16. Mechanisms of intragastric pH sensing.

    PubMed

    Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D

    2010-12-01

    Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.

  17. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  18. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    NASA Technical Reports Server (NTRS)

    Forsythe, J. G.; Weber, A. L.

    2017-01-01

    Past studies of prebiotic peptide bond synthesis have generally been carried out in the acidic to neutral pH range [1, 2]. Here we report a new process for peptide bond (amide) synthesis in the neutral to alkaline pH range that involves simple dry-down heating of amino acids in the presence of glycerol and bicarbonate. Glycerol was included in the reaction mixture as a solvent and to provide hydroxyl groups for possible formation of ester intermediates previously implicated in peptide bond synthesis under acidic to neutral conditions [1]. Bicarbonate was added to raise the reaction pH to 8-9.

  19. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    PubMed

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  20. Effect of pH on structure, function, and stability of mitochondrial carbonic anhydrase VA.

    PubMed

    Idrees, Danish; Shahbaaz, Mohd; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-02-01

    Mitochondrial carbonic anhydrase VA (CAVA) catalyzes the hydration of carbon dioxide to produce proton and bicarbonate which is primarily expressed in the mitochondrial matrix of liver, and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis, and neuronal transmission. To understand the effect of pH on the structure, function, and stability of CAVA, we employed spectroscopic techniques such as circular dichroism, fluorescence, and absorbance measurements in wide range of pH (from pH 2.0 to pH 11.5). CAVA showed an aggregation at acidic pH range from pH 2.0 to pH 5.0. However, it remains stable and maintains its secondary structure in the pH range, pH 7.0-pH 11.5. Furthermore, this enzyme has an appreciable activity at more than pH 7.0 (7.0 < pH ≤ 11.5) with maximum activity at pH 9.0. The maximal values of k cat and k cat /K m at pH 9.0 are 3.7 × 10 6  s -1 and 5.5 × 10 7  M -1  s -1 , respectively. However, this enzyme loses its activity in the acidic pH range. We further performed 20-ns molecular dynamics simulation of CAVA to see the dynamics at different pH values. An excellent agreement was observed between in silico and in vitro studies. This study provides an insight into the activity of CAVA in the pH range of subcellular environment.

  1. Hydrogeologic comparison of an acidic-lake basin with a neutral-lake basin in the West-Central Adirondack Mountains, New York

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.

    1985-01-01

    Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4.7 to 7; that at Woods Lake (acidic) ranges from about 4.3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that differences in lakewater pH can be attributed to differences in the ground-water contribution to the lakes. A larger percentage of the water discharged from the neutral lake is derived from ground water than that from the acidic lake. Ground water has a higher pH resulting from a sufficiently long residence time for neutralizing chemical reactions to occur with the till. The difference in ground-water contribution is attributed to a more extensive distribution of thick till (<3m) in the neutral-lake basin than in the acidic-lake basin; average thickness of till in the neutral-lake basin is 24m whereas that in the other is 2.3m. During the snowmelt period, as much as three months of accumulated precipitation may be released within two weeks causing the lateral flow capacity of the deeper mineral soil to be exceeded in the neutral-lake basin. This excess water moves over and through the shallow acidic soil horizons and causes the lakewater pH to decrease during snowmelt.Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4. 7 to 7; that at Woods Lake (acidic) ranges from about 4. 3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that differences in lakewater pH can be attributed to differences in the ground-water contribution to the lakes. A larger percentage of the water discharged from the neutral lake is derived from ground water than that from the acidic lake. Ground water has a higher pH resulting from a sufficiently long residence time for neutralizing chemical reactions to occur with the till.

  2. Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L

    2013-12-01

    Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.

  3. Algae in relation to mine water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, H.D.

    1969-01-01

    An annual cycle of bimonthly collections was made from 17 stations located on creeks, rivers, and ponds receiving acid mine drainage in order to obtain information on the species of algae that are tolerant to these waters. Also data were obtained to determine the relative importance of some of the major chemical factors of the water to ecology of the algae. Nitrate, phosphate, and calcium did not appear to be limiting or modifying. There was a lack of correlation between chemical factors except for total acidity, iron and pH. A range for the latter three characterized each of the habitatsmore » studied. Total acidity and the associated factors (iron and pH) appeared to have the controlling influence on the algal population in the more highly acid streams. The total number of genera and species as observed in a living condition in mine polluted water, compared favorably with numbers reported from unpolluted waters. Nearly half of the total species observed were found in the more highly acid creeks, as well as in the other habitats (less acid creeks, rivers and ponds). Algae characteristic of mine polluted water were found to be those common to a range of habitats, with the reduction in numbers of species at higher acidities and at lower pH values, being primariy in those that are less common to a range of habitats. The range of total acidity and pH values at a particular site or stream reach can be characterized by a range in the number of species and their abundance - an increase or decrease in abundance being dependent on the algal species. Some species such as Euglena mutabilis Sch., Eunotia tenella (grun) Gleve, and Pinnularia braunii (grun) Cleve, are most abundant in mine polluted water.« less

  4. EFFECTS OF ACID RAIN ON APPLE TREE PRODUCTIVITY AND FRUIT QUALITY

    EPA Science Inventory

    Mature 'McIntosh', 'Empire', and 'Golden Delicious' apple trees (Malus domestica) were sprayed with simulated acid rain solutions in the pH range of 2.5 to 5.5 at full bloom in 1980 and 1981. In 1981, weekly sprays were applied at pH 2.75 and pH 3.25. Necrotic lesions developed o...

  5. RESPONSE OF BUSH BEAN EXPOSED TO ACID MIST

    EPA Science Inventory

    Bush bean plants (Phaseolus vulgaris L. cv. Contender) were treated once a week for six weeks with simulated acid mist at five pH ranging from 5.5 to 2.0. Leaf injury developed on plants exposed to acid concentrations below pH 3 and many leaves developed a flecking symptom simila...

  6. Effects of acid rain on grapevines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsline, P.L.; Musselman, R.C.; Dee, R.J.

    1983-01-01

    Mature vineyard-growing Concord grapevines were sprayed with simulated acid rain solutions ranging from pH 2.5 to 5.5 both as acute treatments at anthesis and chronically throughout the season in 1980 and 1981. In 1981, 8 additional varieties were also treated with simulated acid rain solutions at pH 2.75 and 3.25. With Concord in 1981, few foliar lesions on leaves were visible at pH 2.75. In contrast, many leaf lesions with decreased fruit soluble solids were observed at pH 2.5 in 1980. The relationship between acid-rain and oxidant stipple, chlorosis, and soluble solids in the absence of acid rain leaf lesionsmore » at pH>2.5 remains unclear. Acute sprays (pH2.75) at anthesis reduced pollen germination in four grape cultivars. However, fruit set was reduced in only one of these. Grape yields were not influenced by acid rain treatments. There was no evidence that acid-rain at ambient pH levels had negative effects on grape production or fruit quality.« less

  7. Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: A spectroscopic and batch adsorption approach

    PubMed Central

    Gao, Xiaodong; Root, Robert A.; Farrell, James; Ela, Wendell; Chorover, Jon

    2014-01-01

    The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite-water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In-situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8 – 9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)-Fe bond distances of ~2.92–2.94 and 3.41–3.44 Å, respectively. The As-Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As-Fe bonding mechanisms. PMID:25382933

  8. Activity of earthworm in Latosol under simulated acid rain stress.

    PubMed

    Zhang, Jia-En; Yu, Jiayu; Ouyang, Ying

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period. Results showed that earthworms tended to escape from the soil and eventually died for the SAR at pH = 2.0 as a result of acid toxicity. The catalase activity in the earthworms decreased with the SAR pH levels, whereas the superoxide dismutases activity in the earthworms showed a fluctuate pattern: decreasing from pH 6.5 to 5.0 and increasing from pH 5.0 to 4.0. Results implied that the growth of earthworms was retarded at the SAR pH ≤ 3.0.

  9. Influences of heating temperature, pH, and soluble solids on the decimal reduction times of acid-adapted and non-adapted Escherichia coli O157:H7 (HCIPH 96055) in a defined liquid heating medium.

    PubMed

    Gabriel, Alonzo A

    2012-11-01

    The study characterized the influences of various combinations of process and product parameters namely, heating temperature (53, 55, 57.5, 60, 62 °C), pH (2.0, 3.0, 4.5, 6.0, 7.0), and soluble solids (SS) (1.4, 15, 35, 55, 69°Brix) on the thermal inactivation of non-adapted and acid-adapted E. coli O157:H7 (HCIPH 96055) in a defined liquid heating medium (LHM). Acid adaptation was conducted by propagating cells in a gradually acidifying nutrient broth medium, supplemented with 1% glucose. The D values of non-adapted cells ranged from 1.43 s (0.02 min) to 304.89 s (5.08 min). Acid-adapted cells had D values that ranged from 1.33 s (0.02 min) to 2628.57 s (43.81 min). Adaptation did not always result in more resistant cells as indicated by the Log (D(adapted)/D(non-adapted)) values calculated in all combinations tested, with values ranging from -1.10 to 1.40. The linear effects of temperature and pH, and the joint effects of pH and SS significantly influenced the thermal resistance of non-adapted cells. Only the linear and quadratic effects of both pH and SS significantly influenced the D values of acid-adapted cells. Generally, the D values of acid-adapted cells decreased at SS greater than 55 °Brix, suggesting the possible cancelation of thermal cross protection by acid habituation at such SS levels. The relatively wide ranges of LHM pH and SS values tested in the study allowed for better examination of the effects of these factors on the thermal death of the pathogen. The results established in this work may be used in the evaluation, control and improvement of safety of juice products; and of other liquid foods with physicochemical properties that fall within the ranges tested in this work. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Rain pH estimation based on the particulate matter pollutants and wet deposition study.

    PubMed

    Singh, Shweta; Elumalai, Suresh Pandian; Pal, Asim Kumar

    2016-09-01

    In forecasting of rain pH, the changes caused by particulate matter (PM) are generally neglected. In regions of high PM concentration like Dhanbad, the role of PM in deciding the rain pH becomes important. Present work takes into account theoretical prediction of rain pH by two methods. First method considers only acid causing gases (ACG) like CO2, SO2 and NOx in pH estimation, whereas, second method additionally accounts for effect of PM (ACG-PM). In order to predict the rain pH, site specific deposited dust that represents local PM was studied experimentally for its impact on pH of neutral water. After incorporation of PM correction factor, it was found that, rain pH values estimated were more representative of the observed ones. Fractional bias (FB) for the ACG-PM method reduced to values of the order of 10(-2) from those with order of 10(-1) for the ACG method. The study confirms neutralization of rain acidity by PM. On account of this, rain pH was found in the slightly acidic to near neutral range, despite of the high sulfate flux found in rain water. Although, the safer range of rain pH blurs the severity of acid rain from the picture, yet huge flux of acidic and other ions get transferred to water bodies, soil and ultimately to the ground water system. Simple use of rain pH for rain water quality fails to address the issues of its increased ionic composition due to the interfering pollutants and thus undermines severity of pollutants transferred from air to rain water and then to water bodies and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. [Characteristics of precipitation pH and conductivity at Mt. Huang].

    PubMed

    Shi, Chun-e; Deng, Xue-liang; Wu, Bi-wen; Hong, Jie; Zhang, Su; Yang, Yuan-jian

    2013-05-01

    To understand the general characteristics of pH distribution and pollution in precipitation at Mt. Huang, statistical analyses were conducted for the routine measurements of pH and conductivity (K) at Mt. Huang during 2006-2011. The results showed that: (1) Over the period of study, the annual volume weighted mean (VWM) precipitation pH varied from 4.81 to 5.57, with precipitation acidity strengthening before 2009 and weakening thereafter. The precipitation acidity showed evident seasonal variations, with the VWM pH lowest in winter (4.78), and highest in summer (5.33). The occurrence frequency of acid rain was 46% , accounting for 45% of total rainfalls and with the most frequent pH falling into weak acid to neutral rain. (2) The annual VWM K varied from 16.91 to 27.84 microS x cm(-1), with no evident trend. As for ions pollution, the precipitation was relatively clean at Mt. Huang, with the most frequent K range being below 15 microS x cm(-1), followed by 15-25 microS x cm(-1). From February 2010 to December 2011, precipitation samples were collected on daily basis for ions analysis, as well as pH and K measurement in lab. Detailed comparisons were conducted between the two sets of pH and K, one set from field measurement and the other from lab measurement. The results indicated: (1) The lab measured pH (K) was highly correlated with the field pH (K); however, the lab pH tended to move towards neutral comparing with the corresponding field pH, and the shift range was closely correlated with the field pH and rainfall. The shift range of K from field to lab was highly correlated with the total ion concentration of precipitation. The field K showed evident negative correlation with the field pH with a correlation coefficient of -0.51. (2) When sampling with nylon-polyethylene bags, the statistics showed smaller bias between two sets of pH, with higher correlation coefficient between two sets of K. Furthermore, the lab K also showed evident negative correlation with the lab pH. Comparing with the observations at other alpine sites in central to eastern China, the natural precipitation at Mt. Huang was weaker in acidity and contains lower ion concentration.

  12. Stream Water Quality Modeling in the Great Smoky Mountains National Park

    NASA Astrophysics Data System (ADS)

    Barnett, T. W.; Robinson, R. B.

    2003-12-01

    The purpose of this study was to examine water quality in the acid-impacted Great Smoky Mountains National Park (GRSM). Water samples have been collected roughly quarterly at ninety sampling sites throughout the Park from October, 1993 to November, 2002.. These samples were analyzed for pH, acid neutralizing capacity (ANC), conductivity, major cations, and major anions. The trout fisheries of the GRSM are considered some of the best in the eastern United States. However, fisheries biologists at the GRSM believe that some of the streams that once supported trout populations twenty or thirty years ago, no longer do. This study outlines and quantifies surface water quality conditions that might be harmful to trout populations through a literature review. This study identifies 71 sites (79 percent of total sampling sites) that currently have a median pH of greater than 6.0, above which, is unlikely to be harmful to trout species unless a high runoff of acid, Al-rich water creates a mixing zone where Al(OH)3 precipitates. The precipitate can accumulate on the gills and impede normal diffusion of O2, CO2, and nutrients. There are 17 sites (18 percent) that have median pH values in the 5.0 to 6.0 range. This range of pH values is likely to be harmful to trout species when aluminum concentrations exceed about 0.2 mg/l. The lower end of this range is probably harmful to the eggs and fry of trout and also to non-acclimated trout especially when calcium, sodium, and chloride concentrations are low. Only two sampling sites have median pH values in the 4.5 to 5.0 range. This pH range is likely harmful to eggs, fry and adult trout, particularly in the soft water conditions prevalent in the GRSM. The mechanisms adversely affecting trout in these ranges are ionoregulatory dysfunction, respiratory stress, and circulatory stress. Currently, there are no sampling sites with median pH values less than 4.5, although pH values could be lowered by more than one pH unit during high-flow episodic events depending on the ANC in the stream. Stepwise multiple linear regression was used to model pH, ANC, nitrate and sulfate. This study incorporates basin characteristics, time, acid deposition data, USGS stream flow data as surrogate hydrologic data, and precipitation data, e.g., inches of rain on preceding days, to determine whether these variables are associated with water quality. Acid deposition data came from biweekly wet only and throughfall monitoring at the Noland Divide, which is a high elevation acid deposition monitoring site within the Park. Precipitation data is collected at five National Weather Service monitoring sites within the Park. Each of the above variables were found to be statistically significant (p<0.05) influencing factors to water quality, particularly pH. Water quality conditions were adversely (decreasing pH and ANC and increasing sulfate and nitrate) affected by increased stream flows, acid deposition and precipitation. Models for pH and ANC produced R-square values around 0.71 and 0.86, respectively. Nitrate and sulfate modeling produced R-square values around 0.30. This study also analyzes temporal trends in pH. Modeling reveals statistically significant decreasing trends in pH with time. If conditions remain the same and past trends continue, models suggest that 30.0 percent of the sampling sites will reach pH values less than 6.0 in less than 10 years, 63.3 percent of the sites will reach pH values less than 6.0 in less than 25 years, and 96.7 percent of the sites will reach pH values less than 6.0 in less than 50 years. The models used to predict future pH values explain around 70 percent of the variability in the data.

  13. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7.

    PubMed

    Hosein, Althea M; Breidt, Frederick; Smith, Charles E

    2011-02-01

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsline, P.L.; Musselman, R.C.; Kender, W.J.

    Mature McIntosh, Empire, and Golden Delicious apple trees (Malus domestica) were sprayed with simulated acid rain solutions in the pH range of 2.5 to 5.5 at full bloom in 1980 and 1981. In 1981, weekly sprays were applied at pH 2.75 and pH 3.25. Necrotic lesions developed on apple petals at pH 2.5 with slight injury appearing at pH 3.0 and 3.5. Apple foliage had no acid rain lesions at any of the pH levels tested. Pollen germination was reduced at pH 2.5 in Empire. Slight fruit set reduction at pH 2.5 was observed in McIntosh. Even at the lowestmore » pH levels no detrimental effects of simulated acid rain were found on apple tree productivity and fruit quality when measured as fruit set, seed number per fruit, and fruit size and appearance.« less

  15. Multi-wavelength dye concentration determination for enzymatic assays: evaluation of chromogenic para-nitrophenol over a wide pH range.

    PubMed

    Max, Jean-Joseph; Meddeb-Mouelhi, Fatma; Beauregard, Marc; Chapados, Camille

    2012-12-01

    Enzymatic assays need robust, rapid colorimetric methods that can follow ongoing reactions. For this, we developed a highly accurate, multi-wavelength detection method that could be used for several systems. Here, it was applied to the detection of para-nitrophenol (pNP) in basic and acidic solutions. First, we confirmed by factor analysis that pNP has two forms, with unique spectral characteristics in the 240 to 600 nm range: Phenol in acidic conditions absorbs in the lower range, whereas phenolate in basic conditions absorbs in the higher range. Thereafter, the method was used for the determination of species concentration. For this, the intensity measurements were made at only two wavelengths with a microtiter plate reader. This yielded total dye concentration, species relative abundance, and solution pH value. The method was applied to an enzymatic assay. For this, a chromogenic substrate that generates pNP after hydrolysis catalyzed by a lipase from the fungus Yarrowia lipolytica was used. Over the pH range of 3-11, accurate amounts of acidic and basic pNP were determined at 340 and 405 nm, respectively. This method surpasses the commonly used single-wavelength assay at 405 nm, which does not detect pNP acidic species, leading to activity underestimations. Moreover, alleviation of this pH-related problem by neutralization is not necessary. On the whole, the method developed is readily applicable to rapid high-throughput of enzymatic activity measurements over a wide pH range.

  16. pH regulation of mitochondrial branch chain alpha-keto acid transport and oxidation in rat heart mitochondria.

    PubMed

    Hutson, S M

    1987-07-15

    The kinetics of branched chain alpha-keto acid uptake and efflux were studied as a function of varied external and matrix pH. Matrix pH was determined by the distribution of 5,5'-dimethyloxazolidine-2,4-dione. When rat heart mitochondria were incubated under transport conditions at pH 7.0 with succinate as respiratory substrate, the matrix pH was significantly greater than 8.0. Matrix pH remained greater than or equal to 8.0 when the medium pH was varied from 6.3 to 8.3, and it was lowered below 8.0 by addition of 5 mM phosphate or uncoupler. No pH gradient was detectable when mitochondria were incubated in the presence of valinomycin and uncoupler. Efflux of alpha-ketoisocaproate or alpha-ketoisovalerate from rat heart mitochondria obeyed first order kinetics. Varying the external pH from 6.6 to 8.3 had no significant effect on efflux, and at an external pH of 7.0, the first order rate constant for efflux was not affected by decreasing the matrix pH. On the other hand, exchange was sensitive to changes in medium but not matrix pH. The K0.5 for external branched chain alpha-keto acid was lowered by changing the medium pH from 7.6 to 6.3. At medium pH values greater than or equal to 8.0 both K0.5 and Vmax were affected. Uptake was determined either by measuring initial rates or was calculated after measuring the first order approach to a final equilibrium value. Unlike efflux, uptake was sensitive to changes in both external and matrix pH. The rate of branched chain alpha-keto acid uptake was stimulated by decreasing the medium pH from 8.3 to 6.3 and by alkalinization of the mitochondrial matrix. The estimated external pK for proton binding was 6.9. The data indicate that the branched chain alpha-keto acid transporter is asymmetric, that is, binding sites for substrate on the inside and outside of the mitochondrial membrane are not identical. alpha-Ketoisocaproate oxidation was measured at 37 degrees C in isolated mitochondria over the pH range of 6.6 to 8.1. Changes in the rate of branched chain alpha-keto acid oxidation, particularly when ATP was added (increase delta pH), were found to parallel the pH effects observed on branched chain alpha-keto acid uptake. Therefore, transport, and by implication oxidation, can be regulated by pH changes within the physiological range. Furthermore, intracellular pH may affect the degree of compartmentation between the cytosolic and mitochondrial branched chain alpha-keto acid pools.

  17. A Novel Acid-Stable Endo-Polygalacturonase from Penicillium oxalicum CZ1028: Purification, Characterization, and Application in the Beverage Industry.

    PubMed

    Cheng, Zhong; Chen, Dong; Lu, Bo; Wei, Yutuo; Xian, Liang; Li, Yi; Luo, Zhenzhen; Huang, Ribo

    2016-06-28

    Acidic endo-polygalacturonases are the major part of pectinase preparations and extensively applied in the clarification of fruits juice, vegetables extracts, and wines. However, most of the reported fungal endo-polygalacturonases are active and stable under narrow pH range and low temperatures. In this study, an acidic endo-polygalacturonase (EPG4) was purified and characterized from a mutant strain of Penicillium oxalicum. The N-terminal amino acid sequence of EPG4 (ATTCTFSGSNGAASASKSQT) was different from those of reported endopolygalacturonases. EPG4 displayed optimal pH and temperature at 5.0 and 60-70°C towards polygalacturonic acid (PGA), respectively, and was notably stable at pH 2.2-7.0. When tested against pectins, EPG4 showed enzyme activity over a broad acidic pH range (>15.0% activity at pH 2.2-6.0 towards citrus pectin; and >26.6% activity at pH 2.2-7.0 towards apple pectin). The Km and Vmax values were determined as 1.27 mg/ml and 5,504.6 U/mg, respectively. The enzyme hydrolyzed PGA in endo-manner, releasing oligo-galacturonates from PGA, as determined by TLC. Addition of EPG4 (3.6 U/ml) significantly reduced the viscosity (by 42.4%) and increased the light transmittance (by 29.5%) of the papaya pulp, and increased the recovery (by 24.4%) of the papaya extraction. All of these properties make the enzyme a potential application in the beverage industry.

  18. The "high solubility" definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs.

    PubMed

    Yazdanian, Mehran; Briggs, Katherine; Jankovsky, Corinne; Hawi, Amale

    2004-02-01

    The purpose of this study was to assess if the definition of high solubility as proposed in the FDA Guidance on Biopharmaceutical Classification System (BCS) is too strict for highly permeable acidic drugs. The solubility and permeability values of 20 (18 acidic and 2 non-acidic) nonsteroidal anti-inflammatory drugs (NSAID) were determined. The NSAIDs were grouped into three different sets having acetic acid, propionic acid, or other acidic moieties such as fenamate, oxicam, and salicylate. Two nonacidic NSAIDs (celecoxib and rofecoxib) were also included for comparison purposes. Equilibrium solubility values were determined at pH 1.2, 5.0, 7.4, and in biorelevant media simulating fed intestinal fluid at pH 5.0. For a select number of acids, we also measured solubility values in media simulating gastric and fasted intestinal fluids. Permeability classification was established relative to that of reference drugs in the Caco-2 cell permeability model. Permeability coefficients for all drugs were measured at concentrations corresponding to the lowest and highest marketed dose strengths dissolved in 250 ml volume, and their potential interaction with cellular efflux pumps was investigated. All NSAIDs with different acidic functional groups were classified as highly permeable based on their Caco-2 cell permeability. Only ketorolac appeared to have a potential for interaction with cellular efflux pumps. Solubility classification was based on comparison of equilibrium solubility at pH 1.2, 5.0. and 7.4 relative to marketed dose strengths in 250 ml. The pKa values for the acidic NSAIDs studied were between 3.5 and 5.1. and, as expected, their solubility increased dramatically at pH 7.4 compared to pH 1.2. Only three NSAIDs, ketorolac, ketoprofen. and acetyl salicylic acid, meet the current criteria for high solubility over the entire pH range. However, with the exception of ibuprofen, oxaprozin, and mefenamic acid, the remaining compounds can be classified as Class I drugs (high solubility-high permeability) relative to solubility at pH 7.4. The use of bio-relevant media simulating gastric and intestinal milieu for solubility measurements or increasing the dose volume to 500 ml did not provide for a better boundary for solubility classification. Based on the current definition of solubility, 15 of the 18 acidic NSAIDs in this study will be classified as Class II compounds as the solubility criteria applies to the entire pH range of 1.2 to 7.4, although the low solubility criteria does not hold true over the entire pH range. Whence, of the 18 acidic drugs, 15 can be classified as Class I based on the pH 7.4 solubility alone. This finding is intriguing because these drugs exhibit Class I behavior as their absorption does not seem to be dissolution or solubility limited. It could then be argued that for acidic drugs, the boundaries for solubility are too restrictive. Solubility at pH > 5 (pH in duodenum) may be more appropriate because most compounds are mainly absorbed in the intestinal region. Consideration for an intermediate solubility classification for highly permeable ionizable compounds that reflects physiological conditions seems warranted.

  19. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil.

    PubMed

    Lehtovirta-Morley, Laura E; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I; Nicol, Graeme W

    2011-09-20

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, "Candidatus Nitrosotalea devanaterra," from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH.

  20. Interactions of calcium and fulvic acid at the goethite-water interface

    NASA Astrophysics Data System (ADS)

    Weng, Li Ping; Koopal, Luuk K.; Hiemstra, Tjisse; Meeussen, Johannes C. L.; Van Riemsdijk, Willem H.

    2005-01-01

    Interactions of calcium and fulvic acid (Strichen ) with the surface of goethite were studied with batch and titration experiments. The mutual influence of the interactions on the adsorption of fulvic acid, calcium ions and protons were examined. Adsorption of the fulvic acid to goethite decreased with increase in pH (pH range 3-11). Addition of Ca (1.0 mM) at intermediate and high pH significantly enhanced the adsorption of fulvic acid. Compared to the adsorption to pure goethite, the presence of fulvic acid enhanced the adsorption of Ca significantly. In comparison to the simple linear sum of Ca bound to fulvic acid and goethite, the interactions between goethite and fulvic acid led to a reduced adsorption of Ca at low pH and an enhanced adsorption at high pH. With the adsorption of fulvic acid, protons were released at low pH and coadsorbed at high pH. When Ca was added, fewer protons were released at low pH and fewer coadsorbed at high pH. The experimental results can be adequately described using a surface complexation model, the Ligand and Charge Distribution (LCD) model, in which the CD-MUSIC model for ion adsorption to mineral oxides and the NICA model for ion binding to humics are integrated. In the model calculations, adequate descriptions of the ternary system data (Ca-fulvic acid-goethite) were obtained with parameters derived from three binary systems (fulvic acid-goethite, Ca-goethite and Ca-fulvic acid) without further adjustment. The model calculations suggest that the interactions between Ca and fulvic acid at the surface of goethite are mainly due to the electrostatic effects.

  1. Metabolism of 14C-azoxystrobin in water at different pH.

    PubMed

    Singh, Neera; Singh, Shashi B; Mukerjee, Irani; Gupta, Suman; Gajbhiye, Vijay T; Sharma, Praveen K; Goel, Mayurika; Dureja, Prem

    2010-02-01

    Metabolism of (14)C-azoxystrobin was studied in water at pH 4, 7 and 9. The study suggested that volatilization losses of azoxystrobin were very low (3%) during 130 days of incubation. Only 2.5-4.2% of azoxystrobin was mineralised to CO(2) and pH of water did not have much effect on rate of mineralisation. The dissipation of azoxystrobin in water of all the three pHs followed first order kinetic with half-life values ranging from 143 to 158 d; degradation was the fastest at pH 9. Azoxystrobin acid, a major metabolite, was detected 4-7 day onwards and its concentration increased up to 130 days. The formation of azoxystrobin acid was more and faster under alkaline (pH 9) condition than neutral (pH 7) or acidic (pH 4) conditions.

  2. Lactic acid fermentation of dahlia tuber starch and waste using Lactobacillus bulgaricus: A comparative study

    NASA Astrophysics Data System (ADS)

    Praputri, E.; Sundari, E.; Martynis, M.; Agenta, P.

    2018-03-01

    Lactic acid fermentation of dahlia tuber starch and waste was performed by means of Lactobacillus bulgaricus through enzymatic hydrolysis followed by fermentation process. The effect of pH condition on lactic acid production was investigated during the process. The selected bacteria produced lactic acid after 24 hours of fermentation and the productivity was increase after 24 hours of fermentation. After 120 hours of fermentation, it was found that dahlia tuber starch can produce up to 16.18% of lactic acid, whereas lactic acid produced from dahlia tuber waste was only 0.40% at pH of 4. The lactic acid production increase significantly for pH 3.5 and 4 until 96 hours of fermentation, then slowed down. On the other hand, for pH 4.5 the lactic acid production increase until 48 hours of fermentation and then slowed down. The identification of fermentation product indicated that the lactic acid produced in this study was 16.20%, acidic, yellow and cloudy with pH 3.4 – 4.2. The density of lactic acid produced ranged between 1.21 to 1.25 gr/ml.

  3. Comparison of three strong ion models used for quantifying the acid-base status of human plasma with special emphasis on the plasma weak acids.

    PubMed

    Anstey, Chris M

    2005-06-01

    Currently, three strong ion models exist for the determination of plasma pH. Mathematically, they vary in their treatment of weak acids, and this study was designed to determine whether any significant differences exist in the simulated performance of these models. The models were subjected to a "metabolic" stress either in the form of variable strong ion difference and fixed weak acid effect, or vice versa, and compared over the range 25 < or = Pco(2) < or = 135 Torr. The predictive equations for each model were iteratively solved for pH at each Pco(2) step, and the results were plotted as a series of log(Pco(2))-pH titration curves. The results were analyzed for linearity by using ordinary least squares regression and for collinearity by using correlation. In every case, the results revealed a linear relationship between log(Pco(2)) and pH over the range 6.8 < or = pH < or = 7.8, and no significant difference between the curve predictions under metabolic stress. The curves were statistically collinear. Ultimately, their clinical utility will be determined both by acceptance of the strong ion framework for describing acid-base physiology and by the ease of measurement of the independent model parameters.

  4. Effects of acid rain on grapevines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsline, P.L.; Musselman, R.C.; Dee, R.J.

    1983-01-01

    Mature vineyard-growing Concord grapevines (Vitis labrusca, Bailey) were sprayed with simulated acid rain solutions ranging from pH 2.5 to pH 5.5 both as acute treatments at anthesis and chronically throughout the season in 1980 and 1981. In 1981, eight additional varieties were also treated with simulated acid rain solutions at pH 2.75 and pH 3.25. With Concord in 1981, few foliar lesions on leaves were visible at pH 2.75. In contrast, many leaf lesions with decreased fruit soluble solids in the absence of acid rain leaf lesions at pH>2.5 remains unclear. Acute sprays (pH 2.75) at anthesis reduced pollen germinationmore » in four grape cultivars. However, fruit set was reduced in only one of these. Only the cultivars de Chaunac and Ives had reduced berry soluble solids with chronic weekly sprays at pH 2.75. Reduction in soluble solids was not associated with increased oxidant stipple (ozone injury) in Concord and de Chaunac cultivars, but this association was observed in Ives. There was no evidence that acid rain in combination with ozone increased oxidant stipple as occurs when ozone and SO/sub 2/ are combined. Grape yields were not influenced by acid rain treatments. There was no evidence that acid rain at ambient pH levels had negative effects on grape production or fruit quality.« less

  5. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    PubMed

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid

    PubMed Central

    Düwel, Stephan; Hundshammer, Christian; Gersch, Malte; Feuerecker, Benedikt; Steiger, Katja; Buck, Achim; Walch, Axel; Haase, Axel; Glaser, Steffen J.; Schwaiger, Markus; Schilling, Franz

    2017-01-01

    Natural pH regulatory mechanisms can be overruled during several pathologies such as cancer, inflammation and ischaemia, leading to local pH changes in the human body. Here we demonstrate that 13C-labelled zymonic acid (ZA) can be used as hyperpolarized magnetic resonance pH imaging sensor. ZA is synthesized from [1-13C]pyruvic acid and its 13C resonance frequencies shift up to 3.0 p.p.m. per pH unit in the physiological pH range. The long lifetime of the hyperpolarized signal enhancement enables monitoring of pH, independent of concentration, temperature, ionic strength and protein concentration. We show in vivo pH maps within rat kidneys and subcutaneously inoculated tumours derived from a mammary adenocarcinoma cell line and characterize ZA as non-toxic compound predominantly present in the extracellular space. We suggest that ZA represents a reliable and non-invasive extracellular imaging sensor to localize and quantify pH, with the potential to improve understanding, diagnosis and therapy of diseases characterized by aberrant acid-base balance. PMID:28492229

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsline, P.L.; Musselman, R.C.; Kender, W.J.

    Mature 'McIntosh', 'Empire', and 'Golden Delicious' apple trees (Malus domestica Borkh.) were sprayed with simulated acid rain solutions in the pH range of 2.5 to 5.5 at full bloom in 1980 and in 1981. In 1981, weekly sprays were applied at pH 2.75 and pH 3.25. Necrotic lesions developed on apple petals at pH 2.5 with slight injury appearing at pH 3.0 and pH 3.5. Apple foliage had no acid rain lesions at any of the pH levels tested. Pollen germination was reduced at ph 2.5 in 'Empire'. Slight fruit set reduction at pH 2.5 was observed in 'McIntosh'. Themore » incidence of russetting on 'Golden Delicious' fruits was ameliorated by the presence of rain-exclusion chambers but was not affected by acid rain. With season-long sprays at pH 2.75, there was a slight delay in maturity and lower weight of 'McIntosh' apples. Even at the lowest pH levels no detrimental effects of simulated acid rain were found on apple tree productivity and fruit quality when measured as fruit set, seed number per fruit, and fruit size and appearance.« less

  8. Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution.

    PubMed

    Harden, Mark M; He, Amanda; Creamer, Kaitlin; Clark, Michelle W; Hamdallah, Issam; Martinez, Keith A; Kresslein, Robert L; Bush, Sean P; Slonczewski, Joan L

    2015-03-01

    Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N'-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Acid-Adapted Strains of Escherichia coli K-12 Obtained by Experimental Evolution

    PubMed Central

    Harden, Mark M.; He, Amanda; Creamer, Kaitlin; Clark, Michelle W.; Hamdallah, Issam; Martinez, Keith A.; Kresslein, Robert L.; Bush, Sean P.

    2015-01-01

    Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N′-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH. PMID:25556191

  10. Comparison of the erosive potential of gastric juice and a carbonated drink in vitro.

    PubMed

    Bartlett, D W; Coward, P Y

    2001-11-01

    The aim of this study was to compare the erosive effect of gastric juice and a carbonated drink on enamel and dentine by measuring release of calcium from 30 hemisectioned teeth in vitro. In addition, the titrable acidity (mL of 0.05 M sodium hydroxide required to neutralize) and pH of the fluids was estimated. The mean pH of the seven gastric acid samples was 2.92 (range 1.2-6.78) and mean titratable acidity 0.68 mL (range 0.03-1.64). Both the pH and the titratable acidity of the gastric juice varied between patients all of whom suffered from symptoms of reflux disease. The carbonated drink had a pH of 2.45 and a titratable acidity of 0.29 mL. The median amount of calcium released by the gastric acids from enamel was 69.6 microg L-1 (interquartile range 5.4-144) and 62.4 microg L-1 (2.2-125.3) from dentine. The carbonated drink released 18.7 microg L-1 (13.4-23.4) and 18.6 microg L-1 (11.9-35.3), respectively. The differences in calcium release by gastric juice and the carbonated drink were statistically significant for both enamel (P < 0.005) and dentine (P < 0.01). It is concluded that gastric juice has a greater potential, per unit time, for erosion than a carbonated drink.

  11. Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus niger W78C in submerged batch cultures with sucrose as a carbon source.

    PubMed

    Walaszczyk, Ewa; Podgórski, Waldemar; Janczar-Smuga, Małgorzata; Dymarska, Ewelina

    2018-01-01

    The pH of the medium is the key environmental parameter of chemical selectivity of oxalic acid biosynthesis by Aspergillus niger . The activity of the enzyme oxaloacetate hydrolase, which is responsible for decomposition of oxaloacetate to oxalate and acetate inside the cell of the fungus, is highest at pH 6. In the present study, the influence of pH in the range of 3-7 on oxalic acid secretion by A. niger W78C from sucrose was investigated. The highest oxalic acid concentration, 64.3 g dm -3 , was reached in the medium with pH 6. The chemical selectivity of the process was 58.6% because of the presence of citric and gluconic acids in the cultivation broth in the amount of 15.3 and 30.2 g dm -3 , respectively. Both an increase and a decrease of medium pH caused a decrease of oxalic acid concentration. The obtained results confirm that pH 6 of the carbohydrate medium is appropriate for oxalic acid synthesis by A. niger , but the chemical selectivity of the process described in this paper was high in comparison to values reported previously in the literature.

  12. Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Mishra, P. C.

    1996-04-01

    Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.

  13. Growth and survival kinetics of Yersinia enterocolitica IP 383 0:9 as affected by equimolar concentrations of undissociated short-chain organic acids.

    PubMed

    el-Ziney, M G; De Meyer, H; Debevere, J M

    1997-03-03

    The influence of different organic acids (lactic, acetic, formic and propionic acids) at equimolar concentrations of undissociated acid with pH range of 3.9, 5.8, on the aerobic and anaerobic growth and survival kinetics of the virulent strain of Y. enterocolitica IP 383 0:9, was determined in tryptone soy broth at 4 degrees C. Growth and survival data were analyzed and fitted by a modification of the Whiting and Cygnarowicz-Provost model, using the Minpack software library. Initial generation times, initial specific growth rates, lag time and dead rate were subsequently calculated from the model parameters. The results demonstrate that the inhibitory effects of the acids were divided into two categories dependent upon pH. At high pH (5.8) the order of inhibition was formic acid > acetic acid > propionic acid > lactic acid, whereas at lower pH it became formic acid > lactic acid > acetic acid > propionic acid. The inhibitory effect of lactic acid is enhanced under anaerobic condition. Nevertheless, when the organism was cultured anaerobically, it was shown to be more tolerant to formic and acetic acids. Moreover, these variables (type of organic acid, pH and atmosphere) did not lead to the loss of the virulence plasmid in growing and surviving cells. The mechanism of inhibitory effect for each of the acids are also discussed.

  14. Electrophoretic separation of proteins in space

    NASA Technical Reports Server (NTRS)

    Brown, R. K.

    1976-01-01

    Commercially available and synthetic wide range and short range ampholytes used in the isoelectric focusing of proteins was analyzed by ion exchange chromatography. A pH gradient over the pH range 3.8 to 11.0 was used to elute the ampholytes from a column of a sulfonated polystyrene resin. The wide range ampholytes were resolved into some 60 to 70 ninhydrin positive components. The recovery obtained with the method was quantitative. Acid short range ampholytes have approximately 35 components which elute readily from the ion exchange resin. Basic short range ampholytes gave about 50 components, most of which eluted at alkaline pH.

  15. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification.

    PubMed

    ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh

    2015-11-01

    Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mechanism of Decarboxylation of Pyruvic Acid in the Presence of Hydrogen Peroxide

    PubMed Central

    Lopalco, Antonio; Dalwadi, Gautam; Niu, Sida; Schowen, Richard L.; Douglas, Justin; Stella, Valentino J.

    2015-01-01

    The purpose of this work was to probe the rate and mechanism of rapid decarboxylation of pyruvic acid in the presence of hydrogen peroxide (H2O2) to acetic acid and carbon dioxide over the pH range 2 – 9 at 25°C, utilizing UV spectrophotometry, high performance liquid chromatography (HPLC), and proton and carbon nuclear magnetic resonance spectrometry (1H, 13C-NMR). Changes in UV absorbance at 220 nm were used to determine the kinetics since the reaction was too fast to follow by HPLC or NMR in much of the pH range. The rate constants for the reaction were determined in the presence of molar excess of H2O2 resulting in pseudo first order kinetics. No buffer catalysis was observed. The calculated second order rate constants for the reaction followed a sigmoidal shape with pH independent regions below pH 3 and above pH 7 but increased between pH 4 and 6. Between pH 4 and 9, the results were in agreement with a change from rate determining nucleophilic attack of the deprotonated peroxide species, HOO−, on the α-carbonyl group followed by rapid decarboxylation at pH values below 6 to rate-determining decarboxylation above pH 7. The addition of H2O2 to ethyl pyruvate was also characterized. PMID:26422524

  17. Soil acidification as a confounding factor on metal phytotoxicity in soils spiked with copper-rich mine wastes.

    PubMed

    Ginocchio, Rosanna; De la Fuente, Luz María; Sánchez, Pablo; Bustamante, Elena; Silva, Yasna; Urrestarazu, Paola; Rodríguez, Patricio H

    2009-10-01

    Pollution of soil with mine wastes results in both Cu enrichment and soil acidification. This confounding effect may be very important in terms of phytotoxicity, because pH is a key parameter influencing Cu solubility in soil solution. Laboratory toxicity tests were used to assess the effect of acidification by acidic mine wastes on Cu solubility and on root elongation of barley (Hordeum vulgare L.). Three contrasting substrates (two soils and a commercial sand) and two acidic, Cu-rich mine wastes (oxidized tailings [OxT] and smelter dust [SmD]) were selected as experimental materials. Substrates were spiked with a fixed amount of either SmD or OxT, and the pH of experimental mixtures was then modified in the range of 4.0 to 6.0 and 7.0 using PIPES (piperazine-1,4-bis(2-ethanesulfonic acid)), MES (2-(N-morpholino)ethanesulfonic acid), and MOPS (3-(N-Morpholino)-propanesulfonic acid) buffers. Chemical (pore-water Cu and pH) and toxicological (root length of barley plants) parameters were determined for experimental mixtures. Addition of SmD and OxT to substrates resulted in acidification (0.11-1.16 pH units) and high levels of soluble Cu and Zn. Neutralization of experimental mixtures with MES (pH 6.0) and MOPS (pH 7.0) buffers resulted in a marked decrease in soluble Cu and Zn, but the intensity of the effect was substrate-dependent. Adjustment of soil pH above the range normally considered to be toxic to plants (pH in water extract, > 5.5) significantly reduced metal toxicity in barley, but phytotoxicity was not completely eliminated. The present results stress the importance of considering confounding effects on derivation of toxicity thresholds to plants when using laboratory phytotoxicity tests.

  18. Kinetics and mechanism of imazosulfuron hydrolysis.

    PubMed

    Morrica, P; Barbato, F; Della Iacovo, R; Seccia, S; Ungaro, F

    2001-08-01

    Knowledge of the kinetics and pathways of hydrolytic degradation is crucial to the prediction of the fate and transport mechanism of chemicals. This work first describes the kinetics of the chemical hydrolysis of imazosulfuron, a new sulfonylurea herbicide, and evaluates the results to propose a degradation pathway. The hydrolysis of imazosulfuron has been studied in aqueous buffers both within the pH range 1.9-12.3 at ambient temperature (thermostated at 25 +/- 2 degrees C) and at pH 3.6 within the temperature range of 15-55 degrees C. The hydrolysis rate of imazosulfuron was characterized by a first-order kinetics, pH- and temperature-dependent, and accelerated by acidic conditions and higher temperatures. The calculated half-lives at pH 4.5 and 5.9 were 36.5 and 578 days, respectively. At pH 6.6, 7.4, 9.2, and 12.3 no significant change in imazosulfuron concentration was observed after 150 days. Half-lives were much lower at pH <4 (= imazosulfuron pK(a)), at which they ranged from 3.3 to 6.3 days. Moreover, a change in temperature from 15 to 25 degrees C in acidic conditions (pH 3.6) decreased the half-life of imazosulfuron by a factor of approximately 4.0; in any case, a 3-5-fold increase in the rate of hydrolysis was found for each 10 degrees C increase in temperature. In acidic conditions the only hydrolysis products were the two molecules resulting from the cleavage of the sulfonylurea bridge.

  19. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil

    PubMed Central

    Lehtovirta-Morley, Laura E.; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, “Candidatus Nitrosotalea devanaterra,” from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH. PMID:21896746

  20. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    PubMed

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity. © 2014 International Society for Diseases of the Esophagus.

  1. Glucose bioconversion profile in the syngas-metabolizing species Clostridium carboxidivorans.

    PubMed

    Fernández-Naveira, Ánxela; Veiga, María C; Kennes, Christian

    2017-11-01

    Some clostridia produce alcohols (ethanol, butanol, hexanol) from gases (CO, CO 2 , H 2 ) and others from carbohydrates (e.g., glucose). C. carboxidivorans can metabolize both gases as well as glucose. However, its bioconversion profile on glucose had not been reported. It was observed that C. carboxidivorans does not follow a typical solventogenic stage when grown on glucose. Indeed, at pH 6.2, it produced first a broad range of acids (acetic, butyric, hexanoic, formic, and lactic acids), several of which are generally not found, under similar conditions, during gas fermentation. Medium acidification did not allow the conversion of fatty acids into solvents. Production of some alcohols from glucose was observed in C. carboxidivorans but at high pH rather than under acidic conditions, and the total concentration of those solvents was low. At high pH, formic acid was produced first and later converted to acetic acid, but organic acids were not metabolized at low pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. On the acid-base properties of humic acid in soil.

    PubMed

    Cooke, James D; Hamilton-Taylor, John; Tipping, Edward

    2007-01-15

    Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.

  3. Acid-suppressive effects of rabeprazole, omeprazole, and lansoprazole at reduced and standard doses: a crossover comparative study in homozygous extensive metabolizers of cytochrome P450 2C19.

    PubMed

    Shimatani, Tomohiko; Inoue, Masaki; Kuroiwa, Tomoko; Xu, Jing; Mieno, Hiroshi; Nakamura, Masuo; Tazuma, Susumu

    2006-01-01

    To improve clinical outcomes of the initial therapy for gastroesophageal reflux disease, intragastric pH should be above 4.0 for more than 20 hours a day (83.3%) and nocturnal gastric acid breakthrough, defined as 60 continuous minutes of intragastric pH below 4.0 at night, should be inhibited. A "step-down" therapy sometimes fails because of insufficient acid suppression. Therefore we compared the acid-suppressive effects of proton pump inhibitors. This was a prospective, randomized, open-label, 8-way crossover study. In 9 healthy Helicobacter pylori-negative cytochrome P450 (CYP) 2C19 homozygous extensive metabolizers, intragastric pH was measured for 24 hours on day 7 of treatment with rabeprazole, omeprazole, and lansoprazole orally administered once daily at reduced and standard doses. Compared with baseline data (7% [range, 5%-20%]), the median values of the 24-hour percent of time that intragastric pH was above 4.0 significantly increased but did not exceed 83.3% under any of the 7 regimens, which were as follows: 10 mg rabeprazole (51% [range, 28%-78%], P < .01), 20 mg rabeprazole (59% [range, 36%-83%], P < .01), 10 mg omeprazole (26% [range, 4%-33%], P < .05), 20 mg omeprazole (48% [range, 31%-73%], P < .01), 40 mg omeprazole (62% [range, 47%-87%], P < .01), 15 mg lansoprazole (34% [range, 5%-51%], P < .05), and 30 mg lansoprazole (56% [range, 20%-76%], P < .05). Significant differences were observed among 10, 20, and 40 mg omeprazole (10 mg versus 20 mg, P < .01; 10 mg versus 40 mg, P < .01; and 20 mg versus 40 mg, P < .05) and between 15 and 30 mg lansoprazole (P < .01), whereas no significant difference was observed between 10 and 20 mg rabeprazole. Nocturnal gastric acid breakthrough was observed under all regimens. Rabeprazole, omeprazole, and lansoprazole, given once daily at standard doses, cannot be expected to achieve ideal acid suppression for the initial therapy for gastroesophageal reflux disease in Helicobacter-negative CYP2C19 homozygous extensive metabolizers. Rabeprazole 10 mg may be appropriate for step-down therapy.

  4. A novel ''donor-π-acceptor'' type fluorescence probe for sensing pH: mechanism and application in vivo.

    PubMed

    Chao, Jianbin; Wang, Huijuan; Zhang, Yongbin; Yin, Caixia; Huo, Fangjun; Song, Kailun; Li, Zhiqing; Zhang, Ting; Zhao, Yaqin

    2017-11-01

    A novel pH fluorescent probe 1-(pyren-1-yl)-3-(6-methoxypridin-3-yl)-acrylketone, (PMPA), which had a pyrene structure attached to methoxypyridine, was synthesized for monitoring extremely acidic and alkaline pH. The pH titrations indicated that PMPA displayed a remarkable emission enhancement with a pK a of 2.70 and responded linearly to minor pH fluctuations within the extremely acidic range of 1.26-3.97. Interestingly, PMPA also exhibited strong pH-dependent characteristics with pK a 9.32 and linear response to extreme-alkalinity range of 8.54-10.36. In addition, PMPA displayed a good selectivity, excellent photostability and large Stokes shift (167nm). Furthermore, the probe PMPA had excellent cell membrane permeability and was applied successfully to rapidly detect pH in living cells. pH value in these organs was closely related to many diseases, so these findings suggested that the probe had potential application in pH detecting for disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  6. A water-soluble rhodamine B-derived fluorescent probe for pH monitoring and imaging in acidic regions

    NASA Astrophysics Data System (ADS)

    Cui, Peng; Jiang, Xuekai; Sun, Junyong; Zhang, Qiang; Gao, Feng

    2017-06-01

    A structurally simple, water-soluble rhodamine-derivatived fluorescent probe, which is responsive to acidic pH, was conveniently synthesized via a one-step condensation reaction of rhodamine B hydrazide and 4-formybenzene-1,3-disulfonate. As a stable and highly sensitive pH sensor, the probe displays an approximately 50-fold fluorescence enhancement over the pH range of 7.16-4.89 as the structure of probe changes from spirocyclic (weak fluorescent) to ring-open (strong fluorescent) with decreasing pH. The synthesized fluorescent probe is applied to the detection of pH changes in vitro and in vivo bioimaging of immortalized gastric cancer cells, with satisfactory results.

  7. Host origin determines pH tolerance of Tritrichomonas foetus isolates from the feline gastrointestinal and bovine urogenital tracts.

    PubMed

    Morin-Adeline, Victoria; Fraser, Stuart T; Stack, Colin; Šlapeta, Jan

    2015-10-01

    The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value < 0.003, p-value < 0.0002) compared to pH 7 and 8 (p-value > 0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Net acidity indicates the whole effluent toxicity of pH and dissolved metals in metalliferous saline waters.

    PubMed

    Degens, Bradley P; Krassoi, Rick; Galvin, Lynette; Reynolds, Brad; Micevska, Tina

    2018-05-01

    Measurements of potential acidity in water are used to manage aquatic toxicity risks of discharge from acid sulfate soils or acid mine drainage. Net acidity calculated from pH, dissolved metals and alkalinity is a common measurement of potential acidity but the relevance of current risk thresholds to aquatic organisms are unclear. Aquatic toxicity testing was carried out using four halophytic organisms with water from four saline sources in southern Western Australia (3 acidic drains and one alkaline river; 39-40 g TDS/L) where acidity was varied by adjusting pH to 4.5-6.5. The test species were brine shrimps (Artemia salina), locally sourced ostracods (Platycypris baueri), microalgae (Dunaliella salina) and amphipods (Allorchestes compressa). Testing found the EC 10 and IC 10 of net acidity ranged from -7.8 to 10.5 mg CaCO 3 /L with no survival or growth of any species at >47 mg CaCO 3 /L. Reduced net acidity indicated reduced whole effluent toxicity more reliably than increased pH alone with organisms tolerating pH up to 1.1 units lower in the absence of dissolved metals. Variation in toxicity indicated by net acidity was mostly attributed to reduced concentrations of dissolved Al and Fe combined with higher pH and alkalinity and some changes in speciation of Al and Fe with pH. These results indicate that rapid in-field assessments of net acidity in acidic, Al dominated waters may be an indicator of potential acute and sub-chronic impacts on aquatic organisms. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  9. Spectral changes induced by pH variation of aqueous extracts derived from biomass burning aerosols: Under dark and in presence of simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Cai, Jing; Zhi, Guorui; Yu, Zhiqiang; Nie, Peng; Gligorovski, Sasho; Zhang, Yuzhe; Zhu, Like; Guo, Xixiang; Li, Pei; He, Tan; He, Youjiang; Sun, Jianzhong; Zhang, Yang

    2018-07-01

    Water soluble organic carbon (WSOC) can significantly influence the aerosol optical properties and the aqueous phase chemistry in cloudwater, fogwater and aerosol liquid water. Here, we examine how the changing pH (in acidic range) affects the absorption spectra of aqueous extracts from field biomass burning aerosols, under dark conditions and in presence of simulated sunlight illumination. The observation under dark conditions indicates that pH variation from 2 to 5 induces significantly enhanced light absorbance in the wavelength ranges of 235-270 nm and 300-550 nm, whereas the light absorbance decreased in the range of 270-300 nm, which might be partially ascribed to the deprotonation of carboxylic acids and phenols. During the extract photolysis, light absorption exhibits photo-bleaching below 380 nm and photo-enhancement above 380 nm, indicating that at acidic levels (pH = 2-5), the particle extracts could undergo a significant composition evolution leading to a modification of absorptive properties. Meanwhile, after 12 h-photolysis, the acidity ([H+]) normalized by WSOC concentration in aqueous extracts ([WSOCae]) increased with a variation of Δ[H+]/[WSOCae]=(3.7 ± 0.7) × 10-7 mol mgC-1 (mean ± standard deviation), suggesting the formation of new acidic substances. Although these findings were acquired in aqueous solutions more relevant to cloud and fog water, the similar evolution likely occurs in wetted aerosols. This calls more attention to the effect of acidity on the wetted aerosols in order to better estimate the aerosol radiative forcing.

  10. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts.

    PubMed

    Feng, Liang-Liang; Li, Guo-Dong; Liu, Yipu; Wu, Yuanyuan; Chen, Hui; Wang, Yun; Zou, Yong-Cun; Wang, Dejun; Zou, Xiaoxin

    2015-01-14

    Splitting water to produce hydrogen requires the development of non-noble-metal catalysts that are able to make this reaction feasible and energy efficient. Herein, we show that cobalt pentlandite (Co9S8) nanoparticles can serve as an electrochemically active, noble-metal-free material toward hydrogen evolution reaction, and they work stably in neutral solution (pH 7) but not in acidic (pH 0) and basic (pH 14) media. We, therefore, further present a carbon-armoring strategy to increase the durability and activity of Co9S8 over a wider pH range. In particular, carbon-armored Co9S8 nanoparticles (Co9S8@C) are prepared by direct thermal treatment of a mixture of cobalt nitrate and trithiocyanuric acid at 700 °C in N2 atmosphere. Trithiocyanuric acid functions as both sulfur and carbon sources in the reaction system. The resulting Co9S8@C material operates well with high activity over a broad pH range, from pH 0 to 14, and gives nearly 100% Faradaic yield during hydrogen evolution reaction under acidic (pH 0), neutral (pH 7), and basic (pH 14) media. To the best of our knowledge, this is the first time that a transition-metal chalcogenide material is shown to have all-pH efficient and durable electrocatalytic activity. Identifying Co9S8 as the catalytically active phase and developing carbon-armoring as the improvement strategy are anticipated to give a fresh impetus to rational design of high-performance noble-metal-free water splitting catalysts.

  11. Indicators: Acidification

    EPA Pesticide Factsheets

    Acidification is a broad term that refers to the process by which aquatic ecosystems become more acidic. Acid rain and acid mine drainage are major sources of acidifying compounds, lowering the pH below the range where most living organisms function.

  12. Sphagnan--a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH.

    PubMed

    Stalheim, T; Ballance, S; Christensen, B E; Granum, P E

    2009-03-01

    Investigate if the antibacterial effect of sphagnan, a pectin-like carbohydrate polymer extracted from Sphagnum moss, can be accounted for by its ability to lower the pH. Antibacterial activity of sphagnan was assessed and compared to that of three other acids. Sphagnan in its acid form was able to inhibit growth of various food poisoning and spoilage bacteria on low-buffering solid growth medium, whereas sphagnan in its sodium form at neutral pH had no antibacterial activity. At similar acidic pH, sphagnan had comparable antibacterial activity to that of hydrochloric acid and a control rhamnogalacturonan pectin in its acid form. Sphagnan in its acid form is a weak macromolecular acid that can inhibit bacterial growth by lowering the pH of environments with a low buffering capacity. It has previously been suggested that sphagnan is an antimicrobial polysaccharide in the leaves of Sphagnum moss with a broad range of potential practical applications. Our results now show that sphagnan in its acid form can indeed inhibit bacterial growth, but only of acid-sensitive species. These findings represent increased knowledge towards our understanding on how sphagnan or Sphagnum moss might be used in practical applications.

  13. Estimating iron and aluminum content of acid mine discharge from a north-central Pennsylvania coal field by use of acidity titration curves

    USGS Publications Warehouse

    Ott, A.N.

    1986-01-01

    Determination of acidity provides a value that denotes the quantitative capacity of the sample water to neutralize a strong base to a particular pH. However, much additional information can be obtained from this determination if a titration curve is constructed from recorded data of titrant increments and their corresponding pH values. The curve can be used to identify buffer capabilities, the acidity with respect to any pH value within the curve limit, and, in the case of acid mine drainage from north-central Pennsylvania, the identification and estimation of the concentration of dissolved ferrous iron, ferric iron, and aluminum. Through use of titration curves, a relationship was observed for the acid mine drainage between: (1) the titratable acidity (as milligrams per liter calcium carbonate) to pH 4.0 and the concentration of dissolved ferric iron; and (2) the titratable acidity (as milligrams per liter calcium carbonate) from pH 4.0 to 5.0 and the concentration of dissolved aluminum. The presence of dissolved ferrous iron can be detected by the buffering effect exhibited in the area between pH 5.5 to 7.5. The concentration of ferrous iron is estimated by difference between the concentrations of ferric iron in an oxidized and unoxidized sample. Interferences in any of the titrations from manganese, magnesium, and aluminate, appear to be negligible within the pH range of interest.

  14. Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(amino acids) and Their Potential Applications in pH-Dependent Drug Delivery.

    PubMed

    Folchman-Wagner, Zoë; Zaro, Jennica; Shen, Wei-Chiang

    2017-06-30

    Polyelectrolyte complexes (PECs) are self-assembling nano-sized constructs that offer several advantages over traditional nanoparticle carriers including controllable size, biodegradability, biocompatibility, and lack of toxicity, making them particularly appealing as tools for drug delivery. Here, we discuss potential application of PECs for drug delivery to the slightly acidic tumor microenvironment, a pH in the range of 6.5-7.0. Poly(l-glutamic acid) (E n ), poly(l-lysine) (K n ), and a copolymer composed of histidine-glutamic acid repeats ((HE) n ) were studied for their ability to form PECs, which were analyzed for size, polydispersity, and pH sensitivity. PECs showed concentration dependent size variation at residue lengths of E 51 /K 55 and E 135 /K 127 , however, no complexes were observed when E 22 or K 21 were used, even in combination with the longer chains. (HE) 20 /K 55 PECs could encapsulate daunomycin, were stable from pH 7.4-6.5, and dissociated completely between pH 6.5-6.0. Conversely, the E 51-dauno /K 55 PEC dissociated between pH 4.0 and 3.0. These values for pH-dependent particle dissociation are consistent with the p K a 's of the ionizable groups in each formulation and indicate that the specific pH-sensitivity of (HE) 20-dauno /K 55 PECs is mediated by incorporation of histidine. This response within a pH range that is physiologically relevant to the acidic tumors suggests a potential application of these PECs in pH-dependent drug delivery.

  15. Polymeric Sulfated Amino Acid Surfactants: A New Class of Versatile Chiral Selectors for Micellar Electrokinetic Chromatography (MEKC) and MEKC-MS

    PubMed Central

    Ali Rizvi, Syed Asad; Zheng, Jie; Apkarian, Robert P.; Dublin, Steven N.; Shamsi, Shahab A.

    2008-01-01

    In this work, three amino acids derived (L-leucinol, L-isoleucinol and L-valinol) sulfated chiral surfactants are synthesized and polymerized. These chiral sulfated surfactants are thoroughly characterized to determine critical micelle concentration, aggregation number, polarity, optical rotation and partial specific volume. For the first time the morphological behavior of polymeric sulfated surfactants is revealed using cryogenic high-resolution electron microscopy (cryo-HRSEM). The polysodium N-undecenoyl-L-leucine sulfate (poly-L-SUCLS) shows distinct tubular structure, while polysodium N-undecenoyl-L-valine sulfate (poly-L-SUCVS) also shows tubular morphology but without any distinct order of the tubes. On the other hand, polysodium N-undecenoyl-L-isoleucine sulfate (poly-L-SUCILS) displays random distribution of coiled/curved filaments with heavy association of tightly and loosely bound water. All three polymeric sulfated surfactants are compared for enantio-separation of broad range of structurally diverse racemic compounds at very acidic, neutral and basic pH conditions in micellar electrokinetic chromatography (MEKC). A small combinatorial library of 10 structurally related phenylethylamines (PEAs) is investigated for chiral separation under acidic and moderately acidic to neutral pH conditions using an experimental design. In contrast to neutral pH conditions, at acidic pH, significantly enhanced chiral resolution is obtained for class I and class II PEAs due to the compact structure of polymeric sulfated surfactants. It is observed that the presence of hydroxy group on the benzene ring of PEAs resulted in deterioration of enantioseparation. A sensitive MEKC-mass spectrometry (MS) method is developed for one of the PEA (e.g., (±)-pseudoephedrine) in human urine. Very low limit of detection (LOD) is obtained at pH 2.0 (LOD 325 ng/mL), which is ca 16 times better compared to pH 8.0 (LOD 5.2 µg/mL). Other broad range of chiral analytes (β-blockers, phenoxypropionic acid, benzoin derivatives, PTH-amino acids, and benzodiazepinones) studied also provided improved chiral separation at low pH compared to high pH conditions. Among the three polymeric sulfated surfactants, poly-L-SUCILS with two chiral centers on the polymer head group provided overall higher enantioresolution for the investigated acidic, basic and neutral compounds. This work clearly demonstrates for the first time the superiority of chiral separation and sensitive MS detection at low pH over conventional high pH chiral separation and detection employing anionic chiral polymeric surfactants in MEKC and MEKC-MS. PMID:17263313

  16. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.

    PubMed

    Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin

    2014-08-07

    All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A protease-resistant exo-polygalacturonase from Klebsiella sp. Y1 with good activity and stability over a wide pH range in the digestive tract.

    PubMed

    Yuan, Peng; Meng, Kun; Wang, Yaru; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Bai, Yingguo; Yang, Peilong; Yao, Bin

    2012-11-01

    Polygalacturonases are important feed and food additives. In the present study an exo-polygalacturonase gene (pgu B) was cloned from Klebsiella sp. Y1 CGMCC 4433 and expressed in Escherichia coli BL21 (DE3). pgu B encodes a 658-amino acid polypeptide belonging to Glycoside Hydrolase Family 28. The optimal pH and temperature of exo-PGU B activity were 6.0 and 40-50°C, respectively. The enzyme exhibited >35% of maximum activity within the pH range of 2.0-12.0. Exo-PGU B or an exo-PGU B/ endo-polygalacturonase mixture reduced the viscosity of polygalacturonic acid (1.0%, w/v) by 15.6 and 39.4%, respectively. Under simulated alimentary tract conditions, exo-PGU B was very stable (>25% activity from pH 1.5 to 6.8) and active, releasing 53.7 and 109.6μg of galacturonic acid from 400 to 800μg of polygalacturonic acid, respectively. These properties make exo-PGU B a potentially valuable additive for applications in feed and food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Cytoplasmic Acidification and the Benzoate Transcriptome in Bacillus subtilis

    PubMed Central

    Kitko, Ryan D.; Cleeton, Rebecca L.; Armentrout, Erin I.; Lee, Grace E.; Noguchi, Ken; Berkmen, Melanie B.; Jones, Brian D.; Slonczewski, Joan L.

    2009-01-01

    Background Bacillus subtilis encounters a wide range of environmental pH. The bacteria maintain cytoplasmic pH within a narrow range. Response to acid stress is a poorly understood function of external pH and of permeant acids that conduct protons into the cytoplasm. Methods and Principal Findings Cytoplasmic acidification and the benzoate transcriptome were observed in Bacillus subtilis. Cytoplasmic pH was measured with 4-s time resolution using GFPmut3b fluorimetry. Rapid external acidification (pH 7.5 to 6.0) acidified the B. subtilis cytoplasm, followed by partial recovery. Benzoate addition up to 60 mM at external pH 7 depressed cytoplasmic pH but left a transmembrane ΔpH permitting growth; this robust adaptation to benzoate exceeds that seen in E. coli. Cytoplasmic pH was depressed by 0.3 units during growth with 30 mM benzoate. The transcriptome of benzoate-adapted cells was determined by comparing 4,095 gene expression indices following growth at pH 7, +/− 30 mM benzoate. 164 ORFs showed ≥2-fold up-regulation by benzoate (30 mM benzoate/0 mM), and 102 ORFs showed ≥2-fold down-regulation. 42% of benzoate-dependent genes are regulated up or down, respectively, at pH 6 versus pH 7; they are candidates for cytoplasmic pH response. Acid-stress genes up-regulated by benzoate included drug resistance genes (yhbI, yhcA, yuxJ, ywoGH); an oligopeptide transporter (opp); glycine catabolism (gcvPA-PB); acetate degradation (acsA); dehydrogenases (ald, fdhD, serA, yrhEFG, yjgCD); the TCA cycle (citZ, icd, mdh, sucD); and oxidative stress (OYE-family yqjM, ohrB). Base-stress genes down-regulated by benzoate included malate metabolism (maeN), sporulation control (spo0M, spo0E), and the SigW alkali shock regulon. Cytoplasmic pH could mediate alkali-shock induction of SigW. Conclusions B. subtilis maintains partial pH homeostasis during growth, and withstands high concentrations of permeant acid stress, higher than for gram-negative neutralophile E. coli. The benzoate adaptation transcriptome substantially overlaps that of external acid, contributing to a cytoplasmic pH transcriptome. PMID:20011599

  19. MOVEMENT IN THE CYANOPHYCEAE

    PubMed Central

    Burkholder, Paul R.

    1933-01-01

    The effect of pH upon the velocity of translatory movement of Oscillatoria formosa Bory in inorganic culture solutions was determined. Unhindered movement occurred in the range of about pH 6.4 to 9.5. Above and below these limits inhibition was marked. In the unfavorable acid and alkaline ranges inhibition was progressive with exposure time; in the favorable range continuous movement was maintained for 24 hours. PMID:19872745

  20. Thermodynamics and kinetics of cyanidin 3-glucoside and caffeine copigments.

    PubMed

    Limón, Piedad M; Gavara, Raquel; Pina, Fernando

    2013-06-05

    The multiequilibrium system of reactions of cyanidin 3-glucoside at acidic and mildly acidic pH values was studied in the presence of caffeine as a copigment. The thermodynamic and kinetic constants were determined using the so-called direct and reverse pH jump experiments that were followed by conventional UV-vis spectroscopy or stopped flow coupled to a UV-vis detector, depending on the rate of the monitored process. Compared with that of free anthocyanin, the copigmentation with caffeine extends the domain of the flavylium cation up to less acidic pH values, while in a moderately acidic medium, the quinoidal base becomes more stabilized. As a consequence, the hydration to give the colorless hemiketal is difficult over the entire range of pH values. At pH 1, two adducts were found for the flavylium cation-caffeine interaction, with stoichiometries of 1:1 and 1:2 and association constants of 161 M⁻¹ (K₁) and 21 M⁻¹ (K₂), respectively.

  1. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  2. Predicting the crystallization propensity of carboxylic acid buffers in frozen systems--relevance to freeze-drying.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-04-01

    Selective crystallization of buffer components in frozen solutions is known to cause pronounced pH shifts. Our objective was to study the crystallization behavior and the consequent pH shift in frozen aqueous carboxylic acid buffers. Aqueous carboxylic acid buffers were cooled to -25°C and the pH of the solution was measured as a function of temperature. The thermal behavior of solutions during freezing and thawing was investigated by differential scanning calorimetry. The crystallized phases in frozen solution were identified by X-ray diffractometry. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartarate systems, at initial pH

  3. Interactions between stepwise-eluted sub-fractions of fulvic acids and protons revealed by fluorescence titration combined with EEM-PARAFAC.

    PubMed

    Song, Fanhao; Wu, Fengchang; Guo, Fei; Wang, Hao; Feng, Weiying; Zhou, Min; Deng, Yanghui; Bai, Yingchen; Xing, Baoshan; Giesy, John P

    2017-12-15

    In aquatic environments, pH can control environmental behaviors of fulvic acid (FA) via regulating hydrolysis of functional groups. Sub-fractions of FA, eluted using pyrophosphate buffers with initial pHs of 3.0 (FA 3 ), 5.0 (FA 5 ), 7.0 (FA 7 ), 9.0 (FA 9 ) and 13.0 (FA 13 ), were used to explore interactions between the various, operationally defined, FA fractions and protons, by use of EEM-PARAFAC analysis. Splitting of peaks (FA 3 and FA 13 ), merging of peaks (FA 7 ), disappearance of peaks (FA 9 and FA 13 ), and red/blue-shifting of peaks were observed during fluorescence titration. Fulvic-like components were identified from FA 3 -FA 13 , and protein-like components were observed in fractions FA 9 and FA 13 . There primary compounds (carboxylic-like, phenolic-like, and protein-like chromophores) in PARAFAC components were distinguished based on acid-base properties. Dissociation constants (pK a ) for fulvic-like components with proton ranged from 2.43 to 4.13 in an acidic pH and from 9.95 to 11.27 at basic pH. These results might be due to protonation of di-carboxylate and phenolic functional groups. At basic pH, pK a values of protein-like components (9.77-10.13) were similar to those of amino acids. However, at acidic pH, pK a values of protein-like components, which ranged from 3.33 to 4.22, were 1-2units greater than those of amino acids. Results presented here, will benefit understanding of environmental behaviors of FA, as well as interactions of FA with environmental contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ΔG o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ΔG o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ΔG o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  5. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    PubMed

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  6. Biochemical characterization of soluble proteins in pecan [Carya illinoinensis (Wangenh.) K. Koch].

    PubMed

    Venkatachalam, Mahesh; Roux, Kenneth H; Sathe, Shridhar K

    2008-09-10

    Pecans (cv. Desirable) contained approximately 10% protein on a dry weight basis. The minimum nitrogen solubility (5.9-7.5%) at 0.25-0.75 M trichloroacetic acid represented the nonprotein nitrogen. Among the solvents assessed for protein solubilization, 0.1 M NaOH was the most effective, while borate saline buffer (pH 8.45) was judged to be optimal for protein solubilization. The protein solubility was minimal in the pH range of 3-7 and significantly increased on either side of this pH range. Increasing the NaCl concentration from 0 to 4 M significantly improved ( approximately 8-fold increase) protein solubilization. Following Osborne protein fractionation, the alkali-soluble glutelin fraction (60.1%) accounted for a major portion of pecan proteins followed by globulin (31.5%), prolamin (3.4%), and albumin (1.5%), respectively. The majority of pecan polypeptides were in the molecular mass range of 12-66 kDa and in the pI range of 4.0-8.3. The pecan globulin fraction was characterized by the presence of several glycoprotein polypeptides. Lysine was the first limiting essential amino acid in the defatted flour, globulin, prolamin, and alkaline glutelin fractions. Leucine and tryptophan were the first limiting essential amino acids in albumin and acid glutelin fractions, respectively. Rabbit polyclonal antibodies detected a range of pecan polypeptides in the 12-60 kDa range, of which the globulin fraction contained the most reactive polypeptides.

  7. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid.

    PubMed

    Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M

    2012-02-01

    Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P < 0.001) and vice versa for butyric acid production from pectin and inulin (P < 0.001). Total propionic acid production was unaffected by the carbohydrate source (P = 0.791). Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P < 0.001). Principle component analysis of T-RFLP patterns revealed that both pectin and pH 5.5 resulted in pronounced changes in the microbial community composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Investigation of the erosive potential of sour novelty sweets.

    PubMed

    Aljawad, A; Morgan, M Z; Fairchild, R; Rees, J S

    2017-04-21

    Background The expansion of the novelty sweets market in the UK has major potential public health implications in children and young adults as they may cause dental erosion.Objective To investigate the erosive potential of the novelty sweets in term of their physiochemical properties and amount of enamel loss.Subjects and methods The pH of a variety of novelty sweets was tested in vitro using a pH meter and the neutralisable acidity was assessed by titrating the sweets against 0.1M NaOH. The viscosity of the novelty sweets was measured using a rotational viscometer. The wettability of enamel by each sweet was measured using dynamic contact angle analyser. Enamel loss was assessed using contact profilometry.Results The pH ranged from 1.8-3.2, the neutralisable acidity ranged from 9-201 ml of 0.1 NaOH. The viscosity of the novelty sweets that come in liquid form ranged from 2-594 mPa s. The surface enamel erosion ranged from 1.95-15.77 μm and from 2.5-17.6 μm with and without immersing in saliva for 1 hour before immersing in acidic solution respectively. The amount of subsurface enamel loss was ranged from 0.75 to 2.3 μm following ultrasonication at 0 min of acidic attack and from 0.23 to 0.85 μm at 60 minutes of acidic attack while immersed in saliva. The contact angle between enamel surface and four sweet was less than the angle formed between the orange juice and the enamel which caused more wettability of enamel.Conclusion The pH is lower than the critical value for enamel erosion (5.5), high neutralisable acidity and high sugar content strongly suggest that these sweets may cause significant amount of dental erosion clinically. In addition, the degree of wettability of enamel by solution is an important factor to consider in determining the enamel loss caused by acidic solution. Immediate tooth brushing would cause further enamel loss as a result of the mechanical removal of softened enamel. However, it has been suggested that postponing brushing after erosive attack should be reconsidered.

  9. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  10. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach.

    PubMed

    Rohof, Wout O; Bennink, Roelof J; Boeckxstaens, Guy E

    2014-07-01

    The gastric acid pocket is believed to be the reservoir from which acid reflux events originate. Little is known about how changes in position, size, and acidity of the acid pocket contribute to the therapeutic effect of proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease (GERD). Thirty-six patients with GERD (18 not taking PPIs, 18 taking PPIs; 19 men; age, 55 ± 2.1 y) were analyzed by concurrent high-resolution manometry and pH-impedance monitoring after a standardized meal. The acid pocket was visualized using scintigraphy after intravenous administration of (99m)technetium-pertechnetate. The size of the acid pocket was measured and its position was determined, relative to the diaphragm, using radionuclide markers on a high-resolution manometry catheter. At the end of the study, the acid pocket was aspirated, and its pH level was measured. The number of reflux episodes was comparable between patients on and off PPIs, but the number of acid reflux episodes was reduced significantly in patients on PPIs. In patients on PPIs, the acid pocket was smaller and more frequently located below the diaphragm. The mean pH of the acid pocket was significantly lower in patients not taking PPIs (n = 6) than in those who were (n = 16) (0.9; range, 0.7-1.2 vs 4.0; range, 1.6-5.9; P < .001). The pH of acid pockets correlated significantly with the lowest pH values measured for refluxate (r = 0.72; P < .01). Based on analyses of acid pockets in patients with GERD, the acid pocket appears to be a reservoir from which reflux occurs when patients are receiving PPIs. PPIs might affect the size, acidity, or position of the acid pocket, which contributes to the efficacy in patients with GERD. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Acid-Activatable Michael-Type Fluorescent Probes for Thiols and for Labeling Lysosomes in Live Cells.

    PubMed

    Dai, Chun-Guang; Du, Xiao-Jiao; Song, Qin-Hua

    2015-12-18

    A Michael addition is usually taken as a base-catalyzed reaction. Most fluorescent probes have been designed to detect thiols in slightly alkaline solutions (pH 7-9). The sensing reactions of almost all Michael-type fluorescent probes for thiols are faster in a high pH solution than in a low pH solution. In this work, we synthesized a series of 7-substituted 2-(quinolin-2-ylmethylene)malonic acids (QMAs, substituents: NEt2, OH, H, Cl, or NO2) and their ethyl esters (QMEs) as Michael-type fluorescent probes for thiols. The sensing reactions of QMAs and QMEs occur in distinct pH ranges, pH < 7 for QMAs and pH > 7 for QMEs. On the basis of experimental and theoretic studies, we have clarified the distinct pH effects on the sensing reactivity between QMAs and QMEs and demonstrated that two QMAs (NEt2, OH) are highly sensitive and selective fluorescent probes for thiols in acidic solutions (pH < 7) and promising dyes that can label lysosomes in live cells.

  12. Impact of desiccation and heat exposure stress on Salmonella tolerance to acidic conditions.

    PubMed

    Richardson, Kurt E; Cox, Nelson A; Cosby, Douglas E; Berrang, Mark E

    2018-02-01

    In a recent study, the pH of commonly used Salmonella pre-enrichment media became acidic (pH 4.0 to 5.0) when feed or feed ingredients were incubated for 24 h. Acidic conditions have been reported to injure or kill Salmonella. In this study, cultures of four known feed isolates (S. montevideo, S. senftenberg, S. tennessee, and S. schwarzengrund) and four important processing plant isolates (S. typhimurium, S. enteritidis, S. infantis, and S. heidelberg) were grown on meat and bone meal and later subjected to desiccation and heat exposure to stress the microorganism. The impact of stress on the isolates ability to survive in acidic conditions ranging from pH 4.0 to 7.0 was compared to the non-stressed isolate. Cell injury was determined on xylose lysine tergitol 4 (XLT4) and cell death determined on nutrient agar (NA). When measured by cell death in non-stressed Salmonella, S. typhimurium was the most acid tolerant and S. heidelberg was the most acid sensitive whereas in stressed Salmonella, S. senftenberg was the most acid tolerant and S. tennessee was the most acid sensitive. The pH required to cause cell injury varied among isolates. With some isolates, the pH required for 50% cell death and 50% cell injury was similar. In other isolates, cell injury occurred at a more neutral pH. These findings suggest that the pH of pre-enrichment media may influence the recovery and bias the serotype of Salmonella recovered from feed during pre-enrichment.

  13. Characterization of Cultures Enriched from Acidic Polycyclic Aromatic Hydrocarbon-Contaminated Soil for Growth on Pyrene at Low pH▿

    PubMed Central

    Uyttebroek, Maarten; Vermeir, Steven; Wattiau, Pierre; Ryngaert, Annemie; Springael, Dirk

    2007-01-01

    Two polycyclic aromatic hydrocarbon (PAH)-contaminated soils of pH 2 were successfully used as inoculum to enrich cultures growing on phenanthrene and pyrene at different pHs, including pH 3. Selected pyrene-utilizing cultures obtained at pH 3, pH 5, and pH 7 were further characterized. All showed rapid [14C]pyrene mineralization at pH 3 and pH 5 and grew on pyrene at pH values ranging from 2 to 6. Eubacterial and mycobacterial 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and sequencing indicated that the cultures were dominated by a single bacterium closely related to Mycobacterium montefiorense, belonging to the slow-growing Mycobacterium sp. In contrast, a culture enriched on pyrene at pH 7 from a slightly alkaline soil sampled at the same site was dominated by Pseudomonas putida and a fast-growing Mycobacterium sp. The M. montefiorense-related species dominating the pyrene-utilizing cultures enriched from the acidic soils was also the dominant Mycobacterium species in the acidic soils. Our data indicate that a slow-growing Mycobacterium species is involved in PAH degradation in that culture and show that bacteria able to degrade high-molecular-weight PAHs at low pH are present in acidic PAH-contaminated soil. PMID:17369339

  14. A table for converting pH to hydrogen ion concentration [H+] over the range 5-9.

    DOT National Transportation Integrated Search

    1968-10-01

    The wider use, in the future, of hydrogen ion concentration (H+) rather than pH to describe and evaluate acid-base status will require interconversion of the two notations until a final standard is adopted. The relationship between pH and (H+) is giv...

  15. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  16. Characterization of sulfate reducing bacteria isolated from urban soil

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  17. [Effect of a synthetic detergent (Syndet) on the pH of the skin of infants].

    PubMed

    Braun, F; Lachmann, D; Zweymüller, E

    1986-06-01

    The long- and short-term effects on the skin of infants of a synthetic detergent (syndet) with an acid pH were investigated and compared to ordinary soap. The short-term effect was determined by measuring the skin pH on different parts of the body before and 20 min after washing with syndet. The long-term effect was tested in a second group, in which the infants were washed either with ordinary soap or with syndet for 3 days. The skin pH was measured 4-5 h after washing. The results were evaluated statistically. The results show that for a short time syndet displaces the skin pH towards acid pH in younger infants; however, the skin pH is not influenced in older infants. Syndet keeps the skin pH in the physiological range for a longer time after washing than ordinary soap.

  18. pH dominates variation in tropical soil archaeal diversity and community structure.

    PubMed

    Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M

    2013-11-01

    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  20. Hydrogel-coated fiber Bragg grating sensor for pH monitoring

    NASA Astrophysics Data System (ADS)

    Pabbisetti, Vayu Nandana Kishore; Madhuvarasu, Sai Shankar

    2016-06-01

    We present a fiber-optic wavelength-modulated sensor for pH applications. Fiber Bragg grating (FBG) is functionalized with a stimulus-responsive hydrogel that induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of poly (vinyl alcohol)/poly (acrylic acid). The induced strain results in a shift of FBG reflected peak that is monitored by an interrogator. The sensor system shows good linearity in the acidic pH range of 3 to 7 with a sensitivity of 12.16 pm/pH. In addition, it shows good repeatability and oscillator behavior, which proves it to be fit for pH sensing applications.

  1. Photo-catalytic decolourisation of toxic dye with N-doped titania: a case study with Acid Blue 25.

    PubMed

    Chakrabortty, Dhruba; Gupta, Susmita Sen

    2013-05-01

    Dyes are one of the hazardous water pollutants. Toxic Acid Blue 25, an anthraquinonic dye, has been decolourised by photo-catalysing it with nitrogen doped titania in aqueous medium. The photo catalyst was prepared from 15% TiCl3 and 25% aqueous NH3 solution as precursor. XRD and TEM revealed the formation of well crystalline anatase phase having particle size in the nano-range. BET surface area of the sample was higher than that of pure anatase TiO2. DRS showed higher absorption of radiation in visible range compared to pure anatase TiO2. XPS revealed the presence of nitrogen in N-Ti-O environment. The experimental parameters, namely, photocatalyst dose, initial dye concentration as well as solution pH influence the decolourisation process. At pH 3.0, the N-TiO2 could decolourise almost 100% Acid Blue 25 within one hour. The influence of N-TiO2 dose, initial concentration of Acid Blue 25 and solution pH on adsorption-desorption equilibrium is also studied. The adsorption process follows Lagergren first order kinetics while the modified Langmuir-Hinselwood model is suitably fitted for photocatalytic decolourisation of Acid Blue 25.

  2. Polymeric micelle for tumor pH and folate-mediated targeting.

    PubMed

    Lee, Eun Seong; Na, Kun; Bae, You Han

    2003-08-28

    Novel pH-sensitive polymeric mixed micelles composed of poly(L-histidine) (polyHis; M(w) 5000)/PEG (M(n) 2000) and poly(L-lactic acid) (PLLA) (M(n) 3000)/PEG (M(n) 2000) block copolymers with or without folate conjugation were prepared by diafiltration. The micelles were investigated for pH-dependent drug release, folate receptor-mediated internalization and cytotoxicity using MCF-7 cells in vitro. The polyHis/PEG micelles showed accelerated adriamycin release as the pH decreased from 8.0. When the cumulative release for 24 h was plotted as a function of pH, the gradual transition in release rate appeared in a pH range from 8.0 to 6.8. In order to tailor the triggering pH of the polymeric micelles to the more acidic extracellular pH of tumors, while improving the micelle stability at pH 7.4, the PLLA/PEG block copolymer was blended with polyHis/PEG to form mixed micelles. Blending shifted the triggering pH to a lower value. Depending on the amount of PLLA/PEG, the mixed micelles were destabilized in the pH range of 7.2-6.6 (triggering pH for adriamycin release). When the mixed micelles were conjugated with folic acid, the in vitro results demonstrated that the micelles were more effective in tumor cell kill due to accelerated drug release and folate receptor-mediated tumor uptake. In addition, after internalization polyHis was found to be effective for cytosolic ADR delivery by virtue of fusogenic activity. This approach is expected to be useful for treatment of solid tumors in vivo.

  3. Electro-driven extraction of polar compounds using agarose gel as a new membrane: Determination of amino acids in fruit juice and human plasma samples.

    PubMed

    Sedehi, Samira; Tabani, Hadi; Nojavan, Saeed

    2018-03-01

    In this work, polypropylene hollow fiber was replaced by agarose gel in conventional electro membrane extraction (EME) to develop a novel approach. The proposed EME method was then employed to extract two amino acids (tyrosine and phenylalanine) as model polar analytes, followed by HPLC-UV. The method showed acceptable results under optimized conditions. This green methodology outperformed conventional EME, and required neither organic solvents nor carriers. The effective parameters such as the pH values of the acceptor and the donor solutions, the thickness and pH of the gel, the extraction voltage, the stirring rate, and the extraction time were optimized. Under the optimized conditions (acceptor solution pH: 1.5; donor solution pH: 2.5; agarose gel thickness: 7mm; agarose gel pH: 1.5; stirring rate of the sample solution: 1000rpm; extraction potential: 40V; and extraction time: 15min), the limits of detection and quantification were 7.5ngmL -1 and 25ngmL -1 , respectively. The extraction recoveries were between 56.6% and 85.0%, and the calibration curves were linear with correlation coefficients above 0.996 over a concentration range of 25.0-1000.0ngmL -1 for both amino acids. The intra- and inter-day precisions were in the range of 5.5-12.5%, and relative errors were smaller than 12.0%. Finally, the optimized method was successfully applied to preconcentrate, clean up, and quantify amino acids in watermelon and grapefruit juices as well as a plasma sample, and acceptable relative recoveries in the range of 53.9-84.0% were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    PubMed

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  5. Variations in gastric acid secretion during periods of fasting between two species of shark.

    PubMed

    Papastamatiou, Yannis P; Lowe, Christopher G

    2005-06-01

    Vertebrates differ in their regulation of gastric acid secretion during periods of fasting, yet it is unknown why these differences occur. Elasmobranch fishes are the earliest known vertebrates to develop an acid secreting stomach and as such may make a good comparative model for determining the causative factors behind these differences. We measured gastric pH and temperature continuously during periods of fasting in captive free-swimming nurse sharks (Ginglymostoma cirratum) using autonomous pH/temperature data-loggers. All nurse sharks secreted strong gastric acids (minimum pH 0.4) after feeding; however, for most of the sharks, pH increased to 8.2-8.7, 2-3 days after feeding. Half of the sharks also exhibited periodic oscillations in pH when the stomach was empty that ranged from 1.1 to 8.7 (acid secretion ceased for 11.3 +/- 4.3 h day(-1)). This is in contrast to the gastric pH changes observed from leopard sharks (Triakis semifasciata) in a previous study, where the stomach remains acidic during fasting. The leopard shark is a relatively active, more frequently feeding predator, and continuous acid secretion may increase digestive efficiency. In contrast, the nurse shark is less active and is thought to feed less frequently. Periodic cessation of acid secretion may be an energy conserving mechanism used by animals that feed infrequently and experience extended periods of fasting.

  6. pH-dependent kinetics of copper ions binding to amyloid-β peptide.

    PubMed

    Bin, Yannan; Chen, Shu; Xiang, Juan

    2013-02-01

    Interactions of amyloid-β peptide (Aβ) with Cu(2+) are known to be pH-dependent and believed to play a crucial role in the neurotoxicity of Alzheimer's disease (AD). Some research has revealed that injured brains with lowered pH have higher risks of developing AD. However, reported experiments were performed under neutral or mildly acidic conditions, and no reports about the affinity of Aβ-Cu(2+) below pH6.0. In this study, surface plasmon resonance (SPR) sensor with immobilized Aβ was used to investigate the formation of Aβ-Cu(2+) complexes under acidic pH conditions. Dissociation constants were calculated and shown to be pH-dependent, ranging from 3.5×10(-8)M to 8.7×10(-3)M in the pH range from 7.0 to 4.0. The physiological significance of K(d) was preliminarily investigated by monitoring the generation of OH() in aerobic solutions containing Aβ-Cu(2+) and Cu(2+). The results imply that acidic conditions could aggravate the oxidative stress in the presence of Cu(2+), and the weak affinities of Aβ-Cu(2+) under mildly acidic pH of 5.0-6.0 could further enhance the oxidative damage. However, the oxidative stress effect of Aβ is negligible due to the suppressed formation of Aβ-Cu(2+) below pH5.0. This work is useful for the in-depth understanding of the role of Aβ-Cu(2+) in AD neuropathology. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  7. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    PubMed

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-03

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Discontinuous pH gradient-mediated separation of TiO2-enriched phosphopeptides

    PubMed Central

    Park, Sung-Soo; Maudsley, Stuart

    2010-01-01

    Global profiling of phosphoproteomes has proven a great challenge due to the relatively low stoichiometry of protein phosphorylation and poor ionization efficiency in mass spectrometers. Effective, physiologically-relevant, phosphoproteome research relies on the efficient phosphopeptide enrichment from complex samples. Immobilized metal affinity chromatography and titanium dioxide chromatography (TOC) can greatly assist selective phosphopeptide enrichment. However, the complexity of resultant enriched samples is often still high, suggesting that further separation of enriched phosphopeptides is required. We have developed a pH-gradient elution technique for enhanced phosphopeptide identification in conjunction with TOC. Using this process, we have demonstrated its superiority to the traditional ‘one-pot’ strategies for differential protein identification. Our technique generated a highly specific separation of phosphopeptides by an applied pH-gradient between 9.2 and 11.3. The most efficient elution range for high-resolution phosphopeptide separation was between pH 9.2 and 9.4. High-resolution separation of multiply-phosphorylated peptides was primarily achieved using elution ranges > pH 9.4. Investigation of phosphopeptide sequences identified in each pH fraction indicated that phosphopeptides with phosphorylated residues proximal to acidic residues, including glutamic acid, aspartic acid, and other phosphorylated residues, were preferentially eluted at higher pH values. PMID:20946866

  9. Dual-Emitting Fluorescent Metal-Organic Framework Nanocomposites as a Broad-Range pH Sensor for Fluorescence Imaging.

    PubMed

    Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan

    2018-05-15

    pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.

  10. Transepithelial transport of alpha-lipoic acid across human intestinal Caco-2 cell monolayers.

    PubMed

    Takaishi, Naoki; Yoshida, Kazutaka; Satsu, Hideo; Shimizu, Makoto

    2007-06-27

    Alpha-lipoic acid (LA) is used in dietary supplements or food with antioxidative functions. The mechanism for the intestinal absorption of alpha-lipoic acid was investigated in this study by using human intestinal Caco-2 cell monolayers. LA was rapidly transported across the Caco-2 cell monolayers, this transport being energy-dependent, suggesting transporter-mediated transport to be the mechanism involved. The LA transport was strongly dependent on the pH value, being accelerated in the acidic pH range. Furthermore, such monocarboxylic acids as benzoic acid and medium-chain fatty acids significantly inhibited LA transport, suggesting that a proton-linked monocarboxylic acid transporter (MCT) was involved in the intestinal transport of LA. The conversion of LA to the more antioxidative dihydrolipoic acid was also apparent during the transport process.

  11. Liquid-containing Refluxes and Acid Refluxes May Be Less Frequent in the Japanese Population Than in Other Populations: Normal Values of 24-hour Esophageal Impedance and pH Monitoring

    PubMed Central

    Kawamura, Osamu; Kohata, Yukie; Kawami, Noriyuki; Iida, Hiroshi; Kawada, Akiyo; Hosaka, Hiroko; Shimoyama, Yasuyuki; Kuribayashi, Shiko; Fujiwara, Yasuhiro; Iwakiri, Katsuhiko; Inamori, Masahiko; Kusano, Motoyasu; Hongo, Micho

    2016-01-01

    Background/Aims Twenty-four-hour esophageal impedance and pH monitoring allows detection of all types of reflux episodes and is considered the best technique for identifying gastroesophageal refluxes. However, normative data for the Japanese population are lacking. This multicenter study aimed to establish the normal range of 24-hour esophageal impedance and pH data both in the distal and the proximal esophagus in Japanese subjects. Methods Forty-two healthy volunteers (25 men and 17 women) with a mean ± standard deviation age of 33.3 ± 12.4 years (range: 22–72 years) underwent a combined 24-hour esophageal impedance and pH monitoring. According to the physical and pH properties, distal or proximal esophageal reflux events were categorized. Results Median 45 reflux events occurred in 24 hours, and the 95th percentile was 85 events. Unlike previous reports, liquid-containing reflux events are median 25/24 hours with the 95th percentile of 62/24 hours. Acidic reflux events were median 11/24 hours with the 95th percentile of 39/24 hours. Non-acidic gas reflux events were median 15/24 hours with the 95th percentile of 39/24 hours. Proximal reflux events accounted for 80% of the total reflux events and were mainly non-acidic gas refluxes. About 19% of liquid and mixed refluxes reached the proximal esophagus. Conclusions Unlike previous studies, liquid-containing and acidic reflux events may be less frequent in the Japanese population. Non-acidic gas reflux events may be frequent and a cause of frequent proximal reflux events. This study provides important normative data for 24-hour impedance and pH monitoring in both the distal and the proximal esophagus in the Japanese population. PMID:27247103

  12. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells.

    PubMed

    Tomaszewska, Ludwika; Rakicka, Magdalena; Rymowicz, Waldemar; Rywińska, Anita

    2014-09-01

    Citric acid and erythritol biosynthesis from pure and crude glycerol by three acetate-negative mutants of Yarrowia lipolytica yeast was investigated in batch cultures in a wide pH range (3.0-6.5). Citric acid biosynthesis was the most effective at pH 5.0-5.5 in the case of Wratislavia 1.31 and Wratislavia AWG7. With a decreasing pH value, the direction of biosynthesis changed into erythritol synthesis accompanied by low production of citric acid. Pathways of glycerol conversion into erythritol and citric acid were investigated in Wratislavia K1 cells. Enzymatic activity was compared in cultures run at pH 3.0 and 4.5, that is, under conditions promoting the production of erythritol and citric acid, respectively. The effect of pH value (3.0 and 4.5) and NaCl presence on the extracellular production and intracellular accumulation of citric acid and erythritol was compared as well. Low pH and NaCl resulted in diminished activity of glycerol kinase, whereas such conditions stimulated the activity of glycerol-3-phosphate dehydrogenase. The presence of NaCl strongly influenced enzymes activity - the effective erythritol production was correlated with a high activity of transketolase and erythrose reductase. Therefore, presented results confirmed that transketolase and erythrose reductase are involved in the overproduction of erythritol in the cells of Y. lipolytica yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  14. EFFECTS OF ACID RAIN ON GRAPEVINES

    EPA Science Inventory

    Mature vineyard-growing Concord grapevines were sprayed with simulated acid rain solutions ranging from pH 2.5 to 5.5 both as acute treatments at anthesis and chronically throughout the season in 1980 and 1981. In 1981, 8 additional varieties were also treated with simulated acid...

  15. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.

    PubMed

    Casey, Elizabeth; Sedlak, Miroslav; Ho, Nancy W Y; Mosier, Nathan S

    2010-06-01

    A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L(-1), representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.

  16. Butanol production from thin stillage using Clostridium pasteurianum.

    PubMed

    Ahn, Jae-Hyung; Sang, Byoung-In; Um, Youngsoon

    2011-04-01

    The production of butanol from thin stillage by Clostridium pasteurianum DSM 525 was evaluated in the paper. At initial pH values ranging from 5.0 to 7.0 C. pasteurianum DSM 525 produced 6.2-7.2 g/L of butanol utilizing glycerol in thin stillage as the main carbon source, with yields of 0.32-0.44 g butanol produced/g glycerol consumed, which are higher than previously reported yields (e.g., 0.14-0.31 g butanol/g glycerol, Biebl, 2001). Lactic acid in the thin stillage acted as a buffering agent, maintaining the pH of the medium within a range of 5.7-6.1. Lactic acid was also utilized along with glycerol, enhancing butanol production (6.5 g/L butanol vs. 8.7 g/L butanol with 0 and 16 g/L lactic acid, respectively). These results demonstrate the feasibility of cost-effective butanol production using thin stillage as a nutrient-containing medium with a pH buffering capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  18. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum.

    PubMed

    Svetlitshnyi, V; Rainey, F; Wiegel, J

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-265T; DSM 11003), were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60 degrees C the pH range for growth determined at 25 degrees C [pH25 degrees C] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH60 degrees C of 7.6 and 8.1). At a pH25 degrees C of 8.5 the temperature range for growth was from 52 to 70 degrees C, with an optimum between 60 and 66 degrees C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture could not utilize olive oil, triacylglycerols, short- and long-chain fatty acids, and glycerol for growth. In syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  19. Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics

    NASA Astrophysics Data System (ADS)

    Li, Huilin; Men, Dandan; Sun, Yiqiang; Zhang, Tao; Hang, Lifeng; Liu, Dilong; Li, Cuncheng; Cai, Weiping; Li, Yue

    2017-10-01

    Uniform Au nanoparticle (NP)/poly (acrylamide-co-acrylic acid) [P(AAm-co-AA)] hydrogel microbeads were successfully prepared using droplet microfluidics technology. The microbeads exhibited a good stimuli-responsive behavior to pH value. Particularly in the pH value ranging from pH 2-pH 9, the composite microbead sizes gradually increased along with the increase of pH value. The homogeneous Au NPs, which were encapsulated in the P(AAm-co-AA) hydrogel microbeads, could transform the volume changes of hydrogel into optical signals by a tested single microbead with a microspectrometre system. The glucose was translated into gluconic acid by glucose oxidase. Thus, the Au NP/P(AAm-co-AA) hydrogel microbeads were used for detecting glucose based on pH effects on the composite microbeads. For this, the single Au NP/P(AAm-co-AA) hydrogel microbead could act as a good pH- or glucose-visualizing sensor.

  20. Effect of pH on skin permeation enhancement of acidic drugs by l-menthol-ethanol system.

    PubMed

    Katayama, K; Matsui, R; Hatanaka, T; Koizumi, T

    2001-09-11

    The effect of pH on the skin permeation enhancement of three acidic drugs by the l-menthol-ethanol system was investigated. The total flux of acidic drugs from the system remarkably varied over the pH range 3.0-8.0, and the permeation enhancement factor depended on the system pH and drug. A skin permeation model, which consists of two permeant (unionized and ionized) species, two system (oily and aqueous) phases, and two permeation (lipid and pore) pathways, was developed. The assumptions were made that only the unionized species can distribute to the oily phase and transport via the lipid pathway. The model explained the relationship between the concentration of drug in the aqueous phase and system pH. The skin permeability data were also described by the model and permeability coefficients corresponding to the physicochemical properties of permeant were calculated for the lipid and pore pathways. The model simulation showed that the permeation of acidic drugs occurred from the aqueous phase and the oily phase acted as a reservoir. Whether the total flux increased with increase of pH was dependent on the lipophilicity of drug. These results suggest that the pH of l-menthol-ethanol system should be given attention to elicit the maximum permeation enhancement.

  1. Foaming and emulsifying properties of porcine red cell protein concentrate.

    PubMed

    Salvador, P; Saguer, E; Parés, D; Carretero, C; Toldrà, M

    2010-08-01

    This work focuses on studying the effects of pH (7.0 and 4.5) and protein concentration on the foaming and emulsifying properties of fresh (F) and spray-dried (SD) porcine red cell protein (RCP) concentrates in order to evaluate the proper use of this blood protein as a functional food ingredient. Also, protein solubility is measured through the pH range from 3.0 to 8.0. In each case, all concentrates show a high solubility, although this is significantly affected by pH. Spray drying slightly reduces the solubility at mild acid and neutral conditions. The foaming capacity is found to be dependent on pH as well as on the drying treatment. SD-RCP concentrates show better foaming capacity than F-RCP. The minimum protein concentration required to attain the highest foaming capacity is found under acid pH for the spray-dried concentrates. Although F-RCP shows low foam stability at acid and neutral pH, spray drying and protein content enhance the stability of foams. Emulsifying properties show dependence on pH as well as on protein content. Furthermore, spray drying affects the emulsifying properties but in different ways, depending on pH and protein concentration.

  2. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH.

    PubMed

    Mason, A James; Gasnier, Claire; Kichler, Antoine; Prévost, Gilles; Aunis, Dominique; Metz-Boutigue, Marie-Hélène; Bechinger, Burkhard

    2006-10-01

    The histidine-rich amphipathic cationic peptide LAH4 has antibiotic and DNA delivery capabilities. Here, we explore the interaction of peptides from this family with model membranes as monitored by solid-state (2)H nuclear magnetic resonance and their antibiotic activities against a range of bacteria. At neutral pH, the membrane disruption is weak, but at acidic pH, the peptides strongly disturb the anionic lipid component of bacterial membranes and cause bacterial lysis. The peptides are effective antibiotics at both pH 7.2 and pH 5.5, although the antibacterial activity is strongly affected by the change in pH. At neutral pH, the LAH peptides were active against both methicillin-resistant and -sensitive Staphylococcus aureus strains but ineffective against Pseudomonas aeruginosa. In contrast, the LAH peptides were highly active against P. aeruginosa in an acidic environment, as is found in the epithelial-lining fluid of cystic fibrosis patients. Our results show that modest antibiotic activity of histidine-rich peptides can be dramatically enhanced by inducing membrane disruption, in this case by lowering the pH, and that histidine-rich peptides have potential as future antibiotic agents.

  3. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus

    NASA Astrophysics Data System (ADS)

    Sang, Min; Wang, Ming; Liu, Jianhui; Zhang, Chengwu; Li, Aifen

    2012-06-01

    The effects of temperature, light intensity, salinity, and initial pH on the growth and fatty acid composition of Pinguiococcus pyrenoidosus 2078 were studied for eicosapentaenoic acid (EPA) production potential. The fatty acid composition was assayed by gas chromatography-mass spectrometry, which indicated that the main fatty acids were C14:0, C16:0 and EPA. The highest EPA percentage 20.83% of total fatty acids was obtained at 20°C with the temperature being set at 20, 24, and 28°C. Under different salinities and light intensities, the highest percentages of total polyunsaturated fatty acids (PUFAs) and EPA were 17.82% and 31.37% of total fatty acids, respectively, which were achieved at salinity 30 and 100 μmol photon m-2s-1 illumination. The highest percentages of total PUFAs and EPA were 38.75% and 23.13% of total fatty acids, respectively, which were reached at an initial pH of 6 with the test range being from 5.0 to 9.0.

  4. Maternal and fetal Acid-base chemistry: a major determinant of perinatal outcome.

    PubMed

    Omo-Aghoja, L

    2014-01-01

    Very small changes in pH may significantly affect the function of various fetal organ systems, such as the central nervous system, and the cardiovascular system with associated fetal distress and poor Apgar score. Review of existing data on maternal-fetal acid-base balance in pregnancy highlight the factors that are associated with derangements of the acid-base status and the impact of the derangements on fetal outcome. Extensive search of electronic databases and manual search of journals for relevant literature on maternal and fetal acid chemistry, clinical studies and case studies were undertaken. There is a substantial reduction in the partial pressure of carbon dioxide (pCO2) in pregnancy. Adequate buffering prevents significant changes in maternal arterial pH. Normal fetal metabolism results in the production of acids which are buffered to maintain extracellular pH within a critical range. Fetal hypoxia can occur when maternal oxygenation is compromised, maternal perfusion of the placenta is reduced, or delivery of oxygenated blood from the placenta to the fetus is impeded. When adequate fetal oxygenation does not occur, metabolisms proceed along with an anaerobic pathway with production of organic acids, such as lactic acid. Accumulation of lactic acid can deplete the buffer system and result in metabolic acidosis with associated low fetal pH, fetal distress and poor Apgar score. There is a significant reduction in pCO2 in pregnancy. This change, however, does not result in a corresponding significant reduction in maternal arterial pH, because of adequate buffering. Very small changes in pH may cause significant derangement in fetal function and outcome.

  5. Heavy metals content in acid mine drainage at abandoned and active mining area

    NASA Astrophysics Data System (ADS)

    Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim

    2013-11-01

    This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD appeared to be influenced by acidity and the formation of Fe, Mn oxide and hydroxide.

  6. Detection of gastro-oesophageal reflux in the neonatal unit.

    PubMed

    Rossor, Thomas; Lingam, Ingran; Douiri, Abdel; Bhat, Ravindra; Greenough, Anne

    2018-03-13

    To determine whether a pH probe or multichannel intraluminal impedance (MII) more frequently detected gastro-oesophageal reflux and test the hypothesis that acid reflux was associated with lower baseline impedance. A prospective study of infants in whom reflux was suspected and evaluated using combined pH and multichannel impedance. Studies were considered abnormal if the acid index was >10% or there were >79MII reflux events in 24 hours. The acid index was the percentage of total study time with a pH

  7. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    PubMed

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of catabolism. IMPORTANCE Experimental evolution of an enteric bacterium under a narrow buffered range of acid pH leads to loss of genes that enhance fitness above or below the buffered pH range, including loss of enzymes that may raise external pH in the absence of buffer. Prominent modes of evolutionary change involve IS-mediated insertions and deletions that knock out key regulators. Over generations of acid stress, catabolism undergoes reregulation in ways that differ for each evolving strain. Copyright © 2017 American Society for Microbiology.

  8. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  9. Inner-Helmholtz potential development at the hematite (α-Fe 2O 3) (0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Boily, Jean-François; Chatman, Shawn; Rosso, Kevin M.

    2011-08-01

    Electric potentials of the (0 0 1) surface of hematite were measured as a function of pH and ionic strength in solutions of sodium nitrate and oxalic acid using the single-crystal electrode approach. The surface is predominantly charge-neutral in the pH 4-14 range, and develops a positive surface potential below pH 4 due to protonation of μ-OH 0 sites (p K1,1,0,int = -1.32). This site is resilient to deprotonation up to at least pH 14 (-p K-1,1,0,int ≫ 19). The associated Stern layer capacitance of 0.31-0.73 F/m 2 is smaller than typical values of powders, and possibly arises from a lower degree of surface solvation. Acid-promoted dissolution under elevated concentrations of HNO 3 etches the (0 0 1) surface, yielding a convoluted surface populated by -OH20.5+ sites. The resulting surface potential was therefore larger under these conditions than in the absence of dissolution. Oxalate ions also promoted (0 0 1) dissolution. Associated electric potentials were strongly negative, with values as large as -0.5 V, possibly from metal-bonded interactions with oxalate. The hematite surface can also acquire negative potentials in the pH 7-11 range due to surface complexation and/or precipitation of iron species (0.0038 Fe/nm 2) produced from acidic conditions. Oxalate-bearing systems also result in negative potentials in the same pH range, and may include ferric-oxalate surface complexes and/or surface precipitates. All measurements can be modeled by a thermodynamic model that can be used to predict inner-Helmholtz potentials of hematite surfaces.

  10. A new fluorescent pH probe for imaging lysosomes in living cells.

    PubMed

    Lv, Hong-Shui; Huang, Shu-Ya; Xu, Yu; Dai, Xi; Miao, Jun-Ying; Zhao, Bao-Xiang

    2014-01-15

    A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5-4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no 'alkalizing effect' on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Hydrologic data from the integrated lake-watershed acidification study in the west-central Adirondack Mountains, New York : October 1977 through January 1982

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.; Dalton, F.N.

    1987-01-01

    Hydrologic data were collected from three forested headwater lake watersheds in Herkimer and Hamilton Counties from October 1977 through early January 1982 as part of the Integrated Lake-Watersheds Acidification Study (ILWAS). ILWAS was established in 1977 to determine why these lakes differ in pH when all receive equal amounts of acidic atmospheric deposition. Woods Lake is acidic (pH ranges from 4 to 5), Panther Lake is neutral (pH ranges from 5 to 7.5), and Sagamore Lake is intermediate (pH ranges from 5 to 6). The data tabulated herein include discharge at the three lake outlets and in a tributary to each lake; lake-water stage at each lake; chemical quality of lake water, including total concentrations of zinc, iron, manganese, and lead, at each lake outlet and at Lost Brook (a tributary to Sagamore Lake); groundwater stage from 29 wells; major ion concentrations of groundwater from 22 of these wells; temperature of soil from three depths at one site in each watershed; soil-moisture tension at three depths at eight sites - four in the neutral-lake basin, three in the acidic-lake basin , and one in the intermediate-lake basin; and average snowpack depths and water equivalents at approximately 20 snow-course sites in each basin for three sampling periods during the 1979-80 winter. (USGS)

  12. The behaviour of REE and Zr-Hf fractionation in the volcanic waters of Nevado del Ruiz system (Colombia)

    NASA Astrophysics Data System (ADS)

    Inguaggiato, Claudio; Censi, Paolo; Zuddas, Pierpaolo; Makario Londoño, John; Chacón, Zoraida; Alzate, Diego; Brusca, Lorenzo; D'Alessandro, Walter

    2015-04-01

    The geochemical behaviour of Rare Earth Element (REE), Zr and Hf have been investigated in the thermal waters of Nevado del Ruiz volcanic system. These fluids are characterised by a wide range of pH ranging between 1.0 and 8.8. The acidic waters are sulphate dominated with different Cl/SO4 ratios. The Nevado del Ruiz waters allowed to investigate the behaviour of investigated elements in a wide spectrum of pH and chemical composition of water. The important role of the pH and the ionic complexes have been evidenced in the distribution of REE, Zr and Hf in the aqueous phase. The pH rules the precipitation of authigenic oxyhydroxides of Fe, Al producing changes in REE, Zr, Hf amount and strong anomalies of Cerium and Europium. Y-Ho and Zr-Hf (twin pairs) have different behaviour in strong acidic waters with respect to the water with higher pH. Yttrium and Ho have the same behaviour of Zr and Hf in waters with pH near neutral-to-neutral, showing super-chondritic ratios. The twin pairs showed to be sensitive to the co-precipitation and/or adsorption onto the surface of authigenic particulate suggesting an enhanced scavenging of Ho and Hf respect to Y and Zr, leading to super-chondritic ratios. In acidic waters a different behaviour of twin pairs occurs with chondritic Y/Ho ratios (reflecting the Y/Ho ratio of average local rock) and sub-chondritic Zr/Hf ratios. For the first time, Zr and Hf have been investigated in natural acidic fluids to understand the behaviour of these elements in extreme acidic conditions and different major anions chemistry. Zr/Hf molar ratio changes from 4.75 to 49.29 in water with pH<3.6. In strong acidic waters, a different fractionation of Zr and Hf have been recognised as function of major anion contents (Cl and SO4), suggesting the formation of complexes leading to sub-chondritic Zr/Hf molar ratios.

  13. Cadmium Accumulation and Pathological Alterations in the Midgut Gland of Terrestrial Snail Helix pomatia L. from a Zinc Smelter Area: Role of Soil pH.

    PubMed

    Włostowski, Tadeusz; Kozłowski, Paweł; Łaszkiewicz-Tiszczenko, Barbara; Oleńska, Ewa

    2016-04-01

    The purpose of this study was to determine whether cadmium (Cd) accumulation and toxicity in the midgut gland of Helix pomatia snails living in a Cd-contaminated area were related to soil pH. Toxic responses in the midgut gland (i.e., increased vacuolization and lipid peroxidation) occurred in H. pomatia snails exhibiting the highest Cd levels in the gland (265-274 µg/g dry wt) and living on acidic soil (pH 5.3-5.5), while no toxicity was observed in snails accumulating less Cd (90 µg/g) and ranging on neutral soil (pH 7.0), despite the fact that total soil Cd was similar in the two cases. The accumulation of Cd in the gland was directly related to the water extractable Cd in soil, which in turn correlated inversely with soil pH, indicating that this factor had a significant effect on tissue Cd. It appeared further that the occurrence of Cd toxicity was associated with low levels of metallothionein in the gland of snails ranging on acidic soil.

  14. Stable and selective self-assembly of α-lipoic acid on Ge(001) for biomolecule immobilization

    NASA Astrophysics Data System (ADS)

    Kazmierczak, M.; Flesch, J.; Mitzloff, J.; Capellini, G.; Klesse, W. M.; Skibitzki, O.; You, C.; Bettenhausen, M.; Witzigmann, B.; Piehler, J.; Schroeder, T.; Guha, S.

    2018-05-01

    We demonstrate a novel method for the stable and selective surface functionalization of germanium (Ge) embedded in silicon dioxide. The Ge(001) surface is functionalized using α-lipoic acid (ALA), which can potentially be utilized for the immobilization of a wide range of biomolecules. We present a detailed pH-dependence study to establish the effect of the incubation pH value on the adsorption layer of the ALA molecules. A threshold pH value for functionalization is identified, dividing the examined pH range into two regions. Below a pH value of 7, the formation of a disordered ALA multilayer is observed, whereas a stable well-ordered ALA mono- to bi-layer on Ge(001) is achieved at higher pH values. Furthermore, we analyze the stability of the ALA layer under ambient conditions, revealing the most stable functionalized Ge(001) surface to effectively resist oxidation for up to one week. Our established functionalization method paves the way towards the successful immobilization of biomolecules in future Ge-based biosensors.

  15. Infrared spectrum analysis of the dissociated states of simple amino acids.

    PubMed

    Sebben, Damien; Pendleton, Phillip

    2014-11-11

    In this work, we present detailed analyses of the dissociation of dilute aqueous solutions of glycine and of lysine over the range 18 resulted in consistent pKa values for the amino acids. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Spontaneous remodeling of HDL particles at acidic pH enhances their capacity to induce cholesterol efflux from human macrophage foam cells[S

    PubMed Central

    Nguyen, Su Duy; Öörni, Katariina; Lee-Rueckert, Miriam; Pihlajamaa, Tero; Metso, Jari; Jauhiainen, Matti; Kovanen, Petri T.

    2012-01-01

    HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL2 and HDL3 subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL3 than in HDL2. Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects. PMID:22855736

  17. An investigation using atomic force microscopy nanoindentation of dental enamel demineralization as a function of undissociated acid concentration and differential buffer capacity

    NASA Astrophysics Data System (ADS)

    Barbour, Michele E.; Shellis, R. Peter

    2007-02-01

    Acidic drinks and foodstuffs can demineralize dental hard tissues, leading to a pathological condition known as dental erosion, which is of increasing clinical concern. The first step in enamel dissolution is a demineralization of the outer few micrometres of tissue, which results in a softening of the structure. The primary determinant of dissolution rate is pH, but the concentration of undissociated acid, which is related to buffer capacity, also appears to be important. In this study, atomic force microscopy nanoindentation was used to measure the first initial demineralization (softening) induced within 1 min by exposure to solutions with a range of undissociated acid concentration and natural pH of 3.3 or with an undissociated acid concentration of 10 mmol l-1 and pH adjusted to 3.3. The results indicate that differential buffering capacity is a better determinant of softening than undissociated acid concentration. Under the conditions of these experiments, a buffer capacity of >3 mmol l-1 pH-1 does not have any further effect on dissolution rate. These results imply that differential buffering capacity should be used for preference over undissociated acid concentration or titratable acidity, which are more commonly employed in the literature.

  18. Normal 24-hour ambulatory proximal and distal gastroesophageal reflux parameters in Chinese.

    PubMed

    Hu, W H C; Wong, N Y H; Lai, K C; Hui, W M; Lam, K F; Wong, B C Y; Xia, H H X; Chan, C K; Chan, A O O; Wong, W M; Tsang, K W T; Lam, S K

    2002-06-01

    To quantify normal proximal and distal oesophageal acid parameters in healthy Chinese. Observational study. University teaching hospital, Hong Kong. Twenty healthy adults who were not on medication and were free from gastrointestinal symptoms were recruited by advertisement. Ambulatory oesophageal acid (pH<4) exposure parameters were recorded at distal and proximal sites, 5 and 20 cm, respectively above the lower oesophageal sphincter. The 95th percentile for reflux parameters assessed in the distal/proximal oesophagus were: percent total time pH<4, 4.6/0.7%; percent upright time pH<4, 7.0/1.1%; percent supine time pH<4, 4.5/0.5%; number of reflux episodes, 73/12; number of reflux episodes with pH<4 for >5 minutes, 4/0; and the longest single acid exposure episode, 11.2/3.0 minutes. Physiological gastroesophageal reflux occurs in healthy Chinese. These initial data provide a preliminary reference range that could be utilised by laboratories studying Chinese subjects.

  19. Affinity chemiresistor sensor for sugars.

    PubMed

    Tlili, Chaker; Badhulika, Sushmee; Tran, Thien-Toan; Lee, Ilkeun; Mulchandani, Ashok

    2014-10-01

    In this work, a non-enzymatic chemiresistive sugar sensor has been developed by combining a synthetic receptor with aligned single-walled carbon nanotubes (SWNTs) device. Briefly, boronic acid as a multivalent sugar receptor was immobilized on carbon nanotubes through amide bond formation. The interaction between three common sugars (d-glucose, d-fructose and sucrose) and boronic acid modified SWNTs device was studied. The effect of pH on the receptor-ligand binding was examined and highest response was observed at pH 9. The chemiresistive sensor exhibited specific and reproducible detection with sensitivity over the concentration range of 1-20mM, 1-25 mM, and 1-30 mM for fructose, glucose, and sucrose, respectively. The sensor showed no interference from common electroactive compounds such as citric acid, uric acid, and ascorbic acid. Furthermore, the sensor retained 97.4% of the initial value after five regeneration cycles with an acidic buffer at pH 5, thus ensuring good reusability. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  1. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P < 0.01) due to acid adaptation. In acidified juices, the highest tolerance was observed in acid-adapted E. coli in samples adjusted to pH 3.7 with malic acid (D54 °C of 9 ± 2 min and z-value of 5.4 °C) and the lowest in unadapted E. coli at pH 3.3 acidified with acetic acid (D58 °C of 0.03 ± 0.01 min and z-value of 10.4 °C). For juices acidified to the same endpoint pH with different acids, E. coli was found to be more tolerant in samples acidified with malic acid, followed by lactic and acetic acids. Increasing the soluble solids content from 9.4 to 11.5 °Brix showed no significant effect on the thermal tolerance of E. coli (P > 0.01). The data from this study will be useful for establishing critical limits for safe thermal processing of pH-controlled juices and similar products.

  2. Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions

    NASA Astrophysics Data System (ADS)

    Heidmann, Ilona; Christl, Iso; Kretzschmar, Ruben

    2005-04-01

    The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L -1 kaolinite and 0.03 g L -1 fulvic acid in 0.01 M NaNO 3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu 2+ and Pb 2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu 2+ ion activity (10 -12 to 10 -5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.

  3. Effects of acidic rain and ozone on nitrogen fixation and photosynthesis in the lichen lobaria pulmonaria (L. ) Hoffm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigal, L.L.; Johnston, J.W.

    1986-01-01

    The lichen Lobaria pulmonaria was subjected to ozone fumigations at 118, 235 and 353 mcg/cu m and simulated acidic rain at pH levels of 2.6, 4.2 and 5.6 for 5 days (M,W,F,M,W) during a 10-day period. Acidic rain at pH 2.6 caused significant reduction in nitrogen fixation and gross photosynthesis of 100 and 90%, respectively, and thallus bleaching was apparent. There were no significant differences between the pH 5.6 and 4.2 treatments in either gross photosynthesis or nitrogen fixation, and the color of the lichen thalli was unchanged. The effect of ozone on nitrogen fixation and photosynthesis over the rangemore » of concentrations used was not significant, but there was a trend toward reduced nitrogen fixation with increasing O/sub 3/ concentration. There were no significant ozone-acidic rain interactions. The threshold for response to rain acidity for L. pulmonaria lies between pH 2.6 and 4.2, and the acidity of wet deposition in parts of the United States may fall in the range.« less

  4. Acidic beverages increase the risk of in vitro tooth erosion.

    PubMed

    Ehlen, Leslie A; Marshall, Teresa A; Qian, Fang; Wefel, James S; Warren, John J

    2008-05-01

    Acidic beverages are thought to increase the potential for dental erosion. We report pH and titratable acidities (ie, quantity of base required to bring a solution to neutral pH) of beverages popular in the United States and lesion depths in enamel and root surfaces after beverage exposure, and we describe associations among pH, titratable acidity, and both enamel and root erosive lesion depths. The pH of 100% juices, regular sodas, diet sodas, and sports drinks upon opening and the titratable acidity both upon opening and after 60 minutes of stirring were measured. Enamel and root surfaces of healthy permanent molars and premolars were exposed to individual beverages (4 enamel and 4 root surfaces per beverage) for 25 hours, and erosion was measured. Statistical analyses included 2-sample t tests, analyses of variance with post hoc Tukey studentized range test; and Spearman rank correlation coefficients. All beverages were acidic; the titratable acidity of energy drinks was greater than that of regular and diet sodas that were greater than that of 100% juices and sports drinks (P < .05). Enamel lesion depths after beverage exposures were greatest for Gatorade, followed by those for Red Bull and Coke that were greater than those for Diet Coke and 100% apple juice (P < .05). Root lesion depths were greatest for Gatorade, followed by Red Bull, Coke, 100% apple juice, and Diet Coke (P < .05). Lesion depths were not associated with pH or titratable acidity. Beverages popular in the United States can produce dental erosion.

  5. Improved Acid Stress Survival of Lactococcus lactis Expressing the Histidine Decarboxylation Pathway of Streptococcus thermophilus CHCC1524*

    PubMed Central

    Trip, Hein; Mulder, Niels L.; Lolkema, Juke S.

    2012-01-01

    Degradative amino acid decarboxylation pathways in bacteria generate secondary metabolic energy and provide resistance against acid stress. The histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524 was functionally expressed in the heterologous host Lactococcus lactis NZ9000, and the benefits of the newly acquired pathway for the host were analyzed. During growth in M17 medium in the pH range of 5–6.5, a small positive effect was observed on the biomass yield in batch culture, whereas no growth rate enhancement was evident. In contrast, a strong benefit for the engineered L. lactis strain was observed in acid stress survival. In the presence of histidine, the pathway enabled cells to survive at pH values as low as 3 for at least 2 h, conditions under which the host cells were rapidly dying. The flux through the histidine decarboxylation pathway in cells grown at physiological pH was under strict control of the electrochemical proton gradient (pmf) across the membrane. Ionophores that dissipated the membrane potential (ΔΨ) and/or the pH gradient (ΔpH) strongly increased the flux, whereas the presence of glucose almost completely inhibited the flux. Control of the pmf over the flux was exerted by both ΔΨ and ΔpH and was distributed over the transporter HdcP and the decarboxylase HdcA. The control allowed for a synergistic effect between the histidine decarboxylation and glycolytic pathways in acid stress survival. In a narrow pH range around 2.5 the synergism resulted in a 10-fold higher survival rate. PMID:22351775

  6. An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells.

    PubMed

    Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua

    2017-01-01

    It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Occurrence of acid rain in Baton Rouge, Louisiana, Summer 1981. The role of the catalytic converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J.W.; Ghane, H.

    1982-01-01

    Between June and October 1981, acid rain falling in Baton Rouge, LA was studied. The acidity of the rain ranged for pH 3.9 to pH 5.8. Preliminary data showed that rain associated with thermal cumulo nimbus tended to be more acidic, but rain associated with active cold fronts were less acid. This may relate to dispersion and dilution of the acid aerosols by the cold front. It is proposed that exhaust from automobiles fitted with catalytic converters is a substantial contributor to the acid rain problem, and that their net value to the abatement of pollution must be questioned, particularlymore » in regions of the country where smog is not a problem. (JMT)« less

  8. A new pH-responsive peptide tag for protein purification.

    PubMed

    Nonaka, Takahiro; Tsurui, Noriko; Mannen, Teruhisa; Kikuchi, Yoshimi; Shiraki, Kentaro

    2018-06-01

    This paper describes a new pH-responsive peptide tag that adds a protein reversible precipitation and redissolution character. This peptide tag is a part of a cell surface protein B (CspB) derived from Corynebacterium glutamicum. Proinsulin that genetically fused with a peptide of N-terminal 6, 17, 50, or 250 amino acid residues of CspB showed that the reversible precipitation and redissolution depended on the pH. The transition occurred within a physiological and narrow pH range. A CspB50 tag comprising 50 amino acid residues of N-terminal CspB was further evaluated as a representative using other pharmaceutical proteins. Below pH 6.8, almost all CspB50-Teriparatide fusion formed an aggregated state. Subsequent addition of alkali turned the cloudy protein solution transparent above pH 7.3, in which almost all the CspB50-Teriparatide fusion redissolved. The CspB50-Bivalirudin fusion showed a similar behavior with slightly different pH range. This tag is offering a new protein purification method based on liquid-solid separation which does not require an affinity ligand. This sharp response around neutral pH is useful as a pH-responsive tag for the purification of unstable proteins at a non-physiological pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    PubMed

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  10. The effect of humic acid on uranyl sorption onto bentonite at trace uranium levels.

    PubMed

    Ivanov, Peter; Griffiths, Tamara; Bryan, Nick D; Bozhikov, Gospodin; Dmitriev, Serguei

    2012-11-01

    The effect of humic acid (HA) on U(VI) sorption on bentonite was studied in batch experiments at room temperature and ambient atmosphere at a (237)U(VI) concentration of 8.4 × 10(-11) M and HA concentration of 100 mg L(-1). The distribution of U(VI) between the liquid and solid phases was studied as a function of pH and ionic strength both in the absence and presence of HA. It was shown that the uranyl sorption on bentonite is strongly dependent on pH and the presence of humics, and the effect of the addition order was negligible. In the absence of HA an enhancement in the uptake with increasing pH was observed and a sharp sorption edge was found to take place between pH 3.2 and 4.2. The presence of HA slightly increases uranium(VI) sorption at low pH and curtails it at moderate pH, compared to the absence of HA. In the basic pH range for both the presence and absence of HA the sorption of uranium is significantly reduced, which could be attributed to the formation of soluble uranyl carbonate complexes. The influence of ionic strength on U(VI) and HA uptake by bentonite were investigated in the range of 0.01-1.0 M, and while there was an enhancement in the sorption of humic acid with increasing ionic strength, no significant effect of the ionic strength on the U(VI) sorption was observed in both the absence and presence of HA.

  11. Study of starch fermentation at low pH by Lactobacillus fermentum Ogi E1 reveals uncoupling between growth and alpha-amylase production at pH 4.0.

    PubMed

    Calderon Santoyo, M; Loiseau, G; Rodriguez Sanoja, R; Guyot, J P

    2003-01-15

    Lactobacillus fermentum Ogi E1 is an amylolytic heterofermentative lactic acid bacterium previously isolated from ogi, a Benin maize sourdough. In the present study, the effect of different pH between 3.5 and 6.0 on starch fermentation products and alpha-amylase production was investigated. Whereas a pH of 5.0 was optimum for specific growth rate and lactic acid production, growth was only slightly affected at suboptimal pH of 4.0 and 6.0. Over a pH range of 6.0 to 3.5, yields of product formation from substrate and of biomass relative to ATP were constant. These results showed that L. fermentum Ogi E1 was particularly acid tolerant, and well adapted to the acid conditions that develop during natural fermentation of cereal doughs. This acid tolerance may partly explain the dominance of L. fermentum in various traditional African sourdoughs. Surprisingly, alpha-amylase production, unlike growth, dropped dramatically when the strain was cultivated at pH 4.0 with starch. With maltose as substrate, the yield of alpha-amylase relative to biomass remained unchanged at pH 4.0 and 5.0, unlike that observed with starch. Based on the distribution of enzyme activity between extra- and intracellular fractions and fermentation kinetics, it appears that starch was first hydrolyzed into dextrins by alpha-amylase activity, and maltose was produced from dextrins by extracellular enzyme activity, transferred into the cell and then hydrolyzed into glucose by intracellular alpha-glucosidase.

  12. The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds.

    PubMed

    García-Casal, M N; Layrisse, M

    2001-03-01

    The effect of a pH change from 2 to 6 was tested on the solubility of ferrous sulfate, ferrous fumarate, iron bis-glycine chelate (Ferrochel) and sodium-iron ethylenediaminetetraacetic acid (NaFeEDTA). It was found that at pH 2 ferrous sulfate, Ferrochel and NaFeEDTA were completely soluble and only 75% of iron from ferrous fumarate was soluble. When pH was raised to 6, iron from amino acid chelate and NaFeEDTA remained completely soluble while solubility from ferrous sulfate and ferrous fumarate decreased 64 and 74%, respectively compared to the amount of iron initially soluble at pH 2. These results suggest that iron solubility from iron bis-glycine chelate and NaFeEDTA is not affected by pH changes within the ranges tested, probably because iron remained associated to the respective compounds.

  13. Lime retention in anthracite coal-breaker refuse

    Treesearch

    Miroslaw M. Czapowskyj; Edward A. Sowa

    1973-01-01

    Hydrated lime was applied to extremely acid anthracite coal-breaker refuse at rates of 2.5 and 5.0 tons per acre. The lime raised the pH to neutral range, and this range was still in evidence 7 years after treatment. The pH readings decreased with the depth of the refuse profile, and below 9 inches they approximated those of the control plots. The 2.5-tons-of-lime-per-...

  14. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    PubMed Central

    Konakovsky, Viktor; Clemens, Christoph; Müller, Markus Michael; Bechmann, Jan; Berger, Martina; Schlatter, Stefan; Herwig, Christoph

    2016-01-01

    Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i) inline pH and online glucose concentration measurement or (ii) inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA) has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8) is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G) around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With this contribution, we wish to extend the basic repertoire of available process control strategies, which will open up new avenues in automation technology and radically improve process robustness in both process development and manufacturing. PMID:28952567

  15. pH-responsive hydrogel coated fiber Bragg grating-based chemo mechanical sensor bioreactor applications

    NASA Astrophysics Data System (ADS)

    Kishore, P. V. N.; Sai Shankar, M.

    2017-04-01

    This paper describes a fiber optics based pH sensor by using wavelength modulated techniques. Fiber Bragg grating (FBG) is functionalized with a stimulus responsive hydrogel which induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of Poly (vinyl alcohol)/Poly (acrylic acid). The induced strain results in a shift of FBG reflected peak which is monitored by an interrogator. The sensor system shows a good linearity in acidic pH range of 3 to 7 with a sensitivity of 12.16pm/pH. Besides that it shows good repeatability which proves it to be fit for pH sensing applications.

  16. Intracellular pH Recovery Rates in Bivalve Hemocytes Following Exposure to Acidic Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G. H.

    2012-12-01

    Predictions of ocean acidification effects upon carbonate shell-forming species have caused great concern for the future of shellfisheries. Nevertheless, bivalve species inhabiting an estuarine environment have evolved in these environments with fluctuating pH levels. Previous experimental studies conducted in our laboratory have demonstrated the ability of oyster hemocytes to maintain intracellular homeostasis under acidic external conditions. However, little information is known of this homeostatic mechanism in other molluscan shellfish species present in these same habitats. In the current study we propose to determine if other bivalve species of aquaculture interest also possess this intracellular regulation by applying an in vitro hemocyte pH-recovery assay, previously developed for oysters, on the northern quahog, Mercenaria mercenaria, the blue mussel, Mytilus edulis, and the softshell clam, Mya arenaria. Preliminary results from the determination of initial intracellular pH levels, the initial step in the rate recovery assay, indicated a pH range between 7.0-7.4. This range was comparable to initial values measured in oysters, and consistent with data reported in the current literature. The second step of the hemocyte pH-recovery assay involves exposing oyster hemocytes to acidic external conditions and measuring the ability of the hemocyte intracellular pH to maintain homeostasis (i.e. recovery rate). Results from the recovery rate process will be presented.

  17. Generation of pH responsive fluorescent nano capsules through simple steps for the oral delivery of low pH susceptible drugs

    NASA Astrophysics Data System (ADS)

    Radhakumary, Changerath; Sreenivasan, Kunnatheeri

    2016-11-01

    pH responsive nano capsules are promising as it can encapsulate low pH susceptible drugs like insulin and guard them from the hostile environments in the intestinal tract. The strong acidity of the gastro-intestinal tract and the presence of proteolytic enzymes are the tumbling blocks for the design of drug delivery vehicles through oral route for drugs like insulin. Nano capsules are normally built over templates which are subsequently removed by further steps. Such processes are complex and often lead into deformed and collapsed capsules. In this study, we choose calcium carbonate (CaCO3) nano particles to serve as template. Over CaCO3 nanoparticles, silica layers were built followed by polymethacrylic acid chains to acquire pH responsiveness. During the polymerization process of the methacrylic acid, the calcium carbonate core particles were dissolved leading to the formation of nano hollow capsules having a size that ranges from 225 to 246 nm and thickness from 19 to 58 nm. The methodology is simple and devoid of additional steps. The nano shells exhibited 80% release of the loaded model drug, insulin at pH 7.4 while at pH 2.0 the capsules nearly stopped the release of the drug. Polymethacrylic acid shows pH responsive swelling behavior that it swells at intestinal pH (7.0-7.5) and shrinks at gastric pH (˜2.0) thus enabling the safe unloading of the drug from the nano capsules.

  18. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    PubMed

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model predicted the pH of this validation data set within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH online in applications such as nuclear fuel reprocessing.

  20. Boric Acid Corrosion of Concrete Rebar

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Yang, L.; Chiang, K.–T.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i) borated water flowing in a simulated concrete crack, (ii) borated water flowing over a concrete surface, (iii) borated water that has reacted with concrete, and (iv) 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS) and linear polarization resistance (LPR) probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or less)when the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  1. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp; Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara; Ishizuka, Tamotsu

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bonemore » marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.« less

  2. Maternal and Fetal Acid-Base Chemistry: A Major Determinant of Perinatal Outcome

    PubMed Central

    Omo-Aghoja, L

    2014-01-01

    Very small changes in pH may significantly affect the function of various fetal organ systems, such as the central nervous system, and the cardiovascular system with associated fetal distress and poor Apgar score. Review of existing data on maternal-fetal acid-base balance in pregnancy highlight the factors that are associated with derangements of the acid-base status and the impact of the derangements on fetal outcome. Extensive search of electronic databases and manual search of journals for relevant literature on maternal and fetal acid chemistry, clinical studies and case studies were undertaken. There is a substantial reduction in the partial pressure of carbon dioxide (pCO2) in pregnancy. Adequate buffering prevents significant changes in maternal arterial pH. Normal fetal metabolism results in the production of acids which are buffered to maintain extracellular pH within a critical range. Fetal hypoxia can occur when maternal oxygenation is compromised, maternal perfusion of the placenta is reduced, or delivery of oxygenated blood from the placenta to the fetus is impeded. When adequate fetal oxygenation does not occur, metabolisms proceed along with an anaerobic pathway with production of organic acids, such as lactic acid. Accumulation of lactic acid can deplete the buffer system and result in metabolic acidosis with associated low fetal pH, fetal distress and poor Apgar score. There is a significant reduction in pCO2 in pregnancy. This change, however, does not result in a corresponding significant reduction in maternal arterial pH, because of adequate buffering. Very small changes in pH may cause significant derangement in fetal function and outcome. PMID:24669324

  3. Why plants grow poorly on very acid soils: are ecologists missing the obvious?

    PubMed

    Kidd, P S; Proctor, J

    2001-04-01

    Factors associated with soil acidity are considered to be limiting for plants in many parts of the world. This work was undertaken to investigate the role of the toxicity of hydrogen (H(+)) which seems to have been underconsidered by ecologists as an explanation of the reduced plant growth observed in very acid soils. Racial differences are reported in plant growth response to increasing acidity in the grass Holcus lanatus L. (Yorkshire-fog) and the tree Betula pendula Roth (Silver Birch). Soils and seeds were collected from four Scottish sites which covered a range of soils from acid (organic and mineral) to more base-rich. The sites and their pH (1:2.5 fresh soil:0.01 M CaCl(2)) were: Flanders Moss (FM), pH 3.2+/-0.03; Kippenrait Glen (KP), pH 4.8+/- 0.05; Kinloch Rannoch (KR), pH 6.1+/-0.16; and Sheriffmuir (SMM), pH 4.3+/-0.11. The growth rates of two races of H. lanatus, FM and KP, and three races of B. pendula (SMM, KP and KR) were measured in nutrient solution cultures at pH 2.0 (H. lanatus only), 3.0, 4.0, 5.0, and 5.6. Results showed races from acid organic soils (FM) were H(+)-tolerant while those from acid mineral soils (SMM) were Al(3+)-tolerant but not necessarily H(+)-tolerant. These results confirmed that populations were separately adapted to H(+) or Al(3+) toxicity and this was dependent upon the soil characteristics at their site of collection. The fact of plant adaptation to H(+) toxicity supports the view that this is an important factor in very acid soils.

  4. Effect of pH and chloroauric acid concentration on the geometry of gold nanoparticles obtained by photochemical synthesis

    NASA Astrophysics Data System (ADS)

    Conde Rodríguez, G. R.; Gauthier, G. H.; Ladeira, L. O.; Sanabria Cala, J. A.; Laverde Cataño, D.

    2017-12-01

    Due to their excellent surface properties, gold nanoparticles have been used in a wide range of applications from optics and catalysis to biology and cancer treatment by thermal therapy. Gold nanoparticles can absorb a large amount of radiation according to their geometry, such as nanospheres and nanorods. The importance of gold nanoparticles geometry is based on the electromagnetic spectrum wavelength where exists a greater absorption of radiation, which belongs to the visible region for nanospheres and ranges between visible and near infrared regions for nanorods, conferring greater biomedical applicability to the latter. When using photochemical synthesis method, which consists of reducing gold atoms to their metallic state with UV radiation, the geometry of gold nanoparticles depends on different variables such as: 1) pH, 2) concentration of chloroauric acid, 3) the surfactant, 4) concentration of silver nitrate, 5) temperature and 6) irradiation time. Therefore, in this study the geometry of the gold nanoparticles obtained by photochemical synthesis was determined as a function of solution pH and chloroauric acid concentration, using Spectrophotometry in the Ultraviolet Visible region (UV-vis) as characterization technique. From the analysis of the UV-vis spectra, it was determined that at an acidic pH the particles have two absorption bands corresponding to nanorods geometry, while at a basic pH only nanospheres are found and at a neutral pH the lower relative intensity of the second band indicates the simultaneous existence of the two geometries. The increase in the concentration of chloroauric acid produces a decrease in the amount of synthesized nanorods, seen as a decrease of the relative intensity of the second absorption band. Therefore, obtaining gold nanoparticles with nanorods geometry favours fields such as biomedicine, because they are capable of absorbing infrared radiation and can be used as photosensitive agents in localized thermal therapy against cancer.

  5. Effects of acidity on tree Pollen germination and tube growth. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Ryn, D.M.; Jacobson, J.S.

    Most of the northeastern hardwood forests in North America are exposed repeatedly to acidic rainfall at pH values below 5.0. Pollen germination, tube growth and fertilization, important parts of the reproductive process, are sensitive to changes in their chemical environment. Accordingly, the authors investigated the effects of acidity on pollen germination and tube elongation of four northeastern tree species: flowering dogwood, black birch, yellow birch, and sugar maple. Pollen was collected and germinated in a growth medium acidified to pH values ranging from 5.0 to 2.6. Pollen was found to be sensitive to acidification of the germination medium to belowmore » pH 4.2. These results suggest that acidic rain that now occurs in eastern North America may influence reproductive processes that are necessary for seed set and regeneration in northern hardwood forests.« less

  6. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.

    PubMed

    Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini

    2014-04-15

    Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.

  7. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix.

    PubMed

    Kaplan, Anne R; Brady, Megan R; Maciejewski, Mark W; Kammerer, Richard A; Alexandrescu, Andrei T

    2017-03-21

    To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cβ) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1 H- 15 N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13 C rotating frame T 1 relaxation (T 1ρ ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.

  8. Negative supercoiling of DNA by gyrase is inhibited in Salmonella enterica serovar Typhimurium during adaptation to acid stress.

    PubMed

    Colgan, Aoife M; Quinn, Heather J; Kary, Stefani C; Mitchenall, Lesley A; Maxwell, Anthony; Cameron, Andrew D S; Dorman, Charles J

    2018-03-01

    DNA in intracellular Salmonella enterica serovar Typhimurium relaxes during growth in the acidified (pH 4-5) macrophage vacuole and DNA relaxation correlates with the upregulation of Salmonella genes involved in adaptation to the macrophage environment. Bacterial ATP levels did not increase during adaptation to acid pH unless the bacterium was deficient in MgtC, a cytoplasmic-membrane-located inhibitor of proton-driven F 1 F 0 ATP synthase activity. Inhibiting ATP binding by DNA gyrase and topo IV with novobiocin enhanced the effect of low pH on DNA relaxation. Bacteria expressing novobiocin-resistant (Nov R ) derivatives of gyrase or topo IV also exhibited DNA relaxation at acid pH, although further relaxation with novobiocin was not seen in the strain with Nov R gyrase. Thus, inhibition of the negative supercoiling activity of gyrase was the primary cause of enhanced DNA relaxation in drug-treated bacteria. The Salmonella cytosol reaches pH 5-6 in response to an external pH of 4-5: the ATP-dependent DNA supercoiling activity of purified gyrase was progressively inhibited by lowering the pH in this range, as was the ATP-dependent DNA relaxation activity of topo IV. We propose that DNA relaxation in Salmonella within macrophage is due to acid-mediated impairment of the negative supercoiling activity of gyrase. © 2018 John Wiley & Sons Ltd.

  9. Embedded micro-sensor for monitoring pH in concrete structures

    NASA Astrophysics Data System (ADS)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  10. Transport and fate of acid rains out of North America. Final report, April 14, 1982-April 13, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knap, A.H.

    1983-06-01

    A program to determine the transport of acid rain has been undertaken at Bermuda. The results indicate that precipitation at Bermuda is acidified to a pH of 4.8 over a one-year period with a seasonal component of greater acidity (pH 4.4) corresponding to back trajectories of the North American air mass. A detailed study of the composition of Bermuda rainwater compared to a North American coastal site has been carried out as well as a shipboard collection program between eastern North America and Bermuda. The results indicate that the strong acid acidity is due to long-range transport of the Northmore » American air mass.« less

  11. [Determination of seven phenoxyacid herbicides in environmental water by high performance liquid chromatography coupled with three phase hollow fiber liquid phase microextraction].

    PubMed

    Peng, Xiaojun; Pang, Jinshan; Deng, Aihua

    2011-12-01

    A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.

  12. Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2007-10-01

    Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.

  13. A novel optical probe for pH sensing in gastro-esophageal apparatus

    NASA Astrophysics Data System (ADS)

    Baldini, F.; Ghini, G.; Giannetti, A.; Senesi, F.; Trono, C.

    2011-03-01

    Monitoring gastric pH for long periods, usually 24 h, may be essential in analyzing the physiological pattern of acidity, in obtaining information on changes in activity during peptic ulcer disease, and in assessing the effect of antisecretory drugs. Gastro-esophageal reflux, which causes a pH decrease in the esophagus content from pH 7 even down to pH 2, can determine esophagitis with possible strictures and Barrett's esophagus. One of the difficulties of the optical measurement of pH in the gastro-esophageal apparatus lies in the required extended working range from 1 to 8 pH units. The present paper deals with a novel optical pH sensor, using methyl red as optical pH indicator. Contrary to all acidbase indicators characterized by working ranges limited to 2-3 pH units, methyl red, after its covalent immobilization on controlled pore glass (CPG), is characterized by a wide working range which fits with the clinical requirements. The novel probe design here described is suitable for gastro-esophageal applications and allows the optimization of the performances of the CPG with the immobilised indicator. This leads to a very simple configuration characterized by a very fast response time.

  14. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi; Zheng, Xiong; Zhu, Xiaoyu; Zhao, Yuxiao

    2010-12-15

    Most of the studies on sewage sludge treatment in literature were conducted for methane generation under acidic or near neutral pH conditions. It was reported in our previous studies that the accumulation of short-chain fatty acids (SCFAs), the preferred carbon source of biological wastewater nutrient removal, was significantly enhanced when sludge was fermented under alkaline conditions, but the optimal pH was temperature-dependent (pH 10 at ambient temperature, pH 9 at mesophilic, and pH 8 at thermophilic), and the maximal SCFAs yields were in the following order: thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH. In this study the kinetic and microbiological features of waste activated sludge fermented in the range of pH 7-10 were investigated to understand the mechanism of remarkably high SCFAs accumulation under alkaline conditions. The developed sludge alkaline fermentation model could be applied to predicate the experimental data in either batch or semicontinuous sludge alkaline fermentation tests, and the relationships among alkaline pH, kinetic parameters, and SCFAs were discussed. Further analyses with fluorescence in situ hybridization (FISH) and PCR-based 16S rRNA gene clone library indicated that both the ratio of bacteria to archaea and the fraction of SCFAs producer accounting for bacteria were in the sequence of thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH, which was in correspondence with the observed order of maximal SCFAs yields.

  15. [Effect of phosphatidic acid on the reaction of linoleic acid oxidation by 5-lipooxygenase from potatoes].

    PubMed

    Skaterna, T D; Kharchenko, O V

    2008-01-01

    Influence of anionogenic phospholipid of phosphatidic acid (PA) on oxidation of linoleic acid by 5-lipoxygenase (5-LO) from Solanum tuberosum was studied. The influence of PA was studied in micellar system which consisted of mixed micelles of linolenic acid (LK), Lubrol PX and different quantity of enzyme effector PA. The reaction was initiated by addition of 5-LO. It was established that 5-LO had two pHopt. in the presence of 50 microM phosphatidic acid: pH 5.0 and 6.9. In concentration of 50 microM PA was able to activate 5-LO 15 times at pH 5.0. The reaction maximum velocity (Vmax) coincided with Vmax of lipoxygenase reaction without the effector at pH 6.9 under such conditions. It was found that 30-50 microM phospholipid in the reaction mixture decreased the concentration of half saturation by the substrate by 43-67%. The enzyme demonstrated positive cooperation in respect of the substrate, the reaction is described by the Hill equation. Hill coefficient value (h) of the substrate was 3.34 +/- 0.22 (pH 6.9) and 5.61 +/- 0.88 (pH 5.0), that is with the change of pH to acidic region the number of substrate molecules increased and they could interact with the enzyme molecule. In case of substrate insufficiency the enzyme demonstrated positive cooperation of PA, it added from 4 to 3 effectors' molecules at pH 5.0, that is the phospholipid acted as the allosteric regulator of 5-LO. A comparative analysis of the influence of 4-hydroxy-TEMPO displayed, that the level of nonenzymatic processes in the case of physiological pH values was lower by 15-50% in the presence of PA in the range of 30-80 microM than without the effector.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, N.S.K.

    In aqueous lysine-sucrose model systems, the effects of reaction time, pH and molar ratio were studied on the formation of non-enzymatic browning reaction (NBR) products. The extent of sucrose hydrolysis was measured and the antioxidant effect of NBR products on linoleic acid emulsions was examined. Nuclear magnetic resonance (NMR) spectra were obtained at various stages of browning. Sucrose produced NMR produces with lysine in an aqueous system at 100/sup 0/C. The C-13 NMR spectra indicated that the NBR started when sucrose and lysine were dissolved in water. The C-13 NMR spectra also showed that heating did not have an effectmore » on the gross composition of polymeric species. The absorbance at 480 nm of 0.75 M lysine-sucrose solution heated up to 6 hours increased with reaction times. The pH values of heated lysine-sucrose solution gradually decreased with reaction time. When 0.75 M sucrose or lysine solution was heated separately up to 6 hours, there were no changes in absorbance in pH. In the pH range of 3.52-6.35, higher absorbance was obtained from heated lysine-sucrose solution at acidic pH levels than at neutral pH levels. As the concentration of lysine and sucrose solution was increased, the absorbance increased. At longer reaction times or acidic pH levels, enhanced hydrolysis of sucrose to reducing sugars resulted in more NBR products. NBR products obtained at a longer reaction time, an acidic pH, and higher concentration of reactants showed a darker brown color and were effective in preventing the formation of peroxides. The oxygen uptake of linoleic acid emulsion having NBR products was smaller than that of linoleic acid emulsion without NBR products. Based on these results, it was concluded that sucrose may act as an antioxidant in processed foods containing both amino acids and lipids.« less

  17. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.

    PubMed

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-05

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Acid rain at Kennedy Space Center, Florida - Recent observations

    NASA Technical Reports Server (NTRS)

    Madsen, B. C.

    1981-01-01

    During the period July, 1977 to September, 1979, rainfall was collected in the vicinity of the Kennedy Space Center and subjected to appropriate chemical analysis for purposes of characterization of general composition and acidity. Results obtained form the basis for future comparisons, should significant alteration of the chemical composition of rain occur during the space shuttle era. Acidity extremes calculated on a monthly basis from event samples collected from five sites within a 200 sq km area varied from pH 5.1 in November, 1977, and April, 1978 to pH 4.3 in July, 1978 and July, 1979. Weighted average pH for the entire period was 4.55. Acidity was due to the presence of sulfuric and nitric acids. The mole ratio of excess SO4(-2):NO3(-) was typically greater than one. Monthly weighted average Cl(-) concentrations ranged from 20-240 micromoles/liter. The Cl(-):Na(+) ratio was slightly lower than that present in sea water.

  19. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign

    NASA Astrophysics Data System (ADS)

    Guo, Hongyu; Liu, Jiumeng; Froyd, Karl D.; Roberts, James M.; Veres, Patrick R.; Hayes, Patrick L.; Jimenez, Jose L.; Nenes, Athanasios; Weber, Rodney J.

    2017-05-01

    pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42--NO3--NH4+-HNO3-NH3 system. For PM2. 5, internal mixing of sea salt components (SO42--NO3--NH4+-Na+-Cl--K+-HNO3-NH3-HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.

  20. Activity of earthworm in Latosol under simulated acid rain stress

    Treesearch

    Jia-En Zhang; Jiayu Yu; Ying Ouyang

    2015-01-01

    Acid rain is still an issue of environmental concerns. This study investigated the impacts of simulated acid rain (SAR) upon earthworm activity from the Latosol (acidic red soil). Laboratory experiment was performed by leaching the soil columns grown with earthworms (Eisenia fetida) at the SAR pH levels ranged from 2.0 to 6.5 over a 34-day period....

  1. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    PubMed

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  2. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae.

    PubMed

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-07-01

    External environments affect prenyl alcohol production by squalene synthetase-deficient mutant Saccharomyces cerevisiae ATCC 64031. Cultivation of the yeast in medium with an initial pH ranging from 7.0 to 8.0 increased the amount of secreted farnesol (FOH). In contrast, acidic medium with a pH below 4.0 increased the intracellular FOH and its isomer nerolidol. These effects of alkaline pH were also observed on constant pH cultivation in a jar fermenter. On cultivation for 133 h, the FOH production reached 102.8 mg/l.

  3. Humic Acid Effects on the Transport of Colloidal Particles in Unsaturated Porous Media: Humic Acid Dosage, pH, and Ionic Strength Dependence

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Gao, B.; Steenhuis, T. S.

    2008-12-01

    Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column experiments to obtain effluent breakthrough data, in-situ visualization of internal processes with bright field microscopy, batch adsorption measurements, and changes in hydrophobic interaction energy of colloid and media surfaces for realistic aqueous ionic strength and pH ranges. Such experimental results are expected to provide sufficient evidence to corroborate our speculations that under natural soil water conditions, humic acids may greatly contribute to the immobilization of colloidal particles.

  4. Evidence for biofilm acid neutralization by baking soda.

    PubMed

    Zero, Domenick T

    2017-11-01

    The generating of acids from the microbial metabolism of dietary sugars and the subsequent decrease in biofilm pH below the pH at which tooth mineral begins to demineralize (critical pH) are the key elements of the dental caries process. Caries preventive strategies that rapidly neutralize biofilm acids can prevent demineralization and favor remineralization and may help prevent the development of sugar-induced dysbiosis that shifts the biofilm toward increased cariogenic potential. Although the neutralizing ability of sodium bicarbonate (baking soda) has been known for many years, its anticaries potential as an additive to fluoride dentifrice has received only limited investigation. There is evidence that baking soda rapidly can reverse the biofilm pH decrease after a sugar challenge; however, the timing of when it is used in relation to a dietary sugar exposure is critical in that the sooner its used the greater the benefit in preventing a sustained biofilm pH decrease and subsequent demineralization. Furthermore, the effectiveness of baking soda in elevating biofilm pH appears to depend on concentration. Thus, the concentration of baking soda in marketed dentifrice products, which ranges from 10% to 65%, may affect their biofilm pH neutralizing performance. People with hyposalivation particularly may benefit from using fluoride dentifrice containing baking soda because of their diminished ability to clear dietary sugars and buffer biofilm acids. Although promising, there is the need for more evidence that strategies that modify the oral ecology, such as baking soda, can alter the cariogenic (acidogenic and aciduric) properties of biofilm microorganisms. The acid neutralization of dental biofilm by using fluoride dentifrice that contains baking soda has potential for helping counteract modern high-sugar diets by rapidly neutralizing biofilm-generated acid, especially in people with hyposalivation. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  5. Vectorisation of agrochemicals via amino acid carriers: influence of the spacer arm structure on the phloem mobility of phenylpyrrole conjugates in the Ricinus system.

    PubMed

    Marhadour, Sophie; Wu, Hanxiang; Yang, Wen; Marivingt-Mounir, Cécile; Bonnemain, Jean-Louis; Chollet, Jean-François

    2017-09-01

    Excessive agrochemical use poses significant threats to environmental safety and human health. Reducing pesticide use without reducing yield is necessary for sustainable agriculture. Therefore, we developed a vectorisation strategy to enhance agrochemical delivery through plant amino acid carriers. In addition to a fenpiclonil conjugate recently described, three new amino acid conjugates were synthesised by coupling fenpiclonil to an l-α-amino acid. Phloem mobility of these conjugates, which exhibit different structures of the spacer arm introduced between fenpiclonil and the α-amino acid function, was studied using the Ricinus model. Conjugate L-14, which contains a triazole ring with the shortest amino acid chain, showed the best phloem systemicity among the four conjugates. By contrast, removing the triazole ring in the spacer arm did not improve systemicity. L-14 exhibited phloem systemicity at all reported pH values (pH values from 5.0 to 6.5) of the foliar apoplast, while acidic derivatives of fenpiclonil were translocated only at pH values near 5.0. The conjugates were recognised by a pH-dependent transporter system and translocated at distance in the phloem. They exhibited a broader phloem systemicity than fenpiclonil acidic derivatives within the pH value range of the foliar apoplast. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    PubMed

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  7. The characteristics changes of pH and EC of atmospheric precipitation and analysis on the source of acid rain in the source area of the Yangtze River from 2010 to 2015

    NASA Astrophysics Data System (ADS)

    Zong-Jie, Li; Song, Ling-Ling; Jing-zhu, Ma; Li, Yong-ge

    2017-05-01

    Through the analysis of pH value, EC, precipitation and wind speed of 402 precipitation samples in the source region of the Yangtze River from January 1, 2010 to December 31, 2015, especially for the analysis of the 14 acid rain events. The results showed that: the acid rain in the source region of the Yangtze River was mainly affected by the southwest monsoon and the westerly circulation. The occurrence of acid rain mainly controlled by industrial pollution and other pollutants coming from India and other surrounding areas. And the other cause was that because of the Qinghai Tibet highway and the Qinghai Tibet railway, there were a lot of cars coming and going. And there were people in the summer to plateau tourism increased year by year, and more for self-driving travelling. This added additional pollutants (automobile exhaust) for the source of the Yangtze River. During the period of sampling, the variation range of pH value was from 4.0 to 8.57, with the mean was 6.37. And the range of EC was from 5.2 to 124.4 μs/cm, the average was 27.59 μs/cm. The order of conductivity in the four seasons was Spring > Winter > Summer > Autumn. And the order of pH in four seasons was Summer > Spring = Winter > Autumn. The results are also helpful for further understanding the acid rain in the Tibetan Plateau and providing scientific basis for the effective prevention and control of acid rain.

  8. Microspherules from Sugars in the Absence of Nitrogen

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Belenky, Marina; Herzfeld, Judith

    2011-02-01

    Reactions of short sugars under mild, plausibly prebiotic conditions yield organic microspherules that may have played a role in prebiotic chemistry as primitive reaction vessels. It has been widely thought that nitrogen chemistry, in particular Amadori rearrangement, is central to this process, Here we show that microspherules form in the absence of any nitrogen compounds if the pH is sufficiently low. In particular, while the microspherule formation induced by ammonium acetate (pH 7) is not reproduced by ammonium chloride (pH 5), it is reproduced by oxalic acid and by hydrochloric acid (pH 1). The formation of microspherules in the presence of oxalic acid is similar to that in the presence of ammonium acetate: aqueous reactions of D-erythrose, D-ribose, 2-deoxy-D-ribose and D-fructose in the presence of oxalic acid produce microspherules ranging in size from approximately 1-5 μm after eight weeks incubation at 65°C, while the aldohexoses D-glucose, D-galactose and D-mannose do not. This pattern correlates with the occurrence of furanose forms in these sugars.

  9. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    PubMed

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oak

  10. Acidic beverages increase the risk of in vitro tooth erosion

    PubMed Central

    Ehlen, Leslie A.; Marshall, Teresa A.; Qian, Fang; Wefel, James S.; Warren, John J.

    2008-01-01

    Acidic beverages are thought to increase the potential for dental erosion. We report pH and titratable acidities (i.e., quantity of base required to bring a solution to neutral pH) of beverages popular in the United States and lesion depths in enamel and root surfaces following beverage exposure, and we describe associations among pH, titratable acidity and both enamel and root erosive lesion depths. The pH of 100% juices, regular sodas, diet sodas and sports drinks upon opening, and the titratable acidity both upon opening and after 60 minutes of stirring were measured. Enamel and root surfaces of healthy permanent molars and premolars were exposed to individual beverages (4 enamel and 4 root surfaces per beverage) for 25 hours and erosion was measured. Statistical analyses included two-sample t-tests, analyses of variance with post hoc Tukey’s studentized range test; and Spearman rank correlation coefficients. All beverages were acidic; the titratable acidity of energy drinks was greater than regular sodas and diet sodas which were greater than 100% juices and sports drinks (P<0.05). Enamel lesion depths following beverage exposures were greatest for Gatorade® followed by Red Bull® and Coke® which were greater than Diet Coke® and 100% apple juice (P <0.05). Root lesion depths were greatest for Gatorade® followed by Red Bull®, Coke®, 100% apple juice and Diet Coke® (P<0.05). Lesion depths were not associated with pH or titratable acidity. Beverages popular in the United States can produce dental erosion. PMID:19083423

  11. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food.

    PubMed

    Omar, Mei Musa Ali; Elbashir, Abdalla Ahmed; Schmitz, Oliver J

    2017-01-01

    Simple and inexpensive capillary electrophoresis with UV-detection method (CE-UV) was optimized and validated for determination of six amino acids namely (alanine, asparagine, glutamine, proline, serine and valine) for Sudanese food. Amino acids in the samples were derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) prior to CE-UV analysis. Labeling reaction conditions (100mM borate buffer at pH 8.5, labeling reaction time 60min, temperature 70°C and NBD-Cl concentration 40mM) were systematically investigated. The optimal conditions for the separation were 100mM borate buffer at pH 9.7 and detected at 475nm. The method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision (repeatability) (RSD%) and accuracy (recovery). Good linearity was achieved for all amino acids (r(2)>0.9981) in the concentration range of 2.5-40mg/L. The LODs in the range of 0.32-0.56mg/L were obtained. Recoveries of amino acids ranging from 85% to 108%, (n=3) were obtained. The validated method was successfully applied for the determination of amino acids for Sudanese food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Specific in situ discrimination of amyloid fibrils versus α-helical fibres by the fluorophore NIAD-4.

    PubMed

    Brandenburg, Enrico; von Berlepsch, Hans; Koksch, Beate

    2012-02-01

    A wide range of human pathologies, including neurodegenerative diseases and other forms of amyloidosis, are associated with the formation of insoluble fibrillar protein aggregates known as amyloids. To gain insights into this process analytical methods are needed, which give quantitative data on the molecular events that are taking place. The dye Thioflavin T (ThT) is widely used for the spectroscopic determination of amyloid fibril formation. Different binding affinities to amyloids at neutral and acidic pH and the frequently observed poor binding at acidic pH are problematic in the use of the cationic ThT. The uncharged fluorescence probe [[5'-(4-hydroxyphenyl)[2,2'-bithiophen]-5-yl]methylene]-propanedinitrile (NIAD-4) has been recently designed by Swager and coworkers, in order to eliminate some of the limitations of ThT. Here we have used this novel dye for in vitro monitoring of the amyloid formation processes of de novo designed model peptides. Amyloid structures were successfully detected by NIAD-4 at neutral as well as acidic pH and no significant fluorescence was detectable in the presence of α-helical fibres. Thus, NIAD-4 proved to be a valuable alternative to ThT for spectroscopic studies on amyloid structures over a broad pH range.

  13. Esophageal motility and 24-h pH profiles of patients with heterotopic gastric mucosa in the cervical esophagus.

    PubMed

    Korkut, Esin; Bektaş, Mehmet; Alkan, Murat; Ustün, Yusuf; Meco, Cem; Ozden, Ali; Soykan, Irfan

    2010-02-01

    Heterotopic gastric mucosa occurs as a flat island of red mucosa in the proximal third of the esophagus where it gives rise to the cervical inlet patch. The aims of this study were to investigate the esophageal motility pattern and 24-h pH profiles of patients with cervical inlet patch. Thirty patients (16 women, mean age: 44.9 years, range: 23-72) diagnosed as having heterotopic gastric mucosa in the cervical esophagus with upper gastrointestinal symptoms had undergone esophageal motility testing and 24-h pH monitorisation with a double-channel pH probe. Manometric investigation was abnormal in 7 patients (non-specific esophageal motor disorder in 4 patients, esophageal hypomotility in 1 patient, and hypotensive LES in 2 patients). Pathological acid reflux (pH<4) was found in 9 (30%) of 30 heterotopic gastric mucosa patients during pH monitorisation from the distal probe. Pathological acid reflux in the proximal esophagus (percentage of total time of pH<4) was seen in four of these nine patients. Only four of the 30 patients (13.3%) presented with "acid independent episodes" during the 24-h esophageal pH monitorisation. Manometric investigation and 24-h pH monitorisation revealed that some of the patients with HGM have signs of esophageal motor dysfunction and "acid independent episodes" from the patches. These abnormalities may be responsible for some of the symptoms of HGM patients. Copyright 2009 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  14. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights.

    PubMed

    Qu, Fei; Zou, Xuan; Kong, Rongmei; You, Jinmao

    2016-01-01

    In this assay, a tunable pH sensing system was developed based on Ag nanoclusters (Ag NCs) capped by hyperbranched polyethyleneimine (PEI) with different molecular weights (abbreviated as Ag NC-PEIs). For instance, when the molecular weight of PEI was 600 or 1800, the fluorescence intensities of Ag NCs exhibited a linear fashion over the pH range 4.10-7.96; when the molecular weight of PEI was 25,000, the pH linear range was from 4.78 to 7.96; when the molecular weight of PEI was 70,000, the pH linear range was 6.09-8.95. According to the molecular weight of PEI 600/1800, 25,000, and 70,000, the color change point was pH 4.10-4.78, 5.33-6.09, and 6.09-6.80, respectively. Therefore, Ag NC-PEI 600 and 1800 were proper to acid conditions; Ag NC-PEI 25,000 was sensitive to weak acid media; while Ag NC-PEI 70,000 was adapted to neutral solution. The tunable and selective color change points brought an excellent feature of Ag NC-PEIs as visual pH indicators, which was flexible and applicable to a variety of environments. Besides, the ratios of absorbance at 415 nm and 268 nm of Ag NCs also showed linear relationships with pH variations. Therefore, there were three ways of this system for sensing pH values, including fluorescence assay, ultraviolet-visible measurement, and visual detection, suggesting that this tunable pH-sensing platform was more feasible, reliable, and accurate. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Protonation of carboxyl groups in EuDOTA-tetraamide complexes results in catalytic prototropic exchange and quenching of the CEST signal

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Evbuomwan, Osasere M.; Tieu, Michael; Zhao, Piyu; Martins, Andre F.; Sherry, A. Dean

    2017-10-01

    The CEST properties of EuDOTA-tetraamide complexes bearing pendant carboxylate and carboxyl ethyl esters were measured as a function of pH. The CEST signal from the Eu3+-bound water molecule decreased in intensity between pH 8.5 and 4.5 while the proton exchange rates (kex) increased over this same pH range. In comparison, the CEST signal in the corresponding carboxyl ester derivatives was nearly constant. Both observations are consistent with stepwise protonation of the four carboxylic acid groups over this same pH range. This indicates that negative charges on the carboxyl groups above pH 6 facilitate the formation of a strong hydrogen-bonding network in the coordination second sphere above the single Eu3+-bound water molecule, thereby decreasing prototropic exchange of protons on the bound water molecule with bulk water protons. The percentage of square antiprismatic versus twisted square antiprism coordination isomers also decreased as the appended carboxylic acid groups were positioned further away from the amide. The net effect of lowering the pH was an overall increase in kex and a quenching of the CEST signal. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.

  16. Mesenchymal stem cell proliferation and mineralization but not osteogenic differentiation are strongly affected by extracellular pH.

    PubMed

    Fliefel, Riham; Popov, Cvetan; Tröltzsch, Matthias; Kühnisch, Jan; Ehrenfeld, Michael; Otto, Sven

    2016-06-01

    Osteomyelitis is a serious complication in oral and maxillofacial surgery affecting bone healing. Bone remodeling is not only controlled by cellular components but also by ionic and molecular composition of the extracellular fluids in which calcium phosphate salts are precipitated in a pH dependent manner. To determine the effect of pH on self-renewal, osteogenic differentiation and matrix mineralization of mesenchymal stem cells (MSCs). We selected three different pH values; acidic (6.3, 6.7), physiological (7.0-8.0) and severe alkaline (8.5). MSCs were cultured at different pH ranges, cell viability measured by WST-1, apoptosis detected by JC-1, senescence was analyzed by β-galactosidase whereas mineralization was detected by Alizarin Red and osteogenic differentiation analyzed by Real-time PCR. Self-renewal was affected by pH as well as matrix mineralization in which pH other than physiologic inhibited the deposition of extracellular matrix but did not affect MSCs differentiation as osteoblast markers were upregulated. The expression of osteocalcin and alkaline phosphatase activity was upregulated whereas osteopontin was downregulated under acidic pH. pH affected MSCs self-renewal and mineralization without influencing osteogenic differentiation. Thus, future therapies, based on shifting acid-base balance toward the alkaline direction might be beneficial for prevention or treatment of osteomyelitis. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    NASA Astrophysics Data System (ADS)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  18. Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch.

    PubMed

    Unban, Kridsada; Kanpiengjai, Apinun; Takata, Goro; Uechi, Keiko; Lee, Wen-Chien; Khanongnuch, Chartchai

    2017-09-01

    An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba 2+ , Al 3+ , and Co 2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.

  19. Influence of pH on Cr(VI) ions removal from aqueous solutions using carboxymethyl cellulose-based hydrogel as adsorbent

    NASA Astrophysics Data System (ADS)

    Anah, L.; Astrini, N.

    2017-03-01

    The major problem in heavy metal pollution is that these metals are not biodegradable and accordingly accumulate in the bodies of living organisms, causing dangerous diseases and serious cell disorder. According to World Health Organization (WHO), the long term exposure of Cr(VI) levels of over 0.1 ppm causes respiratory problems, liver and kidney damage, and carcinogenicity.Due to its easy operation and of various cheap adsorbents development, adsorption has been proved to be efficient and most economically attractive technique and feasible to the removal of toxic heavy metal from wastewater. The study aimed to report the removal of Cr(VI) ions from aqueous solutions through adsorption process using carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA) hydrogel as adsorbent.Effect of pH was studied to remove hexavalent chromium.Graft copolymerization of poly(acrylic acid) onto carboxymethyl cellulose was carried out in the presence of benzoyl peroxide redox initiator and methylenbisacrylamide as crosslinker agent. Batch experiments were carried out to investigate the effects ofinitial pH.The adsorption of Cr(VI) ions as a function of pH was conducted in the initial pH range of 1 to 8. The results indicated that acidic pH strongly favored the adsorption. The optimum pH for adsorption of Cr(VI) ranged from 1 to 3, and the maximum uptake of Cr(VI) from the solution was 6.53 mg/g at pH 1 and 30°C. FTIR spectroscopy, SEM analyses were performed on the adsorbent before and after Cr(VI) binding. All analyses confirmed the complexation of Cr(VI) ions on the adsorbent.

  20. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater.

    PubMed

    Song, Yonghui; Dai, Yunrong; Hu, Qiong; Yu, Xiaohua; Qian, Feng

    2014-04-01

    P recovery from swine wastewater has become a great concern as a result of the high demand for P resources and its potential eutrophication effects on water ecosystems. The method of magnesium ammonium phosphate (MAP) crystallization was used to recover P from simulated swine wastewater, and the effects of three organic acids (citric acid, succinic acid and acetic acid) on P removal efficiency and rate at different pH values were investigated. The results indicated that the P removal efficiency was worst affected by citric acid in the optimal pH range of 9.0-10.5, followed by succinic acid and acetic acid, and the influencing extent of organic acids decreased with the increasing pH value. Due to the complexation between organic acid and Mg(2+)/NH4(+), all of three organic acids could inhibit the P removal rate at the beginning of the reaction, which showed positive correlation between the inhibition effects and the concentration of organic acids. The high concentration of citric acid could completely suppress the MAP crystallization reaction. Moreover, citric acid and succinic acid brought obvious effects on the morphology of the crystallized products. The experimental results also demonstrated that MAP crystals could be obtained in the presence of different kinds and concentrations of organic acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage.

    PubMed

    Korehi, Hananeh; Blöthe, Marco; Schippers, Axel

    2014-11-01

    In freshly deposited sulfidic mine tailings the pH is alkaline or circumneutral. Due to pyrite or pyrrhotite oxidation the pH is dropping over time to pH values <3 at which acidophilic iron- and sulfur-oxidizing prokaryotes prevail and accelerate the oxidation processes, well described for several mine waste sites. The microbial communities at the moderate acidic stage in mine tailings are only scarcely studied. Here we investigated the microbial diversity via 16S rRNA gene sequence analysis in eight samples (pH range 3.2-6.5) from three different sulfidic mine tailings dumps in Botswana, Germany and Sweden. In total 701 partial 16S rRNA gene sequences revealed a divergent microbial community between the three sites and at different tailings depths. Proteobacteria and Firmicutes were overall the most abundant phyla in the clone libraries. Acidobacteria, Actinobacteria, Bacteroidetes, and Nitrospira occurred less frequently. The found microbial communities were completely different to microbial communities in tailings at

  2. Palmyra palm (Borassus aethiopum Mart.) fruits: novel raw materials for the pectin industry.

    PubMed

    Assoi, Sylvie; Konan, Koffi; Agbo, Georges N; Dodo, Hortense; Holser, Ron; Wicker, Louise

    2017-05-01

    Preventing post-harvest waste of Palmyra palm (Borassus aethiopum Mart.) fruits is possible by recovery of pectin as a value-added ingredient. Extraction conditions on yield and functionality of Palmyra palm pectin was determined at different temperatures and pH values with 30 min extraction time. Palmyra palm fruits contain more than 650 g kg -1 galacturonic acid and produce soft gels with sucrose in acidic media despite a high degree of acetylation (∼5%). Mechanical deformation of pectin gel was similar when extracted at pH 2.5 and 70 °C or under natural pH at room temperature or 70 °C. Pectins isolated at pH 7 exhibited comparable gel softness (G'/G″) with commercial pectin. Palm pectins also showed emulsifying activity greater than 50%, attributed to high protein content of 8 g 100 g -1 . For pectins extracted at pH near 5.2-5.5, molar mass ranged from 3.00 to 3.38 × 10 5 g mol -1 ; intrinsic viscosity ranged from 218 to 297 mL g -1 ; arabinose was the main neutral sugar; ζ-potential ranged from -23 to -25 mV. Palm fruit offers an inexpensive raw material to extract pectin in environmentally friendly and economical way and yield a pectin with unique gelling, viscosifying and emulsifying properties. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-06-02

    Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.

  4. Can the eastern red-backed salamander (Plethodon cinereus) persist in an acidified landscape?

    USGS Publications Warehouse

    Bondi, Cheryl A; Beier, Colin M.; Ducey, Peter K; Lawrence, Gregory B.; Bailey, Scott W.

    2016-01-01

    Hardwood forests of eastern North America have experienced decades of acidic deposition, leading to soil acidification where base cation supply was insufficient to neutralize acid inputs. Negative impacts of soil acidity on amphibians include disrupted embryonic development, lower growth rates, and habitat loss. However, some amphibians exhibit intraspecific variation in acid tolerance, suggesting the potential for local adaptation in areas where soils are naturally acidic. The eastern red-backed salamander (Plethodon cinereus) is a highly abundant top predator of the northern hardwood forest floor. Early research found that P. cinereus was sensitive to acidic soils, avoiding substrates with pH < 3.8 and experiencing decreased growth rates in acidic habitats. However, recent studies have documented P. cinereus populations in lower pH conditions than previously observed, suggesting some populations may persist in acidic conditions. Here, we evaluated relationships between organic horizon soil pH and P. cinereus abundance, adult health (body size and condition), and microhabitat selection, based on surveys of 34 hardwood forests in northeastern United States that encompass a regional soil pH gradient. We found no associations between soil pH and P. cinereus abundance or health, and observed that this salamander used substrates with pH similar to that available, suggesting that pH does not mediate their fine-scale distributions. The strongest negative predictor of P. cinereus abundance was the presence of dusky salamanders (Desmognathus spp.), which were most abundant in the western Adirondacks. Our results indicate that P. cinereus occupies a wider range of soil pH than has been previously thought, which has implications for their functional role in forest food webs and nutrient cycles in acid-impaired ecosystems. Tolerance of P. cinereus for more acidic habitats, including anthropogenically acidified forests, may be due to local adaptation in reproductively isolated populations and/or generalist life history traits that allow them to exploit a wider resource niche.

  5. Bacterial Profile of Dentine Caries and the Impact of pH on Bacterial Population Diversity

    PubMed Central

    Kianoush, Nima; Adler, Christina J.; Nguyen, Ky-Anh T.; Browne, Gina V.; Simonian, Mary; Hunter, Neil

    2014-01-01

    Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3–V4 region) to compare microbial communities in layers ranging in pH from 4.5–7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies. PMID:24675997

  6. Effect of pH and added slag on the extractability of Si in two Si-deficient sugarcane soils.

    PubMed

    Haynes, Richard J; Zhou, Ya-Feng

    2018-02-01

    The effects of increasing pH on the adsorption and extractability of Si in two Si-deficient Australian sugarcane soils was investigated and the effects of increasing rates of fertilizer Si (as blast furnace slag) on pH and extractable Si were also examined. Equilibrium studies showed that maximum adsorption of Si by the two soils occurred in the pH range 9-10. When soil pH was increased from 5.0 to 6.5, subsequent adsorption of Si by the two soils, as measured by adsorption isotherms, increased. After incubation with progressive lime additions there was a decline in CaCl 2 - extractable Si due to its increased adsorption and an increase in acid (H 2 SO 4 - and acetic acid)-extractable (mainly adsorbed) Si. The increase in acid extractable Si was greater than the decrease in CaCl 2 - extractable Si suggesting a supply from an additional source. Alkali (Na 2 CO 3 and Tiron)-extractable Si decreased greatly with increasing pH suggesting dissolution of the amorphous (mainly biogenic) pool of silica was occurring with increasing pH. When increasing rates of slag were incubated with the soils, pH, CaCl 2 - and acid- extractable Si were all increased because upon dissolution slags release both silicic acid and OH - ions. There was, therefore, a positive relationship between extractable Si and soil pH. However, Na 2 CO 3 - and Tiron-extractable Si decreased with increasing slag rates (and increasing soil pH) suggesting dissolution of the biogenic pool of soil Si. It was concluded that future research needs to examine the desorption potential of adsorbed Si and the effects of liming on dissolution of the biogenic pool of soil silica under field conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo

    NASA Astrophysics Data System (ADS)

    Som, Avik; Raliya, Ramesh; Tian, Limei; Akers, Walter; Ippolito, Joseph E.; Singamaneni, Srikanth; Biswas, Pratim; Achilefu, Samuel

    2016-06-01

    The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits.The acidic extracellular environment of tumors potentiates their aggressiveness and metastasis, but few methods exist to selectively modulate the extracellular pH (pHe) environment of tumors. Transient flushing of biological systems with alkaline fluids or proton pump inhibitors is impractical and nonselective. Here we report a nanoparticles-based strategy to intentionally modulate the pHe in tumors. Biochemical simulations indicate that the dissolution of calcium carbonate nanoparticles (nano-CaCO3) in vivo increases pH asymptotically to 7.4. We developed two independent facile methods to synthesize monodisperse non-doped vaterite nano-CaCO3 with distinct size range between 20 and 300 nm. Using murine models of cancer, we demonstrate that the selective accumulation of nano-CaCO3 in tumors increases tumor pH over time. The associated induction of tumor growth stasis is putatively interpreted as a pHe increase. This study establishes an approach to prepare nano-CaCO3 over a wide particle size range, a formulation that stabilizes the nanomaterials in aqueous solutions, and a pH-sensitive nano-platform capable of modulating the acidic environment of cancer for potential therapeutic benefits. Electronic supplementary information (ESI) available: Summary of experiments, theoretical schema of effect, synthesis schema, X-Ray diffraction results, TEM of effects of different solvents on particles in various solvents. See DOI: 10.1039/c5nr06162h

  8. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter.

    PubMed

    Rowe, E C; Tipping, E; Posch, M; Oulehle, F; Cooper, D M; Jones, T G; Burden, A; Hall, J; Evans, C D

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the 'MADOC' model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. Long-term trends in a range of acid waters were also reproduced. The model suggests that the sustained nature of observed DOC increases can best be explained by a continuously replenishing potentially-dissolved carbon pool, rather than dissolution of a large accumulated store. The simulations informed the development of hypotheses that: DOC increase is related to plant productivity increase as well as to pH change; DOC increases due to nitrogen pollution will become evident, and be sustained, after soil pH has stabilised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Chemical oxidation of anthracite with hydrogen peroxide via the Fenton reaction

    USGS Publications Warehouse

    Heard, I.; Senftle, F.E.

    1984-01-01

    Solutions of 30% H2O2 ranging from pH = 0 to pH = 11.5 have been used to oxidize anthracite at room temperature. The inorganic impurities, primarily pyrite, catalysed the oxidation and reduction of H2O2 (the Fenton reaction) to form the hydroxyl radical; the oxidation of the organic matter was minimal and was observed only in strong acidic solutions (pH < 1.5). After acid demineralization, samples of the same anthracite underwent a significant enhancement of oxidation in both acid and alkaline solutions (pH = 0.4-11.5). As all the iron had been removed from the surface and the reactions were completed in a much shorter time, the oxidation mechanism must have been of a different nature than that for the untreated anthracite. A qualitative model based on the catalytic decomposition of H2O2 by activated carbon sites in the coal surface is used to explain the oxidation of the demineralized anthracite. ?? 1984.

  10. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  11. Nanoparticle/Polymer assembled microcapsules with pH sensing property.

    PubMed

    Zhang, Pan; Song, Xiaoxue; Tong, Weijun; Gao, Changyou

    2014-10-01

    The dual-labeled microcapsules via nanoparticle/polymer assembly based on polyamine-salt aggregates can be fabricated for the ratiometric intracellular pH sensing. After deposition of SiO2 nanoparticles on the poly(allylamine hydrochloride)/multivalent anionic salt aggregates followed by silicic acid treatment, the generated microcapsules are stable in a wide pH range (3.0 ∼ 8.0). pH sensitive dye and pH insensitive dye are simultaneously labeled on the capsules, which enable the ratiometric pH sensing. Due to the rough and positively charged surface, the microcapsules can be internalized by several kinds of cells naturally. Real-time measurement of intracellular pH in several living cells shows that the capsules are all located in acidic organelles after being taken up. Furthermore, the negatively charged DNA and dyes can be easily encapsulated into the capsules via charge interaction. The microcapsules with combination of localized pH sensing and drug loading abilities have many advantages, such as following the real-time transportation and processing of the carriers in cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analytical advantages of copolymeric microspheres for fluorimetric sensing - tuneable sensitivity sensors and titration agents.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2017-01-15

    Analytical benefits related to application of copolymeric microspheres containing different number of carboxylic acid mers have been studied on example of acrylate copolymers. These structures can be used as a reagent in heterogeneous pH titration, benefiting from different number of reactive groups - i.e. different concentration of a titrant - within the series of copolymers. Thus introducing the same amount of different microspheres from a series to the sample, different amount of the titrant is introduced. Copolymeric microspheres also can be used as optical sensors - in this respect the increasing number of reactive groups in the series is useful to improve the analytical performance of microprobes - sensitivity of determination or/and response range. The increase in ion-permeability of the spheres with increasing number of reactive mers is advantageous. It is shown that for pH sensitive microspheres containing higher number of carboxyl groups the higher sensitivity for alkaline pH samples is observed for an indicator present in the beads. The significant increase of optical responses is related to enhanced ion transport within the microspheres. For zinc or potassium ions model sensors tested it was shown that by choice of pH conditions and type of microspheres from the series, the optical responses can be tuned - to enhance sensitivity for analyte concentration change as well as to change the response pattern from sigmoidal (higher sensitivity, narrow range) to linear (broader response range). For classical optode systems (e.g. microspheres containing an optical transducer - pH sensitive dye and optically silent ionophore - receptor) copolymeric microspheres containing carboxylic acid mers in their structure allow application of the sensor in alkaline pH range, which is usually inaccessible for applied optical transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.

    PubMed

    Craw, D

    2005-02-01

    Eroded roots of hot spring systems in Northland, New Zealand consist of mineralised rocks containing sulfide minerals. Marcasite and cinnabar are the dominant sulfides with subordinate pyrite. Deep weathering and leached soil formation has occurred in a warm temperate to subtropical climate with up to 3 m/year rainfall. Decomposition of the iron sulfides in natural and anthropogenic rock exposures yields acid rock drainage with pH typically between 2 and 4, and locally down to pH 1. Soils and weathered rocks developed on basement greywacke have negligible acid neutralisation capacity. Natural rainforest soils have pH between 4 and 5 on unmineralised greywacke, and pH is as low as 3.5 in soils on mineralised rocks. Roads with aggregate made from mineralised rocks have pH near 3, and quarries from which the rock was extracted can have pH down to 1. Mineralised rocks are enriched in arsenic and mercury, both of which are environmentally available as solid solution impurities in iron sulfides and phosphate minerals. Base metals (Cu, Pb, Zn) are present at low levels in soils, at or below typical basement rock background. Decomposition of the iron sulfides releases the solid solution arsenic and mercury into the acid rock drainage solutions. Phosphate minerals release their impurities only under strongly acid conditions (pH<1). Arsenic and mercury are adsorbed on to iron oxyhydroxides in soils, concentrated in the C horizon, with up to 4000 ppm arsenic and 100 ppm mercury. Waters emanating from acid rock drainage areas have arsenic and mercury below drinking water limits. Leaching experiments and theoretical predictions indicate that both arsenic and mercury are least mobile in acid soils, at pH of c. 3-4. This optimum pH range for fixation of arsenic and mercury on iron oxyhydroxides in soils is similar to natural pH at the field site of this study. However, neutralisation of acid soils developed on mineralised rocks is likely to decrease adsorption and enhance mobility of arsenic and mercury. Hence, development of farmland by clearing forest and adding agricultural lime may mobilise arsenic and mercury from underlying soils on mineralised rocks. In addition, arsenic and mercury release into runoff water will be enhanced where sediment is washed off mineralised road aggregate (pH 3) on to farm land (pH>6). The naturally acid forest soils, or even lower pH of natural acid rock drainage, are the most desirable environmental conditions to restrict dissolution of arsenic and mercury from soils. This approach is only valid where mineralised soils have low base metal concentrations.

  14. Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chia-wei; Spike, Thomas; Klingeman, Dawn M.

    Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pHmore » 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Here, recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.« less

  15. Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85

    DOE PAGES

    Wu, Chia-wei; Spike, Thomas; Klingeman, Dawn M.; ...

    2017-05-23

    Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pHmore » 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Here, recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.« less

  16. Drivers of spatio-temporal changes in paddy soil pH in Jiangxi Province, China from 1980 to 2010.

    PubMed

    Guo, Xi; Li, Hongyi; Yu, Huimin; Li, Weifeng; Ye, Yingcong; Biswas, Asim

    2018-02-09

    The spatio-temporal distribution soil pH is critical for understanding the productivity and long-term sustainability of our agri-ecosystem. This study quantified the spatio-temporal distribution of paddy soil pH in Jiangxi province, China, and the potential driver of the change between 1980 and 2010. Data from the Soil Survey Information of Jiangxi province (1980s) and Jiangxi Soil Testing and Fertilizer Recommendation study (2010s) were collected and categorized into six pH ranges from strongly-acidic to strongly-alkaline with unit pH differences. Changes were calculated from the maps developed using the Pedological Knowledge base for 1980s data (without geolocation) and geostatistical methods for the 2010s data (geolocated). An overall 0.6-unit decrease and a major shift of soil pH from weakly-acidic (54% → 18%) to acidic (35% → 74%) was observed over the province in a scattered fashion with concentration in the central part and the Poyang Lake area. About half of the area under paddy cultivation went through acidification by at least one pH unit and 7% by at least 2 pH units, while 40% of the area remained unchanged. Excessive fertilizer application and acid-rain intensity contributed to the acidification. Thus, a more knowledge-based and comprehensive fertilizer management should be adopted to make paddy production sustainable in the province.

  17. Evaluation of Potential Risk of Botulism from Seafood Cocktails

    PubMed Central

    Lerke, Peter

    1973-01-01

    Clostridium botulinum E could not be detected in 35 samples of commercial seafood cocktails, ranging in pH from 4.10 to 4.85. At 30 C, toxinogenesis in homogenates acidified with a citric-acetic acid mixture was prevented at pH 4.86 or lower for crabmeat and at 5.03 or lower for shrimp. Measurements of the rate of acid penetration into the centers of large pieces of flesh indicated that the already small risk of botulism from seafood cocktails could be completely eliminated by using a cocktail sauce at a maximum pH of 3.70 and by cooling the final product to at least 10 C for 24 h. PMID:4577180

  18. Effect of acidification on carrot (Daucus carota) juice cloud stability.

    PubMed

    Schultz, Alison K; Barrett, Diane M; Dungan, Stephanie R

    2014-11-26

    Effects of acidity on cloud stability in pasteurized carrot juice were examined over the pH range of 3.5-6.2. Cloud sedimentation, particle diameter, and ζ potential were measured at each pH condition to quantify juice cloud stability and clarification during 3 days of storage. Acidification below pH 4.9 resulted in a less negative ζ potential, an increased particle size, and an unstable cloud, leading to juice clarification. As the acidity increased, clarification occurred more rapidly and to a greater extent. Only a weak effect of ionic strength was observed when sodium salts were added to the juice, but the addition of calcium salts significantly reduced the cloud stability.

  19. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    PubMed

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  20. The influence of pH on biotite dissolution and alteration kinetics at low temperature

    USGS Publications Warehouse

    Acker, James G.; Bricker, O.P.

    1992-01-01

    Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.

  1. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    USGS Publications Warehouse

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  2. Absorption and emission behaviour of trans- p-coumaric acid in aqueous solutions and some organic solvents

    NASA Astrophysics Data System (ADS)

    Putschögl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  3. Action of a GH115 α-glucuronidase from Amphibacillus xylanus at alkaline condition promotes release of 4-O-methylglucopyranosyluronic acid from glucuronoxylan and arabinoglucuronoxylan.

    PubMed

    Yan, Ruoyu; Vuong, Thu V; Wang, Weijun; Master, Emma R

    2017-09-01

    Glucuronic acid and/or 4-O-methyl-glucuronic acid (GlcA/MeGlcA) are substituents of the main xylans present in hardwoods, conifers, and many cereal grains. α-Glucuronidases from glycoside hydrolase family GH115 can target GlcA/MeGlcA from both internally and terminally substituted regions of xylans. The current study describes the first GH115 α-glucuronidase, AxyAgu115A, from the alkaliphilic organism Amphilbacillus xylanus. AxyAgu115A was active in a wide pH range, and demonstrated better performance in alkaline condition compared to other characterized GH115 α-glucuronidases, which generally show optimal activity in acidic conditions. Specifically, its relative activity between pH 5.0 and pH 8.5 was above 80%, and was 35% of maximum at pH 10.5; although the enzyme lost 30% and 80% relative residual activity after 24-h pre-incubation at pH 9 and pH 10, respectively. AxyAgu115A was also similarly active towards glucuronoxylan as well as comparatively complex xylans such as spruce arabinoglucurunoxylan. Accommodation of complex xylans was supported by docking analyses that predicted accessibility of AxyAgu115A to branched xylo-oligosaccharides. MeGlcA release by AxyAgu115A from each xylan sample was increased by up to 30% by performing the reaction at pH 11.0 rather than pH 4.0, revealing applied benefits of AxyAgu115A for xylan recovery and processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.

    PubMed

    Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P

    2003-01-01

    Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.

  5. Controlled release of acidic drugs in compendial and physiological hydrogen carbonate buffer from polymer blend-coated oral solid dosage forms.

    PubMed

    Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S

    2015-09-18

    The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.

    PubMed

    Nicola, Anthony V

    2016-09-01

    Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. A rhodamine 6G derived Schiff base as a fluorescent and colorimetric probe for pH detection and its crystal structure

    NASA Astrophysics Data System (ADS)

    Guo, Ping; Liu, Lijuan; Shi, Qian; Yin, Chunyan; Shi, Xuefang

    2017-02-01

    A fluorescent and colorimetric pH probe based on a rhodamine 6G derivative, RP1, was designed and synthesized. The probe was based on the pH induced change in the structure between the spirocyclic (non-fluorescent, colorless) and quinoid (fluorescent, pink) forms of rhodamine 6G. The effect of the acid concentration on the fluorescence "off-on" behaviors of RP1 was investigated. RP1 was fluorescent in the pH range of 1.1-3.1 and has a pKa value of 2.08 (±0.07). Thus RP1 should be useful for studies in strongly acidic environments. Possible interferences from fourteen common metal ions were tested and excluded showing the excellent selectivity of the probe. Finally, the probe exhibits an intense color change at pH values lower than 3.1 which makes it useful for naked-eye pH detection.

  8. Degradation rates of glycerol polyesters at acidic and basic conditions

    USDA-ARS?s Scientific Manuscript database

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  9. Structural and photodynamic properties of the anti-cancer drug irinotecan in aqueous solutions of different pHs.

    PubMed

    di Nunzio, Maria Rosaria; Douhal, Yasmin; Organero, Juan Angel; Douhal, Abderrazzak

    2018-05-23

    This work reports on photophysical studies of the irinotecan (IRT) anti-cancer drug in water solutions of different acidities (pH = 1.11-9.46). We found that IRT co-exists as mono-cationic (C1), di-cationic (C2), or neutral (N) forms. The population of each prototropic species depends on the pH of the solution. At pH = 1.11-3.01, the C1 and C2 structures are stabilized. At pH = 7.00, the most populated species is C1, while at pH values larger than 9.46 the N form is the most stable species. In the 1.11-2.61 pH range, the C1* emission is efficiently quenched by protons to give rise to the emission from C2*. The dynamic quenching constant, KD, is ∼32 M-1. While the diffusion governs the rate of excited-state proton-transfer (ESPT) under these conditions, the reaction rate increases with the proton concentration. A two-step diffusive Debye-Smoluchowski model was applied at pH = 1.11-2.61 to describe the protonation of C1*. The ESPT time constants derived for C1* are 382 and 1720 ps at pH = 1.11 and 1.95, respectively. We found that one proton species is involved in the protonation of C1* to give C2*, in the analyzed acidic pH range. Under alkaline conditions (pH = 9.46), the N form is the most stable structure of IRT. These results indicate the influence of the pH of the medium on the structural and dynamical properties of IRT in water solution. They may help to provide a better understanding on the relationship between the structure and biological activity of IRT.

  10. An evaluation of the effects of acid rain on low conductivity headwater streams in Pennsylvania

    USGS Publications Warehouse

    Ritter, John R.; Brown, Ann E.

    1981-01-01

    Analyses of water collected at 32 sites on headwater streams in Pennsylvania during low-flow conditions in 1970-80 were compared to pre-1971 data to evaluate whether acid rain had changed the chemistry of the streams in the previous decade. Most pH, alkalinity, and sulfate values of the samples collected in 1970-80 fell within the ranges of values for samples collected before 1971. The limited data indicate, however, that pH may have increased and alkalinity and sulfate may have decreased with time.

  11. Phosphotyrosine as a substrate of acid and alkaline phosphatases.

    PubMed

    Apostoł, I; Kuciel, R; Wasylewska, E; Ostrowski, W S

    1985-01-01

    A new spectrophotometric method for following dephosphorylation of phosphotyrosine has been described. The absorption spectra of phosphotyrosine and tyrosine were plotted over the pH range from 3 to 9. The change in absorbance accompanying the conversion of phosphotyrosine to tyrosine was the greatest at 286 nm. The difference absorption coefficients were calculated for several pH values. Dephosphorylation of phosphotyrosine by acid phosphatases from human prostate gland, from wheat germ and potatoes obeys the Michaelis-Menten equation, whereas alkaline phosphatases calf intestine and E. coli are inhibited by excess of substrate.

  12. pH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A.

    PubMed

    Kanno, Manabu; Tamaki, Hideyuki; Mitani, Yasuo; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2015-01-01

    Though butanol is considered as a potential biofuel, its toxicity toward microorganisms is the main bottleneck for the biological butanol production. Recently, butanol-tolerant bacteria have been proposed as alternative butanol production hosts overcoming the end product inhibition. One remaining key issue to be addressed is how physicochemical properties such as pH and temperature affect microbial butanol tolerance during cultivation and fermentation. We investigated the pH effect on butanol tolerance of a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A. The strain grew over a broad pH range (pH 4.0 to 12.0) and preferred alkaline pH (pH 8.0 and 10.0) in the absence of butanol. However, in the presence of butanol, strain CM4A grew better under acidic and neutral pH conditions (pH 6.0 and 6.8). Membrane fatty acid analysis revealed that the cells exposed to butanol exhibited increased cyclopropane and saturated fatty acids, which contribute to butanol tolerance of the strain by decreasing membrane fluidity, more evidently at acidic and neutral pH than at alkaline pH. Meanwhile, the strain grown under alkaline pH without butanol increased short chain fatty acids, which is involved in increasing membrane fluidity for alkaline adaptation. Such a change was not observed in the cells grown under alkaline pH with butanol. These results suggested that strain CM4A simultaneously exposed to butanol and alkali stresses was not likely able to properly adjust membrane fluidity due to the opposite response to each stress and thereby showed low butanol tolerance under alkaline pH. Indeed, the cells exposed to butanol at alkaline pH showed an irregular shape with disrupted membrane structure under transmission electron microscopy observation, which also indicated the impact of butanol and alkali stresses on functioning of cellular membrane. The study clearly demonstrated the alkaline pH-induced increase of cell susceptibility to butanol in the tested strain. Our findings indicate the non-negligible impact of pH on microbial butanol tolerance, providing a new insight into efficient butanol production.

  13. Use of D(acid)-, D(bile)-, z(acid)-, and z(bile)-values in evaluating Bifidobacteria with regard to stomach pH and bile salt sensitivity.

    PubMed

    Jia, Li; Shigwedha, Nditange; Mwandemele, Osmund D

    2010-01-01

    The survival of bifidobacteria in simulated conditions of the gastrointestinal (GI) tract was studied based on the D- and z-value concept. Some Bifidobacterium spp. are probiotics that improve microbial balance in the human GI tract. Because they are sensitive to low pH and bile salt concentrations, their viability in the GI tract is limited. The D- and z-value approach was therefore adopted as a result of observing constant log-cell reduction (90%) when Bifidobacterium spp. were exposed to these 2 different stressing factors. Survivals of one strain each or 4 species of Bifidobacterium was studied at pH between 3.0 and 4.5 and in ox-bile between 0.15% and 0.60% for times up to 41 h. From the D(acid)- and D(bile)-values, the order of resistance to acid and bile was B. bifidum > B. infantis > B. longum > B. adolescentis. While the former 3 strains retained high cell viability at pH 3.5 (>5.5 log CFU/mL after 5 h) and at elevated bile salt concentration of 0.6% (>4.5 log CFU/mL after 3 h), B. adolescentis was less resistant (<3.4 log CFU/mL). The z(acid)- and z(bile)-values calculated from the D(acid)- and D(bile)-values ranged from 1.11 to 1.55 pH units and 0.40% to 0.49%, respectively. The results suggest that the D(acid)-, D(bile)-, z(acid)-, and z(bile)-value approach could be more appropriate than the screening and selection method in evaluating survival of probiotic bacteria, and in measuring their tolerance or resistance to gastric acidity and the associated bile salt concentration in the small intestine. The evaluation of the tolerance of bifidobacteria to bile salts and low pH has been made possible by use of D- and z-value concept. The calculated z(acid)- and z(bile)-values were all fairly similar for the strains used and suggest the effect of increasing the bile salt concentration or decreasing the pH on the D(acid)- and D(bile)-values. This approach would be useful for predicting the suitability of bifidobacteria and other lactic acid bacteria (LAB) as probiotics for use in real-life situations.

  14. Photodegradation of parabens by Fe(III)-citrate complexes at circumneutral pH: matrix effect and reaction mechanism.

    PubMed

    Feng, Xiaonan; Chen, Yong; Fang, Yuan; Wang, Xiaoyue; Wang, Zongping; Tao, Tao; Zuo, Yuegang

    2014-02-15

    The photodegradation of four parabens including methyl-, ethyl-, propyl-, and butyl-paraben in the presence of Fe(III)-citrate complexes under simulated sunlight was investigated. The degradation of parabens increased with decreasing pH within the range of 5.0-8.0 at the Fe(III)-to-citrate ratio of 10:150 (μM). The addition of low-molecular-weight carboxylic acids showed different effects on the photodegradation of methylparaben. The low-photoreactive carboxylic acids inhibited the photodegradation of methylparaben in the order of formic acid>succinic acid>acetic acid>malonic acid. In contrast, oxalic acid enhanced the photodegradation and exhibited appreciable synergistic effect with Fe(III)-citrate at concentration higher than 500 μM. Up to 99.0% of substrate was degraded after 30 min at pH6.0 in the Fe(III)-citrate-oxalate system. The various fractions of fulvic acid inhibited the photodegradation of methylparaben. The inhibition increased with increasing nominal molecular weight of fractionated fulvic acid. Moreover, the photodegradation of methylparaben was inhibited in natural waters in the order of Liangzi Lake

  15. Acid neutralizing processes in an alpine watershed front range, Colorado, U.S.A.-1: Buffering capacity of dissolved organic carbon in soil solutions

    USGS Publications Warehouse

    Iggy, Litaor M.; Thurman, E.M.

    1988-01-01

    Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.

  16. pH-Dependence of Binding Constants and Desorption Rates of Phosphonate- and Hydroxamate-Anchored [Ru(bpy)3]2+ on TiO2 and WO3.

    PubMed

    Esarey, Samuel L; Bartlett, Bart M

    2018-04-17

    The binding constants and rate constants for desorption of the modified molecular dye [Ru(bpy) 3 ] 2+ anchored by either phosphonate or hydroxamate on the bipyridine ligand to anatase TiO 2 and WO 3 have been measured. In aqueous media at pH 1-10, repulsive electrostatic interactions between the negatively charged anchor and the negatively charged surface govern phosphonate desorption under neutral and basic conditions for TiO 2 anatase due to the high acidity of phosphonic acid (p K a,4 = 5.1). In contrast, the lower acidity of hydroxamate (p K a,1 = 6.5, p K a,2 = 9.1) leads to little change in adsorption/desorption properties as a function of pH from 1 to 7. The binding constant for hydroxamate is 10 3 in water, independent of pH in this range. These results are true for WO 3 as well, but are not reported at pH > 4 due to its Arrhenius acidity. Kinetics for desorption as a function of pH are reported, with a proposed mechanism for phosphonate desorption at high pH being the electrostatic repulsion of negative charges between the surface and the anionic anchor. Further, the hydroxamic acid anchor itself is likely the site of quasi-reversible redox activity in [Ru(bpy) 2 (2,2'-bpy-4,4'-(C(O)N(OH)) 2 )] 2+ , which does not lead to any measurable deterioration of the complex within 2 h of dark cyclic voltammogram scans in aqueous media. These results posit phosphonate as the preferred anchoring group under acidic conditions and hydroxamate for neutral/basic conditions.

  17. Adsorption of aliphatic polyhydroxy carboxylic acids on gibbsite: pH dependency and importance of adsorbate structure.

    PubMed

    Schneckenburger, Tatjana; Riefstahl, Jens; Fischer, Klaus

    2018-01-01

    Aliphatic (poly)hydroxy carboxylic acids [(P)HCA] occur in natural, e.g. soils, and in technical (waste disposal sites, nuclear waste repositories) compartments . Their distribution, mobility and chemical reactivity, e.g. complex formation with metal ions and radionuclides, depend, among others, on their adsorption onto mineral surfaces. Aluminium hydroxides, e.g. gibbsite [α-Al(OH) 3 ], are common constituents of related solid materials and mimic the molecular surface properties of clay minerals. Thus, the study was pursued to characterize the adsorption of glycolic, threonic, tartaric, gluconic, and glucaric acids onto gibbsite over a wide pH and (P)HCA concentration range. To consider specific conditions occurring in radioactive wastes, adsorption applying an artificial cement pore water (pH 13.3) as solution phase was investigated additionally. The sorption of gluconic acid at pH 4, 7, 9, and 12 was best described by the "two-site" Langmuir isotherm, combining "high affinity" sorption sites (adsorption affinity constants [Formula: see text] > 1 L mmol -1 , adsorption capacities < 6.5 mmol kg -1 ) with "low affinity" sites ([Formula: see text] < 0.1 L mmol -1 , adsorption capacities ≥ 19 mmol kg -1 ). The total adsorption capacities at pH 9 and 12 were roughly tenfold of that at pH 4 and 7. The S-shaped pH sorption edge of gluconic acid was modelled applying a constant capacitance model, considering electrostatic interactions, hydrogen bonding, surface complex formation, and formation of solved polynuclear complexes between Al 3+ ions and gluconic acid. A Pearson and Spearman rank correlation between (P)HCA molecular properties and adsorption parameters revealed the high importance of the size and the charge of the adsorbates. The adsorption behaviour of (P)HCAs is best described by a combination of adsorption properties of carboxylic acids at acidic pH and of polyols at alkaline pH. Depending on the molecular properties of the adsorbates and on pH, electrostatic interactions, hydrogen bonding, and ternary surface complexation contribute in varying degrees to the adsorption process. Linear distribution coefficients K d between 8.7 and 60.5 L kg -1 (1 mmol L -1 initial PHCA concentration) indicate a considerable mineral surface affinity at very high pH, thus lowering the PHCA fraction available for the complexation of metal ions including radionuclides in solution and their subsequent mobilization.

  18. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil.

    PubMed

    Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson

    2014-05-14

    Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  19. Constant pH simulations of pH responsive polymers

    NASA Astrophysics Data System (ADS)

    Sharma, Arjun; Smith, J. D.; Walters, Keisha B.; Rick, Steven W.

    2016-12-01

    Polyacidic polymers can change structure over a narrow range of pH in a competition between the hydrophobic effect, which favors a compact state, and electrostatic repulsion, which favors an extended state. Constant pH molecular dynamics computer simulations of poly(methacrylic acid) reveal that there are two types of structural changes, one local and one global, which make up the overall response. The local structural response depends on the tacticity of the polymer and leads to different cooperative effects for polymers with different stereochemistries, demonstrating both positive and negative cooperativities.

  20. Quality improvement of acidic soils by biochar derived from renewable materials.

    PubMed

    Moon, Deok Hyun; Hwang, Inseong; Chang, Yoon-Young; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ji, Won Hyun; Park, Jeong-Hun

    2017-02-01

    Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured. Moreover, a maize growth experiment was performed for 14 days with selected treated soil samples to confirm the effectiveness of the treatment. The results showed that the pH of the treated acidic soil increased by more than 2 units, and the exchangeable cation values were greatly enhanced upon treatment with 5 wt% of both biochars, after 1 month of curing. Maize growth was superior in the 3 wt% biochar-treated samples compared to the control sample. The presented results demonstrate the effective use of biochar derived from renewable materials such as waste plant materials and agricultural residues for quality improvement of acidic soils.

  1. Wormlike micelle formation by acylglutamic acid with alkylamines.

    PubMed

    Sakai, Kenichi; Nomura, Kazuyuki; Shrestha, Rekha Goswami; Endo, Takeshi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko

    2012-12-21

    Rheological properties of alkyl dicarboxylic acid-alkylamine complex systems have been characterized. The complex materials employed in this study consist of an amino acid-based surfactant (dodecanoylglutamic acid, C12Glu) and a tertiary alkylamine (dodecyldimethylamine, C12DMA) or a secondary alkylamine (dodecylmethylamine, C12MA). (1)H NMR and mass spectroscopic data have suggested that C12Glu forms a stoichiometric 1:1 complex with C12DMA and C12MA. Rheological measurements have suggested that the complex systems yield viscoelastic wormlike micellar solutions and the rheological behavior is strongly dependent on the aqueous solution pH. This pH-dependent behavior results from the structural transformation of the wormlike micelles to occur in the narrow pH range 5.5-6.2 (in the case of C12Glu-C12DMA system); i.e., positive curved aggregates such as spherical or rodlike micelles tend to be formed at high pH values. Our current study offers a unique way to obtain viscoelastic wormlike micellar solutions by means of alkyl dicarboxylic acid-alkylamine complex as gemini-like amphiphiles.

  2. Stability of cefozopran hydrochloride in aqueous solutions.

    PubMed

    Zalewski, Przemysław; Skibiński, Robert; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Cielecka-Piontek, Judyta; Jelińska, Anna

    2016-01-01

    The influence of pH on the stability of cefozopran hydrochloride (CZH) was investigated in the pH range of 0.44-13.00. Six degradation products were identified with a hybrid ESI-Q-TOF mass spectrometer. The degradation of CZH as a result of hydrolysis was a pseudo-first-order reaction. As general acid-base hydrolysis of CZH was not occurred in the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffers, kobs = kpH because specific acid-base catalysis was observed. Specific acid-base catalysis of CZH consisted of the following reactions: hydrolysis of CZH catalyzed by hydrogen ions (kH+), hydrolysis of dications (k1H2O), monocations (k2H2O) and zwitter ions (k3H2O) and hydrolysis of zwitter ions (k1OH-) and monoanions (k2OH-) of CZH catalyzed by hydroxide ions. The total rate of the reaction was equal to the sum of partial reactions: [Formula: see text]. CZH similarly like other fourth generation cephalosporin was most stable at slightly acidic and neutral pH and less stable in alkaline pH. The cleavage of the β-lactam ring resulting from a nucleophilic attack on the carbonyl carbon in the β-lactam moiety is the preferred degradation pathway of β-lactam antibiotics in aqueous solutions.

  3. Survival and growth of wildlife shrubs and trees on acid mine spoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, D.K.; Adkisson, L.F.

    1980-01-01

    The purpose of this study was to assess the survival and growth of selected wildlife plants over a wide range of acid mine spoil conditions and to identify species suitable for surface mine reclamation. A major criterion in selection of study sites was inclusion of a wide range of spoil acidity conditions. The Ollis Creek (Study Area A) and Farrell (Study Area B) coal surface mines located in Campbell and Scott Counties, Tennessee, were selected for study. Seven plant species, all of which had been used in past reclamation demonstrations, were introduced on the 22 plots during March 1972. Autumnmore » olive (Elaeagnus umbellata) was included as a control plant. Ten additional plant species were introduced during March 1973. With the exception of highbush blueberry (Vaccinium corymbosum var.). European filbert (Corylus avellana), and red maple (Acer rubrum), these species had not been used in TVA reclamation demonstrations. To assess the effects of spoil pH on the plants, the plots were grouped into seven pH categories, and mean percent survival and growth for each species were calculated. Results indicate that autumn olive, elaeagnus cherry, arnot locust, sawtooth oak, red maple, and Toringo crabapple are suitable for quick improvement of surface mine habitat over a wide range of spoil acidity in the Appalachian coalfield. Bessey cherry and European filbert need further study before a decision can be made regarding their reclamation utility. Species that are not recommended for quick habitat improvement over a wide range of surface mine spoil pH conditions include bush honeysuckle, barberry, Siberian crabapple, Manchu cherry, American beautyberry, bear oak, blueberry, rem-red honeysuckle, and redcedar.« less

  4. Characterizing the release of different composition of dissolved organic matter in soil under acid rain leaching using three-dimensional excitation-emission matrix spectroscopy.

    PubMed

    Liu, Li; Song, Cunyi; Yan, Zengguang; Li, Fasheng

    2009-09-01

    Although excitation-emission matrix spectroscopy (EEMS) has been widely used to characterize dissolved organic matter (DOM), there has no report that EEMS has been used to study the effects of acid rain on DOM and its composition in soil. In this work, we employed three-dimensional EEMS to characterize the compositions of DOM leached by simulated acid rain from red soil. The red soil was subjected to leaching of simulated acid rain of different acidity, and the leached DOM presented five main peaks in its EEMS: peak-A, related to humic acid-like (HA-like) material, at Ex/Em of 310-330/395-420nm; peak-B, related to UV fulvic acid-like (FA-like) material, at Ex/Em of 230-280/400-435nm; peak-C and peak-D, both related to microbial byproduct-like material, at Ex/Em of 250-280/335-355nm and 260-280/290-320nm, respectively; and peak-E, related to simple aromatic proteins, at Ex/Em of 210-240/290-340nm. EEMS analysis results indicated that most DOM could be lost from red soil in the early phase of acid rain leaching. In addition to the effects of the pH of acid rain, the loss of DOM also depended on the properties of its compositions and the solubility of their complexes with aluminum. HA-like and microbial byproduct-like materials could be more easily released from red soil by acid rain at both higher pH (4.5 and 5.6) and lower pH (2.5 and 3) than that at middle pH (3.5). On the contrary, FA-like material lost in a similar manner under the action of different acid rains with pH ranging from 2.5 to 5.6.

  5. Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching.

    PubMed

    Han, Lijuan; Tang, Pengyi; Reyes-Carmona, Álvaro; Rodríguez-García, Bárbara; Torréns, Mabel; Morante, Joan Ramon; Arbiol, Jordi; Galan-Mascaros, Jose Ramon

    2016-12-14

    The development of upscalable oxygen evolving electrocatalysts from earth-abundant metals able to operate in neutral or acidic environments and low overpotentials remains a fundamental challenge for the realization of artificial photosynthesis. In this study, we report a highly active phase of heterobimetallic cyanide-bridged electrocatalysts able to promote water oxidation under neutral, basic (pH < 13), and acidic conditions (pH > 1). Cobalt-iron Prussian blue-type thin films, formed by chemical etching of Co(OH) 1.0 (CO 3 ) 0.5 ·nH 2 O nanocrystals, yield a dramatic enhancement of the catalytic performance toward oxygen production, when compared with previous reports for analogous materials. Electrochemical, spectroscopic, and structural studies confirm the excellent performance, stability, and corrosion resistance, even when compared with state-of-the-art metal oxide catalysts under moderate overpotentials and in a remarkably large pH range, including acid media where most cost-effective water oxidation catalysts are not useful. The origin of the superior electrocatalytic activity toward water oxidation appears to be in the optimized interfacial matching between catalyst and electrode surface obtained through this fabrication method.

  6. Acidity enhances the effectiveness of active chemical defensive secretions of sea hares, Aplysia californica, against spiny lobsters, Panulirus interruptus.

    PubMed

    Shabani, Shkelzen; Yaldiz, Seymanur; Vu, Luan; Derby, Charles D

    2007-12-01

    Sea hares such as Aplysia californica, gastropod molluscs lacking a protective shell, can release a purple cloud of chemicals when vigorously attacked by predators. This active chemical defense is composed of two glandular secretions, ink and opaline, both of which contain an array of compounds. This secretion defends sea hares against predators such as California spiny lobsters Panulirus interruptus via multiple mechanisms, one of which is phagomimicry, in which secretions containing feeding chemicals attract and distract predators toward the secretion and away from the sea hare. We show here that ink and opaline are highly acidic, both having a pH of approximately 5. We examined if the acidity of ink and opaline affects their phagomimetic properties. We tested behavioral and electrophysiological responses of chemoreceptor neurons in the olfactory and gustatory organs of P. interruptus, to ink and opaline of A. californica within their natural range of pH values, from approximately 5 to 8. Both behavioral and electrophysiological responses to ink and opaline were enhanced at low pH, and low pH alone accounted for most of this effect. Our data suggest that acidity enhances the phagomimetic chemical defense of sea hares.

  7. Purification and characterization of a β-amylase from soya beans

    PubMed Central

    Gertler, A.; Birk, Yehudith

    1965-01-01

    1. β-Amylase obtained by acidic extraction of soya-bean flour was purified by ammonium sulphate precipitation, followed by chromatography on calcium phosphate, diethylaminoethylcellulose, Sephadex G-25 and carboxymethylcellulose. 2. The homogeneity of the pure enzyme was established by criteria such as ultracentrifugation and electrophoresis on paper and in polyacrylamide gel. 3. The pure enzyme had a nitrogen content of 16·3%, its extinction coefficient, E1%1cm., at 280mμ was 17·3 and its specific activity/mg. of enzyme was 880 amylase units. 4. The molecular weight of the pure enzyme was determined as 61700 and its isoelectric point was pH5·85. 5. Preliminary examinations indicated that glutamic acid formed the N-terminus and glycine the C-terminus. 6. The amino acid content of the pure enzyme was established, one molecule consisting of 617 amino acid residues. 7. The pH optimum for pure soya-bean β-amylase is in the range 5–6. Pretreatment of the enzyme at pH3–5 decreases enzyme activity, whereas at pH6–9 it is not affected. ImagesFig. 2.Fig. 3. PMID:14342495

  8. Nitrous-acid-mediated synthesis of iron-nitrosyl-porphyrin: pH-dependent release of nitric oxide.

    PubMed

    Bhuyan, Jagannath; Sarkar, Sabyasachi

    2012-11-01

    Two iron-nitrosyl-porphyrins, nitrosyl[meso-tetrakis(3,4,5-trimethoxyphenylporphyrin]iron(II) acetic acid solvate (3) and nitrosyl[meso-tetrakis(4-methoxyphenylporphyrin]iron(II) CH(2)Cl(2) solvate (4), were synthesized in quantitative yield by using a modified procedure with nitrous acid, followed by oxygen-atom abstraction by triphenylphosphine under an argon atmosphere. These nitrosyl porphyrins are in the {FeNO}(7) class. Under an argon atmosphere, these compounds are relatively stable over a broad range of pH values (4-8) but, under aerobic conditions, they release nitric oxide faster at high pH values than that at low pH values. The generated nitric-oxide-free iron(III)-porphyrin can be re-nitrosylated by using nitrous acid and triphenylphosphine. The rapid release of NO from these Fe(II) complexes at high pH values seems to be similar to that in nitrophorin, a nitric-oxide-transport protein, which formally possesses Fe(III). However, because the release of NO occurs from ferrous-nitrosyl-porphyrin under aerobic conditions, these compounds are more closely related to nitrobindin, a recently discovered heme protein. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The adsorption behavior of U(VI) on granite.

    PubMed

    Fan, Q H; Hao, L M; Wang, C L; Zheng, Z; Liu, C L; Wu, W S

    2014-03-01

    The effects of pH, counter ions and temperature on the adsorption of U(VI) on Beishan granite (BsG) were investigated in the presence and absence of fulvic acid (FA) and humic acid (HA). The adsorption edge of U(VI) on BsG suggested that U(VI) adsorption was mainly controlled by ion exchange and outer-sphere complexation at low pH, whereas inner-sphere complex was the dominant adsorption species in the pH range of 4.0-9.0. Above pH 9.0, Na2U2O7 might play an important role in the rise of U(VI) adsorption again. Counter ions such as Cl(-), SO4(2-) and PO4(3-) can provoke U(VI) adsorption on BsG to some extent, which was directly correlated to the complexing ability of U(VI)-ligand. More noticeably, the large enhancement of U(VI) adsorption in the presence of phosphate can be attributed to the ternary complex formation (BsG-PO4-UO2), precipitation ((UO2)3(PO4)2(s)) and secondary phase (Na-autunite). Both FA and HA can slightly increase U(VI) adsorption at low pH, whereas they strongly inhibited U(VI) adsorption at high pH range. Artificial synthesized granite (AsG) prepared in the laboratory is impossible to use as an analogue of natural granite because of the large difference in the adsorption and surface properties.

  10. Extreme soil acidity from biodegradable trap and skeet targets increases severity of pollution at shooting ranges.

    PubMed

    McTee, Michael R; Mummey, Daniel L; Ramsey, Philip W; Hinman, Nancy W

    2016-01-01

    Lead pollution at shooting ranges overshadows the potential for contamination issues from trap and skeet targets. We studied the environmental influence of targets sold as biodegradable by determining the components of the targets and sampling soils at a former sporting clay range. Targets comprised approximately 53% CaCO3, 41% S(0), and 6% modifiers, and on a molar basis, there was 2.3 times more S(0) than CaCO3. We observed a positive correlation between target cover and SO4(2-) (ρ=0.82, P<0.001), which indicated the oxidation of S(0) to H2SO4. Sulfate was negatively correlated with pH (ρ=-0.93, P<0.001) because insufficient CaCO3 existed in the targets to neutralize all the acid produced from S(0) oxidation. Plant cover decreased with decreasing soil pH (ρ=0.62, P=0.006). For sites that had pH values below 3, 24tons of lime per 1000tons of soil would be required to raise soil pH to 6.5. Lime-facilitated pH increases would be transitory because S(0) would continue to oxidize to H2SO4 until the S(0) is depleted. This study demonstrates that biodegradable trap and skeet targets can acidify soil, which has implications for increasing the mobility of Pb from shotgun pellets. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. New class of 19F pH indicators: fluoroanilines.

    PubMed Central

    Deutsch, C J; Taylor, J S

    1989-01-01

    The pH dependence of the 19F chemical shift has been characterized for a number of fluorine-substituted aniline derivatives. These compounds constitute a new class of 19F nuclear magnetic resonance (NMR) pH indicators, characterized by single 19F resonance lines with sensitivities ranging from 2 to 7 ppm/pH unit near the aniline pKa; total shifts between conjugate acid and base of 5-15 ppm; and pKas ranging from 1 to 7. One compound, N,N-(methyl-2-carboxyisopropyl)-4-fluoroaniline, has a pKa of 6.8 and a sensitivity of 5 ppm/pH unit. This compound displays significant broadening of its 19F resonance near the aniline pKa (6.8), due to a decreased rate of exchange between conjugate acid and base species. Our results are consistent with slow dissociation of an intramolecular hydrogen bond in the zwitterionic species that limits the exchange rate between protonated and unprotonated forms for N,N-(methyl-2-carboxyisopropyl)-4-fluoroaniline. PMID:2720073

  12. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values attained at very low metal loading conditions are compared to existing literature data. Overall, experimental data suggest that the tetravalent transition metal/-actinide-humic acid complexation is important over a wide range of pH values, including mildly acidic conditions, and thus, these complexes should be included in speciation models.

  13. Preliminary study on the photoproduction of hydroxyl radicals in aqueous solution with Aldrich humic acid, algae and Fe(III) under high-pressure mercury lamp irradiation.

    PubMed

    Liu, Xianli; Xu, Dong; Wu, Feng; Liao, Zhenhuan; Liu, Jiantong; Deng, Nansheng

    2004-03-01

    Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals (*OH) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that *OH photoproduction increased from 1.80 to 2.74 microM by increasing the HA concentration from 10 to 40 mg L(-1) at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of *OH in the HA solution with Fe(III) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of *OH in HA solution with algae with or without Fe(III) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of *OH in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest *OH photoproduction at pH 4.0.

  14. Alkaline Fe(III) reduction by a novel alkali-tolerant Serratia sp. isolated from surface sediments close to Sellafield nuclear facility, UK.

    PubMed

    Thorpe, Clare L; Morris, Katherine; Boothman, Christopher; Lloyd, Jonathan R

    2012-02-01

    Extensive denitrification resulted in a dramatic increase in pH (from 6.8 to 9.5) in nitrate-impacted, acetate-amended sediment microcosms containing sediment representative of the Sellafield nuclear facility, UK. Denitrification was followed by Fe(III) reduction, indicating the presence of alkali-tolerant, metal-reducing bacteria. A close relative (99% 16S rRNA gene sequence homology) to Serratia liquefaciens dominated progressive enrichment cultures containing Fe(III)-citrate as the sole electron acceptor at pH 9 and was isolated aerobically using solid media. The optimum growth conditions for this facultatively anaerobic Serratia species were investigated, and it was capable of metabolizing a wide range of electron acceptors including oxygen, nitrate, FeGel, Fe-NTA and Fe-citrate and electron donors including acetate, lactate, formate, ethanol, glucose, glycerol and yeast extract at an optimum pH of c. 6.5 at 20 °C. The alkali tolerance of this strain extends the pH range of highly adaptable Fe(III)-reducing Serratia species from mildly acidic pH values associated with acid mine drainage conditions to alkali conditions representative of subsurface sediments stimulated for extensive denitrification and metal reduction. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Laser Raman spectra of mono-, oligo- and polysaccharides in solution

    NASA Astrophysics Data System (ADS)

    Barrett, T. W.

    We examined the Raman spectra of thirteen sugars—seven monosaccharides, two disaccharides, one trisaccharide and three polysaccharides—in the wavelength range 200—1700 cm -1 and (i) varied the phosphate buffered solution from pH 6.0 to 8.5 at constant ionic strength of 0.1 and (ii) varied HCl solutions from pH 0.8 to 5.0. As is to be expected with molecules containing COH groupings, all the molecular spectra are distinct. Of the thirteen sugars examined, only D-fructose 1,6-diphosphate (FDP) demonstrated spectral changes for the pH range 6.0—8.5 in phosphate buffer; but all exhibited band intensity enhancement in HCl at the lower pHs, but not band wavenumber changes. The results indicate that: (i) changes in the pH of the major intracellular buffer, phosphate, toward acidity, are able to hydrolyze the 1-phosphate group of FDP and the relative concentration of fructose 1-phosphate to fructose 6-phosphate is indicated by the intensity ratio of the 982 and 1080 cm -1 bands; (ii) it appears that all phosphate groups of FDP are hydrolyzed at pH 0.8 in HCl; and (iii) although conditions of extreme acidity are able to hydrolyze other sugars examined, there is no major degradation.

  16. The titration of carboxyl-terminated monolayers revisited: in situ calibrated fourier transform infrared study of well-defined monolayers on silicon.

    PubMed

    Aureau, D; Ozanam, F; Allongue, P; Chazalviel, J-N

    2008-09-02

    The acid-base equilibrium at the surface of well-defined mixed carboxyl-terminated/methyl-terminated monolayers grafted on silicon (111) has been investigated using in situ calibrated infrared spectroscopy (attenuated total reflectance (ATR)) in the range of 900-4000 cm (-1). Spectra of surfaces in contact with electrolytes of various pH provide a direct observation of the COOH <--> COO (-) conversion process. Quantitative analysis of the spectra shows that ionization of the carboxyl groups starts around pH 6 and extends over more than 6 pH units: approximately 85% ionization is measured at pH 11 (at higher pH, the layers become damaged). Observations are consistently accounted for by a single acid-base equilibrium and discussed in terms of change in ion solvation at the surface and electrostatic interactions between surface charges. The latter effect, which appears to be the main limitation, is qualitatively accounted for by a simple model taking into account the change in the Helmholtz potential associated with the surface charge. Furthermore, comparison of calculated curves with experimental titration curves of mixed monolayers suggests that acid and alkyl chains are segregated in the monolayer.

  17. Behaviour of the pH Adjustment, Ion Exchange and Concentrate Precipitation Stages in the Acid Leaching of Uranium Phosphate Ores; TRATAMIENTO DE DISOLUCIONES DE LIXIVIACION DE MINERALES DE URANIO EN PRESENCIA DE FOSFATOS. COMPORTAMIENTO EN LAS ETAPAS DE AJUSTE DE PH, CAMBIO DE ION Y PRECIPITACION DE CONCENTRADOS (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar, J.E.; Hueda, A.U.

    Recovery of U from acid leach solutions of phosphate ore was studied. It was found that predictions can be made concerning solids removal and U recovery in the pH adjustment stage, resin U capacity, eluating agent suitability, ion exchange stage eluation velocity and eluate U concentration, and composition of the precipitate formed in the concentration stage. The results are valid in the concentration range 0.3 to 0. 8 g U/sub 3/O/sub 8//1. (J.R.D.)

  18. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these prescribed model systems were also carried out to have a plausible understanding of their equilibrium geometries and the vibrational wavenumbers. An idea about the molecular orientation of the adsorbate over nanocolloidal gold substrate is also documented.

  19. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-05

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these prescribed model systems were also carried out to have a plausible understanding of their equilibrium geometries and the vibrational wavenumbers. An idea about the molecular orientation of the adsorbate over nanocolloidal gold substrate is also documented. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.

    Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.

  1. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  2. Vaginal pH and Microbicidal Lactic Acid When Lactobacilli Dominate the Microbiota

    PubMed Central

    O’Hanlon, Deirdre E.; Moench, Thomas R.; Cone, Richard A.

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid. PMID:24223212

  3. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers.

    PubMed

    Krull, Susan; Hevekerl, Antje; Kuenz, Anja; Prüße, Ulf

    2017-05-01

    Itaconic acid is a promising organic acid and is commercially produced by submerged fermentation of Aspergillus terreus. The cultivation process of the sensitive filamentous fungus has been studied intensively since 1932, with respect to fermentation media components, oxygen supply, shearing rate, pH value, or culture method. Whereas increased final titers were achieved over the years, the productivity has so far remained quite low. In this study, the impact of the pH on the itaconic acid production was investigated in detail. The pH during the growth and production phase had a significant influence on the final itaconic acid concentration and pellet diameter. The highest itaconic acid concentration of 160 g/L was achieved at a 1.5-L scale within 6.7 days by raising and controlling the pH value to pH 3.4 in the production phase. An ammonia solution and an increased phosphate concentration were used with an itaconic acid yield of 0.46 (w/w) and an overall productivity of 0.99 g/L/h in a fed-batch mode. A cultivation with a lower phosphate concentration resulted in an equal final concentration with an increased yield of 0.58 (w/w) after 11.8 days and an overall productivity of 0.57 g/L/h. This optimized process was successfully transferred from a 1.5-L scale to a 15-L scale. After 9.7 days, comparable pellet morphology and a final concentration of 150 g/L itaconic acid was reached. This paper provides a process strategy to yield a final titer of itaconic acid from a wild-type strain of A. terreus which is in the same range as the well-known citric acid production.

  4. In vitro characterization of pH-sensitive azithromycin-loaded methoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) micelles.

    PubMed

    Teng, Fangfang; Deng, Peizong; Song, Zhimei; Zhou, Feilong; Feng, Runliang; Liu, Na

    2017-06-15

    In order to improve azithromycin's antibacterial activity in acidic medium, monomethoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) copolymer was synthesized through allylation, free radical addition, ring-opening polymerization and amidation reactions with methoxy poly (ethylene glycol) as raw material. Drug loading capacity and encapsulation efficiency of azithromycin-loaded micelles prepared via thin film hydration method were 11.58±0.86% and 96.06±1.93%, respectively. The drug-loaded micelles showed pH-dependent property in the respects of particle size, zeta potential at the range of pH 5.5-7.8. It could control drug in vitro release and demonstrate higher release rate at pH 6.0 than that at pH 7.4. In vitro antibacterial experiment indicated that the activity of azithromycin-loaded micelles against S. aureus was superior to free azithromycin in medium at both pH 6.0 and pH 7.4. Using fluorescein as substitute with pH-dependent fluorescence decrease property, laser confocal fluorescence microscopy analysis confirmed that cellular uptake of micelles was improved due to protonation of copolymer's imidazole groups at pH 6.0. The enhanced cellular uptake and release of drug caused its activity enhancement in acidic medium when compared with free drug. The micellar drug delivery system should be potential application in the field of bacterial infection treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light.

    PubMed

    Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguérinel, I; Couvert, O; Carlin, F; Coroller, L

    2018-04-12

    The recovery at a range of incubation temperatures and pH of spores of Bacillus weihenstephanensis KBAB4 exposed to a peracetic acid-based disinfectant (PABD) or to pulsed light was estimated. Spores of B. weihenstephanensis were produced at 30 °C and pH 7.00, at 30 °C and pH 5.50, or at 12 °C and pH 7.00. The spores were treated with a commercial peracetic acid-based disinfectant at 80 mg·mL -1 for 0 to 200 min at 18 °C or by pulsed light at fluences ranging between 0.4 and 2.3 J·cm -2 for pulsed light treatment. After each treatment, the spores were incubated on nutrient agar at 12 °C, 30 °C or 37 °C, or at pH 5.10, 6.00 or 7.40. Incubation temperature during recovery had a significant impact only near the recovery limits, beyond which surviving spores previously exposed to a PABD or to pulsed light were not able to form colonies. In contrast, a decrease in pH of the recovery nutrient agar had a progressive impact on the ability of spores to form colonies. The time to first log reduction after PABD treatment was 29.5 ± 0.7 min with recovery at pH 7.40, and was tremendously shortened 5.1 ± 0.2 min with recovery at pH 5.10. Concerning the fluence necessary for the first log reduction, it was 1.5 times higher when the spores were recovered at pH 6.00 compared to a recovery at pH 5.10. The impact of recovery temperature and pH can be described with a mathematical model using cardinal temperature and pH as parameters. These effects of temperature and pH on recovery of Bacillus weihenstephanensis spores exposed to a disinfectant combining peracetic acid and hydrogen peroxide, or pulsed light are similar, although these treatments are of different natures. Sporulation temperature or pH did not impact resistance to the peracetic acid-based disinfectant or pulsed light. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  7. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals.

    PubMed

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-11-01

    It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH - pK(a) was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed with pH was correlated with the lipophilicity of the compound (log K(OW) of the neutral compound). For both acids and bases, the correlation was positive, but it was significant only for acids. Because experimental data in the literature were limited, results were supplemented with model simulations using a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however, based on simulations with the cell model, it is expected that the highest toxicity and bioaccumulation of these compounds will be found where the compounds are most neutral, at the isoelectric point. Copyright © 2011 SETAC.

  8. Electroacoustic isoelectric point determinations of bauxite refinery residues: different neutralization techniques and minor mineral effects.

    PubMed

    Freire, Tiago S S; Clark, Malcolm W; Comarmond, M Josick; Payne, Timothy E; Reichelt-Brushett, Amanda J; Thorogood, Gordon J

    2012-08-14

    Bauxite refinery residue (BRR) is a highly caustic, iron hydroxide-rich byproduct from alumina production. Some chemical treatments of BRR reduce soluble alkalinity and lower residue pH (to values <10) and generate a modified BRR (MBRR). MBRR has excellent acid neutralizing (ANC) and trace-metal adsorption capacities, making it particularly useful in environmental remediation. However, soluble ANC makes standard acid-base isoelectric point (IEP) determination difficult. Consequently, the IEP of a BRR and five MBRR derivatives (sulfuric acid-, carbon dioxide-, seawater-, a hybrid neutralization, i.e, partial CO(2) neutralization followed by seawater, and an activated-seawater-neutralized MBRR) were determined using electroacoustic techniques. Residues showed three significantly different groups of IEPs (p < 0.05) based around the neutralization used. Where the primary mineral assemblage is effectively unchanged, the IEPs were not significantly different from BRR (pH 6.6-6.9). However, neutralizations generating neoformational minerals (alkalinity precipitation) significantly increased the IEP to pH 8.1, whereas activation (a removal of some primary mineralogy) significantly lowered the IEP to pH 6.2. Moreover, surface charging curves show that surfaces remain in the ±30 mV surface charge instability range, which provides an explanation as to why MBRRs remove trace metals and oxyanions over a broad pH range, often simultaneously. Importantly, this work shows that minor mineral components in complex mineral systems may have a disproportionate effect on the observable bulk IEP. Furthermore, this work shows the appropriateness of electroacoustic techniques in investigating samples with significant soluble mineral components (e.g., ANC).

  9. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor.

    PubMed

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  10. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor

    NASA Astrophysics Data System (ADS)

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  11. A Triple-Fluorophore-Labeled Nucleic Acid pH Nanosensor to Investigate Non-viral Gene Delivery.

    PubMed

    Wilson, David R; Routkevitch, Denis; Rui, Yuan; Mosenia, Arman; Wahlin, Karl J; Quinones-Hinojosa, Alfredo; Zack, Donald J; Green, Jordan J

    2017-07-05

    There is a need for new tools to better quantify intracellular delivery barriers in high-throughput and high-content ways. Here, we synthesized a triple-fluorophore-labeled nucleic acid pH nanosensor for measuring intracellular pH of exogenous DNA at specific time points in a high-throughput manner by flow cytometry following non-viral transfection. By including two pH-sensitive fluorophores and one pH-insensitive fluorophore in the nanosensor, detection of pH was possible over the full physiological range. We further assessed possible correlation between intracellular pH of delivered DNA, cellular uptake of DNA, and DNA reporter gene expression at 24 hr post-transfection for poly-L-lysine and branched polyethylenimine polyplex nanoparticles. While successful transfection was shown to clearly depend on median cellular pH of delivered DNA at the cell population level, surprisingly, on an individual cell basis, there was no significant correlation between intracellular pH and transfection efficacy. To our knowledge, this is the first reported instance of high-throughput single-cell analysis between cellular uptake of DNA, intracellular pH of delivered DNA, and gene expression of the delivered DNA. Using the nanosensor, we demonstrate that the ability of polymeric nanoparticles to avoid an acidic environment is necessary, but not sufficient, for successful transfection. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  12. pH-adjustment strategy for volatile fatty acid production from high-strength wastewater for biological nutrient removal.

    PubMed

    Xie, Li; Liu, Hui; Chen, Yin-Guang; Zhou, Qi

    2014-01-01

    Volatile fatty acid (VFA) production from three types of high-strength organic wastewater (cassava thin stillage, starch wastewater and yellow-wine processing wastewater) were compared. The results showed that cassava thin stillage was the most suitable substrate, based on its high specific VFA production (0.68 g chemical oxygen demand (COD)/g initial soluble chemical oxygen demand (SCOD)) and yield (0.72 g COD/g SCOD) as well as low nutrient content in the substrate and fermented liquid. The acid fermented cassava thin stillage was evaluated and compared with sodium acetate in a sequencing batch reactor system. Total nitrogen removal efficiency was higher with fermented cassava thin stillage than with the sodium acetate. The effects of pH and a pH-adjustment strategy on VFA production and composition were determined using cassava thin stillage. At an initial pH range of 7-11, a relatively high VFA concentration of about 9 g COD/L was obtained. The specific VFA production (g COD/g initial SCOD) increased from 0.27 to 0.47 to 0.67 at pH 8 and from 0.26 to 0.68 to 0.81 at pH 9 (initial pH, interval pH, and constant pH adjustment, respectively). The dominant VFA species changed significantly with the increasing frequency of the pH adjustment. Further studies will examine the metabolic pathways responsible for VFA composition.

  13. No-core fiber-based highly sensitive optical fiber pH sensor.

    PubMed

    Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-05-01

    The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol–gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and ? 0.93 ?? nm / pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.

  14. [Study of the stability of pyrimido-[5,4-e]-1,2,4-triazine antibiotics in acid-base media by NMR spectroscopy].

    PubMed

    Esipov, S E; Chernyshev, A I; Shorshnev, S V; Iakushkina, N I; Antonovskiĭ, V L

    1985-02-01

    A comparative study of the NMR 1H and 13C spectra of reumycin, fervenulin and xanthothricin in aqueous acid-base media showed that at pH or pD ranging from 8.0 to 1.0 the antibiotics were chemically stable. By the ratio of the 1H and 13C chemical shifts of reumycin at pH 4.0-10.0 the pKa values of this antibiotic were determined: 6.7 in aqueous (D2O) solution and 8.76 in dimethylsulfoxide media. Alkalization of the solutions of reumycin (pH 12.0), fervenulin (pH 9.0) and xanthothricin (pH 8.0) resulted in irreversible chemical transformation of the antibiotics. The analysis of the chemical shifts in the PMR spectra of the transformation products revealed transformation of the uracil ring in reumycin and uracil and triazine rings in fervenulin and xanthothricin. Alkalization of the xanthothricin solutions resulted also in demethylation with formation of reumycin.

  15. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution

    NASA Technical Reports Server (NTRS)

    Eriksson, M.; Christensen, L.; Schmidt, J.; Haaima, G.; Orgel, L.; Nielsen, P. E.

    1998-01-01

    The stability of the PNA (peptide nucleic acid) thymine monomer inverted question markN-[2-(thymin-1-ylacetyl)]-N-(2-aminoaminoethyl)glycine inverted question mark and those of various PNA oligomers (5-8-mers) have been measured at room temperature (20 degrees C) as a function of pH. The thymine monomer undergoes N-acyl transfer rearrangement with a half-life of 34 days at pH 11 as analyzed by 1H NMR; and two reactions, the N-acyl transfer and a sequential degradation, are found by HPLC analysis to occur at measurable rates for the oligomers at pH 9 or above. Dependent on the amino-terminal sequence, half-lives of 350 h to 163 days were found at pH 9. At pH 12 the half-lives ranged from 1.5 h to 21 days. The results are discussed in terms of PNA as a gene therapeutic drug as well as a possible prebiotic genetic material.

  16. Removal of organic impurities in waste glycerol from biodiesel production process through the acidification and coagulation processes.

    PubMed

    Xie, Qiao-Guang; Taweepreda, Wirach; Musikavong, Charongpun; Suksaroj, Chaisri

    2012-01-01

    Treatment of waste glycerol, a by-product of the biodiesel production process, can reduce water pollution and bring significant economic benefits for biodiesel facilities. In the present study, hydrochloric acid (HCl) was used as acidification to convert soaps into salts and free fatty acids which were recovered after treatment. The pH value, dosages of polyaluminum chloride (PACl) and dosage of polyacrylamide (PAM) were considered to be the factors that can influence coagulation efficiency. The pH value of waste glycerol was adjusted to a pH range of 3-9. The PACl and PAM added were in the range of 1-6 g/L and 0.005-0.07 g/L. The results showed best coagulation efficiency occurs at pH 4 when dosage of PACl and PAM were 2 and 0.01 g/L. The removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD(5)), total suspended solids (TSS) and soaps were 80, 68, 97 and 100%, respectively. The compositions of organic matters in the treated waste glycerol were glycerol (288 g/L), methanol (3.8 g/L), and other impurities (0.3 g/L).

  17. An experimental flow-through assessment of acidic Fe/Mg smectite formation on early Mars

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Peretyazhko, T.; Garcia, A. H.; Ming, D. W.

    2017-12-01

    Orbital observations have detected the phyllosilicate smectite in layered material hundreds of meters thick, intracrater depositional fans, and plains sediments on Mars; however, the detection of carbonate deposits is limited. Instead of neutral/alkaline conditions during the Noachian, early Mars may have experienced mildly acidic conditions derived from volcanic acid-sulfate solutions that allowed Fe/Mg smectite formation but prevented widespread carbonate formation. The detection of acid sulfates (e.g., jarosite) associated with smectite in Mawrth Vallis supports this hypothesis. Previous work demonstrated smectite (saponite) formation in closed hydrologic systems (batch reactor) from basaltic glass at pH 4 and 200°C (Peretyazhko et al., 2016 GCA). This work presents results from alteration of basaltic glass from alkaline to acidic conditions in open hydrologic systems (flow-through reactor). Preliminary experiments exposed basaltic glass to deionized water at 190°C at 0.25 ml/min where solution pH equilibrated to 9.5. These initial high pH experiments were conducted to evaluate the flow-through reactor system before working with lower pHs. Smectite at this pH was not produced and instead X-ray diffraction results consistent with serpentine was detected. Experiments are in progress exposing basaltic glass from pH 8 down to pH 3 to determine what range of pHs could allow for smectite formation in this experimental open-system. The production of smectite under an experimental open-system at low pHs if successful, would support a significant paradigm shift regarding the geochemical evolution of early Mars: Early Mars geochemical solutions were mildly acidic, not neutral/alkaline. This could have profound implications regarding early martain microbiology where acid conditions instead of neutral/alkaline conditions will require further research in terrestrial analogs to address the potential for biosignature preservation on Mars (Johnson et al., 2016, LPSC).

  18. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  19. Characterisation of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design.

    PubMed

    Happi Emaga, Thomas; Ronkart, Sébastien N; Robert, Christelle; Wathelet, Bernard; Paquot, Michel

    2008-05-15

    An experimental design was used to study the influence of pH (1.5 and 2.0), temperature (80 and 90°C) and time (1 and 4h) on extraction of pectin from banana peels (Musa AAA). Yield of extracted pectins, their composition (neutral sugars, galacturonic acid, and degree of esterification) and some macromolecular characteristics (average molecular weight, intrinsic viscosity) were determined. It was found that extraction pH was the most important parameter influencing yield and pectin chemical composition. Lower pH values negatively affected the galacturonic acid content of pectin, but increased the pectin yield. The values of degree of methylation decreased significantly with increasing temperature and time of extraction. The average molecular weight ranged widely from 87 to 248kDa and was mainly influenced by pH and extraction time. Copyright © 2007 Elsevier Ltd. All rights reserved.

  20. Methods to Select Chemicals for In Situ Biodegradation of Fuel Hydrocarbons

    DTIC Science & Technology

    1990-07-01

    nutrients at a variety of C:N:P ratios have been added to bioreclamation sites, often with equivocal results ( Atlas , 1981; Bossert and Bartha , 1984...pH in the range of 5 to 9. Since desirable pH for microbial growth is near 7 ( Atlas , 1981), it is not possible to decrease significantly the pH of...34Potentiometric Study on the Formation of Perboric Acids," Acta Chemica Scandinavica, Vol. 10, pp. 756-760, 1956. Atlas , R.M. Microbial Degradation

  1. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    NASA Astrophysics Data System (ADS)

    Forsythe, J. G.; Weber, A. L.

    2017-07-01

    We report a new process for robust peptide bond synthesis in the pH 6–10 range that involves dry-down heating of amino acids in the presence of glycerol and bicarbonate (substrates: L-alanine, L-2-aminobutyric acid, β-alanine, isoserine).

  2. The role of aquaporins in pH-Dependent germination of Rhizopus delemar spores

    USDA-ARS?s Scientific Manuscript database

    Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an u...

  3. Environment Sentinel Biomonitor Technology Assessment

    DTIC Science & Technology

    2013-09-01

    turbidity, humic /fulvic acids , geosmin/MIB, hard water) with minimal effect on test outcome. It is better to be able to operate under a wide range...inhibition between 20–80%. c. Susceptibility to source water conditions: very low i. No response for pH (4.5–9), geosmin, MIB, humic /fulvic acids , or hard

  4. [Acid-base equilibrium and the brain].

    PubMed

    Rabary, O; Boussofara, M; Grimaud, D

    1994-01-01

    In physiological conditions, the regulation of acid-base balance in brain maintains a noteworthy stability of cerebral pH. During systemic metabolic acid-base imbalances cerebral pH is well controlled as the blood/brain barrier is slowly and poorly permeable to electrolytes (HCO3- and H+). Cerebral pH is regulated by a modulation of the respiratory drive, triggered by the early alterations of interstitial fluid pH, close to medullary chemoreceptors. As blood/brain barrier is highly permeable to Co2, CSF pH is corrected in a few hours, even in case of severe metabolic acidosis and alkalosis. Conversely, during ventilatory acidosis and alkalosis the cerebral pH varies in the same direction and in the same range than blood pH. Therefore, the brain is better protected against metabolic than ventilatory acid-base imbalances. Ventilatory acidosis and alkalosis are able to impair cerebral blood flow and brain activity through interstitial pH alterations. During respiratory acidosis, [HCO3-] increases in extracellular fluids to control cerebral pH by two main ways: a carbonic anhydrase activation at the blood/brain and blood/CSF barriers level and an increase in chloride shift in glial cells (HCO3- exchanged for Cl-). During respiratory alkalosis, [HCO3-] decreases in extracellular fluids by the opposite changes in HCO3- transport and by an increase in lactic acid synthesis by cerebral cells. The treatment of metabolic acidosis with bicarbonates may induce a cerebral acidosis and worsen a cerebral oedema during ketoacidosis. Moderate hypocapnia carried out to treat intracranial hypertension is mainly effective when cerebral blood flow is high and vascular CO2 reactivity maintained. Hypocapnia may restore an altered cerebral blood flow autoregulation. Instrumental hypocapnia requires a control of cerebral perfusion pressure and cerebral arteriovenous difference for oxygen, to select patients for whom this kind of treatment may be of benefit, to choose the optimal level of hypocapnia and to avoid any deleterious effect. If hypocapnia is maintained over several days, an adaptation of CSF pH may limit the therapeutic effect on the cerebral blood flow and the intracranial pressure.

  5. Distribution of biota in a stream polluted by acid mine-drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, R.W.

    1971-01-01

    Acidic water draining from coal mines has severly restricted the diversity of biota inhabiting Roaring Creek, eastern West Virginia. Polluted reaches of the stream (median pH values ranging from 2.8 to 3.8) were inhabited by 3 to 12 genera of bottom-dwelling invertebrates and 10 to 19 species of periphytic algae. Invertebrates tolerant of the pollution included Sialis sp., chironomus plumosus and other Chironomidae, dytiscid beetles, and Ptilostomis sp. Predominant among the tolerant periphyton were Ulothrix tenerrima, Pinnularia termitina, Eunotia exigua, and Euglena mutabilis. Six other species of algae were tolerant of the acid mine-pollution, but were never numerous. Sections ofmore » Roaring Creek not severely polluted by acid drainage (pH medians of 4.5 or higher) supported diverse communities of 25 or more kinds of benthic animals and 27 or more species of periphytic algae. These stream reaches were inhibited by blackflies, crayfish, mayflies, stoneflies, and many species of caddisflies; these forms did not inhabit the more acidic stream reaches. Because of the complex and varying chemical composition of the acid mine-drainage, and also because of possible physical influences, measurements of pH values in the stream seemed to provide the most reliable, as well as unique, index of the effects of acid mine-drainage on aquatic life.« less

  6. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    PubMed

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Product development studies of amino acid conjugate of Aceclofenac.

    PubMed

    Singh, Ajay Pal; Ramadan, Wafa Mossa; Dahiya, Rajiv; Sarpal, A S; Pathak, Kamla

    2009-04-01

    The prodrugs designed by classical approach increase lipophilicity of the drug, which decreases the water solubility thus decreasing the concentration gradient, which controls drug absorption. To overcome the limitations of traditional prodrug approach, water soluble prodrugs can be designed by adding selected amino acid to the drug moiety that are the substrates for the enzyme located at the intestinal brush border thus overcoming pharmaceutical problem without compromising bioavailability. ACaa (Amino acid conjugate of Aceclofenac) was synthesized by conjugation with l-phenylalanine by conventional coupling method using N, N-dicyclohexylcarbodiimide and ACaa was characterized by melting point, TLC, photomicrograph, UV, FT-IR, FT-NMR, MS-FAB, XRD and DSC. As a part of product development study ACaa was subjected to studies like In-vivo in albino rats and in-vitro like ACaa reversion to AC (Aceclofenac) in aqueous buffers of pH 1.21, 2.38. 3.10, 6.22 and 7.41, at a constant concentration (0.05M), ionic strength (micro = 0.5) and at a temperature of 37 degrees C +/- 0.5 degrees C, ACaa showed negligible reversion (2.15 %) up to 24 hrs study at acidic pH thus suggesting stability in acidic environment of stomach, the rate of reversion increased as pH of medium increased. pH- partition profile, pH- solubility profile and micromeritic studies were also carried out in comparison to pure drug. The solubility and lipophilicity of ACaa exhibited higher values at all pH range when compared to AC. The micromeritic properties also evaluated in terms of particle shape and size, IQCS and kurtosis. Resulting IQCS value approached zero thus suggesting reducing in the degree of skewness.

  8. The preparation and evaluation of salt forms of linogliride with reduced solubilities as candidates for extended release.

    PubMed

    Chrzanowski, Frank A; Ahmad, Kaleem

    2017-03-01

    Salts of linogliride with reduced solubilities were prepared and evaluated as potential candidates for extended-release oral dosage forms. A once-daily dose of 300-800 mg was intended. Seven acids were selected: p-acetamidobenzoic, benzoic, p-hydroxybenzoic, 3-hydroxy-2-naphthoic, 1-napsylic, pamoic, and p-toluenesulfonic acids but only four salts were able to be prepared in suitable quantities for evaluation: linogliride pamoate, p-hydroxybenzoate, 3-hydroxy-2-naphthoate, and 1-napsylate. The pH-solubility profiles of the four new salts, free base, and fumarate salt were compared over the pH 1.43-8.3 range and the intrinsic dissolution rates of the four new salts and the free base were determined at pH 1.43, 4.4, and 7.5. The range of the pH-solubility profile and intrinsic dissolution rates of the p-hydroxybenzoate salt were less than the free base and fumarate and higher than the other three new salts. The pH-solubilities and intrinsic dissolution rates of the 1-napsylate salt were pH-independent. The solubilities and intrinsic dissolution rates of the pamoate and 3-hydroxy-2-naphthoate were higher at pH 1.4-3.4 than at higher pH. At pH 4.4 and higher, the solubilities were essentially the same, in the 1-2 mg/mL range. The intrinsic dissolution rates were also very low and not very different. Dissolution studies with capsules containing 800 mg doses of the pamoate, 1-napsylate, free base, and fumarate performed in a dissolution medium of pH beginning at 2.2 and ending at 6.8 demonstrated that the pamoate and 1-napsylate salt forms dissolved slower and could be useful as extended-release forms.

  9. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  10. [Intragastric utilization of antacids following meals in relation to stomach emptying].

    PubMed

    Lux, G; Hartog, C; Ruppin, H; Lederer, P; Schmitt, W

    1983-03-01

    Gastric acid secretion and gastric emptying rate was measured using double marker method and continuous titration of a liquid peptone test meal. Titration rate was significantly reduced by 30 ml of an aluminiumhydroxide- and magnesiumhydroxide containing antacid compound (Maalox). Acidity of gastric contents was reduced over a period of 48.4 +/- 9.1 min (mean +/- SD; endpoint of titration pH 5.5) and 77.6 +/- 2.0 min (pH 3.5) (p less than 0.05). The histamine H2-receptor blocker Ranitidine (0.25 mg/kg b.w.) and the antimuscarinic agent Pirenzepine reduced titrable gastric acid secretion in a similar range, as far as the observation period of 90 min is concerned. Biosorbin MCT, a formula diet, stimulated gastric acid secretion half the amount of gastric acid secretion stimulated by the peptone meal. Gastric emptying rate was significantly reduced by formula diet, but not by either of the other compounds.

  11. Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Bertron, Alexandra; Larreur-Cayol, Steeves

    2015-03-15

    Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelatingmore » effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.« less

  12. The oxidation of amino acids by ferrate(V). A pre-mix pulse radiolysis study.

    PubMed

    Rush, J D; Bielski, B H

    1995-06-01

    The forms of ferrate(V) which are derived from the one-electron reduction of potassium ferrate (K2FeO4) by ethanol radicals react with representative amino acids (glycine, methionine, phenylalanine and serine) at rates that are greater than 10(5)M-1s-1 near pH 10. The predominant interaction in the alkaline pH range is between the protonated ferrate(V) species, HFeO4(2-), and the amino acid anion. Fe(V) + amino acid-->Fe(III) + NH3 + alpha-keto acid The rate-determining process is the two electron reduction of ferrate(V) to iron(III) with oxidation and subsequent deamination of the amino acid. The reaction appears to involve an entry of the amino acid into the inner coordination sphere of ferrate(V). In all cases, ferrate(V) exhibits preferred attack on the amino group in contrast to the OH radical which attacks the thioether site of methionine and the phenyl ring of phenylalanine.

  13. Growth and mycotoxin production by Chaetomium globosum is favored in a neutral pH.

    PubMed

    Fogle, Matthew R; Douglas, David R; Jumper, Cynthia A; Straus, David C

    2008-12-01

    Chaetomium globosum is frequently isolated in water-damaged buildings and produces two mycotoxins called chaetoglobosins A and C when cultured on building material. In this study, the influence of ambient pH on the growth of C. globosum was examined on an artificial medium. This fungus was capable of growth on potato dextrose agar ranging in pH from 4.3 to 9.4 with optimal growth and chaetoglobosin C production occurring at a neutral pH. In addition, our results show that sporulation is favored in an acidic environment.

  14. Growth and Mycotoxin Production by Chaetomium globosum Is Favored in a Neutral pH

    PubMed Central

    Fogle, Matthew R.; Douglas, David R.; Jumper, Cynthia A.; Straus, David C.

    2008-01-01

    Chaetomium globosum is frequently isolated in water-damaged buildings and produces two mycotoxins called chaetoglobosins A and C when cultured on building material. In this study, the influence of ambient pH on the growth of C. globosum was examined on an artificial medium. This fungus was capable of growth on potato dextrose agar ranging in pH from 4.3 to 9.4 with optimal growth and chaetoglobosin C production occurring at a neutral pH. In addition, our results show that sporulation is favored in an acidic environment. PMID:19330080

  15. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    PubMed Central

    Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045

  16. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    PubMed

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  17. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers.

  18. Acid-base titrations of functional groups on the surface of the thermophilic bacterium Anoxybacillus flavithermus: comparing a chemical equilibrium model with ATR-IR spectroscopic data.

    PubMed

    Heinrich, Hannah T M; Bremer, Phil J; Daughney, Christopher J; McQuillan, A James

    2007-02-27

    Acid-base functional groups at the surface of Anoxybacillus flavithermus (AF) were assigned from the modeling of batch titration data of bacterial suspensions and compared with those determined from in situ infrared spectroscopic titration analysis. The computer program FITMOD was used to generate a two-site Donnan model (site 1: pKa = 3.26, wet concn = 2.46 x 10(-4) mol g(-1); site 2: pKa = 6.12, wet concn = 6.55 x 10(-5) mol g(-1)), which was able to describe data for whole exponential phase cells from both batch acid-base titrations at 0.01 M ionic strength and electrophoretic mobility measurements over a range of different pH values and ionic strengths. In agreement with information on the composition of bacterial cell walls and a considerable body of modeling literature, site 1 of the model was assigned to carboxyl groups, and site 2 was assigned to amino groups. pH difference IR spectra acquired by in situ attenuated total reflection infrared (ATR-IR) spectroscopy confirmed the presence of carboxyl groups. The spectra appear to show a carboxyl pKa in the 3.3-4.0 range. Further peaks were assigned to phosphodiester groups, which deprotonated at slightly lower pH. The presence of amino groups could not be confirmed or discounted by IR spectroscopy, but a positively charged group corresponding to site 2 was implicated by electrophoretic mobility data. Carboxyl group speciation over a pH range of 2.3-10.3 at two different ionic strengths was further compared to modeling predictions. While model predictions were strongly influenced by the ionic strength change, pH difference IR data showed no significant change. This meant that modeling predictions agreed reasonably well with the IR data for 0.5 M ionic strength but not for 0.01 M ionic strength.

  19. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2018-01-01

    The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (∼200 °C). Smectites were analyzed by X-ray diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ∼3 and trioctahedral smectite saponite at final pH ∼4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model for global-scale smectite formation on Mars via acid-sulfate conditions created by the volcanic outgassing of SO2 in the Noachian and early Hesperian.

  20. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil

    PubMed Central

    Hayatsu, Masahito; Tago, Kanako; Uchiyama, Ikuo; Toyoda, Atsushi; Wang, Yong; Shimomura, Yumi; Okubo, Takashi; Kurisu, Futoshi; Hirono, Yuhei; Nonaka, Kunihiko; Akiyama, Hiroko; Itoh, Takehiko; Takami, Hideto

    2017-01-01

    Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5–7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae. PMID:28072419

  1. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil.

    PubMed

    Hayatsu, Masahito; Tago, Kanako; Uchiyama, Ikuo; Toyoda, Atsushi; Wang, Yong; Shimomura, Yumi; Okubo, Takashi; Kurisu, Futoshi; Hirono, Yuhei; Nonaka, Kunihiko; Akiyama, Hiroko; Itoh, Takehiko; Takami, Hideto

    2017-05-01

    Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5-7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae.

  2. Seasonal variations in urinary risk factors among patients with nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Hill, K.; Poindexter, J.; Pak, C. Y.

    1991-01-01

    Twenty-four hour urine specimens from 5,677 stone-forming patients throughout the United States were analyzed for seasonal variations in urinary risk factors for nephrolithiasis. Determinations were performed for urine volume, pH, calcium, oxalate, phosphorus, sodium, magnesium, citrate, sulfate, uric acid, and the relative supersaturation (RS) of calcium oxalate, brushite, monosodium urate, and uric acid. Criteria for significant seasonal variation included a significant difference in monthly means of risk factors, seasonal grouping of the data by the Student-Newman-Keuls multiple range test, consistent year-to-year trends and a physiologically significant range. Minimum urine volume of 1.54 +/- 0.70 SD L/day occurred in October while a maximum urine volume of 1.76 +/- 0.78 SD L/day was observed during February. Minimum urine pH of 5.94 +/- 0.64 SD was observed during July and August while a maximum pH of 6.18 +/- 0.61 SD was observed during February. Daily urinary excretion of sodium was lowest during August, 158 +/- 74 SD mEq/day and highest during February 177 +/- 70 SD mEq/day. The RS of brushite and uric acid were found to display significant pH-dependent seasonal variation with a maximum RS of uric acid 2.26 +/- 1.98 SD in June and a low of 1.48 +/- 1.30 SD in February. Maximum RS of brushite 2.75 +/- 2.58 was observed during February. Minimum RS of brushite 1.93 +/- 1.70 SD was observed in June. Phosphorus excretion displayed seasonal variation about a spring-fall axis with a maximum value 1042 +/- 373 SD mg/day in April and a minimum value of 895 +/- 289 SD mg/day. Urine volume, sodium, and pH were significantly lower during the summer (June, July, August) than in the winter (December, January, February). The RS of uric acid was higher, but that of brushite and monosodium urate was lower in the summer than in the winter. The seasonal changes observed in urine volume, pH, sodium, and the RS of brushite and uric acid are consistent with summertime sweating and increased physical activity. Seasonal variations in phosphorus excretion are probably dietary in origin. The summertime was characterized by an increased propensity for the crystallization of uric acid but not of calcium oxalate or calcium phosphate.

  3. Environmental characterisation of coal mine waste rock in the field: an example from New Zealand

    NASA Astrophysics Data System (ADS)

    Hughes, J.; Craw, D.; Peake, B.; Lindsay, P.; Weber, P.

    2007-08-01

    Characterisation of mine waste rock with respect to acid generation potential is a necessary part of routine mine operations, so that environmentally benign waste rock stacks can be constructed for permanent storage. Standard static characterisation techniques, such as acid neutralisation capacity (ANC), maximum potential acidity, and associated acid-base accounting, require laboratory tests that can be difficult to obtain rapidly at remote mine sites. We show that a combination of paste pH and a simple portable carbonate dissolution test, both techniques that can be done in the field in a 15 min time-frame, is useful for distinguishing rocks that are potentially acid-forming from those that are acid-neutralising. Use of these techniques could allow characterisation of mine wastes at the metre scale during mine excavation operations. Our application of these techniques to pyrite-bearing (total S = 1-4 wt%) but variably calcareous coal mine overburden shows that there is a strong correlation between the portable carbonate dissolution technique and laboratory-determined ANC measurements (range of 0-10 wt% calcite equivalent). Paste pH measurements on the same rocks are bimodal, with high-sulphur, low-calcite rocks yielding pH near 3 after 10 min, whereas high-ANC rocks yield paste pH of 7-8. In our coal mine example, the field tests were most effective when used in conjunction with stratigraphy. However, the same field tests have potential for routine use in any mine in which distinction of acid-generating rocks from acid-neutralising rocks is required. Calibration of field-based acid-base accounting characteristics of the rocks with laboratory-based static and/or kinetic tests is still necessary.

  4. Effects of organic acids on thermal inactivation of acid and cold stressed Enterococcus faecium.

    PubMed

    Fernández, Ana; Alvarez-Ordóñez, Avelino; López, Mercedes; Bernardo, Ana

    2009-08-01

    In this study the adaptative response to heat (70 degrees C) of Enterococcus faecium using fresh and refrigerated (at 4 degrees C for up to 1 month) stationary phase cells grown in Brain Heart Infusion (BHI) buffered at pH 7.4 (non-acid-adapted cells) and acidified BHI at pH values of 6.4 and 5.4 with acetic, ascorbic, citric, lactic, malic and hydrochloric acids (acid-adapted cells) was evaluated. In all cases, the survival curves obtained were concave upward. A mathematical model based on the Weibull distribution accurately described the inactivation kinetic. The results indicate that previous adaptation to a low pH increased the bacterial heat resistance, whereas the subsequent cold storage of cells reduced E. faecium thermal tolerance. Fresh acid-adapted cells showed t(2.5)-values (time needed to obtain an inactivation level of 2.5 log10 cycles) ranging from 2.57 to 9.51 min, while non-acid-adapted cells showed t(2.5)-values of 1.92 min. The extent of increased heat tolerance varied with the acid examined, resulting in the following order: citric > or = acetic > malic > or = lactic > hydrochloric > or = ascorbic. In contrast, cold storage progressively decreased E. faecium thermal resistance. The t(2.5) values found at the end of the period studied were about 2-3-fold lower than those corresponding to non-refrigerated cells, although this decrease was more marked (about 5-fold) when cells were grown in buffered BHI and BHI acidified at pH 5.4 with hydrochloric acid. These findings highlight the need for a better understanding of microbial response to various preservation stresses in order to increase the efficiency of thermal processes and to indicate the convenience of counterbalancing the benefits of the hurdle concept.

  5. Dissolved Free Amino Acids in Hydrothermal Springs at Yellowstone National Park, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cox, J. S.; Holland, M. E.; Shock, E. L.

    2004-12-01

    Insights into the organic geochemistry of hydrothermal systems, as well as the dynamics of biotic processes in hot spring ecosystems, can be gained by identifying and quantifying dissolved free amino acids (DFAA). Hydrothermal systems form a unique environmental subset relative to other aqueous settings due to their higher temperatures, largely uncharacterized and exotic microbiology, wider pH range, and elevated levels of rare metals, sulfur, and dissolved gases. Previous studies of hot spring and geothermal systems (e.g. Mukhin et al., 1979; Svensson et al., 2004) indicated the presence of micromolar quantities of various amino acids, but the underlying mechanisms controlling amino acid production and disappearance/consumption have continued to remain elusive. DFAA were identified and quantified in five hot springs at Yellowstone National Park that span a range of pH (2 to 8) and temperature (75 to 93° C/boiling). Biotic uptake experiments and enantiomeric analyses on samples from one location were also performed to elucidate biotic pathways. Analyses were performed using high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which is able to resolve amino acids as well as certain carbohydrates, oligopeptides, and a variety of related biological molecules. Preliminary data indicate that total DFAA concentrations are quite low (sub-micromolar range) and that amino acids with aliphatic and nitrogen-containing R-groups are predominant in the DFAA fraction. The types and concentrations of amino acids were variable across the sites. Obsidian Pool (pH 5.1, 77.5° C), where multiple microbiological studies have been conducted, was found to have a DFAA fraction consisting primarily of glycine with trace amounts of arginine, lysine, and histidine. In comparison, an acidic spring in the Sylvan Springs area (pH 1.9, 79.7° C) had higher total DFAA concentrations and was found to contain primarily arginine, lysine, and leucine, together with trace amounts of alanine, proline, and histidine. At least six other unknown compounds were also observed, one of them possibly at near-micromolar levels, and there was evidence for higher levels of organic compounds in general. The generally low concentrations observed in this study suggest that amino acids participate in highly dynamic biotic pathways in Yellowstone hot springs. Our observations of lower concentrations of amino acids and less diversity differ from literature results, but are consistent with suggestions of a positive correlation between acidic conditions and higher levels of DFAA (Svensson et al., 2004). References: Mukhin L.M., Bondarev V.B., Vakin E.A., Il'yukhina N.I., Kalinichenko V.I., Milekhina E.I., Safonova E.N. (1979) Doklady Akademii Nauk SSSR 244(4), 974-7. Svensson E., Skoog A., and Amend J.P. (2004) Organic Geochemistry 35, 1001-1014.

  6. Free radicals produced by the oxidation of gallic acid: An electron paramagnetic resonance study.

    PubMed

    Eslami, Angelique C; Pasanphan, Wanvimol; Wagner, Brett A; Buettner, Garry R

    2010-08-05

    Gallic acid (3,4,5-trihydroxybenzoic acid) is found in a wide variety of plants; it is extensively used in tanning, ink dyes, as well as in the manufacturing of paper. The gallate moiety is a key component of many functional phytochemicals. In this work electron paramagnetic spectroscopy (EPR) was used to detect the free radicals generated by the air-oxidation of gallic acid. We found that gallic acid produces two different radicals as a function of pH. In the pH range between 7-10, the spectrum of the gallate free radical is a doublet of triplets (aH = 1.00 G, aH = 0.23 G, aH = 0.28 G). This is consistent with three hydrogens providing hyperfine splitting. However, in a more alkaline environment, pH >10, the hyperfine splitting pattern transforms into a 1:2:1 pattern (aH (2) = 1.07 G). Using D2O as a solvent, we demonstrate that the third hydrogen (i.e. aH = 0.28 G) at lower pH is a slowly exchanging hydron, participating in hydrogen bonding with two oxygens in ortho position on the gallate ring. The pKa of this proton has been determined to be 10. This simple and novel approach permitted the understanding of the prototropic equilibrium of the semiquinone radicals generated by gallic acid, a ubiquitous compound, allowing new insights into its oxidation and subsequent reactions.

  7. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.

  8. Stability of model membranes in extreme environments.

    PubMed

    Namani, Trishool; Deamer, David W

    2008-08-01

    The first forms of cellular life required a source of amphiphilic compounds capable of assembling into stable boundary structures. Membranes composed of fatty acids have been proposed as model systems of primitive membranes, but their bilayer structure is stable only within a narrow pH range and low ionic strength. They are particularly sensitive to aggregating effects of divalent cations (Mg+2, Ca+2, Fe+2) that would be present in Archaean sea water. Here we report that mixtures of alkyl amines and fatty acids form vesicles at strongly basic and acidic pH ranges which are resistant to the effects of divalent cations up to 0.1 M. Vesicles formed by mixtures of decylamine and decanoic acid (1:1 mole ratio) are relatively permeable to pyranine, a fluorescent anionic dye, but permeability could be reduced by adding 2 mol% of a polycyclic aromatic hydrocarbon such as pyrene. Permeability to the dye was also reduced by increasing the chain length of the amphiphiles. For instance, 1:1 mole ratio mixtures of dodecylamine and dodecanoic acid were able to retain pyranine dye during and following gel filtration. We conclude that primitive cell membranes were likely to be composed of mixtures of amphiphilic and hydrophobic molecules that manifested increased stability over pure fatty acid membranes.

  9. Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption

    NASA Astrophysics Data System (ADS)

    Boonsong, P.; Paksamut, J.

    2018-03-01

    In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.

  10. Cloning and characterization of a new κ-carrageenase gene from marine bacterium Pseudoalteromonas sp. QY203

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyan; Li, Shangyong; Yang, Xuemei; Yu, Wengong; Han, Feng

    2015-12-01

    κ-carrageenan oligosaccharides exhibit various biological activities. Enzymatic degradation by κ-carrageenase is safe and controllable. Therefore, κ-carrageenases have captured more and more attentions. In this study, a κ-carrageenase encoding gene, cgkX, was cloned from Pseudoalteromonas sp. QY203 with degenerate and inverse PCR. It comprised an ORF of 1194 bp in length, encoding a protein with 397 amino acid residues. CgkX is a new member of glycoside hydrolase family 16. The deduced amino acid sequence shared a high similarity with CgkX of Pseudoalteromonas κ-carrageenase; however, the recombinant CgkX showed different biochemical characteristics. The recombinant enzyme was most active at pH 7.0 and 55°C in the presence of 300 mmol L-1 NaCl. It was stable in a broad range of acidity ranging from pH 3.0 to pH 10.0 when temperature was below 40°C. More than 80% of its activity was maintained after being incubated at pH 3.6-10.0 and 4°C for 24 h. CgkX retained more than 90% of activity after being incubated at 40°C for 1 h. EDTA and SDS (1 mmol L-1) did not inhibit its activity. CgkX hydrolyzed κ-carrageenan into disaccharide and tetrasaccharide as an endo-cleaver. All these characteristics demonstrated that CgkX is applicable to both κ-carrageenan oligosaccharide production and κ-carrageenase structure-function research.

  11. Twenty-four-hour esophageal impedance-pH monitoring in healthy preterm neonates: rate and characteristics of acid, weakly acidic, and weakly alkaline gastroesophageal reflux.

    PubMed

    López-Alonso, Manuel; Moya, Maria Jose; Cabo, Jose Antonio; Ribas, Juan; del Carmen Macías, Maria; Silny, Jiry; Sifrim, Daniel

    2006-08-01

    Gastroesophageal reflux is a physiologic process and is considered pathologic (gastroesophageal reflux disease) when it causes symptoms or results in complications. It is common in preterm infants and occurs in healthy neonates. Twenty-four-hour pH monitoring commonly is used in children for diagnosis of gastroesophageal reflux disease, and abnormal reflux is considered with detection of increased esophageal acid exposure. However, in neonates, relatively few gastroesophageal reflux episodes cause esophageal acidification to pH < 4. Premature infants receive frequent feeds, which can induce a weaker acid secretory response than that observed in older infants and adults. As a consequence, gastric pH may be > 4 for prolonged periods, and reflux of gastric contents might be less acidic or even alkaline. Esophageal impedance monitoring can detect weakly acidic and even alkaline gastroesophageal reflux. The role of weakly acidic reflux in the pathophysiology of gastroesophageal reflux disease in preterm infants is not clear. To date, studies that have used impedance-pH in neonates assessed the association between nonacid reflux and cardiorespiratory symptoms, but no impedance data from healthy preterm neonates have been available to determine whether those symptomatic neonates had an increased number of weakly acidic reflux episodes or increased reactivity to a physiologic number of reflux events. Our aim with this study was to provide impedance-pH values for acid, weakly acidic, and weakly alkaline reflux from healthy preterm neonates. Esophageal impedance was recorded for 24 hours in 21 asymptomatic preterm neonates by replacing the conventional feeding tube with a specially designed feeding tube that included 9 impedance electrodes (8 French). All neonates were asymptomatic, with spontaneous breathing. Reflux monitoring was performed after comprehensive explanation and on receipt of written parental consent. Esophageal and gastric pH were monitored using a separate parallel pediatric catheter (6 French). According to the corresponding pH change, impedance-detected reflux was classified as acid, weakly acidic, and weakly alkaline. For each infant, the total number of reflux events, the acid exposure and bolus exposure times at 2 cm above the respiratory inversion point, and average proximal extent of reflux were calculated. Twenty-six preterm neonates were recruited into this study. A preliminary analysis was performed, and tracings were classified according to their quality and the presence of technical artifacts (spontaneous pH and impedance drifts, esophageal probe migration, and dysfunction of 1 or more impedance channels). Five studies were excluded because of 1 or more technical artifacts; a total of 21 neonates represent the final cohort included. At birth, the infants had a median postmenstrual age of 32 weeks, and the measurements were performed at a median age of 12 days. The total recording time was 23.7 +/- 2 hours. Gastric pH was higher than 4 during 69.3 +/- 20.4% of the recording time. The median number of reflux events in 24 hours was 71, 25.4% (range: 0%-53.1%) of which were acid, 72.9% (range: 45.3%-98.0%) were weakly acidic, and 0% (range: 0%-8.1%) were weakly alkaline. Compared with fasting periods, feeding periods tended to be associated with a higher number of total reflux events per hour. The acidity of reflux, however, was significantly different: during fasting, the number of acid reflux episodes per hour was higher, whereas during feeding, the number of weakly acidic reflux episodes was increased. Most reflux events were only liquid, whereas gas was present either mixed with liquid or pure only in 7.7% of all reflux episodes detected. The proximal esophageal segments were reached in 90% of reflux episodes. Reflux-related acid exposure (pH drops associated with impedance-detected reflux) was 1.66% (range: 0%-6.43%), whereas total acid exposure (associated and not associated with reflux detected by impedance) was 5.59% (range: 0.04%-20.69%). There was no relationship between the number or acidity of reflux events and anthropometric parameters such as weight and gestational age. We present the first study using 24-hour impedance-pH recordings in asymptomatic premature neonates. Previous studies that used pH-metry suggested that neonatal cardiorespiratory symptoms could be related to acid gastroesophageal reflux. However, pH-metry could not detect accurately weakly acidic or nonacid reflux. Our healthy premature neonates had approximately 70 reflux events in 24 hours, 25% of which were acid, 73% were weakly acidic, and 2% were weakly alkaline. The number of reflux events per hour (2-3 per hour) was slightly lower than that described in premature neonates with cardiorespiratory events (4 per hour). We confirmed that weakly acidic reflux is more prevalent than acid reflux, particularly so during the feeding periods. In contrast, similar to healthy adults, weakly alkaline reflux was very rare. We confirmed findings from previous studies in which most reflux events were pure liquid during both fasting and during postprandial periods and gas reflux was very rare. As in neonates with cardiorespiratory symptoms, the majority of reflux events in asymptomatic preterms reached the proximal esophagus or pharynx, and there were no differences between acid and weakly acidic reflux. The lack of differences between asymptomatic and diseased infants contravenes the hypothesis for macro- or microaspiration but does not exclude hypersensitivity to reflux as a cause for respiratory symptoms. The acid exposure that was related to reflux events and detected by impedance was significantly lower than the total acid exposure during 24 hours. Increased acid exposure could be attributable to pH-only reflux events or, less frequently, to slow drifts of pH from baselines at approximately 5 to values < 4. These changes were not accompanied by a typical impedance pattern of reflux but by slow drifts in impedance in 1 or 2 channels. Our findings confirm the need for the use of impedance together with pH-metry for diagnosis of all gastroesophageal reflux events. The relationship between gastroesophageal reflux and cardiorespiratory events in neonates and older infants has been studied extensively. The current evidence for such a relationship is controversial. This study provides values of impedance-pH monitoring for acid, weakly acidic, and weakly alkaline reflux from healthy preterm neonates that can be used for comparison when evaluating gastroesophageal reflux in preterm infants with a cardiorespiratory disease.

  12. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH.

    PubMed

    Algiert-Zielińska, Barbara; Batory, Mirella; Skubalski, Janusz; Rotsztejn, Helena

    2017-11-01

    The epidermis is an epidermal barrier which accumulates lipid substances and participates in skin moisturizing. An evaluation of the epidermal barrier efficiency can be made, among others, by the measurement of the following values: the lipid coat, the transepidermal water loss (TEWL) index, and pH. The study involved 50 Caucasian, healthy women aged 19-35 years (mean 20.56). Measurements were made using Courage & Khazaka Multi Probe Adapter MPA 580: Tewameter TM 300, pH-Meter PH 905, Sebumeter SM 815. The areas of measurements included forehead, nose, left cheek, right cheek, chin, and thigh. In the T-zone, the lipid coat was in the range between 0 and 270 μg/cm 2 (mean 128 μg/cm 2 ), TEWL between 1 and 55 g/m 2 /h (mean 11.1 g/m 2 /h), and pH 4.0-5.6 (mean 5.39). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL greater than 30 g/m 2 /h and less acidic pH of 5.6-9.0. In the U-zone the range of lipid coat was up to 200 μg/cm 2 (mean 65.2 μg/cm 2 ), the skin pH remained 4.0-5.6 (mean 5.47), and TEWL was in the range between 1 and 20 g/m 2 /h (mean 8.7 g/m 2 /h). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL between 1 and 20 g/m 2 /h and less acidic pH of 5.6-9.0. High values of the lipid coat between 180 and 200 μg/cm 2 were connected with TEWL of 1-15 g/m 2 /h. On the skin of the thigh, we observed a very thin lipid coat - 35 μg/cm 2 (mean 5.6 μg/cm 2 ), pH (mean 5.37), and TEWL (mean 8.5 g/m 2 /h) were considered by us to be within regular limits. In the T-zone, a thinner lipid coat resulted in relatively high TEWL and pH levels changing toward alkaline. In the U-zone, thinner lipid coat was accompanied by lower TEWL and pH changing toward alkaline. We also observed that lower values of lipid coat up to 100 μg/cm 2 were associated with higher pH values ranging toward the basic character pH 5.6-9.0). © 2017 The International Society of Dermatology.

  13. Substrate and pH-Dependent Kinetic Profile of 3-Mercaptopropionate Dioxygenase from Pseudomonas aeruginosa.

    PubMed

    Fellner, Matthias; Aloi, Sekotilani; Tchesnokov, Egor P; Wilbanks, Sigurd M; Jameson, Guy N L

    2016-03-08

    Thiol dioxygenases catalyze the synthesis of sulfinic acids in a range of organisms from bacteria to mammals. A thiol dioxygenase from the bacterium Pseudomonas aeruginosa oxidizes both 3-mercaptopropionic acid and cysteine, with a ∼70 fold preference for 3-mercaptopropionic acid over all pHs. This substrate reactivity is widened compared to other thiol dioxygenases and was exploited in this investigation of the residues important for activity. A simple model incorporating two protonation events was used to fit profiles of the Michaelis-Menten parameters determined at different pH values for both substrates. The pKs determined using plots of k(cat)/Km differ at low pH, but not in a way easily attributable to protonation of the substrate alone and share a common value at higher pH. Plots of k(cat) versus pH are also quite different at low pH showing the monoprotonated ES complexes with 3-mercaptopropionic acid and cysteine have different pKs. At higher pH, k(cat) decreases sigmoidally with a similar pK regardless of substrate. Loss of reactivity at high pH is attributed to deprotonation of tyrosine 159 and its influence on dioxygen binding. A mechanism is proposed by which deprotonation of tyrosine 159 both blocks oxygen binding and concomitantly promotes cystine formation. Finally, the role of tyrosine 159 was further probed by production of a G95C variant that is able to form a cysteine-tyrosine crosslink homologous to that found in mammalian cysteine dioxygenases. Activity of this variant is severely impaired. Crystallography shows that when un-crosslinked, the cysteine thiol excludes tyrosine 159 from its native position, while kinetic analysis shows that the thioether bond impairs reactivity of the crosslinked form.

  14. Effect of pH on the stability of hemochromatosis factor E: a combined spectroscopic and molecular dynamics simulation-based study.

    PubMed

    Khan, Parvez; Shandilya, Ashutosh; Jayaram, B; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-05-01

    Hereditary hemochromatosis is an iron overburden condition, which is mainly governed by hereditary hemochromatosis factor E (HFE), a member of major histocompatibility complex class I. To understand the effect of pH on the structure and stability of HFE, we have cloned, expressed, and purified the HFE in the bacterial system and performed circular dichroism, fluorescence, and absorbance measurements at a wide pH range (pH 3.0-11.0). We found that HFE remains stable in the pH range 7.5-11.0 and gets completely acid denatured at low pH values. In this work, we also analyzed the contribution of salt bridges to the stability of HFE. We further performed molecular dynamics simulations for 80 ns at different pH values. An excellent agreement was observed between results from biophysical and MD simulation studies. At lower pH, HFE undergoes denaturation and may be driven toward a degradation pathway, such as ubiquitination. Hence, HFE is not available to bind again with transferrin receptor1 to negatively regulate iron homeostasis. Further we postulated that, might be low pH of cancerous cells helps them to meet their high iron requirement.

  15. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Sakai, Kenji; Sonomoto, Kenji

    2015-01-01

    Production of optically pure lactic acid from lignocellulosic material for commercial purposes is hampered by several difficulties, including heterofermentation of pentose sugars and high energy consumption by mesophilic lactic acid bacteria. Here, we report a novel lactic acid bacterium, strain QU 50, that has the potential to produce optically pure l-lactic acid (≥99.2%) in a homofermentative manner from xylose under thermophilic conditions. Strain QU 50 was isolated from Egyptian fertile soil and identified as Enterococcus faecium QU 50 by analyzing its sugar fermentation pattern and 16S rRNA gene sequence. Enterococcus faecium QU 50 fermented xylose efficiently to produce lactic acid over wide pH (6.0-10.0) and temperature ranges (30-52°C), with a pH of 6.5 and temperature of 50°C being optimal. To our knowledge, this is the first report of homofermentative lactic acid production from xylose by a thermophilic lactic acid bacterium. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Methodology of analysis of very weak acids by isotachophoresis with electrospray-ionization mass-spectrometric detection: Anionic electrolyte systems for the medium-alkaline pH range.

    PubMed

    Malá, Zdena; Gebauer, Petr

    2018-01-15

    This work describes for the first time a functional electrolyte system setup for anionic isotachophoresis (ITP) with electrospray-ionization mass-spectrometric (ESI-MS) detection in the neutral to medium-alkaline pH range. So far no application was published on the analysis of very weak acids by anionic ITP-MS although there is a broad spectrum of potential analytes with pK a values in the range 5-10, where application of this technique promises interesting gains in both sensitivity and specificity. The problem so far was the lack of anionic ESI-compatible ITP systems in the mentioned pH range as all typical volatile anionic system components are fully ionized at neutral and alkaline pH and thus too fast to suit as terminators. We propose an original solution of the problem based on the combination of two ITP methods: (i) use of the hydroxyl ion as a natural and ESI-compatible terminator, and (ii) use of configurations based on moving-boundary ITP. The former method ensures effective stacking of analytes by an alkaline terminator of sufficiently low mobility and the latter offers increased flexibility for tuning of the separation window and selectivity according to actual needs. A theoretical description of the proposed model is presented and applied to the design of very simple functional electrolyte configurations. The properties of example systems are demonstrated by both computer simulation and experiments with a group of model analytes. Potential effects of carbon dioxide present in the solutions are demonstrated for particular systems. Experimental results confirm that the proposed methodology is well capable of performing sensitive and selective ITP-MS analyses of very weak acidic analytes (e.g. sulfonamides or chlorophenols). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid.

    PubMed

    Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck

    2010-07-15

    Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable. 2010 Elsevier B.V. All rights reserved.

  18. Biochemical characterisation of the esterase activities of wine lactic acid bacteria.

    PubMed

    Matthews, Angela; Grbin, Paul R; Jiranek, Vladimir

    2007-11-01

    Esters are an important group of volatile compounds that can contribute to wine flavour. Wine lactic acid bacteria (LAB) have been shown to produce esterases capable of hydrolysing ester substrates. This study aims to characterise the esterase activities of nine LAB strains under important wine conditions, namely, acidic conditions, low temperature (to 10 degrees C) and in the presence of ethanol (2-18% v/v). Esterase substrate specificity was also examined using seven different ester substrates. The bacteria were generally found to have a broad pH activity range, with the majority of strains showing maximum activity close to pH 6.0. Exceptions included an Oenococcus oeni strain that retained most activity even down to a pH of 4.0. Most strains exhibited highest activity across the range 30-40 degrees C. Increasing ethanol concentration stimulated activity in some of the strains. In particular, O. oeni showed an increase in activity up to a maximum ethanol concentration of around 16%. Generally, strains were found to have greater activity towards short-chained esters (C2-C8) compared to long-chained esters (C10-C18). Even though the optimal physicochemical conditions for enzyme activity differed from those found in wine, these findings are of potential importance to oenology because significant activities remained under wine-like conditions.

  19. Effect of pH shifts on IgE-binding capacity and conformational structure of tropomyosin from short-neck clam (Ruditapes philippinarum).

    PubMed

    Lin, Haixin; Li, Zhenxing; Lin, Hong; Song, Yongna; Lv, Liangtao; Hao, Zina

    2015-12-01

    The aim of the present study was to assess pH-induced changes in conformational structures and potential allergenicity of tropomyosin from short-neck clams. As defined with circular dichroism (CD), an unfolded structure was found at pH values ranging from 2.0 to 5.0, followed by the loss of secondary structure at pH of 1.0. Correspondingly, surface hydrophobicity was reduced by 97.7% when pH was reduced from 7.0 to 1.0. Further indirect ELISA and dot-blot results of pH shifted tropomyosin showed that potential allergenicity correlated well with structural changes, as well as with SGF digestibility. Allergenicity decreased significantly with unfolding of the protein and was stable when surface hydrophobicity recovered back to neutral conditions. These results showed that conformational changes in tropomyosin induced by pH shifting significantly influenced the allergenicity of tropomyosin, and that the resulting changes occurred predominately in the acidic pH range. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A systematic study of the effect of low pH acid treatment on anti-drug antibodies specific for a domain antibody therapeutic: Impact on drug tolerance, assay sensitivity and post-validation method assessment of ADA in clinical serum samples.

    PubMed

    Kavita, Uma; Duo, Jia; Crawford, Sean M; Liu, Rong; Valcin, Joan; Gleason, Carol; Dong, Huijin; Gadkari, Snaehal; Dodge, Robert W; Pillutla, Renuka C; DeSilva, Binodh S

    2017-09-01

    We developed a homogeneous bridging anti-drug antibody (ADA) assay on an electro chemiluminescent immunoassay (ECLIA) platform to support the immunogenicity evaluation of a dimeric domain antibody (dAb) therapeutic in clinical studies. During method development we evaluated the impact of different types of acid at various pH levels on polyclonal and monoclonal ADA controls of differing affinities and on/off rates. The data shows for the first time that acids of different pH can have a differential effect on ADA of various affinities and this in turn impacts assay sensitivity and drug tolerance as defined by these surrogate controls. Acid treatment led to a reduction in signal of intermediate and low affinity ADA, but not high affinity or polyclonal ADA. We also found that acid pretreatment is a requisite for dissociation of drug bound high affinity ADA, but not for low affinity ADA-drug complexes. Although we were unable to identify an acid that would allow a 100% retrieval of ADA signal post-treatment, use of glycine pH3.0 enabled the detection of low, intermediate and high affinity antibodies (Abs) to various extents. Following optimization, the ADA assay method was validated for clinical sample analysis. Consistencies within various parameters of the clinical data such as dose dependent increases in ADA rates and titers were observed, indicating a reliable ADA method. Pre- and post-treatment ADA negative or positive clinical samples without detectable drug were reanalyzed in the absence of acid treatment or presence of added exogenous drug respectively to further assess the effectiveness of the final acid treatment procedure. The overall ADA results indicate that assay conditions developed and validated based on surrogate controls sufficed to provide a reliable clinical data set. The effect of low pH acid treatment on possible pre-existing ADA or soluble multimeric target in normal human serum was also evaluated, and preliminary data indicate that acid type and pH also affect drug-specific signal differentially in individual samples. The results presented here represent the most extensive analyses to date on acid treatment of a wide range of ADA affinities to explore sensitivity and drug tolerance issues. They have led to a refinement of our current best practices for ADA method development and provide a depth of data to interrogate low pH mediated immune complex dissociation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Evaluation of buffers toxicity in tobacco cells: Homopiperazine-1,4-bis (2-ethanesulfonic acid) is a suitable buffer for plant cells studies at low pH.

    PubMed

    Borgo, Lucélia

    2017-06-01

    Low pH is an important environmental stressor of plant root cells. Understanding the mechanisms of stress and tolerance to acidity is critical; however, there is no widely accepted pH buffer for studies of plant cells at low pH. Such a buffer might also benefit studies of Al toxicity, in which buffering at low pH is also important. The challenge is to find a buffer with minimal cellular effects. We examined the cytotoxicity and possible metabolic disturbances of four buffers that have adequate pK a values and potential use for studies in the pH range of 4.0-5.0. These were homopipes (homopiperazine-1,4-bis (2-ethanesulfonic acid); pK a1 4.4), 3,3-dimethylglutaric acid (pK a1 3.73), β-alanine (pK a1 3.70) and potassium biphthalate (pK a1 2.95; pK a2 5.41). First, tobacco BY-2 cells were grown in a rich medium containing 10 mM of each buffer or MES (2-(N-morpholino) ethanesulfonic acid) as a control, with the pH initially adjusted to 5.7. β-alanine was clearly toxic and dimethylgluturate and biphthalate were found to be cytostatic, in which no culture growth occurred but cell viability was either unaffected or decreased only after 5 days. Only homopipes allowed normal culture growth and cell viability. Homopipes (10 mM) was then tested in cell cultures with an initial pH of 4.3 ± 0.17 in minimal medium to examine whether its undissociated species (H 2 A) displayed any cellular effects and no cytotoxic effects were observed. It is possible to conclude that among tested buffers, homopipes is the most suitable for studies at low pH, and may be especially useful for aluminum toxicity experiments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Stabilization of T4 bacteriophage at acidic and basic pH by adsorption on paper.

    PubMed

    Meyer, Abigail; Greene, Melissa; Kimmelshue, Chad; Cademartiri, Rebecca

    2017-12-01

    Bacteriophages find applications in agriculture, medicine, and food safety. Many of these applications can expose bacteriophages to stresses that inactivate them including acidic and basic pH. Bacteriophages can be stabilized against these stresses by materials including paper, a common material in packaging and consumer products. Combining paper and bacteriophages creates antibacterial materials, which can reduce the use of antibiotics. Here we show that adsorption on paper protects T4, T5, and T7 bacteriophage from acidic and basic pH. We added bacteriophages to filter paper functionalized with carboxylic acid (carboxyl methyl cellulose) or amine (chitosan) groups, and exposed them to pH from 5.6 to 14. We determined the number of infective bacteriophages after exposure directly on the paper. All papers extended the lifetime of infective bacteriophage by at least a factor of four with some papers stabilizing bacteriophages for up to one week. The degree of stabilization depended on five main factors (i) the family of the bacteriophage, (ii) the charge of the paper and bacteriophages, (iii) the location of the bacteriophages within the paper, (iv) the ability of the paper to prevent bacteriophage-bacteriophage aggregation, and (v) the sensitivity of the bacteriophage proteins to the tested pH. Even when adsorbed on paper the bacteriophages were able to remove E. coli in milk. Choosing the right paper modification or material will protect bacteriophages adsorbed on that material against detrimental pH and other environmental challenges increasing the range of applications of bacteriophages on materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails

    NASA Astrophysics Data System (ADS)

    Spyra, Aneta

    2017-10-01

    In recent years, the number of areas remaining under the influence of acidity has increased. At all levels of ecosystems, biodiversity decreases with acidification, due to the elimination of species that are most sensitive to low pH. Forest ponds belong to a specific group that varied in location, a huge amount of leaf litter, and isolation from other aquatic environments. They are crucial in the industrial landscape with well-developed industry and human activity. The aim was to investigate the relative importance of water chemistry in explaining snail assemblage compositions and species richness in forest ponds of contrasting pH. Patterns in gastropod communities were determined from an analysis in 26 forest ponds with multivariate gradient analysis. Ponds ranged in a base mean pH from 3.0 to 9.0. pH has been found to be an important factor influencing gastropod fauna. Neutral ponds support diverse communities, typical of small water bodies. In two acidic pond types, snail fauna was different. Among the species characteristic for acidic ponds (pH < 6) were Anisus spirorbis and Aplexa hypnorum. The greatest distinct characterised alkaline ponds with the numerous appearance of alien Physa acuta. The most diverse gastropod fauna was found in neutral ponds, whereas the lowest degree of diversity was found in ponds with the lowest pH. Current knowledge of pH-associated changes in aquatic ecosystems is still incomplete because anthropogenic acidification is a recent phenomenon. It is extremely important in forest habitats, since they react more intensively to climatic factors and are often used in landscape management and planning.

  4. Comparison of four advanced oxidation processes for the removal of naphthenic acids from model oil sands process water.

    PubMed

    Liang, Xiaoming; Zhu, Xingdong; Butler, Elizabeth C

    2011-06-15

    Four advanced oxidation processes (UV/TiO(2), UV/IO(4)(-), UV/S(2)O(8)(2-), and UV/H(2)O(2)) were tested for their ability to mineralize naphthenic acids to inorganic carbon in a model oil sands process water containing high dissolved and suspended solids at pH values ranging from 8 to 12. A medium pressure mercury (Hg) lamp was used, and a Quartz immersion well surrounded the lamp. The treatment goal of 5mg/L naphthenic acids (3.4 mg/L total organic carbon (TOC)) was achieved under four conditions: UV/S(2)O(8)(2-) (20mM) at pH 8 and 10, and UV/H(2)O(2) (50mM) at pH 8 (all with the Quartz immersion well). Values of electrical energy required to meet the treatment goal were about equal for UV/S(2)O(8)(2-) (20mM) and UV/H(2)O(2) (50mM) at pH 8, but three to four times larger for treatment by UV/S(2)O(8)(2-) (20mM) at pH 10. The treatment goal was also achieved using UV/S(2)O(8)(2-) (20mM) at pH 10 when using a Vycor filter that transmits light primarily in the mid and near UV, suggesting that that treatment of naphthenic acids by UV/S(2)O(8)(2-) using low pressure Hg lamps may be feasible. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qasim, Mohammad A., E-mail: qasimm@ipfw.edu; Song, Jikui; Markley, John L.

    Research highlights: {yields} Large pK shifts in ionizable groups when buried in the protein interior. {yields} Substrate dependent shifts in pH optimum for serine proteases. {yields} Lys side chain is a stronger acid in serine protease S{sub 1} pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, andmore » {approx}10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S{sub 1} pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.« less

  6. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers.

    PubMed

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A; Widhalm, Joshua R; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M; Cooper, Bruce R; D'Auria, John C; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-05-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway.

  7. Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers[W

    PubMed Central

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A.; Widhalm, Joshua R.; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M.; Cooper, Bruce R.; D’Auria, John C.; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-01-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway. PMID:22649270

  8. Intracellular pH Recovery Rates of Hemocytes from Estuarine and Open Ocean Bivalve Species Following In vitro Acid Challenge

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G.

    2013-12-01

    Decreasing pH in estuarine systems is a growing concern for researchers studying mollusk species. Debates continue on whether estuarine bivalve species are more or less vulnerable to ocean acidification than marine species because estuaries can present multiple environmental stressors. The aim of this study is to understand the homeostatic mechanisms of bivalve hemocytes following exposure to extracellular acid treatment. Previous measurements using fluorescent SNARF probes and flow-cytometry have determined the intracellular pH of hemocytes from several bivalve species (eastern oyster, bay scallop, northern quahog, soft-shell clam, and blue mussel) to range between 7.0-7.4. In the present study of four bivalve species, recovery rate profiles were determined for intracellular hemocyte pH following addition of acid to hemolymph in vitro. These profiles indicate that soft-shell clams and bay scallops maintained homeostasis with very little change in intracellular pH. In contrast, an initial drop in intracellular pH in northern quahogs was followed by a steady recovery of intracellular pH. Contrasting results between species appear to be unrelated to mineral shell composition (aragonite vs. calcite) or habitat location (infaunal vs. epifaunal). The next phase of this study will be to determine if offshore species (surfclams and sea scallops) will have similar responses. Results from these studies will provide a better understanding of the physiological responses of estuarine and marine species exposed to acidified environments.

  9. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  10. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing.

    PubMed

    Yang, Tong; Ma, Jun; Zhen, Shu Jun; Huang, Cheng Zhi

    2016-06-15

    Surface-enhanced Raman scattering (SERS) has shown high promise in analysis and bioanalysis, wherein noble metal nanoparticles (NMNPs) such as silver nanoparticles were employed as substrates because of their strong localized surface plasmon resonance (LSPR) properties. However, SERS-based pH sensing was restricted because of the aggregation of NMNPs in acidic medium or biosamples with high ionic strength. Herein, by using the electrostatic interaction as a driving force, AgNPs are assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofibers, which are then applied as highly sensitive and reproducible SERS substrate with an enhancement factor (EF) of 10(7)-10(8). When p-aminothiophenol (p-ATP) is used as an indicator with its b2 mode, a good and wide linear response to pH ranging from 2.56 to 11.20 could be available, and the as-prepared nanocomposite fibers then could be fabricated as excellent pH sensors in complicated biological samples such as urine, considering that the pH of urine could reflect the acid-base status of a person. This work not only emerges a cost-effective, direct, and convenient approach to homogeneously decorate AgNPs on the surface of polymer nanofibers but also supplies a route for preparing other noble metal nanofibrous sensing membranes.

  11. Does the Exposure of Urine Samples to Air Affect Diagnostic Tests for Urine Acidification?

    PubMed Central

    Yi, Joo-Hark; Shin, Hyun-Jong; Kim, Sun-Moon; Han, Sang-Woong; Oh, Man-Seok

    2012-01-01

    Summary Background and objectives For accurate measurement of pH, urine collection under oil to limit the escape of CO2 on air exposure is recommended. This study aims to test the hypothesis that urine collection under oil is not necessary in acidic urine in which bicarbonate and CO2 are minor buffers, because loss of CO2 would have little effect on its pH. Design, setting, participants, & measurements One hundred consecutive random urine samples were collected under oil and analyzed for pH, pCO2, and HCO3− immediately and after 5 minutes of vigorous shaking in uncovered flasks to allow CO2 escape. Results The pH values in 97 unshaken samples ranged from 5.03 to 6.83. With shaking, urine pCO2 decreased by 76%, whereas urine HCO3− decreased by 60%. Meanwhile, urine baseline median pH (interquartile range) of 5.84 (5.44–6.25) increased to 5.93 (5.50–6.54) after shaking (ΔpH=0.12 [0.07–0.29], P<0.001). ΔpH with pH≤6.0 was significantly lower than the ΔpH with pH>6.0 (0.08 [0.05–0.12] versus 0.36 [0.23–0.51], P<0.001). Overall, the lower the baseline pH, the smaller the ΔpH. Conclusions The calculation of buffer reactions in a hypothetical acidic urine predicted a negligible effect on urine pH on loss of CO2 by air exposure, which was empirically proven by the experimental study. Therefore, exposure of urine to air does not substantially alter the results of diagnostic tests for urine acidification, and urine collection under oil is not necessary. PMID:22700881

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Many times the start up of granular activated carbon adsorption systems for the control of organic contaminants in wastewater cm exhibit unacceptable increases in the adscurber effluent pH. Experience shows that the duration of the pH increase ranges from several hours to several days, during which time several hundred bed volumes of water can be discharged with a pH in excess of 9. Laboratory studies have identified the cause of the pH rise as an interaction between the naturally occurring anions and protons ar the water and the carbon surface. The interaction can be described as an ion exchange typemore » of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. Capacities of the carbon for the anions range from 2 to 9 mg/g GAC, depending upon the water characteristics, the carbon type, the nature of the anion and its influent concentration. These studies have shown de the anion sorption and resulting pH increase is independent of the raw material used for die activated carbon production, e.g. bituminous or sub-bituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface rather than the water chemistry. The change to the carbon surface is accomplished through a controlled oxidation process. This process provides a more acidic carbon surface with a reduced affinity for the anions in the waste water. As a result, the pH excursions above 9 are eliminated and the initial effluent from the adsorption system can be discharged without further treatment.« less

  13. The antimicrobial effect of boric acid on Trichomonas vaginalis.

    PubMed

    Brittingham, Andrew; Wilson, Wayne A

    2014-12-01

    The treatment options for trichomoniasis are largely limited to nitroimidazole compounds (metronidazole and tinidazole). Few alternatives exist in cases of recalcitrant infections or in cases of nitroimidazole hypersensitivity. Recently, the intravaginal administration of boric acid has been advocated as an alternative treatment of trichomoniasis. However, no in vitro studies are available that directly assess the sensitivity of Trichomonas vaginalis to boric acid. We examined the sensitivity of common laboratory strains and recent clinical isolates of T. vaginalis to boric acid. The effect of increasing concentrations of boric acid on parasite growth and viability was determined, and a minimal lethal concentration was reported. The effect of pH on boric acid toxicity was assessed and compared with that of lactic and acetic acid. Boric acid is microbicidal to T. vaginalis, and its antitrichomonal activity is independent of environmental acidification. Unlike acetic acid and lactic acid, boric acid exposure results in growth suppression and lethality over a wide range of pH (5-7) and under conditions that are normally permissible for growth in vitro. The microbicidal effect of boric acid on T. vaginalis, coupled with its previous clinical use in treating vaginal candidiasis, supports the continued inclusion of boric acid in the therapeutic arsenal for treating trichomoniasis.

  14. Composition of precipitation in remote areas of the world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, J.N.; Likens, G.E.; Keene, W.C.

    1982-10-20

    The Global Precipitation Chemistry Project collects precipitation by event to determine composition and processes controlling it in five remote areas. Compositions (excluding seasalt) at St. Georges, Bermuda, were primarily controlled by anthropogenic processes; compositions and acidities at San Carlos, Venezuela, Katherine, Australia, Poker, Flat, Alaska, and Amsterdam Island were controlled by unknown mixtures of natural or anthropogenic processes. Precipitation was acidic; average volume-weighted pH values were 4.8 for Bermuda; 5.0, Alaska; 4.9, Amsterdam Island; 4.8, Australia; 4.8, Venezuela. Acidities at Bermuda and Alaska were from long-range transport of sulfate aerosol; at Venezuela, Australia, and Amsterdam Island, from mixtures of weakmore » organic and strong mineral acids, primarily H/sub 2/SO/sub 4/. Relative proportions of weak to strong acids were largest at Venezuela and lowest at Amsterdam Island. Weak and strong acids were from mixtures of natural and anthropogenic processes. Once contributions from human activities were removed, the lower limit of natural contributions was probably > or =pH 5.« less

  15. Two types of phytases (histidine acid phytase and β-propeller phytase) in Serratia sp. TN49 from the gut of Batocera horsfieldi (coleoptera) larvae.

    PubMed

    Zhang, Rui; Yang, Peilong; Huang, Huoqing; Shi, Pengjun; Yuan, Tiezheng; Yao, Bin

    2011-11-01

    Microbial phytases play a major role in the mineralization of organic phosphorous, especially in symbiotic plants and animals. In this study, we identified two types of phytases in Serratia sp. TN49 that was harbored in the gut of Batocera horsfieldi (Coleoptera) larvae. The two phytases, an acidic histidine acid phosphatase (PhyH49) and an alkaline β-propeller phytase (PhyB49), shared low identities with known phytases (61% at most). PhyH49 and PhyB49 produced in Escherichia coli exhibited maximal activities at pH 5.0 (60°C) and pH 7.5-8.0 (45°C), respectively, and are complementary in phytate degradation over the pH range 2.0-9.0. Serratia sp. TN49 harboring both PhyH49 and PhyB49 might make it more adaptive to environment change, corresponding to the evolution trend of microorganism.

  16. Characterisation of source-separated household waste intended for composting

    PubMed Central

    Sundberg, Cecilia; Franke-Whittle, Ingrid H.; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-01-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg−1. The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. PMID:21075618

  17. Characterisation of source-separated household waste intended for composting.

    PubMed

    Sundberg, Cecilia; Franke-Whittle, Ingrid H; Kauppi, Sari; Yu, Dan; Romantschuk, Martin; Insam, Heribert; Jönsson, Håkan

    2011-02-01

    Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg(-1). The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Bedrock location, groundwater and acid neutralization in the Lakes of the Clouds watershed, Mount Washington, New Hampshire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, S.C.

    1993-03-01

    This study undertakes the goal of mapping bedrock lithology combined with analyzing low temperature bedrock-water interactions to determine possible ion contributions which alter the acidity of water. Originally mapped by Marland Billings at a much larger scale, this study concentrates on the bedrock geology in a less than a one kilometer square area located between Mt. Monroe and Mt. Washington in the Presidential range of New Hampshire. Ground magnetometer transects help determine and constrain the geology of the surface and subsurface bedrock. Optical mineralogy on thin sections from each of the lithologies will determine mineral assemblages. Locally present formations includemore » the Devonian Littleton, and the Silurian Smalls Falls, and Madrid. These are intruded by the Bickford Granite (Devonian) and Mesozoic( ) dikes. Precipitation in the Lake of the Clouds watershed is acidic. Rainwater from this area has a pH range of 4.0 to 4.7. In comparison, groundwater samples ranges from pH 4.5 to 5.5. This rise in pH may be due to a neutralization reaction during the water's residence in the bedrock. In the laboratory, atomic absorption/emission analysis, for the elements calcium, magnesium, potassium and sodium have identified certain neutralizing cations present in groundwater. Continued atomic absorption/emission analysis of natural acid precipitation filtered through crushed rock samples isolates individual cation contributions from each lithology. SEM/EDS analysis of thin sections from the local bedrock lithologies has identified high concentrations of neutralizing cations available in the Madrid formation. Fast X-ray maps indicate that tremolite and diopside within the Madrid formation contain high concentration of calcium, which has been observed in the natural groundwater system as a neutralizing agent.« less

  19. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schneider, R.A.

    1961-06-20

    Cesium may be precipitated from an aqueous solution whose acidity ranges between a pH of 1.5 and a molarity of 5 on cobaltous, zinc, cadmium, nickel, or ferrous cobalticyanide. This precipitation brings about a separation from most fission products. Ruthenium which coprecipitates to a great degree can be removed by dissolving in sulfuric acid and boiling the solution in the presence of periodic acid for volatilization; other coprecipitated fission products can then be precipitated from the sulfuric acid solution with a ferric hydroxide carrier.

  20. The reaction of selenium (IV) with ascorbic acid: its relevance in aqueous and soil systems.

    PubMed

    Pettine, Maurizio; Gennari, Francesca; Campanella, Luigi

    2013-01-01

    Abiotic processes able to reduce oxidized Se species may have a strong influence on the environmental behavior of selenium since Se toxicity, bioavailability and mobility follow the order Se(-II)0.3), while does not affect significantly the reduction of Se(IV) by H(2)A at low ratios (<0.1). Fe(III) also catalyzes the oxidation of H(2)A but in this case the possible diminution of the reduction rates of Se(IV) by H(2)A are masked by additional processes of adsorption on and coprecipitation by ferric oxyhydroxides, which lower the concentrations of Se(IV). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly(o-phenylenediamine-co-o-aminophenol).

    PubMed

    Kong, Yong; Shan, Xueling; Ma, Jianfeng; Chen, Meilan; Chen, Zhidong

    2014-01-27

    A molecularly imprinted copolymer, poly(o-phenylenediamine-co-o-aminophenol) (PoPDoAP), was prepared as a new ascorbic acid (AA) sensor. The copolymer was synthesized by incorporation of AA as template molecules during the electrochemical copolymerization of o-phenylenediamine and o-aminophenol, and complementary sites were formed after the copolymer was electrochemically reduced in ammonium aqueous solution. The molecularly imprinted copolymer sensor exhibited a high sensitivity and selectivity toward AA. Differential pulse voltammograms (DPVs) showed a linear concentration range of AA from 0.1 to 10 mM, and the detection limit was calculated to be 36.4 μM. Compared to conventional polyaniline-based AA sensors, the analytical performance of the imprinted copolymer sensor was improved due to the broadened usable pH range of PoPDoAP (from pH 1.0 to pH 8.0). The sensor also exhibited a good reproducibility and stability. And it has been successfully applied in the determination of AA in real samples, including vitamin C tablet and orange juices, with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Acidity and Alkalinity in mine drainage: Practical considerations

    USGS Publications Warehouse

    Cravotta, III, Charles A.; Kirby, Carl S.

    2004-01-01

    In this paper, we emphasize that the Standard Method hot peroxide treatment procedure for acidity determination (hot acidity) directly measures net acidity or net alkalinity, but that more than one water-quality measure can be useful as a measure of the severity of acid mine drainage. We demonstrate that the hot acidity is related to the pH, alkalinity, and dissolved concentrations of Fe, Mn, and Al in fresh mine drainage. We show that the hot acidity accurately indicates the potential for pH to decrease to acidic values after complete oxidation of Fe and Mn, and it indicates the excess alkalinity or that required for neutralization of the sample. We show that the hot acidity method gives consistent, interpretable results on fresh or aged samples. Regional data for mine-drainage quality in Pennsylvania indicated the pH of fresh samples was predominantly acidic (pH 2.5 to 4) or near neutral (pH 6 to 7); approximately 25 percent of the samples had intermediate pH values. This bimodal frequency distribution of pH was distinctive for fully oxidized samples; oxidized samples had acidic or near-neutral pH, only. Samples that had nearneutral pH after oxidation had negative hot acidity; samples that had acidic pH after oxidation had positive hot acidity. Samples with comparable pH values had variable hot acidities owing to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. The hot acidity was comparable to net acidity computed on the basis of initial pH and concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity computed from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was comparable to that computed on the basis of aqueous species and FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the hot acidities were comparable for fresh and aged samples. Thus, meaningful “net” acidity can be determined from a measured hot acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. Together, these water-quality data can be useful for evaluating the potential for toxicity, corrosion, or encrustation and can be helpful for determining the appropriate remediation. By demonstrating the measurements on fresh and aged samples, we hope to encourage (1) consistent use of the hot peroxide treatment procedure for acidity determination and (2) consistent reporting of negative acidity values.

  3. Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size.

    PubMed

    Laaksonen, Timo; Ahonen, Päivi; Johans, Christoffer; Kontturi, Kyösti

    2006-10-13

    The solubility of charged nanoparticles is critically dependent on pH. However, the concentration range available with bases such as NaOH is quite narrow, since the particles precipitate due to compression of the electric double layer when the ionic strength is increased. The stability of mercaptoundecanoic acid-capped Au nanoparticles is studied at a set pH using the hydroxide as base and different cations of various sizes. The counterions used are sodium (Na(+)), tetramethylammonium (TMA(+)), tetraethylammonium (TEA(+)), and tetrabutylammonium (TBA(+)). The particles precipitate in the 70-90 mM range with Na(+) as the counterion, but with quaternary ammonium hydroxides the particles are stable even in concentrations exceeding 1 M. The change in solubility is linked to a strongly adsorbed layer on the surface of the ligand shell of the nanoparticles. The increased concentration range obtained with TEAOH is further used to facilitate thiol exchange which occurs at a greater extent than would be achieved in NaOH solution.

  4. The leaching characteristics of selenium from coal fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Wang, J.; Burken, J.G.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results formore » different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.« less

  5. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    PubMed

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and <1 M -1 s -1 , respectively. The effect of buffer type and concentration was investigated with acetate, phosphate and borate. All tested buffers promote the HOI reactions with phenols. The percentage of iodine incorporation for various (hydroxyl)phenolic compounds and two NOM extracts ranges from 5% to 98%, indicating that electrophilic aromatic substitution and/or electron transfer can occur. The extent of these reactions depends on the number and relative position of the hydroxyl moieties on the phenolic compounds. Iodoform formation rates increase with increasing pH and iodoform yields increase from 9% to 67% for pH 6.0-10.0 for the HOI/3-OPA reactions. In the permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH < 8.0, iodoform formation is elevated compared to the HOI/3-OPA system in absence of permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Prescription Proportion of Pomegranate Extract Gallic Acid Gel by Orthogonal Design

    NASA Astrophysics Data System (ADS)

    Fan, Gaofu; Liu, Xiushu; Tang, Jie; Gong, Jumei; Fu, Entao; Cai, Yuhua; Xu, Zhenguo

    2018-05-01

    The aim of the present work was to optimize the formulation of pomegranate extract gallic acid gel by orthogonal design. Using orthogonal design, propylene glycol, carbomer-940 and gel pH level as influencing factors, the evaluation key index was external apearance malleability, uniformity, and eccentric for gel, and the optimum formula was selected. The present findings suggest that 10% propylene glycol, 1.5% Carbopol-940, and gel pH in the range of 4.5∼5.5, and the indexes of the optimal. The inclusion complexes showed that after the orthogonal design, the preparation process was simple, stable and controllable quality, with production feasibility.

  7. Denitrifying sulfur conversion-associated EBPR: The effect of pH on anaerobic metabolism and performance.

    PubMed

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Chen, Guanghao

    2017-10-15

    The performance of the denitrifying sulfur conversion-associated enhanced biological phosphorus removal (DS-EBPR) process tends to be unstable and requires further study and development. This in turn requires extensive study of the anaerobic metabolism in terms of its stoichiometry and kinetics. This study evaluates the corresponding responses of DS-EBPR to pH, as it significantly influences both stoichiometry and biochemical kinetics. The impacts of five representative pH values ranging between 6.5 and 8.5 on the anaerobic metabolism were investigated, followed by identification of the optimal pH for performance optimization. A mature DS-EBPR sludge was used in the study, enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB). Through a series of batch tests, the optimal pH range was determined as 7.0-7.5. In this pH range, the anaerobic stoichiometry of phosphorus released/volatile fatty acid (VFA) uptake ratio, sulfate reduction, and internal polymer production (including poly-β-hydroxyalkanoates and polysulfide and/or elemental sulfur) all increased along with the anaerobic kinetics of the VFA uptake ratio. Consequently, phosphorus removal was maximized at this pH range (≥95% vs. 84-93% at other pH values), as was sulfur conversion (16 mg S/L vs. 10-13 mg S/L). This pH range therefore favors the activity and synergy of the key functional bacteria (i.e. SRB and SOB). Anaerobic maintenance tests showed these bacteria required 38-61% less energy for maintenance than that reported for GAOs regardless of pH changes, improving their ability to cope with anaerobic starvation. Adversely, both bacteria showed much lower VFA uptake rates than that of GAOs at all tested pH values (0.03-0.06 vs. 0.2-0.24 mol-C/C-mol biomass/h), possibly revealing the primary cause of frequent instability in the DS-EBPR process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Investigation of the acid-base and electromigration properties of 5-azacytosine derivatives using capillary electrophoresis and density functional theory calculations.

    PubMed

    Geffertová, Denisa; Ali, Syed Tahir; Šolínová, Veronika; Krečmerová, Marcela; Holý, Antonín; Havlas, Zdeněk; Kašička, Václav

    2017-01-06

    Capillary electrophoresis (CE) and quantum mechanical density functional theory (DFT) were applied to the investigation of the acid-base and electromigration properties of important compounds: newly synthesized derivatives of 5-azacytosine - analogs of efficient antiviral drug cidofovir. These compounds exhibit a strong antiviral activity and they are considered as potential new antiviral agents. For their characterization and application, it is necessary to know their acid-base properties, particularly the acidity constants (pK a ) of their ionogenic groups (the basic N 3 atom of the triazine ring and the acidic phosphonic acid group in the alkyl chain). First, the mixed acidity constants (pK a mix ) of these ionogenic groups and the ionic mobilities of these compounds were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities. Effective mobilities were measured by CE in a series of background electrolytes in a wide pH range (2.0-10.5), at constant ionic strength (25mM) and constant temperature (25°C). Subsequently, the pK a mix values were recalculated to thermodynamic pK a values using the Debye-Hückel theory. The thermodynamic pK a value of the NH + moiety at the N 3 atom of the triazine ring was found to be in the range 2.82-3.30, whereas the pK a of the hydrogenphosphonate group reached values from 7.19 to 7.47, depending on the structure of the analyzed compounds. These experimentally determined pK a values were in good agreement with those calculated by quantum mechanical DFT. In addition, DFT calculations revealed that from the four nitrogen atoms in the 5-azacytosine moiety, the N 3 atom of the triazine ring is preferentially protonated. Effective charges of analyzed compounds ranged from zero or close-to-zero values at pH 2 to -2 elementary charges at pH≥9. Ionic mobilities were in the range (-16.7 to -19.1)×10 -9 m 2 V -1 s -1 for univalent anions and in the interval (-26.9 to -30.3)×10 -9 m 2 V -1 s -1 for divalent anions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Seasonal variations and source identification of selected organic acids associated with PM10 in the coastal area of Southeastern China

    NASA Astrophysics Data System (ADS)

    Wu, Shui-Ping; Schwab, James; Liu, Bi-Lian; Li, Tsung-Chang; Yuan, Chung-Shin

    2015-03-01

    PM10 aerosols from the coastal area of Southeastern China were collected from April 2010 to March 2011 and were measured for C2-C10 dicarboxylic acids, phthalic acids (Ph) and five fatty acids (palmitic, stearic, oleic, linoleic and elaidic acids). For all sites and seasons, molecular distributions of diacids were always characterized by a predominance of oxalic acid (C2), with a relative abundance of 68-87%, followed by malonic acid (C3) and by either succinic acid (C4) or phthalic acid (Ph). This observed molecular composition was different from that in Chinese megacities where Ph was significantly higher than C3 and C4 diacids, which was likely due to the less intensive traffic emissions in the coastal area. Seasonal means of total diacids ranged between 394 and 547 ng m- 3 at the coastal urban sites and between 163 and 245 ng m- 3 at off-island sites. These levels were much lower than those reported in Chinese megacities (668-1568 ng m- 3) and slightly lower than those in Jeju Island, Korea (464-744 ng m- 3) but higher than those in marine and continental background locations. In all seasons, saturated fatty acids were significantly higher than unsaturated fatty acids due to their greater photochemical stabilities in the atmosphere. Most organic acids showed higher levels in spring and winter and lower levels in summer and fall, which was likely due to the influence of transport and meteorology. The diagnostic ratios of malonic acid to succinic acid (C3/C4), adipic acid to azelaic acid (C6/C9) and phthalic acid to azelaic acid (Ph/C9) were significantly higher in summer than in winter. These diagnostic ratios in the sampled ambient aerosols were completely different from those in primary emissions, suggesting the importance of photochemical production - especially in summer. The diurnal variations of diacids and fatty acid as well as the diagnostic ratios are associated with higher solar radiation and anthropogenic activities during the daytime. Principal component analysis results provide evidence that photochemical oxidation of unsaturated fatty acids and volatile organic compounds is the most important source of diacids. In this analysis, primary sources were found to be minor (traffic and food cooking) or non-existent (biomass burning and crustal dust). Components with high loadings of Ph and unsaturated fatty acids can be regarded as representative of primary traffic emissions.

  10. Characterization and application of lactic acid bacteria for tropical silage preparation.

    PubMed

    Pholsen, Suradej; Khota, Waroon; Pang, Huili; Higgs, David; Cai, Yimin

    2016-10-01

    Strains TH 14, TH 21 and TH 64 were isolated from tropical silages, namely corn stover, sugar cane top and rice straw, respectively, prepared in Thailand. These strains were selected by low pH growth range and high lactic acid-producing ability, similar to some commercial inoculants. Based on the analysis of 16S ribosomal RNA gene sequence and DNA-DNA relatedness, strain TH 14 was identified as Lactobacillus casei, and strains TH 21 and TH 64 were identified as L. plantarum. Strains TH 14, TH 21, TH 64 and two commercial inoculants, CH (L. plantarum) and SN (L. rhamnosus), were used as additives to fresh and wilted purple Guinea and sorghum silages prepared using a small-scale fermentation method. The number of epiphytic lactic acid bacteria (LAB) in the forages before ensilage was relatively low but the numbers of coliform and aerobic bacteria were higher. Sorghum silages at 30 days of fermentation were all well preserved with low pH (3.56) and high lactic acid production (72.86 g/kg dry matter). Purple Guinea silage inoculated with LAB exhibited reduced count levels of aerobic and coliform bacteria, lower pH, butyric acid and ammonia nitrogen and increased lactic acid concentration, compared with the control. Strain TH 14 more effectively improved lactic acid production compared with inoculants and other strains. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  11. Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody

    PubMed Central

    2015-01-01

    Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741

  12. The effect of a local source on the composition of precipitation in south-central Maine

    Treesearch

    Scott D. Boyce; Samuel S. Butcher

    1976-01-01

    Bulk precipitation samples were collected from ten sites in south-central Maine during the period 18 June to 30 September 1974. Data from the chemical analyses of the precipitation were used to determine regional deposition patterns of the ionic constituents. Acidic pH values ranging from 3.8 to 5.0 are characteristic of the region, but relatively alkaline pH values of...

  13. [Medical therapy of gastroesophageal reflux. Evaluation of the activity of clebopride by continuous intraluminal pH measurement].

    PubMed

    Alvisi, V; Onofrio, W; Intrieri, L; D'Ambrosi, A

    1987-10-15

    Seven female and three male outpatients (mean age 45, range 37-54), suffering from gastroesophageal reflux underwent therapy with clebopride, a new selective antidopaminergic agent. Before and after treatment (1 mg b.i.d. for ten days) 24 h-continuous monitoring of esophageal pH was done. Clebopride significantly lowered the number and the extension of gastroesophageal acid refluxes.

  14. In vivo imaging of the morphology and changes in pH along the gastrointestinal tract of Japanese medaka by photonic band-gap hydrogel microspheres.

    PubMed

    Du, Xuemin; Lei, Ngai-Yu; Hu, Peng; Lei, Zhang; Ong, Daniel Hock-Chun; Ge, Xuewu; Zhang, Zhicheng; Lam, Michael Hon-Wah

    2013-07-17

    Colloidal crystalline microspheres with photonic band-gap properties responsive to media pH have been developed for in vivo imaging purposes. These colloidal crystalline microspheres were constructed from monodispersed core-shell nano-size particles with poly(styrene-co-acrylic acid) (PS-co-PAA) cores and poly(acrylic acid-co-N-isopropylacrylamide) (PAA-co-PNIPAM) hydrogel shells cross-linked by N,N'-methylenebisacrylamide. A significant shift in the photonic band-gap properties of these colloidal crystalline microspheres was observed in the pH range of 4-5. This was caused by the discontinuous volume phase transition of the hydrogel coating, due to the protonation/deprotonation of its acrylic acid moieties, on the core-shell nano-sized particles within the microspheres. The in vivo imaging capability of these pH-responsive photonic microspheres was demonstrated on a test organism - Japanese medaka, Oryzia latipes - in which the morphology and change in pH along their gastrointestinal (GI) tracts were revealed under an ordinary optical microscope. This work illustrates the potential of stimuli-responsive photonic band-gap materials in tissue-/organ-level in vivo bio-imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Catalytic mechanism of cationic red GTL at wide pH using the Mo-Zn-Al-O nanocatalyst under room conditions.

    PubMed

    Xu, Yin; Li, Xiaoyi; Sun, Dezhi

    2014-09-01

    Catalytic mechanism of cationic red GTL at wide pH using the Mo-Zn-Al-O nanocatalyst under room conditions was investigated. The experimental results indicate that initial pH significantly affected the removal of cationic red GTL, the removal of COD, the pH value and residual oxygen in the reaction. In the range of pH value from 4 to 10, decolorization of cationic red GTL was almost above 90%. COD removal efficiency was enhanced with the decrease of pH in CWAO process and 79% of the COD was removed at pH 4.0, whereas only 57% COD removal was observed at pH 10.0. The terminal pH was in the range of 5.0-6.0 and the highest terminal concentrations of aqueous oxygen with 5.5 mg/L were observed at pH = 4.0. The radical inhibition experiments also carried out and the generation of *OH and 1O2 in catalytic wet air oxidation process were detected. It was found that the degradation of cationic red GTL occurs mainly via oxidation by 1O2 radical generated by Mo-Zn-Al-O nanocatalyst under acid conditions and *OH radical under alkaline conditions.

  16. Key role of pH in the photochemical conversion of NO2 to HONO on humic acid

    NASA Astrophysics Data System (ADS)

    Han, Chong; Yang, Wangjin; Wu, Qianqian; Yang, He; Xue, Xiangxin

    2016-10-01

    The heterogeneous photochemical reactions of NO2 with humic acid (HA) were performed using a flow tube reactor coupled to a NOx analyzer. The effects of the pH on the uptake coefficient (γ) of NO2 and HONO and NO yields were investigated in detail. With increasing the pH in the range of 2-12, γ was almost constant with an average value of (4.21 ± 0.46) × 10-6, whereas the HONO yield and NO yield linearly decreased from (81.07 ± 4.07)% and (10.35 ± 3.86)% to (13.87 ± 9.15)% and (1.51 ± 0.94)%, respectively. According to the characterization of HA compositions and possible reaction paths, it can be concluded that the pH may influence the transfer of protons and the equilibrium of HONO with NO2- by varying the contents of carboxyl and phenol groups in HA, which should primarily contribute to the change in the HONO yield with the pH.

  17. Parameters affecting the inhibition of Candida albicans GDH 2023 and GRI 2773 blastospore viability by purified synthetic salivary histidine-rich polypeptides.

    PubMed

    Santarpia, R P; Cho, M I; Pollock, J J

    1990-08-01

    Purified synthetic salivary histidine-rich polypeptides, HRPs 2, 3, 4, 5, and 6, were observed to inhibit Candida albicans blastospore viability at yeast cell concentrations ranging from 10(2) to greater than 10(6) colony forming units per ml. Among the HRPs, HRP-4 was the best inhibitor with significant killing activity noted at a peptide concentration of 0.5 microgram per ml. Antifungal potency under growth conditions was observed to be dependent upon pH. In contrast, killing did not vary throughout the pH range tested under non-growth conditions. Electron microscopy results demonstrated HRP damage at pH 5 which appeared to be initiated at the membrane. At pH 7.4, micrographs revealed clear evidence of intracellular destruction suggesting more extensive damage at neutral as compared to acidic pH. These results suggest that within the changing realm of the oral cavity, the HRPs would be expected to be potent killers of C. albicans.

  18. Mine waters: Acidic to circumneutral

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Acid mine waters, often containing toxic concentrations of Fe, Al, Cu, Zn, Cd, Pb, Ni, Co, and Cr, can be produced from the mining of coal and metallic deposits. Values of pH for acid mine waters can range from –3.5 to 5, but even circumneutral (pH ≈ 7) mine waters can have high concentrations of As, Sb, Mo, U, and F. When mine waters are discharged into streams, lakes, and the oceans, serious degradation of water quality and injury to aquatic life can ensue, especially when tailings impoundments break suddenly. The main acid-producing process is the exposure of pyrite to air and water, which promotes oxidative dissolution, a reaction catalyzed by microbes. Current and future mining should plan for the prevention and remediation of these contaminant discharges by the application of hydrogeochemical principles and available technologies, which might include remining and recycling of waste materials.

  19. Temperature range and degree of acidity growth of isolate of indigenous bacteria on fermented feed “fermege”

    NASA Astrophysics Data System (ADS)

    Isnawati; Trimulyono, G.

    2018-01-01

    Fermege is a fermented feed of ruminants, especially goats made from water hyacinth (Eichhornia crassipes). Temperature range and pH need to know in making starter formula for acceleration of fermentation process at making ruminant feed made from this materials. The starter formula expired period can be extended by adjusting starter storage temperature and pH of the starter. This research was aimed to find the temperature and pH range for the growth of isolate of indigenous bacteria “fermege.” This research is an explorative research conducted by growing bacteria isolate indigenous fermege in liquid medium with various pH and incubation in various temperature. Bacterial population was calculated based on turbidity of bacterial suspension with turbidometer. The stages of this research were to isolate the bacteria present in the fermege, purify the isolates found, and then grow the isolates in a liquid medium with various pH values. The isolated bacterials were incubated at different temperature variations. The cell population density of the isolates was calculated after incubation for 24 hours. The results showed there were eight indigenous bacterial isolates. All isolates can grow in the pH range 6 and 7. Two isolates (Bacillus subtilis and B. pumilus) can grow at 4°C. All isolates obtained can grow at a temperature of 30°C. Isolates Bacillus badius, B. subtilis, B. cereus, Pseudomonas stutzeri and P. diminuta can grow at 50°C. Based on research indicates that indigenous fermege bacterial isolates have the ability to grow in the neutral pH range and temperature range between 4°C and 50°C.

  20. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA.

  1. Afforestation neutralizes soil pH.

    PubMed

    Hong, Songbai; Piao, Shilong; Chen, Anping; Liu, Yongwen; Liu, Lingli; Peng, Shushi; Sardans, Jordi; Sun, Yan; Peñuelas, Josep; Zeng, Hui

    2018-02-06

    Soil pH regulates soil biogeochemical processes and has cascading effects on terrestrial ecosystem structure and functions. Afforestation has been widely adopted to increase terrestrial carbon sequestration and enhance water and soil preservation. However, the effect of afforestation on soil pH is still poorly understood and inconclusive. Here we investigate the afforestation-caused soil pH changes with pairwise samplings from 549 afforested and 148 control plots in northern China. We find significant soil pH neutralization by afforestation-afforestation lowers pH in relatively alkaline soil but raises pH in relatively acid soil. The soil pH thresholds (T pH ), the point when afforestation changes from increasing to decreasing soil pH, are species-specific, ranging from 5.5 (Pinus koraiensis) to 7.3 (Populus spp.) with a mean of 6.3. These findings indicate that afforestation can modify soil pH if tree species and initial pH are properly matched, which may potentially improve soil fertility and promote ecosystem productivity.

  2. Influence of pH, benzoic acid, glutathione, EDTA, 4-hexylresorcinol, and sodium chloride on the pressure inactivation kinetics of mushroom polyphenol oxidase.

    PubMed

    Weemaes, C A; Ludikhuyze, L R; Van den Broeck, I; Hendrickx, M E

    1999-09-01

    Pressure inactivation of mushroom PPO was studied for pH values ranging from 4 to 8, and the effect of some antibrowning agents on the pressure stability of mushroom PPO at pH 6.5 was evaluated. pH reduction below 6.5 resulted in a lowered inactivation threshold pressure and an increase of the absolute value of the activation volume (or a decrease of the z(p) value), the latter two parameters reflecting the pressure dependency of the inactivation rate constant. An increase in pH from 6.5 to 8, on the other hand, did only marginally affect the pressure stability of the enzyme. Mushroom PPO at pH 6.5 was markedly sensitized toward pressure by the presence of 2.5 mM 4-hexylresorcinol and slightly stabilized by the presence of 5 mM EDTA. The presence of 5 mM glutathione, sodium chloride, or benzoic acid caused no significant alteration of the enzyme pressure stability. Only in the presence of 4-hexylresorcinol, significant changes of the activation volume and z(p) value were noticed.

  3. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.

    PubMed

    Abel, K M

    1984-11-01

    Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.

  4. Acidic and basic solutions dissolve protein plugs made of lithostathine complicating choledochal cyst/pancreaticobiliary maljunction.

    PubMed

    Kaneko, Kenitiro; Ono, Yasuyuki; Tainaka, Takahisa; Sumida, Wataru; Ando, Hisami

    2009-07-01

    Symptoms of choledochal cysts are caused by protein plugs made of lithostathine, which block the long common channel and increase pancreaticobiliary ductal pressure. Agents that dissolve protein plugs can provide relief from or prevent symptoms. In the present study, drugs reportedly effective for pancreatic and biliary stones were used in dissolution tests. Protein plugs were obtained from choledochal cysts during surgery in two children (5- and 6-year-old girls). Plugs approximately 2 mm in diameter were immersed in citric acid, tartaric acid, dimethadione, bromhexine, dehydrocholic acid, sodium citrate, hydrochloric acid, and sodium hydroxide solutions under observation with a digital microscope. The pH of each solution was measured using a pH meter. Plugs dissolved in citric acid (5.2 mM; pH 2.64), tartaric acid (6.7 mM; pH 2.51), dimethadione (75 mM; pH 3.70), hydrochloric acid (0.5 mM; pH 3.13), and sodium hydroxide (75 mM; pH 12.75) solutions. Plugs did not dissolve in dimethadione (7.5 mM; pH 4.31), bromhexine (0.1%; pH 4.68), dehydrocholic acid (5%; pH 7.45), and sodium citrate (75 mM; pH 7.23) solutions. Protein plugs in choledochal cysts are dissolved in acidic and basic solutions, which may eliminate longitudinal electrostatic interactions of the lithostathine protofibrils.

  5. Acid-induced exchange of the imino proton in G.C pairs.

    PubMed Central

    Nonin, S; Leroy, J L; Gueron, M

    1996-01-01

    Acid-induced catalysis of imino proton exchange in G.C pairs of DNA duplexes is surprisingly fast, being nearly as fast as for the isolated nucleoside, despite base-pair dissociation constants in the range of 10(-5) at neutral or basic pH. It is also observed in terminal G.C pairs of duplexes and in base pairs of drug-DNA complexes. We have measured imino proton exchange in deoxyguanosine and in the duplex (ATATAGATCTATAT) as a function of pH. We show that acid-induced exchange can be assigned to proton transfer from N7-protonated guanosine to cytidine in the open state of the pair. This is faster than transfer from neutral guanosine (the process of intrinsic catalysis previously characterized at neutral ph) due to the lower imino proton pK of the protonated form, 7.2 instead of 9.4. Other interpretations are excluded by a study of exchange catalysis by formiate and cytidine as exchange catalysts. The cross-over pH between the regimes of pH-independent and acid-induced exchange rates is more basic in the case of base pairs than in the mononucleoside, suggestive of an increase by one to two decades in the dissociation constant of the base pair upon N7 protonation of G. Acid-induced catalysis is much weaker in A.T base pairs, as expected in view of the low pK for protonation of thymidine. PMID:8604298

  6. Acid-induced exchange of the imino proton in G.C pairs.

    PubMed

    Nonin, S; Leroy, J L; Gueron, M

    1996-02-15

    Acid-induced catalysis of imino proton exchange in G.C pairs of DNA duplexes is surprisingly fast, being nearly as fast as for the isolated nucleoside, despite base-pair dissociation constants in the range of 10(-5) at neutral or basic pH. It is also observed in terminal G.C pairs of duplexes and in base pairs of drug-DNA complexes. We have measured imino proton exchange in deoxyguanosine and in the duplex (ATATAGATCTATAT) as a function of pH. We show that acid-induced exchange can be assigned to proton transfer from N7-protonated guanosine to cytidine in the open state of the pair. This is faster than transfer from neutral guanosine (the process of intrinsic catalysis previously characterized at neutral ph) due to the lower imino proton pK of the protonated form, 7.2 instead of 9.4. Other interpretations are excluded by a study of exchange catalysis by formiate and cytidine as exchange catalysts. The cross-over pH between the regimes of pH-independent and acid-induced exchange rates is more basic in the case of base pairs than in the mononucleoside, suggestive of an increase by one to two decades in the dissociation constant of the base pair upon N7 protonation of G. Acid-induced catalysis is much weaker in A.T base pairs, as expected in view of the low pK for protonation of thymidine.

  7. Very fast electrophoretic determination of creatinine and uric acid in human urine using a combination of two capillaries with different internal diameters.

    PubMed

    Pavlíček, Václav; Tůma, Petr; Matějčková, Jana; Samcová, Eva

    2014-04-01

    A capillary system formed by combining 25 and 100 μm id capillaries was used in the short-end injection mode to determine creatinine and uric acid in human urine. The separation was performed at an electric field intensity of 2.3 kV/cm. Creatinine was determined in a BGE with a composition of 20 mM citric acid/NaOH (pH 3.0), and uric acid was determined in 20 mM MES/NaOH (pH 6.0). Under these conditions, migration times of 12.2 s for creatinine and 8.6 s for uric acid were achieved. The LOD value is 2.4 mg/L for creatinine and 0.9 mg/L for uric acid; the RSD for the migration time varies in the range 0.7-1.1% (intra day) to 1.0-7.5% (inter day); RSDs for the peak areas equalled 3.4-4.0% (intra day) and 4.3-4.7% (inter day). The determined creatinine values in seven urine samples vary in the range 221-1394 mg/L for creatinine and 87-615 mg/L for uric acid. t-Test did not reveal any statistically significant difference between the developed CE methodologies and reference methods - Jaffé reaction for creatinine and enzymatic uricase test for uric acid. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation

    PubMed Central

    van Lingen, Henk J.; Plugge, Caroline M.; Fadel, James G.; Kebreab, Ermias; Bannink, André; Dijkstra, Jan

    2016-01-01

    Hydrogen is a key product of rumen fermentation and has been suggested to thermodynamically control the production of the various volatile fatty acids (VFA). Previous studies, however, have not accounted for the fact that only thermodynamic near-equilibrium conditions control the magnitude of reaction rate. Furthermore, the role of NAD, which is affected by hydrogen partial pressure (PH2), has often not been considered. The aim of this study was to quantify the control of PH2 on reaction rates of specific fermentation pathways, methanogenesis and NADH oxidation in rumen microbes. The control of PH2 was quantified using the thermodynamic potential factor (FT), which is a dimensionless factor that corrects a predicted kinetic reaction rate for the thermodynamic control exerted. Unity FT was calculated for all glucose fermentation pathways considered, indicating no inhibition of PH2 on the production of a specific type of VFA (e.g., acetate, propionate and butyrate) in the rumen. For NADH oxidation without ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity to zero for different NAD+ to NADH ratios and pH of 6.2 and 7.0, which indicates thermodynamic control of PH2. For NADH oxidation with ferredoxin oxidation, increasing PH2 within the rumen physiological range decreased FT from unity at pH of 7.0 only. For the acetate to propionate conversion, FT increased from 0.65 to unity with increasing PH2, which indicates thermodynamic control. For propionate to acetate and butyrate to acetate conversions, FT decreased to zero below the rumen range of PH2, indicating full thermodynamic suppression. For methanogenesis by archaea without cytochromes, FT differed from unity only below the rumen range of PH2, indicating no thermodynamic control. This theoretical investigation shows that thermodynamic control of PH2 on individual VFA produced and associated yield of hydrogen and methane cannot be explained without considering NADH oxidation. PMID:27783615

  9. Effect of ripening stage on the development of the microbial community during spontaneous fermentation of green tomatoes.

    PubMed

    Paramithiotis, Spiros; Kouretas, Konstantinos; Drosinos, Eleftherios H

    2014-06-01

    Spontaneous fermentation of plant-derived material is mainly performed on a small scale, with the exception of fermented olives, cucumbers, sauerkraut and kimchi, which have met worldwide commercial significance. This study of spontaneous fermentation of green tomatoes at different stages of ripening revealed a significant effect on the growth kinetics of lactic acid bacteria and the final pH value. Leuconostoc mesenteroides dominated spontaneous fermentation when the initial pH value ranged from 3.8 to 4.8 whereas at higher pH values (4.9-5.4) it co-dominated with Leu. citreum and Lactobacillus casei. Application of RAPD-PCR and rep-PCR allowed differentiation at sub-species level, suggesting a microbial succession at that level accompanying the respective at species level. Ripening stage affected the development of the micro-ecosystem through the growth of lactic acid bacteria and concomitant pH value reduction; however, the outcome of the fermentation was only marginally different. © 2013 Society of Chemical Industry.

  10. [Successful esophageal pH monitoring with Bravo capsule in patients with gastroesophageal reflux disease].

    PubMed

    Valdovinos Díaz, Miguel A; Remes Troche, José Ma; Ruiz Aguilar, Juan Carlos; Schmulson, Max J; Valdovinos-Andraca, Francisco

    2004-01-01

    Esophageal 24-h pH monitoring (24-pH) is the most useful test to diagnose and treat patients with gastroesophageal reflux disease (GERD). The traditional system for 24-pH requires transnasal introduction of a catheter with pH sensors. This technique produces discomfort, inconvenience and interference with daily activity. Recently, the Bravo pH system has been proposed as an alternative and promising method for 24-pH. In this study, the initial experience in Mexico with this system is reported. To evaluate safety, tolerability and performance of the pH Bravo capsule in patients with GERD. Patients with GERD symptoms at least twice a week during the last three months, with indication for 24-pH were evaluated. pH Bravo capsule was placed 6 cm above squamocolumnar junction (SCJ). Symptoms, quality and duration of pH tracings, capsule detachment and patient global satisfaction were evaluated. Eleven patients (nine female, two male) mean age 42 years (range 26-62 years), two with erosive and nine with non-erosive GERD were studied. pH capsule was correctly positioned at 6 cm above SCJ in all patients. Nine patients noted a mild foreign body sensation (especially while eating) and four had mild chest pain; two patients had no discomfort. Capsule detachment occurred spontaneously in all patients on day 10. pH record for > 43 h was obtained in the 11 patients. There were no differences in pH parameters between days 1 and 2. Two patients with normal acid exposure on day 1 had abnormal pH parameters on day 2. Esophageal pH monitoring with Bravo capsule is a safe, reliable and tolerable method in patients with GERD. Extended pH recordings increases abnormal esophageal acid exposure detection in patients with this disease.

  11. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.

    PubMed

    Yang, A S; Honig, B

    1994-04-15

    A recently developed approach to calculate the pH dependence of protein stability from three-dimensional structure information is applied to the analysis of acid denaturation of sperm whale apomyoglobin. The finite difference Poisson-Boltzmann method is used to calculate pKa values and these are used to obtain titration curves for the folded protein as well as for compact intermediates. The total electrostatic free energy change involved in apomyoglobin unfolding is then evaluated. Calculations are carried out of the unfolding free energy of the native (N) and the compact intermediate (I) of apomyoglobin relative to the unfolded state (U) over a range of pH at various ionic strengths. The contributions from key ionizable groups to the unfolding process are discussed. For the acid-induced partial unfolding of apomyoglobin near pH 5, the transition from N to I is found to be driven by three histidines that are exposed when the B, C, D and E helices unfold. Similarly, the unfolding of the compact intermediate I consisting of the A, G and H helices is driven primarily by a few carboxylic acids with low pKa values in the compact state. This picture is in contrast to the view which attributes acid denaturation to electrostatic repulsion resulting from the build up of positive charge. In fact, charge-charge interactions in myoglobin are found to be attractive at all pH values where the protein unfolds. pH-dependent changes in these interactions contribute to acid denaturation but other electrostatic effects, such as hydrogen bonding and solvation, are important as well. The effect of increasing ionic strength on unfolding is attributed to the decrease of attractive charge-charge interactions which destabilize the N state relative to I, but stabilize the I state relative to U by reducing the pKa shifts of a few critical carboxylic acids. The I state is found to be more stable than U at neutral pH thus accounting for its presence as an intermediate on the protein folding pathway. Our results have implications for the origins of compact intermediates or "molten globule" states.

  12. Mechanistic understanding of the effect of PPIs and acidic carbonated beverages on the oral absorption of itraconazole based on absorption modeling with appropriate in vitro data.

    PubMed

    Fotaki, Nikoletta; Klein, Sandra

    2013-11-04

    Proton pump inhibitors (PPIs) are potent gastric acid suppressing agents and are among the most widely sold drugs in the world. However, even though these antisecretory agents are regarded as safe, they can alter the pharmacokinetics of coadministered drugs. Due to the suppression of gastric acid secretion, they can significantly alter the intragastric pH conditions and are thus likely to affect the bioavailability of coadministered drugs requiring an acidic gastric environment for dissolution and subsequent absorption. Among these drugs can be found itraconazole, a poorly soluble triazole-type antifungal compound. Based on observations reported in the literature, gastric pH alterations due to the coadministration of PPIs or acidic beverages can significantly decrease (PPI) or increase (e.g., Coca-Cola) the bioavailability of this compound. In the present work we estimated the fraction of itraconazole that can be absorbed (fabs) from Sporanox capsules or an itraconazole-HBenBCD complex formulation after oral administration with and without coadministration of a PPI or an acidic (carbonated) beverage. For this purpose, the sensitivity of the two formulations toward the impact of various gastric variations (pH, volume, and emptying rate) as they can result from such administration conditions was studied using solubility and dissolution experiments and a physiologically based absorption model. Simulating coadministration of the two formulations with a PPI resulted in a significant (∼ 10-fold) decrease in itraconazole fabs, indicating the pH to be essential for in vivo dissolution and subsequent absorption. The fabs of itraconazole after coadministration of an acidic beverage (Coca-Cola) was far lower than the fabs obtained for itraconazole alone and did not support the observations reported in the literature. These results clearly indicate that in contrast to PPIs, which seem to affect itraconazole bioavailability mainly via intragastric pH changes, coadministered Coca-Cola is likely to alter a range of gastrointestinal parameters relevant to in vivo dissolution rather than solely affecting the intragastric pH.

  13. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  14. Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2009-12-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.

  15. Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro

    PubMed Central

    Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K

    2012-01-01

    Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901

  16. Acidic pH modulation of Na+ channels in trigeminal mesencephalic nucleus neurons.

    PubMed

    Kang, In-Sik; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung

    2016-12-07

    Cell bodies of trigeminal mesencephalic nucleus (Vmes) neurons are located within the central nervous system, and therefore, peripheral as well as central acidosis can modulate the excitability of Vmes neurons. Here, we report the effect of acidic pH on voltage-gated Na channels in acutely isolated rat Vmes neurons using a conventional whole-cell patch clamp technique. Acidic pH (pH 6.0) slightly but significantly shifted both the activation and steady-state fast inactivation relationships toward depolarized potentials. However, acidic pH (pH 6.0) had a minor effect on the inactivation kinetics of voltage-gated Na channels. Less sensitivity of voltage-gated Na channels to acidic pH may allow Vmes neurons to transduce the precise proprioceptive information even under acidic pH conditions.

  17. Azo compound degradation kinetics and halonitromethane formation kinetics during chlorination.

    PubMed

    Fu, Jing; Wang, Xiaomao; Bai, Weiliang; Yang, Hongwei; Xie, Yuefeng F

    2017-05-01

    The chlorination of azo compounds can produce halonitromethanes (HNMs), which have attracted increasing concern due to their high genotoxicity. By impacting the speciation of chlorine and azo compounds, pH impacts apparent second-order rate constants of Methyl Orange (MO, 27.5-1.4 × 10 3  M -1  s -1 ), Acid Orange II (AO, 16.7-99.3 M -1  s -1 ), and Acid Red 1 (AR 1, 3.7-72.5 M -1  s -1 ) (pH range 6.3-9.0). The two-compartment first-order model successfully described the chloropicrin (TCNM) formation kinetics, suggesting that both fast- and slow-reacting precursors of TCNM are generated from the chlorination of azo compounds. The ratios between fast and slow formation rate constants for MO and AO were 15.6-5.4 × 10 2 , while that of AR 1 was 9.8-19.4 (pH range 6.5-9.0). The fraction of the fast-reacting TCNM precursors decreased with increasing pH for MO and AO; while that for AR 1 decreased when pH increased from 6.5 to 8.0, and then increased when pH increased from 8.0 to 9.0. The impact of pH on TCNM formation was also precursor-specific. The highest molar yields of TCNM predicted from the model in this study were 2.4%, 2.5%, and 1.5% for MO, AO, and AR 1, respectively. The study demonstrates that azo compounds are important HNM precursors, and pose a potential threat to drinking water safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Physicochemical properties of betaine monohydrate-carboxylic acid mixtures

    NASA Astrophysics Data System (ADS)

    Zahrina, I.; Nasikin, M.; Mulia, K.

    2018-05-01

    Green solvents are widely used to minimize environmental problems associated with the use of volatile organic solvents in many industries. DES are new green solvents in recent. The physicochemical properties of DES can be varied by properly combining of salts with different hydrogen bond donors. The objective of this work is to investigate the effect of varying molar ratios on the physicochemical properties of betaine monohydrate-carboxylic acid (i.e,. propionic or acetic acid) mixtures. Properties of mixtures were measured at 40°C. The viscosity, polarity scale (ENR), density, pH, and water content tend to decrease with the decrease in a molar ratio of betaine monohydrate to acid. Conversely, the ionic conductivity was increased. The physicochemical properties of these mixtures depend on the hydrogen bonding interactions between betaine, water and acid molecules. Betaine monohydratecarboxylic acid mixtures have wide range of polarity, low viscosity, high ionic conductivity, and density higher than 1 g·cm-3 that make them fit for numerous various applications. Additionally, due to these mixtures have acidic pH, it should be properly selected of metal type to minimize corrosion problems in industrial application.

  19. Acid mine drainage

    USGS Publications Warehouse

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  20. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    PubMed Central

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  1. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Shamshuddin, Jusop; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  2. Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds.

    PubMed Central

    Garcia-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A

    1991-01-01

    Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors. Images Fig. 1. PMID:1991039

  3. Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth

    PubMed Central

    Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg−1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  4. Quantitative description and local structures of trivalent metal ions Eu(III) and Cm(III) complexed with polyacrylic acid.

    PubMed

    Montavon, G; Bouby, M; Huclier-Markai, S; Grambow, B; Geckeis, H; Rabung, T; Pashalidis, I; Amekraz, B; Moulin, C

    2008-11-15

    The trivalent metal ion (M(III)=Cm, Eu)/polyacrylic acid (PAA) system was studied in the pH range between 3 and 5.5 for a molar PAA-to-metal ratio above 1. The interaction was studied for a wide range of PAA (0.05 mg L(-1)-50 g L(-1)) and metal ion concentrations (2x10(-9)-10(-3) M). This work aimed at 3 goals (i) to determine the stoichiometry of M(III)-PAA complexes, (ii) to determine the number of complexed species and the local environment of the metal ion, and (iii) to quantify the reaction processes. Asymmetric flow-field-flow fractionation (AsFlFFF) coupled to ICP-MS evidenced that size distributions of Eu-PAA complexes and PAA were identical, suggesting that Eu bound to only one PAA chain. Time-resolved laser fluorescence spectroscopy (TRLFS) measurements performed with Eu and Cm showed a continuous shift of the spectra with increasing pH. The environment of complexed metal ions obviously changes with pH. Most probably, spectral variations arose from conformational changes within the M(III)-PAA complex due to pH variation. Complexation data describing the distribution of complexed and free metal ion were measured with Cm by TRLFS. They could be quantitatively described in the whole pH-range studied by considering the existence of only a single complexed species. This indicates that the slight changes in M(III) speciation with pH observed at the molecular level do not significantly affect the intrinsic binding constant. The interaction constant obtained from the modelling must be considered as a mean interaction constant.

  5. Zeta potential orientation dependence of sapphire substrates.

    PubMed

    Kershner, Ryan J; Bullard, Joseph W; Cima, Michael J

    2004-05-11

    The zeta potential of planar sapphire substrates for three different crystallographic orientations was measured by a streaming potential technique in the presence of KCl and (CH3)4NCl electrolytes. The streaming potential was measured for large single crystalline C-plane (0001), A-plane (1120), and R-plane (1102) wafers over a full pH range at three or more ionic strengths ranging from 1 to 100 mM. The roughness of the epi-polished wafers was verified using atomic force microscopy to be on the order of atomic scale, and X-ray photoelectron spectroscopy (XPS) was used to ensure that the samples were free of silica and other contaminants. The results reveal a shift in the isoelectric point (iep) of the three samples by as much as two pH units, with the R-plane surface exhibiting the most acidic behavior and the C-plane samples having the highest iep. The iep at all ionic strengths was tightly centered around a single pH for each wafer. These values of iep are substantially different from the range of pH 8-10 consistently reported in the literature for alpha-Al2O3 particles. Particle zeta potential measurements were performed on a model powder using phase analysis light scattering, and the iep was confirmed to occur at pH 8. Modified Auger parameters (MAP) were calculated from XPS spectra of a monolayer of iridium metal deposited on the sapphire by electron beam deposition. A shift in MAP consistent with the observed differences in iep of the surfaces confirms the effect of surface structure on the transfer of charge between the Ir and sapphire, hence accounting for the changes in acidity as a function of crystallographic orientation.

  6. Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing.

    PubMed

    Di, Wenjun; Czarny, Ryan S; Fletcher, Nathan A; Krebs, Melissa D; Clark, Heather A

    2016-10-01

    This study aims to develop biodegradable and biocompatible polymer-based nanofibers that continuously monitor pH within microenvironments of cultured cells in real-time. In the future, these fibers will provide a scaffold for tissue growth while simultaneously monitoring the extracellular environment. Sensors to monitor pH were created by directly electrospinning the sensor components within a polymeric matrix. Specifically, the entire fiber structure is composed of the optical equivalent of an electrode, a pH-sensitive fluorophore, an ionic additive, a plasticizer, and a polymer to impart mechanical stability. The resulting poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) based sensors were characterized by morphology, dynamic range, reversibility and stability. Since PCL-based nanofibers delivered the most desirable analytical response, this matrix was used for cellular studies. Electrospun nanofiber scaffolds (NFSs) were created directly out of optode material. The resulting NFS sensors respond to pH changes with a dynamic range centered at 7.8 ± 0.1 and 9.6 ± 0.2, for PCL and PLGA respectively. NFSs exhibited multiple cycles of reversibility with a lifetime of at least 15 days with preservation of response characteristics. By comparing the two NFSs, we found PCL-NFSs are more suitable for pH sensing due to their dynamic range and superior reversibility. The proposed sensing platform successfully exhibits a response to pH and compatibility with cultured cells. NSFs will be a useful tool for creating 3D cellular scaffolds that can monitor the cellular environment with applications in fields such as drug discovery and tissue engineering.

  7. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.

    PubMed

    Peterson, Eric C; Daugulis, Andrew J

    2014-03-01

    Production of organic acids in solid-liquid two-phase partitioning bioreactors (TPPBs) is challenging, and highly pH-dependent, as cell growth occurs near neutral pH, while acid sorption occurs only at low pH conditions. CO2 sparging was used to achieve acidic pH swings, facilitating undissociated organic acid uptake without generating osmotic stress inherent in traditional acid/base pH control. A modified cultivation medium was formulated to permit greater pH reduction by CO2 sparging (pH 4.8) compared to typical media (pH 5.3), while still possessing adequate nutrients for extensive cell growth. In situ product recovery (ISPR) of butyric acid (pKa = 4.8) produced by Clostridium tyrobutyricum was achieved through intermittent CO2 sparging while recycling reactor contents through a column packed with absorptive polymer Hytrel® 3078. This polymer was selected on the basis of its composition as a polyether copolymer, and the use of solubility parameters for predicting solute polymer affinity, and was found to have a partition coefficient for butyric acid of 3. Total polymeric extraction of 3.2 g butyric acid with no CO2 mediated pH swings was increased to 4.5 g via CO2 -facilitated pH shifting, despite the buffering capacity of butyric acid, which resists pH shifting. This work shows that CO2 -mediated pH swings have an observable positive effect on organic acid extraction, with improvements well over 150% under optimal conditions in early stage fermentation compared to CO2 -free controls, and this technique can be applied other organic acid fermentations to achieve or improve ISPR. © 2013 Wiley Periodicals, Inc.

  8. Modeling the adsorption of metal ions (Cu 2+, Ni 2+, Pb 2+) onto ACCs using surface complexation models

    NASA Astrophysics Data System (ADS)

    Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre

    2002-08-01

    Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.

  9. Seasonal variations, molecular distributions, and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in PM2.5 from Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Kawamura, K.; Fu, P.

    2016-12-01

    Low molecular weight (LMW) dicarboxylic acids and related polar compounds comprise a significant fraction of atmospheric aerosols. Seasonal variations, molecular distributions, and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls, as well as organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and inorganic ionic species, were determined to better understand the sources and photochemical aging processes of carbonaceous aerosols in urban Beijing from Sept. 2013 to Jul. 2014 (n=65). Concentrations of total diacids ranged from 110-2580 ng m-3, while ketoacids (9.5-353 ng m-3) and dicarbonyls (1.5-85.9 ng m-3) were less abundant. Higher ambient concentrations of phthalic (Ph) (37.9±27.3 ng m-3), terephthalic (tPh) (48.7±51.1 ng m-3), and glyoxylic (ωC2) (44.3±69 ng m-3) acids were found in winter than other seasons. The temporal variations of malonic acid to succinic acid (C3/C4) ratios were relatively low throughout the whole year, most of which were less than or equal to unity, even in summer, implying more contributions of dicarboxylic acids from primary emissions, rather than aging processes during long-range atmospheric transport. The δ13C mean values of malonic acid (-18.7% to -17.3%) and succinic acid (-28.6% to -17.1%) were larger than those of oxalic acid (-22.9% to -20.1%) in both seasons, except for δ13C of succinic acid in summer. Lower δ13C values of these compounds in Beijing than those in marine areas may be mainly associated with primary emissions, such as biomass burning, vehicular exhaust, incomplete fossil fuel combustion and plastic wastes.

  10. Fabrication of triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing.

    PubMed

    Song, Xiaoxue; Li, Huanbin; Tong, Weijun; Gao, Changyou

    2014-02-15

    Encapsulation of pH sensitive fluorophores as reporting molecules provides a powerful approach to visualize the transportation of multilayer capsules. In this study, two pH sensitive dyes (fluorescein and oregon green) and one pH insensitive dye (rhodamine B) were simultaneously labeled on the microcapsules to fabricate ratiometric pH sensors. The fluorescence of the triple-labeled microcapsule sensors was robust and nearly independent of other intracellular species. With a dynamic pH measurement range of 3.3-6.5, the microcapsules can report their localized pH at a real time. Cell culture experiments showed that the microcapsules could be internalized by RAW 246.7 cells naturally and finally accumulated in acidic organelles with a pH value of 5.08 ± 0.59 (mean ± s.d.; n=162). Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails.

    PubMed

    Spyra, Aneta

    2017-08-22

    In recent years, the number of areas remaining under the influence of acidity has increased. At all levels of ecosystems, biodiversity decreases with acidification, due to the elimination of species that are most sensitive to low pH. Forest ponds belong to a specific group that varied in location, a huge amount of leaf litter, and isolation from other aquatic environments. They are crucial in the industrial landscape with well-developed industry and human activity. The aim was to investigate the relative importance of water chemistry in explaining snail assemblage compositions and species richness in forest ponds of contrasting pH. Patterns in gastropod communities were determined from an analysis in 26 forest ponds with multivariate gradient analysis. Ponds ranged in a base mean pH from 3.0 to 9.0. pH has been found to be an important factor influencing gastropod fauna. Neutral ponds support diverse communities, typical of small water bodies. In two acidic pond types, snail fauna was different. Among the species characteristic for acidic ponds (pH < 6) were Anisus spirorbis and Aplexa hypnorum. The greatest distinct characterised alkaline ponds with the numerous appearance of alien Physa acuta. The most diverse gastropod fauna was found in neutral ponds, whereas the lowest degree of diversity was found in ponds with the lowest pH. Current knowledge of pH-associated changes in aquatic ecosystems is still incomplete because anthropogenic acidification is a recent phenomenon. It is extremely important in forest habitats, since they react more intensively to climatic factors and are often used in landscape management and planning.

  12. Lactic acid bacteria isolated from apples are able to catabolise arginine.

    PubMed

    Savino, María J; Sánchez, Leandro A; Saguir, Fabiana M; de Nadra, María C Manca

    2012-03-01

    We investigated the potentiality of lactic acid bacteria (LAB) isolated from two apples variety to utilize arginine at different initial pH values. Apples surface contained average levels of bacteria ranging from log 2.49 ± 0.53 to log 3.73 ± 0.48 cfu/ml for Red Delicious and Golden Delicious varieties, respectively. Thirty-one strains able to develop in presence of arginine at low pH were phenotypically and genotipically identified as belonging to Lactobacillus, Pediococcus and Leuconostoc genera. In general, they did not produce ammonia from arginine when cultivated in basal medium with arginine (BMA) at pH 4.5 or 5.2. When this metabolite was quantified only six strains belonging to Leuconostoc dextranicum, Lactobacillus brevis and Lactobacillus plantarum species formed higher ammonia amounts in BMA as compared to control. This was correlated with arginine utilization and it was more pronounced at pH 4.5 than 5.2. Analysis of citrulline production confirmed the arginine utilization in these bacteria by the arginine deiminase (ADI) pathway. Maxima citrulline production was observed for Lactobacillus brevis M15 at the two pH values. In this strain ammonia was formed at higher rate than citrulline, which was detected in concentration lower than 1 mM. Thus, main LAB species found on apple surfaces with abilities to degrade arginine by the ADI pathway under different conditions were reported here at the first time. The results suggested that the ADI pathway in apples LAB might not be mainly relevant for their survival in the acid natural environmental, despite leading to the ammonia formation, which may contribute to the increase in pH, coping the acid stress.

  13. Influence of humic acids on the adsorption of Basic Yellow 28 dye onto an iron organo-inorgano pillared clay and two hydrous ferric oxides.

    PubMed

    Zermane, Faiza; Cheknane, Benamar; Basly, Jean Philippe; Bouras, Omar; Baudu, Michel

    2013-04-01

    Effect of humic acids (HAs), macromolecules from natural organic matter, on the adsorption of Basic Yellow 28 is the aim of the present work. Three adsorbents were investigated in this study: an iron organo-inorgano pillared clay and two synthetic Hydrous Iron Oxide (Goethite and HFO). The surface charge was positive in the pH range of this study for the pillared clay; in contrast, it changes from positive to negative when the pH value increased (pH>9) for the two (oxy)hydroxides. Pseudo-first order kinetic rate constants and adsorption capacities increase from humic acid to BY 28. Adsorption isotherms of BY 28 and HA in single component were analysed using the Freundlich equation. Adsorption capacities increased sharply when the pH value of the dye solution was raised from 3 to 9. Increasing the pH medium from 3 to 9 reduces the HA adsorption capacities onto Fe-SMPM and iron oxyhydroxides, respectively. Fitting between measured and predicted sorption capacities of BY 28 and HA in a binary component system indicates that the Sheindorf-Rebuhn-Sheintuch (SRS) model, an extended Freundlich model, is able to describe the simultaneous adsorption of BY 28 and HA. Humic acids favourably affect the adsorption of BY 28, and a cooperative mechanism could be suggested. The synergetic effect existing between BY 28 and HA is shown by the interaction coefficients η12, which are generally high and increase with pH. Some phenomena have been advanced to explain this mechanism. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats.

    PubMed

    Gregory, Nicholas S; Whitley, Phillip E; Sluka, Kathleen A

    2015-01-01

    Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception.

  15. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats

    PubMed Central

    Gregory, Nicholas S.; Whitley, Phillip E.; Sluka, Kathleen A.

    2015-01-01

    Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception. PMID:26378796

  16. Silicic acid competes for dimethylarsinic acid (DMA) immobilization by the iron hydroxide plaque mineral goethite.

    PubMed

    Kersten, Michael; Daus, Birgit

    2015-03-01

    A surface complexation modeling approach was used to extend the knowledge about processes that affect the availability of dimethylarsinic acid (DMA) in the soil rhizosphere in presence of a strong sorbent, e.g., Fe plaques on rice roots. Published spectroscopic and molecular modeling information suggest for the organoarsenical agent to form bidentate-binuclear inner-sphere surface complexes with Fe hydroxides similar to the inorganic As oxyanions. However, since also the ubiquitous silicic acid oxyanion form the same bidentate binuclear surface complexes, our hypothesis was that it may have an effect on the adsorption of DMA by Fe hydroxides in soil. Our experimental batch equilibrium data show that DMA is strongly adsorbed in the acidic pH range, with a steep adsorption edge in the circumneutral pH region between the DMA acidity constant (pKa=6.3) and the point of zero charge value of the goethite adsorbent (pHpzc=8.6). A 1-pK CD-MUSIC surface complexation model was chosen to fit the experimental adsorption vs. pH data. The same was done for silicic acid batch equilibrium data with our goethite adsorbent. Both model parameters for individual DMA and silicic acid adsorption were then merged into one CD-MUSIC model to predict the binary DMA+Si adsorption behavior. Silicic acid (500 μM) was thus predicted by the model to strongly compete for DMA with up to 60% mobilization of the latter at a pH6. This model result could be verified subsequently by experimental batch equilibrium data with zero adjustable parameters. The thus quantified antagonistic relation between DMA and silicic acid is discussed as one of factors to explain the increase of the DMA proportion in rice grains as observed upon silica fertilization of rice fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical andmore » radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.« less

  18. Investigation of acidity and other water-quality characteristics of Upper Oyster Creek, Ocean County, New Jersey

    USGS Publications Warehouse

    Fusillo, Thomas V.; Schornick, J.C.; Koester, H.E.; Harriman, D.A.

    1980-01-01

    Water-quality data collected in the upper Oyster Creek drainage basin, Ocean County, N.J., indicate that the stream has excellent water quality except for a persistently low pH. The mean concentrations of the major inorganic ions were all less than 6.0 milligrams per liter. Mean concentrations of total nitrogen and total phosphorus were 0.15 mg/L and 0.01 mg/L, respectively. Dissolved oxygen averaged 8.7 mg/L and 81% saturation. Low pH levels are typical of streams draining cedar swamps. In Oyster Creek, the pH tended to decrease downstream due to chemical and biological processes. The pH levels in swamps were one-half unit or more lower than the pH levels in the adjacent stream. Sharp declines in stream pH were noted during runoff periods as the result of the mixing of poorly-buffered stream water with more highly acidic water from surrounding swamp areas. The quality of ground water within the study area was similar to the quality of streamflow, except for higher iron and ammonia-nitrogen concentrations and a higher pH range of 4.9 to 6.5. Precipitation represented a major source of many chemical constituents in the ground- and surface-waters of the Oyster Creek basin. (USGS)

  19. Common Loon (Gavia immer) eggshell thickness and egg volume vary with acidity of nest lake in northern Wisconsin

    USGS Publications Warehouse

    Pollentier, C.D.; Kenow, K.P.; Meyer, M.W.

    2007-01-01

    Environmental acidification has been associated with factors that may negatively affect reproduction in many waterbirds. Declines in lake pH can lead to reductions in food availability and quality, or result in the altered availability of toxic metals, such as mercury. A recent laboratory study conducted by the U.S. Geological Survey and the Wisconsin Department of Natural Resources indicated that Common Loon (Gavia immer) chicks hatched from eggs collected on acidic lakes in northern Wisconsin may be less responsive to stimuli and exhibit reduced growth compared to chicks from neutral-pH lakes. Here we report on the relation between Common Loon egg characteristics (eggshell thickness and egg volume) and lake pH, as well as eggshell methylmercury content. Eggs (N = 84) and lake pH measurements were obtained from a four county region of northern Wisconsin. Egg-shells were 3-4% thinner on lakes with pH ??? 6.3 than on neutral-pH lakes and this relation was linear across the pH range investigated (P 0.05, n.s.) or lake pH. Results suggest that low lake pH may be associated with thinner eggshells and reduced egg volume in Common Loons. We speculate on the mechanisms that may lead to this phenomeno.

  20. Biodegradation of chloro- and bromobenzoic acids: effect of milieu conditions and microbial community analysis.

    PubMed

    Gaza, Sarah; Felgner, Annika; Otto, Johannes; Kushmaro, Ariel; Ben-Dov, Eitan; Tiehm, Andreas

    2015-04-28

    Monohalogenated benzoic acids often appear in industrial wastewaters where biodegradation can be hampered by complex mixtures of pollutants and prevailing extreme milieu conditions. In this study, the biodegradation of chlorinated and brominated benzoic acids was conducted at a pH range of 5.0-9.0, at elevated salt concentrations and with pollutant mixtures including fluorinated and iodinated compounds. In mixtures of the isomers, the degradation order was primarily 4-substituted followed by 3-substituted and then 2-substituted halogenated benzoic acids. If the pH and salt concentration were altered simultaneously, long adaptation periods were required. Community analyses were conducted in liquid batch cultures and after immobilization on sand columns. The Alphaproteobacteria represented an important fraction in all of the enrichment cultures. On the genus level, Afipia sp. was detected most frequently. In particular, Bacteroidetes were detected in high numbers with chlorinated benzoic acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Lipoxygenase from Red Alga Pyropia haitanensis, a Unique Enzyme Catalyzing the Free Radical Reactions of Polyunsaturated Fatty Acids with Triple Ethylenic Bonds

    PubMed Central

    Zhu, Zhujun; Qian, Feijian; Yang, Rui; Chen, Juanjuan; Luo, Qijun; Chen, Haimin; Yan, Xiaojun

    2015-01-01

    Lipoxygenases (LOXs) are key enzymes to regulate the production of hormones and defensive metabolites in plants, animals and algae. In this research, a full length LOX gene has been cloned and expressed from the red alga Pyropia haitanensis (Bangiales, Rhodophyta) gametophyte (PhLOX2). Subsequent phylogenetic analysis showed that such LOX enzymes are separated at the early stage of evolution, establishing an independent branch. The LOX activity was investigated at the optimal pH of 8.0. It appears that PhLOX2 is a multifunctional enzyme featuring both lipoxygenase and hydroperoxidase activities. Additionally, PhLOX2 exhibits remarkable substrate and position flexibility, and it can catalyze an array of chemical reactions involving various polyunsaturated fatty acids, ranging from C18 to C22. As a matter of fact, mono-hydroperoxy, di-hydroperoxy and hydroxyl products have been obtained from such transformations, and eicosapentaenoic acid seem to be the most preferred substrate. It was found that at least triple ethylenic bonds are required for PhLOX2 to function as a LOX, and the resulting hydroxy products should be originated from the PhLOX2 mediated reduction of mono-hydroperoxides, in which the hydrogen abstraction occurs on the carbon atom between the second and third double bond. Most of the di-hydroperoxides observed seem to be missing their mono-position precursors. The substrate and position flexibility, as well as the function versatility of PhLOXs represent the ancient enzymatic pathway for organisms to control intracellular oxylipins. PMID:25658744

  2. pH feedback and phenotypic diversity within bacterial functional groups of the human gut.

    PubMed

    Kettle, Helen; Donnelly, Ruairi; Flint, Harry J; Marion, Glenn

    2014-02-07

    Microbial diversity in the human colon is very high with apparently large functional redundancy such that within each bacterial functional group there are many coexisting strains. Modelling this mathematically is problematic since strains within a functional group are often competing for the same limited number of resources and therefore competitive exclusion theory predicts a loss of diversity over time. Here we investigate, through computer simulation, a fluctuation dependent mechanism for the promotion of diversity. A variable pH environment caused by acidic by-products of bacterial growth on a fluctuating substrate coupled with small differences in acid tolerance between strains promotes diversity under both equilibrium and far-from-equilibrium conditions. Under equilibrium conditions pH fluctuations and relative nonlinearity in pH limitation among strains combine to prevent complete competitive exclusion. Under far-from-equilibrium conditions, loss of diversity through extinctions is made more difficult because pH cycling leads to fluctuations in the competitive ranking of strains, thereby helping to equalise fitness. We assume a trade-off between acid tolerance and maximum growth rate so that our microbial system consists of strains ranging from specialists to generalists. By altering the magnitude of the effect of the system on its pH environment (e.g. the buffering capacity of the colon) and the pattern of incoming resource we explore the conditions that promote diversity. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Evaluation of Gastric pH and Serum Gastrin Concentrations in Cats with Chronic Kidney Disease.

    PubMed

    Tolbert, M K; Olin, S; MacLane, S; Gould, E; Steiner, J M; Vaden, S; Price, J

    2017-09-01

    Chronic kidney disease (CKD) is a highly prevalent condition in cats. Advanced CKD is associated with hyporexia and vomiting, which typically are attributed to uremic toxins and gastric hyperacidity. However, gastric pH studies have not been performed in cats with CKD. To determine if cats with CKD have decreased gastric pH compared to age-matched, healthy cats. Based on previous work demonstrating an association of hypergastrinemia and CKD, we hypothesized that cats with CKD would have decreased gastric pH compared to healthy, age-matched control cats. 10 CKD cats; 9 healthy control cats. All cats with concurrent disease were excluded on the basis of history, physical examination, CBC, plasma biochemistry profile, urinalysis, urine culture, serum total thyroxine concentration, and serum symmetric dimethylarginine concentration (controls only) obtained within 24 hours of pH monitoring and assessment of serum gastrin concentrations. Serum for gastrin determination was collected, and 12-hour continuous gastric pH monitoring was performed in all cats. Serum gastrin concentration, mean pH, and percentage time that gastric pH was strongly acidic (pH <1 and <2) were compared between groups. No significant differences in serum gastrin concentrations were observed between groups (medians [range]: CKD, 18.7 ng/dL [<10-659.0]; healthy, 54.6 ng/dL [<10-98.0]; P-value = 0.713) or of any pH parameters including mean ± SD gastric pH (CKD, 1.8 ± 0.5; healthy, 1.6 ± 0.3; P-value = 0.23). These findings suggest that cats with CKD may not have gastric hyperacidity compared to healthy cats and, therefore, may not need acid suppression. Thus, further studies to determine if there is a benefit to acid suppression in cats with CKD are warranted. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material.

    PubMed

    Hari, Ajai C; Paruchuri, Rajiv A; Sabatini, David A; Kibbey, Tohren C G

    2005-04-15

    A wide range of pharmaceutical compounds have been identified in the environment, and their presence is a topic of growing concern, both for human and ecological health. Adsorption to aquifer materials and sediments is an important factor influencing the fate and transport of pharmaceutical compounds in the environment. Surfactants and other amphiphiles are known to influence the adsorption of many compounds and may be present in the environment from wastewaters or other sources. The work described here examines the adsorption of four pharmaceutical compounds, acetaminophen, carbamazepine, nalidixic acid, and norfloxacin, in the presence of a natural aquifer material. Adsorption was studied as a function of pH and in the presence and absence of two surfactants, cetylpyridinium chloride (CPC), a cationic surfactant, and Tergitol NP9, an ethoxylated nonionic surfactant. In the absence of surfactants, results indicate a 1-2 orders of magnitude variation in adsorption affinity with changing pH for each of the two quinolone pharmaceuticals (nalidixic acid and norfloxacin) but no measurable adsorption for carbamazepine or acetaminophen. In the presence of surfactants, adsorption of acetaminophen and carbamazepine was enhanced to extents consistent with compound hydrophobicity, while adsorption of nalidixic acid and norfloxacin was not. At high pH values, the anionic species of nalidixic acid exhibited enhanced adsorption in the presence of the cationic surfactant, CPC.

  5. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment.

    PubMed

    Xu, Xiao-Yu; Yan, Bing

    2016-04-28

    A pH sensor is fabricated via a reaction between an Al(III) salt and 2-aminoterephthalic acid in DMF which leads to a MOF (Al-MIL-101-NH2) with free amino groups. The Al-MIL-101-NH2 samples show good luminescence and an intact structure in aqueous solutions with pH ranging from 4.0 to 7.7. Given its exceptional stability and pH-dependent fluorescence intensity, Al-MIL-101-NH2 has been applied to fluorescent pH sensing. Significantly, in the whole experimental pH range (4.0-7.7), the fluorescence intensity almost increases with increasing pH (R(2) = 0.99688) which can be rationalized using a linear equation: I = 2.33 pH + 26.04. In addition, error analysis and cycling experiments have demonstrated the accuracy and utilizability of the sensor. In practical applications (PBS and lake water), Al-MIL-101-NH2 also manifests its analytical efficiency in pH sensing. And the samples can be easily isolated from an aqueous solution by incorporating Fe3O4 nanoparticles. Moreover, the possible sensing mechanism based on amino protonation is discussed in detail. This work is on of the few cases for integrated pH sensing systems in aqueous solution based on luminescent MOFs.

  6. [Determination of sugars, organic acids and alcohols in microbial consortium fermentation broth from cellulose using high performance liquid chromatography].

    PubMed

    Jiang, Yan; Fan, Guifang; Du, Ran; Li, Peipei; Jiang, Li

    2015-08-01

    A high performance liquid chromatographic method was established for the determination of metabolites (sugars, organic acids and alcohols) in microbial consortium fermentation broth from cellulose. Sulfate was first added in the samples to precipitate calcium ions in microbial consortium culture medium and lower the pH of the solution to avoid the dissociation of organic acids, then the filtrates were effectively separated using high performance liquid chromatography. Cellobiose, glucose, ethanol, butanol, glycerol, acetic acid and butyric acid were quantitatively analyzed. The detection limits were in the range of 0.10-2.00 mg/L. The linear correlation coefficients were greater than 0.999 6 in the range of 0.020 to 1.000 g/L. The recoveries were in the range of 85.41%-115.60% with the relative standard deviations of 0.22% -4.62% (n = 6). This method is accurate for the quantitative analysis of the alcohols, organic acids and saccharides in microbial consortium fermentation broth from cellulose.

  7. Acidemia and blood free fatty acids: analysis of cardiovascular risk factors in a new context.

    PubMed

    Reis, António Heitor

    2017-03-01

    Following a hypothesis developed in an earlier paper, here it is discussed how deviations of blood pH from the normal range (namely states of acidemia) together with high blood levels of free fatty acids (FFA) may offer a rationale for many important risk factors for cardiovascular diseases (CVD) by shaping a context for formation of fatty acid micelles and vesicles with an acidic core, which fuse with the endothelia, disrupt vital cell processes, and thereby may initiate atherosclerotic plaque formation. Acidemia may arise primarily from dysregulation of the systemic buffers that control blood pH, chronic diseases of kidneys and lungs, inappropriate diet, or may be induced by some common drugs. The level of free fatty acids may be increased and maintained high by chronic stress, and adrenergic shocks. Elevated concentrations of blood FFA in a context of acidemia allow to understand important cardiovascular aspects: the increased risk of menopausal women, the protective effects of physical exercise, the changes in vascular behavior characteristic of metabolic acidosis/acidemia, the role of diet in the pH balance, on how some known medicines like metformin, steroids, NSAIDS, proton pump inhibitors, and calcium supplements may influence CVD risk, and an explanation is offered for the role of statins.

  8. Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca).

    PubMed

    Hall, Dawn; De Luca, Vincenzo

    2007-02-01

    Resveratrol is a stilbene with well-known health-promoting effects in humans that is produced constitutively or accumulates as a phytoalexin in several plant species including grape (Vitis sp.). Grape berries accumulate stilbenes in the exocarp as cis- and trans-isomers of resveratrol, together with their respective 3-O-monoglucosides. An enzyme glucosylating cis- and trans-resveratrol was purified to apparent homogeneity from Concord (Vitis labrusca) grape berries, and peptide sequencing associated it to an uncharacterized Vitis vinifera full-length clone (TC38971, tigr database). A corresponding gene from Vitis labrusca (VLRSgt) had 98% sequence identity to clone TC38971 and 92% sequence identity to a Vitis viniferap-hydroxybenzoic acid glucosyltransferase that produces glucose esters. The recombinant enzyme was active over a broad pH range (5.5-10), producing glucosides of stilbenes, flavonoids and coumarins at higher pH and glucose esters of several hydroxybenzoic and hydroxycinnamic acids at low pH. Vitis labrusca grape berries accumulated both stilbene glucosides and hydroxycinnamic acid glucose esters, consistent with the bi-functional role of VLRSgt in stilbene and hydroxycinnamic acid modification. While phylogenetic analysis of VLRSgt and other functionally characterized glucosyltransferases places it with other glucose ester-producing enzymes, the present results indicate broader biochemical activities for this class of enzymes.

  9. Chiral analysis of UV nonabsorbing compounds by capillary electrophoresis using macrocyclic antibiotics: 1. Separation of aspartic and glutamic acid enantiomers.

    PubMed

    Bednar, P; Aturki, Z; Stransky, Z; Fanali, S

    2001-07-01

    Glycopeptide antibiotics, namely vancomycin or teicoplanin, were evaluated in capillary electrophoresis for the analysis of UV nonabsorbing compounds such as aspartic and glutamic acid enantiomers. Electrophoretic runs were performed in laboratory-made polyacrylamide-coated capillaries using the partial filling-counter current method in order to avoid the presence on the detector path of the absorbing chiral selector. The background electrolyte consisted of an aqueous or aqueous-organic buffer in the pH range of 4.5-6.5 of sorbic acid/histidine and the appropriate concentration of chiral selector. Several experimental parameters such as antibiotic concentration and type, buffer pH, organic modifier, type and concentration of absorbing co-ion (for the indirect UV detection) were studied in order to find the optimum conditions for the chiral resolution of the two underivatized amino acids in their enantiomers. Among the two investigated chiral selectors, vancomycin resulted to be the most useful chiral selector allowing relatively high chiral resolution of the studied compounds even at low concentration. The optimized method (10 mM sorbic acid/histidine, pH 5, and 10 mM of vancomycin) was used for the analysis of real samples such as teeth dentine and beer.

  10. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions.

    PubMed

    Eswari, Parvathy; Kavitha, S; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2016-07-01

    The aim of this study was to increase the sludge disintegration and reduce the cost of microwave (MW) pretreatment. Thermodynamic analysis of MW hydrolysis revealed the best fit with a first-order kinetic model at a specific energy of 18,600 kJ/kg total solids (TS). Combining H2O2 with MW resulted in a significant increment in solubilization from 30 to 50 % at 18,600 kJ/kg TS. The pH of H2O2-assisted MW-pretreated sludge (MW + H2O2) was in the alkaline range (pH 9-10), and it made the sludge unfavorable for subsequent anaerobic digestion and inhibits methane production. In order to nullify the alkaline effect caused by the MW + H2O2 combination, the addition of acid was considered for pH adjustment. H2O2-assisted MW-pretreated sludge in acidic conditions (MW + H2O2 + acid) showed a maximum methane production of 323 mL/g volatile solids (VS) than others during anaerobic biodegradability. A cost analysis of this study reveals that MW + H2O2 + acid was the most economical method with a net profit of 59.90 €/t of sludge.

  11. Mechanistic insights into iron redox transformations in the presence of natural organic matter: Impact of pH and light

    NASA Astrophysics Data System (ADS)

    Garg, Shikha; Jiang, Chao; David Waite, T.

    2015-09-01

    The various pathways contributing to the formation and decay of Fe(II) in the presence of Suwanee River Fulvic Acid (SRFA) in acidic solutions are investigated here both in the presence and absence of light and over the pH range of 3-5. Our results show that ligand to metal charge transfer (LMCT) is the dominant pathway for photochemical Fe(III) reduction and resultant Fe(II) formation over the pH range examined. In comparison, under non-irradiated conditions, Fe(III) reduction occurs, for the most part, as a result of the presence of hydroquinone-like moieties in SRFA. Irradiation of SRFA also results in the generation of both long-lived and short-lived Fe(II) oxidants with the long-lived Fe(II) oxidant similar to semiquinone-like radicals with these radicals formed via superoxide-mediated oxidation of the hydroquinone-like moieties present in SRFA. Dioxygen plays an important role in production of the long-lived Fe(II) oxidant since generation of superoxide occurs via reduction of dioxygen. The short-lived Fe(II) oxidant is similar to peroxyl radicals which are generated via hydroxylation of organic moieties. The overall rate of generation of both the short- and long-lived Fe(II) oxidants is dependent on pH with the generation rates of these oxidants increasing with increase in pH. Based on our experimental data, we have developed a kinetic model that satisfactorily describes all Fe transformations observed in SRFA solutions over the pH range 3-5 under non-irradiated, previously irradiated and continuously irradiated conditions. Fe species undergo continual cycling between Fe(II) and Fe(III) oxidation states with Fe(II)-Fe(III) turnover frequencies in the presence of 10 mg.L-1 SRFA of 17.3, 27.4 and 33.2 h-1 at pH 3, 3.5 and 4 on continuous photolysis compared to turnover frequencies of 1.9, 2.5 and 2.9 h-1 at pH 3, 3.5 and 4 in the dark.

  12. Phospholipase B activity of a purified phospholipase A from Vipera palestinae venom.

    PubMed

    Shiloah, J; Klibansky, C; de Vries, A; Berger, A

    1973-05-01

    Phospholipase was isolated (in two fractions) from Vipera palestinae venom and it was shown to possess phospholipase A activity (hydrolyzing diacyl-sn-glycerophosphorylcholines, e.g., lecithin, in the 2-position) as well as lysophospholipase (phospholipase B) activity (hydrolyzing 1-monoacyl-sn-glycerophosphorylcholines, e.g., lysolecithin, yielding free fatty acid and glycerophosphorylcholine). Each of the two purified enzyme fractions was homogeneous as judged by electrophoresis on acrylamide gel and by immunodiffusion and immunoelectrophoresis, and both had essentially equal activities. The ratio of the specific activity, at various purification stages, to the specific activity of the whole venom was the same for A activity (substrate lecithin) as for B activity (substrate lysolecithin). The enzyme has a molecular weight of 16,000, six S-S bridges, and no free thiol groups. At pH 7, dimerization was observed in the ultracentrifuge. A dissociation constant of about 10(-5) m was estimated. The amino acid composition for both fractions (140 amino acid residues) was found to be essentially the same. The A activity had a pH optimum at 9; B activity was low at this pH but increased steadily beyond pH 10.5. For the hydrolysis of lysolecithin the Lineweaver-Burk plot was found to be linear, giving K(m) = 1.1 mm and k(cat) = 0.55 sec(-1) at 37 degrees C and pH 10. 2-Deoxylysolecithin was also hydrolyzed by the enzyme at pH 10, with k(cat) = 0.01 sec(-1) (zero-order kinetics in the range 0.5-2.5 mm). For lecithin these constants could not be determined, but at 0.25 mm substrate the hydrolysis rate (at pH 9) of lecithin was about 1000 times the hydrolysis rate of lysolecithin (at pH 10).

  13. Acute toxicity of low pH to the brown darter Etheostoma edwini under flow-through conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kase, J.; Burnett, M.; Shortelle, A.B.

    1995-12-31

    The Okaloosa darter, Etheostoma okaloosae, is found exclusively in the Rocky and Boggy Bayou stream systems entering Choctawhatchee Bay, Florida. Due to its limited range and habitat degradation, E. okaloosae was added to the List of Endangered Species in 1973. The Air Force controls several active test areas situated near streams known to contain Okaloosa darters. The possible release and deposition of strong acids such as hydrochloric acid and hydrofluoric acid to stream surface water during some testing activities has raised concerns that the Okaloosa darter population may be adversely affected by episodic pH depression as a result of testingmore » activities. To evaluate the sensitivity of the Okaloosa darter to pH depression, acute toxicity tests using a closely related species, E. edwini, were conducted. Ninety-six hour and 200 min acute pH depression flow-through toxicity tests were performed with surface water collected from the Rocky Bayou stream system. The 96 h test was conducted using six concentrations held at constant pH throughout the duration of the exposure. The 200 min test used an episodic exposure; pH in the exposure chambers were initially dropped and allowed to return to normal. Mortality data obtained during the studies were used to determine the pH depression necessary to cause 50% mortality (LC50) in each scenario. The 96 h and 200 min LC50 values are, respectively, 3.79 and 2.99 s.u. The 200 min LC50 calculations are based on the lowest achieved pH in each exposure during the test. The results of these tests are part of an effort by the Air Force to make risk-based management decision regarding testing activities.« less

  14. Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.

    PubMed

    Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A

    2015-02-07

    The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 μm, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions.

  15. Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline.

    PubMed

    Mazumdar, Prativa; Maity, Samir; Shyamal, Milan; Das, Debasish; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-14

    A heteroatom containing organic fluorophore 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline (BPQ) is weakly emissive in solution but its emission properties are highly enhanced in the aggregated state due to the restriction of intramolecular rotation (RIR) and large amplitude vibrational modes, demonstrating the phenomenon, aggregation induced emission enhancement (AIEE). It has strong proton capture capability, allowing reversible fluorescence switching in basic and acidic medium and the emission color changes from blue to green in the aggregated state through protonation. It has been explained as a competition between intramolecular charge transfers (ICTs) and the AIEE phenomena at a lower pH range (pH ∼1-4). Such behavior enables it as a fluorescent pH sensor for detection in acidic and basic medium. Morphologies of the particles are characterized using optical and field emission scanning electron microscopic (FESEM) studies. The turn off fluorescence properties of aggregated BPQ have been utilized for the selective detection of picric acid and the fluorescence quenching is explained due to ground state complexation with a strong quenching constant, 7.81 × 10(4) M(-1).

  16. CELL DIVISION IN A SPECIES OF ERWINIA. III. REVERSAL OF INHIBITION OF CELL DIVISION CAUSED BY D-AMINO ACIDS, PENICILLIN, AND ULTRA-VIOLET LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grula, E.A.; Grula, M.M.

    Inhibition of cell division in an Erwinia sp. occurs in the presence of any of six D-amino acids, penicillin, or ultraviolet light. Cell-division inhibition caused by D-amino acids is pH-dependent; however, elongation caused by penicillin occurs over a wide range of pH. Bulging and spheroplast formation in the presence of penicillin occurs only at pH values below 7.6; however, division continues to be inhibited at higher pH levels. Reversal of cell-division inhibition caused by two D-amino acids (phenylalanine and histidine) can be partially overcome by their respective L-isomers. Divalent cations (Zn, Ca, Mn) cause varying amounts of reversal of divisionmore » inhibition in all systems studied; each system appears to have an individual requirement. All induced division inhibitions, including that caused by penicillin, can be reversed by pantoyl lactone or omega methylpantoyl lactone. Evidence is presented and discussed concerning the possible importance of pantoyl lactone and divalent cations in terminal steps of the cell-division process in this organism. (auth)« less

  17. Regularities in Low-Temperature Phosphatization of Silicates

    NASA Astrophysics Data System (ADS)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  18. Sol-gel synthesis of nanosized titanium dioxide at various pH of the initial solution

    NASA Astrophysics Data System (ADS)

    Dorosheva, I. B.; Valeeva, A. A.; Rempel, A. A.

    2017-09-01

    Titanium dioxide (TiO2) was synthesized by sol-gel method at different values of pH = 3, 7, 8, 9, or 10. X-ray phase analysis has shown that in an acid rout an anatase phase was crystallized, and in an alkaline rout an amorphous phase of TiO2 was achieved. After annealing for 4 hours at 350 °C, all samples was transformed in the anatase phase. The particle size in the different samples varies from 7 to 49 nm depending on the pH. The diffuse reflection spectra revealed a high value of the band gap in the range from 3.2 to 3.7 eV and its narrowing after annealing to the range from 3.2 to 3.5 eV.

  19. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    PubMed Central

    Mullett, Mark; Fornarelli, Roberta; Ralph, David

    2014-01-01

    Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met. PMID:24957170

  20. If Euhydric and Isotonic Do Not Work, What Are Acceptable pH and Osmolality for Parenteral Drug Dosage Forms?

    PubMed

    Roethlisberger, Dieter; Mahler, Hanns-Christian; Altenburger, Ulrike; Pappenberger, Astrid

    2017-02-01

    Parenteral products should aim toward being isotonic and euhydric (physiological pH). Yet, due to other considerations, this goal is often not reasonable or doable. There are no clear allowable ranges related to pH and osmolality, and thus, the objective of this review was to provide a better understanding of acceptable formulation pH, buffer strength, and osmolality taking into account the administration route (i.e., intramuscular, intravenous, subcutaneous) and administration technique (i.e., bolus, push, infusion). This evaluation was based on 3 different approaches: conventional, experimental, and parametric. The conventional way of defining formulation limits was based on standard pH and osmolality ranges. Experimental determination of titratable acidity or in vitro hemolysis testing provided additional drug product information. Finally, the parametric approach was based on the calculation of theoretical values such as (1) the maximal volume of injection which cannot shift the blood's pH or its molarity out of the physiological range and (b) a dilution ratio at the injection site and by verifying that threshold values are not exceeded. The combination of all 3 approaches can support the definition of acceptable pH, buffer strength, and osmolality of formulations and thus may reduce the risk of failure during preclinical and clinical development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Theaflavin-3,3′-Digallate and Lactic Acid Combinations Reduce Herpes Simplex Virus Infectivity

    PubMed Central

    Xu, Weimin

    2013-01-01

    The present study examined the efficacy of using multiple mechanisms as part of a topical microbicide to inactivate herpes simplex virus (HSV) by combining theaflavin-3,3′-digallate (TF-3) and lactic acid (LA) over the pH range of 4.0 to 5.7 to mimic conditions in the female reproductive tract. Six clinical isolates of HSV-2 and two clinical isolates of HSV-1 were almost completely inactivated when TF-3 (100 μM) was present with LA over the pH range of 4.5 to 5.7, whereas four additional HSV-1 clinical isolates required TF-3 concentrations of 250 to 500 μM for comparable virus titer reduction. LA (1%) alone at pH 4.0 reduced the titers of laboratory and clinical isolates of HSV-1 and HSV-2 by ≥5 log10, but most LA-dependent antiviral activity was lost at a pH of ≥4.5. When HSV-1 and HSV-2 were incubated at pH 4.0 without LA virus titers were not reduced. At pH 4.0, HSV-1 and HSV-2 titers were reduced 5 log10 in 20 min by LA alone. TF-3 reduced HSV-2 titers by 5 log10 in 20 to 30 min at pH 4.5, whereas HSV-1 required 60 min for comparable inactivation. Mixtures of TF-3 and LA stored at 37°C for 1 month at pH 4.0 to 5.7 maintained antiviral activity. Semen, but not cervical vaginal fluid, decreased LA-dependent antiviral activity at pH 4.0, but adding TF-3 to the mixture reduced HSV titers by 4 to 5 log10. These results indicate that a combination microbicide containing TF-3 and LA could reduce HSV transmission. PMID:23716050

  3. Investigation of Pu(IV)-acetohydroxamic acid complex by solvent extraction with di(2-ethylhexyl) phosphoric acid

    NASA Astrophysics Data System (ADS)

    Brown, M. Alex; Paulenova, Alena; Tkac, Peter

    2010-03-01

    The stability constant of the Pu(IV)-acetohydroxamic acid complex Pu(AHA)3+ at 1 M ionic strength (pH = 0) has been investigated by method of solvent extraction. Di(2-ethylhexyl) phosphoric acid (HDEHP) was used to extract Pu(IV) from perchloric and nitric acid media at various AHA concentrations. Distribution ratios over a range of ligand concentrations were used in conjunction with graphical methods to obtain logβ1 = 14.3 ± 0.03 in perchloric acid. The stability constant determined from solutions in nitric acid was excluded because of the uncertainty in plutonium speciation.

  4. Harvest-time prediction of apple physiological indices using fiber optic Fourier transform near-infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Yande; Ying, Yibin; Lu, Huishan; Fu, Xiaping

    2004-12-01

    This work evaluates the feasibility of Fourier transform near infrared (FT-NIR) spectrometry for rapid determining the total soluble solids content and acidity of apple fruit. Intact apple fruit were measured by reflectance FT-NIR in 800-2500 nm range. FT-NIR models were developed based on partial least square (PLS) regression and principal component regress (PCR) with respect to the reflectance and its first derivative, the logarithms of the reflectance reciprocal and its second derivative. The above regression models, related the FT-NIR spectra to soluble solids content (SSC), titratable acidity (TA) and available acidity (pH). The best combination, based on the prediction results, was PLS models with respect to the logarithms of the reflectance reciprocal. Predictions with PLS models resulted standard errors of prediction (SEP) of 0.455, 0.044 and 0.068, and correlation coefficients of 0.968, 0.728 and 0.831 for SSC, TA and pH, respectively. It was concluded that by using the FT-NIR spectrometry measurement system, in the appropriate spectral range, it is possible to nondestructively assess the maturity factors of apple fruit.

  5. [Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].

    PubMed

    Li, Jia; Jiang, Hong; Yu, Shu-quan; Jiang, Fu-wei; Yin, Xiu-min; Lu, Mei-juan

    2009-09-01

    Taking the seedlings of Quercus glauca, a dominant evergreen broadleaf tree species in subtropical area, as test materials, this paper studied their photosynthesis, chlorophyll fluorescence, and chlorophyll content under effects of simulated acid rain with pH 2.5, 4.0, and 5.6 (CK). After 2-year acid rain stress, the net photosynthetic rate of Q. glauca increased significantly with decreasing pH of acid rain. The acid rain with pH 2.5 and 4.0 increased the stomatal conductance and transpiration rate, and the effect was more significant under pH 2.5. The intercellular CO2 concentration decreased in the order of pH 2.5 > pH 5.6 > pH 4.0. The maximum photosynthetic rate, light compensation point, light saturation point, and dark respiration rate were significantly higher under pH 2.5 and 4.0 than under pH 5.6, while the apparent quantum yield was not sensitive to acid rain stress. The maximal photochemical efficiency of PS II and the potential activity of PS II under pH 2.5 and 4.0 were significantly higher than those under pH 5.6. The relative chlorophyll content was in the order of pH 2.5 > pH 5.6 > pH 4.0, and there was a significant difference between pH 2.5 and 4.0. All the results suggested that the photosynthesis and chlorophyll fluorescence of Q. glauca increased under the effects of acid rain with pH 2.5 and 4.0, and the acid rain with pH 2.5 had more obvious effects.

  6. Monitoring of the interconversion of gamma-butyrolactone (GBL) to gamma hydroxybutyric acid (GHB) by Raman spectroscopy.

    PubMed

    Munshi, Tasnim; Brewster, Victoria L; Edwards, Howell G M; Hargreaves, Michael D; Jilani, Shelina K; Scowen, Ian J

    2013-08-01

    Gamma-hydroxybutyric acid (GHB) is a drug-of-abuse that has recently become associated with drug-facilitated sexual assault, known as date rape. For this reason the drug is commonly found 'spiked' in alcoholic beverages. When GHB is in solution it may undergo conversion into the corresponding lactone, Gamma-butyrolactone (GBL). Studies have been carried out to determine the detection limits of GHB and GBL in various solutions by Raman spectroscopy and to monitor the interconversion of GHB and GBL in solution with different pH conditions and temperature. In this study, a portable Raman spectrometer was used to study the interconversion of GHB and GBL in water and ethanol solutions as a function of pH, time, and temperature. The aim of this was to determine the optimum pH range for conversion in order to relate this to the pH ranges that the drug is likely to be subjected to, first in spiked beverages and secondly after ingestion in the digestive system. The aim was also to identify a timescale for this conversion in relation to possible scenarios, for example if GHB takes a number of hours to convert to GBL, it is likely for the beverage to be ingested before esterification can take place. GHB and GBL were then spiked into a selection of beverages of known pH in order to study the stability of GHB and GBL in real systems. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Environmental Baseline Studies of St. Marys River Near Neebish Island, Michigan, Prior to Proposed Extension of Navigation Season, 1981. Great Lakes- St. Lawrence Seaway, Navigation Season Extension Program

    DTIC Science & Technology

    1983-06-01

    fall offshore readings indicated acidic conditions. A range of 4.8 - 9.2 S.U. occurred, which was larger than that reported in 1980 studies. The...submersed plants, as well as for emergent and terrestrial species. However, the increase in biomass is most obvious in those plants that abscise photo...while fall offshore pH values at all sites ranged towards more acidic conditions. No major differences between sites occurred. Winter Sedimentation

  8. Acid and Base Stress and Transcriptomic Responses in Bacillus subtilis▿†

    PubMed Central

    Wilks, Jessica C.; Kitko, Ryan D.; Cleeton, Sarah H.; Lee, Grace E.; Ugwu, Chinagozi S.; Jones, Brian D.; BonDurant, Sandra S.; Slonczewski, Joan L.

    2009-01-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K+/H+ antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids. PMID:19114526

  9. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    PubMed

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  10. Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: Implications for δ 11B vital effects and paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2010-03-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ 11B has some limitations such as the knowledge of the fractionation factor ( α4-3) between boric acid and the borate ion and the amplitude of "vital effects" on this proxy that are not well constrained. Using secondary ion mass spectrometry (SIMS) we have examined the internal variability of the boron isotope ratio in the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24 ± 0.1 °C) in seawater with pH ranging between 7.90 and 8.45. Intra-shell boron isotopes showed large variability with an upper limit value of ≈30‰. Our results suggest that the fractionation factor α4-3 of 0.97352 ( Klochko et al., 2006) is in better agreement with our experiments and with direct pH measurements in seawater vacuoles associated with the biomineralization process in these foraminifera. Despite the large variability of the skeletal pH values in each cultured specimen, it is possible to link the lowest calculated pH values to the experimental culture pH values while the upper pH limit is slightly below 9. This variability can be interpreted as follows: foraminifera variably increase the pH at the biomineralization site to about 9. This increase above ambient seawater pH leads to a range in δ 11B (Δ 11B) for each seawater pH. This Δ 11B is linearly correlated with the culture seawater pH with a slope of -13.1 per pH unit, and is independent of the fractionation factor α4-3, or the δ 11B sw through time. It may also be independent of the p KB (the dissociation constant of boric acid) value. Therefore, Δ 11B in foraminifera can potentially reconstruct paleo-pH of seawater.

  11. Effect of n-octanol in the mobile phase on lipophilicity determination by reversed-phase high-performance liquid chromatography on a modified silica column.

    PubMed

    Benhaim, Deborah; Grushka, Eli

    2008-10-31

    In this study, we show that the addition of n-octanol to the mobile phase improves the chromatographic determination of lipophilicity parameters of xenobiotics (neutral solutes, acidic, neutral and basic drugs) on a Phenomenex Gemini C18 column. The Gemini C18 column is a new generation hybrid silica-based column with an extended pH range capability. The wide pH range (2-12) afforded the examination of basic drugs and acidic drugs in their neutral form. Extrapolated retention factor values, [Formula: see text] , obtained on the above column with the n-octanol-modified mobile phase were very well correlated (1:1 correlation) with literature values of logP (logarithm of the partition coefficient in n-octanol/water) of neutral compounds and neutral drugs (69). In addition, we found good linear correlations between measured [Formula: see text] values and calculated values of the logarithm of the distribution coefficient at pH 7.0 (logD(7.0)) for ionized acidic and basic drugs (r(2)=0.95). The Gemini C18 phase was characterized using the linear solvation energy relationship (LSER) model of Abraham. The LSER system constants for the column were compared to the LSER constants of n-octanol/water extraction system using the Tanaka radar plots. The comparison shows that the two methods are nearly equivalent.

  12. Ozonation of clofibric acid catalyzed by titanium dioxide.

    PubMed

    Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy

    2009-09-30

    The removal of clofibric acid from aqueous solution has been investigated in catalytic and non-catalytic semicontinuous ozonation runs. Kinetic data were analyzed using second order expressions for the reaction between organics and ozone or hydroxyl radicals. Catalytic runs used a commercial titanium dioxide catalyst consisting of fumed colloidal particles. The kinetic constant of the non-catalytic ozonation of clofibric acid at pH 3 was 8.16 x 10(-3)+/-3.4 x 10(-4)L mmol(-1)s(-1). The extent of mineralization during non-catalytic runs ranged from 50% at pH 7 to 20% at pH 3 in a reaction that essentially took place during the first 10-20 min. The catalyst increased the total extent of mineralization, its effect being more important during the first part of the reaction. The pseudo-homogeneous catalytic rate constant was 2.17 x 10(-2) L mmol(-1)s(-1) at pH 3 and 6.80 x 10(-1)L mmol(-1)s(-1) at pH 5, with up to a threefold increase with respect to non-catalytic constants using catalyst load of 1g/L. A set of stopped-flow experiments were designed to elucidate the role of catalyst, whose effect was probably due to the adsorption of organics on catalytic sites rather than to the promotion of ozone decomposition.

  13. Erosive effects of common beverages on extracted premolar teeth.

    PubMed

    Seow, W K; Thong, K M

    2005-09-01

    Dental erosion is highly prevalent today, and acidic drinks are thought to be an important cause. The aim of the present investigation was to determine the erosive potential of a range of common beverages on extracted human teeth. The beverages were tested for their individual pHs using a pH meter. The clinical effects of the most erosive beverages were determined by the degree of etching and Vickers microhardness of enamel. The results showed that many common beverages have pHs sufficiently low to cause enamel erosion. Lime juice concentrate (pH 2.1) had the lowest pH, followed by Coca-cola and Pepsi (both with pH 2.3) and Lucozade (pH 2.5). The erosive potential of these beverages was demonstrated by the deep etching of the enamel after five minutes. The Vickers Hardness of enamel was reduced by about 50 per cent in the case of lime juice (p < 0.001) and 24 per cent in the case of Coca-cola (p < 0.004). Addition of saliva to 50 per cent (v/v) of Coca-cola completely reversed the erosive effects on the enamel. Although only a few of the beverages with the lowest pHs were tested, the present study showed that the most acidic drinks had the greatest erosive effects on enamel. While saliva was protective against erosion, relatively large volumes were required to neutralize the acidity.

  14. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the Hot Acidities were comparable for fresh and most aged samples. A meaningful "net" acidity can be determined from a measured Hot Acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. The use of net alkalinity = (Alkalinitymeasured - Hot Aciditymeasured) to design mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions. ?? 2005 Elsevier Ltd. All rights reserved.

  15. Synthesis and activity of Helicobacter pylori urease and catalase at low pH.

    PubMed Central

    Bauerfeind, P; Garner, R; Dunn, B E; Mobley, H L

    1997-01-01

    BACKGROUND: Helicobacter pylori produces large amounts of urease presumably to be prepared for the rare event of a sudden acid exposure. The hypothesis that H pylori is acid sensitive and protein production is inhibited by low pH was examined. METHODS: H pylori or its soluble enzymes were incubated buffered or unbuffered at a pH ranging from 2-7 in the presence of 5 mM urea for 30 minutes. After exposure, urease and catalase activities of whole cells, supernatants, and soluble enzyme preparations were measured at pH 6.8. Newly synthesised enzyme was quantified by immunoprecipitation of [35S]-methionine labelled protein. RESULTS: Exposure to buffer below pH 4 resulted in loss of intracellular urease activity. In soluble enzyme preparations and supernatant, no urease activity was measurable after incubation at pH < 5. In contrast, catalase in whole cells, supernatant, and soluble enzyme preparations remained active after exposure to pH > or = 3. Exposure below pH 5 inhibited synthesis of total protein including nascent urease and catalase. At pH 6 or 7, urease represented 10% of total protein, catalase 1.5%. Exposure of H pylori to unbuffered HCl (pH > 2) resulted in an immediate neutralisation; urease and catalase activities and synthesis were unchanged. CONCLUSION: Low surrounding pH reduces activity of urease and synthesis of nascent urease, catalase, and presumably of most other proteins. This suggests that H pylori is not acidophilic although it tolerates short-term exposure to low pH. PMID:9155571

  16. Influence of long-term exposure to simulated acid rain on development, reproduction and acaricide susceptibility of the carmine spider mite, Tetranychus cinnabarinus

    PubMed Central

    Wang, Jin-Jun; Zhang, Jian-Ping; He, Lin; Zhao, Zhi-Mo

    2006-01-01

    Development, reproduction and acaricide susceptibility of Tetranychus cinnabarinus (Boisduvals) (Acari: Tetranychidae) were investigated after long-term (about 40 generations) exposure to various levels of acid rain; pH 2.5, 3.0, 4.0, and 5.6. Deionized water (pH 6.8) served as a control. The mites were reared on eggplant leaves at 28°C, 80%RH and a photoperiod of 14:10 (L:D) in the laboratory. The results showed that the duration of the immature stage was significantly affected by acid rain exposure. The shortest duration (8.90 days) was recorded for populations exposed to pH 5.6 acid rain, while the longest duration (9.37 days) occurred after exposure to pH 2.5 acid rain. Compared with the control population, adult longevity was shortened with an increase in acidity. Similarly, the oviposition duration was also shortened by an increase in acidity. Statistically, female fecundity did not differ significantly between pH 5.6, pH 4.0 and control populations, but did differ significantly between the control population and those exposed to pH 2.5 and pH 3.0 acid rain. This suggested that the mite suffered reproductive defects after long-term exposure to acid rain with higher acidity (pH 2.5 and 3.0). The intrinsic rate of increase among different populations was not significantly affected, but the net reproductive rate of populations exposed to pH 2.5 and 3.0 acid rain was significantly less than pH4.0, 5.6, and control populations. Bioassay results showed that after long-term exposure to acid rain, susceptibility of the mites to two acaricides, dichlorvos and fenpropathrin, did not change significantly. PMID:19537978

  17. Physical Characterization of Magnetic Bacteria and Their Electromagnetic Properties in the Frequency Range 1-400 GHz

    DTIC Science & Technology

    1986-05-14

    PA IA 50 mg lipoic acid 50 mP --- TABLE 2. Estimated maximum cell concentrations based upon the elemental composition of the growth medium. In medium...Added amount per liter Tartaric acid 0.37 g Succinic acid 0.37 g Sodium acetate 0.05 g Sodium nitrate 0.17 g Monopotassium phosphate 0.69 g Sodium...Distilled water I liter ) Alternatively, 0.03 g ascorbic acid *±) Stock solution of 2.7 g/L FeC13 and 1.9 g/L Quinic acid ***) Mineral medium (pH 6.5 w/KOH

  18. Investigation on solubility of hydroxy dibasic acids in alkanolamine solutions

    NASA Astrophysics Data System (ADS)

    Du, M.

    2017-12-01

    Solubilities of three hydroxy dibasic (adipic, suberic, and sebacic) acids in alkanolamine solutions were measured within the 30-90℃ temperature range. It is found that solubility of these acids sharply grows with temperature and concentration of alkanolamine solvent. In addition, the study substantiates the adjustment of pH to optimize the CO2 absorption and desorption processes. The precipitation of added acids from alkanolamine solvents by cooling is found to be quite problematic, which makes the recovery of residual acids from lean alkanolamine solvents non-feasible and requires the application of alternative methods.

  19. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  20. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  1. [Physicochemical and microbiological evaluation of 3 commercial guava jams (Psidium guajava L.)].

    PubMed

    López, R; Ramírez, A O; Graziani de Fariñas, L

    2000-09-01

    Four different production batches were taken from each brand. Samples were purchased from retail markets in Maracay, Cagua and Turmero. (Venezuela). The average physical and chemical values were: vacuum = 38.81 cm Hg; pH = 3.28; titrable acidity (%citric acid) = 0.59%; degree Brix = 67.24; reducing sugars = 55.28%; total sugars = 62.28, and the color parameters a = +14.44, b = +8.77 and L = 17.09. Molds, yeast and aerobic plate counts were lower than 10 UFC/g; it reveals an excellent microbiological quality of the product. The studied jams degree Brix and acidity fulfil COVENIN (1) requirements for jam products, but not pH range. In agreement with variance analysis, there were highly significance differences between the samples and among the shares of each sample for all physical and chemical properties evaluated.

  2. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    PubMed

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.

  3. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.

    PubMed

    Ota, Masaki; Takenaka, Motohiro; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi

    2015-01-01

    Photoautotrophic fatty acid production of a highly CO2 -tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol-photon m(-2) s(-1) was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β-oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH-dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3 (-) ]/([CO2 ]+n[ CO32-]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils. © 2015 American Institute of Chemical Engineers.

  4. Composition of precipitation in remote areas of the world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, J.N.; Likens, G.E.; Keene, W.C.

    1982-10-20

    The Global Precipitation Chemistry Project collects precipitation by event to determine composition and processes controlling it in five remote areas. Compositions (excluding sea-salt) at St. Georges, Bermuda, were primarily controlled by anthropogenic processes; composition and acidities at San Carlos, Venezuela, Katherine, Australia, Poker Flat, Alaska, and Amsterdam Island were controlled by unknown mixtures of natural or anthropogenic processes. Precipitation was acidic; average volume-weighted pH values were 4.8 for Bermuda; 5.0, Alaska; 4.9, Amsterdam Island; 4.8, Australia; 4.8, Venezuela. Acidities at Bermuda and Alaska were from long-range transport of sulfate aerosol; at Venezuela, Australia, and Amsterdam Island, from mixtures of weakmore » organic and strong mineral acids, primarily H/sub 2/SO/sub 4/. Relative proportions of weak to strong acids were largest at Venezuela and lowest at Amsterdam Island. Weak and strong acids were from mixtures of natural and anthropogenic processes. Once contributions from human activities were removed, the lower limit of natural contributions was probably greater than or equal to pH 5.« less

  5. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study.

    PubMed

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo

    2017-04-01

    Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.

  6. Surface Complexation Modeling of Fluoride Adsorption by Soil and the Role of Dissolved Aluminum on Adsorption

    NASA Astrophysics Data System (ADS)

    Padhi, S.; Tokunaga, T.

    2017-12-01

    Adsorption of fluoride (F) on soil can control the mobility of F and subsequent contamination of groundwater. Hence, accurate evaluation of adsorption equilibrium is a prerequisite for understanding transport and fate of F in the subsurface. While there have been studies for the adsorption behavior of F with respect to single mineral constituents based on surface complexation models (SCM), F adsorption to natural soil in the presence of complexing agents needs much investigation. We evaluated the adsorption processes of F on a natural granitic soil from Tsukuba, Japan, as a function of initial F concentration, ionic strength, and initial pH. A SCM was developed to model F adsorption behavior. Four possible surface complexation reactions were postulated with and without including dissolved aluminum (Al) and Al-F complex sorption. Decrease in F adsorption with the increase in initial pH was observed in between the initial pH range of 4 to 9, and a decrease in the rate of the reduction of adsorbed F with respect to the increase in the initial pH was observed in the initial pH range of 5 to 7. Ionic strength variation in the range of 0 to 100mM had insignificant effect on F removal. Changes in solution pH were observed by comparing the solution before and after F adsorption experiments. At acidic pH, the solution pH increased, whereas at alkaline pH, the solution pH decreased after equilibrium. The SCM including dissolved Al and the adsorption of Al-F complex can simulate the experimental results quite successfully. Also, including dissolved Al and the adsorption of Al-F complex to the model explained the change in solution pH after F adsorption.

  7. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc.

  8. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc. PMID:27077915

  9. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively.

  10. Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production.

    PubMed

    Cui, Haojie; Fu, Minglai; Yu, Shen; Wang, Ming Kuang

    2011-02-28

    Biosorption, as an effective and low-cost technology treating industrial wastewaters containing Cr(VI), has become a significant concern worldwide. In this work, acid-modified byproducts of beer production (BBP) were used to remove Cr(VI) from aqueous solutions. Removal of Cr(VI) increases as the pH is decreased from 4.0 to 1.5, but the maximum of total Cr removal is obtained in a pH range from 2.0 to 2.5. Nearly 60% of the initial Cr(VI) (100 mg L(-1)) was adsorbed or reduced to Cr(III) within the first 10 min at pH 2.0. The Cr(VI) removal capability of acid-modified BBP materials was almost completely retained after regenerating with acid. FT-IR and XPS spectra revealed that carboxylate and carboxyl groups on the surface of modified BBP materials play a major role in Cr(VI) binding and reduction, whereas amide and other groups play a minor role in the Cr(VI) removal process. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Cloning and characterization of a novel acidic cutinase from Sirococcus conigenus.

    PubMed

    Nyyssölä, Antti; Pihlajaniemi, Ville; Häkkinen, Mari; Kontkanen, Hanna; Saloheimo, Markku; Nakari-Setälä, Tiina

    2014-04-01

    A cutinase gene (ScCut1) was amplified by PCR from the genomic DNA of the ascomycetous plant pathogen Sirococcous conigenus VTT D-04989 using degenerate primers designed on the basis of conserved segments of known cutinases and cutinase-like enzymes. No introns or N- or O-glycosylation sites could be detected by analysis of the ScCut1 gene sequence. The alignment of ScCut1 with other fungal cutinases indicated that ScCut1 contained the conserved motif G-Y-S-Q-G surrounding the active site serine as well as the aspartic acid and histidine residues of the cutinase active site. The gene was expressed in Pichia pastoris, and the recombinantly produced ScCut1 enzyme was purified to homogeneity by immobilized metal affinity chromatography exploiting a C-terminal His-tag translationally fused to the protein. The purified ScCut1 exhibited activity at acidic pH. The K(m) and V(max) values determined for pNP-butyrate esterase activity at pH 4.5 were 1.7 mM and 740 nkat mg⁻¹, respectively. Maximal activities were determined at between pH 4.7 and 5.2 and at between pH 4.1 and 4.6 with pNP-butyrate and tritiated cutin as the substrates, respectively. With both substrates, the enzyme was active over a broad pH range (between pH 3.0 and 7.5). Activity could still be detected at pH 3.0 both with tritiated cutin and with p-nitrophenyl butyrate (relative activity of 25 %) as the substrates. ScCut1 showed activity towards shorter (C2 to C3) fatty acid esters of p-nitrophenol than towards longer ones. Circular dichroism analysis suggested that the denaturation of ScCut1 by heating the protein sample to 80 °C was to a great extent reversible.

  12. Inconsistency in the Diagnosis of Functional Heartburn: Usefulness of Prolonged Wireless pH Monitoring in Patients With Proton Pump Inhibitor Refractory Gastroesophageal Reflux Disease

    PubMed Central

    Penagini, Roberto; Sweis, Rami; Mauro, Aurelio; Domingues, Gerson; Vales, Andres; Sifrim, Daniel

    2015-01-01

    Background/Aims The diagnosis of functional heartburn is important for management, however it stands on fragile pH monitoring variables, ie, acid exposure time varies from day to day and symptoms are often few or absent. Aim of this study was to investigate consistency of the diagnosis of functional heartburn in subsequent days using prolonged wireless pH monitoring and its impact on patients’ outcome. Methods Fifty proton pump inhibitotor refractory patients (11 male, 48 years [range, 38–57 years]) with a diagnosis of functional heart-burn according to Rome III in the first 24 hours of wireless pH monitoring were reviewed. pH variables were analysed in the following 24-hour periods to determine if tracings were indicative of diagnosis of non-erosive reflux disease (either acid exposure time > 5% or normal acid exposure time and symptom index ≥ 50%). Outcome was assessed by review of hospital files and/or telephone interview. Results Fifteen out of 50 patients had a pathological acid exposure time after the first day of monitoring (10 in the second day and 5 in subsequent days), which changed their diagnosis from functional heartburn to non-erosive reflux disease. Fifty-four percent of non-erosive reflux disease vs 11% of functional heartburn patients (P < 0.003) increased the dose of proton pump inhibitors or underwent fundoplication after the pH test. Outcome was positive in 77% of non-erosive reflux disease vs 43% of functional heartburn patients (P < 0.05). Conclusions One-third of patients classified as functional heartburn at 24-hour pH-monitoring can be re-classified as non-erosive reflux disease after a more prolonged pH recording period. This observation has a positive impact on patients’ management. PMID:25843078

  13. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH.

    PubMed

    Rupprecht, Christian; Wingen, Marcus; Potzkei, Janko; Gensch, Thomas; Jaeger, Karl-Erich; Drepper, Thomas

    2017-09-20

    The intracellular pH is an important modulator of various bio(techno)logical processes such as enzymatic conversion of metabolites or transport across the cell membrane. Changes of intracellular pH due to altered proton distribution can thus cause dysfunction of cellular processes. Consequently, accurate monitoring of intracellular pH allows elucidating the pH-dependency of (patho)physiological and biotechnological processes. In this context, genetically encoded biosensors represent a powerful tool to determine intracellular pH values non-invasively and with high spatiotemporal resolution. We have constructed a toolbox of novel genetically encoded FRET-based pH biosensors (named Fluorescence Biosensors for pH or FluBpH) that utilizes the FMN-binding fluorescent protein EcFbFP as donor domain. In contrast to many fluorescent proteins of the GFP family, EcFbFP exhibits a remarkable tolerance towards acidic pH (pK a ∼3.2). To cover the broad range of physiologically relevant pH values, three EYFP variants exhibiting pK a values of 5.7, 6.1 and 7.5 were used as pH-sensing FRET acceptor domains. The resulting biosensors FluBpH 5.7, FluBpH 6.1 and FluBpH 7.5 were calibrated in vitro and in vivo to accurately evaluate their pH indicator properties. To demonstrate the in vivo applicability of FluBpH, changes of intracellular pH were ratiometrically measured in E. coli cells during acid stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Unrefined humic substances as a potential low-cost amendment for the management of acidic groundwater contamination.

    PubMed

    Gonzalez-Raymat, Hansell; Anagnostopoulos, Vasileios; Denham, Miles; Cai, Yong; Katsenovich, Yelena P

    2018-04-15

    The present study explores a novel application of Huma-K, a commercially available, unrefined humic substance, as a promising low-cost source of organic matter for in situ remediation of contaminated acidic groundwater plumes. This can be achieved by creating a humic-rich coating on the surface of minerals which can enhance the sorption of contaminants from groundwater. Huma-K was characterized by means of scanning electron microscopy equipped with energy dispersive spectroscopy, Fourier-transform infrared analysis, and potentiometric titrations. Batch experiments were performed to investigate the sorption-desorption behavior of Huma-K and to evaluate what conditions (pH, contact time, and initial Huma-K concentration) affect these processes upon injection into aquifer sediments. As evidenced by potentiometric titrations, Huma-K possesses functional groups that have an acidic nature, with pK values in the range of 4-6 (carboxylic) and 9-10 (phenolic). Sorption, homogeneous precipitation, and surface-induced precipitation seem to be favored in the presence of sediment at pH 4, where there is less deprotonation of acidic functional groups. As the pH is increased, functional groups become negatively charged, leading to electrostatic repulsion and dissolution of Huma-K from sediment. Kinetic experiments indicate that Huma-K sorption is a slow-rate process, most likely governed by film diffusion. The enhanced sorption of Huma-K in acidic conditions suggests that it may be used to create a subsurface treatment zone in acidic aquifers for the sequestration of contaminants such as uranium. The treatment zone will persist as long as the pH does not increase sufficiently to cause soil-bound Huma-K to be released, remobilizing aqueous contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Strong Ion Regulatory Abilities Enable the Crab Xenograpsus testudinatus to Inhabit Highly Acidified Marine Vent Systems

    PubMed Central

    Hu, Marian Y.; Guh, Ying-Jey; Shao, Yi-Ta; Kuan, Pou-Long; Chen, Guan-Lin; Lee, Jay-Ron; Jeng, Ming-Shiou; Tseng, Yung-Che

    2016-01-01

    Hydrothermal vent organisms have evolved physiological adaptations to cope with extreme abiotic conditions including temperature and pH. To date, acid-base regulatory abilities of vent organisms are poorly investigated, although this physiological feature is essential for survival in low pH environments. We report the acid-base regulatory mechanisms of a hydrothermal vent crab, Xenograpsus testudinatus, endemic to highly acidic shallow-water vent habitats with average environment pH-values ranging between 5.4 and 6.6. Within a few hours, X. testudinatus restores extracellular pH (pHe) in response to environmental acidification of pH 6.5 (1.78 kPa pCO2) accompanied by an increase in blood HCO3- levels from 8.8 ± 0.3 to 31 ± 6 mM. Branchial Na+/K+-ATPase (NKA) and V-type H+-ATPase (VHA), the major ion pumps involved in branchial acid-base regulation, showed dynamic increases in response to acidified conditions on the mRNA, protein and activity level. Immunohistochemical analyses demonstrate the presence of NKA in basolateral membranes, whereas the VHA is predominantly localized in cytoplasmic vesicles of branchial epithelial- and pillar-cells. X. testudinatus is closely related to other strong osmo-regulating brachyurans, which is also reflected in the phylogeny of the NKA. Accordingly, our results suggest that the evolution of strong ion regulatory abilities in brachyuran crabs that allowed the occupation of ecological niches in euryhaline, freshwater, and terrestrial habitats are probably also linked to substantial acid-base regulatory abilities. This physiological trait allowed X. testudinatus to successfully inhabit one of the world's most acidic marine environments. PMID:26869933

  16. Ionization of short polymethacrylic acid: titration, DLS, and model calculations.

    PubMed

    Pohlmeier, A; Haber-Pohlmeier, S

    2004-05-15

    In this work the charging of polymethacrylic acid in excess electrolyte solution is investigated experimentally by titration and dynamic light scattering. The results are analyzed by a penetrable sphere model, which employs the Poisson-Boltzmann equation for the description of electrostatic interactions and takes into account specific binding of H+ and Na+. The evaluation of the DLS data yields two relaxation modes. The slow mode is present only at finite degrees of charging and is therefore caused by collective diffusion. The fast mode, which corresponds to diffusion coefficients in the range from (1.1 to 1.5) x 10(-10) m2 s(-1), is present over the whole pH range. This reflects the diffusional dynamics of the polyion itself and allows the calculation of hydrodynamic radii for equivalent spheres (RH). These increase from 1.5 nm at pH 2.14 up to 1.8 nm for a degree of deprotonation alpha=0.47 at pH 5.86. With a further increase of pH the radii slightly decrease to 1.6 nm. Setting the radius of the penetrable sphere equal to RH, we can successfully model the overall charging curve with logK0H=4.85 and logK0Na=-0.6. This means that weak complexes of the type COO---Na are formed, which reduce the effective charge inside the polyelectrolyte coil.

  17. Water quality of the Upper West Branch Susquehanna River and tributary streams between Curwensville and Renovo, Pennsylvania, May and July 1984

    USGS Publications Warehouse

    Hainly, R.A.; Barker, J.L.

    1993-01-01

    The soils and rocks of the Upper West Branch Susquehanna River basin, from its headwaters downstream for 150 miles, are laden with pyritic materials that have the potential to produce acid mine drainage. The effects of mine drainage are severe, particularly in the reach between Curwensville and Renovo where present water quality cannot support viable populations of benthic macroinvertebrates or fish. During base-flow periods in May and July 1984, streamflow and water quality were measured at four sites on the West Branch Susquehanna River and near the mouths of 94 tributaries. Water-quality constituents determined were temperature, specific conductance, pH, acidity, alkalinity, and concentrations of dissolved sulfate and total and dissolved forms of iron, manganese, aluminum, and zinc. The data collected for the study indicate that the predominant influence on water quality of the tributaries is land use. An area where few or no coal deposits or disturbed area were present was found to have relatively good surface-water quality (median pH was nearly 5.5 units), whereas areas where coal mining was active in the basin, or where large areas of unreclaimed mines were present, were found to have poorest water quality (median pH was generally less than 4.0 units). In general, Moshannon, Sinnemahoning, Clearfield, and Kettle Creeks were found to be the largest tributary sources of acidity and total-recoverable iron to the river. During the May sampling, Moshannon, Sinnemahoning, and Clearfield Creeks contributed 63 percent of the 365 tons/day of acidity, and Moshannon and Clearfield Creeks contributed 76 percent of the 44.8 tons/day of total-recoverable iron that were discharged to the river. During the July sampling, Moshannon, Kettle, and Clearfield Creeks contributed 60 percent of the 131 tons/day of acidity, and Moshannon and Kettle Creeks contributed 51 percent of the 6.5 tons/day of total-recoverable iron discharged to the river . The West Branch Susquehanna River was found to have pH ranging from 5.4 to 6.5 units and specific conductance ranging from 267 to 310 microsiemens per centimeter at the most upstream site at Curwensville. The water quality was most degraded at the site at Karthaus (pH 3.9 to 4.1 units, specific conductance 330 to 610 microsiemens per centimeter). Quality gradually improved downstream to the site at Renovo (pH 3.8 to 4.6 units, specific conductance 200 to 392 microsiemens per centimeter), although the quality did not recover to that found at Curwensville.

  18. Effect of pH and nitrite concentration on nitrite oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J

    2011-10-01

    The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A fluorescent pH probe for acidic organelles in living cells.

    PubMed

    Chen, Jyun-Wei; Chen, Chih-Ming; Chang, Cheng-Chung

    2017-09-26

    A water-soluble pH sensor, 2-(6-(4-aminostyryl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N, N-dimethylethanamine (ADA), was synthesized based on the molecular design of photoinduced electron transfer (PET) and intramolecular charge transfer (ICT). The fluorescence emission response against a pH value is in the range 3-6, which is suitable for labelling intracellular pH-dependent microenvironments. After biological evolution, ADA is more than a pH biosensor because it is also an endocytosis pathway tracking biosensor that labels endosomes, late endosomes, and lysosome pH gradients. From this, the emissive aggregates of ADA and protonated-ADA in these organs were evaluated to explore how this probe stresses emission colour change to cause these unique cellular images.

  20. A quinoline-based fluorometric and colorimetric dual-modal pH probe and its application in bioimaging

    NASA Astrophysics Data System (ADS)

    Zhu, Qin; Li, Zhao; Mu, Lan; Zeng, Xi; Redshaw, Carl; Wei, Gang

    2018-01-01

    The compound (E)-8-hydroxyl-2-[(E)-2-(2, 4-dihydroxyphenyl)vinyl]-quinoline (1) has been developed as a fluorometric and colorimetric dual-modal probe for pH detection in solution and in vivo. Remarkable changes in the fluorescence intensity with large Stokes shifts and colorimetric responses were observed as a function of pH. The sensing mechanisms involving protonation and deprotonation processes over the acidic and alkaline pH ranges were confirmed by 1H NMR and IR spectroscopic analysis. Furthermore, the application of probe 1 for the imaging of live PC3 cells was successfully achieved. Test strips based on probe 1 were fabricated, and were found to act as a convenient and efficient pH test kits.

  1. Ratiometric Imaging of Extracellular pH in Dental Biofilms.

    PubMed

    Schlafer, Sebastian; Dige, Irene

    2016-03-09

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms. pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of extracellular pH. After confocal microscopic image acquisition, the bacterial biomass is removed from all pictures using digital image analysis software, which permits to exclusively calculate extracellular pH. pH ratiometry with the ratiometric dye is well-suited to study extracellular pH in thin biofilms of up to 75 µm thickness, but is limited to the pH range between 4.5 and 7.0.

  2. Anodic stripping voltammetry with carbon paste electrodes for rapid Ag(I) and Cu(II) determinations.

    PubMed

    Labar, C; Lamberts, L

    1997-05-01

    The simultaneous determination of silver(I) and copper(II) is realized for the routine analysis of trace levels of these elements by anodic stripping voltammetry (ASV) at the carbon paste electrode (CPE). The electrochemical response is studied in 14 different supporting electrolytes, ranging from acidic solutions (pH 0.1) to neutral and basic (pH 9.7) media, and the parameters governing electrodeposition and stripping steps are characterized for each medium by the use of pseudo-voltammograms. Comparison between different modes of matter transport mechanisms is also given. The dynamic range of the method is 0.05 to 150 mug 1(-1) Ag(I) in the majority of the media studied and can be extended to 400 mug l(-1) in selected media, with a general reproducibility in the +/- 2% range for five replicate measurements. The total analysis time lies between approximately 30 s and 10 min. Activation of the CPE surface has been studied, but this pretreatment is demonstrated to be unfavourable and is replaced by a simpler unique 'cleaning' procedure of dipping the CPE in diluted nitric acid.

  3. Reactions of cisplatin with cysteine and methionine at constant pH; a computational study.

    PubMed

    Zimmermann, Tomás; Burda, Jaroslav V

    2010-02-07

    Interactions of hydrated cisplatin complexes cis-[Pt(NH(3))(2)Cl(H(2)O)](+) and cis-[Pt(NH(3))(2)(OH)(H(2)O)](+) with cysteine and methionine in an aqueous solution at constant pH were explored using computational methods. Thermodynamic parameters of considered reactions were studied in a broad pH range, taking up to 4 protonation states of each molecule into account. Reaction free energies at constant pH were obtained from standard Gibbs free energies using the Legendre transformation. Solvation free energies and pK(a) values were calculated using the PCM model with UAHF cavities, recently adapted by us for transition metal complexes. The root mean square error of pK(a) values on a set of model platinum complexes and amino acids was equal to 0.74. At pH 7, the transformed Gibbs free energies differ by up to 15 kcal mol(-1) from the Gibbs free energies of model reactions with a constant number of protons. As for cysteine, calculations confirmed a strong preference for kappaS monodenate bonding in a broad pH range. The most stable product of the second reaction step, which proceeds from monodentate to chelate complex, is the kappa(2)S,N coordinated chelate. The reaction with methionine is more complex. In the first step all three considered methionine donor atoms (N, S and O) are thermodynamically preferred products depending on the platinum complex and the pH. This is in accordance with the experimental observation of a pH dependent migration between N and S donor atoms in a chemically related system. The most stable chelates of platinum with methionine are kappa(2)S,N and kappa(2)N,O bonded complexes. The comparison of reaction free energies of both amino acids suggests, that the bidentate methionine ligand can be displaced even by the monodentate cysteine ligand under certain conditions.

  4. Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release

    PubMed Central

    Vinner, Gurinder K.; Vladisavljević, Goran T.; Clokie, Martha R. J.

    2017-01-01

    The prevalence of pathogenic bacteria acquiring multidrug antibiotic resistance is a global health threat to mankind. This has motivated a renewed interest in developing alternatives to conventional antibiotics including bacteriophages (viruses) as therapeutic agents. The bacterium Clostridium difficile causes colon infection and is particularly difficult to treat with existing antibiotics; phage therapy may offer a viable alternative. The punitive environment within the gastrointestinal tract can inactivate orally delivered phages. C. difficile specific bacteriophage, myovirus CDKM9 was encapsulated in a pH responsive polymer (Eudragit® S100 with and without alginate) using a flow focussing glass microcapillary device. Highly monodispersed core-shell microparticles containing phages trapped within the particle core were produced by in situ polymer curing using 4-aminobenzoic acid dissolved in the oil phase. The size of the generated microparticles could be precisely controlled in the range 80 μm to 160 μm through design of the microfluidic device geometry and by varying flow rates of the dispersed and continuous phase. In contrast to free ‘naked’ phages, those encapsulated within the microparticles could withstand a 3 h exposure to simulated gastric fluid at pH 2 and then underwent a subsequent pH triggered burst release at pH 7. The significance of our research is in demonstrating that C. difficile specific phage can be formulated and encapsulated in highly uniform pH responsive microparticles using a microfluidic system. The microparticles were shown to afford significant protection to the encapsulated phage upon prolonged exposure to an acid solution mimicking the human stomach environment. Phage encapsulation and subsequent release kinetics revealed that the microparticles prepared using Eudragit® S100 formulations possess pH responsive characteristics with phage release triggered in an intestinal pH range suitable for therapeutic purposes. The results reported here provide proof-of-concept data supporting the suitability of our approach for colon targeted delivery of phages for therapeutic purposes. PMID:29023522

  5. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    PubMed

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  6. Radiolysis of poly(acrylic acid) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ulanski, Piotr; Bothe, Eberhard; Hildenbrand, Knut; Rosiak, Janusz M.; von Sonntag, Clemens

    1995-02-01

    Poly(acrylic acid), PAA, reacts with OH-radicals yielding -CHCH(CO 2H)- (β-radicals) and -CH 2C(CO 2H)- (α-radicals) in a ratio of approximately 2:1. This estimate is based on pulse radiolysis data where the absorption spectrum of the PAA-radicals was compared with the spectra of α-radicals from model systems. The β-radicals convert slowly into α-radicals ( k = 0.7 s -1 at pH 10). This process has also been observed by ESR. At PAA-concentrations of 10 -2 mol dm -3 chain scission dominates over other competing reactions except at low pH. The rate of chain scission was followed by pulse conductometry and in the pH range 7-9 k = 4 × 10 -2s -1 was observed. Oxygen reacts with PAA-radicals with k = 3.1 × 10 8 dm 3 mol -1 s -1 at pH 3.5 and k = 1.0 × 10 8 dm 3 mol -1 s -1 at pH 10. The corresponding peroxyl radicals undergo slow intramolecular H-transfer yielding a UV-absorbing product whose properties are that of 1,3-diketones.

  7. Halolactibacillus halophilus gen. nov., sp. nov. and Halolactibacillus miurensis sp. nov., halophilic and alkaliphilic marine lactic acid bacteria constituting a phylogenetic lineage in Bacillus rRNA group 1.

    PubMed

    Ishikawa, Morio; Nakajima, Kazuyuki; Itamiya, Yuko; Furukawa, Sayumi; Yamamoto, Yasushi; Yamasato, Kazuhide

    2005-11-01

    Eleven novel strains of marine-inhabiting lactic acid bacteria that were isolated from living and decaying marine organisms collected from a temperate area of Japan are described. The isolates were motile with peritrichous flagella and non-sporulating. They lacked catalase, quinones and cytochromes. Fermentation products from glucose were lactate, formate, acetate and ethanol. Lactate yield as percentage conversion from glucose was affected by the pH of the fermentation medium: approximately 55 % at the optimal growth pH of 8.0, greater than approximately 70 % at pH 7.0 and less than approximately 30 % at pH 9.0. The molar ratio of the other three products was the same at each cultivation pH, approximately 2 : 1 : 1. Carbohydrates and related compounds were aerobically metabolized to acetate and pyruvate as well as lactate. The isolates were slightly halophilic, highly halotolerant and alkaliphilic. The optimum NaCl concentration for growth was 2.0-3.0 % (w/v), with a range of 0-25.5 %. The optimum pH for growth was 8.0-9.5, with a range of 6.0-10.0. The G+C content of the DNA was 38.5-40.7 mol%. The isolates constituted two genomic species (DNA-DNA relatedness of less than 41 %) each characterized by sugar fermentation profiles. The cell-wall peptidoglycan of both phenotypes contained meso-diaminopimelic acid. The major cellular fatty acids were C(16 : 0) and a-C(13 : 0). Comparative sequence analysis of the 16S rRNA genes revealed that these isolates represent novel species constituting a phylogenetic unit outside the radiation of typical lactic acid bacteria and an independent line of descent within the group composed of the halophilic/halotolerant/alkaliphilic and/or alkalitolerant species in Bacillus rRNA group 1, with 94.8-95.1 % similarity to the genus Paraliobacillus, 93.7-94.1 % to the genus Gracilibacillus and 93.8-94.2 % to Virgibacillus marismortui. On the basis of possession of physiological and biochemical characteristics common to typical lactic acid bacteria within Bacillus rRNA group 1, chemotaxonomic characteristics and phylogenetic independence, a new genus and two species, Halolactibacillus halophilus gen. nov., sp. nov. and Halolatibacillus miurensis sp. nov., are proposed. The type strains are Halolactibacillus halophilus M2-2T (=DSM 17073T=IAM 15242T=NBRC 100868T=NRIC 0628T) (G+C content 40.2 mol%) and Halolactibacillus miurensis M23-1T (=DSM 17074T=IAM 15247T=NBRC 100873T=NRIC 0633T) (G+C content 38.5 mol%).

  8. Colour and pH changes of tempe during extended fermentation

    NASA Astrophysics Data System (ADS)

    Muzdalifah, D.; Athaillah, Z. A.; Nugrahani, W.; Devi, A. F.

    2017-01-01

    Tempe is a nutritious food, prepared mostly from soybeans and was originated in Indonesia. Tempe is sometimes collected beyond its maturity age for culinary purpose. The studies of overripe tempe ranged from microbiology, chemical and nutritional changes, functionality and safety, to sensorial aspect. Study which follows pH and colour changes of tempe during fermentation, however, is scarce. The objectives of this study were to investigate and model the colour and pH changes of tempe and the mould mycelia during extended fermentation with Rhizopus spp. up to 156 hours. Our investigation revealed that both lightness soybeans and mycelia of the tempe decreased with increasing fermentation time while pH of the tempe increased. The decrease of both lightness followed simple cubic equations whilst the pH increased linearly with increasing time. The other a values of tempe decreased by one point in the first 72 h of fermentation and tended to increase later however did not reach the initial a value, The b value decreased by approximately two points during the first 24 h of fermentation and the changes during the rest of fermentation time were not significant. The colour changes were believed to be the results of increased numbers of Rhizopus spp which entered the death phase, increased amount of linoleic and linolenic unsaturated fatty acids which were prone to oxidation, and formation of red coloured vitamin B12. Meanwhile, the increase of pH was majorly because of protein break down which led to increased ammonia production. The utilisation of lactic acid for mould growth also contributed to the alkalinisation, however to a much lesser extent. The lactic acid was previously formed during the soaking which resulted in decrease in pH of initial soybeans.

  9. Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans

    PubMed Central

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J.; Saghatelian, Alan; Ausubel, Frederick M.

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches. PMID:23300454

  10. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  11. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range.

    PubMed

    Hariharan, P S; Pitchaimani, J; Madhu, Vedichi; Anthony, Savarimuthu Philip

    2016-03-01

    Water soluble perylenediimide based fluorophore salt, N,N'-bis(ethelenetrimethyl ammoniumiodide)-perylene-3,4,9,10-tetracarboxylicbisimide (PDI-1), has been used for selective fluorescence sensing of picric acid (PA) and 4-nitroaniline (4-NA) in organic as well as aqueous medium across wide pH range (1.0 to 10.0). PDI-1 showed strong fluorescence in dimethylformamide (DMF) (Φf = 0.26 (DMF) and moderate fluorescence in water. Addition of picric acid (PA) and 4-nitroaniline (4-NA) into PDI-1 in DMF/aqueous solution selectively quenches the fluorescence. The concentration dependent studies showed decrease of fluorescence linearly with increase of PA and 4-NA concentration. The interference studies demonstrate high selectivity for PA and 4-NA. Interestingly, PDI-1 showed selective fluorescence sensing of PA and 4-NA across wide pH range (1.0 to 10.0). Selective fluorescence sensing of PA and 4-NA has also been observed with trifluoroacetate (PDI-2), sulfate (PDI-3) salt of PDI-1 as well as octyl chain substituted PDI (PDI-4) without amine functionality. These studies suggest that PA and 4-NA might be having preferential interaction with PDI aromatic core and quenches the fluorescence. Thus PDI based dyes have been used for selective fluorescent sensing of explosive NACs for the first time to the best our knowledge.

  12. Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.

    PubMed

    Wright, Kellie F

    2015-06-01

    Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pH<7), 2 municipal (or "tap") waters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.

  13. Extraction of rare earth elements from a contaminated cropland soil using nitric acid, citric acid, and EDTA.

    PubMed

    Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng

    2017-08-01

    Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.

  14. Acid rock drainage passive remediation using alkaline clay and impacts of vegetation and saturated sand barrier

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Wen, Y.; Liang, X.

    2017-12-01

    Acid rock drainage (ARD) caused by abundance of coal refuse (CR) deposits in mining regions requires adequate treatment to prevent serious water pollution due to its acidity and high concentrations of sulfate and metals/metalloids. Over the past decades, various approaches have been explored and developed to remediate ARD. This study uses laboratory experiments to investigate the effectiveness and impacts of ARD passive remediation using alkaline clay (AC), a by-product of the aluminum refining process. Twelve column kinetic leaching experiments were set up with CR/AC mixing ratios ranging from 1%AC to 10%AC. Samples were collected from these columns to measure the pH, sulfate, metals/metalloids, acidity and alkalinity. Additional tests of XRD and acid base accounting were also conducted to better characterize the mineral phase in terms of the alkalinity and acidity potential. Based on the leachate measurement results, these columns were further classified into two groups of neutral/near neutral pH and acidic pH for further analysis. In addition, impacts of the vegetation and saturated sand layer on the remediation effectiveness were explored. The results of our long-term (more than three years in some cases) laboratory experiments show that AC is an effective ARD remediation material for the neutralization of leachate pH and immobilization of sulfate and metals such as Fe, Mn, Cu, Zn, Ni, Pb, Cd, Co. The CR/AC mixing ratios higher than 3%AC are found to be effective, with 10% close to optimal. Moreover, the results demonstrate the benefits of using vegetation and a saturated sand barrier. Vegetation acted as a phytoaccumulation/phytoextraction agent, causing an additional immobilization of metals. The saturated sand barrier blocked the oxygen and water diffusion downwards, leading to a reduction of the pyrite oxidation rate. Finally, the proposed remediation approach shows that the acidity consumption will likely occur before all the alkalinity is exhausted, guaranteeing an adequate long-term performance of this remediation approach.

  15. pH regulation of the kinetic stability of the lipase from Thermomyces lanuginosus.

    PubMed

    Wang, H; Andersen, K K; Sehgal, P; Hagedorn, J; Westh, P; Borch, K; Otzen, D E

    2013-01-08

    Thermomyces lanuginosus lipase (TlL) is a kinetically stable protein, resistant toward both denaturation and refolding in the presence of the ionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant decyl maltoside (DecM). We investigate the pH dependence of this kinetic stability. At pH 8, TlL remains folded and enzymatically active at multimillimolar surfactant concentrations but fails to refold from the acid urea-denatured state at submillimolar concentrations of SDS and DecM, indicating a broad concentration range of kinetic trapping or hysteresis. At pH 8, very few SDS molecules bind to TlL. The hysteresis SDS concentration range shrinks when moving to pH 4-6; in this pH range, SDS binds as micellelike clusters. Although hysteresis can be eliminated by reducing disulfide bonds, destabilizing the native state, and lowering the unfolding activation barrier, SDS sensitivity is not directly linked to intrinsic kinetic stability [its resistance to the general chemical denaturant guanidinium chloride (GdmCl)], because TlL unfolds more slowly in GdmCl at pH 6.0 than at pH 8.0. However, the estimated net charge drops from approximately -12 to approximately -5 between pH 8 and 6. SDS denatures TlL at pH 6.0 by nucleating via a critical number of bound SDS molecules on the surface of native TlL to form clusters. These results imply that SDS sensitivity is connected to the availability of appropriately charged regions on the protein. We suggest that conformational rigidity is a necessary but not sufficient feature of SDS resistance, because this has to be combined with sufficient negative electrostatic potential to avoid extensive SDS binding.

  16. A New, Directly Computer-Controlled pH Stat.

    DTIC Science & Technology

    1982-03-08

    Currently, potentiometric reaction-rate methods of analysis find a wide range of analytical application and a number of such procedeires and corresponding...oxidase glucose + 0 2 - gluconic acid + H20 2 Glucose concentrations are determined by potentiometrically measuring the rate at which gluconic acid is...of lKIlz. Electrodes and Reaction Vessel. Changes in pl! are measured * potentiometrically with a combination Ag/AgCl ceramic junction electrode (No

  17. Short-term effects of a simulated acid rain upon the growth and nutrient relations of Pinus strobus, L.

    Treesearch

    Tim Wood; F. H. Bormann

    1976-01-01

    Acidified precipitation may affect the productivity of forests by altering the availability of plant nutrients of by affecting the ability of trees to absorb and assimilate those nutrients. In this study, the short-term effects of simulated acid rain (pH range 5.6 - 2.3) upon the growth and nutrient relations of Eastern White Pine seedlings (Pinus strobus...

  18. Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications.

    PubMed

    Della-Bianca, Bianca E; de Hulster, Erik; Pronk, Jack T; van Maris, Antonius J A; Gombert, Andreas K

    2014-12-01

    Selected Saccharomyces cerevisiae strains are used in Brazil to produce the hitherto most energetically efficient first-generation fuel ethanol. Although genome and some transcriptome data are available for some of these strains, quantitative physiological data are lacking. This study investigates the physiology of S. cerevisiae strain PE-2, widely used in the Brazilian fuel ethanol industry, in comparison with CEN.PK113-7D, a reference laboratory strain, focusing on tolerance to low pH and acetic acid stress. Both strains were grown in anaerobic bioreactors, operated as batch, chemostat or dynamic continuous cultures. Despite their different backgrounds, biomass and product formation by the two strains were similar under a range of conditions (pH 5 or pH < 3, with or without 105 mM acetic acid added). PE-2 displayed a remarkably higher fitness than CEN.PK113-7D during batch cultivation on complex Yeast extract - Peptone - Dextrose medium at low pH (2.7). Kinetics of viability loss of non-growing cells, incubated at pH 1.5, indicated a superior survival of glucose-depleted PE-2 cells, when compared with either CEN.PK113-7D or a commercial bakers' strain. These results indicate that the sulfuric acid washing step, used in the fuel ethanol industry to decrease bacterial contamination due to non-aseptic operation, might have exerted an important selective pressure on the microbial populations present in such environments. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries.

    PubMed

    Kumar, A Ganesh; Nagesh, N; Prabhakar, T G; Sekaran, G

    2008-05-01

    The untanned proteinaceous tannery solid waste, animal fleshing (ANFL), was used as a substrate for acid protease production by Synergistes sp. The strain was isolated from an anaerobic digester used for the treatment of tannery solid waste and was selected for its enhanced protease production at activity 350-420 U/ml. The optimum pH was in the acidic range of 5.5-6.5 and optimum temperature was in mesophilic range of 25-35 degrees C. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the zymogram analyses of the purified protein indicated an estimated molecular mass of 60 kDa. This protease could be classified as aspartic protease based on its inhibition by aspartate type protease inhibitor pepstatin and on non-inhibition by 1,10-phenanthroline, EDTA, EGTA and phenylmethylsulfonyl fluoride. The degradation of ANFL was confirmed by Gas Chromatography-Mass Spectroscopy (GC-MS), Proton Nuclear Magnetic Resonance Spectroscopy (H1 NMR) and Scanning Electron Microscopy (SEM) analyses. In this study we found that the activity of acid protease depended on factors such as calcium concentration, pH and temperature. Based on these lines of evidence, we postulate that this protease is a highly catalytic novel protease of its type.

  20. H{sup +} and Na{sup +} are involved in flagellar rotation of the spirochete Leptospira

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Md. Shafiqul; Morimoto, Yusuke V.; Graduate School of Frontier BioSciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871

    2015-10-16

    Leptospira is a spirochete possessing intracellular flagella. Each Leptospira flagellar filament is linked with a flagellar motor composed of a rotor and a dozen stators. For many bacterial species, it is known that the stator functions as an ion channel and that the ion flux through the stator is coupled with flagellar rotation. The coupling ion varies depending on the species; for example, H{sup +} is used in Escherichia coli, and Na{sup +} is used in Vibrio spp. to drive a polar flagellum. Although genetic and structural studies illustrated that the Leptospira flagellar motor also contains a stator, the couplingmore » ion for flagellar rotation remains unknown. In the present study, we analyzed the motility of Leptospira under various pH values and salt concentrations. Leptospira cells displayed motility in acidic to alkaline pH. In the presence of a protonophore, the cells completely lost motility in acidic to neutral pH but displayed extremely slow movement under alkaline conditions. This result suggests that H{sup +} is a major coupling ion for flagellar rotation over a wide pH range; however, we also observed that the motility of Leptospira was significantly enhanced by the addition of Na{sup +}, though it vigorously moved even under Na{sup +}-free conditions. These results suggest that H{sup +} is preferentially used and that Na{sup +} is secondarily involved in flagellar rotation in Leptospira. The flexible ion selectivity in the flagellar system could be advantageous for Leptospira to survive in a wide range of environment. - Highlights: • This is a study on input energy for motility in the spirochete Leptospira. • Leptospira biflexa exhibited active motility in acidic to alkaline pH. • Both H{sup +} and Na{sup +} are involved in flagellar rotation in Leptospira. • H{sup +} is a primary energy source, but Na{sup +} can secondarily enhance motility.« less

  1. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563.

    PubMed

    Soni, S K; Magdum, A; Khire, J M

    2010-11-01

    Aspergillus niger NCIM 563 produced two different extracellular phytases (Phy I and Phy II) under submerged fermentation conditions at 30°C in medium containing dextrin-glucose-sodium nitrate-salts. Both the enzymes were purified to homogeneity using Rotavapor concentration, Phenyl-Sepharose column chromatography and Sephacryl S-200 gel filtration. The molecular mass of Phy I and II as determined by SDS-PAGE and gel filtration were 66, 264, 150 and 148 kDa respectively, indicating that Phy I consists of four identical subunits and Phy II is a monomer. The pI values of Phy I and II were 3.55 and 3.91, respectively. Phy I was highly acidic with optimum pH of 2.5 and was stable over a broad pH range (1.5-9.0) while Phy II showed a pH optimum of 5.0 with stability in the range of pH 3.5-9.0. Phy I exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. Similarly Phy II was strongly inhibited by Ag(+), Hg(2+) (1 mM) metal ions and Phy I was partially inhibited. Peptide analysis by Mass Spectrometry (MS) MALDI-TOF also indicated that both the proteins were totally different. The K(m) for Phy I and II for sodium phytate was 2.01 and 0.145 mM while V(max) was 5,018 and 1,671 μmol min(-1) mg(-1), respectively. The N-terminal amino acid sequences of Phy I and Phy II were FSYGAAIPQQ and GVDERFPYTG, respectively. Phy II showed no homology with Phy I and any other known phytases from the literature suggesting its unique nature. This, according to us, is the first report of two distinct novel phytases from Aspergillus niger.

  2. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2005-01-01

    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO 3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.

  3. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine.

    PubMed

    Akob, Denise M; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-08-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine

    PubMed Central

    Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. PMID:24928873

  5. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine

    USGS Publications Warehouse

    Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.

  6. Use of metallurgical dust for removal chromium ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pająk, Magdalena; Dzieniszewska, Agnieszka; Kyzioł-Komosińska, Joanna; Chrobok, Michał

    2018-01-01

    The aim of the study was to determine the potential for the application of dust from steel plant as an effective sorbent for removing Cr(III) and Cr(VI) in the form of simple and complex ions - Acid Blue 193 dye from aqueous solutions. Three isotherms models were used to interpret the experimental results namely: Langmuir, Freundlich, and Dubinin-Radushkevich. Estimated equations parameters allowed to determine the binding mechanism. Based on laboratory studies it was found that the dust was characterized by high sorption capacities for Cr ions and dye from the aqueous solution. The sorption capacity of the dust for Cr(III) and Cr(VI) ions depended on the degree of oxidation, pH of solution and kind of anion and changed in series: Cr(III)-Cl pH=5.0> Cr(III)-SO4 pH=5.0> Cr(III)-Cl pH=3.0> Cr(III)-SO4 pH=3.0> Cr(VI) pH=5.0> Cr(VI) pH=3.0. Dust was also characterized by a high maximum sorption capacity of dye at a range of 38.2 - 91.7 mg/g, depending on the dose of dust. Based on the study it was found that dust from a steel plant, containing iron oxides, can be used as low-cost and effective sorbent to remove pollutions containing chromium ions, especially from acidic wastewater.

  7. Determination of multiresidues of three acid herbicides in tobacco by liquid chromatography/tandem mass spectrometry.

    PubMed

    Liu, Shanshan; Bian, Zhaoyang; Yang, Fei; Li, Zhonghao; Fan, Ziyan; Zhang, Hongfei; Wang, Ying; Zhang, Yange; Tang, Gangling

    2015-01-01

    A method to determine residues of the three acid herbicides, 2,4,5-trichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, and 3,6-dichloro-2-methoxybenzoic acid (dicamba), in tobacco using LC/MS/MS is presented. Because these herbicide residues in tobacco might exist in different forms (free acid, salt, and ester), tobacco samples were first pretreated by alkaline hydrolysis and then the pH was adjusted in order to convert the residues completely to their free acid forms. Dichloromethane extraction and dispersive SPE using C18 sorbent were carried out before LC/MS/MS analysis, and quantification was performed using the internal standard method. Linearity was good for all analytes (R(2) ≥ 0.999) in the concentration range of 0.02 to 0.5 mg/kg. LODs were below 0.05 mg/kg. Recoveries ranged from 80.4 to 93.5%, and RSD was below 10%. This simple, efficient, and sensitive method can be applied to the determination of residues of the three acid herbicides in tobacco.

  8. Novel europium (III)-gatifloxacin complex structure with dual functionality for pH sensing and metal recognition in aqueous environment

    NASA Astrophysics Data System (ADS)

    Chen, Muhua; Zheng, Yuhui; Gao, Jinwei; Wang, Qianming

    2016-10-01

    A new type of Eu(III)-gatifloxacin complex with characteristic red luminescence has been prepared. Due to the presence of ionization effect linked to the organic chromophore, the molecular fluorescent sensor demonstrated variable pH-sensitive absorption and emission curves. The red emission derived from europium ions was strong during pH range 8-10. Between pH = 7 and 4, the europium emission remained relatively stable and fluorescence signals of gatifloxacin has been improved substantially. Under acidic conditions (pH = 1 to 3), the dramatic changes in the emission colors (from red, yellow to green) were clearly observed. Moreover, the excitation wavelength can be extended into the visible light range (Ex = 411 nm) by using the concentration effect experiment. Importantly, it gave turn-off emissions in the presence of Cu2+ or Fe3+ and the detection limits were determined to be 6.5 μM for Cu2+ and 6.2 μM for Fe3+ respectively.

  9. The Drenchwater deposit, Alaska: An example of a natural low pH environment resulting from weathering of an undisturbed shale-hosted Zn-Pb-Ag deposit

    USGS Publications Warehouse

    Graham, G.E.; Kelley, K.D.

    2009-01-01

    The Drenchwater shale-hosted Zn-Pb-Ag deposit and the immediate vicinity, on the northern flank of the Brooks Range in north-central Alaska, is an ideal example of a naturally low pH system. The two drainages, Drenchwater and False Wager Creeks, which bound the deposit, differ in their acidity and metal contents. Moderately acidic waters with elevated concentrations of metals (pH ??? 4.3, Zn ??? 1400 ??g/L) in the Drenchwater Creek drainage basin are attributed to weathering of an exposed base-metal-rich massive sulfide occurrence. Stream sediment and water chemistry data collected from False Wager Creek suggest that an unexposed base-metal sulfide occurrence may account for the lower pH (2.7-3.1) and very metal-rich waters (up to 2600 ??g/L Zn, ??? 260 ??g/L Cu and ???89 ??g/L Tl) collected at least 2 km upstream of known mineralized exposures. These more acidic conditions produce jarosite, schwertmannite and Fe-hydroxides commonly associated with acid-mine drainage. The high metal concentrations in some water samples from both streams naturally exceed Alaska state regulatory limits for freshwater aquatic life, affirming the importance of establishing base-line conditions in the event of human land development. The studies at the Drenchwater deposit demonstrate that poor water quality can be generated through entirely natural weathering of base-metal occurrences, and, possibly unmineralized black shale.

  10. Assessment of the in vitro bioactive properties of lactic acid bacteria isolated from native ecological niches of Ecuador.

    PubMed

    Benavides, Ana B; Ulcuango, Mario; Yépez, Lucía; Tenea, Gabriela N

    Lactic acid bacteria are known for their biotechnological potential. In various regions of Ecuador numerous indigenous biological resources are largely undocumented. In this study, we evaluated the potential probiotic characteristics and antagonistic in vitro properties of some lactic acid bacteria from native niches of the subtropical rain forests of Ecuador. These isolates were identified according to their morphological properties, standard API50CH fermentation profile and RAPD-DNA polymorphism pattern. The selected isolates were further evaluated for their probiotic potential. The isolates grew at 15°C and 45°C, survived at a pH ranging from 2.5 to 4.5 in the presence of 0.3% bile (>90%) and grew under sodium chloride conditions. All selected isolates were sensitive to ampicillin, amoxicillin and cefuroxime and some showed resistance to gentamicin, kanamycin and tetracycline. Moreover, the agar well diffusion assay showed that the supernatant of each strain at pH 3.0 and pH 4.0, but not at pH 7.0 exhibited increased antimicrobial activity (inhibition zone >15mm) against two foodborne pathogens, Escherichia coli and Salmonella spp. To our knowledge, this is the first report describing the antagonistic activity against two foodborne pathogens and the probiotic in vitro potential of lactic acid bacteria isolated from native biota of Ecuador. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Purification and characterization of a novel tannase produced by Kluyveromyces marxianus using olive pomace as solid support, and its promising role in gallic acid production.

    PubMed

    Mahmoud, Abeer E; Fathy, Shadia A; Rashad, Mona M; Ezz, Magda K; Mohammed, Amira T

    2018-02-01

    Tannase is considered one of the most important industrial enzymes that find great applications in various sectors. Production of tannases through solid state fermentation (SSF) using agro-industrial wastes is an eco-friendly and cheap technology. Tannase was produced by the yeast Kluyveromyces marxianus using olive pomace as a solid support under SSF. It was purified using ammonium sulfate fractional precipitation followed by Sephadex G-200 gel filtration resulting in 64.6% enzyme yield with 1026.12U/mg specific activity and 24.21 purification fold. Pure tannase had molecular weight of 65 KDa and 66.62 KDa by SDS-PAGE and gel filtration, respectively. It showed a maximal activity at 35°C having two different pH optima, one of which is acidic (4.5) and the other one is alkaline (8.5). The enzyme was stable in the acidic range of pH (4.0-5.5) for 30min, and thermostable within the temperature range 30-70°C. Using tannic acid, the enzyme had a Km value of 0.77mM and Vmax of 263.20μmolemin -1 ml -1 . The effect of different metal ions on enzymatic activity was evaluated. HPLC analysis data indicated that the purified enzyme could carry out 24.65% tannic acid conversion with 5.25 folds increase in gallic acid concentration within 30min only. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of pH and light on the stability of some antioxidants.

    PubMed

    Racine, P

    1981-06-01

    Summary Many organic molecules can be oxidized in the presence of oxygen. Light and traces of heavy metal ions catalyse the process of oxidation. The addition of a very small quantity of antioxidant to alcoholic perfumes and cosmetic bases is often made to retard auto-oxidations. Among the parameters which could influence the efficiency of an antioxidant, its intrinsic stability should be considered in the medium to be protected. This stability might conceivably be influenced by the pH, the presence of light, heavy metal ions and microorganisms. In this study we have concentrated on the role played by the first two factors. To eliminate a possible interference by the last two, analytical grades reagents together with chelators and high proof (80% v/v) hydroalcoholic solutions have been used. The antioxidants tested were: BHT, BHA, ethyl gallate, 2, carboxy-6, hydroxy, 2, 5, 7, 8, tetramethyl chroman (Trolox C(R)) and D-L-alpha-tocopherol. Solutions of 0.5 mmol/kg of each antioxidant were prepared in 80% v/v hydroalcoholic solutions and the pH adjusted with citric acid and potassium hydroxyde or hydrochloric acid. The pH extended from 2.5 to 10 and thus largely covers the pH range of cosmetic products. Of each solution, 100ml were kept in hermetically closed 125ml white glass bottles stored at room temperature (22 +/- 2 degrees C) and kept in the dark or exposed to the diffuse daylight of the laboratory. The antioxidants concentrations were determined by linear sweep voltametry on gold or glassy carbon electrodes. Significant differences in behaviour were observed. BHA and BHT are stable regardless of light and pH except at high pH (

  13. The effect of pH dependence of antibody-antigen interactions on subcellular trafficking dynamics.

    PubMed

    Devanaboyina, Siva Charan; Lynch, Sandra M; Ober, Raimund J; Ram, Sripad; Kim, Dongyoung; Puig-Canto, Alberto; Breen, Shannon; Kasturirangan, Srinath; Fowler, Susan; Peng, Li; Zhong, Haihong; Jermutus, Lutz; Wu, Herren; Webster, Carl; Ward, E Sally; Gao, Changshou

    2013-01-01

    A drawback of targeting soluble antigens such as cytokines or toxins with long-lived antibodies is that such antibodies can prolong the half-life of the target antigen by a "buffering" effect. This has motivated the design of antibodies that bind to target with higher affinity at near neutral pH relative to acidic endosomal pH (~pH 6.0). Such antibodies are expected to release antigen within endosomes following uptake into cells, whereas antibody will be recycled and exocytosed in FcRn-expressing cells. To understand how the pH dependence of antibody-antigen interactions affects intracellular trafficking, we generated three antibodies that bind IL-6 with different pH dependencies in the range pH 6.0-7.4. The behavior of antigen in the presence of these antibodies has been characterized using a combination of fixed and live cell fluorescence microscopy. As the affinity of the antibody:IL-6 interaction at pH 6.0 decreases, an increasing amount of antigen dissociates from FcRn-bound antibody in early and late endosomes, and then enters lysosomes. Segregation of antibody and FcRn from endosomes in tubulovesicular transport carriers (TCs) into the recycling pathway can also be observed in live cells, and the extent of IL-6 association with TCs correlates with increasing affinity of the antibody:IL-6 interaction at acidic pH. These analyses result in an understanding, in spatiotemporal terms, of the effect of pH dependence of antibody-antigen interactions on subcellular trafficking and inform the design of antibodies with optimized binding properties for antigen elimination.

  14. Lipoxygenase and Hydroperoxide Lyase in Germinating Watermelon Seedlings 1

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1976-01-01

    Lipoxygenase (EC 1.13.1.13) was found in seedlings of Citrullus lanatus (Thunb.) Matsum. and Nakai (watermelon). The enzyme has pH optima of 4.4 and 5.5 and is inhibited by 0.2 mM nordihydroguaiaretic acid. It is present in two functional units with estimated molecular weights of 120,000 and 240,000, respectively. A new enzyme, tentatively termed hydroperoxide lyase, has been partially purified from watermelon seedlings. The enzyme, located principally in the region of the hypocotyl-root junction, catalyzes the conversion of 13-l-hydroperoxy-cis-9-trans-11-octadecadienoic acid to 12-oxo-trans-10-dodecenoic acid and hexanal. The hydroperoxide lyase enzyme from watermelon has a molecular weight in excess of 250,000, a pH optimum in the range of 6 to 6.5, and is inhibited by p-chloromercuribenzoic acid. Its presence has also been demonstrated in other cucurbits. The maximum activity of both enzymes occurs on the 6th day of germination. The identification of the products of the hydroperoxide lyase reaction suggests that lipoxygenase and hydroperoxide lyase may be involved in the conversion of certain polyunsaturated fatty acids to traumatic acid (trans-2-dodecenedioic acid). PMID:16659569

  15. Aerobic Oxidation of Xylose to Xylaric acid in Water over Pt Catalysts.

    PubMed

    Saha, Basudeb; Sadula, Sunitha

    2018-05-02

    Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can enable bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5-oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 C achieves the highest xylaric acid yield (64%). O2 pressure and Pt-amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2, causing some carbon loss; however such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of processing variables on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted meat cured with sorbic acid and sodium nitrite.

    PubMed Central

    Robach, M C

    1979-01-01

    The effects of the initial pH and a "short pump" on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted cured pork were studied. Fresh ground pork was cured with salt, sugar, phosphate, ascorbate, and varying amounts of sodium nitrite and sorbic acid. The product was comminuted and inoculated with 1,000 spores of C. sporogenes per g. The meat was stuffed into 1-ounce (ca. 28.4-g) aluminum tubes, cooked to 58.5 degrees C, cooled, and incubated at 27 degrees C to observe for swells. Product cured with 0.2% sorbic acid in combination with 40 ppm sodium nitrite (40 microgram/g) had better clostridium inhibition than did product cured with 120 ppm nitrite within a pH range of 5.0 to 6.7. The sorbic acid-40 ppm nitrite combination also gave better clostridial protection than did the 120 ppm nitrite alone when reduced amounts of curing ingredients were present. PMID:44445

  17. Effect of processing variables on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted meat cured with sorbic acid and sodium nitrite.

    PubMed

    Robach, M C

    1979-11-01

    The effects of the initial pH and a "short pump" on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted cured pork were studied. Fresh ground pork was cured with salt, sugar, phosphate, ascorbate, and varying amounts of sodium nitrite and sorbic acid. The product was comminuted and inoculated with 1,000 spores of C. sporogenes per g. The meat was stuffed into 1-ounce (ca. 28.4-g) aluminum tubes, cooked to 58.5 degrees C, cooled, and incubated at 27 degrees C to observe for swells. Product cured with 0.2% sorbic acid in combination with 40 ppm sodium nitrite (40 microgram/g) had better clostridium inhibition than did product cured with 120 ppm nitrite within a pH range of 5.0 to 6.7. The sorbic acid-40 ppm nitrite combination also gave better clostridial protection than did the 120 ppm nitrite alone when reduced amounts of curing ingredients were present.

  18. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis.

    PubMed

    Kumar, Deepak; Kumar, Aditya; Sondhi, Sonica; Sharma, Prince; Gupta, Naveen

    2018-03-01

    In the present study, an extracellular alkali stable laccase (Lac DS) from Bacillus subtilis DS which has pH optima at 8.5 using p -phenylenediamine (PPD) as substrate has been reported. Lac DS retained 70% activity for 4 h at pH 8.5 and 90% activity for 24 h at 55 °C. The enzyme yield was enhanced by optimization of fermentation conditions. A 746-fold increase in yield was observed under optimized conditions using 150 µM MgSO 4 , 1.2% yeast extract, 0.35% tryptone, and 150 µM vanillic acid. Lac DS was used to polymerize natural dye precursor catechol, pyrogallol, syringaldehyde, syringic acid, ferulic acid and gallic acid to develop a range of natural hair colors such as black, golden yellow, and reddish brown. The results indicate that alkaline Lac DS is a suitable candidate to develop a user-friendly and commercially applicable hair dyeing process in the area of cosmetic industry.

  19. Anaerobic digestion of tuna waste for the production of volatile fatty acids.

    PubMed

    Bermúdez-Penabad, Noela; Kennes, Christian; Veiga, Maria C

    2017-10-01

    Fish canning industries generate a significant amount of solid waste that can be digested anaerobically into volatile fatty acids (VFA). The aim of this research was to study the effect of various pHs, ranging from 5.0 to 10.0, and percentage of total solids on the anaerobic digestion of tuna waste into VFA, both in batch assays and continuous reactor. The production of VFA was affected by pH and was significantly higher under alkaline conditions. At pH 8.0, the VFA production reached 30,611mgCOD/L. The VFA mainly consisted of acetic, propionic, n-butyric and i-valeric acids. Acetic acid was the main product at all the pHs tested. In terms of total solids (TS) the best results were obtained with 2.5% total solids, reaching 0.73gCOD VFA /gCOD waste . At higher TS concentrations (5 and 8% TS) lower yields were reached probably due to inhibition at high VFA concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite.

    PubMed

    Anizelli, Pedro R; Baú, João Paulo T; Gomes, Frederico P; da Costa, Antonio Carlos S; Carneiro, Cristine E A; Zaia, Cássia Thaïs B V; Zaia, Dimas A M

    2015-09-01

    There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.

Top