Science.gov

Sample records for acidic protein gfap-positive

  1. Dopamine D1 Receptor Immunoreactivity on Fine Processes of GFAP-Positive Astrocytes in the Substantia Nigra Pars Reticulata of Adult Mouse

    PubMed Central

    Nagatomo, Katsuhiro; Suga, Sechiko; Saitoh, Masato; Kogawa, Masahito; Kobayashi, Kazuto; Yamamoto, Yoshio; Yamada, Katsuya

    2017-01-01

    Substantia nigra pars reticulata (SNr), the major output nucleus of the basal ganglia, receives dopamine from dendrites extending from dopaminergic neurons of the adjacent nucleus pars compacta (SNc), which is known for its selective degeneration in Parkinson's disease. As a recipient for dendritically released dopamine, the dopamine D1 receptor (D1R) is a primary candidate due to its very dense immunoreactivity in the SNr. However, the precise location of D1R remains unclear at the cellular level in the SNr except for that reported on axons/axon terminals of presumably striatal GABAergic neurons. To address this, we used D1R promotor-controlled, mVenus-expressing transgenic mice. When cells were acutely dissociated from SNr of mouse brain, prominent mVenus fluorescence was detected in fine processes of glia-like cells, but no such fluorescence was detected from neurons in the same preparation, except for the synaptic bouton-like structure on the neurons. Double immunolabeling of SNr cells dissociated from adult wild-type mice brain further revealed marked D1R immunoreactivity in the processes of glial fibrillary acidic protein (GFAP)-positive astrocytes. Such D1R imunoreactivity was significantly stronger in the SNr astrocytes than that in those of the visual cortex in the same preparation. Interestingly, GFAP-positive astrocytes dissociated from the striatum demonstrated D1R immunoreactivity, either remarkable or minimal, similarly to that shown in neurons in this nucleus. In contrast, in the SNr and visual cortex, only weak D1R immunoreactivity was detected in the neurons tested. These results suggest that the SNr astrocyte may be a candidate recipient for dendritically released dopamine. Further study is required to fully elucidate the physiological roles of divergent dopamine receptor immunoreactivity profiles in GFAP-positive astrocytes. PMID:28203148

  2. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells.

    PubMed

    Fielitz, Kathrin; Althoff, Kristina; De Preter, Katleen; Nonnekens, Julie; Ohli, Jasmin; Elges, Sandra; Hartmann, Wolfgang; Klöppel, Günter; Knösel, Thomas; Schulte, Marc; Klein-Hitpass, Ludger; Beisser, Daniela; Reis, Henning; Eyking, Annette; Cario, Elke; Schulte, Johannes H; Schramm, Alexander; Schüller, Ulrich

    2016-11-15

    Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies.

  3. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells

    PubMed Central

    Fielitz, Kathrin; Althoff, Kristina; De Preter, Katleen; Nonnekens, Julie; Ohli, Jasmin; Elges, Sandra; Hartmann, Wolfgang; Klöppel, Günter; Knösel, Thomas; Schulte, Marc; Klein-Hitpass, Ludger; Beisser, Daniela; Reis, Henning; Eyking, Annette; Cario, Elke; Schulte, Johannes H.

    2016-01-01

    Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies. PMID:27769070

  4. Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid- (ONO-2506) treated stroke-prone spontaneously hypertensive rats.

    PubMed

    Higashino, Hideaki; Niwa, Atsuko; Satou, Takao; Ohta, Yoshio; Hashimoto, Shigeo; Tabuchi, Masaki; Ooshima, Kana

    2009-10-01

    Stroke-prone spontaneously hypertensive rats (SHRSP) used as a model of essential hypertension cause a high incidence of brain stroke on the course of hypertension. Incidences and sizes of brain lesions are known to relate to the astrocyte activities. Therefore, relation between brain damage and the expression profile of the astrocytes was investigated with morphometric and immunohistochemical analyses using astrocyte marker antibodies of S100B and glial fibrillary acidic protein (GFAP) with or without arundic acid administration, a suppressor on the activation of astrocytes. Arundic acid extended the average life span of SHRSP. An increase in brain tissue weight was inhibited concomitant with a lower rate of gliosis/hemosiderin deposit/scarring in brain lesions. S100B- or GFAP-positive dot and filamentous structures were decreased in arundic acid-treated SHRSP, and this effect was most pronounced in the cerebral cortex, white matter, and pons, and less so in the hippocampus, diencephalon, midbrain, and cerebellum. Blood pressure decreased after administration of arundic acid in the high-dose group (100 mg/kg/day arundic acid), but not in the low-dose group (30 mg/kg/day). These data indicate that arundic acid can prevent hypertension-induced stroke, and may inhibit the enlargement of the stroke lesion by preventing the inflammatory changes caused by overproduction of the S100B protein in the astrocytes.

  5. Protein and amino acid nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  6. Immunohistochemical characterization of glial fibrillary acidic protein (GFAP)-expressing cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA).

    PubMed

    Tennakoon, Anusha Hemamali; Izawa, Takeshi; Wijesundera, Kavindra Kumara; Murakami, Hiroshi; Katou-Ichikawa, Chisa; Tanaka, Miyuu; Golbar, Hossain M; Kuwamura, Mitsuru; Yamate, Jyoji

    2015-01-01

    Hepatic stellate cells, the principal fibrogenic cell type in the liver, are known to express the astrocyte marker glial fibrillary acidic protein (GFAP). However, the exact role of GFAP-expressing cells in liver fibrosis remains to be elucidated. In this study, cellular properties of GFAP-expressing cells were investigated in a rat model of liver cirrhosis. Six-week-old male F344 rats were injected intraperitoneally with thioacetamide (100 mg/kg BW, twice a week) and examined at post first injection weeks 5, 10, 15, 20 and 25. Appearance of GFAP-expressing myofibroblasts peaked at week 15, associated with fibrosis progression. The majority of GFAP-expressing myofibroblasts co-expressed vimentin, desmin and alpha-smooth muscle actin. Some GFAP-positive myofibroblasts co-expressed nestin (neural stem cell marker), while a few co-expressed A3 (mesenchymal stem cell marker) and Thy-1 (immature mesenchymal cell marker). A few GFAP expressing cells underwent both mitosis and apoptosis. These results indicate that there is a dynamic participation of GFAP-expressing myofibroblasts in rat liver cirrhosis, and that they are mainly derived from hepatic stellate cells, and partly from cells in the stem cell lineage. These findings, which were shown for the first time in detail, would be useful to understand the role of GFAP-expressing myofibroblasts in the pathogenesis of chemically induced liver cirrhosis.

  7. Quantifying protein by bicinchoninic Acid.

    PubMed

    Simpson, Richard J

    2008-08-01

    INTRODUCTIONThis protocol describes a method of quantifying protein that is a variation of the Lowry assay. It uses bicinchoninic acid (BCA) to enhance the detection of Cu(+) generated under alkaline conditions at sites of complexes between Cu(2+) and protein. The resulting chromophore absorbs at 562 nm. This technique is divided into three parts: Standard Procedure, Microprocedure, and 96-Well Microtiter Plate Procedure. For each procedure, test samples are assayed in parallel with protein standards that are used to generate a calibration curve, and the exact concentration of protein in the test samples is interpolated. The standard BCA assay uses large volumes of both reagents and samples and cannot easily be automated. If these issues are important, the Microprocedure is recommended. This in turn can be adapted for use with a microplate reader in the 96-Well Microtiter Plate Procedure. If the microplate reader is interfaced with a computer, more than 1000 samples can be read per hour.

  8. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system.

    PubMed Central

    Oudega, M; Marani, E

    1991-01-01

    The glial system in the developing rat spinal cord was studied using immunocytochemistry. Antibodies to vimentin and glial fibrillary acidic protein (GFAP) were used. At E11, vimentin was first found in the membrana limitans externa. In the matrix layer, short vimentin protrusions were found near the membrana limitans externa at E12. In addition, vimentin was scattered throughout the matrix layer, where it was also present as vimentin-positive tangles. Later in development, vimentin immunoreactivity was distributed in a distinct radial pattern in the matrix layer. During the first postnatal weeks, vimentin was replaced by GFAP which is therefore expressed in a similar radial pattern. This orderly structural organisation of vimentin and GFAP in the matrix layer could indicate the involvement of both proteins in morphogenetic processes such as neuron migration and cell organisation. In the mantle layer, a distinct radial vimentin immunoreactivity was replaced by GFAP immunoreactivity during the first 2 postnatal weeks. In addition, GFAP fibres appeared first, at E18, in the ventral mantle layer associated with the motor neuron columns. These glial fibres originated from a local source. In the dorsal mantle layer, GFAP-positive fibres were oriented tangentially, which is different from the overall radial arrangement. This expression pattern may be related to the ingrowth of primary afferents. In the ventral and dorsal raphe, a major vimentin expression was replaced by a minor presence of GFAP. Within the white matter, a vimentin-positive radial pattern was demonstrated which, after birth, was replaced by GFAP. This palisading pattern suggested an involvement of both proteins in the development and guidance of the ascending and descending spinal cord fibre systems. The general transition from the expression of vimentin to the expression of GFAP in the rat spinal cord takes place during the first 3 postnatal weeks. Images Fig. 2 (cont.) Fig. 2 Fig. 3 Fig. 4 (cont.) Fig

  9. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  10. Curcumin as a potential treatment for Alzheimer's disease: a study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein.

    PubMed

    Wang, Yunliang; Yin, Honglei; Wang, Lin; Shuboy, Adam; Lou, Jiyu; Han, Bing; Zhang, Xiaoxi; Li, Jinfeng

    2013-01-01

    Curcumin, an agent traditionally utilized for its preventative action against tumorigenesis, oxidation, inflammation, apoptosis and hyperlipemia, has also been used in the treatment of Alzheimer's disease (AD). Recent advances in the study of AD have revealed astrocytes (AS) as being key factors in the early pathophysiological changes in AD. Glial fibrillary acidic protein (GFAP), a marker specific to AS, is markedly more manifest during morphological modifications and neural degeneration signature during the onset of AD. Several studies investigating the functionality of curcumin have shown that it not only inhibits amyloid sedimentation but also accelerates the disaggregation of amyloid plaque. Thus, we are interested in the relationship between curcumin and spatial memory in AD. In this study, we intend to investigate the effects of curcumin in amyloid-β (Aβ(1-40)) induced AD rat models on both the behavioral and molecular levels, that is to say, on their spatial memory and on the expression of GFAP in their hippocampi. Our results were statistically significant, showing that the spatial memory of AD rats improved following curcumin treatment (p < 0.05), and that the expression of GFAP mRNA and the number of GFAP positive cells in the curcumin treated rats was decreased relative to the AD group rats (p < 0.05). Furthermore, the expression level of GFAP mRNA in hippocampal AS in the AD rats significantly increased when compared with that in the sham control (p < 0.05). Taken together, these results suggest that curcumin improves the spatial memory disorders (such disorders being symptomatic of AD) in Aβ(1-40)-induced rats by down regulating GFAP expression and suppressing AS activity.

  11. SLC27 fatty acid transport proteins.

    PubMed

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  12. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  13. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  14. Alimentary proteins, amino acids and cholesterolemia.

    PubMed

    Blachier, François; Lancha, Antonio H; Boutry, Claire; Tomé, Daniel

    2010-01-01

    Numerous data from both epidemiological and experimental origins indicate that some alimentary proteins and amino acids in supplements can modify the blood LDL cholesterol, HDL cholesterol and total cholesterol. After an initial approval of the health claim for soy protein consumption for the prevention of coronary heart disease, more recently it has been concluded from an overall analysis of literature that isolated soy protein with isoflavones only slightly decrease LDL and total cholesterol. Other plant extracts and also some proteins from animal origin have been reported to exert a lowering effect on blood cholesterol when compared with a reference protein (often casein). The underlying mechanisms are still little understood. Individual amino acids and mixture of amino acids have also been tested (mostly in animal studies) for their effects on cholesterol parameters and on cholesterol metabolism. Methionine, lysine, cystine, leucine, aspartate and glutamate have been tested individually and in combination in different models of either normo or hypercholesterolemic animals and found to be able to modify blood cholesterol and/or LDL cholesterol and/or HDL cholesterol. It is however not known if these results are relevant to human nutrition.

  15. Electrocatalysis in proteins, nucleic acids and carbohydrates.

    PubMed

    Paleček, Emil; Bartošík, Martin; Ostatná, Veronika; Trefulka, Mojmír

    2012-02-01

    The ability of proteins to catalyze hydrogen evolution has been known for more than 80 years, but the poorly developed d.c. polarographic "pre-sodium wave" was of little analytical use. Recently, we have shown that by using constant current chronopotentiometric stripping analysis, proteins produce a well-developed peak H at hanging mercury drop and solid amalgam electrodes. Peak H sensitively reflects changes in protein structures due to protein denaturation, single amino acid exchange, etc. at the picomole level. Unmodified DNA and RNA do not yield such a peak, but they produce electrocatalytic voltammetric signals after modification with osmium tetroxide complexes with nitrogen ligands [Os(VIII)L], binding covalently to pyrimidine bases in nucleic acids. Recently, it has been shown that six-valent [Os(VI)L] complexes bind to 1,2-diols in polysaccharides and oligosaccharides, producing voltammetric responses similar to those of DNA-Os(VIII)L adducts. Electrocatalytic peaks produced by Os-modified nucleic acids, proteins (reaction with tryptophan residues) and carbohydrates are due to the catalytic hydrogen evolution, allowing determination of oligomers at the picomolar level.

  16. Conformations of amino acids in proteins.

    PubMed

    Hovmöller, Sven; Zhou, Tuping; Ohlson, Tomas

    2002-05-01

    The main-chain conformations of 237 384 amino acids in 1042 protein subunits from the PDB were analyzed with Ramachandran plots. The populated areas of the empirical Ramachandran plot differed markedly from the classical plot in all regions. All amino acids in alpha-helices are found within a very narrow range of phi, psi angles. As many as 40% of all amino acids are found in this most populated region, covering only 2% of the Ramachandran plot. The beta-sheet region is clearly subdivided into two distinct regions. These do not arise from the parallel and antiparallel beta-strands, which have quite similar conformations. One beta region is mainly from amino acids in random coil. The third and smallest populated area of the Ramachandran plot, often denoted left-handed alpha-helix, has a different position than that originally suggested by Ramachandran. Each of the 20 amino acids has its own very characteristic Ramachandran plot. Most of the glycines have conformations that were considered to be less favoured. These results may be useful for checking secondary-structure assignments in the PDB and for predicting protein folding.

  17. Measurement of protein using bicinchoninic acid.

    PubMed

    Smith, P K; Krohn, R I; Hermanson, G T; Mallia, A K; Gartner, F H; Provenzano, M D; Fujimoto, E K; Goeke, N M; Olson, B J; Klenk, D C

    1985-10-01

    Bicinchoninic acid, sodium salt, is a stable, water-soluble compound capable of forming an intense purple complex with cuprous ion (Cu1+) in an alkaline environment. This reagent forms the basis of an analytical method capable of monitoring cuprous ion produced in the reaction of protein with alkaline Cu2+ (biuret reaction). The color produced from this reaction is stable and increases in a proportional fashion over a broad range of increasing protein concentrations. When compared to the method of Lowry et al., the results reported here demonstrate a greater tolerance of the bicinchoninate reagent toward such commonly encountered interferences as nonionic detergents and simple buffer salts. The stability of the reagent and resulting chromophore also allows for a simplified, one-step analysis and an enhanced flexibility in protocol selection. This new method maintains the high sensitivity and low protein-to-protein variation associated with the Lowry technique.

  18. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    PubMed

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  19. Protein and Amino Acid Profiles of Different Whey Protein Supplements.

    PubMed

    Almeida, Cristine C; Alvares, Thiago S; Costa, Marion P; Conte-Junior, Carlos A

    2016-01-01

    Whey protein (WP) supplements have received increasing attention by consumers due to the high nutritional value of the proteins and amino acids they provide. However, some WP supplements may not contain the disclosed amounts of the ingredients listed on the label, compromising the nutritional quality and the effectiveness of these supplements. The aim of this study was to evaluate and compare the contents of total protein (TP), α-lactalbumin (α-LA), β-lactoglobulin (β-LG), free essential amino acids (free EAA), and free branched-chain amino acids (free BCAA), amongst different WP supplements produced by U.S. and Brazilian companies. Twenty commercial brands of WP supplements were selected, ten manufactured in U.S. (WP-USA) and ten in Brazil (WP-BRA). The TP was analyzed using the Kjeldahl method, while α-LA, β-LG, free EAA, and free BCAA were analyzed using HPLC system. There were higher (p < 0.05) concentrations of TP, α-LA, β-LG, and free BCAA in WP-USA supplements, as compared to the WP-BRA supplements; however, there was no difference (p > 0.05) in the content of free EAA between WP-USA and WP-BRA. Amongst the 20 brands evaluated, four WP-USA and seven WP-BRA had lower (p < 0.05) values of TP than those specified on the label. In conclusion, the WP-USA supplements exhibited better nutritional quality, evaluated by TP, α-LA, β-LG, and free BCAA when compared to WP-BRA.

  20. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  1. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  2. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  3. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  4. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  5. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  6. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  7. Cellular Retinoic Acid Binding Protein and Breast Cancer

    DTIC Science & Technology

    2006-05-01

    fatty acid probe anilinonaphtalene-8- sulphonic acid (ANS) was measured. ANS readily associates with various FABPs and its fluorescence is highly...DAMD17-03-1-0249 TITLE: Cellular Retinoic Acid Binding Protein and Breast Cancer PRINCIPAL INVESTIGATOR: Leslie J. (Willmert) Donato...DATES COVERED (From - To) 14 Apr 03 – 13 Apr 06 5a. CONTRACT NUMBER Cellular Retinoic Acid Binding Protein and Breast Cancer 5b. GRANT NUMBER

  8. Multisite clickable modification of proteins using lipoic acid ligase.

    PubMed

    Plaks, Joseph G; Falatach, Rebecca; Kastantin, Mark; Berberich, Jason A; Kaar, Joel L

    2015-06-17

    Approaches that allow bioorthogonal and, in turn, site-specific chemical modification of proteins present considerable opportunities for modulating protein activity and stability. However, the development of such approaches that enable site-selective modification of proteins at multiple positions, including internal sites within a protein, has remained elusive. To overcome this void, we have developed an enzymatic approach for multisite clickable modification based on the incorporation of azide moieties in proteins using lipoic acid ligase (LplA). The ligation of azide moieties to the model protein, green fluorescent protein (GFP), at the N-terminus and two internal sites using lipoic acid ligase was shown to proceed efficiently with near-complete conversion. Modification of the ligated azide groups with poly(ethylene glycol) (PEG), α-d-mannopyranoside, and palmitic acid resulted in highly homogeneous populations of protein-polymer, protein-sugar, and protein-fatty acid conjugates. The homogeneity of the conjugates was confirmed by mass spectrometry (MALDI-TOF) and SDS-PAGE electrophoresis. In the case of PEG attachment, which involved the use of strain-promoted azide-alkyne click chemistry, the conjugation reaction resulted in highly homogeneous PEG-GFP conjugates in less than 30 min. As further demonstration of the utility of this approach, ligated GFP was also covalently immobilized on alkyne-terminated self-assembled monolayers. These results underscore the potential of this approach for, among other applications, site-specific multipoint protein PEGylation, glycosylation, fatty acid modification, and protein immobilization.

  9. Protein and sulfur amino acid requirements of broiler breeder hens.

    PubMed

    Harms, R H; Wilson, H R

    1980-02-01

    Two experiments were conducted with Cobb color-sexed broiler breeder hens to determine their protein and sulfur amino acid requirement. A daily intake between 400 and 478 mg of methionine and between 722 and 839 mg of total sulfur amino acids was necessary for maximum egg production, the latter in a diet of 13.07% protein. Slightly lower levels supported maximum body weights. Hens laying at the highest rate consumed 23.4 g of protein per day.

  10. Los Alamos sequence analysis package for nucleic acids and proteins.

    PubMed Central

    Kanehisa, M I

    1982-01-01

    An interactive system for computer analysis of nucleic acid and protein sequences has been developed for the Los Alamos DNA Sequence Database. It provides a convenient way to search or verify various sequence features, e.g., restriction enzyme sites, protein coding frames, and properties of coded proteins. Further, the comprehensive analysis package on a large-scale database can be used for comparative studies on sequence and structural homologies in order to find unnoted information stored in nucleic acid sequences. PMID:6174934

  11. Amino acid sequences of proteins from Leptospira serovar pomona.

    PubMed

    Alves, S F; Lefebvre, R B; Probert, W

    2000-01-01

    This report describes a partial amino acid sequences from three putative outer envelope proteins from Leptospira serovar pomona. In order to obtain internal fragments for protein sequencing, enzymatic and chemical digestion was performed. The enzyme clostripain was used to digest the proteins 32 and 45 kDa. In situ digestion of 40 kDa molecular weight protein was accomplished using cyanogen bromide. The 32 kDa protein generated two fragments, one of 21 kDa and another of 10 kDa that yielded five residues. A fragment of 24 kDa that yielded nineteen residues of amino acids was obtained from 45 kDa protein. A fragment with a molecular weight of 20 kDa, yielding a twenty amino acids sequence from the 40 kDa protein.

  12. Kainic acid inhibits protein amino acid incorporation in select rat brain regions.

    PubMed

    Planas, A M; Soriano, M A; Ferrer, I; Rodríguez-Farré, E

    1994-11-21

    Regional incorporation of labelled methionine into proteins was studied with quantitative autoradiography in different regions of the rat brain 2.5 h following systemic kainic acid administration. Labelled protein concentration was found reduced to approximately 40% of control values in the pyramidal cell layer of hippocampus, piriform, entorhinal and perirhinal cortices, ventral lateral septum and mediodorsal thalamic nucleus. These regions showed increased levels of label not incorporated into proteins, indicating that free labelled methionine was available for protein synthesis. Reduction of protein amino acid incorporation in those brain regions selectively affected by kainic acid may be involved in subsequent tissue damage.

  13. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  14. KINETICS OF AMINO ACID INCORPORATION INTO SERUM PROTEINS

    PubMed Central

    Green, H.; Anker, H. S.

    1955-01-01

    1. The effect of varying body temperature on the rate of amino acid incorporation into serum protein does not give support to the idea that the rate of this process is adjusted in vivo to restore those protein molecules destroyed by thermal denaturation. The experimentally observed Q10 was about 3.9. 2. When amino acids are injected into the blood of animals in a steady state of serum protein turnover, a period of time elapses before these amino acids can be found in the serum proteins. This has been called transit time. At a given temperature (31°) it is the same in rabbits, turtles, and Limulus (1 hour). In rabbits and turtles it has a Q10 of 3.2. It appears to be specifically related to the process of synthesis (or release) of serum proteins. 3. It was not possible to affect the transit time or the incorporation rate by the administration of amino acid analogues. PMID:13221773

  15. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  16. Amino acid composition of proteins reduces deleterious impact of mutations

    PubMed Central

    Hormoz, Sahand

    2013-01-01

    The evolutionary origin of amino acid occurrence frequencies in proteins (composition) is not yet fully understood. We suggest that protein composition works alongside the genetic code to minimize impact of mutations on protein structure. First, we propose a novel method for estimating thermodynamic stability of proteins whose sequence is constrained to a fixed composition. Second, we quantify the average deleterious impact of substituting one amino acid with another. Natural proteome compositions are special in at least two ways: 1) Natural compositions do not generate more stable proteins than the average random composition, however, they result in proteins that are less susceptible to damage from mutations. 2) Natural proteome compositions that result in more stable proteins (i.e. those of thermophiles) are also tuned to have a higher tolerance for mutations. This is consistent with the observation that environmental factors selecting for more stable proteins also enhance the deleterious impact of mutations. PMID:24108121

  17. The protein digestibility-corrected amino acid score.

    PubMed

    Schaafsma, G

    2000-07-01

    The protein digestibility-corrected amino acid score (PDCAAS) has been adopted by FAO/WHO as the preferred method for the measurement of the protein value in human nutrition. The method is based on comparison of the concentration of the first limiting essential amino acid in the test protein with the concentration of that amino acid in a reference (scoring) pattern. This scoring pattern is derived from the essential amino acid requirements of the preschool-age child. The chemical score obtained in this way is corrected for true fecal digestibility of the test protein. PDCAAS values higher than 100% are not accepted as such but are truncated to 100%. Although the principle of the PDCAAS method has been widely accepted, critical questions have been raised in the scientific community about a number of issues. These questions relate to 1) the validity of the preschool-age child amino acid requirement values, 2) the validity of correction for fecal instead of ileal digestibility and 3) the truncation of PDCAAS values to 100%. At the time of the adoption of the PDCAAS method, only a few studies had been performed on the amino acid requirements of the preschool-age child, and there is still a need for validation of the scoring pattern. Also, the scoring pattern does not include conditionally indispensable amino acids. These amino acids also contribute to the nutrition value of a protein. There is strong evidence that ileal, and not fecal, digestibility is the right parameter for correction of the amino acid score. The use of fecal digestibility overestimates the nutritional value of a protein, because amino acid nitrogen entering the colon is lost for protein synthesis in the body and is, at least in part, excreted in urine as ammonia. The truncation of PDCAAS values to 100% can be defended only for the limited number of situations in which the protein is to be used as the sole source of protein in the diet. For evaluation of the nutritional significance of proteins as

  18. Protein packing: dependence on protein size, secondary structure and amino acid composition.

    PubMed

    Fleming, P J; Richards, F M

    2000-06-02

    We have used the occluded surface algorithm to estimate the packing of both buried and exposed amino acid residues in protein structures. This method works equally well for buried residues and solvent-exposed residues in contrast to the commonly used Voronoi method that works directly only on buried residues. The atomic packing of individual globular proteins may vary significantly from the average packing of a large data set of globular proteins. Here, we demonstrate that these variations in protein packing are due to a complex combination of protein size, secondary structure composition and amino acid composition. Differences in protein packing are conserved in protein families of similar structure despite significant sequence differences. This conclusion indicates that quality assessments of packing in protein structures should include a consideration of various parameters including the packing of known homologous proteins. Also, modeling of protein structures based on homologous templates should take into account the packing of the template protein structure.

  19. Re-evaluation of turbidimetry of proteins by use of aromatic sulfonic acids and chloroacetic acids.

    PubMed

    Ebina, S; Nagai, Y

    1979-02-01

    From studies on 11 different proteins (including native albumin and albumin with reduced disulfide-bridges) treated with sulfosalicylic, 2-naphthalenesulfonic, toluenesulfonic, dichloroacetic, or trichloroacetic acids, we elucidate the interactions determining the resulting turbidities and other factors affecting turbidities, and we discuss the clinical utility of such turbidimetry. At least three interactions are important in determining turbidity: reduction of positive charges on the protein, hydrogen bonding of the non-ionized chloroacetic acids with the protein, and hydrophobic interaction of the aromatic sulfonic acids with albumin. Turbidity varies appreciably with the species of acid and protein, concentrations of acid, temperature, and standing time after acid is added. We conclude that this technique should be restricted to confirming proteinuria.

  20. BIOACTIVE PROTEINS, PEPTIDES, AND AMINO ACIDS FROM MACROALGAE(1).

    PubMed

    Harnedy, Pádraigín A; FitzGerald, Richard J

    2011-04-01

    Macroalgae are a diverse group of marine organisms that have developed complex and unique metabolic pathways to ensure survival in highly competitive marine environments. As a result, these organisms have been targeted for mining of natural biologically active components. The exploration of marine organisms has revealed numerous bioactive compounds that are proteinaceous in nature. These include proteins, linear peptides, cyclic peptides and depsipeptides, peptide derivatives, amino acids, and amino acid-like components. Furthermore, some species of macroalgae have been shown to contain significant levels of protein. While some protein-derived bioactive peptides have been characterized from macroalgae, macroalgal proteins currently still represent good candidate raw materials for biofunctional peptide mining. This review will provide an overview of the important bioactive amino-acid-containing compounds that have been identified in macroalgae. Moreover, the potential of macroalgal proteins as substrates for the generation of biofunctional peptides for utilization as functional foods to provide specific health benefits will be discussed.

  1. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  2. Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source.

    PubMed

    Mente, Eleni; Coutteau, Peter; Houlihan, Dominic; Davidson, Ian; Sorgeloos, Patrick

    2002-10-01

    The effect of dietary protein on protein synthesis and growth of juvenile shrimps Litopenaeus vannamei was investigated using three different diets with equivalent protein content. Protein synthesis was investigated by a flooding dose of tritiated phenylalanine. Survival, specific growth and protein synthesis rates were higher, and protein degradation was lower, in shrimps fed a fish/squid/shrimp meal diet, or a 50% laboratory diet/50% soybean meal variant diet, than in those fed a casein-based diet. The efficiency of retention of synthesized protein as growth was 94% for shrimps fed the fish meal diet, suggesting a very low protein turnover rate; by contrast, the retention of synthesized protein was only 80% for shrimps fed the casein diet. The amino acid profile of the casein diet was poorly correlated with that of the shrimps. 4 h after a single meal the protein synthesis rates increased following an increase in RNA activity. A model was developed for amino acid flux, suggesting that high growth rates involve a reduction in the turnover of proteins, while amino acid loss appears to be high.

  3. Mitotic apparatus: the selective extraction of protein with mild acid.

    PubMed

    Bibring, T; Baxandall, J

    1968-07-26

    The treatment of isolated mitotic apparatus with mild (pH 3) hydrochloric acid results in the extraction of less than 10 percent of its protein, accompanied by the selective morphological disappearance of the microtubules. The same extraction can be shown to dissolve outer doublet microtubules from sperm flagella. A protein with points of similarity to the flagellar microtubule protein is the major component of the extract from mitotic apparatus.

  4. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

    PubMed Central

    Blatti, Jillian L.; Beld, Joris; Behnke, Craig A.; Mendez, Michael; Mayfield, Stephen P.; Burkart, Michael D.

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes. PMID:23028438

  5. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    PubMed

    Blatti, Jillian L; Beld, Joris; Behnke, Craig A; Mendez, Michael; Mayfield, Stephen P; Burkart, Michael D

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  6. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  7. IR-UV photochemistry of protein-nucleic acid systems

    SciTech Connect

    Kozub, J.; Edwards, G.

    1995-12-31

    UV light has often been used to induce the formation of covalent bonds between DNA (or RNA) and tightly-bound protein molecules. However, the internal photoreactions of nucleic acids and proteins limit the yield and complicate the analysis of intermolecular crosslinks. In an ongoing search for improved reaction specificity or new photoreactions in these systems, we have employed UV photons from a Nd:YAG-pumped dye laser and mid-IR photons from the Vanderbilt FEL. Having crosslinked several protein-nucleic acid systems with nanosecond UV laser pulses, we are currently studying the effect of various IR wavelengths on a model system (gene 32 protein and poly[dT]). We have found that irradiation with sufficiently intense FEL macropulses creates an altered form of gene 32 protein which was not observed with UV-only irradiation. The electrophoretic nobility of the product is consistent with the formation of a specific protein-protein crosslink. No evidence of the non-specific protein damage typically induced by UV light is found. The yield of the new photoproduct is apparently enhanced by exposure to FEL macropulses which are synchronized with UV laser pulses. With ideal exposure parameters, the two-color reaction effectively competes with UV-only reactions. Experiments designed to determine the reaction mechanism and to demonstrate FEL-induced reactions in other protein-nucleic acid systems are currently underway.

  8. Nucleic acid compositions and the encoding proteins

    DOEpatents

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  9. Real-time measurements of amino acid and protein hydroperoxides using coumarin boronic acid.

    PubMed

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-08-08

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7-23 M(-1) s(-1)) were significantly higher than that measured for H2O2 (1.5 M(-1) s(-1)). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1-1.5 × 10(3) M(-1) s(-1). Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems.

  10. Functional domains of the fatty acid transport proteins: studies using protein chimeras.

    PubMed

    DiRusso, Concetta C; Darwis, Dina; Obermeyer, Thomas; Black, Paul N

    2008-03-01

    Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.

  11. Plasma amino acid response to graded levels of escape protein.

    PubMed

    Gibb, D J; Klopfenstein, T J; Britton, R A; Lewis, A J

    1992-09-01

    A trial was conducted to examine the potential of using plasma amino acid responses to graded levels of escape protein to determine limiting amino acids in cattle. Growing calves (n = 120; mean BW = 220 +/- 21 kg) were fed a basal diet of corncob:sorghum silage (61:39) and were individually supplemented with distillers' dried grains (DDG), heat-damaged DDG (H-DDG), feather meal (FTH), or urea. The urea supplement was mixed with DDG and H-DDG to allow 0, 20, 35, 50, 65, or 80% of the supplemental CP to come from distillers' protein and maintain an 11.5% CP diet. Urea supplement was mixed with FTH to allow 0, 22, 39, 56, 73, or 90% of the supplemental CP to come from FTH. Dietary CP ranged from 11.5% at the 0% level to 17.3% at the 90% level. Plasma concentration of most essential plasma amino acids responded (P less than .10) linearly and(or) quadratically to increased escape protein. The broken-line response of plasma methionine at low DDG intake suggested that methionine was limiting at low levels of escape protein. An initial decrease followed by a plateau fit by a broken line indicated that histidine became limiting in FTH diets, and lysine eventually became limiting for DDG, H-DDG, and FTH diets before maximum BW gain was reached. Results indicate that plasma amino acid responses may identify amino acids that become limiting with increasing escape protein.

  12. Stimulation of nonselective amino acid export by glutamine dumper proteins.

    PubMed

    Pratelli, Réjane; Voll, Lars M; Horst, Robin J; Frommer, Wolf B; Pilot, Guillaume

    2010-02-01

    Phloem and xylem transport of amino acids involves two steps: export from one cell type to the apoplasm, and subsequent import into adjacent cells. High-affinity import is mediated by proton/amino acid cotransporters, while the mechanism of export remains unclear. Enhanced expression of the plant-specific type I membrane protein Glutamine Dumper1 (GDU1) has previously been shown to induce the secretion of glutamine from hydathodes and increased amino acid content in leaf apoplasm and xylem sap. In this work, tolerance to low concentrations of amino acids and transport analyses using radiolabeled amino acids demonstrate that net amino acid uptake is reduced in the glutamine-secreting GDU1 overexpressor gdu1-1D. The net uptake rate of phenylalanine decreased over time, and amino acid net efflux was increased in gdu1-1D compared with the wild type, indicating increased amino acid export from cells. Independence of the export from proton gradients and ATP suggests that overexpression of GDU1 affects a passive export system. Each of the seven Arabidopsis (Arabidopsis thaliana) GDU genes led to similar phenotypes, including increased efflux of a wide spectrum of amino acids. Differences in expression profiles and functional properties suggested that the GDU genes fulfill different roles in roots, vasculature, and reproductive organs. Taken together, the GDUs appear to stimulate amino acid export by activating nonselective amino acid facilitators.

  13. The multiple roles of fatty acid handling proteins in brain

    PubMed Central

    Moullé, Valentine S. F.; Cansell, Céline; Luquet, Serge; Cruciani-Guglielmacci, Céline

    2012-01-01

    Lipids are essential components of a living organism as energy source but also as constituent of the membrane lipid bilayer. In addition fatty acid (FA) derivatives interact with many signaling pathways. FAs have amphipathic properties and therefore require being associated to protein for both transport and intracellular trafficking. Here we will focus on several FA handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36), members of fatty acid transport proteins (FATPs), and lipid chaperones fatty acid-binding proteins (FABPs). A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. However, considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. Finally a special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance. PMID:23060810

  14. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor.

    PubMed

    Dounay, A B; Forsyth, C J

    2002-11-01

    As the first recognized member of the "okadaic acid class" of phosphatase inhibitors, the marine natural product okadaic acid is perhaps the most well-known member of a diverse array of secondary metabolites that have emerged as valuable probes for studying the roles of various cellular protein serine/threonine phosphatases. This review provides a historical perspective on the role that okadaic acid has played in stimulating a broad spectrum of modern scientific research as a result of the natural product's ability to bind to and inhibit important classes of protein serine / threonine phosphatases. The relationships between the structure and biological activities of okadaic acid are briefly reviewed, as well as the structural information regarding the particular cellular receptors protein phosphatases 1 (PP1) and 2A. Laboratory syntheses of okadaic acid and its analogs are thoroughly reviewed. Finally, an interpretation of the critical contacts observed between okadaic acid and PP1 by X-ray crystallography is provided, and specific molecular recognition hypotheses that are testable via the synthesis and assay of non-natural analogs of okadaic acid are suggested.

  15. Roles of intrinsic disorder in protein-nucleic acid interactions.

    PubMed

    Dyson, H Jane

    2012-01-01

    Interactions between proteins and nucleic acids typify the role of disordered segments, linkers, tails and other entities in the function of complexes that must form with high affinity and specificity but which must be capable of dissociating when no longer needed. While much of the emphasis in the literature has been on the interactions of disordered proteins with other proteins, disorder is also frequently observed in nucleic acids (particularly RNA) and in the proteins that interact with them. The interactions of disordered proteins with DNA most often manifest as molding of the protein onto the B-form DNA structure, although some well-known instances involve remodeling of the DNA structure that seems to require that the interacting proteins be disordered to various extents in the free state. By contrast, induced fit in RNA-protein interactions has been recognized for many years-the existence and prevalence of this phenomenon provides the clearest possible evidence that RNA and its interactions with proteins must be considered as highly dynamic, and the dynamic nature of RNA and its multiplicity of folded and unfolded states is an integral part of its nature and function.

  16. A general method of protein purification for recombinant unstructured non-acidic proteins.

    PubMed

    Campos, Francisco; Guillén, Gabriel; Reyes, José L; Covarrubias, Alejandra A

    2011-11-01

    Typical late embryogenesis abundant (LEA) proteins accumulate in response to water deficit imposed by the environment or by plant developmental programs. Because of their physicochemical properties, they can be considered as hydrophilins and as a paradigm of intrinsically unstructured proteins (IUPs) in plants. To study their biophysical and biochemical characteristics large quantities of highly purified protein are required. In this work, we report a fast and simple purification method for non-acidic recombinant LEA proteins that does not need the addition of tags and that preserves their in vitro protective activity. The method is based on the enrichment of the protein of interest by boiling the bacterial protein extract, followed by a differential precipitation with trichloroacetic acid (TCA). Using this procedure we have obtained highly pure recombinant LEA proteins of groups 1, 3, and 4 and one recombinant bacterial hydrophilin. This protocol will facilitate the purification of this type of IUPs, and could be particularly useful in proteomic projects/analyses.

  17. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein.

    PubMed

    Lee, Duck Yeon; Kim, Kyeong-Ae; Yu, Yeon Gyu; Kim, Key-Sun

    2004-07-30

    Proteins from thermophiles are more stable than those from mesophiles. Several factors have been suggested as causes for this greater stability, but no general rule has been found. The amino acid composition of thermophile proteins indicates that the content of polar amino acids such as Asn, Gln, Ser, and Thr is lower, and that of charged amino acids such as Arg, Glu, and Lys is higher than in mesophile proteins. Among charged amino acids, however, the content of Asp is even lower in thermophile proteins than in mesophile proteins. To investigate the reasons for the lower occurrence of Asp compared to Glu in thermophile proteins, Glu was substituted with Asp in a hyperthermophile protein, MjTRX, and Asp was substituted with Glu in a mesophile protein, ETRX. Each substitution of Glu with Asp decreased the Tm of MjTRX by about 2 degrees C, while each substitution of Asp with Glu increased the Tm of ETRX by about 1.5 degrees C. The change of Tm destabilizes the MjTRX by 0.55 kcal/mol and stabilizes the ETRX by 0.45 kcal/mol in free energy.

  18. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    PubMed

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress.

  19. Intermediate filament proteins in choroid plexus and ependyma and their tumors.

    PubMed Central

    Miettinen, M.; Clark, R.; Virtanen, I.

    1986-01-01

    The intermediate filament protein types of normal choroid plexus and ependymal tissue and their putative tumors were investigated. In normal human choroid plexus tissue, but not in ependyma, keratin could be demonstrated immunohistochemically. By immunoblotting, keratins 8, 18, and 19 were found, but glial fibrillary acidic protein (GFAP) was absent. In mouse and rat, choroid plexus epithelium and ependymal lining cells were keratin-positive. In addition, many ependymal cells were vimentin-positive. Keratin was immunohistochemically found in three of four choroid plexus papillomas, two of two choroid plexus carcinomas, and the lining cells of three neuroepithelial cysts. GFAP-positive cells were present in some choroid plexus tumors. In contrast, none of the eight ependymomas contained keratin, but all were strongly positive for GFAP. The results show that choroid plexus lining cells and choroid plexus tumors have true epithelial characteristics in their cytoskeleton, in contrast to ependymomas, which do not show keratin positivity but show glial filaments, as would be seen in astrocytic tumors. Images Figure 8 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 PMID:2422943

  20. Nucleic Acid Programmable Protein Array: A Just-In-Time Multiplexed Protein Expression and Purification Platform

    PubMed Central

    Qiu, Ji; LaBaer, Joshua

    2012-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. PMID:21943897

  1. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    PubMed

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally.

  2. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  3. Reduction in the number of astrocytes and their projections is associated with increased synaptic protein density in the hypothalamus of poorly controlled diabetic rats.

    PubMed

    Lechuga-Sancho, Alfonso M; Arroba, Ana I; Frago, Laura M; García-Cáceres, Cristina; de Célix, Arancha Delgado-Rubín; Argente, Jesús; Chowen, Julie A

    2006-11-01

    Processes under hypothalamic control, such as thermogenesis, feeding behavior, and pituitary hormone secretion, are disrupted in poorly controlled diabetes, but the underlying mechanisms are poorly understood. Because glial cells regulate neurosecretory neurons through modulation of synaptic inputs and function, we investigated the changes in hypothalamic glia in rats with streptozotocin-induced diabetes mellitus. Hypothalamic glial fibrillary acidic protein (GFAP) levels decreased significantly 6 wk after diabetes onset. This was coincident with decreased GFAP immunoreactive surface area, astrocyte number, and the extension of GFAP immunoreactive processes/astrocyte in the arcuate nucleus. Cell death, analyzed by terminal deoxyuridine 5-triphosphate nick-end labeling and ELISA, increased significantly at 4 wk of diabetes. Proliferation, measured by Western blot for proliferating cell nuclear antigen and immunostaining for phosphorylated histone H-3, decreased in the hypothalamus of diabetic rats throughout the study, becoming significantly reduced by 8 wk. Both proliferation and death affected astroctyes because both phosphorylated histone H-3- and terminal deoxyuridine 5-triphosphate nick-end labeling-labeled cells were GFAP positive. Western blot analysis revealed that postsynaptic density protein 95 and the presynaptic proteins synapsin I and synaptotagmin increased significantly at 8 wk of diabetes, suggesting increased hypothalamic synaptic density. Thus, in poorly controlled diabetic rats, there is a decrease in the number of hypothalamic astrocytes that is correlated with modifications in synaptic proteins and possibly synaptic inputs. These morphological changes in the arcuate nucleus could be involved in neurosecretory and metabolic changes seen in diabetic animals.

  4. Urinary intestinal fatty acid binding protein predicts necrotizing enterocolitis.

    PubMed

    Gregory, Katherine E; Winston, Abigail B; Yamamoto, Hidemi S; Dawood, Hassan Y; Fashemi, Titilayo; Fichorova, Raina N; Van Marter, Linda J

    2014-06-01

    Necrotizing enterocolitis, characterized by sudden onset and rapid progression, remains the most significant gastrointestinal disorder among premature infants. In seeking a predictive biomarker, we found intestinal fatty acid binding protein, an indicator of enterocyte damage, was substantially increased within three and seven days before the diagnosis of necrotizing enterocolitis.

  5. [Photochemistry and UV Spectroscopy of Proteins and Nucleic Acids].

    PubMed

    Wierzchowski, Kazimierz Lech

    2015-01-01

    The article presents a short history of David Shugar studies in the field of photochemistry and UV spectroscopy of proteins and nucleic acids, carried out since the late 1940s. to the beginning of the 1970s. of the 20th century, with some references to the state of related research in those days.

  6. Amino acid nutrition beyond methionine and lysine for milk protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  7. Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes.

    PubMed

    Xu, Y J; Yau, L; Yu, L P; Elimban, V; Zahradka, P; Dhalla, N S

    1996-12-13

    Phosphatidic acid (PA) was observed to stimulate protein synthesis in adult cardiomyocytes in a time- and concentration-dependent manner. The maximal stimulation in protein synthesis (142 +/- 12% vs 100% as the control) was achieved at 10 microM PA within 60 min and was inhibited by actinomycin D (107 +/- 4% of the control) or cycloheximide (105 +/- 6% of the control). The increase in protein synthesis due to PA was attenuated or abolished by preincubation of cardiomyocytes with a tyrosine kinase inhibitor, genistein (94 +/- 9% of the control), phospholipase C inhibitors 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate or carbon-odithioic acid O-(octahydro-4,7-methanol-1H-inden-5-yl (101 +/- 6 and 95 +/- 5% of the control, respectively), protein kinase C inhibitors staurosporine or polymyxin B (109 +/- 3 and 93 +/- 3% of the control), and chelators of extracellular and intracellular free Ca2+ EGTA or BAPTA/AM (103 +/- 6 and 95 +/- 6% of the control, respectively). PA at different concentrations (0.1 to 100 microM) also caused phosphorylation of a cell surface protein of approximately 24 kDa. In addition, mitogen-activated protein kinase was stimulated by PA in a concentration-dependent manner; maximal stimulation (217 +/- 6% of the control) was seen at 10 microM PA. These data suggest that PA increases protein synthesis in adult rat cardiomyocytes and thus may play an important role in the development of cardiac hypertrophy.

  8. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  9. Kinetic study of sulphuric acid hydrolysis of protein feathers.

    PubMed

    Ben Hamad Bouhamed, Sana; Kechaou, Nabil

    2017-02-28

    Poultry feather keratin is the most important by-product from the poultry industry due to its abundance. Different methods have been still applied to process this by-product such as enzymatic hydrolysis which is expensive and inapplicable at the industrial level. This paper presents a study of acid hydrolysis of poultry feathers using different types of acids, sulphuric acid concentration, different temperatures and solid to liquid ratio to obtain a liquid product rich in peptides. The feathers analysis revealed a crude protein content of 88.83%. A maximum peptides production of 676 mg/g was reached using sulphuric acid, 1 molar acid concentration and 50 g/l solid to liquid ratio at a temperature of 90 °C after 300 min. A reaction scheme for protein aggregation and decomposition to polypeptides and amino acids was proposed and a kinetic model for peptides production was developed. The proposed kinetic model proved to be well adapted to the experimental data with R (2) = 0.99.

  10. Interference of N-hydroxysuccinimide with bicinchoninic acid protein assay.

    PubMed

    Vashist, Sandeep Kumar; Dixit, Chandra Kumar

    2011-07-29

    We report here substantial interference from N-hydroxysuccinimide (NHS) in the bicinchoninic acid (BCA) protein assay. NHS is one of the most commonly used crosslinking agents in bioanalytical sciences, which can lead to serious potential errors in the BCA protein assay based protein estimation if it is present in the protein analyte solution. It was identified to be a reducing substance, which interferes with the BCA protein assay by reducing Cu(2+) in the BCA working reagent. The absorbance peak and absorbance signal of NHS were very similar to those of bovine serum albumin (BSA), thereby indicating a similar BCA reaction mechanism for NHS and protein. However, the combined absorbance of NHS and BSA was not additive. The time-response measurements of the BCA protein assay showed consistent single-phase kinetics for NHS and gradually decreasing kinetics for BSA. The error in protein estimation due to the presence of NHS was counteracted effectively by plotting additional BCA standard curve for BSA with a fixed concentration of NHS. The difference between the absorbance values of BSA and BSA with a fixed NHS concentration provided the absorbance contributed by NHS, which was then subtracted from the total absorbance of analyte sample to determine the actual absorbance of protein in the analyte sample.

  11. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  12. A rapid method for detecting protein-nucleic acid interactions by protein induced fluorescence enhancement

    PubMed Central

    Valuchova, Sona; Fulnecek, Jaroslav; Petrov, Alexander P.; Tripsianes, Konstantinos; Riha, Karel

    2016-01-01

    Many fundamental biological processes depend on intricate networks of interactions between proteins and nucleic acids and a quantitative description of these interactions is important for understanding cellular mechanisms governing DNA replication, transcription, or translation. Here we present a versatile method for rapid and quantitative assessment of protein/nucleic acid (NA) interactions. This method is based on protein induced fluorescence enhancement (PIFE), a phenomenon whereby protein binding increases the fluorescence of Cy3-like dyes. PIFE has mainly been used in single molecule studies to detect protein association with DNA or RNA. Here we applied PIFE for steady state quantification of protein/NA interactions by using microwell plate fluorescence readers (mwPIFE). We demonstrate the general applicability of mwPIFE for examining various aspects of protein/DNA interactions with examples from the restriction enzyme BamHI, and the DNA repair complexes Ku and XPF/ERCC1. These include determination of sequence and structure binding specificities, dissociation constants, detection of weak interactions, and the ability of a protein to translocate along DNA. mwPIFE represents an easy and high throughput method that does not require protein labeling and can be applied to a wide range of applications involving protein/NA interactions. PMID:28008962

  13. Dietary protein's and dietary acid load's influence on bone health.

    PubMed

    Remer, Thomas; Krupp, Danika; Shi, Lijie

    2014-01-01

    A variety of genetic, mechano-response-related, endocrine-metabolic, and nutritional determinants impact bone health. Among the nutritional influences, protein intake and dietary acid load are two of the factors most controversially discussed. Although in the past high protein intake was often assumed to exert a primarily detrimental impact on bone mass and skeletal health, the majority of recent studies indicates the opposite and suggests a bone-anabolic influence. Studies examining the influence of alkalizing diets or alkalizing supplement provision on skeletal outcomes are less consistent, which raises doubts about the role of acid-base status in bone health. The present review critically evaluates relevant key issues such as acid-base terminology, influencing factors of intestinal calcium absorption, calcium balance, the endocrine-metabolic milieu related to metabolic acidosis, and some methodological aspects of dietary exposure and bone outcome examinations. It becomes apparent that for an adequate identification and characterization of either dietary acid load's or protein's impact on bone, the combined assessment of both nutritional influences is necessary.

  14. Secreted Protein Acidic and Rich in Cysteine in Ocular Tissue

    PubMed Central

    Scavelli, Kurt; Chatterjee, Ayan

    2015-01-01

    Abstract Secreted protein acidic and rich in cysteine (SPARC), also known as osteonectin or BM-40, is the prototypical matricellular protein. Matricellular proteins are nonstructural secreted proteins that provide an integration between cells and their surrounding extracellular matrix (ECM). Regulation of the ECM is important in maintaining the physiologic function of tissues. Elevated levels of SPARC have been identified in a variety of diseases involving pathologic tissue remodeling, such as hepatic fibrosis, systemic sclerosis, and certain carcinomas. Within the eye, SPARC has been identified in the trabecular meshwork, lens, and retina. Studies have begun to show the role of SPARC in these tissues and its possible role, specifically in primary open-angle glaucoma, cataracts, and proliferative vitreoretinopathy. SPARC may, therefore, be a therapeutic target in the treatment of certain ocular diseases. Further investigation into the mechanism of action of SPARC will be necessary in the development of SPARC-targeted therapy. PMID:26167673

  15. Saturated fatty acids modulate autophagy's proteins in the hypothalamus.

    PubMed

    Portovedo, Mariana; Ignacio-Souza, Letícia M; Bombassaro, Bruna; Coope, Andressa; Reginato, Andressa; Razolli, Daniela S; Torsoni, Márcio A; Torsoni, Adriana S; Leal, Raquel F; Velloso, Licio A; Milanski, Marciane

    2015-01-01

    Autophagy is an important process that regulates cellular homeostasis by degrading dysfunctional proteins, organelles and lipids. In this study, the hypothesis that obesity could lead to impairment in hypothalamic autophagy in mice was evaluated by examining the hypothalamic distribution and content of autophagic proteins in animal with obesity induced by 8 or 16 weeks high fat diet to induce obesity and in response to intracerebroventricular injections of palmitic acid. The results showed that chronic exposure to a high fat diet leads to an increased expression of inflammatory markers and downregulation of autophagic proteins. In obese mice, autophagic induction leads to the downregulation of proteins, such as JNK and Bax, which are involved in the stress pathways. In neuron cell-line, palmitate has a direct effect on autophagy even without inflammatory activity. Understanding the cellular and molecular bases of overnutrition is essential for identifying new diagnostic and therapeutic targets for obesity.

  16. Electricity-free, sequential nucleic acid and protein isolation.

    PubMed

    Pawlowski, David R; Karalus, Richard J

    2012-05-15

    Traditional and emerging pathogens such as Enterohemorrhagic Escherichia coli (EHEC), Yersinia pestis, or prion-based diseases are of significant concern for governments, industries and medical professionals worldwide. For example, EHECs, combined with Shigella, are responsible for the deaths of approximately 325,000 children each year and are particularly prevalent in the developing world where laboratory-based identification, common in the United States, is unavailable (1). The development and distribution of low cost, field-based, point-of-care tools to aid in the rapid identification and/or diagnosis of pathogens or disease markers could dramatically alter disease progression and patient prognosis. We have developed a tool to isolate nucleic acids and proteins from a sample by solid-phase extraction (SPE) without electricity or associated laboratory equipment (2). The isolated macromolecules can be used for diagnosis either in a forward lab or using field-based point-of-care platforms. Importantly, this method provides for the direct comparison of nucleic acid and protein data from an un-split sample, offering a confidence through corroboration of genomic and proteomic analysis. Our isolation tool utilizes the industry standard for solid-phase nucleic acid isolation, the BOOM technology, which isolates nucleic acids from a chaotropic salt solution, usually guanidine isothiocyanate, through binding to silica-based particles or filters (3). CUBRC's proprietary solid-phase extraction chemistry is used to purify protein from chaotropic salt solutions, in this case, from the waste or flow-thru following nucleic acid isolation(4). By packaging well-characterized chemistries into a small, inexpensive and simple platform, we have generated a portable system for nucleic acid and protein extraction that can be performed under a variety of conditions. The isolated nucleic acids are stable and can be transported to a position where power is available for PCR amplification

  17. Sulfo-N-hydroxysuccinimide interferes with bicinchoninic acid protein assay.

    PubMed

    Vashist, Sandeep Kumar; Zhang, BinBin; Zheng, Dan; Al-Rubeaan, Khalid; Luong, John H T; Sheu, Fwu-Shan

    2011-10-01

    This study revealed a major interference from sulfo-N-hydroxysuccinimide (sulfo-NHS) in the bicinchoninic acid (BCA) protein assay. Sulfo-NHS, a common reagent used in bioconjugation and analytical biochemistry, exhibited absorbance signals and absorbance peaks at 562 nm, comparable to bovine serum albumin (BSA). However, the combined absorbance of sulfo-NHS and BSA was not strictly additive. The sulfo-NHS interference was suggested to be caused by the reduction of Cu(2+) in the BCA Kit's reagent B (4% cupric sulfate) in a manner similar to that of the protein.

  18. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?

    PubMed

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2007-08-28

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.

  19. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  20. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  1. Nucleic acid (cDNA) and amino acid sequences of the maize endosperm protein glutelin-2.

    PubMed Central

    Prat, S; Cortadas, J; Puigdomènech, P; Palau, J

    1985-01-01

    The cDNA coding for a glutelin-2 protein from maize endosperm has been cloned and the complete amino acid sequence of the protein derived for the first time. An immature maize endosperm cDNA bank was screened for the expression of a beta-lactamase:glutelin-2 (G2) fusion polypeptide by using antibodies against the purified 28 kd G2 protein. A clone corresponding to the 28 kd G2 protein was sequenced and the primary structure of this protein was derived. Five regions can be defined in the protein sequence: an 11 residue N-terminal part, a repeated region formed by eight units of the sequence Pro-Pro-Pro-Val-His-Leu, an alternating Pro-X stretch 21 residues long, a Cys rich domain and a C-terminal part rich in Gln. The protein sequence is preceded by 19 residues which have the characteristics of the signal peptide found in secreted proteins. Unlike zeins, the main maize storage proteins, 28 kd glutelin-2 has several homologous sequences in common with other cereal storage proteins. Images PMID:3839076

  2. Hyperdimensional Analysis of Amino Acid Pair Distributions in Proteins

    PubMed Central

    Henriksen, Svend B.; Arnason, Omar; Söring, Jón; Petersen, Steffen B.

    2011-01-01

    Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed, and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure analysis. PMID:22174733

  3. The biological activities of protein/oleic acid complexes reside in the fatty acid.

    PubMed

    Fontana, Angelo; Spolaore, Barbara; Polverino de Laureto, Patrizia

    2013-06-01

    A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or "molten globule" state, leading to the idea that partly folded proteins can have "beneficial effects". The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid.

  4. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective.

    PubMed

    Lönnerdal, Bo; Erdmann, Peter; Thakkar, Sagar K; Sauser, Julien; Destaillats, Frédéric

    2017-03-01

    The protein content of breast milk provides a foundation for estimating protein requirements of infants. Because it serves as a guideline for regulatory agencies issuing regulations for infant formula composition, it is critical that information on the protein content of breast milk is reliable. We have therefore carried out a meta-analysis of the protein and amino acid contents of breast milk and how they evolve during lactation. As several bioactive proteins are not completely digested in the infant and therefore represent "non-utilizable" protein, we evaluated the quantity, mechanism of action and digestive fate of several major breast milk proteins. A better knowledge of the development of the protein contents of breast milk and to what extent protein utilization changes with age of the infant will help improve understanding of protein needs in infancy. It is also essential when designing the composition of infant formulas, particularly when the formula uses a "staging" approach in which the composition of the formula is modified in stages to reflect changes in breast milk and changing requirements as the infant ages.

  5. Phytic acid reduction in soy protein improves zinc bioavailability

    SciTech Connect

    Zhou, J.R.; Wong, M.S.; Burns, R.A.; Erdman, J.W. Jr. Mead Johnson Research Center, Evansville, IN )

    1991-03-15

    The objective of this study was to confirm previous studies that have suggested that reduction of phytic acid in soy improved zinc bioavailability (BV). Two commercially-produced soybean isolates containing either a normal phytic acid level or a reduced level were formulated into diets so as to provide 6 or 9 ppm zinc. Control diets were egg white protein-based and contained 3, 6 or 9 ppm zinc from zinc carbonate. Weanling male rats were fed these diets for 21 days and food intake and weight gain monitored. Slope ratio analysis of total tibia zinc content compared to total zinc intake revealed that zinc BV from reduced phytic acid soy isolate-containing diets was indistinguishable from control egg white diets. In contrast, zinc BV from normal soy isolate diets was significantly reduced compared to reduced phytic acid and control diets. These results coupled with other results indicate that phytic acid is the inhibitory factor in soybean products that results in reduced zinc BV.

  6. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  7. Dynamics of palmitic acid complexed with rat intestinal fatty acid binding protein.

    PubMed

    Zhu, L; Kurian, E; Prendergast, F G; Kemple, M D

    1999-02-02

    Dynamics of palmitic acid (PA), isotopically enriched with 13C at the second, seventh, or terminal methyl position, were investigated by 13C NMR. Relaxation measurements were made on PA bound to recombinant rat intestinal fatty acid binding protein (I-FABP) at pH 5.5 and 23 degreesC, and, for comparison, on PA incorporated into 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (MPPC) micelles, and dissolved in methanol. The 13C relaxation data, T1, and steady-state nuclear Overhauser effect (NOE) obtained at two different magnetic fields were interpreted using the model-free approach [Lipari, G., and Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559]. The overall rotational correlation time of the fatty acid.protein complex was 2.5 +/- 0.4 ns, which is substantially less than the value expected for the protein itself (>6 ns). Order parameters (S2), which are a measure of the amplitude of the internal motion of individual C-H vectors with respect to the PA molecule, while largest for C-2 and smallest for the methyl carbon, were relatively small (<0.4) in the protein complex. S2 values for given C-H vectors also were smaller for PA in the MPPC micelles and in methanol than in the protein complex. Correlation times reflective of the time scale of the internal motion of the C-H vectors were in all cases <60 ps. These results support the view that the fatty acid is not rigidly anchored within the I-FABP binding pocket, but rather has considerable freedom to move within the pocket.

  8. Minimal genome encoding proteins with constrained amino acid repertoire

    PubMed Central

    Tsoy, Olga; Yurieva, Marina; Kucharavy, Andrey; O'Reilly, Mary; Mushegian, Arcady

    2013-01-01

    Minimal bacterial gene set comprises the genetic elements needed for survival of engineered bacterium on a rich medium. This set is estimated to include 300–350 protein-coding genes. One way of simplifying an organism with such a minimal genome even further is to constrain the amino acid content of its proteins. In this study, comparative genomics approaches and the results of gene knockout experiments were used to extrapolate the minimal gene set of mollicutes, and bioinformatics combined with the knowledge-based analysis of the structure-function relationships in these proteins and their orthologs, paralogs and analogs was applied to examine the challenges of completely replacing the rarest residue, cysteine. Among several known functions of cysteine residues, their roles in the active centers of the enzymes responsible for deoxyribonucleoside synthesis and transfer RNA modification appear to be crucial, as no alternative chemistry is known for these reactions. Thus, drastic reduction of the content of the rarest amino acid in a minimal proteome appears to be possible, but its complete elimination is challenging. PMID:23873957

  9. Retroviral nucleocapsid proteins possess potent nucleic acid strand renaturation activity.

    PubMed Central

    Dib-Hajj, F.; Khan, R.; Giedroc, D. P.

    1993-01-01

    The nucleocapsid protein (NC) is the major genomic RNA binding protein that plays integral roles in the structure and replication of all animal retroviruses. In this report, select biochemical properties of recombinant Mason-Pfizer monkey virus (MPMV) and HIV-1 NCs are compared. Evidence is presented that two types of saturated Zn2 NC-polynucleotide complexes can be formed under conditions of low [NaCl] that differ in apparent site-size (n = 8 vs. n = 14). The formation of one or the other complex appears dependent on the molar ratio of NC to RNA nucleotide with the putative low site-size mode apparently predominating under conditions of protein excess. Both MPMV and HIV-1 NCs kinetically facilitate the renaturation of two complementary DNA strands, suggesting that this is a general property of retroviral NCs. NC proteins increase the second-order rate constant for renaturation of a 149-bp DNA fragment by more than four orders of magnitude over that obtained in the absence of protein at 37 degrees C. The protein-assisted rate is 100-200-fold faster than that obtained at 68 degrees C, 1 M NaCl, solution conditions considered to be optimal for strand renaturation. Provided that sufficient NC is present to coat all strands, the presence of 400-1,000-fold excess nonhomologous DNA does not greatly affect the reaction rate. The HIV-1 NC-mediated renaturation reaction functions stoichiometrically, requiring a saturated strand of DNA nucleotide:NC ratio of about 7-8, rather than 14. Under conditions of less protein, the rate acceleration is not realized. The finding of significant nucleic acid strand renaturation activity may have important implications for various events of reverse transcription particularly in initiation and cDNA strand transfer. PMID:8443601

  10. An amino acid code for irregular and mixed protein packing.

    PubMed

    Joo, Hyun; Chavan, Archana G; Fraga, Keith J; Tsai, Jerry

    2015-12-01

    To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of two motifs: a three-residue socket for packing within secondary (2°) structure and a four-residue knob-socket for tertiary (3°) packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. In irregular sockets, Gly, Pro, Asp, and Ser are favored, while in irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly. Cys, His,Met, and Trp are not favored in either. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helice/β-sheet identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map.

  11. An Amino Acid Code for Irregular and Mixed Protein Packing

    PubMed Central

    Joo, Hyun; Chavan, Archana; Fraga, Keith; Tsai, Jerry

    2015-01-01

    To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of 2 motifs: a 3 residue socket for packing within 2° structure and a 4 residue knob-socket for 3° packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. Irregular secondary structure involves 3 residue cliques of consecutive contacting residues or XYZ sockets. In irregular sockets, Gly, Pro, Asp and Ser are favored, while Cys, His, Met and Trp are not. For irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly, while Cys, His, Met and Trp are not. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helices/β-sheets identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. PMID:26370334

  12. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein

    PubMed Central

    Longo, Liam M.; Lee, Jihun; Blaber, Michael

    2013-01-01

    A compendium of different types of abiotic chemical syntheses identifies a consensus set of 10 “prebiotic” α-amino acids. Before the emergence of biosynthetic pathways, this set is the most plausible resource for protein formation (i.e., proteogenesis) within the overall process of abiogenesis. An essential unsolved question regarding this prebiotic set is whether it defines a “foldable set”—that is, does it contain sufficient chemical information to permit cooperatively folding polypeptides? If so, what (if any) characteristic properties might such polypeptides exhibit? To investigate these questions, two “primitive” versions of an extant protein fold (the β-trefoil) were produced by top-down symmetric deconstruction, resulting in a reduced alphabet size of 12 or 13 amino acids and a percentage of prebiotic amino acids approaching 80%. These proteins show a substantial acidification of pI and require high salt concentrations for cooperative folding. The results suggest that the prebiotic amino acids do comprise a foldable set within the halophile environment. PMID:23341608

  13. Reversible lysine modification on proteins by using functionalized boronic acids.

    PubMed

    Cal, Pedro M S D; Frade, Raquel F M; Cordeiro, Carlos; Gois, Pedro M P

    2015-05-26

    Iminoboronates have been utilized to successfully install azide and alkyne bioorthogonal functions on proteins, which may then be further reacted with their bioorthogonal counterparts. These constructs were also used to add polyethylene glycol (PEG) to insulin, a modification which has been shown to be reversible in the presence of fructose. Finally, iminoboronates were used to assemble a folic acid/paclitaxel small-molecule/drug conjugate in situ with an IC50  value of 20.7 nM against NCI-H460 cancer cells and negligible cytotoxicity against the CRL-1502 noncancer cells.

  14. Photolabeling of brain membrane proteins by lysergic acid diethylamide

    SciTech Connect

    Mahon, A.C.; Hartig, P.R.

    1982-04-05

    /sup 3/H-Lysergic acid diethylamide (/sup 3/H-LSD) is irreversibly incorporated into bovine caudate membranes during ultraviolet light illumination. The incorporated radioligand apparently forms a covalent bond with a sub-population of the membrane proteins. Although the photolabeling pattern differs significantly from the Coomassie blue staining pattern on SDS gels, the photolabeling is apparently not specific for LSD binding sites associated with neurotransmitter receptors. /sup 3/H-LSD photolabeling can occur during prolonged exposure of membrane samples to room lighting and thus may introduce artifacts into receptor binding assays.

  15. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts.

  16. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  17. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    PubMed Central

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael C.

    2014-01-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems (OTSs) has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications. PMID:24959531

  18. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael

    2014-06-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.

  19. Photo-CIDNP NMR spectroscopy of amino acids and proteins.

    PubMed

    Kuhn, Lars T

    2013-01-01

    Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in "real time". As such, the method can offer - qualitatively and, to a certain extent, quantitatively - residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their "path" to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given.

  20. Molecular evolution of monotreme and marsupial whey acidic protein genes.

    PubMed

    Sharp, Julie A; Lefèvre, Christophe; Nicholas, Kevin R

    2007-01-01

    Whey acidic protein (WAP), a major whey protein present in milk of a number of mammalian species has characteristic cysteine-rich domains known as four-disulfide cores (4-DSC). Eutherian WAP, expressed in the mammary gland throughout lactation, has two 4-DSC domains, (DI-DII) whereas marsupial WAP, expressed only during mid-late lactation, contains an additional 4-DSC (DIII), and has a DIII-D1-DII configuration. We report the expression and evolution of echidna (Tachyglossus aculeatus) and platypus (Onithorhynchus anatinus) WAP cDNAs. Predicted translation of monotreme cDNAs showed echidna WAP contains two 4-DSC domains corresponding to DIII-DII, whereas platypus WAP contains an additional domain at the C-terminus with homology to DII and has the configuration DIII-DII-DII. Both monotreme WAPs represent new WAP protein configurations. We propose models for evolution of the WAP gene in the mammalian lineage either through exon loss from an ancient ancestor or by rapid evolution via the process of exon shuffling. This evolutionary outcome may reflect differences in lactation strategy between marsupials, monotremes, and eutherians, and give insight to biological function of the gene products. WAP four-disulfide core domain 2 (WFDC2) proteins were also identified in echidna, platypus and tammar wallaby (Macropus eugenii) lactating mammary cells. WFDC2 proteins are secreted proteins not previously associated with lactation. Mammary gland expression of tammar WFDC2 during the course of lactation showed WFDC2 was elevated during pregnancy, reduced in early lactation and absent in mid-late lactation.

  1. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  2. The natural non-protein amino acid N-β-methylamino-L-alanine (BMAA) is incorporated into protein during synthesis.

    PubMed

    Glover, W Broc; Mash, Deborah C; Murch, Susan J

    2014-11-01

    N-β-methylamino-L-alanine (BMAA) is an amino acid produced by cyanobacteria and accumulated through trophic levels in the environment and natural food webs. Human exposure to BMAA has been linked to progressive neurodegenerative diseases, potentially due to incorporation of BMAA into protein. The insertion of BMAA and other non-protein amino acids into proteins may trigger protein misfunction, misfolding and/or aggregation. However, the specific mechanism by which BMAA is associated with proteins remained unidentified. Such studies are challenging because of the complexity of biological systems and samples. A cell-free in vitro protein synthesis system offers an excellent approach for investigation of changing amino acid composition in protein. In this study, we report that BMAA incorporates into protein as an error in synthesis when a template DNA sequence is used. Bicinchoninic acid assay of total protein synthesis determined that BMAA effectively substituted for alanine and serine in protein product. LC-MS/MS confirmed that BMAA was selectively inserted into proteins in place of other amino acids, but isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) did not share this characteristic. Incorporation of BMAA into proteins was significantly higher when genomic DNA from post-mortem brain was the template. About half of BMAA in the synthetic proteins was released with denaturation with sodium dodecylsulfonate and dithiothreitol, but the remaining BMAA could only be released by acid hydrolysis. Together these data demonstrate that BMAA is incorporated into the amino acid backbone of proteins during synthesis and also associated with proteins through non-covalent bonding.

  3. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  4. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay

    PubMed Central

    Huang, Tao; Long, Mian; Huo, Bo

    2010-01-01

    Although Bicinchoninic acid (BCA) has been widely used to determine protein concentration, the mechanism of interaction between protein, copper ion and BCA in this assay is still not well known. Using the Micro BCA protein assay kit (Pierce Company), we measured the absorbance at 562 nm of BSA solutions with different concentrations of protein, and also varied the BCA concentration. When the concentration of protein was increased, the absorbance exhibited the known linear and nonlinear increase, and then reached an unexpected plateau followed by a gradual decrease. We introduced a model in which peptide chains competed with BCA for binding to cuprous ions. Formation of the well-known chromogenic complex of BCA-Cu1+-BCA was competed with the binding of two peptide bonds (NTPB) to cuprous ion, and there is the possibility of the existence of two new complexes. A simple equilibrium equation was established to describe the correlations between the substances in solution at equilibrium, and an empirical exponential function was introduced to describe the reduction reaction. Theoretical predictions of absorbance from the model were in good agreement with the measurements, which not only validated the competitive binding model, but also predicted a new complex of BCA-Cu1+-NTPB that might exist in the final solution. This work provides a new insight into understanding the chemical bases of the BCA protein assay and might extend the assay to higher protein concentration. PMID:21625379

  5. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay.

    PubMed

    Huang, Tao; Long, Mian; Huo, Bo

    2010-01-01

    Although Bicinchoninic acid (BCA) has been widely used to determine protein concentration, the mechanism of interaction between protein, copper ion and BCA in this assay is still not well known. Using the Micro BCA protein assay kit (Pierce Company), we measured the absorbance at 562 nm of BSA solutions with different concentrations of protein, and also varied the BCA concentration. When the concentration of protein was increased, the absorbance exhibited the known linear and nonlinear increase, and then reached an unexpected plateau followed by a gradual decrease. We introduced a model in which peptide chains competed with BCA for binding to cuprous ions. Formation of the well-known chromogenic complex of BCA-Cu(1+)-BCA was competed with the binding of two peptide bonds (NTPB) to cuprous ion, and there is the possibility of the existence of two new complexes. A simple equilibrium equation was established to describe the correlations between the substances in solution at equilibrium, and an empirical exponential function was introduced to describe the reduction reaction. Theoretical predictions of absorbance from the model were in good agreement with the measurements, which not only validated the competitive binding model, but also predicted a new complex of BCA-Cu(1+)-NTPB that might exist in the final solution. This work provides a new insight into understanding the chemical bases of the BCA protein assay and might extend the assay to higher protein concentration.

  6. Shedding light on proteins, nucleic acids, cells, humans and fish

    NASA Technical Reports Server (NTRS)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  7. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    SciTech Connect

    Raza, H.; Chung, W.L.; Mukhtar, H. )

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  8. Detection of Protein-Protein Interaction Within an RNA-Protein Complex Via Unnatural-Amino-Acid-Mediated Photochemical Crosslinking.

    PubMed

    Yeh, Fu-Lung; Tung, Luh; Chang, Tien-Hsien

    2016-01-01

    Although DExD/H-box proteins are known to unwind RNA duplexes and modulate RNA structures in vitro, it is highly plausible that, in vivo, some may function to remodel RNA-protein complexes. Precisely how the latter is achieved remains a mystery. We investigated this critical issue by using yeast Prp28p, an evolutionarily conserved DExD/H-box splicing factor, as a model system. To probe how Prp28p interacts with spliceosome, we strategically placed p-benzoyl-phenylalanine (BPA), a photoactivatable unnatural amino acid, along the body of Prp28p in vivo. Extracts prepared from these engineered strains were then used to assemble in vitro splicing reactions for BPA-mediated protein-protein crosslinkings. This enabled us, for the first time, to "capture" Prp28p in action. This approach may be applicable to studying the roles of other DExD/H-box proteins functioning in diverse RNA-related pathways, as well as to investigating protein-protein contacts within an RNA-protein complex.

  9. Nucleic acid-binding specificity of human FUS protein

    PubMed Central

    Wang, Xueyin; Schwartz, Jacob C.; Cech, Thomas R.

    2015-01-01

    FUS, a nuclear RNA-binding protein, plays multiple roles in RNA processing. Five specific FUS-binding RNA sequence/structure motifs have been proposed, but their affinities for FUS have not been directly compared. Here we find that human FUS binds all these sequences with Kdapp values spanning a 10-fold range. Furthermore, some RNAs that do not contain any of these motifs bind FUS with similar affinity. FUS binds RNA in a length-dependent manner, consistent with a substantial non-specific component to binding. Finally, investigation of FUS binding to different nucleic acids shows that it binds single-stranded DNA with three-fold lower affinity than ssRNA of the same length and sequence, while binding to double-stranded nucleic acids is weaker. We conclude that FUS has quite general nucleic acid-binding activity, with the various proposed RNA motifs being neither necessary for FUS binding nor sufficient to explain its diverse binding partners. PMID:26150427

  10. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  11. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  12. Assessing the Chemical Accuracy of Protein Structures via Peptide Acidity

    PubMed Central

    Anderson, Janet S.; Hernández, Griselda; LeMaster, David M.

    2012-01-01

    Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses. PMID:23182463

  13. Snake venom. The amino acid sequence of protein A from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J; Strydom, D J

    1980-12-01

    Protein A from Dendroaspis polylepis polylepis venom comprises 81 amino acids, including ten half-cystine residues. The complete primary structures of protein A and its variant A' were elucidated. The sequences of proteins A and A', which differ in a single position, show no homology with various neurotoxins and non-neurotoxic proteins and represent a new type of elapid venom protein.

  14. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins.

  15. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  16. Defining meal requirements for protein to optimize metabolic roles of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signal...

  17. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-07

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  18. Exogenous amino acids stimulate net muscle protein synthesis in the elderly.

    PubMed Central

    Volpi, E; Ferrando, A A; Yeckel, C W; Tipton, K D; Wolfe, R R

    1998-01-01

    We have investigated the response of amino acid transport and protein synthesis in healthy elderly individuals (age 71+/-2 yr) to the stimulatory effect of increased amino acid availability. Muscle protein synthesis and breakdown, and amino acid transport were measured in the postabsorptive state and during the intravenous infusion of an amino acid mixture. Muscle-free amino acid kinetics were calculated by means of a three compartment model using data obtained by femoral arterio-venous catheterization and muscle biopsies from the vastus lateralis during the infusion of stable isotope tracers of amino acids. In addition, muscle protein fractional synthetic rate (FSR) was measured. Peripheral amino acid infusion significantly increased amino acid delivery to the leg, amino acid transport, and muscle protein synthesis when measured either with the three compartment model (P < 0.05) or with the traditional precursor-product approach (FSR increased from 0. 0474+/-0.0054 to 0.0940+/-0.0143%/h, P < 0.05). Because protein breakdown did not change during amino acid infusion, a positive net balance of amino acids across the muscle was achieved. We conclude that, although muscle mass is decreased in the elderly, muscle protein anabolism can nonetheless be stimulated by increased amino acid availability. We thus hypothesize that muscle mass could be better maintained with an increased intake of protein or amino acids. PMID:9576765

  19. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  20. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  1. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  2. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  3. Interfacial inhibitors of protein-nucleic acid interactions.

    PubMed

    Pommier, Yves; Marchand, Christophe

    2005-07-01

    This essay develops the paradigm of "Interfacial Inhibitors" (Pommier and Cherfils, TiPS, 2005, 28: 136) for inhibitory drugs beside orthosteric (competitive or non-competitive) and allosteric inhibitors. Interfacial inhibitors bind with high selectivity to a binding site involving two or more macromolecules within macromolecular complexes undergoing conformational changes. Interfacial binding traps (generally reversibly) a transition state of the complex, resulting in kinetic inactivation. The exemplary case of interfacial inhibitor of protein-DNA interface is camptothecin and its clinical derivatives. We will also provide examples generalizing the interfacial inhibitor concept to inhibitors of topoisomerase II (anthracyclines, ellipticines, epipodophyllotoxins), gyrase (quinolones, ciprofloxacin, norfloxacin), RNA polymerases (alpha-amanitin and actinomycin D), and ribosomes (antibiotics such as streptomycin, hygromycin B, tetracycline, kirromycin, fusidic acid, thiostrepton, and possibly cycloheximide). We discuss the implications of the interfacial inhibitor concept for drug discovery.

  4. Parsing the life-shortening effects of dietary protein: effects of individual amino acids.

    PubMed

    Arganda, Sara; Bouchebti, Sofia; Bazazi, Sepideh; Le Hesran, Sophie; Puga, Camille; Latil, Gérard; Simpson, Stephen J; Dussutour, Audrey

    2017-01-11

    High-protein diets shorten lifespan in many organisms. Is it because protein digestion is energetically costly or because the final products (the amino acids) are harmful? To answer this question while circumventing the life-history trade-off between reproduction and longevity, we fed sterile ant workers on diets based on whole proteins or free amino acids. We found that (i) free amino acids shortened lifespan even more than proteins; (ii) the higher the amino acid-to-carbohydrate ratio, the shorter ants lived and the lower their lipid reserves; (iii) for the same amino acid-to-carbohydrate ratio, ants eating free amino acids had more lipid reserves than those eating whole proteins; and (iv) on whole protein diets, ants seem to regulate food intake by prioritizing sugar, while on free amino acid diets, they seem to prioritize amino acids. To test the effect of the amino acid profile, we tested diets containing proportions of each amino acid that matched the ant's exome; surprisingly, longevity was unaffected by this change. We further tested diets with all amino acids under-represented except one, finding that methionine, serine, threonine and phenylalanine are especially harmful. All together, our results show certain amino acids are key elements behind the high-protein diet reduction in lifespan.

  5. Clustering amino acid contents of protein domains: biochemical functions of proteins and implications for origin of biological macromolecules.

    PubMed

    Torshin, I Y

    2001-04-01

    Structural classes of protein domains correlate with their amino acid compositions. Several successful algorithms (that use only amino acid composition) have been elaborated for the prediction of structural class or potential biochemical significance. This work deals with dynamic classification (clustering) of the domains on the basis of their amino acid composition. Amino acid contents of domains from a non-redundant PDB set were clustered in 20-dimensional space of amino acid contents. Despite the variations of an empirical parameter and non-redundancy of the set, only one large cluster (tens-hundreds of proteins) surrounded by hundreds of small clusters (1-5 proteins), was identified. The core of the largest cluster contains at least 64% DNA (nucleotide)-interacting protein domains from various sources. About 90% of the proteins of the core are intracellular proteins. 83% of the DNA/nucleotide interacting domains in the core belong to the mixed alpha-beta folds (a+b, a/b), 14% are all-alpha (mostly helices) and all-beta (mostly beta-strands) proteins. At the same time, when core domains that belong to one organism (E.coli) are considered, over 80% of them prove to be DNA/nucleotide interacting proteins. The core is compact: amino acid contents of domains from the core lie in relatively narrow and specific ranges. The core also contains several Fe-S cluster-binding domains, amino acid contents of the core overlap with ferredoxin and CO-dehydrogenase clusters, the oldest known proteins. As Fe-S clusters are thought to be the first biocatalysts, the results are discussed in relation to contemporary experiments and models dealing with the origin of biological macromolecules. The origin of most primordial proteins is considered here to be a result of co-adsorption of nucleotides and amino acids on specific clays, followed by en-block polymerization of the adsorbed mixtures of amino acids.

  6. Thermodynamics of the interaction of globular proteins with powdered stearic acid in acid pH.

    PubMed

    Mitra, Atanu; Chattoraj, D K; Chakraborty, P

    2006-06-01

    Adsorption isotherms of different globular proteins and gelatin on strearic acid particles have been studied as a function of biopolymer concentration, ionic strength of the medium, and temperature. The effect of neutral salts including CaCl2, Na3PO4, and urea on the adsorption isotherms has been also investigated. It is observed that the extent of adsorption (Gamma2(1)) increases in two steps with the increase of biopolymer concentration (C2) in the bulk. Gamma2(1) increases with an increase of C2 until a steady maximum value Gamma2(m) is reached at a critical concentration C2(m). After initial saturation, Gamma2(1) again increases from Gamma2(m) without reaching any limiting value due to the surface aggregation of the protein. The values of the standard free energy change for adsorption have been calculated on the basis of the Gibbs equation. The standard entropy and enthalpy changes are also calculated.

  7. Determination of the amount of protein and amino acids extracted from the microbial protein (SCP) of lignocellulosic wastes.

    PubMed

    Ahmadi, A R; Ghoorchian, H; Hajihosaini, R; Khanifar, J

    2010-04-15

    With the increasing world population, the use of lignocellulosic wastes for production of microbial protein as animal feed becomes a necessity of our time. In order to verify the most productive protein, the amount of protein and amino acid extracted from Single Cell Protein (SCP) needs to be determined by an effective method. In this study Microbial protein was produced by treatment of wheat straw with Pleurotus florida; with heat at 100 degrees C and NaOH 2% as substrate by solid state fermentation. Concentration of protein was 62.8% per 100 g of dried microbial protein. Then the extracted protein hydrolyzed with HCl 6 Normal for 48 h under 110 degrees C temperature condition. Then the amino acids analyzed by using A-200 Amino Nova analyzer. The results of this study indicated that the ratio of essential amino acids to total amino acids was 65.6%. The concentration of essnyial amino acids were: Lysine = 9.5, histidine = 19.8, threonine = 0.6, valine = 6.6, methionine = 2.1, isoleucine = 7.3, leucine = 6.8, phenylalanine = 4.3 and arginine = 8.3 g/100 g of extracted protein that indicated the obtained microbial protein can be a good or suitable substitute in the food program of animal feed.

  8. Salicylic acid enhances Staphylococcus aureus extracellular adhesin protein expression.

    PubMed

    Alvarez, Lucía P; Barbagelata, María S; Cheung, Ambrose L; Sordelli, Daniel O; Buzzola, Fernanda R

    2011-11-01

    One of the virulence factors required by Staphylococcus aureus at the early stages of infection is Eap, a secreted adhesin that binds many host proteins and is upregulated by the two-component regulatory system saeRS. The S. aureus Newman strain harbors a mutation in saeS that is thought to be responsible for the high level of Eap expression in this strain. This study was designed to ascertain whether salicylic acid (SAL) affects the expression of Eap and the internalization of S. aureus into epithelial cells. The strain Newman treated with SAL exhibited increased levels of eap transcription and protein expression. Furthermore, SAL treatment increased the eap promoter activity. SAL treatment enhanced Eap expression in the Newman and in other S. aureus strains that do not carry the mutation in saeS. Internalization of S. aureus eap and sae mutants into the MAC-T epithelial cells was significantly decreased compared with the wild-type counterparts. In conclusion, we demonstrated that a low concentration of SAL increased S. aureus Eap expression possibly due to enhancement of sae. SAL may create the conditions for S. aureus persistence in the host, not only by decreasing the capsular polysaccharide expression as shown before, but also by enhancing Eap expression.

  9. Crystal growth of proteins, nucleic acids, and viruses in gels.

    PubMed

    Lorber, Bernard; Sauter, Claude; Théobald-Dietrich, Anne; Moreno, Abel; Schellenberger, Pascale; Robert, Marie-Claire; Capelle, Bernard; Sanglier, Sarah; Potier, Noëlle; Giegé, Richard

    2009-11-01

    Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses.

  10. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  11. PROTEIN METABOLISM IN REGENERATING WOUND TISSUE: FUNCTION OF THE SULFUR AMINO ACIDS.

    DTIC Science & Technology

    PROTEINS, *TISSUES(BIOLOGY), METABOLISM, TISSUES(BIOLOGY), REGENERATION(ENGINEERING), WOUNDS AND INJURIES, TISSUES(BIOLOGY), TRACER STUDIES, METHIONINE, COLLAGEN, TYROSINE, BIOSYNTHESIS, AMINO ACIDS .

  12. Hydroxyindole Carboxylic Acid-Based Inhibitors for Receptor-Type Protein Tyrosine Protein Phosphatase Beta

    PubMed Central

    Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Gunawan, Andrea M.

    2014-01-01

    Abstract Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. Results: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. Innovation: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Conclusion: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity. Antioxid. Redox Signal. 20, 2130–2140. PMID:24180557

  13. Amino acid composition of Lagenaria siceraria seed flour and protein fractions.

    PubMed

    Ogunbusola, Moriyike Esther; Fagbemi, Tayo Nathaniel; Osundahunsi, Oluwatooyin Faramade

    2010-12-01

    Defatted seed flours of Lagenaria siceraria (calabash and bottle gourd) were fractionated into their major protein fractions. The amino acid composition of seed flours and their protein fractions were determined and the protein quality was evaluated. Glutamic acid (139-168 mg/g protein) was the most abundant amino acid followed by aspartic acid (89.0-116 mg/g protein) in both the seed flours and their protein fractions. The total essential amino acid ranged from 45.8 to 51.5%. The predicted protein efficiency ratio and the predicted biological value ranged from 2.4 to 2.9 and 8.7 to 44.0, respectively. Lysine and sulphur amino acids were mostly concentrated in the globulin fractions. The first and second limiting amino acids in seed flours and protein fractions were methionine and valine or threonine. The seed flours contained adequate essential amino acids required by growing school children and adults. The seed has potential as protein supplement in cereal based complementary diets or in the replacement of animal proteins in conventional foods.

  14. Solvent accessible surface area-based hot-spot detection methods for protein-protein and protein-nucleic acid interfaces.

    PubMed

    Munteanu, Cristian R; Pimenta, António C; Fernandez-Lozano, Carlos; Melo, André; Cordeiro, Maria N D S; Moreira, Irina S

    2015-05-26

    Due to the importance of hot-spots (HS) detection and the efficiency of computational methodologies, several HS detecting approaches have been developed. The current paper presents new models to predict HS for protein-protein and protein-nucleic acid interactions with better statistics compared with the ones currently reported in literature. These models are based on solvent accessible surface area (SASA) and genetic conservation features subjected to simple Bayes networks (protein-protein systems) and a more complex multi-objective genetic algorithm-support vector machine algorithms (protein-nucleic acid systems). The best models for these interactions have been implemented in two free Web tools.

  15. Partial amino acid sequence of human pancreatic stone protein, a novel pancreatic secretory protein.

    PubMed Central

    Montalto, G; Bonicel, J; Multigner, L; Rovery, M; Sarles, H; De Caro, A

    1986-01-01

    Pancreatic stone protein (PSP) is the major organic component of human pancreatic stones. With the use of monoclonal antibody immunoadsorbents, five immunoreactive forms (PSP-S) with close Mr values (14,000-19,000) were isolated from normal pancreatic juice. By CM-Trisacryl M chromatography the lowest-Mr form (PSP-S1) was separated from the others and some of its molecular characteristics were investigated. The Mr of the PSP-S1 polypeptide chain calculated from the amino acid composition was about 16,100. The N-terminal sequences (40 residues) of PSP and PSP-S1 are identical, which suggests that the peptide backbone is the same for both of these polypeptides. The PSP-S1 sequence was determined up to residue 65 and was found to be different from all other known protein sequences. Images Fig. 1. PMID:3541906

  16. Experimental evolution of a green fluorescent protein composed of 19 unique amino acids without tryptophan.

    PubMed

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words).

  17. Experimental Evolution of a Green Fluorescent Protein Composed of 19 Unique Amino Acids without Tryptophan

    NASA Astrophysics Data System (ADS)

    Kawahara-Kobayashi, Akio; Hitotsuyanagi, Mitsuhiro; Amikura, Kazuaki; Kiga, Daisuke

    2014-04-01

    At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words)

  18. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  19. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  20. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  1. Soy protein/soy polysaccharide complex nanogels: folic acid loading, protection, and controlled delivery.

    PubMed

    Ding, Xuzhe; Yao, Ping

    2013-07-09

    In this study, we developed a facile approach to produce nanogels via self-assembly of folic acid, soy protein, and soy polysaccharide. High-pressure homogenization was introduced to break down the original aggregates of soy protein, which benefits the binding of soy protein with soy polysaccharide and folic acid at pH 4.0. After a heat treatment that causes the soy protein denaturation and gelation, folic acid-loaded soy protein/soy polysaccharide complex nanogels were fabricated. The nanogels have a polysaccharide surface that makes the nanogels dispersible in acidic conditions where folic acid is insoluble and soy protein forms precipitates after heating. More importantly, the protein and polysaccharide can inhibit the reactions between dissolved oxygen and folic acid during UV irradiation. After the preparation and storage of the nanogels in the presence of heat, oxygen, and light in acidic conditions, most of the folic acid molecules in the nanogels remain in their natural structure and can be released rapidly at neutral pH, that is, in the intestine. Because most food and beverages are acidic, the nanogels are a suitable delivery system of folic acid in food and beverages.

  2. Identification of Dynamic Changes in Proteins Associated with the Cellular Cytoskeleton after Exposure to Okadaic Acid

    PubMed Central

    Opsahl, Jill A.; Ljostveit, Sonja; Solstad, Therese; Risa, Kristin; Roepstorff, Peter; Fladmark, Kari E.

    2013-01-01

    Exposure of cells to the diarrhetic shellfish poison, okadaic acid, leads to a dramatic reorganization of cytoskeletal architecture and loss of cell-cell contact. When cells are exposed to high concentrations of okadaic acid (100–500 nM), the morphological rearrangement is followed by apoptotic cell death. Okadaic acid inhibits the broad acting Ser/Thr protein phosphatases 1 and 2A, which results in hyperphosphorylation of a large number of proteins. Some of these hyperphosphorylated proteins are most likely key players in the reorganization of the cell morphology induced by okadaic acid. We wanted to identify these phosphoproteins and searched for them in the cellular lipid rafts, which have been found to contain proteins that regulate cytoskeletal dynamics and cell adhesion. By using stable isotope labeling by amino acids in cell culture cells treated with okadaic acid (400 nM) could be combined with control cells before the isolation of lipid rafts. Protein phosphorylation events and translocations induced by okadaic acid were identified by mass spectrometry. Okadaic acid was shown to regulate the phosphorylation status and location of proteins associated with the actin cytoskeleton, microtubules and cell adhesion structures. A large number of these okadaic acid-regulated proteins have previously also been shown to be similarly regulated prior to cell proliferation and migration. Our results suggest that okadaic acid activates general cell signaling pathways that induce breakdown of the cortical actin cytoskeleton and cell detachment. PMID:23708184

  3. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  4. Expanding the Cyanuric Acid Hydrolase Protein Family to the Fungal Kingdom

    PubMed Central

    Dodge, Anthony G.; Preiner, Chelsea S.

    2013-01-01

    The known enzymes that open the s-triazine ring, the cyanuric acid hydrolases, have been confined almost exclusively to the kingdom Bacteria and are all homologous members of the rare cyanuric acid hydrolase/barbiturase protein family. In the present study, a filamentous fungus, Sarocladium sp. strain CA, was isolated from soil by enrichment culturing using cyanuric acid as the sole source of nitrogen. A reverse-genetic approach identified a fungal cyanuric acid hydrolase gene composed of two exons and one intron. The translated spliced sequence was 39 to 53% identical to previously characterized bacterial cyanuric acid hydrolases. The sequence was used to generate a gene optimized for expression in Escherichia coli and encoding an N-terminally histidine-tagged protein. The protein was purified by nickel affinity and anion-exchange chromatography. The purified protein was shown by 13C nuclear magnetic resonance (13C-NMR) to produce carboxybiuret as the product, which spontaneously decarboxylated to yield biuret and carbon dioxide. The protein was very narrow in substrate specificity, showing activity only with cyanuric acid and N-methyl cyanuric acid. Barbituric acid was an inhibitor of enzyme activity. Sequence analysis identified genes with introns in other fungi from the Ascomycota that, if spliced, are predicted to encode proteins with cyanuric acid hydrolase activity. The Ascomycota cyanuric acid hydrolase homologs are most closely related to cyanuric acid hydrolases from Actinobacteria. PMID:24039269

  5. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.

    PubMed

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-06-09

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.

  6. Addition of Amino Acids to Further Stabilize Lyophilized Sucrose-Based Protein Formulations: I. Screening of 15 Amino Acids in Two Model Proteins.

    PubMed

    Forney-Stevens, Kelly M; Bogner, Robin H; Pikal, Michael J

    2016-02-01

    In small amounts, the low molecular weight excipients-sorbitol and glycerol-have been shown to stabilize lyophilized sucrose-based protein formulations. The purpose of this study was to explore the use of amino acids as low molecular weight excipients to similarly enhance stability. Model proteins, recombinant human serum albumin and α-chymotrypsin, were formulated with sucrose in combination with one of 15 amino acid additives. Each formulation was lyophilized at 1:1:0.3 (w/w) protein-sucrose-amino acid. Percent total soluble aggregate was measured by size-exclusion chromatography before and after storage at 50 °C for 2 months. Classical thought might suggest that the addition of the amino acids to the sucrose-protein formulations would be destabilizing because of a decrease in the system's glass transition temperature. However, significant improvement in storage stability was observed for almost all formulations at the ratio of amino acid used. Weak correlations were found between the extent of stabilization and both amino acid molar volume and side-chain charge. The addition of amino acids at a modest level generally improves storage stability, often by more than a 50% increase, for lyophilized sucrose-based protein formulations.

  7. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  8. The amino acid sequence of protein CM-3 from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J

    1985-01-01

    Protein CM-3 from Dendroaspis polylepis polylepis venom was purified by gel filtration and ion exchange chromatography. It comprises 65 amino acids including eight half-cystines. The complete amino acid sequence of protein CM-3 has been elucidated. The sequence (residues 1-50) resembles that of the N-terminal sequence of the subunits of a synergistic type protein and residues 51-65 that of the C-terminal sequence of an angusticeps type protein. Mixtures of protein CM-3 and angusticeps type proteins showed no apparent synergistic effect, in that their toxicity in combination was no greater than the sum of their individual toxicities.

  9. Toward amino acid typing for proteins in FFLUX.

    PubMed

    Fletcher, Timothy L; Popelier, Paul L A

    2017-03-05

    Continuing the development of the FFLUX, a multipolar polarizable force field driven by machine learning, we present a modern approach to atom-typing and building transferable models for predicting atomic properties in proteins. Amino acid atomic charges in a peptide chain respond to the substitution of a neighboring residue and this response can be categorized in a manner similar to atom-typing. Using a machine learning method called kriging, we are able to build predictive models for an atom that is defined, not only by its local environment, but also by its neighboring residues, for a minimal additional computational cost. We found that prediction errors were up to 11 times lower when using a model specific to the correct group of neighboring residues, with a mean prediction of ∼0.0015 au. This finding suggests that atoms in a force field should be defined by more than just their immediate atomic neighbors. When comparing an atom in a single alanine to an analogous atom in a deca-alanine helix, the mean difference in charge is 0.026 au. Meanwhile, the same difference between a trialanine and a deca-alanine helix is only 0.012 au. When compared to deca-alanine models, the transferable models are up to 20 times faster to train, and require significantly less ab initio calculation, providing a practical route to modeling large biological systems. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  10. Genetic introduction of a diketone-containing amino acid into proteins.

    PubMed

    Zeng, Huaqiang; Xie, Jianming; Schultz, Peter G

    2006-10-15

    An orthogonal tRNA/aminoacyl-tRNA synthetase pair was evolved that makes possible the site-specific incorporation of an unnatural amino acid bearing a beta-diketone side chain into proteins in Escherichia coli with high translational efficiency and fidelity. Proteins containing this unnatural amino acid can be efficiently and selectively modified with hydroxylamine derivatives of fluorophores and other biophysical probes.

  11. ORAL AND INTRAVENOUSLY ADMINISTERED AMINO ACIDS PRODUCE SIMILAR EFFECTS ON MUSCLE PROTEIN SYNTHESIS IN THE ELDERLY

    PubMed Central

    Rasmussen, B.B.; Wolfe, R.R.; Volpi, E.

    2011-01-01

    BACKGROUND Muscle protein synthesis is stimulated in the elderly when amino acid availability is increased. OBJECTIVE To determine which mode of delivery of amino acids (intravenous vs. oral ingestion) is more effective in stimulating the rate of muscle protein synthesis in elderly subjects. DESIGN Fourteen elderly subjects were assigned to one of two groups. Following insertion of femoral arterial and venous catheters, subjects were infused with a primed, continuous infusion of L-[ring-2H5] phenylalanine. Blood samples and muscle biopsies were obtained to measure muscle protein fractional synthesis rate (FSR) with the precursor-product model, phenylalanine kinetics across the leg with the three-pool model, and whole body phenylalanine kinetics. Protein metabolism parameters were measured in the basal period, and during the administration of oral amino acids (n=8) or a similar amount of intravenous amino acids (n=6). RESULTS Enteral and parenteral amino acid administration increased amino acid arterial concentrations and delivery to the leg to a similar extent in both groups. Muscle protein synthesis as measured by both FSR, and the three-pool model, increased during amino acid administration (P < 0.05 vs. basal) in both groups with no differences between groups. Whole body proteolysis did not change with the oral amino acids whereas it increased slightly during parenteral amino acid administration. CONCLUSIONS Increased amino acid availability stimulates the rate of muscle protein synthesis independent of the route of administration (enteral vs. parenteral). PMID:12459885

  12. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  13. Amino Acid and Protein Metabolism in Bermuda Grass During Water Stress 12

    PubMed Central

    Barnett, N. M.; Naylor, A. W.

    1966-01-01

    The ability of Arizona Common and Coastal Bermuda grass [Cynodon dactylon (L.) Pers.] to synthesize amino acids and proteins during water stress was investigated. Amino acids were continually synthesized during the water stress treatments, but protein synthesis was inhibited and protein levels decreased. Water stress induced a 10- to 100-fold accumulation of free proline in shoots and a 2- to 6-fold accumulation of free asparagine, both of which are characteristic responses of water-stressed plants. Valine levels increased, and glutamic acid and alanine levels decreased. 14C labeling experiments showed that free proline turns over more slowly than any other free amino acid during water stress. This proline is readily synthesized and accumulated from glutamic acid. It is suggested that during water stress free proline functions as a storage compound. No significant differences were found in the amino acid and protein metabolism of the 2 varieties of Bermuda grass. PMID:16656387

  14. Allied Health Chemistry Laboratory: Amino Acids, Insulin, Proteins, and Skin

    ERIC Educational Resources Information Center

    Dever, David F.

    1975-01-01

    Presents a laboratory experiment specifically designed for allied health students. The students construct molecular models of amino acids, extract amino acids from their skin with hot water, and chromatographically analyze the skin extract and hydrolyzed insulin. (MLH)

  15. Partial purification of fatty-acid binding protein by ammonium sulphate fractionation.

    PubMed

    Avanzati, B; Catalá, A

    1983-07-01

    By fractionation of rat liver cytosol with 70% saturation ammonium sulphate, a soluble fraction showing high affinity for oleic acid was obtained. The binding of oleic acid to this fraction was inhibited by flavaspidic acid. The molecular weight of the main protein present in this fraction was 12 000 as determined by SDS-poly-acrylamide-gel electrophoresis. This soluble fraction stimulated the transfer of oleic acid from microsomes to phosphatidylcholine liposomes as demonstrated by a transfer assay in vitro. The behaviour of this fraction is similar to that described for fatty-acid binding protein.

  16. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  17. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.

    PubMed

    Borguesan, Bruno; Inostroza-Ponta, Mario; Dorn, Márcio

    2017-03-01

    The exponential growth in the number of experimentally determined three-dimensional protein structures provide a new and relevant knowledge about the conformation of amino acids in proteins. Only a few of probability densities of amino acids are publicly available for use in structure validation and prediction methods. NIAS (Neighbors Influence of Amino acids and Secondary structures) is a web-based tool used to extract information about conformational preferences of amino acid residues and secondary structures in experimental-determined protein templates. This information is useful, for example, to characterize folds and local motifs in proteins, molecular folding, and can help the solution of complex problems such as protein structure prediction, protein design, among others. The NIAS-Server and supplementary data are available at http://sbcb.inf.ufrgs.br/nias .

  18. Maternal micronutrients and omega 3 fatty acids affect placental fatty acid desaturases and transport proteins in Wistar rats.

    PubMed

    Wadhwani, Nisha S; Dangat, Kamini D; Joshi, Asmita A; Joshi, Sadhana R

    2013-03-01

    Adequate supply of LCPUFA from maternal plasma is crucial for fetal normal growth and development. The present study examines the effect of maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids on placental mRNA levels of fatty acid desaturases (Δ5 and Δ6) and transport proteins. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B12. Both the vitamin B12 deficient groups were supplemented with omega 3 fatty acid. Maternal vitamin B12 deficiency reduced placental mRNA and protein levels of Δ5 desaturase, mRNA levels of FATP1 and FATP4 (p<0.05 for all) as compared to control while omega 3 fatty acid supplementation normalized the levels. Our data for the first time indicates that altered maternal micronutrients and omega 3 fatty acids play a key role in regulating fatty acid desaturase and transport protein expression in placenta.

  19. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments

    PubMed Central

    Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V.; Rohanizadeh, Ramin

    2012-01-01

    Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m2 g–1. Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate. PMID:21957116

  20. Amino acid supplementation of calf milk replacers containing plasma protein.

    PubMed

    Morrison, S Y; Campbell, J M; Drackley, J K

    2017-03-22

    We determined the effects of calf milk replacers containing 0, 5, or 10% bovine plasma protein (PP), either without or with the supplemental amino acids (AA) Ile and Thr, on growth and health of male Holstein calves (n = 104) for 56 d. Milk replacers were formulated to contain 22% crude protein (CP), 20% fat, and 2.0% Lys. Milk replacers (12.5% solids) were fed at a rate of 1.5% of body weight (BW) on a dry matter basis during wk 1 and 1.75% of BW beginning on d 8. Starter was introduced on d 36 so that effects of PP and AA balance in milk replacers could be isolated. Intake, respiratory scores, and fecal scores were measured daily. Body weight and stature were measured weekly and blood serum samples were obtained during wk 4. Treatments had no effects on intakes of dry matter, CP, or metabolizable energy. During wk 6 and 8, BW was less as PP inclusion increased without AA supplementation compared with the other treatments. In wk 7, calves fed the higher level of PP without AA had lower BW than calves fed either the lower level of PP without supplemented AA or the higher inclusion of PP with supplemented AA. Average daily gain and gain:feed were lowest for calves fed the higher inclusion of PP without supplemented AA; heart girth in wk 7 was smallest for those calves. During the first 21 d, occurrence of scours was greater in calves fed the control milk replacer than in calves fed milk replacers containing the higher inclusion of PP either without or with supplemental AA. Occurrence of scours was also greater for the lower inclusion of PP compared with the higher inclusion of PP when AA were supplemented. Throughout the 56-d experiment, the chance of antibiotic treatment was greater for calves fed the control milk replacer than for all other treatments except the higher inclusion of PP without supplemental AA. Additionally, chance of antibiotic treatment was greater for the higher inclusion of PP without supplemental AA than for other milk replacers with PP. Calves

  1. Amino acid-selective isotope labeling of proteins for nuclear magnetic resonance study: proteins secreted by Brevibacillus choshinensis.

    PubMed

    Tanio, Michikazu; Tanaka, Rikou; Tanaka, Takeshi; Kohno, Toshiyuki

    2009-03-15

    Here we report the first application of amino acid-type selective (AATS) isotope labeling of a recombinant protein secreted by Brevibacillus choshinensis for a nuclear magnetic resonance (NMR) study. To prepare the 15N-AATS-labeled protein, the transformed B. choshinensis was cultured in 15N-labeled amino acid-containing C.H.L. medium, which is commonly used in the Escherichia coli expression system. The analyses of the 1H-15N heteronuclear single quantum coherence (HSQC) spectra of the secreted proteins with a 15N-labeled amino acid demonstrated that alanine, arginine, asparagine, cysteine, glutamine, histidine, lysine, methionine, and valine are suitable for selective labeling, although acidic and aromatic amino acids are not suitable. The 15N labeling for glycine, isoleucine, leucine, serine, and threonine resulted in scrambling to specific amino acids. These results indicate that the B. choshinensis expression system is an alternative tool for AATS labeling of recombinant proteins, especially secretory proteins, for NMR analyses.

  2. Evolutionary diversification of the avian fatty acid-binding proteins.

    PubMed

    Hughes, Austin L; Piontkivska, Helen

    2011-12-15

    Phylogenetic analysis of avian and other vertebrate fatty acid binding proteins (FABPs) supported the hypothesis that several gene duplications within this family occurred prior to the most recent common ancestor (MRCA) of tetrapods and bony fishes. The chicken genome encodes two liver-expressed FABPs: (1) L-FABP or FABP1; and (2) Lb-FABP. We propose that the latter be designated FABP10, because in our phylogenetic analysis it clustered with zebrafish FABP10. Bioinformatic analysis of across-tissue gene expression patterns in the chicken showed some congruence with phylogenetic relationships. On the basis of expression, chicken FABP genes seemed to form two major groups: (1) a cluster of genes many of which showed predominant expression in the digestive system (FABP1, FABP2, FABP6, FABP10, RBP1, and CRABP1); and (2) a cluster of genes most of which had predominant expression in tissues other than those of the digestive system, including muscle and the central nervous system (FABP3, FABP4, FABP5, FABP7, and PMP2). Since these clusters corresponded to major clusters in the phylogenetic tree as well, it seems a plausible hypothesis that the earliest duplication in the vertebrate FABP family led to the divergence of a gut-specialized gene from a gene expressed mainly in nervous and muscular systems. Data on gene expression in livers of two lines of chickens selected for high growth and low growth showed differences between FABP1 and FABP10 expressions in the liver, supporting the hypothesis of functional divergence between the two chicken liver-expressed FABPs related to food intake.

  3. Expression of liver fatty acid binding protein in hepatocellular carcinoma☆

    PubMed Central

    Cho, Soo-Jin; Ferrell, Linda D.; Gill, Ryan M.

    2017-01-01

    Summary Loss of expression of liver fatty acid binding protein (LFABP) by immunohistochemistry has been shown to be characteristic of a subset of hepatocellular adenomas (HCAs) in which HNF1A is inactivated. Transformation to hepatocellular carcinoma is thought to be a very rare phenomenon in the HNF1A-inactivated variant of HCA. However, we recently observed 2 cases at our institution, 1 definite hepatocellular carcinoma and 1 possible hepatocellular carcinoma, with loss of LFABP staining, raising the possibility that LFABP down-regulation may be associated with hepatocellular carcinogenesis. Our aim was to evaluate hepatocellular carcinomas arising in various backgrounds and with varying degrees of differentiation for loss of LFABP staining. Twenty total cases of hepatocellular carcinoma were examined. Thirteen cases arose in a background of cirrhosis due to hepatitis C (n = 8) or steatohepatitis (n = 5); 7 cases arose in a noncirrhotic background, with 2 cases arising within HNF1A-inactivated variant HCA and 2 cases arising within inflammatory variant HCA. Complete loss of expression of LFABP was seen in 6 of 20 cases, including 2 cases of hepatocellular carcinoma arising within HNF1A-inactivated variant HCA. Thus, loss of staining for LFABP appears to be common in hepatocellular carcinoma and may be seen in well-differentiated hepatocellular carcinoma. Therefore, LFABP loss should not be interpreted as evidence for hepatocellular adenoma over carcinoma, when other features support a diagnosis of hepatocellular carcinoma. The findings raise consideration for a role of HNF1A inactivation in hepatocellular carcinogenesis, particularly in less differentiated tumors. PMID:26997447

  4. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity

    PubMed Central

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  5. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  6. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2010-09-07

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  7. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  8. Understanding the synergistic effect of arginine and glutamic acid mixtures on protein solubility.

    PubMed

    Shukla, Diwakar; Trout, Bernhardt L

    2011-10-20

    Understanding protein solubility is a key part of physical chemistry. In particular, solution conditions can have a major effect, and the effect of multiple cosolutes is little understood. It has been shown that the simultaneous addition of L-arginine hydrochloride and L-glutamic acid enhances the maximum achievable solubility of several poorly soluble proteins up to 4-8 times (Golovanov et. al, J. Am. Chem. Soc., 2004, 126, 8933-8939) and reduces the intermolecular interactions between proteins. The observed solubility enhancement is negligible for arginine and glutamic acid solutions as compared to the equimolar mixtures. In this study, we have established the molecular mechanism behind this observed synergistic effect of arginine and glutamic acid mixtures using preferential interaction theory and molecular dynamics simulations of Drosophilia Su(dx) protein (ww34). It was found that the protein solubility enhancement is related to the relative increase in the number of arginine and glutamic acid molecules around the protein in the equimolar mixtures due to additional hydrogen bonding interactions between the excipients on the surface of the protein when both excipients are present. The presence of these additional molecules around the protein leads to enhanced crowding, which suppresses the protein association. These results highlight the role of additive-additive interaction in tuning the protein-protein interactions. Furthermore, this study reports a unique behavior of additive solutions, where the presence of one additive in solution affects the concentration of another on the protein surface.

  9. Nucleic acid binding proteins in highly purified Creutzfeldt-Jakob disease preparations.

    PubMed Central

    Sklaviadis, T; Akowitz, A; Manuelidis, E E; Manuelidis, L

    1993-01-01

    The nature of the infectious agent causing human Creutzfeldt-Jakob disease (CJD), a slowly progressive dementia, is controversial. As in scrapie, no agent-specific proteins or nucleic acids have been identified. However, biological features of exponential replication and agent strain variation, as well as physical size and density data, are most consistent with a viral structure--i.e., a nucleic acid-protein complex. It is often assumed that nuclease treatment, which does not reduce infectious titer, leaves no nucleic acids of > 50 bp. However, nucleic acids of 500-6000 bp can be extracted from highly purified infectious complexes with a mass of approximately 1.5 x 10(7) daltons. It was therefore germane to search for nucleic acid binding proteins that might protect an agent genome. We here use Northwestern blotting to show that there are low levels of nonhistone nucleic acid binding proteins in highly purified infectious 120S gradient fractions. Several nucleic acid binding proteins were clearly host encoded, whereas others were apparent only in CJD, but not in parallel preparations from uninfected brain. Small amounts of residual host Gp34 (prion protein) did not bind any 32P-labeled nucleic acid probes. Most of the minor "CJD-specific" proteins had an acidic pI, a characteristic of many viral core proteins. Such proteins deserve further study, as they probably contribute to unique properties of resistance described for these agents. It remains to be seen if any of these proteins are agent encoded. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8516321

  10. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut (Juglans regia L.) proteins and protein fractionations.

    PubMed

    Mao, Xiaoying; Hua, Yufei; Chen, Guogang

    2014-01-27

    As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE) showed that the isoelectric point was mainly in the range of 4.8-6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  11. Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic and oleic acid.

    PubMed

    Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L

    2006-07-01

    The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent.

  12. Fatty Acid-Binding Protein in Small Intestine IDENTIFICATION, ISOLATION, AND EVIDENCE FOR ITS ROLE IN CELLULAR FATTY ACID TRANSPORT

    PubMed Central

    Ockner, Robert K.; Manning, Joan A.

    1974-01-01

    A soluble fatty acid-binding protein (FABP), mol wt ∼ 12,000 is present in intestinal mucosa and other tissues that utilize fatty acids, including liver, myocardium, adipose, and kidney. This protein binds long chain fatty acids both in vivo and in vitro. FABP was isolated from rat intestine by gel filtration and isoelectric focusing. It showed a reaction of complete immunochemical identity with proteins in the 12,000 mol wt fatty acid-binding fractions of liver, myocardium, and adipose tissue supernates. (The presence of immunochemically nonidentical 12,000 mol wt FABP in these tissues is not excluded.) By quantitative radial immunodiffusion, supernatant FABP concentration in mucosa from proximal and middle thirds of jejuno-ileum significantly exceeded that in distal third, duodenum, and liver, expressed as micrograms per milligram soluble protein, micrograms per gram DNA, and micrograms per gram tissue. FABP concentration in villi was approximately three times greater than in crypts. Small quantities of FABP were present in washed nuclei-cell membrane, mitochondrial and microsomal fractions. However, the amount of FABP solubilized per milligram membrane protein was similar for all particulate fractions, and total membrane-associated FABP was only about 16% of supernatant FABP. Intestinal FABP concentration was significantly greater in animals maintained on high fat diets than on low fat; saturated and unsaturated fat diets did not differ greatly in this regard. The preponderance of FABP in villi from proximal and middle intestine, its ability to bind fatty acids in vivo as well as in vitro, and its response to changes in dietary fat intake support the concept that this protein participates in cellular fatty acid transport during fat absorption. Identical or closely related 12,000 mol wt proteins may serve similar functions in other tissues. Images PMID:4211161

  13. Fast computational methods for predicting protein structure from primary amino acid sequence

    DOEpatents

    Agarwal, Pratul Kumar

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  14. LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro.

    PubMed

    Cheng, Rongzhu; Feng, Qi; Ortwerth, Beryl J

    2006-05-01

    We previously reported chromatographic evidence supporting the similarity of yellow chromophores isolated from aged human lens proteins, early brunescent cataract lens proteins and calf lens proteins ascorbylated in vitro [Cheng, R. et al. Biochimica et Biophysica Acta 1537, 14-26, 2001]. In this paper, new evidence supporting the chemical identity of the modified amino acids in these protein populations were collected by using a newly developed two-dimensional LC-MS mapping technique supported by tandem mass analysis of the major species. The pooled water-insoluble proteins from aged normal human lenses, early stage brunescent cataract lenses and calf lens proteins reacted with or without 20 mM ascorbic acid in air for 4 weeks were digested with a battery of proteolytic enzymes under argon to release the modified amino acids. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column and four major A330nm-absorbing peaks were collected. Peaks 1, 2 and 3, which contained most of the modified amino acids were concentrated and subjected to RP-HPLC/ESI-MS, and the mass elution maps were determined. The samples were again analyzed and those peaks with a 10(4) - 10(6) response factor were subjected to MS/MS analysis to identify the daughter ions of each modification. Mass spectrometric maps of peaks 1, 2 and 3 from cataract lenses showed 58, 40 and 55 mass values, respectively, ranging from 150 to 600 Da. Similar analyses of the peaks from digests of the ascorbylated calf lens proteins gave 81, 70 and 67 mass values, respectively, of which 100 were identical to the peaks in the cataract lens proteins. A total of 40 of the major species from each digest were analyzed by LC-MS/MS and 36 were shown to be identical. Calf lens proteins incubated without ascorbic acid showed several similar mass values, but the response factors were 100 to 1000-fold less for every modification. Based upon these data, we conclude

  15. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and Their Complexes with Proteins.

    PubMed

    Nguyen, Hai; Pérez, Alberto; Bermeo, Sherry; Simmerling, Carlos

    2015-08-11

    The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson-Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software.

  16. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and their Complexes with Proteins

    PubMed Central

    Nguyen, Hai; Pérez, Alberto; Bermeo, Sherry; Simmerling, Carlos

    2016-01-01

    The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures, or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software. PMID:26574454

  17. beta-Hydroxyaspartic acid in vitamin K-dependent protein C.

    PubMed

    Drakenberg, T; Fernlund, P; Roepstorff, P; Stenflo, J

    1983-04-01

    Previous work has shown that the light chain of protein C, an anticoagulant plasma protein, contains an unusual amino acid [Fernlund, P. & Stenflo, J. (1982) J. Biol. Chem. 257, 12170-12179]. To determine the structure of this amino acid a heptapeptide, CMCys-Ile-X-Gly-Leu-Gly-Gly (residues 69-75 in the light chain), was isolated from enzymatic digests of the light chain. According to automatic Edman sequence analysis, 1H NMR spectroscopy, and mass spectrometry the heptapeptide had beta-hydroxyaspartic acid in its third position, which corresponds to position 71 in the light chain of protein C. Analysis of acid and aminopeptidase M hydrolysates of the heptapeptide showed the beta-hydroxyaspartic acid to be the erythro form. Acid hydrolysis of protein C released approximately equal to 1 mol of beta-hydroxyaspartic acid per mol of protein. The function of this amino acid, which, to the best of our knowledge, has not been found previously in proteins, is unknown.

  18. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep.

    PubMed

    Brown, Laura D; Rozance, Paul J; Thorn, Stephanie R; Friedman, Jacob E; Hay, William W

    2012-08-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion.

  19. Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2011-05-01

    Fish protein has been shown to decrease serum cholesterol content by inhibiting absorption of cholesterol and bile acid in laboratory animals, though the mechanism underlying this effect is not yet fully understood. The purpose of this study was to elucidate the mechanism underlying the inhibition of cholesterol and bile acid absorption following fish protein intake. Male Wistar rats were divided into 2 dietary groups of 7 rats each, 1 group receiving a diet consisting of 20% casein and the other receiving a diet consisting of 10% casein and 10% fish protein. Both experimental diets also contained 0.5% cholesterol and 0.1% sodium cholate. After the rats had been on their respective diets for 4 wk, their serum and liver cholesterol contents and fecal cholesterol, bile acid, and nitrogen excretion contents were measured. Fish protein consumption decreased serum and liver cholesterol content and increased fecal cholesterol and bile acid excretion and simultaneously increased fecal nitrogen excretion. In addition, fish protein hydrolyzate prepared by in vitro digestion had lower micellar solubility of cholesterol and higher binding capacity for bile acids compared with casein hydrolyzate. These results suggest that the hypocholesterolemic effect of fish protein is mediated by increased fecal cholesterol and bile acid excretion, which is due to the digestion products of fish protein having reduced micellar solubility of cholesterol and increased bile acid binding capacity.

  20. A Siglec-like sialic-acid-binding motif revealed in an adenovirus capsid protein

    PubMed Central

    Rademacher, Christoph; Bru, Thierry; McBride, Ryan; Robison, Elizabeth; Nycholat, Corwin M; Kremer, Eric J; Paulson, James C

    2012-01-01

    Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are a family of transmembrane receptors that are well documented to play roles in regulation of innate and adaptive immune responses. To see whether the features that define the molecular recognition of sialic acid were found in other sialic-acid-binding proteins, we analyzed 127 structures with bound sialic acids found in the Protein Data Bank database. Of these, the canine adenovirus 2-fiber knob protein showed close local structural relationship to Siglecs despite low sequence similarity. The fiber knob harbors a noncanonical sialic-acid recognition site, which was then explored for detailed specificity using a custom glycan microarray comprising 58 diverse sialosides. It was found that the adenoviral protein preferentially recognizes the epitope Neu5Acα2-3[6S]Galβ1-4GlcNAc, a structure previously identified as the preferred ligand for Siglec-8 in humans and Siglec-F in mice. Comparison of the Siglec and fiber knob sialic-acid-binding sites reveal conserved structural elements that are not clearly identifiable from the primary amino acid sequence, suggesting a Siglec-like sialic-acid-binding motif that comprises the consensus features of these proteins in complex with sialic acid. PMID:22522600

  1. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C.

    PubMed

    Ahlemeyer, B; Selke, D; Schaper, C; Klumpp, S; Krieglstein, J

    2001-10-26

    The standardized extract from Ginkgo biloba (EGb 761) is used for the treatment of dementia. Because of allergenic and genotoxic effects, ginkgolic acids are restricted in EGb 761 to 5 ppm. The question arises whether ginkgolic acids also have neurotoxic effects. In the present study, ginkgolic acids caused death of cultured chick embryonic neurons in a concentration-dependent manner, in the presence and in the absence of serum. Ginkgolic acids-induced death showed features of apoptosis as we observed chromatin condensation, shrinkage of the nucleus and reduction of the damage by the protein synthesis inhibitor cycloheximide, demonstrating an active type of cell death. However, DNA fragmentation detected by the terminal-transferase-mediated ddUTP-digoxigenin nick-end labeling (TUNEL) assay and caspase-3 activation, which are also considered as hallmarks of apoptosis, were not seen after treatment with 150 microM ginkgolic acids in serum-free medium, a dose which increased the percentage of neurons with chromatin condensation and shrunken nuclei to 88% compared with 25% in serum-deprived, vehicle-treated controls. This suggests that ginkgolic acid-induced death showed signs of apoptosis as well as of necrosis. Ginkgolic acids specifically increased the activity of protein phosphatase type-2C, whereas other protein phosphatases such as protein phosphatases 1A, 2A and 2B, tyrosine phosphatase, and unspecific acid- and alkaline phosphatases were inhibited or remained unchanged, suggesting protein phosphatase 2C to play a role in the neurotoxic effect mediated by ginkgolic acids.

  2. Serum fatty acid binding protein 4, free fatty acids and metabolic risk markers

    PubMed Central

    Karakas, Sidika E.; Almario, Rogelio U.; Kim, Kyoungmi

    2009-01-01

    Fatty acid binding protein (FABP) 4 chaperones free fatty acids (FFA) in the adipocytes during lipolysis. Serum FFA relates to Metabolic Syndrome (METS) and serum FABP4 is emerging as a novel risk marker. In 36 overweight/obese women, serum FABP4 and FFA were measured hourly during 5-hour oral glucose tolerance test (OGTT). Insulin resistance was determined using frequently sampled intravenous GTT (FS-IVGTT). Serum lipids and inflammation markers were measured at fasting. During OGTT, serum FABP4 decreased by 40%, reaching its nadir at 3h (from 45.3±3.1 to 31.9±1.6 ng/mL) and stayed below the baseline at 5 h (35.9±2.2 ng/mL) (p < 0.0001 for both, compared to the baseline). Serum FFA decreased by 10 fold, reaching a nadir at 2h (from 0.611±0.033 to 0.067±0.004 mmol/L), then rebounded to 0.816±0.035 mmol/ L at 5h (p < 0.001 for both, compared to baseline). Both fasting-FABP4 and nadir-FABP4 correlated with obesity. Nadir-FABP4 correlated also with insulin resistance parameters from FS-IVGTT and with inflammation. Nadir-FFA, but not fasting-FFA, correlated with the METS-parameters. In conclusion, fasting-FABP4 related to metabolic risk markers more strongly than fasting-FFA. Nadir-FABP4 and nadir-FFA measured after glucose loading may provide better risk assessment than the fasting values. PMID:19394980

  3. Crystal Structure of Okadaic Acid Binding Protein 2.1: A Sponge Protein Implicated in Cytotoxin Accumulation.

    PubMed

    Ehara, Haruhiko; Makino, Marie; Kodama, Koichiro; Konoki, Keiichi; Ito, Takuhiro; Sekine, Shun-ichi; Fukuzawa, Seketsu; Yokoyama, Shigeyuki; Tachibana, Kazuo

    2015-07-06

    Okadaic acid (OA) is a marine polyether cytotoxin that was first isolated from the marine sponge Halichondria okadai. OA is a potent inhibitor of protein serine/threonine phosphatases (PP) 1 and 2A, and the structural basis of phosphatase inhibition has been well investigated. However, the role and mechanism of OA retention in the marine sponge have remained elusive. We have solved the crystal structure of okadaic acid binding protein 2.1 (OABP2.1) isolated from H. okadai; it has strong affinity for OA and limited sequence homology to other proteins. The structure revealed that OABP2.1 consists of two α-helical domains, with the OA molecule deeply buried inside the protein. In addition, the global fold of OABP2.1 was unexpectedly similar to that of aequorin, a jellyfish photoprotein. The presence of structural homologues suggested that, by using similar protein scaffolds, marine invertebrates have developed diverse survival systems adapted to their living environments.

  4. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  5. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  6. Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids.

    PubMed

    Lim, Sung In; Kwon, Inchan

    2016-10-01

    The last decade has witnessed striking progress in the development of bioorthogonal reactions that are strictly directed towards intended sites in biomolecules while avoiding interference by a number of physical and chemical factors in biological environment. Efforts to exploit bioorthogonal reactions in protein conjugation have led to the evolution of protein translational machineries and the expansion of genetic codes that systematically incorporate a range of non-natural amino acids containing bioorthogonal groups into recombinant proteins in a site-specific manner. Chemoselective conjugation of proteins has begun to find valuable applications to previously inaccessible problems. In this review, we describe bioorthogonal reactions useful for protein conjugation, and biosynthetic methods that produce proteins amenable to those reactions through an expanded genetic code. We then provide key examples in which novel protein conjugates, generated by the genetic incorporation of a non-natural amino acid and the chemoselective reactions, address unmet needs in protein therapeutics and enzyme engineering.

  7. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats

    PubMed Central

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as “junk” sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in

  8. Administration of Simvastatin after Kainic Acid-Induced Status Epilepticus Restrains Chronic Temporal Lobe Epilepsy

    PubMed Central

    Qiao, Weidong; Lu, Dunyue; Wei, Lanlan; Na, Meng; Song, Yuanyuan; Hou, Xiaohua; Lin, Zhiguo

    2011-01-01

    In this study, we examined the effect of chronic administration of simvastatin immediately after status epilepticus (SE) on rat brain with temporal lobe epilepsy (TLE). First, we evaluated cytokines expression at 3 days post KA-lesion in hippocampus and found that simvastatin-treatment suppressed lesion-induced expression of interleukin (IL)-1β and tumor necrosis factor-α (TNF-α). Further, we quantified reactive astrocytosis using glial fibrillary acidic protein (GFAP) staining and neuron loss using Nissl staining in hippocampus at 4–6 months after KA-lesion. We found that simvastatin suppressed reactive astrocytosis demonstrated by a significant decrease in GFAP-positive cells, and attenuated loss of pyramidal neurons in CA3 and interneurons in dentate hilar (DH). We next assessed aberrant mossy fiber sprouting (MFS) that is known to contribute to recurrence of spontaneous seizure in epileptic brain. In contrast to the robust MFS observed in saline-treated animals, the extent of MFS was restrained by simvastatin in epileptic rats. Attenuated MFS was related to decreased neuronal loss in CA3 and DH, which is possibly a mechanism underlying decreased hippocampal susceptibility in animal treated with simvastatin. Electronic encephalography (EEG) was recorded during 4 to 6 months after KA-lesion. The frequency of abnormal spikes in rats with simvastatin-treatment decreased significantly compared to the saline group. In summary, simvastatin treatment suppressed cytokines expression and reactive astrocytosis and decreased the frequency of discharges of epileptic brain, which might be due to the inhibition of MFS in DH. Our study suggests that simvastatin administration might be a possible intervention and promising strategy for preventing SE exacerbating to chronic epilepsy. PMID:21949812

  9. Aromatic amino acids are utilized and protein synthesis is stimulated during amino acid infusion in the ovine fetus.

    PubMed

    Liechty, E A; Boyle, D W; Moorehead, H; Auble, L; Denne, S C

    1999-06-01

    The purpose of this study was to determine whether the ovine fetus is capable of increased disposal of an amino acid load; if so, would it respond by increased protein synthesis, amino acid catabolism or both? A further purpose of the study was to determine whether the pathways of aromatic amino acid catabolism are functional in the fetus. Late gestation ovine fetuses of well-nourished ewes received an infusion of Aminosyn PF alone (APF), and Aminosyn PF + glycyl-L-tyrosine (APF+GT) at rates estimated to double the intake of these amino acids. The initial study, using APF, was performed at 126 +/- 1.4 d; the APF+GT study was performed at 132 +/- 1.7 d (term = 150 d). Phenylalanine and tyrosine kinetics were determined using both stable and radioactive isotopes. Plasma concentrations of most amino acids, but not tyrosine, increased during both studies; tyrosine concentration increased only during the APF+GT study. Phenylalanine rate of appearance and phenylalanine hydroxylation increased during both studies. Tyrosine rate of appearance increased only during the APF+GT study; tyrosine oxidation did not increase during either study. Fetal protein synthesis increased significantly during both studies, producing a significant increase in fetal protein accretion. Fetal proteolysis was unchanged in response to either amino acid infusion. These results indicate that the fetus responds to an acute increase in amino acid supply primarily by increasing protein synthesis and accretion, with a smaller but significant increase in amino acid catabolism also. Both phenylalanine hydroxylation and tyrosine oxidation are active in the fetus, and the fetus is able to increase phenylalanine hydroxylation rapidly in response to increased supply.

  10. The amino acid sequence of protein AA from a burro (Equus asinus).

    PubMed

    Sletten, Knut; Johnson, Kenneth H; Westermark, Per

    2003-09-01

    The primary structure of amyloid fibril protein AA of a burro has been determined by Edman degradation. The 80 amino acid residue long protein shows strong resemblance to that of other mammalian AA-proteins and differs from equine protein AA at 5 positions: Burro/horse positions 20 (Q/N), 44 (R,Q, K/K,Q), 59 (G,L/G,A), 61 (Q/E) and 65 (N/R).

  11. Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives.

    PubMed

    Schopfer, F J; Batthyany, C; Baker, P R S; Bonacci, G; Cole, M P; Rudolph, V; Groeger, A L; Rudolph, T K; Nadtochiy, S; Brookes, P S; Freeman, B A

    2009-05-01

    Nitroalkene fatty acid derivatives manifest a strong electrophilic nature, are clinically detectable, and induce multiple transcriptionally regulated anti-inflammatory responses. At present, the characterization and quantification of endogenous electrophilic lipids are compromised by their Michael addition with protein and small-molecule nucleophilic targets. Herein, we report a trans-nitroalkylation reaction of nitro-fatty acids with beta-mercaptoethanol (BME) and apply this reaction to the unbiased identification and quantification of reaction with nucleophilic targets. Trans-nitroalkylation yields are maximal at pH 7 to 8 and occur with physiological concentrations of target nucleophiles. This reaction is also amenable to sensitive mass spectrometry-based quantification of electrophilic fatty acid-protein adducts upon electrophoretic resolution of proteins. In-gel trans-nitroalkylation reactions also permit the identification of protein targets without the bias and lack of sensitivity of current proteomic approaches. Using this approach, it was observed that fatty acid nitroalkenes are rapidly metabolized in vivo by a nitroalkene reductase activity and mitochondrial beta-oxidation, yielding a variety of electrophilic and nonelectrophilic products that could be structurally characterized upon BME-based trans-nitroalkylation reaction. This strategy was applied to the detection and quantification of fatty acid nitration in mitochondria in response to oxidative inflammatory conditions induced by myocardial ischemia-reoxygenation.

  12. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  13. Towards an understanding of Mesocestoides vogae fatty acid binding proteins' roles.

    PubMed

    Alvite, Gabriela; Garrido, Natalia; Kun, Alejandra; Paulino, Margot; Esteves, Adriana

    2014-01-01

    Two fatty acid binding proteins, MvFABPa and MvFABPb were identified in the parasite Mesocestoides vogae (Platyhelmithes, Cestoda). Fatty acid binding proteins are small intracellular proteins whose members exhibit great diversity. Proteins of this family have been identified in many organisms, of which Platyhelminthes are among the most primitive. These proteins have particular relevance in flatworms since de novo synthesis of fatty acids is absent. Fatty acids should be captured from the media needing an efficient transport system to uptake and distribute these molecules. While HLBPs could be involved in the shuttle of fatty acids to the surrounding host tissues and convey them into the parasite, FABPs could be responsible for the intracellular trafficking. In an effort to understand the role of MvFABPs in fatty acid transport of M. vogae larvae, we analysed the intracellular localization of both MvFABPs and the co-localization with in vivo uptake of fatty acid analogue BODIPY FL C16. Immunohistochemical studies on larvae sections using specific antibodies, showed a diffuse cytoplasmic distribution of each protein with some expression in nuclei and mitochondria. MvFABPs distribution was confirmed by mass spectrometry identification from 2D-electrophoresis of larvae subcellular fractions. This work is the first report showing intracellular distribution of MvFABPs as well as the co-localization of these proteins with the BODIPY FL C16 incorporated from the media. Our results suggest that fatty acid binding proteins could target fatty acids to cellular compartments including nuclei. In this sense, M. vogae FABPs could participate in several cellular processes fulfilling most of the functions attributed to vertebrate's counterparts.

  14. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  15. Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization

    PubMed Central

    Yamagishi, Ayana; Narumiya, Kaori; Tanaka, Masayoshi; Matsunaga, Tadashi; Arakaki, Atsushi

    2016-01-01

    Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology. PMID:27759096

  16. Relationship between amino acid scores and protein quality indices based on rat growth.

    PubMed

    Sarwar, G; Peace, R W; Botting, H G; Brulé, D

    1989-01-01

    Protein efficiency ratio (PER), relative PER (RPER), net protein ratio (NPR) and relative NPR (RNPR) values, and amino acid scores were calculated for 20 food products (casein, casein + Met, beef salami, skim milk, tuna, chicken frankfuters, sausage, heated skim milk, peanut butter, rolled oats, soy isolate, chick peas, pea concentrate, kidney beans, wheat cereal, pinto bean, lentils, rice-wheat gluten cereal, macaroni-cheese, and beef stew). In most cases, PER, RPER, NPR or RNPR ranked the products in the same order and positive correlations among the protein quality methods were highly significant (r = 0.98-0.99). Amino acid scores (based on the first limiting amino acid, Lys-Met-Cys, Lys-Met-Cys-Trp or lys-Met-Cys-Trp-Thr) were positively correlated to the PER, RPER, NPR or RNPR data (r = 0.61-0.75). Inclusion of the correction for true digestibility of protein improved the correlations between amino acid scores and the indices based on rat growth. The correlations were especially high between Lys-Met-Cys scores (corrected for true digestibility of protein) and PER, RPER, NPR or RNPR (r = 0.86-0.91). Inclusion of the correction for true digestibility of individual amino acids did not result in further improvements of the correlations in most cases. It is concluded that adjusting amino acid scores for true digestibility of protein would be sufficient and further correction for digestibility of amino acids would be unnecessary in mixed diets.

  17. AFAL: a web service for profiling amino acids surrounding ligands in proteins

    NASA Astrophysics Data System (ADS)

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  18. AFAL: a web service for profiling amino acids surrounding ligands in proteins.

    PubMed

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  19. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2013-03-12

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel sythetases molecules, methods for identifying and making the novel synthetases, methods for producing containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lapidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  20. Protein Crosslinking by Genetically Encoded Noncanonical Amino Acids with Reactive Aryl Carbamate Side Chains.

    PubMed

    Xuan, Weimin; Shao, Sida; Schultz, Peter G

    2017-04-03

    The use of genetically encoded noncanonical amino acids (ncAAs) to construct crosslinks within or between proteins has emerged as a useful method to enhance protein stability, investigate protein-protein interactions, and improve the pharmacological properties of proteins. We report ncAAs with aryl carbamate side chains (PheK and FPheK) that can react with proximal nucleophilic residues to form intra- or intermolecular protein crosslinks. We evolved a pyrrolysyl-tRNA synthetase that incorporates site-specifically PheK and FPheK into proteins in both E. coli and mammalian cells. PheK and FPheK when incorporated into proteins showed good stability during protein expression and purification. FPheK reacted with adjacent Lys, Cys, and Tyr residues in thioredoxin in high yields. In addition, crosslinks could be formed between FPheK and Lys residue of two interacting proteins, including the heavy chain and light chain of an antibody Fab.

  1. Four proteins synthesized in response to deoxyribonucleic acid damage in Micrococcus radiodurans.

    PubMed Central

    Hansen, M T

    1980-01-01

    Four proteins, alpha beta, gamma, and delta, preferentially synthesized in ultraviolet light-treated cells of Micrococcus radiodurans, were characterized in terms of their molecular weights and isoelectric points. Within the sublethal-dose range, the differential rate of synthesis for these proteins increased linearly with the inducing UV dose. The degree of induction reached 100-fold, and the most abundant protein beta, amounted to approximately 2% of the total newly synthesized protein after irradiation. Damage caused by ionizing radiation or by treatment with mitomycin C also provoked the synthesis of the four proteins. The proportions between the individual proteins, however, varied strikingly with the damaging agent. In contrast to treatments which introduced damage in the cellular deoxyribonucleic acid, the mere arrest of deoxyribonucleic acid replication, caused by nalidixic acid or by starvation for thymine, failed to elicit the synthesis of either protein. Repair of deoxyribonucleic acid damage requires that a number of versatile and efficient processes by employed. It is proposed that the induced proteins participate in deoxyribonucleic acid repair in M. radiodurans. Mechanisms are discussed which would allow a differentiated cellular response to damages of sufficiently distinctive nature. Images PMID:7354007

  2. Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein.

    PubMed

    Shaikh, Afshan S; Tang, Yinjie J; Mukhopadhyay, Aindrila; Martín, Héctor García; Gin, Jennifer; Benke, Peter I; Keasling, Jay D

    2010-01-01

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully (13)C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  3. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  4. Cellular fatty acid and soluble protein composition of Actinobacillus actinomycetemcomitans and related organisms.

    PubMed Central

    Calhoon, D A; Mayberry, W R; Slots, J

    1981-01-01

    The cellular fatty acid and protein content of twenty-five representative strains of Actinobacillus actinomycetecomitans isolated from juvenile and adult periodontitis patients was compared to that of 15 reference strains of oral and nonoral Actinobacillus species and Haemophilus aphrophilus. Trimethylsilyl derivatives of the fatty acid methyl esters were analyzed by gas-liquid chromatography. The predominant fatty acids of all 40 strains examined were 14:0, 3-OH 14:0, 16 delta, and 16:0. Actinobacillus seminis (ATCC 15768) was unlike the other strains examined because of a greater amount of 14:0 detected. The soluble protein analysis using polyacrylamide gel electrophoresis revealed that A. actinomycetemcomitans, H. aphrophilus, and nonoral Actinobacillus species possessed distinct protein profiles attesting to the validity of separating these organisms into different species. Established biotypes of A. actinomycetemcomitans could not be differentiated on the basis of fatty acid or protein profiles. PMID:7287893

  5. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  6. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  7. Limiting amino acids in raw and processed amaranth grain protein from biological tests.

    PubMed

    Bressani, R; Elias, L G; Garcia-Soto, A

    1989-09-01

    Amino acid supplementation studies with young rats were carried out using raw and processed amaranth grain (A. cruentus) of dark- and cream- or light-colored seeds. The results of various studies repeatedly indicated that threonine is the most limiting amino acid in raw and processed, dark and cream-colored grain. Protein quality as measured either as NPR or PER was improved by threonine addition alone or with other amino acids and decreased liver fat to values similar to those measured with casein. This finding contradicts the reports that state that leucine, determined by chemical score, is the most limiting amino acid. Leucine addition alone or with other amino acids did not improve protein quality. The study confirmed cream-colored grain to be nutritionally superior to dark grain and that properly processed grain, light- or dark-colored, has higher protein quality than raw grain.

  8. Protein domain of chicken alpha(1)-acid glycoprotein is responsible for chiral recognition.

    PubMed

    Sadakane, Yutaka; Matsunaga, Hisami; Nakagomi, Kazuya; Hatanaka, Yasumaru; Haginaka, Jun

    2002-07-19

    Ovoglycoprotein from chicken egg whites (OGCHI) has been used as a chiral selector to separate drug enantiomers. However, neither the amino acid sequence of OGCHI nor the responsible part for the chiral recognition (protein domain or sugar moiety) has yet to be determined. First, we isolated a cDNA clone encoding OGCHI, and clarified the amino acid sequence of OGCHI, which consists of 203 amino acids including a predictable signal peptide of 20 amino acids. The mature OGCHI shows 31-32% identities to rabbit and human alpha(1)-acid glycoproteins (alpha(1)-AGPs). Thus, OGCHI should be the chicken alpha(1)-AGP. Second, the recombinant chicken alpha(1)-AGP was prepared by the Escherichia coli expression system, and its chiral recognition ability was confirmed by capillary electrophoresis. Since proteins expressed in E. coli are not modified by any sugar moieties, this result shows that the protein domain of the chicken alpha(1)-AGP is responsible for the chiral recognition.

  9. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    SciTech Connect

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  10. Tables of critical values for examining compositional non-randomness in proteins and nucleic acids

    NASA Technical Reports Server (NTRS)

    Laird, M.; Holmquist, R.

    1975-01-01

    A binomially distributed statistic is defined to show whether or not the proportion of a particular amino acid in a protein deviates from random expectation. An analogous statistic is derived for nucleotides in nucleic acids. These new statistics are simply related to the classical chi-squared test. They explicitly account for the compositional fluctuations imposed by the finite length of proteins, and they are more accurate than previous tables.

  11. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    PubMed Central

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    SUMMARY Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have difference functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. PMID:25458898

  12. Denatured mammalian protein mixtures exhibit unusually high solubility in nucleic acid-free pure water.

    PubMed

    Futami, Junichiro; Fujiyama, Haruna; Kinoshita, Rie; Nonomura, Hidenori; Honjo, Tomoko; Tada, Hiroko; Matsushita, Hirokazu; Abe, Yoshito; Kakimi, Kazuhiro

    2014-01-01

    Preventing protein aggregation is a major goal of biotechnology. Since protein aggregates are mainly comprised of unfolded proteins, protecting against denaturation is likely to assist solubility in an aqueous medium. Contrary to this concept, we found denatured total cellular protein mixture from mammalian cell kept high solubility in pure water when the mixture was nucleic acids free. The lysates were prepared from total cellular protein pellet extracted by using guanidinium thiocyanate-phenol-chloroform mixture of TRIzol, denatured and reduced total protein mixtures remained soluble after extensive dialysis against pure water. The total cell protein lysates contained fully disordered proteins that readily formed large aggregates upon contact with nucleic acids or salts. These findings suggested that the highly flexible mixtures of disordered proteins, which have fully ionized side chains, are protected against aggregation. Interestingly, this unusual solubility is characteristic of protein mixtures from higher eukaryotes, whereas most prokaryotic protein mixtures were aggregated under identical conditions. This unusual solubility of unfolded protein mixtures could have implications for the study of intrinsically disordered proteins in a variety of cells.

  13. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  14. Essential Amino Acids of the Hantaan Virus N Protein in Its Interaction with RNA

    PubMed Central

    Severson, William; Xu, Xiaolin; Kuhn, Michaela; Senutovitch, Nina; Thokala, Mercy; Ferron, François; Longhi, Sonia; Canard, Bruno; Jonsson, Colleen B.

    2005-01-01

    The nucleocapsid (N) protein of hantavirus encapsidates viral genomic and antigenomic RNAs. Previously, deletion mapping identified a central, conserved region (amino acids 175 to 217) within the Hantaan virus (HTNV) N protein that interacts with a high affinity with these viral RNAs (vRNAs). To further define the boundaries of the RNA binding domain (RBD), several peptides were synthesized and examined for the ability to bind full-length S-segment vRNA. Peptide 195-217 retained 94% of the vRNA bound by the HTNV N protein, while peptides 175-186 and 205-217 bound only 1% of the vRNA. To further explore which residues were essential for binding vRNA, we performed a comprehensive mutational analysis of the amino acids in the RBD. Single and double Ala substitutions were constructed for 18 amino acids from amino acids 175 to 217 in the full-length N protein. In addition, Ala substitutions were made for the three R residues in peptide 185-217. An analysis of protein-RNA interactions by electrophoretic mobility shift assays implicated E192, Y206, and S217 as important for binding. Chemical modification experiments showed that lysine residues, but not arginine or cysteine residues, contribute to RNA binding, which agreed with bioinformatic predictions. Overall, these data implicate lysine residues dispersed from amino acids 175 to 429 of the protein and three amino acids located in the RBD as essential for RNA binding. PMID:16014963

  15. Hydrothermal production and characterization of protein and amino acids from silk waste.

    PubMed

    Lamoolphak, Wiwat; De-Eknamkul, Wanchai; Shotipruk, Artiwan

    2008-11-01

    Non-catalytic hydrothermal decomposition of sericin and fibroin from silk waste into useful protein and amino acids was examined in a closed batch reactor at various temperatures, reaction times, and silk to water ratios to examine their effects on protein and amino acid yields. For the decomposition of sericin, the highest protein yield was found to be 0.466 mg protein/mg raw silk, obtained after 10 min hydrothermal reaction of silk waste at 1:100 silk to water ratio at 120 degrees C. The highest amino acid yield was found to be 0.203 mg amino acids/mg raw silk, obtained after 60 min of hydrothermal reaction of silk waste at 1:20 silk to water ratio at 160 degrees C. For the hydrothermal decomposition of fibroin, the highest protein yield was 0.455 mg protein/mg silk fibroin (1:100, 220 degrees C, 10 min) and that of amino acids was 0.755 mg amino acids/mg silk fibroin (1:50, 220 degrees C, 60 min). The rate of silk fibroin decomposition could be described by surface reaction kinetics. The soluble reaction products were freeze-dried to obtain sericin and fibroin particles, whose conformation and crystal structure of the particles were shown to differ from the original silk materials, particularly in the case of fibroin, in which the change from beta-sheet conformation to alpha-helix/random coil was observed.

  16. Nalidixic Acid and Macromolecular Metabolism in Tetrahymena pyriformis: Effects on Protein Synthesis

    PubMed Central

    de Castro, J. F.; Carvalho, J. F. O.; Moussatché, N.; de Castro, F. T.

    1975-01-01

    A study on the effect of nalidixic acid on macromolecular metabolism, particularly of protein, in Tetrahymena pyriformis was performed. It was shown that the compound is a potent inhibitor of deoxyribonucleic acid, ribonucleic acid, and protein synthesis for this organism. A conspicuous breakdown of polysomes, accompanied by the accumulation of 80S ribosomes, occurred in cells incubated for 10 min with the drug; polysome formation was prevented. The accumulating 80S particles were shown to be run-off ribosomal units. The incorporation of amino acids by a cell-free system is not affected by nalidixic acid. In nonproliferating cells the incorporation was also not prevented, unless the cells were previously incubated with the drug. These results are discussed in terms of the possible mechanism of action of nalidixic acid in T. pyriformis. PMID:807153

  17. [Amino acid composition and biologic value of the proteins of several sorts of buckwheat].

    PubMed

    Sarkisova, N E; Kirilenko, S K

    1976-01-01

    The amino acids composition of summary proteins in unground buckwheat of four common and promising varieties grown in the Ukraine was investigated by using ion-exchange chromatography with an automatic analyzor Hd-1200 E. Between individual varieties of buckweheat no essential differences in the amino acids content were in evidence. The total proteins of the buckwheat grit contain high quantities of lysine, treonine, leucine, glutamic acid and arginine. The amino acids score was instrumental in determining the biological value and in eliciting amino acids limiting this value in different grits. These data may be made use of in the practice of public catering for estimating formulae of meals prepared with grits differently combined with other products securing an improved amino acids composition of ready-to-eat meals.

  18. Ligand specificity and conformational stability of human fatty acid-binding proteins.

    PubMed

    Zimmerman, A W; van Moerkerk, H T; Veerkamp, J H

    2001-09-01

    Fatty acid binding proteins (FABPs) are small cytosolic proteins with virtually identical backbone structures that facilitate the solubility and intracellular transport of fatty acids. At least eight different types of FABP occur, each with a specific tissue distribution and possibly with a distinct function. To define the functional characteristics of all eight human FABPs, viz. heart (H), brain (B), myelin (M), adipocyte (A), epidermal (E), intestinal (I), liver (L) and ileal lipid-binding protein (I-LBP), we studied their ligand specificity, their conformational stability and their immunological crossreactivity. Additionally, binding of bile acids to I-LBP was studied. The FABP types showed differences in fatty acid binding affinity. Generally, the affinity for palmitic acid was lower than for oleic and arachidonic acid. All FABP types, except E-FABP, I-FABP and I-LBP interacted with 1-anilinonaphtalene-8-sulphonic acid (ANS). Only L-FABP, I-FABP and M-FABP showed binding of 11-((5-dimethylaminonaphtalene-1-sulfonyl)amino)undecanoic acid (DAUDA). I-LBP showed increasing binding of bile acids in the order taurine-conjugated>glycine-conjugated>unconjugated bile acids. A hydroxylgroup of bile acids at position 7 decreased and at position 12 increased the binding affinity to I-LBP. The fatty acid-binding affinity and the conformation of FABP types were differentially affected in the presence of urea. Our results demonstrate significant differences in ligand binding, conformational stability and surface properties between different FABP types which may point to a specific function in certain cells and tissues. The preference of I-LBP (but not L-FABP) for conjugated bile acids is in accordance with a specific role in bile acid reabsorption in the ileum.

  19. Prolonged stimulation of protein synthesis by leucine is dependent on amino acid availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leucine is unique among the amino acids in its ability to enhance protein synthesis by activating translation initiation (Kimball and Jefferson, 2005). Our laboratory has shown that raising leucine to postprandial levels, whilst keeping all other amino acids at the post absorptive, level acutely st...

  20. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  1. COMPARATIVE PATHOGENESIS OF HALOACETIC ACID AND PROTEIN KINASE INHIBITOR EMBRYOTOXICITY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    Comparative pathogenesis of haloacetic acid and protein kinase inhibitor embryotoxicity in mouse whole embryo culture.

    Ward KW, Rogers EH, Hunter ES 3rd.

    Curriculum in Toxicology, University of North Carolina at Chapel Hill, 27599-7270, USA.

    Haloacetic acids ...

  2. Amino acid composition and crude protein values of some Cyanobacteria from Çanakkale (Turkey).

    PubMed

    Akgül, Rıza; Kızılkaya, Bayram; Akgül, Füsun; Erduğan, Hüseyin

    2015-09-01

    Cyanobacteria (blue-green algae) form an important component of integrated nutrient managements in agriculture and are exploited in commercial biotechnological ventures. In this study, Rivularia bullata (Poir) Berkeley ex Bornet & Flahault, Nostocs pongiaeforme C. Agardh ex Bornet & Flahault were researched for their amino acid composition and crude protein values. R. bullata was collected from coastal zones of the Gulf of Saros and N. spongiaeforme from the Ayazma Stream. The levels of amino acids were measured in algae samples using EZ: fast kits (EZ: fast GC/FID Protein Hydrolysate Amino Acid Kit) by gas chromatography. The crude proteins of samples were determined by the Kjeldahl method and were calculated using a nitrogen conversion factor of 6.25. Thirty-two amino acids were investigated, for N. spongiaeforme eight free essential amino acids (EAA), eight free non-essential amino acids (NEAA) and eleven other amino acids (OAA); for R. bullata eight EAA, eight NEAA and eight OAA were detected. Aspartic acid is the major constituent for both species. The total protein percents were determined for N. spongiaeforme as % 19.83 and for R. bullata as % 6.15. When considering the increasing world population and reducing natural products; Cyanobacteria will benew feed sources for all living.

  3. Proteins and insulin release: A dual role of amino-acids and intestinal hormones

    PubMed Central

    Jarrett, R. J.; Graver, H. J.; Cohen, N. M.

    1969-01-01

    In two subjects concurrent infusion of amino-acids and the hormones secretin and pancreozymin provoked much higher plasma insulin levels than did administration of amino-acids or hormones individually. It is suggested that this may be a physiological phenomenon, augmenting the release of insulin from the pancreas after a meal containing protein. PMID:5356549

  4. Amino Acids Composition of Teucrium Nutlet Proteins and their Systematic Significance

    PubMed Central

    JUAN, R.; PASTOR, J.; MILLÁN, F.; ALAIZ, M.; VIOQUE, J.

    2004-01-01

    • Background and Aims Plant species are considered as a good source of dietary proteins, although the nutritional quality of proteins depends on their amino acid composition. In this work the protein content and amino acid composition of nutlets of 21 Teucrium taxa (Lamiaceae) from Spain were analysed and their nutritional quality was compared with the minimum values established by the Food and Agriculture Organization of the United Nations (FAO). In addition, the amino acid composition was evaluated as a chemical character to clarify the taxonomic complexity in this genus. • Methods Amino acid content of nutlets was determined after derivatization with diethyl ethoxymethylenemalonate by high-performance liquid chromatography. Previously, nutlets samples were hydrolysed and incubated in an oven at 110 °C for 24 h. • Key Results The protein content was variable, ranging from 6·4 % in T. dunense to 43·8 % in T. algarbiense. According to the FAO values all taxa contain satisfactory amounts of leucine, threonine and valine and are deficient in lysine. The similarity analysis of Teucrium taxa using amino acid composition data did not clearly reflect the infrageneric classification of this genus. • Conclusions Annual species, such as T. spinosum, T. aristatum and T. resupinatum showed a better balanced amino acid composition. The dendrogram partly matched with the karyological complexity of Teucrium. No correlation between amino acid composition and habitat has been observed, showing that Teucrium nutlet amino acid composition may not be strongly influenced by the environment. PMID:15329333

  5. Identification of secreted bacterial proteins by noncanonical amino acid tagging.

    PubMed

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T; Sweredoski, Michael J; Graham, Robert L J; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K; Tirrell, David A

    2014-01-07

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy.

  6. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    NASA Astrophysics Data System (ADS)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  7. Nucleic acid chaperons: a theory of an RNA-assisted protein folding

    PubMed Central

    Biro, Jan C

    2005-01-01

    Background Proteins are assumed to contain all the information necessary for unambiguous folding (Anfinsen's principle). However, ab initio structure prediction is often not successful because the amino acid sequence itself is not sufficient to guide between endless folding possibilities. It seems to be a logical to try to find the "missing" information in nucleic acids, in the redundant codon base. Results mRNA energy dot plots and protein residue contact maps were found to be rather similar. The structure of mRNA is also conserved if the protein structure is conserved, even if the sequence similarity is low. These observations led me to suppose that some similarity might exist between nucleic acid and protein folding. I found that amino acid pairs, which are co-located in the protein structure, are preferentially coded by complementary codons. This codon complementarity is not perfect; it is suboptimal where the 1st and 3rd codon residues are complementary to each other in reverse orientation, while the 2nd codon letters may be, but are not necessarily, complementary. Conclusion Partial complementary coding of co-locating amino acids in protein structures suggests that mRNA assists in protein folding and functions not only as a template but even as a chaperon during translation. This function explains the role of wobble bases and answers the mystery of why we have a redundant codon base. PMID:16137324

  8. Complex coacervates of hyaluronic acid and lysozyme: effect on protein structure and physical stability.

    PubMed

    Water, Jorrit J; Schack, Malthe M; Velazquez-Campoy, Adrian; Maltesen, Morten J; van de Weert, Marco; Jorgensen, Lene

    2014-10-01

    Complex coacervates of hyaluronic acid and lysozyme, a model protein, were formed by ionic interaction using bulk mixing and were characterized in terms of binding stoichiometry and protein structure and stability. The complexes were formed at pH 7.2 at low ionic strength (6mM) and the binding stoichiometry was determined using solution depletion and isothermal titration calorimetry. The binding stoichiometry of lysozyme to hyaluronic acid (870 kDa) determined by solution depletion was found to be 225.9 ± 6.6 mol, or 0.1 bound lysozyme molecules per hyaluronic acid monomer. This corresponded well with that obtained by isothermal titration calorimetry of 0.09 bound lysozyme molecules per hyaluronic acid monomer. The complexation did not alter the secondary structure of lysozyme measured by Fourier-transform infrared spectroscopy overlap analysis and had no significant impact on the Tm of lysozyme determined by differential scanning calorimetry. Furthermore, the protein stability of lysozyme was found to be improved upon complexation during a 12-weeks storage study at room temperature, as shown by a significant increase in recovered protein when complexed (94 ± 2% and 102 ± 5% depending on the polymer-protein weight to weight ratio) compared to 89 ± 2% recovery for uncomplexed protein. This study shows the potential of hyaluronic acid to be used in combination with complex coacervation to increase the physical stability of pharmaceutical protein formulations.

  9. Amino acid composition analysis of human secondary transport proteins and implications for reliable membrane topology prediction.

    PubMed

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G

    2016-07-08

    Secondary transporters in humans are a large group of proteins that transport a wide range of ions, metals, organic and inorganic solutes involved in energy transduction, control of membrane potential and osmotic balance, metabolic processes and in the absorption or efflux of drugs and xenobiotics. They are also emerging as important targets for development of new drugs and as target sites for drug delivery to specific organs or tissues. We have performed amino acid composition (AAC) and phylogenetic analyses and membrane topology predictions for 336 human secondary transport proteins and used the results to confirm protein classification and to look for trends and correlations with structural domains and specific substrates and/or function. Some proteins showed statistically high contents of individual amino acids or of groups of amino acids with similar physicochemical properties. One recurring trend was a correlation between high contents of charged and/or polar residues with misleading results in predictions of membrane topology, which was especially prevalent in Mitochondrial Carrier family proteins. We demonstrate how charged or polar residues located in the middle of transmembrane helices can interfere with their identification by membrane topology tools resulting in missed helices in the prediction. Comparison of AAC in the human proteins with that in 235 secondary transport proteins from Escherichia coli revealed similar overall trends along with differences in average contents for some individual amino acids and groups of similar amino acids that are presumed to result from a greater number of functions and complexity in the higher organism.

  10. Melamine and Cyanuric Acid do not interfere with Bradford and Ninhydrin assays for protein determination.

    PubMed

    Field, Anjalie; Field, Jeffrey

    2010-08-01

    In the fall of 2007 pet food contaminated with melamine and cyanuric acid caused kidney stones in thousands of animals. In the summer of 2008, a more serious outbreak of adulterated dairy food caused the deaths of six infants and sickened about 290,000 children in China. In all cases, melamine was likely added to inflate the apparent protein content of the foods. To determine if we could measure protein without interference from melamine and cyanuric acid we tested these compounds in the Bradford and Ninhydrin assays, two common dye-based assays for protein, as well as by ammonia release, the most common assay used in the food industry. Neither compound was detected in the Ninhydrin and Bradford assays at concentrations of >100 μg/ml. The ammonia assay detected melamine but was inconclusive with respect to cyanuric acid. To develop an accurate test for food that would not detect either chemical as a protein, assays were run on cat food and reconstituted milk powder. The Bradford assay readily measured the protein content of each food, and importantly, the addition of melamine or cyanuric acid to reconstituted milk did not affect the readings. The protein concentrations obtained for reconstituted milk powder were as expected, but those for the cat food were 10 to 30-fold lower, due to its low solubility. We conclude that dye-binding assays can be employed to detect protein in food without interference from melamine and cyanuric acid, thus reducing the incentive to use them as additives.

  11. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  12. Total nitrogen vs. amino-acid profile as indicator of protein content of beef.

    PubMed

    Hall, Nicolette G; Schönfeldt, Hettie C

    2013-10-01

    In most cited food composition studies and tables, the proximate system measures protein as total nitrogen (N) (determined by Kjeldahl or Dumas method) multiplied by a specific factor. A factor of 6.25 is used for determining total protein from total N (Jones, Munsey, & Walker, 1942). Although more expensive, it is considered more accurate to base protein content of foods on amino acid data (Greenfield & Southgate, 2003). A study on the nutrient composition of beef analysed the full amino-acid profile of fifteen retail cuts from three age groups and six fat codes, as well as determined total nitrogen content to determine proximate protein composition. For all cuts, the correlation coefficient of total amino acids to protein (N×6.25) was 0.635. This indicates a poor correlation for predicting actual protein content (as determined by total amino acid count), based on the nitrogen factor of 6.25. On average, the sum of amino acids per cut amounted to 91% of total determined protein (N×6.25) for the same cut.

  13. Senescence in isolated carnation petals : effects of indoleacetic Acid and inhibitors of protein synthesis.

    PubMed

    Wulster, G; Sacalis, J; Janes, H W

    1982-10-01

    Indoleacetic acid induces senescence in isolated carnation (Dianthus caryophyllus, cv. White Sim) petals, increasing the duration and amount of ethylene production. This effect is inhibited by Actinomycin D, an inhibitor of RNA synthesis, and cycloheximide, a translational inhibitor of protein synthesis. The ability of petals to respond to indoleacetic acid appears to be a function of physiological age. Indoleacetic acid is capable of enhancing ethylene evolution and senescence only in specific portions of the petal.

  14. Assessment of the protein quality of 15 new northern adapted cultivars of quality protein maize using amino acid analysis.

    PubMed

    Zarkadas, C G; Hamilton, R I; Yu, Z R; Choi, V K; Khanizadeh, S; Rose, N G; Pattison, P L

    2000-11-01

    Amino acid determinations were carried out on 15 new northern adapted cultivars of quality protein maize (QPM) containing opaque-2 modifier genes to ascertain whether their amino acid scoring patterns could be used to select high-lysine QPM genotypes and to assess their protein quality. Total protein in these cultivars ranged from 8.0 to 10.2% compared to two commercial maize varieties, Dekalb DK435 (7.9%) and Pioneer 3925 (10.3%). Four of these QPM genotypes, QPM-C26, QPM-C21, QPM-C79, and QPM-C59, contained high levels of lysine (4.43-4.58 g of lysine/100 g of protein), whereas the remaining varied from 3.43 to 4.21 g of lysine/100 g of protein, compared to Dekalb DK435 and Pioneer 3925, which contained 2.9 and 3. 1 g of lysine/100 g of protein, respectively. Although lysine is the first limiting amino acid in QPM inbreds, the high-lysine QPM genotypes may supply approximately 70.2-72.6% of human protein requirements, compared to 46.2% for Dekalb DK435 and 50.1% for Pioneer 3925, 55-63% for oats, and 59-60.3% for barley. Northern adapted QPM genotypes may have the potential to increase their lysine content even further, either by an increase in specific high-lysine-containing nonzein proteins, such as the synthesis of factor EF-1a, or by a further reduction in the 19 and 22 kDa alpha-zein in the endosperm or both. This knowledge could assist maize breeders in the selection of new high-performance QPM genotypes with improved protein quality and quantity.

  15. Reasons for the occurrence of the twenty coded protein amino acids

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  16. Hidden thermodynamic information in protein amino acid mutation tables

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2017-03-01

    We combine the standard 1992 20 × 20 substitution matrix based on block alignment, BLOSUM62, with the standard 1982 amino acid hydropathicity scale KD as well as the modern 2007 hydropathicity scale MZ, and compare the results. The 20-parameter KD and MZ hydropathicity scales have different thermodynamic character, corresponding to first- and second-order transitions. The KD and MZ comparisons show that the mutation rates reflect quantitative iteration of qualitative amino acid-phobic and -philic binary 2 × 10 properties that define quaternary 4 × 5 subgroups (but not quinary 5 × 4 subgroups), with the modern MZ bioinformatic scale giving much better results. The quaternary 5-mer MZ 4 × 5 subgroups are called mutons (Mu5). Among all hydropathicity scales, the MZ scale uniquely exhibits a smooth, deep mutational minimum at its center associated with alanine, glycine, the smallest amino acid, and histidine.

  17. Computational prediction of the tolerance to amino-acid deletion in green-fluorescent protein

    PubMed Central

    Jackson, Eleisha L.; Spielman, Stephanie J.

    2017-01-01

    Proteins evolve through two primary mechanisms: substitution, where mutations alter a protein’s amino-acid sequence, and insertions and deletions (indels), where amino acids are either added to or removed from the sequence. Protein structure has been shown to influence the rate at which substitutions accumulate across sites in proteins, but whether structure similarly constrains the occurrence of indels has not been rigorously studied. Here, we investigate the extent to which structural properties known to covary with protein evolutionary rates might also predict protein tolerance to indels. Specifically, we analyze a publicly available dataset of single—amino-acid deletion mutations in enhanced green fluorescent protein (eGFP) to assess how well the functional effect of deletions can be predicted from protein structure. We find that weighted contact number (WCN), which measures how densely packed a residue is within the protein’s three-dimensional structure, provides the best single predictor for whether eGFP will tolerate a given deletion. We additionally find that using protein design to explicitly model deletions results in improved predictions of functional status when combined with other structural predictors. Our work suggests that structure plays fundamental role in constraining deletions at sites in proteins, and further that similar biophysical constraints influence both substitutions and deletions. This study therefore provides a solid foundation for future work to examine how protein structure influences tolerance of more complex indel events, such as insertions or large deletions. PMID:28369116

  18. Generation of pseudocontact shifts in proteins with lanthanides using small "clickable" nitrilotriacetic acid and iminodiacetic acid tags.

    PubMed

    Loh, Choy-Theng; Graham, Bim; Abdelkader, Elwy H; Tuck, Kellie L; Otting, Gottfried

    2015-03-23

    Pseudocontact shifts (PCS) induced by paramagnetic lanthanide ions provide unique long-range structural information in nuclear magnetic resonance (NMR) spectra, but the site-specific attachment of lanthanide tags to proteins remains a challenge. Here we incorporated p-azido-phenylalanine (AzF) site-specifically into the proteins ubiquitin and GB1, and ligated the AzF residue with alkyne derivatives of small nitrilotriacetic acid and iminodiacetic acid tags using the Cu(I) -catalysed "click" reaction. These tags form lanthanide complexes with no or only a small net charge and produced sizeable PCSs with paramagnetic lanthanide ions in all mutants tested. The PCSs were readily fitted by single magnetic susceptibility anisotropy tensors. Protein precipitation during the click reaction was greatly alleviated by the presence of 150 mM NaCl.

  19. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies.

    PubMed

    Pey, Angel L

    2013-12-01

    Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.

  20. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    PubMed

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  1. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  2. Long-term leucine induced stimulation of muscle protein synthesis is amino acid dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infusing leucine for 1 h increases skeletal muscle protein synthesis in the neonate, but this is not sustained for 2 h unless the corresponding fall in amino acids is prevented. This study aimed to determine whether a continuous leucine infusion can stimulate protein synthesis for a prolonged period...

  3. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions

    PubMed Central

    Vickers, Timothy A.; Crooke, Stanley T.

    2016-01-01

    Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells. PMID:27571227

  4. Isoelectric Point, Electric Charge, and Nomenclature of the Acid-Base Residues of Proteins

    ERIC Educational Resources Information Center

    Maldonado, Andres A.; Ribeiro, Joao M.; Sillero, Antonio

    2010-01-01

    The main object of this work is to present the pedagogical usefulness of the theoretical methods, developed in this laboratory, for the determination of the isoelectric point (pI) and the net electric charge of proteins together with some comments on the naming of the acid-base residues of proteins. (Contains 8 figures and 4 tables.)

  5. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enzymatic hydrolysis was performed for extracting protein to prepare umami taste amino acids from defatted tomato seed meal (DTSM) which is a by-product of tomato processing. Papain was used as an enzyme for the hydrolysis of DTSM. The particle size distribution of DTSM, protein concentration and fr...

  6. Acid diet (high meat protein) effects on calcium metabolism and bone health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review: Update recent advancements regarding the effect of high animal protein on calcium utilization and bone health. Recent findings: Increased potential renal acid load resulting from a high protein (meat) intake has been closely associated with increased urinary calcium excretion. How...

  7. Effect of microfluidized and stearic acid modified soy protein in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microfluidized and stearic acid modified soy protein aggregates were used to reinforced natural rubber. The size of soy protein particles was reduced with a microfluidizing and ball milling process. Filler size reduction with longer ball milling time tends to increase tensile strength of the rubber ...

  8. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the curre...

  9. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid.

    PubMed

    Hu, S-G; Jou, C-H; Yang, M C

    2003-07-01

    Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) membrane was treated with ozone and grafted with acrylic acid. The resulting membranes were further grafted with chitosan (CS) or chitooligosaccharide (COS) via esterification. Afterward hyaluronic acid (HA) was immobilized onto CS- or COS-grafting membranes. The antibacterial activity of CS and COS against Staphylococus aureus, Escherichia coli, and Pseudomonas aeruginosa was preserved after HA immobilization. Among them, CS-grafted PHBV membrane showed higher antibacterial activity than COS-grafted PHBV membrane. In addition, after CS- or COS-grafting, the L929 fibroblasts attachment and protein adsorption were improved, while the cell number was decrease. After immobilizing HA, the cell proliferation was promoted, the protein adsorption was decreased, and the cell attachment was slightly lower than CS- or COS-grafting PHBV.

  10. Site-specific fatty acid-conjugation to prolong protein half-life in vivo

    PubMed Central

    Lim, Sung In; Mizuta, Yukina; Takasu, Akinori; Hahn, Young S.; Kim, Yong Hwan; Kwon, Inchan

    2015-01-01

    Therapeutic proteins are indispensable in treating numerous human diseases. However, therapeutic proteins often suffer short serum half-life. In order to extend the serum half-life, a natural albumin ligand (a fatty acid) has been conjugated to small therapeutic peptides resulting in a prolonged serum half-life via binding to patients' serum albumin in vivo. However, fatty acid-conjugation has limited applicability due to lack of site-specificity resulting in the heterogeneity of conjugated proteins and a significant loss in pharmaceutical activity. In order to address these issues, we exploited the site-specific fatty acid-conjugation to a permissive site of a protein, using copper-catalyzed alkyne-azide cycloaddition, by linking a fatty acid derivative to p-ethynylphenylalanine incorporated into a protein using an engineered pair of yeast tRNA/aminoacyl tRNA synthetase. As a proof-of-concept, we show that single palmitic acid conjugated to superfolder green fluorescent protein (sfGFP) in a site-specific manner enhanced a protein's albumin-binding in vitro about 20 times and the serum half-life in vivo 5 times when compared to those of the unmodified sfGFP. Furthermore, the fatty acid conjugation did not cause a significant reduction in the fluorescence of sfGFP. Therefore, these results clearly indicate that the site-specific fatty acid-conjugation is a very promising strategy to prolong protein serum half-life in vivo without compromising its folded structure and activity. PMID:23735573

  11. Shark myelin basic protein: amino acid sequence, secondary structure, and self-association.

    PubMed

    Milne, T J; Atkins, A R; Warren, J A; Auton, W P; Smith, R

    1990-09-01

    Myelin basic protein (MBP) from the Whaler shark (Carcharhinus obscurus) has been purified from acid extracts of a chloroform/methanol pellet from whole brains. The amino acid sequence of the majority of the protein has been determined and compared with the sequences of other MBPs. The shark protein has only 44% homology with the bovine protein, but, in common with other MBPs, it has basic residues distributed throughout the sequence and no extensive segments that are predicted to have an ordered secondary structure in solution. Shark MBP lacks the triproline sequence previously postulated to form a hairpin bend in the molecule. The region containing the putative consensus sequence for encephalitogenicity in the guinea pig contains several substitutions, thus accounting for the lack of activity of the shark protein. Studies of the secondary structure and self-association have shown that shark MBP possesses solution properties similar to those of the bovine protein, despite the extensive differences in primary structure.

  12. THE STRUCTURE OF THE ULTRAVIOLET ABSORPTION SPECTRA OF CERTAIN PROTEINS AND AMINO ACIDS

    PubMed Central

    Coulter, Calvin B.; Stone, Florence M.; Kabat, Elvin A.

    1936-01-01

    1. The absorption spectra of a number of proteins in the region 2500 to 3000 A. have been found to comprise from six to nine narrow bands. In consequence of variation in the relative intensity of these bands from protein to protein, the absorption curve has a characteristic configuration for each protein. 2. These bands correspond closely in position with the narrow bands which appear in the absorption spectra of tryptophan, tyrosin, and phenylalanine. Tryptophan and tyrosin each present three bands, phenylalanine shows nine. 3. The bands in the proteins are accordingly attributed to these amino acids. In the proteins the bands are displaced from the positions which they occupy in the uncombined amino acids, in most instances, by 10 to 35 A. toward longer wavelengths. 4. The absorption spectrum of Pneumococcus Type I antibody resembles that of normal pseudoglobulin but shows characteristic differences. PMID:19872958

  13. Nucleic acid encoding DS-CAM proteins and products related thereto

    SciTech Connect

    Korenberg, Julie R.

    2005-11-01

    In accordance with the present invention, there are provided Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

  14. Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein

    SciTech Connect

    Shaikh, Afshan; Shaikh, Afshan S.; Tang, Yinjie; Mukhopadhyay, Aindrila; Keasling, Jay D.

    2008-06-27

    {sup 13}C-based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly-expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism E. coli expressing a plasmid-borne, his-tagged Green Fluorescent Protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities.

  15. Structural and functional analysis of fatty acid-binding proteins

    PubMed Central

    Storch, Judith; McDermott, Lindsay

    2009-01-01

    The mammalian FA-binding proteins (FABPs) bind long-chain FA with high affinity. The large number of FABP types is suggestive of distinct functions in specific tissues. Multiple experimental approaches have shown that individual FABPs possess both unique and overlapping functions, some of which are based on specific elements in the protein structure. Although FA binding affinities for all FABPs tend to correlate directly with FA hydrophobicity, structure-function studies indicate that subtle three-dimensional changes that occur upon ligand binding may promote specific protein-protein or protein-membrane interactions that ultimately determine the function of each FABP. The conformational changes are focused in the FABP helical/portal domain, a region that was identified by in vitro studies to be vital for the FA transport properties of the FABPs. Thus, the FABPs modulate intracellular lipid homeostasis by regulating FA transport in the nuclear and extra-nuclear compartments of the cell; in so doing, they also impact systemic energy homeostasis. PMID:19017610

  16. Macronutrient requirement for growth: Protein/amino acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current recommendations by the Institute of Medicine on amino acid requirements in healthy children older than 6 months and for children and adolescents have been established using the factorial approach, which takes into account: i) maintenance for obligatory losses, which is estimated by regressio...

  17. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  18. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    DOEpatents

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  19. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle

    PubMed Central

    Holloway, Graham P; Lally, Jamie; Nickerson, James G; Alkhateeb, Hakam; Snook, Laelie A; Heigenhauser, George J F; Calles-Escandon, Jorge; Glatz, Jan F C; Luiken, Joost J F P; Spriet, Lawrence L; Bonen, Arend

    2007-01-01

    The transport of long-chain fatty acids (LCFAs) across mitochondrial membranes is regulated by carnitine palmitoyltransferase I (CPTI) activity. However, it appears that additional fatty acid transport proteins, such as fatty acid translocase (FAT)/CD36, influence not only LCFA transport across the plasma membrane, but also LCFA transport into mitochondria. Plasma membrane-associated fatty acid binding protein (FABPpm) is also known to be involved in sacrolemmal LCFA transport, and it is also present on the mitochondria. At this location, it has been identified as mitochondrial aspartate amino transferase (mAspAT), despite being structurally identical to FABPpm. Whether this protein is also involved in mitochondrial LCFA transport and oxidation remains unknown. Therefore, we have examined the ability of FABPpm/mAspAT to alter mitochondrial fatty acid oxidation. Muscle contraction increased (P < 0.05) the mitochondrial FAT/CD36 content in rat (+22%) and human skeletal muscle (+33%). By contrast, muscle contraction did not alter the content of mitochondrial FABPpm/mAspAT protein in either rat or human muscles. Electrotransfecting rat soleus muscles, in vivo, with FABPpm cDNA increased FABPpm protein in whole muscle (+150%; P < 0.05), at the plasma membrane (+117%; P < 0.05) and in mitochondria (+80%; P < 0.05). In these FABPpm-transfected muscles, palmitate transport into giant vesicles was increased by +73% (P < 0.05), and fatty acid oxidation in intact muscle was increased by +18% (P < 0.05). By contrast, despite the marked increase in mitochondrial FABPpm/mAspAT protein content (+80%), the rate of mitochondrial palmitate oxidation was not altered (P > 0.05). However, electrotransfection increased mAspAT activity by +70% (P < 0.05), and the mitochondrial FABPpm/mAspAT protein content was significantly correlated with mAspAT activity (r= 0.75). It is concluded that FABPpm has two distinct functions depending on its subcellular location: (a) it contributes to

  20. Rapid online nonenzymatic protein digestion combining microwave heating acid hydrolysis and electrochemical oxidation.

    PubMed

    Basile, Franco; Hauser, Nicolas

    2011-01-01

    We report an online nonenzymatic method for site-specific digestion of proteins to yield peptides that are well suited for collision-induced dissociation tandem mass spectrometry. The method combines online microwave heating acid hydrolysis at aspartic acid and online electrochemical oxidation at tryptophan and tyrosine. The combined microwave/electrochemical digestion is reproducible and produces peptides with an average sequence length of 10 amino acids. This peptide length is similar to the average peptide length of 9 amino acids obtained by digestion of proteins with the enzyme trypsin. As a result, the peptides produced by this novel nonenzymatic digestion method, when analyzed by electrospray ionization mass spectrometry, produce protonated molecules with mostly +1 and +2 charge states. The combination of these two nonenzymatic methods overcomes shortcomings with each individual method in that (i) peptides generated by the microwave-hydrolysis method have an average amino acid length of 16 amino acids and (ii) the electrochemical-cleavage method is unable to reproducibly digest proteins with molecular masses above 4 kDa. Preliminary results are presented on the application and utility of this rapid online digestion (total of 6 min of digestion time) on a series of standard peptides and proteins as well as an Escherichia coli protein extract.

  1. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  2. A dominant conformational role for amino acid diversity in minimalist protein–protein interfaces

    SciTech Connect

    Gilbreth, Ryan N.; Esaki, Kaori; Koide, Akiko; Sidhu, Sachdev S.; Koide, Shohei

    2008-08-01

    Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies.” One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose-binding protein. The YSX monobody bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution X-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces.

  3. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    PubMed

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  4. Variability in phytic acid content and protein digestibility of grain legumes.

    PubMed

    Chitra, U; Vimala, V; Singh, U; Geervani, P

    1995-02-01

    Several genotypes, number given within parenthesis, of chickpea, pigeonpea, urd bean, mung bean and soybean, differing in seed characteristics were analyzed for phytic acid, in vitro protein digestibility (IVPD), protein, total phosphorus, and seed size. Phytic acid contents and IVPD values differed significantly among and within these species. Phytic acid content (mg/g) was the highest in soybean (36.4) followed by urd bean (13.7), pigeonpea (12.7), mung bean (12.0) and chickpea (9.6). On an average, phytic acid constituted 78.2 percent of the total phosphorus content and this percentage figure was the highest in soybean and the lowest in mung bean. In vitro protein digestibility (IVPD) of pigeonpea and chickpea genotypes varied from 60.4 to 74.4 percent and 65.3 to 79.4 percent, respectively. The IVPD values of genotypes of mung bean, urd bean and soybean ranged from 67.2 to 72.2 percent, 55.7 to 63.3 percent and 62.7 to 71.6 percent, respectively. There was a significant negative correlation between phytic acid and IVPD of these genotypes. Phytic acid was significantly and positively correlated with protein but the magnitude of correlation was very low in chickpea and pigeonpea. Results indicate that the genotypes of pulses with low phytic acid content could be identified and used in breeding program to improve their nutritive value and utilization.

  5. Pinocytosis and intracellular degradation of exogenous protein: modulation by amino acids

    PubMed Central

    1983-01-01

    Intracellular degradation of exogenous (serum) proteins provides a source of amino acids for cellular protein synthesis. Pinocytosis serves as the mechanism for delivering exogenous protein to the lysosomes, the major site of intracellular degradation of exogenous protein. To determine whether the availability of extracellular free amino acids altered pinocytic function, we incubated monolayers of pulmonary alveolar macrophages with the fluid-phase marker, [14C]sucrose, and we dissected the pinocytic process by kinetic analysis. Additionally, intracellular degradation of endogenous and exogenous protein was monitored by measuring phenylalanine released from the cell monolayers in the presence of cycloheximide. Results revealed that in response to a subphysiological level of essential amino acids or to amino acid deprivation, (a) the rate of fluid-phase pinocytosis increased in such a manner as to preferentially increase both delivery to and size of an intracellular compartment believed to be the lysosomes, (b) the degradation of exogenously supplied albumin increased, and (c) the fraction of phenylalanine derived from degradation of exogenous albumin and reutilized for de novo protein synthesis increased. Thus, modulation of the pinosome-lysosome pathway may represent a homeostatic mechanism sensitive to the availability of extracellular free amino acids. PMID:6853596

  6. Cassava interspecific hybrids with increased protein content and improved amino acid profiles.

    PubMed

    Gomes, P T C; Nassar, N M A

    2013-04-12

    Cassava (Manihot esculenta) is a principal food for large populations of poor people in the tropics and subtropics. Its edible roots are poor in protein and lack several essential amino acids. Interspecific hybrids may acquire high protein characteristics from wild species. We analyzed 19 hybrids of M. esculenta with its wild relative, M. oligantha, for crude protein, amino acid profile, and total cyanide. Some hybrids produced roots with high protein content of up to 5.7%, while the common cultivar that we examined had just 2.3% crude protein. The essential amino acids alanine, phenylalanine, and valine were detected in the hybrids. The sulfur-containing amino acids cysteine and methionine were found at relatively high concentrations in the roots of 4 hybrids. The proportion of lysine in one hybrid was 20 times higher than in the common cultivar. The levels of total cyanide ranged from 19.73 to 172.56 mg/kg and most of the roots analyzed were classified as "non-toxic" and "low toxic". Furthermore, 2 progenies showed reasonable levels of cyanide, but higher protein content and amino acid profile more advantageous than the common cassava.

  7. Protein and Essential Amino Acids to Protect Musculoskeletal Health during Spaceflight: Evidence of a Paradox?

    PubMed Central

    Hackney, Kyle J.; English, Kirk L.

    2014-01-01

    Long-duration spaceflight results in muscle atrophy and a loss of bone mineral density. In skeletal muscle tissue, acute exercise and protein (e.g., essential amino acids) stimulate anabolic pathways (e.g., muscle protein synthesis) both independently and synergistically to maintain neutral or positive net muscle protein balance. Protein intake in space is recommended to be 12%–15% of total energy intake (≤1.4 g∙kg−1∙day−1) and spaceflight is associated with reduced energy intake (~20%), which enhances muscle catabolism. Increasing protein intake to 1.5–2.0 g∙kg−1∙day−1 may be beneficial for skeletal muscle tissue and could be accomplished with essential amino acid supplementation. However, increased consumption of sulfur-containing amino acids is associated with increased bone resorption, which creates a dilemma for musculoskeletal countermeasures, whereby optimizing skeletal muscle parameters via essential amino acid supplementation may worsen bone outcomes. To protect both muscle and bone health, future unloading studies should evaluate increased protein intake via non-sulfur containing essential amino acids or leucine in combination with exercise countermeasures and the concomitant influence of reduced energy intake. PMID:25370374

  8. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma.

    PubMed

    Havelund, Jesper F; Wojdyla, Katarzyna; Davies, Michael J; Jensen, Ole N; Møller, Ian Max; Rogowska-Wrzesinska, Adelina

    2017-03-06

    Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues are derivatised with biotin-hydrazide, enriched and characterised by tandem mass spectrometry. The strength of the method lies in an improved elution of biotinylated peptides from monomeric avidin resin using hot water (95°C) and increased sensitivity achieved by reduction of analyte losses during sample preparation and chromatography. For the first time MS/MS data analysis utilising diagnostic biotin fragment ions is used to pinpoint sites of biotin labelling and improve the confidence of carbonyl peptide assignments. We identified a total of 125 carbonylated residues in bovine serum albumin after extensive in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine, valine, alanine, isoleucine, glutamine, lysine and glutamic acid (+14Da), an oxidised form of methionine - aspartate semialdehyde (-32Da) - and decarboxylated glutamic acid and aspartic acid (-30Da).

  9. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  10. Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa.

    PubMed

    Thanapornpoonpong, Sa-nguansak; Vearasilp, Suchada; Pawelzik, Elke; Gorinstein, Shela

    2008-12-10

    The effect of nitrogen application levels (0.16 and 0.24 g N kg(-1) soil) on seed proteins and their amino acid compositions of amaranth (Amaranthus spp.) and quinoa (Chenopodium quinoa Willd) was studied. Total proteins of amaranth and quinoa had high contents of lysine (6.3-8.2 g 100 g(-1) protein) but low contents of methionine (1.2-1.8 g 100 g(-1) protein). Seed proteins were fractionated on the basis of different solubility in water, saline, and buffer as albumin-1 (Albu-1), albumin-2 (Albu-2), globulin (Glob), and glutelin (Glu) and were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Albu-1 was high in lysine (5.4-8.6 g 100 g(-1) protein), while Albu-2, which is a part of storage proteins, had a high leucine content (7.2-8.9 g 100 g(-1) protein) as an effect of different nitrogen application levels. Glu fractions were well-balanced in their essential amino acids with the exception of methionine. In conclusion, nitrogen application can be used for the nutritional improvement in human diet by increasing and maintaining protein and essential amino acid contents.

  11. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  12. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running.

    PubMed

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-06-28

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d₃-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.

  13. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells.

    PubMed

    Mitchell, Ryan W; On, Ngoc H; Del Bigio, Marc R; Miller, Donald W; Hatch, Grant M

    2011-05-01

    The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.

  14. From keys to bulldozers: expanding roles for winged helix domains in nucleic-acid-binding proteins.

    PubMed

    Harami, Gábor M; Gyimesi, Máté; Kovács, Mihály

    2013-07-01

    The winged helix domain (WHD) is a widespread nucleic-acid-binding protein structural element found in all kingdoms of life. Although the overall structure of the WHD is conserved, its functional properties and interaction profiles are extremely versatile. WHD-containing proteins can exploit nearly the full spectrum of nucleic acid structural features for recognition and even covalent modification or noncovalent rearrangement of target molecules. WHD functions range from sequence-recognizing keys in transcription factors and bulldozer-like strand-separating wedges in helicases to mediators of protein-protein interactions (PPIs). Further investigations are needed to understand the contribution of WHD structural dynamics to nucleic-acid-modifying enzymatic functions.

  15. Malic acid or orthophosphoric acid-heat treatments for protecting sunflower (Helianthus annuus) meal proteins against ruminal degradation and increasing intestinal amino acid supply.

    PubMed

    Arroyo, J M; González, J; Ouarti, M; Silván, J M; Ruiz del Castillo, M L; de la Peña Moreno, F

    2013-02-01

    The protection of sunflower meal (SFM) proteins by treatments with solutions of malic acid (1 M) or orthophosphoric acid (0.67 M) and heat was studied in a 3 × 3 Latin-square design using three diets and three rumen and duodenum cannulated wethers. Acid solutions were applied to SFM at a rate of 400 ml/kg under continuous mixing. Subsequently, treated meals were dried in an oven at 150°C for 6 h. Diets (ingested at 75 g/kg BW0.75) were isoproteic and included 40% Italian ryegrass hay and 60% concentrate. The ratio of untreated to treated SFM in the concentrate was 100 : 0 in the control diet and around 40 : 60 in diets including acid-treated meals. The use of acid-treated meals did not alter either ruminal fermentation or composition of rumen contents and led to moderate reductions of the rumen outflow rates of untreated SFM particles, whereas it did not affect their comminution and mixing rate. In situ effective estimates of by-pass (BP) and its intestinal effective digestibility (IED) of dry matter (DM), CP and amino acids (AAs) were obtained considering both rates and correcting the particle microbial contamination in the rumen using 15N infusion techniques. Estimates of BP and IED decreased applying microbial correction, but these variations were low in agreement with the small contamination level. Protective treatments increased on average the BP of DM (48.5%) and CP (267%), mainly decreasing both the soluble fraction and the degradation rate but also increasing the undegradable fraction, which was higher using orthophosphoric acid. Protective treatments increased the IED of DM (108%) and CP, but this increase was lower using orthophosphoric acid (11.8%) than malic acid (20.7%). Concentrations of AA were similar among all meals, except for a reduction in lysine concentrations using malic acid (16.3%) or orthophosphoric acid (20.5%). Protective treatments also increased on average the BP of all AA, as well as the IED of most of them. Evidence of higher

  16. Amino acid alignment of cholinesterases, esterases, lipases, and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.

    1995-12-31

    The alignments previously published (Gentry Doctor, 1991; Cygler et al., 1993), nine and 32 sequences respectively, have been further expanded by the addition of 22 newly-found sequences. References and protein sequences were found by searching on the term acetylcholinesterase using the software package Entrez, an integrated citation and sequence retrieval system (National Center for Biotechnology Information, NLM, Bethesda, MD).

  17. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tissue grinding vessel is a suitable alternative. The homogenized samples can then be stored frozen at... neurotypic and gliotypic proteins. J. Pharmacol. Exp. Ther. 234:522-532. (6) Sette, W.F. “Pesticide..., Neurotoxicity, Series 81, 82, and 83” US-EPA, Office of Pesticide Programs, EPA-540/09-91-123, March 1991....

  18. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tissue grinding vessel is a suitable alternative. The homogenized samples can then be stored frozen at... neurotypic and gliotypic proteins. J. Pharmacol. Exp. Ther. 234:522-532. (6) Sette, W.F. “Pesticide..., Neurotoxicity, Series 81, 82, and 83” US-EPA, Office of Pesticide Programs, EPA-540/09-91-123, March 1991....

  19. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tissue grinding vessel is a suitable alternative. The homogenized samples can then be stored frozen at... neurotypic and gliotypic proteins. J. Pharmacol. Exp. Ther. 234:522-532. (6) Sette, W.F. “Pesticide..., Neurotoxicity, Series 81, 82, and 83” US-EPA, Office of Pesticide Programs, EPA-540/09-91-123, March 1991....

  20. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis

    PubMed Central

    Chen, Hsi-Chuan; Li, Quanzi; Shuford, Christopher M.; Liu, Jie; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2011-01-01

    The hydroxylation of 4- and 3-ring carbons of cinnamic acid derivatives during monolignol biosynthesis are key steps that determine the structure and properties of lignin. Individual enzymes have been thought to catalyze these reactions. In stem differentiating xylem (SDX) of Populus trichocarpa, two cinnamic acid 4-hydroxylases (PtrC4H1 and PtrC4H2) and a p-coumaroyl ester 3-hydroxylase (PtrC3H3) are the enzymes involved in these reactions. Here we present evidence that these hydroxylases interact, forming heterodimeric (PtrC4H1/C4H2, PtrC4H1/C3H3, and PtrC4H2/C3H3) and heterotrimeric (PtrC4H1/C4H2/C3H3) membrane protein complexes. Enzyme kinetics using yeast recombinant proteins demonstrated that the enzymatic efficiency (Vmax/km) for any of the complexes is 70–6,500 times greater than that of the individual proteins. The highest increase in efficiency was found for the PtrC4H1/C4H2/C3H3-mediated p-coumaroyl ester 3-hydroxylation. Affinity purification-quantitative mass spectrometry, bimolecular fluorescence complementation, chemical cross-linking, and reciprocal coimmunoprecipitation provide further evidence for these multiprotein complexes. The activities of the recombinant and SDX plant proteins demonstrate two protein-complex–mediated 3-hydroxylation paths in monolignol biosynthesis in P. trichocarpa SDX; one converts p-coumaric acid to caffeic acid and the other converts p-coumaroyl shikimic acid to caffeoyl shikimic acid. Cinnamic acid 4-hydroxylation is also mediated by the same protein complexes. These results provide direct evidence for functional involvement of membrane protein complexes in monolignol biosynthesis. PMID:22160716

  1. Microwave-assisted 18O-labeling of proteins catalyzed by formic acid.

    PubMed

    Liu, Ning; Wu, Hanzhi; Liu, Hongxia; Chen, Guonan; Cai, Zongwei

    2010-11-01

    Oxygen exchange may occur at carboxyl groups catalyzed by acid. The reaction, however, takes at least several days at room temperature. The long-time exchanging reaction often prevents its application from protein analysis. In this study, an (18)O-labeling method utilizing microwave-assisted acid hydrolysis was developed. After being dissolved in (16)O/(18)O (1:1) water containing 2.5% formic acid, protein samples were exposed to microwave irradiation. LC-MS/MS analysis of the resulted peptide mixtures indicated that oxygen in the carboxyl groups from glutamic acid, aspartic acid, and the C-terminal residues could be efficiently exchanged with (18)O within less than 15 min. The rate of back exchange was so slow that no detectable back exchange could be found during the HPLC run.

  2. Role of Protein and Amino Acids in Infant and Young Child Nutrition: Protein and Amino Acid Needs and Relationship with Child Growth.

    PubMed

    Uauy, Ricardo; Kurpad, Anura; Tano-Debrah, Kwaku; Otoo, Gloria E; Aaron, Grant A; Toride, Yasuhiko; Ghosh, Shibani

    2015-01-01

    Over a third of all deaths of children under the age of five are linked to undernutrition. At a 90% coverage level, a core group of ten interventions inclusive of infant and young child nutrition could save one million lives of children under 5 y of age (15% of all deaths) (Lancet 2013). The infant and young child nutrition package alone could save over 220,000 lives in children under 5 y of age. High quality proteins (e.g. milk) in complementary, supplementary and rehabilitation food products have been found to be effective for good growth. Individual amino acids such as lysine and arginine have been found to be factors linked to growth hormone release in young children via the somatotropic axis and high intakes are inversely associated with fat mass index in pre-pubertal lean girls. Protein intake in early life is positively associated with height and weight at 10 y of age. This paper will focus on examining the role of protein and amino acids in infant and young child nutrition by examining protein and amino acid needs in early life and the subsequent relationship with stunting.

  3. The folding type of a protein is relevant to the amino acid composition.

    PubMed

    Nakashima, H; Nishikawa, K; Ooi, T

    1986-01-01

    The folding types of 135 proteins, the three-dimensional structures of which are known, were analyzed in terms of the amino acid composition. The amino acid composition of a protein was expressed as a point in a multidimensional space spanned with 20 axes, on which the corresponding contents of 20 amino acids in the protein were represented. The distribution pattern of proteins in this composition space was examined in relation to five folding types, alpha, beta, alpha/beta, alpha + beta, and irregular type. The results show that amino acid compositions of the alpha, beta, and alpha/beta types are located in different regions in the composition space, thus allowing distinct separation of proteins depending on the folding types. The points representing proteins of the alpha + beta and irregular types, however, are widely scattered in the space, and the existing regions overlap with those of the other folding types. A simple method of utilizing the "distance" in the space was found to be convenient for classification of proteins into the five folding types. The assignment of the folding type with this method gave an accuracy of 70% in the coincidence with the experimental data.

  4. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro.

    PubMed

    Mass, Tali; Drake, Jeana L; Haramaty, Liti; Kim, J Dongun; Zelzion, Ehud; Bhattacharya, Debashish; Falkowski, Paul G

    2013-06-17

    Biomineralization is a widely dispersed and highly regulated but poorly understood process by which organisms precipitate minerals from a wide variety of elements [1]. For many years, it has been hypothesized that the biological precipitation of carbonates is catalyzed by and organized on an extracellular organic matrix containing a suite of proteins, lipids, and polysaccharides [2, 3]. The structures of these molecules, their evolutionary history, and the biophysical mechanisms responsible for calcification remain enigmatic. Despite the recognition that mineralized tissues contain proteins that are unusually rich in aspartic and glutamic acids [4-6], the role of these proteins in biomineralization remains elusive [5, 6]. Here we report, for the first time, the identification, cloning, amino acid sequence, and characterization of four highly acidic proteins, derived from expression of genes obtained from the common stony coral, Stylophora pistillata. Each of these four proteins can spontaneously catalyze the precipitation of calcium carbonate in vitro. Our results demonstrate that coral acid-rich proteins (CARPs) not only bind Ca(2+) stoichiometrically but also precipitate aragonite in vitro in seawater at pH 8.2 and 7.6, via an electrostatic interaction with protons on bicarbonate anions. Phylogenetic analysis suggests that at least one of the CARPs arose from a gene fusion. Similar, highly acidic proteins appear to have evolved several times independently in metazoans through convergence. Based purely on thermodynamic grounds, the predicted change in surface ocean pH in the next decades would appear to have minimal effect on the capacity of these acid-rich proteins to precipitate carbonates.

  5. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Möller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  6. Prediction of functionally important residues in globular proteins from unusual central distances of amino acids

    PubMed Central

    2011-01-01

    Background Well-performing automated protein function recognition approaches usually comprise several complementary techniques. Beside constructing better consensus, their predictive power can be improved by either adding or refining independent modules that explore orthogonal features of proteins. In this work, we demonstrated how the exploration of global atomic distributions can be used to indicate functionally important residues. Results Using a set of carefully selected globular proteins, we parametrized continuous probability density functions describing preferred central distances of individual protein atoms. Relative preferred burials were estimated using mixture models of radial density functions dependent on the amino acid composition of a protein under consideration. The unexpectedness of extraordinary locations of atoms was evaluated in the information-theoretic manner and used directly for the identification of key amino acids. In the validation study, we tested capabilities of a tool built upon our approach, called SurpResi, by searching for binding sites interacting with ligands. The tool indicated multiple candidate sites achieving success rates comparable to several geometric methods. We also showed that the unexpectedness is a property of regions involved in protein-protein interactions, and thus can be used for the ranking of protein docking predictions. The computational approach implemented in this work is freely available via a Web interface at http://www.bioinformatics.org/surpresi. Conclusions Probabilistic analysis of atomic central distances in globular proteins is capable of capturing distinct orientational preferences of amino acids as resulting from different sizes, charges and hydrophobic characters of their side chains. When idealized spatial preferences can be inferred from the sole amino acid composition of a protein, residues located in hydrophobically unfavorable environments can be easily detected. Such residues turn out to be

  7. Defining meal requirements for protein to optimize metabolic roles of amino acids12345

    PubMed Central

    Anthony, Tracy G; Rasmussen, Blake B; Adams, Sean H; Lynch, Christopher J; Brinkworth, Grant D; Davis, Teresa A

    2015-01-01

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signals that influence the rate of protein synthesis, inflammation responses, mitochondrial activity, and satiety, exerting their influence through signaling systems including mammalian/mechanistic target of rapamycin complex 1 (mTORC1), general control nonrepressed 2 (GCN2), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), serotonin, and insulin. These signals represent meal-based responses to dietary protein. The best characterized of these signals is the leucine-induced activation of mTORC1, which leads to the stimulation of skeletal muscle protein synthesis after ingestion of a meal that contains protein. The response of this metabolic pathway to dietary protein (i.e., meal threshold) declines with advancing age or reduced physical activity. Current dietary recommendations for protein are focused on total daily intake of 0.8 g/kg body weight, but new research suggests daily needs for older adults of ≥1.0 g/kg and identifies anabolic and metabolic benefits to consuming at least 20–30 g protein at a given meal. Resistance exercise appears to increase the efficiency of EAA use for muscle anabolism and to lower the meal threshold for stimulation of protein synthesis. Applying this information to a typical 3-meal-a-day dietary plan results in protein intakes that are well within the guidelines of the Dietary Reference Intakes for acceptable macronutrient intakes. The meal threshold concept for dietary protein emphasizes a need for redistribution of dietary protein for optimum metabolic health. PMID:25926513

  8. Defining meal requirements for protein to optimize metabolic roles of amino acids.

    PubMed

    Layman, Donald K; Anthony, Tracy G; Rasmussen, Blake B; Adams, Sean H; Lynch, Christopher J; Brinkworth, Grant D; Davis, Teresa A

    2015-04-29

    Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signals that influence the rate of protein synthesis, inflammation responses, mitochondrial activity, and satiety, exerting their influence through signaling systems including mammalian/mechanistic target of rapamycin complex 1 (mTORC1), general control nonrepressed 2 (GCN2), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), serotonin, and insulin. These signals represent meal-based responses to dietary protein. The best characterized of these signals is the leucine-induced activation of mTORC1, which leads to the stimulation of skeletal muscle protein synthesis after ingestion of a meal that contains protein. The response of this metabolic pathway to dietary protein (i.e., meal threshold) declines with advancing age or reduced physical activity. Current dietary recommendations for protein are focused on total daily intake of 0.8 g/kg body weight, but new research suggests daily needs for older adults of ≥1.0 g/kg and identifies anabolic and metabolic benefits to consuming at least 20-30 g protein at a given meal. Resistance exercise appears to increase the efficiency of EAA use for muscle anabolism and to lower the meal threshold for stimulation of protein synthesis. Applying this information to a typical 3-meal-a-day dietary plan results in protein intakes that are well within the guidelines of the Dietary Reference Intakes for acceptable macronutrient intakes. The meal threshold concept for dietary protein emphasizes a need for redistribution of dietary protein for optimum metabolic health.

  9. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin.

    PubMed

    Theerasilp, S; Hitotsuya, H; Nakajo, S; Nakaya, K; Nakamura, Y; Kurihara, Y

    1989-04-25

    The taste-modifying protein, miraculin, has the unusual property of modifying sour taste into sweet taste. The complete amino acid sequence of miraculin purified from miracle fruits by a newly developed method (Theerasilp, S., and Kurihara, Y. (1988) J. Biol. Chem. 263, 11536-11539) was determined by an automatic Edman degradation method. Miraculin was a single polypeptide with 191 amino acid residues. The calculated molecular weight based on the amino acid sequence and the carbohydrate content (13.9%) was 24,600. Asn-42 and Asn-186 were linked N-glycosidically to carbohydrate chains. High homology was found between the amino acid sequences of miraculin and soybean trypsin inhibitor.

  10. A 25-Amino Acid Sequence of the Arabidopsis TGD2 Protein Is Sufficient for Specific Binding of Phosphatidic Acid*

    PubMed Central

    Lu, Binbin; Benning, Christoph

    2009-01-01

    Genetic analysis suggests that the TGD2 protein of Arabidopsis is required for the biosynthesis of endoplasmic reticulum derived thylakoid lipids. TGD2 is proposed to be the substrate-binding protein of a presumed lipid transporter consisting of the TGD1 (permease) and TGD3 (ATPase) proteins. The TGD1, -2, and -3 proteins are localized in the inner chloroplast envelope membrane. TGD2 appears to be anchored with an N-terminal membrane-spanning domain into the inner envelope membrane, whereas the C-terminal domain faces the intermembrane space. It was previously shown that the C-terminal domain of TGD2 binds phosphatidic acid (PtdOH). To investigate the PtdOH binding site of TGD2 in detail, the C-terminal domain of the TGD2 sequence lacking the transit peptide and transmembrane sequences was fused to the C terminus of the Discosoma sp. red fluorescent protein (DR). This greatly improved the solubility of the resulting DR-TGD2C fusion protein following production in Escherichia coli. The DR-TGD2C protein bound PtdOH with high specificity, as demonstrated by membrane lipid-protein overlay and liposome association assays. Internal deletion and truncation mutagenesis identified a previously undescribed minimal 25-amino acid fragment in the C-terminal domain of TGD2 that is sufficient for PtdOH binding. Binding characteristics of this 25-mer were distinctly different from those of TGD2C, suggesting that additional sequences of TGD2 providing the proper context for this 25-mer are needed for wild type-like PtdOH binding. PMID:19416982

  11. Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA).

    PubMed

    Rico-Jiménez, Miriam; Muñoz-Martínez, Francisco; García-Fontana, Cristina; Fernandez, Matilde; Morel, Bertrand; Ortega, Alvaro; Ramos, Juan Luis; Krell, Tino

    2013-06-01

    The paralogous receptors PctA, PctB and PctC of Pseudomonas aeruginosa were reported to mediate chemotaxis to amino acids, intermediates of amino acid metabolism and chlorinated hydrocarbons. We show that the recombinant ligand binding regions (LBRs) of PctA, PctB and PctC bind 17, 5 and 2 l-amino acids respectively. In addition, PctC-LBR recognized GABA but not any other structurally related compound. l-Gln, one of the three amino acids that is not recognized by PctA-LBR, was the most tightly binding ligand to PctB suggesting that PctB has evolved to mediate chemotaxis primarily towards l-Gln. Bacteria were efficiently attracted to l-Gln and GABA, but mutation of pctB and pctC, respectively, abolished chemoattraction. The physiological relevance of taxis towards GABA is proposed to reside in an interaction with plants. LBRs were predicted to adopt double PDC (PhoQ/DcuS/CitA) like structures and site-directed mutagenesis studies showed that ligands bind to the membrane-distal module. Analytical ultracentrifugation studies have shown that PctA-LBR and PctB-LBR are monomeric in the absence and presence of ligands, which is in contrast to the enterobacterial receptors that require sensor domain dimers for ligand recognition.

  12. Acid-denatured Green Fluorescent Protein (GFP) as model substrate to study the chaperone activity of protein disulfide isomerase.

    PubMed

    Mares, Rosa E; Meléndez-López, Samuel G; Ramos, Marco A

    2011-01-01

    Green fluorescent protein (GFP) has been widely used in several molecular and cellular biology applications, since it is remarkably stable in vitro and in vivo. Interestingly, native GFP is resistant to the most common chemical denaturants; however, a low fluorescence signal has been observed after acid-induced denaturation. Furthermore, this acid-denatured GFP has been used as substrate in studies of the folding activity of some bacterial chaperones and other chaperone-like molecules. Protein disulfide isomerase enzymes, a family of eukaryotic oxidoreductases that catalyze the oxidation and isomerization of disulfide bonds in nascent polypeptides, play a key role in protein folding and it could display chaperone activity. However, contrasting results have been reported using different proteins as model substrates. Here, we report the further application of GFP as a model substrate to study the chaperone activity of protein disulfide isomerase (PDI) enzymes. Since refolding of acid-denatured GFP can be easily and directly monitored, a simple micro-assay was used to study the effect of the molecular participants in protein refolding assisted by PDI. Additionally, the effect of a well-known inhibitor of PDI chaperone activity was also analyzed. Because of the diversity their functional activities, PDI enzymes are potentially interesting drug targets. Since PDI may be implicated in the protection of cells against ER stress, including cancer cells, inhibitors of PDI might be able to enhance the efficacy of cancer chemotherapy; furthermore, it has been demonstrated that blocking the reductive cleavage of disulfide bonds of proteins associated with the cell surface markedly reduces the infectivity of the human immunodeficiency virus. Although several high-throughput screening (HTS) assays to test PDI reductase activity have been described, we report here a novel and simple micro-assay to test the chaperone activity of PDI enzymes, which is amenable for HTS of PDI

  13. Tracers to investigate protein and amino acid metabolism in human subjects.

    PubMed

    Wagenmakers, A J

    1999-11-01

    Three tracer methods have been used to measure protein synthesis, protein breakdown and protein oxidation at whole-body level. The method using L-[1-(13)C]leucine is considered the method of reference. These methods have contributed greatly to the existing knowledge on whole-body protein turnover and its regulation by feeding, fasting, hormones and disease. How exercise and ingestion of mixed protein-containing meals affect whole-body protein metabolism is still open to debate, as there are discrepancies in results obtained with different tracers. The contribution of whole-body methods to the future gain of knowledge is expected to be limited due to the fact that most physiological disturbances have been investigated extensively, and due to the lack of information on the relative contribution of various tissues and proteins to whole-body changes. Tracer amino acid-incorporation methods are most suited to investigate these latter aspects of protein metabolism. These methods have shown that some tissues (liver and gut) have much higher turnover rates and deposit much more protein than others (muscle). Massive differences also exist between the fractional synthesis rates of individual proteins. The incorporation methods have been properly validated, although minor disagreements remain on the identity of the true precursor pool (the enrichment of which should be used in the calculations). Arterio-venous organ balance studies have shown that little protein is deposited in skeletal muscle following a protein-containing meal, while much more protein is deposited in liver and gut. The amount deposited in the feeding period in each of these tissues is released again during overnight fasting. The addition of tracers to organ balance studies allows the simultaneous estimation of protein synthesis and protein breakdown, and provides information on whether changes in net protein balance are caused primarily by a change in protein synthesis or in protein breakdown. In the case

  14. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.

    PubMed Central

    Overington, J.; Donnelly, D.; Johnson, M. S.; Sali, A.; Blundell, T. L.

    1992-01-01

    The local environment of an amino acid in a folded protein determines the acceptability of mutations at that position. In order to characterize and quantify these structural constraints, we have made a comparative analysis of families of homologous proteins. Residues in each structure are classified according to amino acid type, secondary structure, accessibility of the side chain, and existence of hydrogen bonds from the side chains. Analysis of the pattern of observed substitutions as a function of local environment shows that there are distinct patterns, especially for buried polar residues. The substitution data tables are available on diskette with Protein Science. Given the fold of a protein, one is able to predict sequences compatible with the fold (profiles or templates) and potentially to discriminate between a correctly folded and misfolded protein. Conversely, analysis of residue variation across a family of aligned sequences in terms of substitution profiles can allow prediction of secondary structure or tertiary environment. PMID:1304904

  15. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles

    SciTech Connect

    Mendz, G.L. ); Brown, L.R. ); Martenson, R.E. )

    1990-03-06

    The interactions of myelin basic protein and peptides derived from it with detergent micelles of lysophosphatidylglycerol, lysophosphatidylserine, palmitoyllysophosphatidic acid, and sodium lauryl sulfate, and with mixed micelles of the neutral detergent dodecylphosphocholine and the negatively charged detergent palmitoyllysophosphatidic acid, were investigated by {sup 1}H NMR spectroscopy and circular dichroic spectropolarimetry. The results with single detergents suggested that there are discrete interaction sites in the protein molecule for neutral and anionic detergent micelles and that at least some of these sites are different for each type of detergent. The data on the binding of the protein and peptides to mixed detergent micelles suggested that intramolecular interactions in the intact protein and in one of the longer peptides limited the formation of helices and also that a balance between hydrophobic and ionic forces is achieved in the interactions of the peptides with the detergents. At high detergent/protein molar ratios, hydrophobic interactions appeared to be favored.

  16. Polymerization and nucleic acid-binding properties of human L1 ORF1 protein

    PubMed Central

    Callahan, Kathryn E.; Hickman, Alison B.; Jones, Charles E.; Ghirlando, Rodolfo; Furano, Anthony V.

    2012-01-01

    The L1 (LINE 1) retrotransposable element encodes two proteins, ORF1p and ORF2p. ORF2p is the L1 replicase, but the role of ORF1p is unknown. Mouse ORF1p, a coiled-coil-mediated trimer of ∼42-kDa monomers, binds nucleic acids and has nucleic acid chaperone activity. We purified human L1 ORF1p expressed in insect cells and made two findings that significantly advance our knowledge of the protein. First, in the absence of nucleic acids, the protein polymerizes under the very conditions (0.05 M NaCl) that are optimal for high (∼1 nM)-affinity nucleic acid binding. The non-coiled-coil C-terminal half mediates formation of the polymer, an active conformer that is instantly resolved to trimers, or multimers thereof, by nucleic acid. Second, the protein has a biphasic effect on mismatched double-stranded DNA, a proxy chaperone substrate. It protects the duplex from dissociation at 37°C before eventually melting it when largely polymeric. Therefore, polymerization of ORF1p seemingly affects its interaction with nucleic acids. Additionally, polymerization of ORF1p at its translation site could explain the heretofore-inexplicable phenomenon of cis preference—the favored retrotransposition of the actively translated L1 transcript, which is essential for L1 survival. PMID:21937507

  17. Uniformly sup 13 C-labeled algal protein used to determine amino acid essentiality in vivo

    SciTech Connect

    Berthold, H.K.; Hachey, D.L.; Reeds, P.J.; Klein, P.D. ); Thomas, O.P. ); Hoeksema, S. )

    1991-09-15

    The edible alga Spirulina platensis was uniformly labeled with {sup 13}C by growth in an atmosphere of pure {sup 13}CO{sub 2}. The labeled biomass was then incorporated into the diet of a laying hen for 27 days. The isotopic enrichment of individual amino acids in egg white and yolk proteins, as well as in various tissues of the hen at the end of the feeding period, was analyzed by negative chemical ionization gas chromatography/mass spectrometry. The amino acids of successive eggs showed one of two exclusive enrichment patterns: complete preservation of the intact carbon skeleton or extensive degradation and resynthesis. The same observation was made in tissue proteins. These patterns were cleanly divided according to known nutritional amino acid essentiality/nonessentiality but revealed differences in labeling among the nonessential amino acids: most notable was that proline accretion was derived entirely from the diet. Feeding uniformly {sup 13}C-labeled algal protein and recovering and analyzing de novo-synthesized protein provides a useful method to examine amino acid metabolism and determine conditional amino acid essentially in vivo.

  18. Effects of a high protein intake on renal acid excretion in bodybuilders.

    PubMed

    Manz, F; Remer, T; Decher-Spliethoff, E; Höhler, M; Kersting, M; Kunz, C; Lausen, B

    1995-03-01

    Bodybuilders often prefer a high protein diet to achieve maximum skeletal muscle hypertrophy. In this study the effect of a high protein diet on renal acid load and renal handling of proton excretion was studied comparing dietary intake and urinary ionograms in 37 male bodybuilders and 20 young male adults. Energy intake (+ 7%), protein intake (128 vs 88 g/d/1.73 m2), and renal net acid excretion (95 vs 64 mmol/d/1.73 m2) were higher in the bodybuilders than in the controls, however, urine-pH was only slightly lower (5.83 vs 6.12). In the bodybuilders renal ammonium excretion was higher at any given value of urine pH than in the controls. In a regression analysis protein intake proved to be an independent factor modulating the ratio between urine-pH and renal ammonium excretion. The concomitant increase of renal net acid excretion and maximum renal acid excretion capacity in periods of high protein intake appears to be a highly effective response of the kidney to a specific food intake leaving a large renal surplus capacity for an additional renal acid load.

  19. Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats.

    PubMed

    Liaset, Bjørn; Madsen, Lise; Hao, Qin; Criales, Gabriel; Mellgren, Gunnar; Marschall, Hanns-Ulrich; Hallenborg, Philip; Espe, Marit; Frøyland, Livar; Kristiansen, Karsten

    2009-04-01

    Conjugation of bile acids (BAs) to the amino acids taurine or glycine increases their solubility and promotes liver BA secretion. Supplementing diets with taurine or glycine modulates BA metabolism and enhances fecal BA excretion in rats. However, it is still unclear whether dietary proteins varying in taurine and glycine contents alter BA metabolism, and thereby modulate the recently discovered systemic effects of BAs. Here we show that rats fed a diet containing saithe fish protein hydrolysate (saithe FPH), rich in taurine and glycine, for 26 days had markedly elevated fasting plasma BA levels relative to rats fed soy protein or casein. Concomitantly, the saithe FPH fed rats had reduced liver lipids and fasting plasma TAG levels. Furthermore, visceral adipose tissue mass was reduced and expression of genes involved in fatty acid oxidation and energy expenditure was induced in perirenal/retroperitoneal adipose tissues of rats fed saithe FPH. Our results provide the first evidence that dietary protein sources with different amino acid compositions can modulate the level of plasma bile acids and our data suggest potential novel mechanisms by which dietary protein sources can affect energy metabolism.

  20. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1.

    PubMed

    Maynes, J T; Bateman, K S; Cherney, M M; Das, A K; Luu, H A; Holmes, C F; James, M N

    2001-11-23

    Protein phosphatase-1 (PP1) plays a key role in dephosphorylation in numerous biological processes such as glycogen metabolism, cell cycle regulation, smooth muscle contraction, and protein synthesis. Microorganisms produce a variety of inhibitors of PP1, which include the microcystin class of inhibitors and okadaic acid, the latter being the major cause of diarrhetic shellfish poisoning and a powerful tumor promoter. We have determined the crystal structure of the molecular complex of okadaic acid bound to PP1 to a resolution of 1.9 A. This structure reveals that the acid binds in a hydrophobic groove adjacent to the active site of the protein and interacts with basic residues within the active site. Okadaic acid exhibits a cyclic structure, which is maintained via an intramolecular hydrogen bond. This is reminiscent of other macrocyclic protein phosphatase inhibitors. The inhibitor-bound enzyme shows very little conformational change when compared with two other PP1 structures, except in the inhibitor-sensitive beta12-beta13 loop region. The selectivity of okadaic acid for protein phosphatases-1 and -2A but not PP-2B (calcineurin) may be reassessed in light of this study.

  1. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle.

    PubMed

    Reidy, P T; Walker, D K; Dickinson, J M; Gundermann, D M; Drummond, M J; Timmerman, K L; Cope, M B; Mukherjea, R; Jennings, K; Volpi, E; Rasmussen, B B

    2014-06-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein.

  2. Application of infrared portable sensor technology for predicting perceived astringency of acidic whey protein beverages.

    PubMed

    Wang, Ting; Tan, Siow-Ying; Mutilangi, William; Plans, Marcal; Rodriguez-Saona, Luis

    2016-12-01

    Formulating whey protein beverages at acidic pH provides better clarity but the beverages typically develop an unpleasant and astringent flavor. Our aim was to evaluate the application of infrared spectroscopy and chemometrics in predicting astringency of acidic whey protein beverages. Whey protein isolate (WPI), whey protein concentrate (WPC), and whey protein hydrolysate (WPH) from different manufacturers were used to formulate beverages at pH ranging from 2.2 to 3.9. Trained panelists using the spectrum method of descriptive analysis tested the beverages providing astringency scores. A portable Fourier transform infrared spectroscopy attenuated total reflectance spectrometer was used for spectra collection that was analyzed by multivariate regression analysis (partial least squares regression) to build calibration models with the sensory astringency scores. Beverage astringency scores fluctuated from 1.9 to 5.2 units and were explained by pH, protein type (WPC, WPI, or WPH), source (manufacturer), and their interactions, revealing the complexity of astringency development in acidic whey protein beverages. The WPC and WPH beverages showed an increase in astringency as the pH of the solution was lowered, but no relationship was found for WPI beverages. The partial least squares regression analysis showed strong relationship between the reference astringency scores and the infrared predicted values (correlation coefficient >0.94), giving standard error of cross-validation ranging from 0.08 to 0.12 units, depending on whey protein type. Major absorption bands explaining astringency scores were associated with carboxylic groups and amide regions of proteins. The portable infrared technique allowed rapid prediction of astringency of acidic whey protein beverages, providing the industry a novel tool for monitoring sensory characteristics of whey-containing beverages.

  3. Brain–blood amino acid correlates following protein restriction in murine maple syrup urine disease

    PubMed Central

    2014-01-01

    Background Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. Methods To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. Results LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Conclusions Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders. PMID:24886632

  4. Human soleus and vastus lateralis muscle protein metabolism with an amino acid infusion.

    PubMed

    Carroll, Chad C; Fluckey, James D; Williams, Rick H; Sullivan, Dennis H; Trappe, Todd A

    2005-03-01

    The calf muscles, compared with the thigh, are less responsive to resistance exercise in ambulatory and bed-rested individuals, apparently due to muscle-specific differences in protein metabolism. We chose to evaluate the efficacy of using amino acids to elevate protein synthesis in the soleus, because amino acids have been shown to have a potent anabolic effect in the vastus lateralis. Mixed muscle protein synthesis in the soleus and vastus lateralis was measured before and after infusion of mixed amino acids in 10 individuals (28 +/- 1 yr). Phosphorylation of ribosomal protein p70 S6 kinase (p70S6K; Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1; Thr37/46) was also evaluated at rest and after 3 h of amino acid infusion. Basal protein synthesis was similar (P = 0.126), and amino acids stimulated protein synthesis to a similar extent (P = 0.004) in the vastus lateralis (0.043 +/- 0.011%/h) and soleus (0.032 +/- 0.017%/h). Phosphorylation of p70S6K (P = 0.443) and 4E-BP1 (P = 0.192) was not increased in either muscle; however, the soleus contained more total (P = 0.002) and phosphorylated (P = 0.013) 4E-BP1 than the vastus lateralis. These data support the need for further study of amino acid supplementation as a means to compensate for the reduced effectiveness of calf resistance exercise in ambulatory individuals and those exposed to extended periods of unloading. The greater 4E-BP1 in the soleus suggests that there is a muscle-specific distribution of general translational initiation machinery in human skeletal muscle.

  5. Stabilisation of proteins via mixtures of amino acids during spray drying.

    PubMed

    Ajmera, Ankur; Scherließ, Regina

    2014-03-10

    Biologicals are often formulated as solids in an effort to preserve stability which generally requires stabilising excipients for proper drying. The purpose of this study was to screen amino acids and their combinations for their stabilising effect on proteins during spray drying. Catalase, as model protein, was spray dried in 1+1 or 1+2 ratios with amino acids. Some amino acids namely arginine, glycine and histidine showed good retention of catalase functionality after spray drying and subsequent storage stress. A 1+1 combination of arginine and glycine in a 1+2 ratio with catalase resulted in a tremendously good stabilising effect. Storage at high temperature/humidity also showed beneficial effects of this combination. To evaluate whether this was a general principle, these findings were transferred to an antigenic protein of comparable size and supramolecular structure (haemagglutinin) as well as to a smaller enzyme (lysozyme). Upon spray drying with the combination of amino acids it could be shown that both proteins remain more stable especially after storage compared to the unprotected protein. The combination of arginine and glycine is tailored to the needs of protein stabilisation during spray drying and may hence be utilised in dry powder formulation of biomolecules with superior stability characteristics.

  6. Protein quality and digestibility of sorghum in preschool children: balance studies and plasma free amino acids.

    PubMed

    MacLeon, W C; Lopez de Romaña, G; Placko, R P; Graham, G G

    1981-11-01

    The protein quality and digestibility of two high lysine (2.9-3.0 g/100 g protein) and tow conventional varieties (lysine content 2.1-2.2 g/100 g protein) of whole grain sorghum milled as flour were assessed through balance studies in 13 children 6-30 months of age. Sorghum protein provided 6.4 or 8.0% of dietary energy. Control diets contained 64% kcal protein as casein. Children consumed 100-150 kcal/kg body weight/day. Sorghum consumption was associated with weight loss or poor weight gain. We found no difference by variety in apparent nitrogen absorption or retention. Mean absorption and retention of nitrogen (+/- SD) from 26 six-day sorghum dietary periods were 46 +/- 17% and 14 +/- 10% of intake, respectively (corresponding preceding casein control values: 81 +/- 5% and 38 +/- 3%). Stool weight and energy losses during sorghum periods averaged 2.5 to 3 times control values. Plasma amino acids were determined in eleven children after 16 days of sorghum consumption. Fasting concentration of total amino acids (TAA) was similar to values previously obtained with wheat protein at similar levels of intake. Total concentration of essential amino acids (TEAA) was low as were concentrations of lysine (Lys) and threonine (Thr). Analysis of postprandial changes of the Lys/TEAA and Thr/TEAA molar ratios confirmed that Lys was the first limiting amino acid.

  7. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins.

    PubMed

    Ponnuraj, Karthe; Saravanan, Konda Mani

    2017-04-01

    A protein can interact with DNA or RNA molecules to perform various cellular processes. Identifying or analyzing DNA/RNA binding site amino acid residues is important to understand molecular recognition process. It is quite possible to accurately model DNA/RNA binding amino acid residues in experimental protein-DNA/RNA complex by using the electron density map whereas, locating/modeling the binding site amino acid residues in the predicted three dimensional structures of DNA/RNA binding proteins is still a difficult task. Considering the above facts, in the present work, we have carried out a comprehensive analysis of dihedral angle preferences of DNA and RNA binding site amino acid residues by using a classical Ramachandran map. We have computed backbone dihedral angles of non-DNA/RNA binding residues and used as control dataset to make a comparative study. The dihedral angle preference of DNA and RNA binding site residues of twenty amino acid type is presented. Our analysis clearly revealed that the dihedral angles (φ, ψ) of DNA/RNA binding amino acid residues prefer to occupy (-89° to -60°, -59° to -30°) bins. The results presented in this paper will help to model/locate DNA/RNA binding amino acid residues with better accuracy.

  8. Effect of fatty acids on the complexation of proteins with porphyrins

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.

    2011-02-01

    Porphyrins binding and transport to tumor is the one of the central tasks of photodynamic therapy of tumor (PDT). The main carriers of porphyrins (photosensitizers) in the blood are lipoproteins, serum albumin and hemoglobin. In studying the phenomenon of complexation of proteins with ligands must take into considering the real conditions that exist in the organism and, in particular, take into considering the presence of fatty acids in blood. Up to date the role of fatty acids (palmitic and stearic) in the binding of porphyrins with proteins not been determined. A key step in solving of these problems is to determine the binding constants of porphyrin-protein pairs and effect of fatty acids on this process. The most direct and sufficiently accurate methods of solving such problems are complementary methods of absorption and fluorescence spectroscopy. The results of spectral studies on the binding of porphyrins to serum albumin and hemoglobin in the presence of fatty acids demonstrated a significant decrease in the degree of binding pair porphyrin-albumin and porphyrin-hemoglobin with increasing concentrations of fatty acids in solution. The results lead to the conclusion that for hemoglobin the presence in a solution of fatty acids on binding to the porphyrins affected more significantly than for serum albumin. Thus, in natural conditions, when in the blood presented fatty acids the preference between hemoglobin and serum albumin in the binding and in the transport of porphyrins should be given to serum albumin.

  9. Amino Acid Starvation Has Opposite Effects on Mitochondrial and Cytosolic Protein Synthesis

    PubMed Central

    Pearce, Sarah F.; Rorbach, Joanna; He, Jiuya; Brea-Calvo, Gloria; Minczuk, Michal; Reyes, Aurelio; Holt, Ian J.; Spinazzola, Antonella

    2014-01-01

    Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation. PMID:24718614

  10. Olive oils modulate fatty acid content and signaling protein expression in apolipoprotein E knockout mice brain.

    PubMed

    Alemany, Regina; Navarro, María A; Vögler, Oliver; Perona, Javier S; Osada, Jesús; Ruiz-Gutiérrez, Valentina

    2010-01-01

    Atherosclerosis contributes to disruption of neuronal signaling pathways by producing lipid-dependent modifications of brain plasma membranes, neuroinflammation and oxidative stress. We investigated whether long-term (11 weeks) consumption of refined- (ROO) and pomace- (POO) olive oil modulated the fatty acid composition and the levels of membrane signaling proteins in the brain of apolipoprotein E (apoE) knockout (KO) mice, an animal model of atherosclerosis. Both of these oils are rich in bioactive molecules with anti-inflammatory and antioxidant effects. ROO and POO long-term consumption increased the proportion of monounsaturated fatty acids (MUFAs), particularly of oleic acid, while reducing the level of the saturated fatty acids (SFAs) palmitic and stearic acid. As a result, the MUFA:SFA ratio was higher in apoE KO mice brain fed with ROO and POO. Furthermore, both oils reduced the level of arachidonic and eicosapentaenoic acid, suggesting a decrease in the generation of pro- and anti-inflammatory eicosanoids. Finally, ROO and POO induced an increase in the density of membrane proteins implicated in both the Galphas/PKA and Galphaq/PLCbeta1/PKCalpha signaling pathways. The combined effects of long-term ROO and POO consumption on fatty acid composition and the level of signaling proteins involved in PKA and PKC activation, suggest positive effects on neuroinflammation and brain function in apoE KO mice brain, and convert these oils into promising functional foods in diseases involving apoE deficiency.

  11. Amino acid composition, score and in vitro protein digestibility of foods commonly consumed in northwest Mexico.

    PubMed

    Caire-Juvera, Graciela; Vázquez-Ortiz, Francisco A; Grijalva-Haro, Maria I

    2013-01-01

    A better knowledge of the amino acid composition of foods commonly consumed in different regions is essential to calculate their scores and, therefore, to predict their protein quality. This paper presents the amino acid composition, amino acid score and in vitro protein digestibility of fifteen foods that are commonly consumed in Northwest Mexico. The foods were prepared by the traditional methods and were analyzed by reverse-phase HPLC. The chemical score for each food was determined using the recommendations for children of 1-2 years of age, and the digestibility was evaluated using a multienzyme technique. Lysine was the limiting amino acid in cereal-based products (scores 15 to 54), and methionine and cysteine were limiting in legume products (scores 41 to 47), boiled beef (score = 75) and hamburger (score = 82). The method of preparation had an effect on the content of certain amino acids, some of them increased and others decreased their content. Meat products and regional cheese provided a high amino acid score (scores 67 to 91) and digestibility (80.7 to 87.8%). Bologna, a processed meat product, had a lower digestibility (75.4%). Data on the amino acid composition of foods commonly consumed in Mexico can be used to provide valuable information on food analysis and protein quality, and to contribute to nutrition and health research and health programs.

  12. The 73 kilodalton heat shock cognate protein purified from rat brain contains nonesterified palmitic and stearic acids.

    PubMed

    Guidon, P T; Hightower, L E

    1986-08-01

    A protein related to the 71 kilodalton inducible rat heat shock protein was purified to electrophoretic homogeneity in milligram amounts from brain tissue of nonheat-stressed rats. The protein has been designated as a stress cognate protein based on previous studies and data presented herein that this protein cross-reacted with a monoclonal antibody originally raised against the Drosophila 70 kilodalton heat shock protein. The purified protein had an apparent molecular mass of 73 kilodaltons when analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and an apparent mass of 150 kilodaltons as determined by nondissociative gel chromatography, suggesting that the purified protein is a homodimer. The purified protein had isoelectric points of 5.0 under nondissociative conditions and 5.6 when exposed to protein denaturants, suggesting loss of bound anionic molecules and/or net exposure of basic residues upon denaturation. Chloroform/methanol extraction of the purified protein and subsequent analyses by thin layer and gas-liquid chromatography resulted in the identification of palmitic and stearic acids noncovalently bound to the protein. Approximately four molecules of fatty acids were bound per dimer with palmitic and stearic acids present in a one-to-one ratio. The purified protein did not bind exogenously added radioactive palmitate, indicating that the fatty acid-binding sites of the cognate protein were fully occupied and that the associated fatty acids were too tightly bound to exchange readily. The possible significance of the fatty acids associated with the 73 kilodalton stress cognate protein is discussed.

  13. Effect of maternal micronutrients (folic acid, vitamin B12) and omega 3 fatty acids on liver fatty acid desaturases and transport proteins in Wistar rats.

    PubMed

    Wadhwani, Nisha S; Manglekar, Rupali R; Dangat, Kamini D; Kulkarni, Asmita V; Joshi, Sadhana R

    2012-01-01

    A disturbed fatty acid metabolism increases the risk of adult non-communicable diseases. This study examines the effect of maternal micronutrients on the fatty acid composition, desaturase activity, mRNA levels of fatty acid desaturases and transport proteins in the liver. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B(12). The vitamin B(12) deficient groups were supplemented with omega 3 fatty acid. An imbalance of maternal micronutrients reduces liver docosahexaenoic acid, increases Δ5 desaturase activity but decreases mRNA levels, decreases Δ6 desaturase activity but not mRNA levels as compared to control. mRNA level of Δ5 desaturase reverts back to the levels of the control group as a result of omega 3 fatty acid supplementation. Our data for the first time indicates that maternal micronutrients differentially alter the activity and expression of fatty acid desaturases in the liver.

  14. Augmentation of protein-derived acetic acid production by heat-alkaline-induced changes in protein structure and conformation.

    PubMed

    Wang, Xu; Li, Yanbo; Liu, Junxin; Ren, Nan-Qi; Qu, Jiuhui

    2016-01-01

    Waste-derived acetic acid (HAc) is an attractive feedstock for microbe-mediated biofuel production. However, fermentative conversion of HAc from waste-activated sludge (WAS) has low yield because of the high concentration of proteins not readily utilizable by microorganisms without prior hydrolysis. We investigated a combined technology for HAc augmentation during sludge protein fermentation. The maximal HAc yield increased over two-fold, reaching 0.502 ± 0.021 g/g protein (0.36 ± 0.01 g COD/g COD, ∼52% of the total volatile fatty acids) when synthetic sludge protein was heated at 120 °C for 30 min, treated at pH 12 for 24 h, and fermented at pH 9 for 72 h. Comprehensive analysis illustrated that the heat-alkaline pretreatment significantly induced protein fragmentation, simultaneously increasing the efficiency of protein biohydrolysis (from 35.5% to 85.9%) by inducing conformational changes indicative of protein unfolding. Consequently, the native α-helix content was decreased from 67.3% to 32.5% by conversion to an unordered shape, whose content increased from 27.5% to 45.5%; disulfide bonds were cleaved, whereas the main S-S stretching pattern was altered from gauche-gauche-gauche to gauche-gauche-trans, consequently causing increased protein susceptibility to proteolytic hydrolysis (76.3% vs. 47.0%). Economic analysis indicated that anaerobic fermentation with appropriate heat-alkaline pretreatment is a cost-effective approach for waste conversion to energy sources such as HAc.

  15. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  16. Ascorbic acid and protein glycation in vitro.

    PubMed

    Sadowska-Bartosz, Izabela; Bartosz, Grzegorz

    2015-10-05

    The aim of the study was to compare the effects of ascorbic acid (AA) in vitro in the absence and in the presence of cell-dependent recycling. In a cell-free system, AA enhanced glycoxidation of bovine serum albumin (BSA) by glucose and induced BSA glycation in the absence of sugars. On the other hand, AA did not affect erythrocyte hemolysis, glycation of hemoglobin and erythrocyte membranes, and inactivation of catalase, protected against inactivation of acetylcholinesterase of erythrocytes incubated with high glucose concentrations and enhanced the loss of glutathione. These results can be explained by assumption that AA acts as a proglycating agent in the absence of recycling while is an antiglycating agent when metabolic recycling occurs.

  17. Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins.

    PubMed

    Deatherage Kaiser, Brooke L; Wunschel, David S; Sydor, Michael A; Warner, Marvin G; Wahl, Karen L; Hutchison, Janine R

    2015-11-01

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Analysis of cellular proteins is dependent upon efficient extraction from bacterial samples, which can be challenging with increasing complexity and refractory characteristics. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrichment for certain classes of proteins. The method presented here is technically simple, does not require specialized equipment such as a mechanical disrupter, and is effective for protein extraction of the particularly challenging sample type of Bacillus anthracis Sterne spores. The ability of Trichloroacetic acid (TCA) extraction to isolate proteins from spores and enrich for spore-specific proteins was compared to the traditional mechanical disruption method of bead beating. TCA extraction improved the total average number of proteins identified within a sample as compared to bead beating (547 vs 495, respectively). Further, TCA extraction enriched for 270 spore proteins, including those typically identified by first isolating the spore coat and exosporium layers. Bead beating enriched for 156 spore proteins more typically identified from whole spore proteome analyses. The total average number of proteins identified was equal using TCA or bead beating for easily lysed samples, such as B. anthracis vegetative cells. As with all assays, supplemental methods such as implementation of an alternative preparation method may simplify sample preparation and provide additional insight to the protein biology of the organism being studied.

  18. Amino acid metabolism and protein synthesis in lactating rats fed on a liquid diet.

    PubMed Central

    Barber, T; García de la Asunción, J; Puertes, I R; Viña, J R

    1990-01-01

    1. Amino acid metabolism was studied in control virgin rats, lactating rats and virgin rats protein-pair-fed with the lactating rats (high-protein virgin rats). 2. Urinary excretion of nitrogen and urea was higher in lactating than in control virgin rats, and in high-protein virgin rats it was higher than in lactating rats. 3. The activities of urea-cycle enzymes (units/g) were higher in high-protein virgin than in lactating rats, except for arginase. In lactating rats the activities of carbamoyl-phosphate synthase, ornithine carbamoyltransferase and argininosuccinate synthase were lower than in control virgin rats. When the liver size is considered, the activities in lactating rats were similar to those in high-protein virgin rats, except for arginase. 4. N-Acetylglutamate content was higher in high-protein virgin rats than in the other two groups. 5. The rate of urea synthesis from precursors by isolated hepatocytes was higher in high-protein virgin rats than in the other two groups. 6. The flooding-dose method (L-[4-3H]phenylalanine) for measuring protein synthesis was used. The absolute synthesis rates of mammary gland, liver and small-intestinal mucosa were higher in lactating rats than in the other two groups, and in high-protein virgin rats than in control virgin rats 7. These results show that the increased needs for amino acids during lactation are met by hyperphagia and by a nitrogen-sparing mechanism. PMID:2396994

  19. Design of a Protein-Targeting System for Lactic Acid Bacteria

    PubMed Central

    Dieye, Y.; Usai, S.; Clier, F.; Gruss, A.; Piard, J.-C.

    2001-01-01

    We designed an expression and export system that enabled the targeting of a reporter protein (the staphylococcal nuclease Nuc) to specific locations in Lactococcus lactis cells, i.e., cytoplasm, cell wall, or medium. Optimization of protein secretion and of protein cell wall anchoring was performed with L. lactis cells by modifying the signals located at the N and C termini, respectively, of the reporter protein. Efficient translocation of precursor (∼95%) is obtained using the signal peptide from the lactococcal Usp45 protein and provided that the mature protein is fused to overall anionic amino acids at its N terminus; those residues prevented interactions of Nuc with the cell envelope. Nuc could be covalently anchored to the peptidoglycan by using the cell wall anchor motif of the Streptococcus pyogenes M6 protein. However, the anchoring step proved to not be totally efficient in L. lactis, as considerable amounts of protein remained membrane associated. Our results may suggest that the defect is due to limiting sortase in the cell. The optimized expression and export vectors also allowed secretion and cell wall anchoring of Nuc in food-fermenting and commensal strains of Lactobacillus. In all strains tested, both secreted and cell wall-anchored Nuc was enzymatically active, suggesting proper enzyme folding in the different locations. These results provide the first report of a targeting system in lactic acid bacteria in which the final location of a protein is controlled and biological activity is maintained. PMID:11418555

  20. Microbial production of amino acid-modified spider dragline silk protein with intensively improved mechanical properties.

    PubMed

    Zhang, Haibo; Zhou, Fengli; Jiang, Xinglin; Cao, Mingle; Wang, Shilu; Zou, Huibin; Cao, Yujin; Xian, Mo; Liu, Huizhou

    2016-08-17

    Spider dragline silk is a remarkably strong fiber with impressive mechanical properties, which were thought to result from the specific structures of the underlying proteins and their molecular size. In this study, silk protein 11R26 from the dragline silk protein of Nephila clavipes was used to analyze the potential effects of the special amino acids on the function of 11R26. Three protein derivatives, ZF4, ZF5, and ZF6, were obtained by site-directed mutagenesis, based on the sequence of 11R26, and among these derivatives, serine was replaced with cysteine, isoleucine, and arginine, respectively. After these were expressed and purified, the mechanical performance of the fibers derived from the four proteins was tested. Both hardness and average elastic modulus of ZF4 fiber increased 2.2 times compared with those of 11R26. The number of disulfide bonds in ZF4 protein was 4.67 times that of 11R26, which implied that disulfide bonds outside the poly-Ala region affect the mechanical properties of spider silk more efficiently. The results indicated that the mechanical performances of spider silk proteins with small molecular size can be enhanced by modification of the amino acids residues. Our research not only has shown the feasibility of large-scale production of spider silk proteins but also provides valuable information for protein rational design.

  1. Amino acid composition of some Amaranthus sp. grain proteins and of its fractions.

    PubMed

    Correa, A D; Jokl, L; Carlsson, R

    1986-09-01

    This study was carried out to determine the protein content of several Amaranthus sp. grains. Findings revealed this has a high lysine (5.3 to 6.3 of the protein) and sulphur amino acids content (3.4-4.0%), while leucine could well be limiting when those seeds are used as a sole protein source in food. Using the correction for in vitro protein digestibility, the chemical score varied from 50 to 67. The calculated protein efficiency ratios and biological values ranged from 1.39 to 1.80 and 53 to 68, respectively. Considering that amaranth grain is a good supplement to cereal grain, the protein of A. hypochondriacus HH5 (yellow seeds) and A. anclancalius (black seeds) was fractionated into albumin, globulin, prolamin and glutelin. The average proportions between those soluble proteins were 65:17:11:7, respectively. Albumin had the highest lysine content (7.3-8.2%), and globulin the highest methionine (4.1-5.3%) and phenylalanine (6.0-6.1%) content. Prolamin had the highest threonine (4.6-5.4%) and leucine (6.8-6.9%) content, while glutelin had a very low methionine content (0.6-1.0%). Based on the above-mentioned findings, the authors conclude the variation in the amino acid composition of the protein fractions can be used for genetic protein improvement.

  2. Multiplexed microfluidic blotting of proteins and nucleic acids by parallel, serpentine microchannels.

    PubMed

    He, Sha; Zhang, Yi; Wang, Pei; Xu, Xingzhi; Zhu, Kui; Pan, Wenying; Liu, Wenwen; Cai, Kaiyong; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2015-01-07

    This work develops a high-throughput, high-efficiency and straightforward microfluidic blotting method for analyzing proteins and nucleic acids. Sample solutions containing antibodies (for protein detection) or hybridization probes (for nucleic acid detection) are introduced into the parallel, serpentine microchannels to specifically recognize the immobilized targets on the substrate, achieving the identification of multiple targets in multiple samples simultaneously. The loading control, molecular weight markers, and antigen/antibody titration are designed and integrated into the microfluidic chip, thus allowing for the quantification of proteins and nucleic acids. Importantly, we could easily distinguish the adjacent blotting bands inside parallel microchannels, which may be difficult to achieve in conventional blotting. The small dimensions of microfluidic channels also help to reduce the amount of probing molecules and to accelerate the biochemical reaction. Our microfluidic blotting could bypass the steps of blocking and washing, further reducing the operation time and complexity.

  3. G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins

    PubMed Central

    Mishra, Subodh Kumar; Tawani, Arpita; Mishra, Amit; Kumar, Amit

    2016-01-01

    Nucleic acid G-quadruplex structure (G4) Interacting Proteins DataBase (G4IPDB) is an important database that contains detailed information about proteins interacting with nucleic acids that forms G-quadruplex structures. G4IPDB is the first database that provides comprehensive information about this interaction at a single platform. This database contains more than 200 entries with details of interaction such as interacting protein name and their synonyms, their UniProt-ID, source organism, target name and its sequences, ∆Tm, binding/dissociation constants, protein gene name, protein FASTA sequence, interacting residue in protein, related PDB entries, interaction ID, graphical view, PMID, author’s name and techniques that were used to detect their interactions. G4IPDB also provides an efficient web-based “G-quadruplex predictor tool” that searches putative G-quadruplex forming sequences simultaneously in both sense and anti-sense strands of the query nucleotide sequence and provides the predicted G score. Studying the interaction between proteins and nucleic acids forming G-quadruplex structures could be of therapeutic significance for various diseases including cancer and neurological disease, therefore, having detail information about their interactions on a single platform would be helpful for the discovery and development of novel therapeutics. G4IPDB can be routinely updated (twice in year) and freely available on http://bsbe.iiti.ac.in/bsbe/ipdb/index.php. PMID:27905517

  4. Nitrogen effects on proteins, chlorophylls and fatty acids during the growth of Arthrospira platensis.

    PubMed

    Ayachi, Samah; El Abed, Amor; Dhifi, Wissal; Marzouk, Brahim

    2007-06-01

    Spirulina platensis (=Arthrospira platensis) is a tunisian strain which has been isolated for the first time in Oued Essed (Sousse, Sidi Bou Ali). Biomass evolution, proteins, chlorophylls and fatty acids composition of this alga were monitored by varying nitrogen concentrations in the culture medium. Nitrogen stress was provoked by adding sodium nitrate (NaNO3) in the culture medium with concentrations varying from 0 to 5 g/l. Results obtained showed that nitrogen depletion increased total proteins and total chlorophylls. The addition of NaNO3 (5g/l) led to an increase of total fatty acids amounts and modify fatty acids composition. Optimal quantities of palmitic, gamma -linolenic and oleic acids were obtained with NaNO3 free-cultures. Thus, the tunisian strain has valuable biological substances, worthy to determine the optimal conditions for its propagation.

  5. [Effect of graded dietary protein rations on the amino acid content of crude protein in various parts of the gastrointestinal tract and blood fractions of laying hens].

    PubMed

    Gruhn, K; Wiefel, P

    1985-03-01

    Four groups of four colostomized laying hens each received rations only consisting of wheat, vitamins plus a mineral mixture and a graded daily feed supply of 110 g, 88 g, 66 g and 44 g. The determination of amino acids from faeces was carried out after hydrolysis from a 6-day sampling period from the 16 laying hybrids. At the end of the experiment the animals were slaughtered. The corpuscular fractions of the blood, the contents of crop and stomach as well as of the intestines were also hydrolysed and the amino acid content in the crude protein was determined. In addition, the content of free amino acids in the blood plasma was determined. The content of amino acids in the protein of the corpuscular blood fractions remained uninfluenced by the decreasing amino acid and energy supply. The content of free basic amino acids in the blood plasma decreased with the decreasing supply with amino acids and energy, whereas the content of free amino acids with branched chains and hydroxylized ones increased. The content of glutamic acid in the contents of crop and stomach changed considerably in comparison with feed protein. The amino acid values of the crude protein in the contents of the intestines and in faeces to a large extent differ considerably from those of the wheat fed and are approximate values of body protein. Deficient supply with amino acids and energy did not influence the apparent digestibility of the amino acids.

  6. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise–Induced Muscle Protein Anabolism123

    PubMed Central

    Rasmussen, Blake B

    2016-01-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose–dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor

  7. Synthesis of Nucleic Acid and Protein in L Cells Infected with the Agent of Meningopneumonitis

    PubMed Central

    Schechter, Esther M.

    1966-01-01

    Schechter, Esther M. (The University of Chicago, Chicago, Ill.). Synthesis of nucleic acid and protein in L cells infected with the agent of meningopneumonitis. J. Bacteriol. 91:2069–2080. 1966.—Synthesis of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein in uninfected L cells and in L cells infected with the meningopneumonitis agent was compared by measuring rates of incorporation of H3-cytidine and C14-lysine into nuclear, cytoplasmic, and agent fractions in successive 5-hr periods during the meningopneumonitis growth cycle. Synthesis of meningopneumonitis DNA, RNA, and protein was first clearly evident in the labeling period 15 to 20 hr after infection, soon after initiation of agent multiplication. The rates of synthesis of agent DNA, RNA, and protein increased logarithmically for a brief period and then declined. However, rates of isotope incorporation into all three meningopneumonitis macromolecules were sustained at near maximal values throughout the remainder of the meningopneumonitis growth cycle. These data are most readily interpreted in terms of multiplication of the meningopneumonitis agent by binary fission. The L cell response to infection was a decreased rate of DNA and RNA synthesis and an accelerated rate of cell death. Host protein synthesis was unaffected. The inhibition of nucleic acid synthesis in infected L cells probably involved competition between host and parasite for nucleic acid precursors. Different sublines of L cells varied greatly in the degree to which their nucleic acid-synthesizing mechanisms were damaged by infection. The cytoplasm of infected L cells contained newly synthesized DNA and RNA that could not be accounted for as intact meningopneumonitis cells. This nucleic acid probably arose from disintegration of the fragile intracellular forms of the meningopneumonitis agent. Images PMID:5937251

  8. Radiolytic Modification of Sulfur Containing Acidic Amino Residues in Model Peptides: Fundamental Studies for Protein Footprinting

    SciTech Connect

    Xu,G.; Chance, M.

    2005-01-01

    Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using {gamma}-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the {gamma}-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic

  9. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family*

    PubMed Central

    Broussard, Tyler C.; Miller, Darcie J.; Jackson, Pamela; Nourse, Amanda; White, Stephen W.; Rock, Charles O.

    2016-01-01

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  10. Fatty acid binding protein 7 and n-3 poly unsaturated fatty acid supply in early rat brain development.

    PubMed

    Maximin, Elise; Langelier, Bénédicte; Aïoun, Josiane; Al-Gubory, Kaïs H; Bordat, Christian; Lavialle, Monique; Heberden, Christine

    2016-03-01

    Fatty acid binding protein 7 (FABP7), abundant in the embryonic brain, binds with the highest affinity to docosahexaenoic acid (DHA) and is expressed in the early stages of embryogenesis. Here, we have examined the consequences of the exposure to different DHA levels and of the in utero depletion of FABP7 on early rat brain development. Neurodevelopment was evaluated through the contents of two proteins, connexin 43 (Cx43) and cyclin-dependent kinase 5 (CDK5), both involved in neuroblast proliferation, differentiation, and migration. The dams were fed with diets presenting different DHA contents, from deficiency to supplementation. DHA brain embryos contents already differed at embryonic day 11.5 and the differences kept increasing with time. Cx43 and CDK5 contents were positively associated with the brain DHA levels. When FABP7 was depleted in vivo by injections of siRNA in the telencephalon, the enhancement of the contents of both proteins was lost in supplemented animals, but FABP7 depletion did not modify phospholipid compositions regardless of the diets. Thus, FABP7 is a necessary mediator of the effect of DHA on these proteins synthesis, but its role in DHA uptake is not critical, although FABP7 is localized in phospholipid-rich areas. Our study shows that high contents of DHA associated with FABP7 are necessary to promote early brain development, which prompted us to recommend DHA supplementation early in pregnancy.

  11. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  12. Determination of free acidic and alkaline residues of protein via moving reaction boundary titration in microdevice electrophoresis.

    PubMed

    Wang, Hou-yu; Li, Si; Tang, Yun-yun; Dong, Jing-yu; Fan, Liu-yin; Cao, Cheng-xi

    2013-06-21

    As two important physico-chemical parameters, the acidic and alkaline residues of protein are of evident significance for the evaluation of protein properties and the design of relevant separation and analysis. However, there is still no electrophoretic method used for the direct detection of free acidic and alkaline residues of protein. Herein, we developed the concepts of moving reaction boundary (MRB) and MRB titration, relevant MRB titration theory, and the method of microdevice electrophoresis for the determination of free acidic and alkaline residues of protein. In the MRB titration, the boundary was created with acid or alkali and target protein immobilized via highly cross-linked polyacrylamide gel (PAG). It was theoretically revealed that the number of free acidic or alkaline residues of protein was as a function of MRB displacement in the electrophoretic titration system. As a proof of concept, seven model proteins were chosen for the determination of acidic or alkaline residues of protein via MRB titration. The results showed that the numbers of free acidic and alkaline residues of proteins detected were in good agreement with those obtained from the relevant amino sequences in the NCBI database, demonstrating the feasibility of the developed concept, theory and technique. The general methodology of MRB titration has potential application for inexpensive, facilitative and informative protein structure analysis of free acidic or alkaline residues of protein.

  13. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    PubMed

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  14. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography.

    PubMed

    Wiley, J P; Hughes, K A; Kaiser, R J; Kesicki, E A; Lund, K P; Stolowitz, M L

    2001-01-01

    Phenylboronic acid bioconjugates prepared from alkaline phosphatase by reaction with either 2,5-dioxopyrrolidinyl 3-[N-[3-(1,3,2-dioxaboran-2-yl)phenyl]carbamoyl]propanoate (PBA-XX-NHS) or 2,5-dioxopyrrolidinyl 6-[[3,5-di-(1,3,2-dioxaboran-2-yl)phenyl]carbonylamino]hexanoate (PDBA-X-NHS) were compared with respect to the efficiency with which they were immobilized on salicylhydroxamic acid-modified Sepharose (SHA-X-Sepharose) by boronic acid complex formation. When immobilized on moderate capacity SHA-X-Sepharose (5.4 micromol of SHA/mL of gel), PDBA-alkaline phosphatase conjugates were shown to be stable with respect to both the alkaline (pH 11.0) and acidic (pH 2.5) buffers utilized to recover anti-alkaline phosphatase during affinity chromatography. Boronic acid complex formation was compared to covalent immobilization of alkaline phosphatase on Affi-Gel 10 and Affi-Gel 15. PDBA-AP.SHA-X-Sepharose was shown to afford superior performance to both Affi-Gel 10 and Affi-Gel 15 with respect to immobilization of alkaline phosphatase, retention of anti-alkaline phosphatase and recovery of anti-alkaline phosphatase under alkaline conditions. High capacity SHA-X-Sepharose (> or = 7 micromol of SHA/mL of gel) was shown to afford superior performance to moderate capacity SHA-X-Sepharose (4.5 micromol of SHA/mL of gel) with respect to stability at pH 11.0 and pH 2.5 when a PDBA-alphaHuman IgG conjugate with a low incorporation ratio of only 1.5:1 was immobilized on SHA-X-Sepharose and subsequently utilized for affinity chromatography of Human IgG. The results are interpreted in terms of either a bivalent or trivalent interaction involving boronic acid complex formation.

  15. A computational method to predict genetically encoded rare amino acids in proteins

    PubMed Central

    Chaudhuri, Barnali N; Yeates, Todd O

    2005-01-01

    In several natural settings, the standard genetic code is expanded to incorporate two additional amino acids with distinct functionality, selenocysteine and pyrrolysine. These rare amino acids can be overlooked inadvertently, however, as they arise by recoding at certain stop codons. We report a method for such recoding prediction from genomic data, using read-through similarity evaluation. A survey across a set of microbial genomes identifies almost all the known cases as well as a number of novel candidate proteins. PMID:16168086

  16. Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids.

    PubMed

    Das, Jayanta Kumar; Das, Provas; Ray, Korak Kumar; Choudhury, Pabitra Pal; Jana, Siddhartha Sankar

    2016-01-01

    Comparison of amino acid sequence similarity is the fundamental concept behind the protein phylogenetic tree formation. By virtue of this method, we can explain the evolutionary relationships, but further explanations are not possible unless sequences are studied through the chemical nature of individual amino acids. Here we develop a new methodology to characterize the protein sequences on the basis of the chemical nature of the amino acids. We design various algorithms for studying the variation of chemical group transitions and various chemical group combinations as patterns in the protein sequences. The amino acid sequence of conventional myosin II head domain of 14 family members are taken to illustrate this new approach. We find two blocks of maximum length 6 aa as 'FPKATD' and 'Y/FTNEKL' without repeating the same chemical nature and one block of maximum length 20 aa with the repetition of chemical nature which are common among all 14 members. We also check commonality with another motor protein sub-family kinesin, KIF1A. Based on our analysis we find a common block of length 8 aa both in myosin II and KIF1A. This motif is located in the neck linker region which could be responsible for the generation of mechanical force, enabling us to find the unique blocks which remain chemically conserved across the family. We also validate our methodology with different protein families such as MYOI, Myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK), Na+/K+-ATPase and Ca2+-ATPase. Altogether, our studies provide a new methodology for investigating the conserved amino acids' pattern in different proteins.

  17. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    PubMed

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  18. The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation.

    PubMed

    Dunlop, Rachael Anne; Cox, Paul Alan; Banack, Sandra Anne; Rodgers, Kenneth John

    2013-01-01

    Mechanisms of protein misfolding are of increasing interest in the aetiology of neurodegenerative diseases characterized by protein aggregation and tangles including Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and Progressive Supranuclear Palsy (PSP). Some forms of neurodegenerative illness are associated with mutations in genes which control assembly of disease related proteins. For example, the mouse sticky mutation sti, which results in undetected mischarging of tRNA(Ala) with serine resulting in the substitution of serine for alanine in proteins causes cerebellar Purkinje cell loss and ataxia in laboratory animals. Replacement of serine 422 with glutamic acid in tau increases the propensity of tau aggregation associated with neurodegeneration. However, the possibility that environmental factors can trigger abnormal folding in proteins remains relatively unexplored. We here report that a non-protein amino acid, β-N-methylamino-L-alanine (BMAA), can be misincorporated in place of L-serine into human proteins. We also report that this misincorporation can be inhibited by L-serine. Misincorporation of BMAA into human neuroproteins may shed light on putative associations between human exposure to BMAA produced by cyanobacteria and an increased incidence of ALS.

  19. The Non-Protein Amino Acid BMAA Is Misincorporated into Human Proteins in Place of l-Serine Causing Protein Misfolding and Aggregation

    PubMed Central

    Dunlop, Rachael Anne; Cox, Paul Alan; Banack, Sandra Anne; Rodgers, Kenneth John

    2013-01-01

    Mechanisms of protein misfolding are of increasing interest in the aetiology of neurodegenerative diseases characterized by protein aggregation and tangles including Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), Lewy Body Dementia (LBD), and Progressive Supranuclear Palsy (PSP). Some forms of neurodegenerative illness are associated with mutations in genes which control assembly of disease related proteins. For example, the mouse sticky mutation sti, which results in undetected mischarging of tRNAAla with serine resulting in the substitution of serine for alanine in proteins causes cerebellar Purkinje cell loss and ataxia in laboratory animals. Replacement of serine 422 with glutamic acid in tau increases the propensity of tau aggregation associated with neurodegeneration. However, the possibility that environmental factors can trigger abnormal folding in proteins remains relatively unexplored. We here report that a non-protein amino acid, β-N-methylamino-L-alanine (BMAA), can be misincorporated in place of l-serine into human proteins. We also report that this misincorporation can be inhibited by l-serine. Misincorporation of BMAA into human neuroproteins may shed light on putative associations between human exposure to BMAA produced by cyanobacteria and an increased incidence of ALS. PMID:24086518

  20. [Determination of protein concentration by the enhancement of Rayleigh light scattering of fuchsine acid].

    PubMed

    Zhang, Hong-yi; Liu, Bao-sheng; Zhang, Hong-lei; Zhao, Yong

    2002-12-01

    A new Rayleigh light scattering (RLS) assay is presented in this paper. At the optimum pH = 2.72, the weak RLS of fuchsine acid can be greatly enhanced by the addition of proteins due to the interaction between protein and fuchsine acid. A new quantitative determination method for proteins has been developed. The linear range for human serum albumin is 0-4.0 mg.L-1 with detection limit of 23 micrograms.L-1. Besides high sensitivity, the method is characterized by good reproducibility, rapidity of reaction, good stability and few interfering substances. The determination results of the proteins in human serum and urine samples are very close those obtained using Biuret method, with relative stand deviation of 0.94%-4.93%.

  1. A method for the identification of proteins secreted by lactic acid bacteria grown in complex media.

    PubMed

    Sánchez, Borja; Chaignepain, Sthéphane; Schmitter, Jean-Marie; Urdaci, María C

    2009-06-01

    Lactic acid bacteria (LAB) are known for their special nutritional requirements, being usually cultured in complex media to achieve optimal growth. In this paper, a protocol based on trichloroacetic acid precipitation of peptides and proteins is presented. The method has been tested on four probiotic LAB strains grown in De Man Rogosa Sharpe (MRS) broth, a complex medium that is often used for the culture of such bacteria. This protocol allowed the detection of 19 proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, 10 of them being successfully identified by tandem MS. Thereafter, the 10 were found to be secreted or surface associated by bioinformatic means. In conclusion, this work supplies a method for the identification of proteins secreted by LAB, allowing discrimination between the proteins present in the MRS and those produced by probiotic LAB.

  2. Alkali and Acid Solubilization Effects on Rheological Properties of Horse Mackerel Muscle Proteins

    NASA Astrophysics Data System (ADS)

    Campo-Deaño, L.; Tovar, C. A.

    2008-07-01

    Influence of the acid (Type A) and alkali (Type B) solubilization of muscle proteins in the viscoelastic properties of surimi and surimi gels made from horse mackerel (Trachurus trachurus) muscle were evaluated. Stress and frequency sweep tests showed that surimi from method B presents higher viscoelastic moduli, lowest values of phase angle and minimum viscoelastic moduli dependence with frequency than surimi A. These results show a high inicial protein aggregation in surimi B, that could explain the greater firmness and hardness of this sample, showing a more compact network structure. From static and dynamic tests, gel developed from alkali solubilization resulted in higher gel strength and more rigid network than that from acidic pH, despite the incial protein aggregation of surimi B its protein keeps better gelation capacity. The less structural quality of GA gel is likely due to the more lipid content on the surimi as compared to alkali treatment.

  3. Effect of glycine supplementation in low protein diets with amino acids from soy protein isolate or free amino acids on broiler growth and nitrogen utilisation.

    PubMed

    Siegert, W; Wild, K J; Schollenberger, M; Helmbrecht, A; Rodehutscord, M

    2016-06-01

    Here, it was investigated whether substitution of amino acids (AA) from soy protein isolate with free AA in low crude protein diets influences the growth performance and N utilisation in broilers, and whether interactions with dietary glycine equivalent (Glyequi) concentration exist. Birds were distributed in two 2 × 2 factorial arrangements of 48 floor pens containing 10 birds each, plus 48 metabolism cages containing two birds each. Experimental feed was provided for ad libitum consumption from d 7 to 22. Diets contained either a soy protein isolate at 79 g/kg or a mix of free AA, which supplied the same amount of 18 proteinogenic AA. A mix of free glycine and l-serine was used to obtain low and high (12.0 and 20.5 g/kg dry matter) levels of dietary Glyequi. Substitution of soy protein isolate with free AA reduced the average daily gain and feed efficiency, mainly due to reduced feed intake. Efficiency of N accretion was not influenced by the AA source or Glyequi concentration on d 21, possibly due to the lower AA digestibility of soy protein isolate and higher urinary excretion of nitrogenous substances in the treatments with the AA mix. The average daily weight gain of the treatments with high Glyequi concentration was higher for both AA sources. This increase was due to higher average daily feed intake by broilers in the treatments with soy protein isolate and due to the increased feed efficiency in the treatments with the AA mix. Broilers exhibited different growth responses to dietary Glyequi between the AA sources; however, these responses could not be attributed to the different utilisation of Glyequi for uric acid synthesis.

  4. Reproducible protein analysis by CE using linear polyacrylamide-coated capillaries and hydrochloric acid rinsing.

    PubMed

    Suratman, Adhitasari; Wätzig, Hermann

    2007-07-01

    Hydrochloric acid was investigated as a rinsing reagent to remove adsorbed proteins from linear polyacrylamide-coated capillaries for electrophoresis. Three model proteins were used, namely cytochrome c as a basic protein, beta-lactoglobulin as an acidic protein, and beta-casein as a more easily denaturing protein. In order to regenerate capillary surfaces, they have been rinsed for 5 min with 2 M hydrochloric acid, 5 min with water, and then 30 min with buffer after every tenth run. It was found important to perform this regeneration procedure on time. The obtained results show good repeatability of the apparent EOF mobility with percentage RSDs below 3% (n = 60) in various cases. These good results were mainly confirmed in long-term series with more than 200 runs each. Only very high concentrations (175 microM) of beta-lactoglobulin and beta-casein at pH 3.5 gave RSD% values above 5%. For these conditions, the further test of 85% m/m phosphoric acid as rinsing reagent showed a good repeatability of the apparent EOF mobilities as well.

  5. Formation of elastic whey protein gels at low pH by acid equilibration.

    PubMed

    Vardhanabhuti, Bongkosh; Khayankan, Worarat; Foegeding, E Allen

    2010-06-01

    Whey protein gels have a weak/brittle texture when formed at pH protein, shelf-stable product. We investigated if gels could be made under conditions that produced strong/elastic textural properties then adjusted to pH protein (pH 7.5). Equilibration in acid solutions caused gel swelling and lowered pH because of the diffusion of water and H(+) into the gels. The type and concentration of acid, and presence of other ions, in the equilibrating solutions influenced pH, swelling ratio, and fracture properties of the gels. Swelling of gels decreased fracture stress (because of decreased protein network density) but caused little change to fracture strain, thus maintaining a desirable strong/elastic fracture pattern. We have shown that whey protein isolate gels can be made at pH acid type, acid concentration, pH of equilibrating solution, and equilibrating time.

  6. Application of Noncanonical Amino Acids for Protein Labeling in a Genomically Recoded Escherichia coli.

    PubMed

    Kipper, Kalle; Lundius, Ebba G; Ćurić, Vladimir; Nikić, Ivana; Wiessler, Manfred; Lemke, Edward A; Elf, Johan

    2017-02-17

    Small synthetic fluorophores are in many ways superior to fluorescent proteins as labels for imaging. A major challenge is to use them for a protein-specific labeling in living cells. Here, we report on our use of noncanonical amino acids that are genetically encoded via the pyrrolysyl-tRNA/pyrrolysyl-RNA synthetase pair at artificially introduced TAG codons in a recoded E. coli strain. The strain is lacking endogenous TAG codons and the TAG-specific release factor RF1. The amino acids contain bioorthogonal groups that can be clicked to externally supplied dyes, thus enabling protein-specific labeling in live cells. We find that the noncanonical amino acid incorporation into the target protein is robust for diverse amino acids and that the usefulness of the recoded E. coli strain mainly derives from the absence of release factor RF1. However, the membrane permeable dyes display high nonspecific binding in intracellular environment and the electroporation of hydrophilic nonmembrane permeable dyes severely impairs growth of the recoded strain. In contrast, proteins exposed on the outer membrane of E. coli can be labeled with hydrophilic dyes with a high specificity as demonstrated by labeling of the osmoporin OmpC. Here, labeling can be made sufficiently specific to enable single molecule studies as exemplified by OmpC single particle tracking.

  7. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    SciTech Connect

    Biedermannová, Lada Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  8. Discovery and Investigation of Natural Editing Function against Artificial Amino Acids in Protein Translation

    PubMed Central

    2016-01-01

    Fluorine being not substantially present in the chemistry of living beings is an attractive element in tailoring novel chemical, biophysical, and pharmacokinetic properties of peptides and proteins. The hallmark of ribosome-mediated artificial amino acid incorporation into peptides and proteins is a broad substrate tolerance, which is assumed to rely on the absence of evolutionary pressure for efficient editing of artificial amino acids. We used the well-characterized editing proficient isoleucyl-tRNA synthetase (IleRS) from Escherichia coli to investigate the crosstalk of aminoacylation and editing activities against fluorinated amino acids. We show that translation of trifluoroethylglycine (TfeGly) into proteins is prevented by hydrolysis of TfeGly-tRNAIle in the IleRS post-transfer editing domain. The remarkable observation is that dissociation of TfeGly-tRNAIle from IleRS is significantly slowed down. This finding is in sharp contrast to natural editing reactions by tRNA synthetases wherein fast editing rates for the noncognate substrates are essential to outcompete fast aa-tRNA dissociation rates. Using a post-transfer editing deficient mutant of IleRS (IleRSAla10), we were able to achieve ribosomal incorporation of TfeGly in vivo. Our work expands the knowledge of ribosome-mediated artificial amino acid translation with detailed analysis of natural editing function against an artificial amino acid providing an impulse for further systematic investigations and engineering of the translation and editing of unusual amino acids. PMID:28149956

  9. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  10. "Silent" Amino Acid Residues at Key Subunit Interfaces Regulate the Geometry of Protein Nanocages.

    PubMed

    Zhang, Shengli; Zang, Jiachen; Zhang, Xiaorong; Chen, Hai; Mikami, Bunzo; Zhao, Guanghua

    2016-11-22

    Rendering the geometry of protein-based assemblies controllable remains challenging. Protein shell-like nanocages represent particularly interesting targets for designed assembly. Here, we introduce an engineering strategy-key subunit interface redesign (KSIR)-that alters a natural subunit-subunit interface by selective deletion of a small number of "silent" amino acid residues (no participation in interfacial interactions) into one that triggers the generation of a non-native protein cage. We have applied KSIR to construct a non-native 48-mer nanocage from its native 24-mer recombinant human H-chain ferritin (rHuHF). This protein is a heteropolymer composed of equal numbers of two different subunits which are derived from one polypeptide. This strategy has allowed the study of conversion between protein nanocages with different geometries by re-engineering key subunit interfaces and the demonstration of the important role of the above-mentioned specific residues in providing geometric specificity for protein assembly.

  11. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    PubMed Central

    Suzuki, Hiromu; Takashima, Yuya; Ishiguri, Futoshi; Yoshizawa, Nobuo; Yokota, Shinso

    2014-01-01

    The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8. PMID:28250384

  12. A gene encoding a protein modified by the phytohormone indoleacetic acid

    PubMed Central

    Walz, Alexander; Park, Seijin; Slovin, Janet P.; Ludwig-Müller, Jutta; Momonoki, Yoshie S.; Cohen, Jerry D.

    2002-01-01

    We show that the expression of an indole-3-acetic acid (IAA)-modified protein from bean seed, IAP1, is correlated to the developmental period of rapid growth during seed development. Moreover, this protein undergoes rapid degradation during germination. The gene for IAP1, the most abundant protein covalently modified by IAA (iap1, GenBank accession no. AF293023) was isolated and cloned from bush bean (Phaseolus vulgaris) seeds. The 957-bp sequence encodes a 35-kDa polypeptide. IAA-modified proteins represent a distinct class of conjugated phytohormones and appear in bean to be the major form of auxin in seeds. IAA proteins also are found at other stages of development in bean plants. Our immunological and analytical data suggest that auxin modification of a small class of proteins may be a feature common to many plants. PMID:11830675

  13. A nine-country study of the protein content and amino acid composition of mature human milk

    PubMed Central

    Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn

    2016-01-01

    Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and

  14. Meal composition and plasma amino acid ratios: Effect of various proteins or carbohydrates, and of various protein concentrations

    NASA Technical Reports Server (NTRS)

    Yokogoshi, Hidehiko; Wurtman, Richard J.

    1986-01-01

    The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein

  15. Diverse roles of the nucleic acid binding protein KHSRP in cell differentiation and disease

    PubMed Central

    Briata, Paola; Bordo, Domenico; Puppo, Margherita; Gorlero, Franco; Rossi, Martina; Bizzozzero, Nora Perrone; Gherzi, Roberto

    2015-01-01

    The single-stranded nucleic acid binding protein KHSRP (KH-Type Splicing Regulatory Protein) modulates RNA life and gene expression at various levels. KHSRP controls important cellular functions as different as proliferation, differentiation, metabolism and response to infectious agents. We summarize and discuss experimental evidence providing a potential link between changes in KHSRP expression/function and human diseases including neuromuscular disorders, obesity, type II diabetes, and cancer. PMID:26708421

  16. Diverse roles of the nucleic acid-binding protein KHSRP in cell differentiation and disease.

    PubMed

    Briata, Paola; Bordo, Domenico; Puppo, Margherita; Gorlero, Franco; Rossi, Martina; Perrone-Bizzozero, Nora; Gherzi, Roberto

    2016-01-01

    The single-stranded nucleic acid-binding protein KHSRP (KH-type splicing regulatory protein) modulates RNA life and gene expression at various levels. KHSRP controls important cellular functions as different as proliferation, differentiation, metabolism, and response to infectious agents. We summarize and discuss experimental evidence providing a potential link between changes in KHSRP expression/function and human diseases including neuromuscular disorders, obesity, type II diabetes, and cancer.

  17. Murine protein which binds preferentially to oligo-C-rich single-stranded nucleic acids.

    PubMed Central

    Goller, M; Funke, B; Gehe-Becker, C; Kröger, B; Lottspeich, F; Horak, I

    1994-01-01

    Two single-stranded nucleic acid binding proteins mCBP and mCTBP were identified by means of their binding to a potential recombination hotspot in LTRs of mouse retro-transposons. Both are nuclear proteins of 35 and 55 kDa respectively. mCBP binds preferentially to oligo dC, mCTBP to oligo dCdT. mCBP was purified and its cDNA was isolated and sequenced. Images PMID:8208614

  18. Immunohistochemical localization of D-β-aspartic acid-containing proteins in pterygium.

    PubMed

    Kaji, Yuichi; Oshika, Tetsuro; Nejima, Ryouhei; Mori, Saiyo; Miyata, Kazunori; Fujii, Noriko

    2015-12-10

    Biologically uncommon D-β-aspartic acid (D-β-Asp) residues have been reported to accumulate in organs affected by age-related disorders. In the present study, we investigated the localization of D-β-Asp-containing proteins in cases of pterygium, one of the most prominent age-related ocular conditions. Immunohistochemical localization of D-β-Asp-containing proteins was investigated in surgical specimens of pterygium from 20 patients and control specimens from 10 patients. Strong immunoreactivity to D-β-Asp-containing proteins was observed in subepithelial elastotic lesions and surrounding collagenous lesions from all surgical specimens with pterygia. In contrast, no immunoreactivity to D-β-Asp-containing proteins was seen in pterygium-free specimens. D-β-Asp-containing proteins are produced in organs as they are affected by the aging process. In addition, conversion of L- to D-aspartyl residues is accelerated by ultraviolet (UV) irradiation. Since pterygia can form due to aging or UV exposure, it is reasonable to find D-β-Asp-containing proteins in specimens with pterygia. Furthermore, since D-β-Asp is a non-native amino acid, D-β-Asp-containing proteins may be recognized as allogeneic antigens. Therefore, D-β-Asp-containing proteins in pterygia may responsible for the fibrovascular changes seen in the disorder.

  19. Identification of β-phenylalanine as a non-protein amino acid in cultivated rice, Oryza sativa

    PubMed Central

    Yokoo, Takayuki; Takata, Ryo; Yan, Jian; Matsumoto, Fuka; Teraishi, Masayoshi; Okumoto, Yutaka; Jander, Georg; Mori, Naoki

    2015-01-01

    Non-protein amino acids, often analogs of the standard 20 protein amino acids, have been discovered in many plant species. Recent research with cultivated rice (Oryza sativa) identified (3R)-β-tyrosine, as well as a tyrosine amino mutase that synthesizes (3R)-β-tyrosine from the protein amino acid (2S)-α-tyrosine. Gas chromatography-mass spectrometry (GC-MS) assays and comparison to an authentic standard showed that β-phenylalanine is also a relatively abundant non-protein amino acid in rice leaves and that its biosynthesis occurs independently from that of β-tyrosine. PMID:27066169

  20. Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea.

    PubMed

    Pérez-Gálvez, Raúl; García-Moreno, Pedro J; Morales-Medina, Rocío; Guadix, Antonio; Guadix, Emilia M

    2015-04-01

    Fish protein hydrolysates (FPH), produced from the six main discard species from the West Mediterranean Sea (sardine, horse mackerel, axillary seabream, bogue, small-spotted catshark and blue whiting) were tested for their bile acid binding capacity. This capacity is directly linked to the ability to inhibit bile reabsorption in the ileum and therefore to lower cholesterol levels in the bloodstream. From each species, FPH were obtained by three different enzymatic treatments employing two serine endoproteases (subtilisin and trypsin) sequentially or in combination. The results show statistically significant differences among the fish species, attaining interesting average values of bile acid binding capacity for blue whiting (27.32% relative to cholestyramine on an equal protein basis) and horse mackerel (27.42% relative to cholestyramine on an equal protein basis). The enzymatic treatments did not significantly affect the ability of a given species to bind bile acids. These results are similar to other protein sources, such as soy protein or casein, of proven hypocholesterolemic effect. It can be concluded that fish protein hydrolysates from these discard species are suitable as ingredients in the formulation of cholesterol-lowering supplements.

  1. Mass Spectrometric and Spectrofluorometric Studies of the Interaction of Aristolochic Acids with Proteins

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Hu, Qin; Chan, Wan

    2015-10-01

    Aristolochic acid (AA) is a potent carcinogen and nephrotoxin and is associated with the development of “Chinese herb nephropathy” and Balkan endemic nephropathy. Despite decades of research, the specific mechanism of the observed nephrotoxicity has remained elusive and the potential effects on proteins due to the observed toxicity of AA are not well-understood. To better understand the pharmacotoxicological features of AA, we investigated the non-covalent interactions of AA with proteins. The protein-binding properties of AA with bovine serum albumin (BSA) and lysozyme were characterized using spectrofluorometric and mass spectrometric (MS) techniques. Moreover, the protein-AA complexes were clearly identified by high-resolution MS analyses. To the best of our knowledge, this is the first direct evidence of non-covalently bound protein-AA complexes. An analysis of the spectrofluorometric data by a modified Stern-Volmer plot model also revealed that both aristolochic acid I (AAI) and aristolochic acid II (AAII) were bound to BSA and lysozyme in 1:1 stoichiometries. A significantly stronger protein binding property was observed in AAII than in AAI as evidenced by the spectrofluorometric and MS analyses, which may explain the observed higher mutagenicity of AAII.

  2. Enantiomeric separation of non-protein amino acids by electrokinetic chromatography.

    PubMed

    Pérez-Míguez, Raquel; Marina, María Luisa; Castro-Puyana, María

    2016-10-07

    New analytical methodologies enabling the enantiomeric separation of a group of non-protein amino acids of interest in the pharmaceutical and food analysis fields were developed in this work using Electrokinetic Chromatography. The use of FMOC as derivatization reagent and the subsequent separation using acidic conditions (formate buffer at pH 2.0) and anionic cyclodextrins as chiral selectors allowed the chiral separation of eight from the ten non-protein amino acids studied. Pyroglutamic acid, norvaline, norleucine, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, and selenomethionine were enantiomericaly separated using sulfated-α-CD while sulfated-γ-CD enabled the enantiomeric separation of norvaline, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, selenomethionie, citrulline, and pipecolic acid. Moreover, the potential of the developed methodologies was demonstrated in the analysis of citrulline and its enantiomeric impurity in food supplements. For that purpose, experimental and instrumental variables were optimized and the analytical characteristics of the proposed method were evaluated. LODs of 2.1×10(-7) and 1.8×10(-7)M for d- and l-citrulline, respectively, were obtained. d-Cit was not detectable in any of the six food supplement samples analyzed showing that the effect of storage time on the racemization of citrulline was negligible.

  3. Endogenous fatty acids in olfactory hairs influence pheromone binding protein structure and function in Lymantria dispar.

    PubMed

    Nardella, Jason; Terrado, Mailyn; Honson, Nicolette S; Plettner, Erika

    2015-08-01

    The gypsy moth utilizes a pheromone, (7R,8S)-2-methyl-7,8-epoxyoctadecane, for mate location. The pheromone is detected by sensory hairs (sensilla) on the antennae of adult males. Sensilla contain the dendrites of olfactory neurons bathed in lymph, which contains pheromone binding proteins (PBPs). We have extracted and identified free fatty acids from lymph of sensory hairs, and we demonstrate that these function as endogenous ligands for gypsy moth PBP1 and PBP2. Homology modeling of both PBPs, and docking of fatty acids reveal multiple binding sites: one internal, the others external. Pheromone binding assays suggest that these fatty acids increase PBP-pheromone binding affinity. We show that fatty acid binding causes an increase in α-helix content in the N-terminal domain, but not in the C-terminal peptide of both proteins. The C-terminal peptide was shown to form a α-helix in a hydrophobic, homogeneous environment, but not in the presence of fatty acid micelles. Through partition assays we show that the fatty acids prevent adsorption of the pheromone on hydrophobic surfaces and facilitate pheromone partition into an aqueous phase. We propose that lymph is an emulsion of fatty acids and PBP that influence each other and thereby control the partition equilibria of hydrophobic odorants.

  4. The Mediterranean diet: effects on proteins that mediate fatty acid metabolism in the colon.

    PubMed

    Djuric, Zora

    2011-12-01

    A Mediterranean diet appears to have health benefits in many domains of human health, mediated perhaps by its anti-inflammatory effects. Metabolism of fatty acids and subsequent eicosanoid production is a key mechanism by which a Mediterranean diet can exert anti-inflammatory effects. Both dietary fatty acids and fatty acid metabolism determine fatty acid availability for cyclooxygenase- and lipoxygenase-dependent production of eicosanoids, namely prostaglandins and leukotrienes. In dietary intervention studies and in observational studies of the Mediterranean diet, blood levels of fatty acids do reflect dietary intakes but are attenuated. Small differences in fatty acid levels, however, appear to be important, especially when exposures occur over long periods of time. This review summarizes how fat intakes from a Greek-style Mediterranean diet can be expected to affect fatty acid metabolizing proteins, with an emphasis on the metabolic pathways that lead to the formation of proinflammatory eicosanoids. The proteins involved in these pathways are ripe for investigation using proteomic approaches and may be targets for colon cancer prevention.

  5. Control of Amino Acid Homeostasis by a Ubiquitin Ligase-Coactivator Protein Complex.

    PubMed

    Guerra, Damian; Chapiro, Sonia M; Pratelli, Réjane; Yu, Shi; Jia, Weitao; Leary, Julie; Pilot, Guillaume; Callis, Judy

    2017-03-03

    Intercellular amino acid transport is essential for the growth of all multicellular organisms, and its dysregulation is implicated in developmental disorders. By an unknown mechanism, amino acid efflux is stimulated in plants by overexpression of a membrane-localized protein (GLUTAMINE DUMPER 1 (GDU1)) that requires a ubiquitin ligase (LOSS OF GDU 2 (LOG2). Here we further explore the physiological consequences of the interaction between these two proteins. LOG2 ubiquitin ligase activity is necessary for GDU1-dependent tolerance to exogenous amino acids, and LOG2 self-ubiquitination was markedly stimulated by the GDU1 cytosolic domain, suggesting that GDU1 functions as an adaptor or coactivator of amino acid exporter(s). However, other consequences more typical of a ligase-substrate relationship are observed: disruption of the LOG2 gene increased the in vivo half-life of GDU1, mass spectrometry confirmed that LOG2 ubiquitinates GDU1 at cytosolic lysines, and GDU1 protein levels decreased upon co-expression with active, but not enzymatically inactive LOG2. Altogether these data indicate LOG2 negatively regulates GDU1 protein accumulation by a mechanism dependent upon cytosolic GDU1 lysines. Although GDU1-lysine substituted protein exhibited diminished in vivo ubiquitination, overexpression of GDU1 lysine mutants still conferred amino acid tolerance in a LOG2-dependent manner, consistent with GDU1 being both a substrate and facilitator of LOG2 function. From these data, we offer a model in which GDU1 activates LOG2 to stimulate amino acid export, a process that could be negatively regulated by GDU1 ubiquitination and LOG2 self-ubiquitination.

  6. Identification of cytosolic and microsomal bile acid-binding proteins in rat ileal enterocytes

    SciTech Connect

    Lin, M.C.; Kramer, W.; Wilson, F.A. )

    1990-09-05

    Studies were performed to determine the subcellular fractions and proteins involved in the intracellular transport of bile acids in rat ileal cells. The photolabile derivative 7,7-azo-taurocholate inhibited the Na(+)-dependent uptake of taurocholate into rat ileal enterocytes reversibly in the dark and irreversibly following photolysis. When photolabeled cells were submitted to subcellular fractionation, greatest radioactivity was found in the soluble protein (SP) fraction with decreasing radioactivity in the brush-border-(BBM), basolateral-(BLM), mitochondria-(MT), microsome-(MC), and Golgi-(GO) enriched fractions. Following trichloroacetic acid precipitation, delipidation, and correction for loss of marker enzyme activity, protein bound radioactivity was in SP greater than BBM greater than MC greater than BLM greater than GO greater than MT. When photolabeled cells were first fractionated and then submitted to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a 99-kDa polypeptide was associated with BBM, 54- and 59-kDa polypeptides with BLM, 14-, 35-, 43-, 59-, and 68-kDa polypeptides with SP and a 20-kDa polypeptide with MC fractions. Immunoprecipitation with known antisera identified the 68-kDa polypeptide as albumin and the 43-kDa polypeptide as actin. No precipitation on the 14-kDa polypeptide was noted with anti-hepatic and anti-intestinal fatty acid-binding proteins. No precipitation of the 35-kDa polypeptide occurred with antibody to the hepatic cytosolic bile acid-binding protein. These studies reveal a previously unrecognized 20-kDa microsomal, and 14- and 35-kDa cytosolic bile acid-binding polypeptides which may be involved in the transcellular movement of bile acids.

  7. Further evaluation of the interrelationship between the hepatocellular transport of bile acids and endocytosed proteins.

    PubMed Central

    Herrera, M. C.; el-Mir, M. Y.; Monte, M. J.; Perez-Barriocanal, F.; Marin, J. J.

    1992-01-01

    Experiments on the relationship between the hepatocellular transport of endogenous or exogenously loaded bile acids (sodium taurocholate, TC, 0.5 mumol/min/100 g body wt) and horseradish peroxidase (HRP) or immunoglobulin A (IgA) (0.5 mg/100 g body wt) were carried out on anaesthetized Wistar rats. The time course of HRP excretion into bile (acceleration in the secretory peak), but not the total amount of HRP output, was affected by TC infusion. Administration of HRP was found to have no stimulatory effect on either spontaneous or TC-induced bile flow, bile acid, lecithin or cholesterol output. Spontaneous bile acid output was increased (25 and 67%, respectively) in rats that were treated for 12-h fasting or by oral administration of TC (45 mg/100 g body wt, every 12 h, for 2 days). These manoeuvres did not change the inability of HRP and IgA to increase bile acid output. Exogenous TC load had no stimulatory effect on the hepatocellular transport of endogenous bile acid pool, that was labelled by a combination of fasting and oral administration of 14C-glycocholic acid 12 h before the experiments. Therefore, exogenous bile acid load-induced stimulation of transcytosis had no effect on endogenous bile acid output. Moreover, bile secretion of both endogenous and exogenously loaded bile acids is unaffected by the administration of proteins, irrespective of whether they are endocytosed by a receptor or nonreceptor mediated process. PMID:1571280

  8. Prediction of retention times of proteins in hydrophobic interaction chromatography using only their amino acid composition.

    PubMed

    Salgado, J Cristian; Rapaport, Ivan; Asenjo, Juan A

    2005-12-09

    This paper focuses on the prediction of the dimensionless retention time of proteins (DRT) in hydrophobic interaction chromatography (HIC) by means of mathematical models based, essentially, only on aminoacidic composition. The results show that such prediction is indeed possible. Our main contribution was the design of models that predict the DRT using the minimal information concerning a protein: its aminoacidic composition. The performance is similar to that observed in models that use much more sophisticated information such as the three-dimensional structure of proteins. Three models that, in addition to the amino acid composition, use different assumptions about the amino acids tendency to be exposed to the solvent, were evaluated in 12 proteins with known experimental DRT. In all the cases analyzed, the model that obtained the best results was the one based on a linear estimation of the aminoacidic surface composition. The models were adjusted using a collection of 74 vectors of aminoacidic properties plus a set of 6388 vectors derived from these using two mathematical tools: k-means and self-organizing maps (SOM) algorithms. The best vector was generated by the SOM algorithm and was interpreted as a hydrophobicity scale based partly on the tendency of the amino acids to be hidden in proteins. The prediction error (MSE(JK)) obtained by this model was almost 35% smaller than that obtained by the model that supposes that all the amino acids are completely exposed and 40% smaller than that obtained by the model that uses a simple correction factor considering the general tendency of each amino acid to be exposed to the solvent. In fact, the performance of the best model based on the aminoacidic composition was 5% better than that observed in the model based on the three-dimensional structure of proteins.

  9. Purification and initial characterization of the 71-kilodalton rat heat-shock protein and its cognate as fatty acid binding proteins.

    PubMed

    Guidon, P T; Hightower, L E

    1986-06-03

    The major rat heat-shock (stress) protein and its cognate were purified to electrophoretic homogeneity from livers of heat-shocked rats. Both proteins exhibited similar behavior on a variety of column chromatography matrices but were separable by preparative isoelectric focusing under nondenaturing conditions by virtue of a 0.2 pH unit difference in isoelectric point. Both purified proteins had similar physical properties, suggesting the possibility that they may have similar biological functions as well. Both proteins were homodimers under nondissociative conditions (Mr 150 000) with isoelectric points of 5.0 (cognate) and 5.2 (major stress protein). After denaturation, both proteins had an increase in isoelectric point of 0.6 pH unit, and the resulting polypeptide chains had apparent molecular weights of 73 000 (cognate) and 71 000 (major stress protein). Similarities in the electrophoretic properties of these two proteins and serum albumin, which also undergoes a large basic shift in isoelectric point due to loss of fatty acids and conformational changes accompanying denaturation, prompted us to search for lipids associated with the purified 71-kilodalton stress protein and its cognate. Thin-layer chromatography of chloroform/methanol extracts of these two proteins revealed nonesterified fatty acids bound to both proteins. Palmitic acid, stearic acid, and a small amount of myristic acid were identified by gas chromatography/mass spectroscopy. Both proteins contained approximately four molecules of fatty acid per dimer with palmitate and stearate present in a one to one molar ratio. Possible roles of the major stress protein and its cognate as fatty acid associated proteins in cellular responses to stress are discussed.

  10. Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    Exposure to conditions of weightlessness has been associated with decrements in muscle mass and strength. The present studies were undertaken to determine muscle responses at the cellular level. Male Sprague-Dawley rats (360-410 g) were exposed to 7 days of weightlessness during the Spacelab-3 shuttle flight (May 1985). Animals were killed 12 h postflight, and soleus (S), gastrocnemius (G), and extensor digitorum longus (EDL) muscles were excised. Muscle protein, RNA, and DNA were extracted and quantified. Differential muscle atrophy was accompanied by a significant (P less than 0.05) reduction in total protein only in S muscles. There were no significant changes in protein concentration (mg/g) in the muscles examined. In S muscles from flight animals, sarcoplasmic protein accounted for a significantly greater proportion of total protein that in ground controls (37.5 vs. 32.5%). Tissue concentrations (nmol/g) of asparagine-aspartate, glutamine-glutamate, glycine, histidine, and lysine were significantly reduced (from 17 to 63%) in S muscles from flight animals, but only glutamine-glutamate levels were decreased in the G and EDL. Muscle DNA content (microgram) was unchanged in the tissues examined, but S muscle DNA concentration (micrograms/mg) increased 27%. RNA content (micrograms) was significantly (P less than 0.025) reduced in S (-28%) and G(-22%) muscles following spaceflight. These results identify specific alterations in rat skeletal muscle during short term (7-day) exposure to weightlessness and compare favorably with observations previously obtained from ground-based suspension simulations.

  11. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    SciTech Connect

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  12. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.

    PubMed

    Lin, Hongqiao; Levison, Bruce S; Buffa, Jennifer A; Huang, Ying; Fu, Xiaoming; Wang, Zeneng; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2017-03-01

    Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H2O2/Cl(-) system of leukocytes. At low molar ratio of oxidant to target protein N(ε)-lysine moiety, 2-AAA is formed via an initial N(ε)-monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein N(ε)-lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine N(ε)-dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl

  13. FAX1, a Novel Membrane Protein Mediating Plastid Fatty Acid Export

    PubMed Central

    Li, Nannan; Gügel, Irene Luise; Giavalisco, Patrick; Zeisler, Viktoria; Schreiber, Lukas; Soll, Jürgen; Philippar, Katrin

    2015-01-01

    Fatty acid synthesis in plants occurs in plastids, and thus, export for subsequent acyl editing and lipid assembly in the cytosol and endoplasmatic reticulum is required. Yet, the transport mechanism for plastid fatty acids still remains enigmatic. We isolated FAX1 (fatty acid export 1), a novel protein, which inserts into the chloroplast inner envelope by α-helical membrane-spanning domains. Detailed phenotypic and ultrastructural analyses of FAX1 mutants in Arabidopsis thaliana showed that FAX1 function is crucial for biomass production, male fertility and synthesis of fatty acid-derived compounds such as lipids, ketone waxes, or pollen cell wall material. Determination of lipid, fatty acid, and wax contents by mass spectrometry revealed that endoplasmatic reticulum (ER)-derived lipids decreased when FAX1 was missing, but levels of several plastid-produced species increased. FAX1 over-expressing lines showed the opposite behavior, including a pronounced increase of triacyglycerol oils in flowers and leaves. Furthermore, the cuticular layer of stems from fax1 knockout lines was specifically reduced in C29 ketone wax compounds. Differential gene expression in FAX1 mutants as determined by DNA microarray analysis confirmed phenotypes and metabolic imbalances. Since in yeast FAX1 could complement for fatty acid transport, we concluded that FAX1 mediates fatty acid export from plastids. In vertebrates, FAX1 relatives are structurally related, mitochondrial membrane proteins of so-far unknown function. Therefore, this protein family might represent a powerful tool not only to increase lipid/biofuel production in plants but also to explore novel transport systems involved in vertebrate fatty acid and lipid metabolism. PMID:25646734

  14. Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids

    PubMed Central

    Choudhury, Pabitra Pal; Jana, Siddhartha Sankar

    2016-01-01

    Comparison of amino acid sequence similarity is the fundamental concept behind the protein phylogenetic tree formation. By virtue of this method, we can explain the evolutionary relationships, but further explanations are not possible unless sequences are studied through the chemical nature of individual amino acids. Here we develop a new methodology to characterize the protein sequences on the basis of the chemical nature of the amino acids. We design various algorithms for studying the variation of chemical group transitions and various chemical group combinations as patterns in the protein sequences. The amino acid sequence of conventional myosin II head domain of 14 family members are taken to illustrate this new approach. We find two blocks of maximum length 6 aa as ‘FPKATD’ and ‘Y/FTNEKL’ without repeating the same chemical nature and one block of maximum length 20 aa with the repetition of chemical nature which are common among all 14 members. We also check commonality with another motor protein sub-family kinesin, KIF1A. Based on our analysis we find a common block of length 8 aa both in myosin II and KIF1A. This motif is located in the neck linker region which could be responsible for the generation of mechanical force, enabling us to find the unique blocks which remain chemically conserved across the family. We also validate our methodology with different protein families such as MYOI, Myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK), Na+/K+-ATPase and Ca2+-ATPase. Altogether, our studies provide a new methodology for investigating the conserved amino acids’ pattern in different proteins. PMID:27930687

  15. Soybean seed protein, oil, fatty acids, and isoflavones altered by potassium fertilizer rates in the midsouth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has shown that the effect of potassium fertilizer on soybean ([Glycine max (L.) Merr.] seed composition (protein, oil, fatty acids, and isoflavones) is still largely unknown. Therefore, the objective of this research was to investigate the effects of potassium application on seed p...

  16. Development and application of nanoparticles synthesized with folic acid-conjugated soy protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, soy protein isolate (SPI) was conjugated with folic acid (FA) to prepare nanoparticles for target-specific drug delivery. Successful conjugation was evidenced by UV spectrophotometry and primary amino group analysis. An increase in count rate by at least 142% was observed in FA-conjug...

  17. Breast Cancer Prevention by Fatty Acid Binding Protein MRG-Induced Pregnancy Like Mammary Gland Differentiation

    DTIC Science & Technology

    2005-08-01

    Annual Summary 3. DATES COVERED (From - To) 1 AUG 2004 - 31 JUL 2005 4. TITLE AND SUBTITLE Breast Cancer Prevention by Fatty Acid Binding Protein...differentiation. Overexpression of MRG in human breast cancer cells induced differentiation with changes in cellular morphology and a significant increase

  18. Stimulation of muscle protein synthesis by leucine is dependent on plasma amino acid availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported that a physiological increase in plasma leucine increased translation initiation factor activity during 60- and 120-min leucine infusion. Muscle protein synthesis was stimulated at 60 min but not at 120 min, perhaps due to the decrease (-50%) in plasma essential amino acids (AA). ...

  19. Phosphorus fertilization differentially influences fatty acids, protein and oil in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information is limited about phosphorus (P) fertilization effects on soybean seed composition. A field experiment was conducted to investigate the effects of P application rates on the concentrations of various fatty acids, protein, and oil in soybean under no-tillage on low and high testing P soils...

  20. Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment.

    PubMed

    Ge, Qingchun; Chung, Tai-Shung

    2015-03-21

    Highly soluble oxalic acid complexes (OACs) were synthesized through a one-pot reaction. The OACs exhibit excellent performance as draw solutes in FO processes with high water fluxes and negligible reverse solute fluxes. Efficient protein enrichment was achieved. The diluted OACs can be recycled via nanofiltration and are promising as draw solutes.

  1. Current issues in determining dietary protein and amino-acid requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pregnancy and the first two years of life are periods of rapid growth and yet the knowledge of requirements for protein and dietary indispensable amino acids is very limited. The development of carbon oxidation methods opens the way to studies that should fill these important gaps in knowledge. ...

  2. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uncoupling protein 3 (UCP3) is highly expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole body metabolism has not been extensively studied. We utilized unt...

  3. Affi-Gel Blue for nucleic acid removal and early enrichment of nucleotide binding proteins.

    PubMed

    Deutscher, Murray P

    2009-01-01

    Passage of an extract or supernatant fraction through a column of Affi-Gel Blue and batchwise elution can be a rapid and effective early procedure for removal of nucleic acid, concentration of the sample and purification of nucleotide binding proteins.

  4. Affinity regression predicts the recognition code of nucleic acid binding proteins

    PubMed Central

    Pelossof, Raphael; Singh, Irtisha; Yang, Julie L.; Weirauch, Matthew T.; Hughes, Timothy R.; Leslie, Christina S.

    2016-01-01

    Predicting the affinity profiles of nucleic acid-binding proteins directly from the protein sequence is a major unsolved problem. We present a statistical approach for learning the recognition code of a family of transcription factors (TFs) or RNA-binding proteins (RBPs) from high-throughput binding assays. Our method, called affinity regression, trains on protein binding microarray (PBM) or RNA compete experiments to learn an interaction model between proteins and nucleic acids, using only protein domain and probe sequences as inputs. By training on mouse homeodomain PBM profiles, our model correctly identifies residues that confer DNA-binding specificity and accurately predicts binding motifs for an independent set of divergent homeodomains. Similarly, learning from RNA compete profiles for diverse RBPs, our model can predict the binding affinities of held-out proteins and identify key RNA-binding residues. More broadly, we envision applying our method to model and predict biological interactions in any setting where there is a high-throughput ‘affinity’ readout. PMID:26571099

  5. Empirical parametrization of pK values for carboxylic acids in proteins using a genetic algorithm.

    PubMed

    Godoy-Ruiz, Raquel; Perez-Jimenez, Raul; Garcia-Mira, Maria M; Plaza del Pino, Isabel M; Sanchez-Ruiz, Jose M

    2005-04-01

    Considerable effort has been devoted to the development of theoretical electrostatic methods to predict the pK values of ionizable residues in proteins. However, predictions appear often to be still at the qualitative or semi-quantitative level. We believe that, with the increasing number experimentally available pK values for proteins of known structure, an alternative approach becomes feasible: the empirical parametrization of the experimental protein pK database. Of course, in the long term, this empirical approach is no substitute for rigorous electrostatic analysis but, in the short term, it may prove to have useful predictive power and it may help to pinpoint the main structural determinants of pK values in proteins. Here we demonstrate the feasibility of the parametrization approach by fitting (using a genetic algorithm as fitting tool) the database for carboxylic acid pK values in proteins on the basis of an empirical equation that takes into account the two following kinds of effects: (1) long-range charge-charge interactions; (2) interactions of the given carboxylic acid group with its environment in the protein, which are described in terms of contributions from the different kind of atoms present in the protein (atomic contributions).

  6. Comparative proteomic analysis of proteins in response to simulated acid rain in Arabidopsis.

    PubMed

    Liu, Ting-Wu; Fu, Bin; Niu, Li; Chen, Juan; Wang, Wen-Hua; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-05-06

    A proteomic study using 2-D gel electrophoresis and MALDI-TOF MS was performed to characterize the responses of Arabidopsis thaliana plants to simulated acid rain (SiAR) stress, which is a global environmental problem and has become a serious issue in China in recent years. The emphasis of the present study was to investigate the overall protein expression changes when exposed to SiAR. Out of over 1000 protein spots reproducibly resolved, 50 of them changed their abundance by at least 2-fold. Analysis of protein expression patterns revealed that a set of proteins associated with energy production, metabolism, cell rescue, cell defense and protein folding, etc., could play important roles in mediating plant response to SiAR. In addition to this, some proteins involved in stress responses and jasmonic acid pathway are also involved in plant response to SiAR. More interestingly, the expression of several ubiquitination-related proteins changed dramatically after 32-h SiAR treatment, suggesting that they may act as a molecular marker for the injury phenotype caused by SiAR. Based on our results, we proposed a schematic model to explain the mechanisms associated with the systematic response of Arabidopsis plants to SiAR.

  7. The fusogenic lipid phosphatidic acid promotes the biogenesis of mitochondrial outer membrane protein Ugo1

    PubMed Central

    Keller, Michael; Taskin, Asli A.; Horvath, Susanne E.; Guan, Xue Li; Prinz, Claudia; Opalińska, Magdalena; Zorzin, Carina; van der Laan, Martin; Wenk, Markus R.; Schubert, Rolf; Wiedemann, Nils; Holzer, Martin

    2015-01-01

    Import and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae. In vivo remodeling of the mitochondrial lipid composition by lithocholic acid treatment or by ablation of the lipid transport protein Ups1, both leading to an increase of mitochondrial PA levels, specifically stimulated the biogenesis of the outer membrane protein Ugo1, a component of the mitochondrial fusion machinery. We reconstituted the import and assembly pathway of Ugo1 in protein-free liposomes, mimicking the outer membrane phospholipid composition, and found a direct dependency of Ugo1 biogenesis on PA. Thus, PA represents the first lipid that is directly involved in the biogenesis pathway of a mitochondrial membrane protein. PMID:26347140

  8. Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes.

    PubMed

    Zhou, Guoli; Flowers, Matthew; Friedrich, Kenneth; Horton, James; Pennington, James; Wells, Michael A

    2004-04-01

    We developed a method to follow the metabolic fate of [(14)C]-labeled Euglena gracilis protein amino acids in Aedes aegypti mosquitoes under three different adult nutritional regimes. Quantitative analysis of blood meal protein amino acid metabolism showed that most of the carbon of the amino acids was either oxidized to CO(2) or excreted as waste. Under the three different adult nutritional regimes, no significant differences in the metabolism of amino acids were found, which indicated that the female A. aegypti mosquitoes possess a substantial capacity of maintaining metabolic homeostasis during a gonotrophic cycle. The amount of maternal glycogen and lipid after egg laying were significantly lower in the mosquitoes that underwent a partial starvation before a blood meal and/or starvation after the blood meal. The content of egg lipid or protein or the number of eggs laid did not show a significant difference among the three different regimes, which indicates that stable fecundity of A. aegypti under the partial starvation before a blood meal and/or starvation after the blood meal seemed to result from a trade-off between current fecundity and future survival after the eggs laid. The methods described in this paper can be applied to a wide range of questions about the effects of environmental conditions on the utilization of blood meal amino acids.

  9. Dietary proteins extend the survival of Salmonella Dublin in a gastric acid environment.

    PubMed

    Birk, Tina; Kristensen, Kim; Harboe, Anne; Hansen, Tina Beck; Ingmer, Hanne; De Jonge, Rob; Takumi, Katsuhisa; Aabo, Søren

    2012-02-01

    The pH of the human stomach is dynamic and changes over time, depending on the composition of the food ingested and a number of host-related factors such as age. To evaluate the number of bacteria surviving the gastric acid barrier, we have developed a simple gastric acid model, in which we mimicked the dynamic pH changes in the human stomach. In the present study, model gastric fluid was set up to imitate pH dynamics in the stomachs of young and elderly people after ingestion of a standard meal. To model a serious foodborne pathogen, we followed the survival of Salmonella enterica serotype Dublin, and found that the addition of proteins such as pepsin, ovalbumin, and blended turkey meat to the simple gastric acid model significantly delayed pathogen inactivation compared with the control, for which no proteins were added. In contrast, no delay in inactivation was observed in the presence of bovine serum albumin, indicating that protection could be protein specific. The simple gastric acid model was validated against a more laborious and complex fermenter model, and similar survival of Salmonella Dublin was observed in both models. Our gastric acid model allowed us to evaluate the influence of food components on survival of pathogens under gastric conditions, and the model could contribute to a broader understanding of the impact of specific food components on the inactivation of pathogens during gastric passage.

  10. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    PubMed

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  11. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    PubMed

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms.

  12. The use of unnatural amino acids to study and engineer protein function.

    PubMed

    Neumann-Staubitz, Petra; Neumann, Heinz

    2016-06-01

    The expansion of the genetic code for the incorporation of unnatural amino acids (UAAs) in proteins of bacteria, yeasts, mammalian cells or whole animals provides molecular and structural biologists with an amazing kit of novel tools. UAAs can be used to investigate the structure and dynamics of proteins, to study their interactions or to control their activity in living cells. Incorporation of UAAs with bioorthogonal reactivity facilitates the site-specific installation of labels for spectroscopy and microscopy. Light-activatable crosslinker UAAs can be used to trap interacting molecules in living cells with a precision almost at the structural level. Post-translational modifications such as lysine acetylation and serine phosphorylation can be directly encoded to analyse their impact on protein function, and caging groups can be installed on critical residues to create light-activatable proteins. In this review we highlight recent applications of this technology to investigate protein function.

  13. Identification of amino acid sequences in the polyomavirus capsid proteins that serve as nuclear localization signals

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. Jr; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The molecular mechanism participating in the transport of newly synthesized proteins from the cytoplasm to the nucleus in mammalian cells is poorly understood. Recently, the nuclear localization signal sequences (NLS) of many nuclear proteins have been identified, and most have been found to be composed of a highly basic amino acid stretch. A genetic "subtractive" and a biochemical "additive" approach were used in our studies to identify the NLS's of the polyomavirus structural capsid proteins. An NLS was identified at the N-terminus (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) of the major capsid protein VP1 and at the C-terminus (Glu307 -Glu-Asp-Gly-Pro-Glu-Lys-Lys-Lys-Arg-Arg-Leu318) of the VP2/VP3 minor capsid proteins.

  14. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    PubMed Central

    De Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; Di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-01-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders. PMID:28233865

  15. Hyodeoxycholic acid derivatives as liver X receptor α and G-protein-coupled bile acid receptor agonists

    NASA Astrophysics Data System (ADS)

    de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela

    2017-02-01

    Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.

  16. Effect of phytic acid and microbial phytase on the flow and amino acid composition of endogenous protein at the terminal ileum of growing broiler chickens.

    PubMed

    Cowieson, A J; Ravindran, V

    2007-10-01

    The effects of phytic acid and microbial phytase on the flow and composition of endogenous protein at the terminal ileum of broiler chickens were investigated using the peptide alimentation method. Phytic acid (fed as the sodium salt) was included in a synthetic diet at 8.5, 11.5 and 14.5 g/kg (or 2.4, 3.2 and 4.0 g/kg phytate-phosphorus) and each diet was fed without or with an Escherichia coli-derived microbial phytase at 500 phytase units/kg diet. A control containing no phytate was fed as a comparison to estimate basal endogenous flows. Ingestion of phytic acid increased (P < 0.05) the flow of endogenous amino acids and N by an average of 47 % at the lowest phytic acid concentration and 87 % at the highest. The addition of microbial phytase reduced (P < 0.05) the inimical effects of phytic acid on endogenous amino acid flow at all dietary phytic acid levels. The composition of endogenous protein was also influenced (P < 0.10-0.001) by increasing phytic acid concentrations and phytase addition. The effects of phytic acid and phytase on endogenous flow and composition of endogenous protein, however, varied depending on the amino acid. It is concluded that the effects of phytase on amino acid digestibility may be mediated, in part, through a route of reduced endogenous loss.

  17. A model for protocellular coordination of nucleic acid and protein syntheses

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    The proteinoid model for the coordination of protein synthesis with nucleic acid coding within the evolving protocell is discussed. Evidence for the self-ordering of amino acid chains, which would enhance the catalytic activity of a lysine-rich proteinoid, is presented, along with that for the preferential formation of microparticles, particularly proteinoid microparticles, in various solutions. Demonstrations of the catalytic activity of lysine-rich proteinoids in the synthesis of peptide and internucleotide bonds are pointed out. The view of evolution as a two stage sequence in which the geological synthesis of peptides evolved to the protocellular synthesis of peptides and oligonucleotides is discussed, and contrasted with the alternative view, in accord with the central dogma, that nucleic acids arose first then governed the production of proteins and protocells.

  18. Amino acid and protein changes in tilapia and Spanish mackerel after irradiation and storage

    NASA Astrophysics Data System (ADS)

    Al-Kahtani, Hassan A.; Abu-Tarboush, Hamza M.; Atia, Mohamed; Bajaber, Adnan S.; Ahmed, Mohamed A.; El-Mojaddidi, Mohamed A.

    1998-01-01

    Some amino acids in tilapia decreased while some others increased when subjected to doses up to 10.0 kGy. However, 10 kGy contributed to a significant reduction in all amino acids of Spanish mackerel. Variations in amino acid contents continued during post-irradiation storage with no consistant trend of increase or decrease. SDS-PAGE of protein from both fish showed 27 bands of subunits with MW < 14.0-94.0 KD. Isoelectric focusing patterns of sarcoplasmic protein of unirradiated and irradiated fish showed no charge in the number of bands, while some changes were observed in the intensities of the anodic and cathodic bands depending on isoelectric points (pIs).

  19. Detection of folic acid protein in human serum using reduced graphene oxide electrodes modified by folic-acid.

    PubMed

    He, Lijie; Wang, Qian; Mandler, Daniel; Li, Musen; Boukherroub, Rabah; Szunerits, Sabine

    2016-01-15

    The detection of disease markers is considered an important step for early diagnosis of cancer. We design in this work a novel electrochemical sensing platform for the sensitive and selective detection of folic acid protein (FP). The platform is fabricated by electrophoretic deposition (EPD) of reduced graphene oxide (rGO) onto a gold electrode and post-functionalization of rGO with folic acid. Upon FP binding, a significant current decrease can be measured using differential pulse voltammetry (DPV). Using this scheme, a detection limit of 1pM is achieved. Importantly, the method also allows the detection of FP in serum being thus an appealing approach for the sensitive detection of biomarkers in clinical samples.

  20. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex.

    PubMed

    Lim, Ji-Hong; Gerhart-Hines, Zachary; Dominy, John E; Lee, Yoonjin; Kim, Sungjin; Tabata, Mitsuhisa; Xiang, Yang K; Puigserver, Pere

    2013-03-08

    Fatty acids are essential components of the dynamic lipid metabolism in cells. Fatty acids can also signal to intracellular pathways to trigger a broad range of cellular responses. Oleic acid is an abundant monounsaturated omega-9 fatty acid that impinges on different biological processes, but the mechanisms of action are not completely understood. Here, we report that oleic acid stimulates the cAMP/protein kinase A pathway and activates the SIRT1-PGC1α transcriptional complex to modulate rates of fatty acid oxidation. In skeletal muscle cells, oleic acid treatment increased intracellular levels of cyclic adenosine monophosphate (cAMP) that turned on protein kinase A activity. This resulted in SIRT1 phosphorylation at Ser-434 and elevation of its catalytic deacetylase activity. A direct SIRT1 substrate is the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), which became deacetylated and hyperactive after oleic acid treatment. Importantly, oleic acid, but not other long chain fatty acids such as palmitate, increased the expression of genes linked to fatty acid oxidation pathway in a SIRT1-PGC1α-dependent mechanism. As a result, oleic acid potently accelerated rates of complete fatty acid oxidation in skeletal muscle cells. These results illustrate how a single long chain fatty acid specifically controls lipid oxidation through a signaling/transcriptional pathway. Pharmacological manipulation of this lipid signaling pathway might provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  1. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant.

    PubMed

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2014-05-01

    The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands.

  2. Genetic effects of sterol regulatory element binding proteins and fatty acid-binding protein4 on the fatty acid composition of Korean cattle (Hanwoo)

    PubMed Central

    Oh, Dong-Yep; Lee, Jea-Young; Jang, Ji-Eun; Lee, Seung-Uk

    2017-01-01

    Objective This study identifies single-nucleotide polymorphisms (SNP) or gene combinations that affect the flavor and quality of Korean cattle (Hanwoo) by using the SNP Harvester method. Methods Four economic traits (oleic acid [C18:1], saturated fatty acids), monounsaturated fatty acids, and marbling score) were adjusted for environmental factors in order to focus solely on genetic effects. The SNP Harvester method was used to investigate gene combinations (two-way gene interactions) associated with these economic traits. Further, a multifactor dimensionality reduction method was used to identify superior genotypes in gene combinations. Results Table 3 to 4 show the analysis results for differences between superior genotypes and others for selected major gene combinations using the multifactor dimensionality reduction method. Environmental factors were adjusted for in order to evaluate only the genetic effect. Table 5 shows the adjustment effect by comparing the accuracy before and after correction in two-way gene interactions. Conclusion The g.3977-325 T>C and (g.2988 A>G, g.3977-325 T>C) combinations of fatty acid-binding protein4 were the superior gene, and the superior genotype combinations across all economic traits were the CC genotype at g.3977-325 T>C and the AACC, GACC, GGCC genotypes of (g.2988 A>G, g.3977-325 T>C). PMID:27492349

  3. Salicylhydroxamic acid functionalized affinity membranes for specific immobilization of proteins and oligonucleotides.

    PubMed

    Springer, Amy L; Gall, Anna S; Hughes, Karin A; Kaiser, Robert J; Li, Guisheng; Lund, Kevin P

    2003-09-01

    Immobilization of proteins and other biological macromolecules on solid supports is a method suitable for purification or screening applications in life science research. Prolinx, Inc. has developed a novel chemical affinity system that can be used for specific immobilization of proteins and other macromolecules via interaction of two small synthetic molecules, phenyldiboronic acid (PDBA) and salicylhydroxamic acid (SHA). This report describes immobilization applications of activated microporous membranes that have been functionalized with SHA derivatives. These SHA-membranes exhibit high capacity and specificity for binding of PDBA-labeled nucleic acids and proteins. Conjugation of active protein with PDBA is performed in solution independent of the immobilization step on SHA membranes. The resulting PDBA-protein conjugate is immobilized directly without purification and retains biological activity. PDBA conjugates may also be released from these SHA-affinity membranes in a controlled manner. Capture and release of PBA-modified oligonucleotides is also demonstrated. SHA-membranes can be used as surfaces for microarrays, and are therefore compatible with high-throughput analyses. These properties make them useful for development of numerous preparative or screening applications.

  4. Amino acid sequence of band-3 protein from rainbow trout erythrocytes derived from cDNA.

    PubMed Central

    Hübner, S; Michel, F; Rudloff, V; Appelhans, H

    1992-01-01

    In this report we present the first complete band-3 cDNA sequence of a poikilothermic lower vertebrate. The primary structure of the anion-exchange protein band 3 (AE1) from rainbow trout erythrocytes was determined by nucleotide sequencing of cDNA clones. The overlapping clones have a total length of 3827 bp with a 5'-terminal untranslated region of 150 bp, a 2754 bp open reading frame and a 3'-untranslated region of 924 bp. Band-3 protein from trout erythrocytes consists of 918 amino acid residues with a calculated molecular mass of 101 827 Da. Comparison of its amino acid sequence revealed a 60-65% identity within the transmembrane spanning sequence of band-3 proteins published so far. An additional insertion of 24 amino acid residues within the membrane-associated domain of trout band-3 protein was identified, which until now was thought to be a general feature only of mammalian band-3-related proteins. PMID:1637296

  5. Boric acid gel enrichment of glycosylated proteins in human wound fluids.

    PubMed

    Krisp, Christoph; Kubutat, Caroline; Kyas, Andreas; Steinsträsser, Lars; Jacobsen, Frank; Wolters, Dirk

    2011-04-01

    The enrichment of glycosylated proteins by glycocapturing materials plays a pivotal role for the investigation of polysaccharide containing proteins in disease pathogenesis. Hence, we investigated a boric acid gel as a binding material for glycoprotein enrichment. The bovine proteins alpha-1-acid-glycoprotein (A1AG) and alpha-2-HS-glycoprotein (fetuin A) were spiked in human chronic wound fluids and were subsequently enriched by a boric acid gel affinity chromatography (BAGAC). The enrichment efficiency was evaluated by western blot analysis and mass spectrometry. Additionally, glycoproteins of human wound fluids from diabetes mellitus patients with chronic foot ulcers were analyzed after BAGAC enrichments. In total 104 glycoproteins were identified, with reported glycosylation sites. 60 proteins were detected in at least 2 out of 3 biological replicates and were used for quantitative analysis between the bound and unbound fractions. Almost 80% of these glycoproteins were more prominent in the bound fraction. Only 2 glycoproteins revealed higher spectral counts in the flow through fraction compared to the bound fraction. These findings demonstrate the capability of the BAGAC material to enrich glycosylated proteins from complex human wound fluids.

  6. Proteins with β-(thienopyrrolyl)alanines as alternative chromophores and pharmaceutically active amino acids

    PubMed Central

    Budisa, Nediljko; Alefelder, Stefan; Bae, Jae Hyun; Golbik, Ralph; Minks, Caroline; Huber, Robert; Moroder, Luis

    2001-01-01

    L-β-(Thieno[3,2-b]pyrrolyl)alanine and L-β-(thieno[2,3-b]pyrrolyl)alanine are mutually isosteric and pharmaceutically active amino acids that mimic tryptophan with the benzene ring in the indole moiety replaced by thiophene. Sulfur as a heteroatom causes physicochemical changes in these tryptophan surrogates that bring about completely new properties not found in the indole moiety. These synthetic amino acids were incorporated into recombinant proteins in response to the Trp UGG codons by fermentation in a Trp-auxotrophic Escherichia coli host strain using the selective pressure incorporation method. Related protein mutants expectedly retain the secondary structure of the native proteins but show significantly changed optical and thermodynamic properties. In this way, new spectral windows, fluorescence, polarity, thermodynamics, or pharmacological properties are inserted into proteins. Such an engineering approach by translational integration of synthetic amino acids with a priori defined properties, as shown in this study, proved to be a novel and useful tool for protein rational design. PMID:11420430

  7. The Hydrophobic Temperature Dependence of Amino Acids Directly Calculated from Protein Structures

    PubMed Central

    van Dijk, Erik; Hoogeveen, Arlo; Abeln, Sanne

    2015-01-01

    The hydrophobic effect is the main driving force in protein folding. One can estimate the relative strength of this hydrophobic effect for each amino acid by mining a large set of experimentally determined protein structures. However, the hydrophobic force is known to be strongly temperature dependent. This temperature dependence is thought to explain the denaturation of proteins at low temperatures. Here we investigate if it is possible to extract this temperature dependence directly from a large set of protein structures determined at different temperatures. Using NMR structures filtered for sequence identity, we were able to extract hydrophobicity propensities for all amino acids at five different temperature ranges (spanning 265-340 K). These propensities show that the hydrophobicity becomes weaker at lower temperatures, in line with current theory. Alternatively, one can conclude that the temperature dependence of the hydrophobic effect has a measurable influence on protein structures. Moreover, this work provides a method for probing the individual temperature dependence of the different amino acid types, which is difficult to obtain by direct experiment. PMID:26000449

  8. Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile.

    PubMed

    Verma, Ruchi; Varshney, Grish C; Raghava, G P S

    2010-06-01

    The rate of human death due to malaria is increasing day-by-day. Thus the malaria causing parasite Plasmodium falciparum (PF) remains the cause of concern. With the wealth of data now available, it is imperative to understand protein localization in order to gain deeper insight into their functional roles. In this manuscript, an attempt has been made to develop prediction method for the localization of mitochondrial proteins. In this study, we describe a method for predicting mitochondrial proteins of malaria parasite using machine-learning technique. All models were trained and tested on 175 proteins (40 mitochondrial and 135 non-mitochondrial proteins) and evaluated using five-fold cross validation. We developed a Support Vector Machine (SVM) model for predicting mitochondrial proteins of P. falciparum, using amino acids and dipeptides composition and achieved maximum MCC 0.38 and 0.51, respectively. In this study, split amino acid composition (SAAC) is used where composition of N-termini, C-termini, and rest of protein is computed separately. The performance of SVM model improved significantly from MCC 0.38 to 0.73 when SAAC instead of simple amino acid composition was used as input. In addition, SVM model has been developed using composition of PSSM profile with MCC 0.75 and accuracy 91.38%. We achieved maximum MCC 0.81 with accuracy 92% using a hybrid model, which combines PSSM profile and SAAC. When evaluated on an independent dataset our method performs better than existing methods. A web server PFMpred has been developed for predicting mitochondrial proteins of malaria parasites ( http://www.imtech.res.in/raghava/pfmpred/).

  9. Cellular differentiation and I-FABP protein expression modulate fatty acid uptake and diffusion.

    PubMed

    Atshaves, B P; Foxworth, W B; Frolov, A; Roths, J B; Kier, A B; Oetama, B K; Piedrahita, J A; Schroeder, F

    1998-03-01

    The effect of cellular differentiation on fatty acid uptake and intracellular diffusion was examined in transfected pluripotent mouse embryonic stem (ES) cells stably expressing intestinal fatty acid binding protein (I-FABP). Control ES cells, whether differentiated or undifferentiated, did not express I-FABP. The initial rate and maximal uptake of the fluorescent fatty acid, 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-octadec anoic acid (NBD-stearic acid), was measured in single cells by kinetic digital fluorescence imaging. I-FABP expression in undifferentiated ES cells increased the initial rate and maximal uptake of NBD-stearic acid 1.7- and 1.6-fold, respectively, as well as increased its effective intracellular diffusion constant (Deff) 1.8-fold as measured by the fluorescence recovery after photobleaching technique. In contrast, ES cell differentiation decreased I-FABP expression up to 3-fold and decreased the NBD-stearic acid initial rate of uptake, maximal uptake, and Deff by 10-, 4.7-, and 2-fold, respectively. There were no significant differences in these parameters between the differentiated control and differentiated I-FABP-expressing ES cell lines. In summary, differentiation and expression of I-FABP oppositely modulated NBD-stearic acid uptake parameters and intracellular diffusion in ES cells.

  10. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

    PubMed

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-05-07

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production.

  11. Determination of the D and L isomers of some protein amino acids present in soils

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.

    1977-01-01

    The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.

  12. Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids.

    PubMed

    Fuentes-Broto, Lorena; Martínez-Ballarín, Enrique; Miana-Mena, Javier; Berzosa, Cesar; Piedrafita, Eduardo; Cebrián, Igor; Reiter, Russel J; García, Joaquín J

    2009-01-01

    Cholestasis occurs in a variety of hepatic diseases and causes damage due to accumulation of bile acids in the liver. The aim was to investigate the effect of several bile acids, i.e. chenodeoxycholic, taurochenodeoxycholic, deoxycholic, taurodeoxycholic, ursodeoxycholic, lithocholic and taurolithocholic (TLC), in inducing oxidative damage. Hepatic tissue of male Sprague-Dawley rats was incubated with or without 1 mM of each bile acid, with or without 0.1 mM FeCl(3) and 0.1 mM ascorbic acid for the purpose of generating free radicals. Several bile acids increased lipid and protein oxidation, with TLC being the most pro-oxidative (657% and 175% in homogenates and 350% and 311% in membranes, respectively). TLC also enhanced iron-induced oxidative stress to lipids (21% in homogenates and 29% in membranes) and to proteins (74% in membranes). This enhancement was dose- and time-dependent and was reduced by melatonin. These results suggest that bile acids differentially mediate hepatic oxidative stress and may be involved in the physiopathology of cholestasis.

  13. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition

    PubMed Central

    2014-01-01

    Amino acids are building blocks for proteins in all animals. Based on growth or nitrogen balance, amino acids were traditionally classified as nutritionally essential or nonessential for mammals, birds and fish. It was assumed that all the “nutritionally nonessential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for maximal growth and optimal health. However, careful analysis of the scientific literature reveals that over the past century there has not been compelling experimental evidence to support this assumption. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, fertility, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and to protect the integrity of the intestinal mucosa. Thus, diets for animals must contain all NEAA to optimize their survival, growth, development, reproduction, and health. Furthermore, NEAA should be taken into consideration in revising the “ideal protein” concept that is currently used to formulate swine and poultry diets. Adequate provision of all amino acids (including NEAA) in diets enhances the efficiency of animal production. In this regard, amino acids should not be classified as nutritionally essential or nonessential in animal or human nutrition. The new Texas A&M University’s optimal ratios of dietary amino acids for swine and chickens are expected to beneficially reduce dietary protein content and improve the efficiency of their nutrient utilization, growth, and production performance. PMID:24999386

  14. The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction.

    PubMed

    Thurotte, Adrien; Bourcier de Carbon, Céline; Wilson, Adjélé; Talbot, Léa; Cot, Sandrine; López-Igual, Rocio; Kirilovsky, Diana

    2017-04-01

    To deal with fluctuating light condition, cyanobacteria have developed a photoprotective mechanism which, under high light conditions, decreases the energy arriving at the photochemical centers. It relies on a photoswitch, the Orange Carotenoid Protein (OCP). Once photoactivated, OCP binds to the light harvesting antenna, the phycobilisome (PBS), and triggers the thermal dissipation of the excess energy absorbed. Deactivation of the photoprotective mechanism requires the intervention of a third partner, the Fluorescence Recovery Protein (FRP). FRP by interacting with the photoactivated OCP accelerates its conversion to the non-active form and its detachment from the phycobilisome. We have studied the interaction of FRP with free and phycobilisome-bound OCP. Several OCP variants were constructed and characterized. In this article we show that OCP amino acid F299 is essential and D220 important for OCP deactivation mediated by FRP. Mutations of these amino acids did not affect FRP activity as helper to detach OCP from phycobilisomes. In addition, while mutated R60L FRP is inactive on OCP deactivation, its activity on the detachment of the OCP from the phycobilisomes is not affected. Thus, our results demonstrate that FRP has two distinct activities: it accelerates OCP detachment from phycobilisomes and then it helps deactivation of the OCP. They also suggest that different OCP and FRP amino acids could be involved in these two activities.

  15. Visualization of Iron-Binding Micelles in Acidic Recombinant Biomineralization Protein, MamC

    DOE PAGES

    Kashyap, Sanjay; Woehl, Taylor; Valverde-Tercedor, Carmen; ...

    2014-01-01

    Biological macromolecules are utilized in low-temperature synthetic methods to exert precise control over nanoparticle nucleation and placement. They enable low-temperature formation of a variety of functional nanostructured materials with properties often not achieved via conventional synthetic techniques. Here we report on the in situ visualization of a novel acidic bacterial recombinant protein, MamC, commonly present in the magnetosome membrane of several magnetotactic bacteria, including Magnetococcus marinus , strain MC-1. Our findings provide an insight into the self-assembly of MamC and point to formation of the extended protein surface, which is assumed to play an important role in the formationmore » of biotemplated inorganic nanoparticles. The self-organization of MamC is compared to the behavior of another acidic recombinant iron-binding protein, Mms6.« less

  16. Practical strategies for the evaluation of high-affinity protein/nucleic acid interactions

    PubMed Central

    Altschuler, Sarah E.; Lewis, Karen A.; Wuttke, Deborah S.

    2014-01-01

    The quantitative evaluation of binding interactions between proteins and nucleic acids is highly sensitive to a variety of experimental conditions. Optimization of these conditions is critical for obtaining high quality, reproducible data, particularly in the context of very high affinity interactions. Here, we discuss the practical considerations involved in optimizing the apparent binding constant of an interaction as measured by two common quantitative assays, electrophoretic mobility shift assay and double-filter binding when measuring extremely tight protein/nucleic acid interactions with sub-nanomolar binding affinities. We include specific examples from two telomere end-binding protein systems, Schizo -saccharomyces pombe Pot1 and Saccharomyces cerevisiae Cdc13, to demonstrate potential experimental pitfalls and some useful strategies for optimization. PMID:25197549

  17. Protein Synthesis and Deoxyribonucleic Acid-Membrane Attachment During Thymineless Death in Escherichia coli

    PubMed Central

    Dankberg, Frances; Cummings, Donald J.

    1973-01-01

    The proteins synthesized during thymineless death in Escherichia coli B and B/r were analyzed by polyacrylamide gel elctrophoresis. It was found that the amount of a protein of molecular weight 80,000 to 88,000 is greatly increased during thymineless death compared to the amounts of other cell proteins. A technique for the isolation of cell membrane-deoxyribonucleic acid (DNA)-nascent ribonucleic acid (RNA) complex on detergent crystals was used to determine whether DNA might be detached from the cell membrane as a result of thymineless death. It was found that under no conditions of thymineless death or immunity to thymineless death was there any change in the attachment of DNA or pulse-labeled RNA to cell membrane. Images PMID:4570604

  18. Protein turnover, amino acid requirements and recommendations for athletes and active populations

    PubMed Central

    Poortmans, J.R.; Carpentier, A.; Pereira-Lancha, L.O.; Lancha, A.

    2012-01-01

    Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, 2H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg−1·day−1 compared to 0.8 g·kg−1·day−1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h. PMID:22666780

  19. Sex Differences in Long Chain Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Burnett, David A.; Lysenko, Nina; Manning, Joan A.

    1979-01-01

    Female sex and estrogen administration are associated with increased hepatic production of triglyceride-rich lipoproteins; the basis for this has not been fully elucidated. Inasmuch as hepatic lipoprotein production is also influenced by FFA availability and triglyceride biosynthesis, we investigated sex differences in FFA utilization in rat hepatocyte suspensions and in the components of the triglyceride biosynthetic pathway. Isolated adult rat hepatocyte suspensions were incubated with albumin-bound [14C]oleate for up to 15 min. At physiological and low oleate concentrations, cells from females incorporated significantly more 14C into glycerolipids, especially triglycerides, and into oxidation products than did male cells, per milligram cell protein. At 0.44 mM oleate, incorporation into triglycerides in female cells was approximately twice that in male cells. Comparable sex differences were observed in cells from fasted animals and when [14C]-glycerol incorporation was measured. At higher oleate concentrations, i.e., fatty acid:albumin mole ratios in excess of 2:1, these sex differences were no longer demonstrable, suggesting that maximal rates of fatty acid esterification and oxidation were similar in female and male cells. In female and male hepatic microsomes, specific activities of long chain acyl coenzyme A synthetase, phosphatidate phosphohydrolase, and diglyceride acyltransferase were similar, but glycerol-3-phosphate acyltransferase activity was slightly greater in females at certain substrate concentrations. Microsomal incorporation of [14C]oleate into total glycerolipids was not significantly greater in females. In further contrast to intact cells, microsomal incorporation of [14C]oleate into triglycerides, although significantly greater in female microsomes, accounted for only a small fraction of the fatty acid esterified. The binding affinity and stoichiometry of partially purified female hepatic fatty acid binding protein (FABP) were similar to

  20. Effects of Salvianolic Acid B on Protein Expression in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Chang, Tsong-Min; Shi, Guey-Yueh; Wu, Hua-Lin; Wu, Chieh-Hsi; Su, Yan-Di; Wang, Hui-Lin; Wen, Hsin-Yun; Huang, Huey-Chun

    2011-01-01

    Salvianolic acid B (Sal B), a pure water-soluble compound extracted from Radix Salviae miltiorrhizae, has been reported to possess potential cardioprotective efficacy. To identify proteins or pathways by which Sal B might exert its protective activities on the cardiovascular system, two-dimensional gel electrophoresis-based comparative proteomics was performed, and proteins altered in their expression level after Sal B treatment were identified by MALDI-TOF MS/MS. Human umbilical vein endothelial cells (HUVECs) were incubated at Sal B concentrations that can be reached in human plasma by pharmacological intervention. Results indicated that caldesmon, an actin-stabilizing protein, was downregulated in Sal B-exposed HUVECs. Proteins that showed increased expression levels upon Sal B treatment were vimentin, T-complex protein 1, protein disulfide isomerase, tropomyosin alpha, heat shock protein beta-1, UBX domain-containing protein 1, alpha enolase, and peroxiredoxin-2. Additionally, Sal B leads to increased phosphorylation of nucleophosmin in a dose-dependent manner and promotes proliferation of HUVECs. We found that Sal B exhibited a coordinated regulation of enzymes and proteins involved in cytoskeletal reorganization, oxidative stress, and cell growth. Our investigation would provide understanding to the endothelium protection information of Sal B. PMID:21423689

  1. Thiol-based Redox Proteins in Brassica napus Guard Cell Abscisic Acid and Methyl Jasmonate Signaling

    PubMed Central

    Zhu, Mengmeng; Zhu, Ning; Song, Wen-yuan; Harmon, Alice C.; Assmann, Sarah M.; Chen, Sixue

    2014-01-01

    SUMMARY Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in different physiological processes. Little is known, however, about redox sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis (DIGE) and isotope-coded affinity tag (ICAT). In total, 65 and 118 potential redox responsive proteins were identified in ABA and MeJA treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of energy, stress and defense, and metabolism. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA and MeJA treated samples. A total of 44 cysteines was mapped in all the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a SNRK2 kinase and an isopropylmalate dehydrogenase were confirmed to be redox regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in guard cell ABA and MeJA signal transduction. PMID:24580573

  2. Calculation of subunit stoichiometry of large, multisubunit proteins from amino acid compositions.

    PubMed

    Kapp, O H; Qabar, A N; Vinogradov, S N

    1990-01-01

    The subunit stoichiometry of a large, multisubunit protein can be determined from the molar amino acid compositions (i amino acids) of the protein and its subunits. The number of copies of the subunits (1, 2, ... j) is calculated by solving all possible combinations of simultaneous equations in j unknowns (i!/j!(i - j)!). Calculations carried out using the published amino acid compositions determined by analysis and the compositions calculated from the sequences for two proteins of known stoichiometry provided the following results: Escherichia coli aspartate transcarbamoylase (R6C6, Mr = 307.5 kDa), R = 5.6 to 6.6 and C = 5.8 to 6.3, and spinach ribulose-bisphosphate carboxylase (L8S8, Mr = 535 kDa), L = 7.3 to 9.1 and S = 5.6 to 10.6. Calculations were also carried out with the amino acid compositions of two much larger proteins, the E. coli pyruvate dehydrogenase complex, Mr = 5280 kDa, subunits E1 (99.5 kDa), E2 (66 kDa), and E3 (50.6 kDa), and the extracellular hemoglobin of Lumbricus terrestris, Mr = 3760 kDa, subunits M (17 kDa), D1 (31 kDa), D2 (37 kDa), and T (51 kDa); the results for PDHase were E1 = 20 to 24, E2 = 18 to 31, E3 = 21 to 33 and those for Lumbricus hemoglobin were M = 34 to 46, D1 = 13 to 19, D2 = 13 to 18, and T = 34 to 36. Although the sample standard deviations of the mean values are generally high, the proposed method works surprisingly well for the two smaller proteins and provides physically reasonable results for the two larger proteins.

  3. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  4. Whey fermentation by thermophilic lactic acid bacteria: evolution of carbohydrates and protein content.

    PubMed

    Pescuma, Micaela; Hébert, Elvira María; Mozzi, Fernanda; Font de Valdez, Graciela

    2008-05-01

    Whey, a by-product of the cheese industry usually disposed as waste, is a source of biological and functional valuable proteins. The aim of this work was to evaluate the potentiality of three lactic acid bacteria strains to design a starter culture for developing functional whey-based drinks. Fermentations were performed at 37 and 42 degrees C for 24h in reconstituted whey powder (RW). Carbohydrates, organic acids and amino acids concentrations during fermentation were evaluated by RP-HPLC. Proteolytic activity was measured by the o-phthaldialdehyde test and hydrolysis of whey proteins was analyzed by Tricine SDS-PAGE. The studied strains grew well (2-3log cfu/ml) independently of the temperature used. Streptococcus thermophilus CRL 804 consumed 12% of the initial lactose concentration and produced the highest amount of lactic acid (45 mmol/l) at 24h. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 was the most proteolytic (91 microg Leu/ml) strain and released the branched chain amino acids Leu and Val. In contrast, Lactobacillus acidophilus CRL 636 and S. thermophilus CRL 804 consumed most of the amino acids present in whey. The studied strains were able to degrade the major whey proteins, alpha-lactalbumin being degraded in a greater extent (2.2-3.4-fold) than beta-lactoglobulin. Two starter cultures were evaluated for their metabolic and proteolytic activities in RW. Both cultures acidified and reduced the lactose content in whey in a greater extent than the strains alone. The amino acid release was higher (86 microg/ml) for the starter SLb (strains CRL 804+CRL 454) than for SLa (strains CRL 804+CRL 636, 37 microg/ml). Regarding alpha-lactalbumin and beta-lactoglobulin degradation, no differences were observed as compared to the values obtained with the single cultures. The starter culture SLb showed high potential to be used for developing fermented whey-based beverages.

  5. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    PubMed

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons.

  6. Amino acid composition of cadmium-binding protein induced in a marine diatom

    SciTech Connect

    Maita, Y.; Kawaguchi, S. )

    1989-09-01

    Organisms living in environments polluted with heavy metals develop tolerance against these contaminants. The tolerance has been attributed to the ability to synthesize metal binding substances. These recent findings imply metal binding complexes from animals and plants, although having very similar functional properties, may have entirely different amino acid compositions. Researchers reported that cadystin from fission yeast, Schizosaccharomyces pombe was composed of only glutamic acid, cysteine, and glycine. A year later, a heavy metal binding substance was isolated from Rauwolfia serpetina which contains only Glu, Cys, and Gly. Heavy metal binding complexes isolated from the water hyacinth and morning glory Datura innoxia also showed an amino acid composition similar to cadystin or phytochelatin. In this study, the cadmium binding protein induced in the marine diatom, Phaeodactylum tricornutum, was isolated and purified and its amino acid composition determined.

  7. Stimulation of muscle protein synthesis by prolonged parenteral infusion of leucine is dependent on amino acid availability in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The postprandial rise in amino acids, particularly leucine, stimulates muscle protein synthesis in neonates. Previously, we showed that a 1-h infusion of leucine increased protein synthesis, but this response was not sustained for 2 h unless the leucine-induced decrease in amino acids was prevented....

  8. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study...

  9. Interactions Between Fatty Acid Transport Proteins, Genes That Encode for Them, and Exercise: A Systematic Review.

    PubMed

    Jayewardene, Avindra F; Mavros, Yorgi; Reeves, Anneliese; Hancock, Dale P; Gwinn, Tom; Rooney, Kieron B

    2016-08-01

    Long-chain fatty acid (LCFA) movement into skeletal muscle involves a highly mediated process in which lipid rafts are utilized in the cellular membrane, involving numerous putative plasma membrane-associated LCFA transport proteins. The process of LCFA uptake and oxidation is of particular metabolic significance both at rest and during light to moderate exercise. A comprehensive systematic search of electronic databases was conducted to investigate whether exercise alters protein and/or gene expression of putative LCFA transport proteins. There were 31 studies meeting all eligibility criteria, of these 13 utilized an acute exercise protocol and 18 examined chronic exercise adaptations. Seventeen involved a study design incorporating an exercise stimulus, while the remaining 14 incorporated a combined exercise and diet stimulus. Divergent data relating to acute exercise, as well as prolonged exercise training (≥3 weeks), on protein content (PC) response was identified for proteins CD36, FABPpm and CAV1. Messenger ribonucleic acid (mRNA) data did not always correspond to functional PC, supporting previous suggestions of a disconnect due to potentially limiting factors post gene expression. The large array of study designs, cohorts, and primary dependent variables within the studies included in the present review elucidate the complexity of the interaction between exercise and LCFA transport proteins. Summary of the results in the present review validate the need for further targeted investigation within this topic, and provide an important information base for such research. J. Cell. Physiol. 231: 1671-1687, 2016. © 2015 Wiley Periodicals, Inc.

  10. Mechanism of Nucleic Acid Chaperone Function of Retroviral Nuceleocapsid (NC) Proteins

    NASA Astrophysics Data System (ADS)

    Rouzina, Ioulia; Vo, My-Nuong; Stewart, Kristen; Musier-Forsyth, Karin; Cruceanu, Margareta; Williams, Mark

    2006-03-01

    Recent studies have highlighted two main activities of HIV-1 NC protein contributing to its function as a universal nucleic acid chaperone. Firstly, it is the ability of NC to weakly destabilize all nucleic acid,(NA), secondary structures, thus resolving the kinetic traps for NA refolding, while leaving the annealed state stable. Secondly, it is the ability of NC to aggregate NA, facilitating the nucleation step of bi-molecular annealing by increasing the local NA concentration. In this work we use single molecule DNA stretching and gel-based annealing assays to characterize these two chaperone activities of NC by using various HIV-1 NC mutants and several other retroviral NC proteins. Our results suggest that two NC functions are associated with its zinc fingers and cationic residues, respectively. NC proteins from other retroviruses have similar activities, although expressed to a different degree. Thus, NA aggregating ability improves, and NA duplex destabilizing activity decreases in the sequence: MLV NC, HIV NC, RSV NC. In contrast, HTLV NC protein works very differently from other NC proteins, and similarly to typical single stranded NA binding proteins. These features of retroviral NCs co-evolved with the structure of their genomes.

  11. Polysaccharide-free nucleic acids and proteins of Abelmoschus esculentus for versatile molecular studies.

    PubMed

    Manoj-Kumar, A; Reddy, K N; Manjulatha, M; Blanco, L

    2012-01-01

    Abelmoschus esculentus (okra) is one of the polysaccharide rich crop plants. The polysaccharides interfere with nucleic acids and protein isolation thereby affecting the downstream molecular analysis. So, to understand the molecular systematics of okra, high quality DNA, RNA and proteins are essential. In this study we present a method for extracting genomic DNA, RNA and proteins from polysaccharide rich okra tissues. The conventional extraction procedures were integrated with purification treatments with pectinase, RNase and proteinase K, which improved the quality and quantity of DNA as well. Using SDS, additional washes with CIA and NaCl precipitation improved the RNA isolation both quantitatively and qualitatively. Finally, ammonium acetate mediated protein precipitation and re-solubilization increased the quality of total protein extracts from the okra leaves. All of the methods above not only eliminated the impurities but also improved the quality and quantity of nucleic acids and proteins. Further, we subjected these samples to versatile downstream molecular analyses such as restriction endonuclease digestion, RAPD, Southern, reverse transcription-PCR and Western analysis and were proved to be successful.

  12. Bioprocess monitoring: minimizing sample matrix effects for total protein quantification with bicinchoninic acid assay.

    PubMed

    Reichelt, Wieland N; Waldschitz, Daniel; Herwig, Christoph; Neutsch, Lukas

    2016-09-01

    Determining total protein content is a routine operation in many laboratories. Despite substantial work on assay optimization interferences, the widely used bicinchoninic acid (BCA) assay remains widely recognized for its robustness. Especially in the field of bioprocess engineering the inaccuracy caused by interfering substances remains hardly predictable and not well understood. Since the introduction of the assay, sample pre-treatment by trichloroacetic acid (TCA) precipitation has been indicated as necessary and sufficient to minimize interferences. However, the sample matrix in cultivation media is not only highly complex but also dynamically changing over process time in terms of qualitative and quantitative composition. A significant misestimation of the total protein concentration of bioprocess samples is often observed when following standard work-up schemes such as TCA precipitation, indicating that this step alone is not an adequate means to avoid measurement bias. Here, we propose a modification of the BCA assay, which is less influenced by sample complexity. The dynamically changing sample matrix composition of bioprocessing samples impairs the conventional approach of compensating for interfering substances via a static offset. Hence, we evaluated the use of a correction factor based on an internal spike measurement for the respective samples. Using protein spikes, the accuracy of the BCA protein quantification could be improved fivefold, taking the BCA protein quantification to a level of accuracy comparable to other, more expensive methods. This will allow reducing expensive iterations in bioprocess development to due inaccurate total protein analytics.

  13. Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins.

    PubMed

    Nguyen, Bao Linh; Pettitt, B Montgomery

    2015-04-14

    The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations.

  14. Probing the Substrate Specificity and Protein-Protein Interactions of the E. coli Fatty Acid Dehydratase, FabA

    PubMed Central

    Finzel, Kara; Nguyen, Chi; Jackson, David R.; Gupta, Aarushi; Tsai, Shiou-Chuan; Burkart, Michael D.

    2015-01-01

    Summary Microbial fatty acid biosynthetic enzymes are important targets for areas as diverse as antibiotic development to biofuel production. Elucidating the molecular basis of chain length control during fatty acid biosynthesis is crucial for the understanding of regulatory processes of this fundamental metabolic pathway. In Escherichia coli, the acyl carrier protein (AcpP) plays a central role by sequestering and shuttling the growing acyl chain between fatty acid biosynthetic enzymes. FabA, a β-hydroxylacyl-AcpP dehydratase, is an important enzyme in controlling fatty acid chain length and saturation levels. FabA-AcpP interactions are transient in nature and thus difficult to visualize. In this study, four mechanistic crosslinking probes mimicking varying acyl chain lengths were synthesized to systematically probe for modified chain length specificity of fourteen FabA mutants. These studies provide evidence for the AcpP interacting “positive patch,” FabA mutations that altered substrate specificity, and the roles that the FabA “gating residues” play in chain-length selection. PMID:26526101

  15. Effect of Acidic pH on Expression of Surface-Associated Proteins of Streptococcus oralis

    PubMed Central

    Wilkins, Joanna C.; Beighton, David; Homer, Karen A.

    2003-01-01

    Streptococcus oralis, a member of the mitis group of oral streptococci, is implicated in the pathogenesis of infective endocarditis and is the predominant aciduric non-mutans-group streptococcus in dental plaque. We undertook to identify the most abundant surface-associated proteins of S. oralis and to investigate changes in protein expression when the organism was grown under acidic culture conditions. Surface-associated proteins were extracted from cells grown in batch culture, separated by two-dimensional gel electrophoresis, excised, digested with trypsin, and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Putative functions were assigned by homology to a translated genomic database of Streptococcus pneumoniae. A total of 27 proteins were identified; these included a lipoprotein, a ribosome recycling factor, and the glycolytic enzymes phosphoglycerate kinase, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and enolase. The most abundant protein, phosphocarrier protein HPr, was present as three isoforms. Neither lactate dehydrogenase nor pyruvate oxidase, dominant intracellular proteins, were present among the proteins on the gels, demonstrating that proteins in the surface-associated pool did not arise as a result of cell lysis. Eleven of the proteins identified were differentially expressed when cells were grown at pH 5.2 versus pH 7.0, and these included superoxide dismutase, a homologue of dipeptidase V from Lactococcus lactis, and the protein translation elongation factors G, Tu, and Ts. This study has extended the range of streptococcal proteins known to be expressed at the cell surface. Further investigations are required to ascertain their functions at this extracellular location and determine how their expression is influenced by other environmental conditions. PMID:12957916

  16. A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium.

    PubMed

    Brozek, K A; Carlson, R W; Raetz, C R

    1996-12-13

    Lipid A, the hydrophobic anchor of lipopolysaccharides in the outer membranes of Gram-negative bacteria, varies in structure among different Rhizobiaceae. The Rhizobium meliloti lipid A backbone, like that of Escherichia coli, is a beta1'-6-linked glucosamine disaccharide that is phosphorylated at positions 1 and 4'. Rhizobium leguminosarum lipid A lacks both phosphates, but contains aminogluconate in place of the proximal glucosamine 1-phosphate, and galacturonic acid instead of the 4'-phosphate. A peculiar feature of the lipid As of all Rhizobiaceae is acylation with 27-hydroxyoctacosanoic acid, a long hydroxylated fatty acid not found in E. coli. We now describe an in vitro system, consisting of a membrane enzyme and a cytosolic acyl donor from R. leguminosarum, that transfers 27-hydroxyoctacosanoic acid to (Kdo)2-lipid IVA, a key lipid A precursor common to both E. coli and R. leguminosarum. The 27-hydroxyoctacosanoic acid moiety was detected in the lipid product by mass spectrometry. The membrane enzyme required the presence of Kdo residues in the acceptor substrate for activity. The cytosolic acyl donor was purified from wild-type R. leguminosarum using the acylation of (Kdo)2-[4'-32P]-lipid IVA as the assay. Amino-terminal sequencing of the purified acyl donor revealed an exact 19-amino acid match with a partially sequenced gene (orf*) of R. leguminosarum. Orf* contains the consensus sequence, DSLD, for attachment of 4'-phosphopantetheine. When the entire orf* gene was sequenced, it was found to encode a protein of 92 amino acids. Orf* is a new kind of acyl carrier protein because it is only approximately 25% identical both to the constitutive acyl carrier protein (AcpP) and to the inducible acyl carrier protein (NodF) of R. leguminosarum. Mass spectrometry of purified active Orf* confirmed the presence of 4'-phosphopantetheine and 27-hydroxyoctacosanoic acid in the major species. Smaller mass peaks indicative of Orf* acylation with hydroxylated 20, 22, 24

  17. Using Amino Acid Physicochemical Distance Transformation for Fast Protein Remote Homology Detection

    PubMed Central

    Liu, Bin; Wang, Xiaolong; Chen, Qingcai; Dong, Qiwen; Lan, Xun

    2012-01-01

    Protein remote homology detection is one of the most important problems in bioinformatics. Discriminative methods such as support vector machines (SVM) have shown superior performance. However, the performance of SVM-based methods depends on the vector representations of the protein sequences. Prior works have demonstrated that sequence-order effects are relevant for discrimination, but little work has explored how to incorporate the sequence-order information along with the amino acid physicochemical properties into the prediction. In order to incorporate the sequence-order effects into the protein remote homology detection, the physicochemical distance transformation (PDT) method is proposed. Each protein sequence is converted into a series of numbers by using the physicochemical property scores in the amino acid index (AAIndex), and then the sequence is converted into a fixed length vector by PDT. The sequence-order information can be efficiently included into the feature vector with little computational cost by this approach. Finally, the feature vectors are input into a support vector machine classifier to detect the protein remote homologies. Our experiments on a well-known benchmark show the proposed method SVM-PDT achieves superior or comparable performance with current state-of-the-art methods and its computational cost is considerably superior to those of other methods. When the evolutionary information extracted from the frequency profiles is combined with the PDT method, the profile-based PDT approach can improve the performance by 3.4% and 11.4% in terms of ROC score and ROC50 score respectively. The local sequence-order information of the protein can be efficiently captured by the proposed PDT and the physicochemical properties extracted from the amino acid index are incorporated into the prediction. The physicochemical distance transformation provides a general framework, which would be a valuable tool for protein-level study. PMID:23029559

  18. Saturated fatty-acids regulate retinoic acid signaling and suppress tumorigenesis by targeting fatty-acid-binding protein 5

    PubMed Central

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L.; Noy, Noa

    2015-01-01

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes, and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5 which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer. PMID:26592976

  19. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5.

    PubMed

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L; Noy, Noa

    2015-11-23

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5, which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting the activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer.

  20. The role of the acidity of N-heteroaryl sulfonamides as inhibitors of bcl-2 family protein-protein interactions.

    PubMed

    Touré, B Barry; Miller-Moslin, Karen; Yusuff, Naeem; Perez, Lawrence; Doré, Michael; Joud, Carol; Michael, Walter; DiPietro, Lucian; van der Plas, Simon; McEwan, Michael; Lenoir, Francois; Hoe, Madelene; Karki, Rajesh; Springer, Clayton; Sullivan, John; Levine, Kymberly; Fiorilla, Catherine; Xie, Xiaoling; Kulathila, Raviraj; Herlihy, Kara; Porter, Dale; Visser, Michael

    2013-02-14

    Overexpression of the antiapoptotic members of the Bcl-2 family of proteins is commonly associated with cancer cell survival and resistance to chemotherapeutics. Here, we describe the structure-based optimization of a series of N-heteroaryl sulfonamides that demonstrate potent mechanism-based cell death. The role of the acidic nature of the sulfonamide moiety as it relates to potency, solubility, and clearance is examined. This has led to the discovery of novel heterocyclic replacements for the acylsulfonamide core of ABT-737 and ABT-263.

  1. Production of Fatty Acids and Protein by Nannochloropsis in Flat-Plate Photobioreactors

    PubMed Central

    Wijffels, René H.; Bolla, Sylvie; Kiron, Viswanath

    2017-01-01

    Nannochloropsis is an industrially-promising microalga that may be cultivated for alternative sources of nutrition due to its high productivity, protein content and lipid composition. We studied the growth and biochemical profile of Nannochloropsis 211/78 (CCAP) in optimized flat-plate photobioreactors. Eighteen cultivations were performed at two nutrient concentrations. The fatty acid, protein content and calorific values were analyzed after 8, 12 and 16 days. Neutral lipids were separated and the changes in fatty acids in triglycerides (TAGs) during nutrient depletion were recorded. The maximum cell density reached 4.7 g∙L-1 and the maximum productivity was 0.51 g∙L-1∙d-1. During nutrient-replete conditions, eicosapentaneoic acid (EPA) and total protein concentrations measured 4.2–4.9% and 50–55% of the dry mass, respectively. Nutrient starvation induced the accumulation of fatty acids up to 28.3% of the cell dry weight, largely due to the incorporation of C16:0 and C16:1n-7 fatty acyl chains into neutral lipids. During nutrient starvation the total EPA content did not detectibly change, but up to 37% was transferred from polar membrane lipids to the neutral lipid fraction. PMID:28103296

  2. Coagulant properties of Moringa oleifera protein preparations: application to humic acid removal.

    PubMed

    Santos, Andréa F S; Paiva, Patrícia M G; Teixeira, José A C; Brito, António G; Coelho, Luana C B B; Nogueira, Regina

    2012-01-01

    This work aimed to characterize the coagulant properties of protein preparations from Moringa oleifera seeds in the removal of humic acids from water. Three distinct preparations were assayed, namely extract (seeds homogenized with 0.15 M NaCl), fraction (extract precipitated with 60% w/v ammonium sulphate) and cMoL (protein purified with guar gel column chromatography). The extract showed the highest coagulant activity in a protein concentration between 1 mg/L and 180 mg/L at pH 7.0. The zeta potential of the extract (-10 mV to -15 mV) was less negative than that of the humic acid (-41 mV to -42 mV) in a pH range between 5.0 and 8.0; thus, the mechanism that might be involved in this coagulation activity is adsorption and neutralization of charges. Reduction of total organic carbon (TOC) and dissolved organic carbon (DOC) was observed in water samples containing 9 mg/L carbon as humic acid when treated with 1 mg/L of the extract. A decrease in colour and in the aromatic content of the treated water was also observed. These results suggested that the extract from M. oleifera seeds in a low concentration (1 mg/L) can be an interesting natural alternative for removing humic acid from water in developing countries. The extract dose determined in the present study does not impart odour or colour to the treated water.

  3. Production of Fatty Acids and Protein by Nannochloropsis in Flat-Plate Photobioreactors.

    PubMed

    Hulatt, Chris J; Wijffels, René H; Bolla, Sylvie; Kiron, Viswanath

    2017-01-01

    Nannochloropsis is an industrially-promising microalga that may be cultivated for alternative sources of nutrition due to its high productivity, protein content and lipid composition. We studied the growth and biochemical profile of Nannochloropsis 211/78 (CCAP) in optimized flat-plate photobioreactors. Eighteen cultivations were performed at two nutrient concentrations. The fatty acid, protein content and calorific values were analyzed after 8, 12 and 16 days. Neutral lipids were separated and the changes in fatty acids in triglycerides (TAGs) during nutrient depletion were recorded. The maximum cell density reached 4.7 g∙L-1 and the maximum productivity was 0.51 g∙L-1∙d-1. During nutrient-replete conditions, eicosapentaneoic acid (EPA) and total protein concentrations measured 4.2-4.9% and 50-55% of the dry mass, respectively. Nutrient starvation induced the accumulation of fatty acids up to 28.3% of the cell dry weight, largely due to the incorporation of C16:0 and C16:1n-7 fatty acyl chains into neutral lipids. During nutrient starvation the total EPA content did not detectibly change, but up to 37% was transferred from polar membrane lipids to the neutral lipid fraction.

  4. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    SciTech Connect

    Byers, D.M.; Meighen, E.A.

    1985-09-01

    Pulse-chase experiments with (/sup 3/H)tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a /sup 3/H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi (/sup 3/H)acylprotein and (/sup 3/H)palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence.

  5. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei[S

    PubMed Central

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.

    2016-01-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423

  6. Folic acid-conjugated soybean protein-based nanoparticles mediate efficient antitumor ability in vitro.

    PubMed

    Yao, Weijing; Zha, Qian; Cheng, Xu; Wang, Xin; Wang, Jun; Tang, Rupei

    2016-11-23

    In this study, soy protein isolate was hydrolyzed by compound enzymes to give aqueous soy protein with low molecular weights. Folic acid modified and free soy protein nanoparticles were successfully prepared by a desolvation method as target-specific drug delivery, respectively. Ultraviolet spectrophotometry demonstrated that folic acid was successfully grafted onto soy protein. The shape and size of folic acid modified soy protein nanoparticles were detected by transmission electron microscopy, scanning electron microscope, and dynamic light scattering. In addition, a series of characteristics including kinetic stability, pH stability, and time stability were also performed. Doxorubicin was successfully loaded into folic acid modified soy protein nanoparticles, and the encapsulation and loading efficiencies were 96.7% and 23%, respectively. Doxorubicin-loaded folic acid modified soy protein nanoparticles exhibited faster drug release rate than soy protein nanoparticles in PBS solution (pH = 5). The tumor penetration and antitumor experiments were done using three-dimensional multicellular tumor spheroids as the in vitro model. The results proved that folic acid modified soy protein nanoparticles display higher penetration and accumulation than soy protein nanoparticles, therefore possessing efficient growth inhibitory ability against multicellular tumor spheroids.

  7. Metformin impairs systemic bile acid homeostasis through regulating SIRT1 protein levels.

    PubMed

    Chen, Qi; Yang, Xiaoying; Zhang, Huabing; Kong, Xingxing; Yao, Lu; Cui, Xiaona; Zou, Yongkang; Fang, Fude; Yang, Jichun; Chang, Yongsheng

    2017-01-01

    Metformin is widely used to treat hyperglycemia. However, metformin treatment may induce intrahepatic cholestasis and liver injury in a few patients with type II diabetes through an unknown mechanism. Here we show that metformin decreases SIRT1 protein levels in primary hepatocytes and liver. Both metformin-treated wild-type C57 mice and hepatic SIRT1-mutant mice had increased hepatic and serum bile acid levels. However, metformin failed to change systemic bile acid levels in hepatic SIRT1-mutant mice. Molecular mechanism study indicates that SIRT1 directly interacts with and deacetylates Foxa2 to inhibit its transcriptional activity on expression of genes involved in bile acids synthesis and transport. Hepatic SIRT1 mutation elevates Foxa2 acetylation levels, which promotes Foxa2 binding to and activating genes involved in bile acids metabolism, impairing hepatic and systemic bile acid homeostasis. Our data clearly suggest that hepatic SIRT1 mediates metformin effects on systemic bile acid metabolism and modulation of SIRT1 activity in liver may be an attractive approach for treatment of bile acid-related diseases such as cholestasis.

  8. Novel fatty acid acylation of lens integral membrane protein aquaporin-0.

    PubMed

    Schey, Kevin L; Gutierrez, Danielle B; Wang, Zhen; Wei, Junhua; Grey, Angus C

    2010-11-16

    Fatty acid acylation of proteins is a well-studied co- or posttranslational modification typically conferring membrane trafficking signals or membrane anchoring properties to proteins. Commonly observed examples of protein acylation include N-terminal myristoylation and palmitoylation of cysteine residues. In the present study, direct tissue profiling mass spectrometry of bovine and human lens sections revealed an abundant signal tentatively assigned as a lipid-modified form of aquaporin-0. LC/MS/MS proteomic analysis of hydrophobic tryptic peptides from lens membrane proteins revealed both N-terminal and C-terminal peptides modified by 238 and 264 Da which were subsequently assigned by accurate mass measurement as palmitoylation and oleoylation, respectively. Specific sites of modification were the N-terminal methionine residue and lysine 238 revealing, for the first time, an oleic acid modification via an amide linkage to a lysine residue. The specific fatty acids involved reflect their abundance in the lens fiber cell plasma membrane. Imaging mass spectrometry indicated abundant acylated AQP0 in the inner cortical region of both bovine and human lenses and acylated truncation products in the lens nucleus. Additional analyses revealed that the lipid-modified forms partitioned exclusively to a detergent-resistant membrane fraction, suggesting a role in membrane domain targeting.

  9. Recent insights into the biological functions of liver fatty acid binding protein 1

    PubMed Central

    Wang, GuQi; Bonkovsky, Herbert L.; de Lemos, Andrew; Burczynski, Frank J.

    2015-01-01

    Over four decades have passed since liver fatty acid binding protein (FABP)1 was first isolated. There are few protein families for which most of the complete tertiary structures, binding properties, and tissue occurrences are described in such detail and yet new functions are being uncovered for this protein. FABP1 is known to be critical for fatty acid uptake and intracellular transport and also has an important role in regulating lipid metabolism and cellular signaling pathways. FABP1 is an important endogenous cytoprotectant, minimizing hepatocyte oxidative damage and interfering with ischemia-reperfusion and other hepatic injuries. The protein may be targeted for metabolic activation through the cross-talk among many transcriptional factors and their activating ligands. Deficiency or malfunction of FABP1 has been reported in several diseases. FABP1 also influences cell proliferation during liver regeneration and may be considered as a prognostic factor for hepatic surgery. FABP1 binds and modulates the action of many molecules such as fatty acids, heme, and other metalloporphyrins. The ability to bind heme is another cytoprotective property and one that deserves closer investigation. The role of FABP1 in substrate availability and in protection from oxidative stress suggests that FABP1 plays a pivotal role during intracellular bacterial/viral infections by reducing inflammation and the adverse effects of starvation (energy deficiency). PMID:26443794

  10. Improved binding of acidic bone matrix proteins to cationized filters during solid phase assays.

    PubMed

    Farach-Carson, M C; Wright, G C; Butler, W T

    1992-01-01

    A number of commercially available matrix filter supports have been designed for the immobilization of proteins following either electrotransfer from sodium dodecyl sulfate (SDS) polyacrylamide gels or direct application during dot blotting assays. These matrices differ with respect to chemical composition, charge, pore size, and degree of hydrophobicity. It follows that the properties of the protein(s) of interest will greatly influence the degree to which they interact with and ultimately bind to various filters. Acidic bone proteins contain diverse post-translational modifications that influence their interactions with solid phase matrices such as those used in immunoblotting (Western or dot blotting) or ion binding (overlay) procedures. This communication describes the results of a study comparing binding of various mixtures of non-collagenous acidic bone matrix phosphoproteins as well as purified osteopontin and osteocalcin to various filters including nitrocellulose and cationized paper or nylon. Based on our findings, we recommend the use of cationized filters for solid phase assays requiring the binding of these acidic macromolecules to background supports.

  11. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    PubMed

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited.

  12. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures.

    PubMed

    Biedermannová, Lada; Schneider, Bohdan

    2015-11-01

    Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon-donor hydrogen bonds, OH-π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  13. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    PubMed Central

    Biedermannová, Lada; Schneider, Bohdan

    2015-01-01

    Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations. PMID:26527137

  14. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.

    PubMed

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  15. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles

    NASA Astrophysics Data System (ADS)

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  16. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    SciTech Connect

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J.

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  17. Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity.

    PubMed

    DuBois, Rebecca M; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J; White, Stephen W; Russell, Charles J

    2011-12-01

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  18. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.

    PubMed

    Zhao, Jian

    2015-04-01

    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.

  19. Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel.

    PubMed

    Cheung, Man C; Evans, James G; McKenna, Brian; Ehrlich, Daniel J

    2011-11-01

    By using imaging spectrophotometry with paired images in the 200- to 280-nm wavelength range, we have directly mapped intracellular nucleic acid and protein distributions across a population of Chinese hamster ovary (CHO-K1) cells. A broadband 100× objective with a numerical aperture of 1.2 NA (glycerin immersion) and a novel laser-induced-plasma point source generated high-contrast images with short (∼100 ms) exposures and a lateral resolution nearing 200 nm that easily resolves internal organelles. In a population of 420 CHO-K1 cells and 477 nuclei, we found a G1 whole-cell nucleic acid peak at 26.6 pg, a nuclear-isolated total nucleic acid peak at 11.4 pg, and, as inferred by RNase treatment, a G1 total DNA mass of 7.4 pg. At the G1 peak, we found a whole-cell protein mass of 95.6 pg, and a nuclear-isolated protein mass of 39.3 pg. An algorithm for protein quantification that senses peptide-bond (220-nm) absorbance was found to have a higher signal-to-noise ratio and to provide more reliable nucleic acid and protein determinations when compared to more classical 280/260-nm algorithms when used for intracellular mass mapping. Using simultaneous imaging with common nuclear stains (Hoechst 33342, Syto-14, and Sytox Orange), we have compared staining patterns to deep-UV images of condensed chromatin and have confirmed bias of these common nuclear stains related to nuclear packaging. The approach allows absolute mass measurements with no special sample preparation or staining. It can be used in conjunction with normal fluorescence microscopy and with relatively modest modification of the microscope.

  20. Protein adsorption from flowing solutions on pure and maleic acid copolymer modified glass particles.

    PubMed

    Klose, Theresia; Welzel, Petra B; Werner, Carsten

    2006-08-01

    The adsorption of human serum albumin (HSA) and lysozyme (LSZ) on pure as well as maleic acid (MA) copolymer coated spherical soda lime glass particles was investigated under flowing conditions. Coating the glass particles with two different maleic acid copolymers alters the properties of the particle surface concerning its charge and hydrophobicity in a well-defined gradation. Frontal chromatography was used to determine the surface concentration of the adsorbed proteins and to establish adsorption isotherms. The introduced methodology was demonstrated to provide a powerful means to study protein adsorption at solid/liquid interfaces. Investigations with virginal and protein-preadsorbed glass particles revealed that even under streaming conditions HSA is irreversibly adsorbed, whereas LSZ partially desorbs. For LSZ and HSA the adsorbed amounts and the isotherms strongly depend on the surface "history", i.e. the presence or absence of preadsorbed protein layers, and the kind of surface modification of the glass. Compared to the soda lime glass surface the adsorption of HSA was strongly increased on surfaces modified with a hydrophobic maleic acid copolymer indicating a strong hydrophobic protein-surface interaction. By coating the surface with a hydrophilic and more negatively charged maleic acid copolymer the adsorption of HSA to that surface was lower and comparable to the adsorption onto plain glass due to the electrostatic repulsion between HSA and the modified surface. In contrast the affinity to any of the investigated particle surfaces was generally higher for LSZ than for HSA which can be mainly attributed to the electrostatic attraction between LZS and the surface. The adsorbed amount of LSZ on the copolymer coated particle surfaces was much higher than on the pure soda lime glass particles indicating superposed hydrophobic interactions in the case of the hydrophobic MA copolymer layer and an increased density of anionic sites as well as interactions of

  1. Bacillus anthracis Overcomes an Amino Acid Auxotrophy by Cleaving Host Serum Proteins

    PubMed Central

    Terwilliger, Austen; Swick, Michelle C.; Pflughoeft, Kathryn J.; Pomerantsev, Andrei; Lyons, C. Rick; Koehler, Theresa M.

    2015-01-01

    ABSTRACT Bacteria sustain an infection by acquiring nutrients from the host to support replication. The host sequesters these nutrients as a growth-restricting strategy, a concept termed “nutritional immunity.” Historically, the study of nutritional immunity has centered on iron uptake because many bacteria target hemoglobin, an abundant circulating protein, as an iron source. Left unresolved are the mechanisms that bacteria use to attain other nutrients from host sources, including amino acids. We employed a novel medium designed to mimic the chemical composition of human serum, and we show here that Bacillus anthracis, the causative agent of anthrax disease, proteolyzes human hemoglobin to liberate essential amino acids which enhance its growth. This property can be traced to the actions of InhA1, a secreted metalloprotease, and extends to at least three other serum proteins, including serum albumin. The results suggest that we must also consider proteolysis of key host proteins to be a way for bacterial pathogens to attain essential nutrients, and we provide an experimental framework to determine the host and bacterial factors involved in this process. IMPORTANCE The mechanisms by which bacterial pathogens acquire nutrients during infection are poorly understood. Here we used a novel defined medium that approximates the chemical composition of human blood serum, blood serum mimic (BSM), to better model the nutritional environment that pathogens encounter during bacteremia. Removing essential amino acids from BSM revealed that two of the most abundant proteins in blood—hemoglobin and serum albumin—can satiate the amino acid requirement for Bacillus anthracis, the causative agent of anthrax. We further demonstrate that hemoglobin is proteolyzed by the secreted protease InhA1. These studies highlight that common blood proteins can be a nutrient source for bacteria. They also challenge the historical view that hemoglobin is solely an iron source for

  2. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum.

    PubMed

    Fairfax, Keke C; Vermeire, Jon J; Harrison, Lisa M; Bungiro, Richard D; Grant, Wayne; Husain, Sohail Z; Cappello, Michael

    2009-12-01

    Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anaemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesise essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real-time PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant (40-47%) reduction in intestinal worm burden compared with controls immunized with antigen or adjuvant alone. Together, these data suggest a potential role for AceFAR-1 in hookworm biology, making it a potentially valuable target for drug and vaccine development.

  3. Characterization of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum✯

    PubMed Central

    Fairfax, Keke C.; Vermeire, Jon J.; Harrison, Lisa M.; Bungiro, Richard D.; Grant, Wayne; Husain, Sohail Z.; Cappello, Michael

    2009-01-01

    Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesize essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real time-PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant