Sample records for acidic protein gfap-positive

  1. [Expression of vimentin and GFAP and development of the retina in the trout].

    PubMed

    De Guevara, R; Pairault, C; Pinganaud, G

    1994-08-01

    The glial cell development was studied during the edification of the retina and the optic tract, in a teleost, the rainbow trout. The intermediate filament proteins, vimentin and glial fibrillary acidic protein (GFAP) were visualized by an indirect immunohistochemical method. Results show that both vimentin and GFAP are early expressed in the developing retina and, particularly in the Müller cells, a coexpression of vimentin and GFAP is observed from embryonic to adult stages. The ganglion cell layer and the optic fiber layer both exhibit GFAP-positive structures. The deep staining for GFAP is also seen in the optic nerve and induces us to credit astrocyte-like cells with a leading role in the pattern formation of this tract.

  2. Glial Fibrillary Acidic Protein (GFAP) as a Mesenchymal marker of Early Hepatic Stellate Cells Activation in Liver Fibrosis in Chronic Hepatitis C Infection

    PubMed Central

    Hassan, Sobia; Syed, Serajuddaula; Kehar, Shahnaz Imdad

    2014-01-01

    Objective: This study aims to determine expression of Glial Fibrillary Acidic Protein and of Alpha Smooth Muscle Actin (α-SMA) in hepatic stellate cells of CHC cases and their association with stage of fibrosis. Methods: The study was conducted at Ziauddin University, Clifton Campus during the year 2010-2012. Sixty Chronic Hepatitis C cases were immmunostained using anti α-SMA antibody and anti-GFAP antibody. Semi quantitative scoring in pericentral, periportal and perisinusoidal area of each case was done to assess immunoexpression of each marker. Results : Immunoexpression of GFAP showed significant association with α-SMA. GFAP expression was inversely correlated with progression of fibrosis. Conclusion : GFAP could represent a useful marker for early hepatic stellate cells activation. Follow up biopsies showing decline in GFAP levels may help identify the target group requiring aggressive therapy. PMID:25225520

  3. Immunocytochemical localization of glial fibrillary acidic protein (GFAP) in the area postrema of the cat - Light and electron microscopic study

    NASA Technical Reports Server (NTRS)

    Damelio, F. E.; Gibbs, M. A.; Mehler, W. R.; Eng, L. F.

    1985-01-01

    Glial fibrillary acidic protein (GFAP) was demonstrated in the cytoplasm and processes of ependymal cells and astroglial components of the area postrema of the cat. These observations differ from the findings in the ependyma of the ventricular cavities which are consistently negative for the protein. Since some studies have suggested sensory functions of the glial cells in this emetic chemoreceptor trigger zone, a careful consideration of morphological and biochemical attributes of these cells seems appropriate.

  4. Phenotypic and Gene Expression Modification with Normal Brain Aging in GFAP-Positive Astrocytes and Neural Stem Cells

    PubMed Central

    Bernal, Giovanna M.; Peterson, Daniel A.

    2011-01-01

    Summary Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche, and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked if a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in gene expression of GFAP, VEGF and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits neural stem cell and progenitor cell maintenance and contributes to decreased neurogenesis. PMID:21385309

  5. Alexander Disease: A Novel Mutation in GFAP Leading to Epilepsia Partialis Continua.

    PubMed

    Bonthius, Daniel J; Karacay, Bahri

    2016-06-01

    Alexander disease is a genetically induced leukodystrophy, due to dominant mutations in the glial fibrillary acidic protein (GFAP ) gene, causing dysfunction of astrocytes. We have identified a novel GFAP mutation, associated with a novel phenotype for Alexander disease. A boy with global developmental delay and hypertonia was found to have a leukodystrophy. Genetic analysis revealed a heterozygous point mutation in exon 6 of the GFAP gene. The guanine-to-adenine change causes substitution of the normal glutamic acid codon (GAG) with a mutant lysine codon (AAG) at position 312 (E312 K mutation). At the age of 4 years, the child developed epilepsia partialis continua, consisting of unabating motor seizures involving the unilateral perioral muscles. Epilepsia partialis continua has not previously been reported in association with Alexander disease. Whether and how the E312 K mutation produces pathologic changes and clinical signs that are unique from other Alexander disease-inducing mutations in GFAP remain to be determined. © The Author(s) 2015.

  6. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells.

    PubMed

    Bernal, Giovanna M; Peterson, Daniel A

    2011-06-01

    Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  7. [Immunocytochemical localization of the GFAP in heterotransplanted human gliomas (author's transl)].

    PubMed

    Maunoury, R; Courdi, A; Vedrenne, C; Constans, J P

    1978-01-01

    Three cell lines derived in our laboratory from human malignant gliomas (SA 130, SA 132, SA 134) were injected subcutaneously into pathogen-free nude thymus less mice. These three cell lines gave origine to malignant tumors which, as original tumors, were positive for the glial fibrillary acidic protein (GFAP) revealed by immunoperoxidase method.

  8. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP

    PubMed Central

    Lin, Ni-Hsuan; Huang, Yu-Shan; Opal, Puneet; Goldman, Robert D.; Messing, Albee; Perng, Ming-Der

    2016-01-01

    Alexander disease (AxD) is a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding the intermediate filament (IF) protein GFAP. This disease is characterized by excessive accumulation of GFAP, known as Rosenthal fibers, within astrocytes. Abnormal GFAP aggregation also occurs in giant axon neuropathy (GAN), which is caused by recessive mutations in the gene encoding gigaxonin. Given that one of the functions of gigaxonin is to facilitate proteasomal degradation of several IF proteins, we sought to determine whether gigaxonin is involved in the degradation of GFAP. Using a lentiviral transduction system, we demonstrated that gigaxonin levels influence the degradation of GFAP in primary astrocytes and in cell lines that express this IF protein. Gigaxonin was similarly involved in the degradation of some but not all AxD-associated GFAP mutants. In addition, gigaxonin directly bound to GFAP, and inhibition of proteasome reversed the clearance of GFAP in cells achieved by overexpressing gigaxonin. These studies identify gigaxonin as an important factor that targets GFAP for degradation through the proteasome pathway. Our findings provide a critical foundation for future studies aimed at reducing or reversing pathological accumulation of GFAP as a potential therapeutic strategy for AxD and related diseases. PMID:27798231

  9. Carbon dots based immunosorbent assay for the determination of GFAP in human serum

    NASA Astrophysics Data System (ADS)

    Ma, Yunsu; Xu, Guanhong; Wei, Fangdi; Cen, Yao; Song, Yueyue; Ma, Yujie; Xu, Xiaoman; Shi, Menglan; Sohail, Muhammad; Hu, Qin

    2018-04-01

    Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system and the level of GFAP normally rises with brain injury and astroglial tumors. So, serum GFAP is used as a marker for diagnosing various types of brain damage and astroglial tumors. In this study, a new sensor based on carbon dots (CDs) linked with antibodies to specifically detect GFAP in human serum was developed. Anti-GFAP (Ab1) linked with protein A/G agarose resin (PA/G) as a capture antibody (PA/G-Ab1) and anti-GFAP (Ab2) labeled with CDs as a detection antibody (CDs-Ab2) were prepared firstly. Then the CD-linked antibody immunosorbent assay (CLAISA) method was constructed based on the sandwich conjunction reaction among PA/G-Ab1, GFAP, and CDs-Ab2. CLAISA, using the fluorescence of PA/G-Ab1-GFAP-Ab2-CDs as the direct signal, enabled the proposed immunosensor to detect GFAP sensitively with a linear range of 0.10-8.00 ng ml-1 and a detection limit of 25 pg ml-1. This method was applied to the determination of GFAP in human serum by the standard addition method, and the results showed high accuracy and precision. Considering the easy synthetic process and excellent performance of CLAISA, this method has great potential to be used to monitor GFAP in the clinic.

  10. Infantile Alexander Disease: Spectrum of GFAP Mutations and Genotype-Phenotype Correlation

    PubMed Central

    Rodriguez, Diana; Gauthier, Fernande; Bertini, Enrico; Bugiani, Marianna; Brenner, Michael; N'guyen, Sylvie; Goizet, Cyril; Gelot, Antoinette; Surtees, Robert; Pedespan, Jean-Michel; Hernandorena, Xavier; Troncoso, Monica; Uziel, Graziela; Messing, Albee; Ponsot, Gérard; Pham-Dinh, Danielle; Dautigny, André; Boespflug-Tanguy, Odile

    2001-01-01

    Heterozygous, de novo mutations in the glial fibrillary acidic protein (GFAP) gene have recently been reported in 12 patients affected by neuropathologically proved Alexander disease. We searched for GFAP mutations in a series of patients who had heterogeneous clinical symptoms but were candidates for Alexander disease on the basis of suggestive neuroimaging abnormalities. Missense, heterozygous, de novo GFAP mutations were found in exons 1 or 4 for 14 of the 15 patients analyzed, including patients without macrocephaly. Nine patients carried arginine mutations (four had R79H; four had R239C; and one had R239H) that have been described elsewhere, whereas the other five had one of four novel mutations, of which two affect arginine (2R88C and 1R88S) and two affect nonarginine residues (1L76F and 1N77Y). All mutations were located in the rod domain of GFAP, and there is a correlation between clinical severity and the affected amino acid. These results confirm that GFAP mutations are a reliable molecular marker for the diagnosis of infantile Alexander disease, and they also form a basis for the recommendation of GFAP analysis for prenatal diagnosis to detect potential cases of germinal mosaicism. PMID:11567214

  11. Performance of Glial Fibrillary Acidic Protein (GFAP) in Detecting Traumatic Intracranial Lesions on Computed Tomography in Children and Youth with Mild Head Trauma

    PubMed Central

    Papa, Linda; Zonfrillo, Mark; Ramirez, Jose; Silvestri, Salvatore; Giordano, Philip; Braga, Carolina F.; Tan, Ciara N.; Ameli, Neema J.; Lopez, Marco; Mittal, Manoj K.

    2015-01-01

    Objectives This study examined the performance of serum glial fibrillary acidic protein (GFAP) in detecting traumatic intracranial lesions on computed tomography (CT) scan in children and youth with mild and moderate traumatic brain injury (TBI), and assessed its performance in trauma control patients without head trauma. Methods This prospective cohort study enrolled children and youth presenting to three Level I trauma centers following blunt head trauma with Glasgow Coma Scale (GCS) scores of 9 to 15, as well as trauma control patients with GCS scores of 15 who did not have blunt head trauma. The primary outcome measure was the presence of intracranial lesions on initial CT scan. Blood samples were obtained in all patients within six hours of injury and measured by ELISA for GFAP (ng/ml). Results A total of 257 children and youth were enrolled in the study and had serum samples drawn within 6 hours of injury for analysis: 197 had blunt head trauma and 60 were trauma controls. CT scan of the head was performed in 152 patients and traumatic intracranial lesions on CT scan were evident in 18 (11%), all of whom had GCS scores of 13 to 15. When serum levels of GFAP were compared in children and youth with traumatic intracranial lesions on CT scan to those without CT lesions, median GFAP levels were significantly higher in those with intracranial lesions (1.01, IQR 0.59 to 1.48) than those without lesions (0.18, IQR 0.06 to 0.47). The area under the receiver operating characteristic (ROC) curve (AUC) for GFAP in detecting children and youth with traumatic intracranial lesions on CT was 0.82 (95% CI = 0.71 to 0.93). In those presenting with GCS scores of 15, the AUC for detecting lesions was 0.80 (95% CI = 0.68 to 0.92). Similarly, in children under five years old the AUC was 0.83 (95% CI = 0.56 to 1.00). Performance for detecting intracranial lesions at a GFAP cutoff level of 0.15 ng/ml yielded a sensitivity of 94%, a specificity of 47%, and a negative predictive

  12. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder.

    PubMed

    Cobb, J A; O'Neill, K; Milner, J; Mahajan, G J; Lawrence, T J; May, W L; Miguel-Hidalgo, J; Rajkowska, G; Stockmeier, C A

    2016-03-01

    Neuroimaging and postmortem studies of subjects with major depressive disorder (MDD) reveal smaller hippocampal volume with lengthening duration of illness. Pathology in astrocytes may contribute significantly to this reduced volume and to the involvement of the hippocampus in MDD. Postmortem hippocampal tissues were collected from 17 subjects with MDD and 17 psychiatrically-normal control subjects. Sections from the body of the hippocampus were immunostained for glial fibrillary acidic protein (GFAP), a marker of intermediate filament protein expressed in astrocytes. The density of GFAP-immunoreactive astrocytes was measured in the hippocampus using 3-dimensional cell counting. Hippocampal subfields were also assessed for GFAP-immunoreactive area fraction. In CA1, there was a significant positive correlation between age and either density or area fraction in MDD. The density of astrocytes in the hilus, but not CA1 or CA2/3, was significantly decreased only in depressed subjects not taking an antidepressant drug, but not for depressed subjects taking an antidepressant drug. The area fraction of GFAP-immunoreactivity was significantly decreased in the dentate gyrus in women but not men with depression. In CA2/3, the area fraction of GFAP-immunoreactivity was inversely correlated with the duration of depression in suicide victims. Astrocyte contributions to neuronal function in the hilus may be compromised in depressed subjects not taking antidepressant medication. Due to the cross-sectional nature of the present study of postmortem brain tissue, it remains to be determined whether antidepressant drug treatment prevented a decrease in GFAP-immunoreactive astrocyte density or restored cell density to normal levels. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease.

    PubMed

    Mignot, Cyril; Delarasse, Cécile; Escaich, Séverine; Della Gaspera, Bruno; Noé, Eric; Colucci-Guyon, Emma; Babinet, Charles; Pekny, Milos; Vicart, Patrick; Boespflug-Tanguy, Odile; Dautigny, André; Rodriguez, Diana; Pham-Dinh, Danielle

    2007-08-01

    Alexander disease (AxD) is a rare neurodegenerative disorder characterized by large cytoplasmic aggregates in astrocytes and myelin abnormalities and caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP), the main intermediate filament protein in astrocytes. We tested the effects of three mutations (R236H, R76H and L232P) associated with AxD in cells transiently expressing mutated GFAP fused to green fluorescent protein (GFP). Mutated GFAP-GFP expressed in astrocytes formed networks or aggregates similar to those found in the brains of patients with the disease. Time-lapse recordings of living astrocytes showed that aggregates of mutated GFAP-GFP may either disappear, associated with cell survival, or coalesce in a huge juxtanuclear structure associated with cell death. Immunolabeling of fixed cells suggested that this gathering of aggregates forms an aggresome-like structure. Proteasome inhibition and immunoprecipitation assays revealed mutated GFAP-GFP ubiquitination, suggesting a role of the ubiquitin-proteasome system in the disaggregation process. In astrocytes from wild-type-, GFAP-, and vimentin-deficient mice, mutated GFAP-GFP aggregated or formed a network, depending on qualitative and quantitative interactions with normal intermediate filament partners. Particularly, vimentin displayed an anti-aggregation effect on mutated GFAP. Our data indicate a dynamic and reversible aggregation of mutated GFAP, suggesting that therapeutic approaches may be possible.

  14. How Relevant Are GFAP Autoantibodies in Autism and Tourette Syndrome?

    ERIC Educational Resources Information Center

    Kirkman, Nikki J.; Libbey, Jane E.; Sweeten, Thayne L.; Coon, Hilary H.; Miller, Judith N.; Stevenson, Edward K.; Lainhart, Janet E.; McMahon, William M.; Fujinami, Robert S.

    2008-01-01

    Controversy exists over the role of autoantibodies to central nervous system antigens in autism and Tourette Syndrome. We investigated plasma autoantibody titers to glial fibrillary acidic protein (GFAP) in children with classic onset (33) and regressive onset (26) autism, controls (25, healthy age- and gender-matched) and individuals with…

  15. Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease

    PubMed Central

    LaPash Daniels, Christine M.; Paffenroth, Elizabeth; Austin, Elizabeth V.; Glebov, Konstantin; Lewis, Diana; Walter, Jochen; Messing, Albee

    2015-01-01

    Alexander disease is a fatal neurodegenerative disease caused by mutations in the astrocyte intermediate filament glial fibrillary acidic protein (GFAP). The disease is characterized by elevated levels of GFAP and the formation of protein aggregates, known as Rosenthal fibers, within astrocytes. Lithium has previously been shown to decrease protein aggregates by increasing the autophagy pathway for protein degradation. In addition, lithium has also been reported to decrease activation of the transcription factor STAT3, which is a regulator of GFAP transcription and astrogliogenesis. Here we tested whether lithium treatment would decrease levels of GFAP in a mouse model of Alexander disease. Mice with the Gfap-R236H point mutation were fed lithium food pellets for 4 to 8 weeks. Four weeks of treatment with LiCl at 0.5% in food pellets decreased GFAP protein and transcripts in several brain regions, although with mild side effects and some mortality. Extending the duration of treatment to 8 weeks resulted in higher mortality, and again with a decrease in GFAP in the surviving animals. Indicators of autophagy, such as LC3, were not increased, suggesting that lithium may decrease levels of GFAP through other pathways. Lithium reduced the levels of phosphorylated STAT3, suggesting this as one pathway mediating the effects on GFAP. In conclusion, lithium has the potential to decrease GFAP levels in Alexander disease, but with a narrow therapeutic window separating efficacy and toxicity. PMID:26378915

  16. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    PubMed Central

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  17. Mechanisms involved in epigenetic down-regulation of Gfap under maternal hypothyroidism.

    PubMed

    Kumar, Praveen; Godbole, Nachiket M; Chaturvedi, Chandra P; Singh, Ravi S; George, Nelson; Upadhyay, Aditya; Anjum, B; Godbole, Madan M; Sinha, Rohit A

    2018-07-20

    Thyroid hormones (TH) of maternal origin are crucial regulator of mammalian brain development during embryonic period. Although maternal TH deficiency during the critical periods of embryonic neo-cortical development often results in irreversible clinical outcomes, the fundamental basis of these abnormalities at a molecular level is still obscure. One of the key developmental process affected by maternal TH insufficiency is the delay in astrocyte maturation. Glial fibrillary acidic protein (Gfap) is a predominant cell marker of mature astrocyte and is regulated by TH status. Inspite, of being a TH responsive gene during neocortical development the mechanistic basis of Gfap transcriptional regulation by TH has remained elusive. In this study using rat model of maternal hypothyroidism, we provide evidence for an epigenetic silencing of Gfap under TH insufficiency and its recovery upon TH supplementation. Our results demonstrate increased DNA methylation coupled with decreased histone acetylation at the Gfap promoter leading to suppression of Gfap expression under maternal hypothyroidism. In concordance, we also observed a significant increase in histone deacetylase (HDAC) activity in neocortex of TH deficient embryos. Collectively, these results provide novel insight into the role of TH regulated epigenetic mechanisms, including DNA methylation, and histone modifications, which are critically important in mediating precise temporal neural gene regulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Cysteine-rich whey protein isolate (Immunocal®) ameliorates deficits in the GFAP.HMOX1 mouse model of schizophrenia.

    PubMed

    Song, Wei; Tavitian, Ayda; Cressatti, Marisa; Galindez, Carmela; Liberman, Adrienne; Schipper, Hyman M

    2017-09-01

    Schizophrenia is a neuropsychiatric disorder that features neural oxidative stress and glutathione (GSH) deficits. Oxidative stress is augmented in brain tissue of GFAP.HMOX1 transgenic mice which exhibit schizophrenia-relevant characteristics. The whey protein isolate, Immunocal® serves as a GSH precursor upon oral administration. In this study, we treated GFAP.HMOX1 transgenic mice daily with either Immunocal (33mg/ml drinking water) or equivalent concentrations of casein (control) between the ages of 5 and 6.5 months. Immunocal attenuated many of the behavioral, neurochemical and redox abnormalities observed in GFAP.HMOX1 mice. In addition to restoring GSH homeostasis in the CNS of the transgenic mice, the whey protein isolate augmented GSH reserves in the brains of wild-type animals. These results demonstrate that consumption of whey protein isolate augments GSH stores and antioxidant defenses in the healthy and diseased mammalian brain. Whey protein isolate supplementation (Immunocal) may constitute a safe and effective modality for the management of schizophrenia, an unmet clinical imperative. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging.

    PubMed

    Li, Tengfei; Bourgeois, Jean-Pierre; Celli, Susanna; Glacial, Fabienne; Le Sourd, Anne-Marie; Mecheri, Salah; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Rougeon, François; Lafaye, Pierre

    2012-10-01

    Antibodies normally do not cross the blood-brain barrier (BBB) and cannot bind an intracellular cerebral antigen. We demonstrate here for the first time that a new class of antibodies can cross the BBB without treatment. Camelids produce native homodimeric heavy-chain antibodies, the paratope being composed of a single-variable domain called VHH. Here, we used recombinant VHH directed against human glial fibrillary acidic protein (GFAP), a specific marker of astrocytes. Only basic VHHs (e.g., pI=9.4) were able to cross the BBB in vitro (7.8 vs. 0% for VHH with pI=7.7). By intracarotid and intravenous injections into live mice, we showed that these basic VHHs are able to cross the BBB in vivo, diffuse into the brain tissue, penetrate into astrocytes, and specifically label GFAP. To analyze their ability to be used as a specific transporter, we then expressed a recombinant fusion protein VHH-green fluorescent protein (GFP). These "fluobodies" specifically labeled GFAP on murine brain sections, and a basic variant (pI=9.3) of the fusion protein VHH-GFP was able to cross the BBB and to label astrocytes in vivo. The potential of VHHs as diagnostic or therapeutic agents in the central nervous system now deserves attention.

  20. Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice.

    PubMed

    Holmes, Andrew P; Wong, Shi Quan; Pulix, Michela; Johnson, Kirsty; Horton, Niamh S; Thomas, Patricia; de Magalhães, João Pedro; Plagge, Antonius

    2016-04-14

    Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while β-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive

  1. Endogenous GFAP-Positive Neural Stem/Progenitor Cells in the Postnatal Mouse Cortex Are Activated following Traumatic Brain Injury

    PubMed Central

    Ahmed, Aminul I.; Shtaya, Anan B.; Zaben, Malik J.; Owens, Emma V.; Kiecker, Clemens

    2012-01-01

    Abstract Interest in promoting regeneration of the injured nervous system has recently turned toward the use of endogenous stem cells. Elucidating cues involved in driving these precursor cells out of quiescence following injury, and the signals that drive them toward neuronal and glial lineages, will help to harness these cells for repair. Using a biomechanically validated in vitro organotypic stretch injury model, cortico-hippocampal slices from postnatal mice were cultured and a stretch injury equivalent to a severe traumatic brain injury (TBI) applied. In uninjured cortex, proliferative potential under in vitro conditions is virtually absent in older slices (equivalent postnatal day 15 compared to 8). However, following a severe stretch injury, this potential is restored in injured outer cortex. Using slices from mice expressing a fluorescent reporter on the human glial fibrillary acidic protein (GFAP) promoter, we show that GFAP+ cells account for the majority of proliferating neurospheres formed, and that these cells are likely to arise from the cortical parenchyma and not from the subventricular zone. Moreover, we provide evidence for a correlation between upregulation of sonic hedgehog signaling, a pathway known to regulate stem cell proliferation, and this restoration of regenerative potential following TBI. Our results indicate that a source of quiescent endogenous stem cells residing in the cortex and subcortical tissue proliferate in vitro following TBI. Moreover, these proliferating cells are multipotent and are derived mostly from GFAP-expressing cells. This raises the possibility of using this endogenous source of stem cells for repair following TBI. PMID:21895532

  2. GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury

    PubMed Central

    Berdugo-Vega, G; Arias-Gil, G; Rodriguez-Niedenführ, M; Davies, D C; Vázquez, T; Pascual-Font, A

    2014-01-01

    Changes that occur in astroglial populations of the nucleus ambiguus after recurrent (RLN) or superior (SLN) laryngeal nerve injury have hitherto not been fully characterised. In the present study, rat RLN and SLN were lesioned. After 3, 7, 14, 28 or 56 days of survival, the nucleus ambiguus was investigated by means of glial fibrillary acidic protein (GFAP) immunofluorescence or a combination of GFAP immunofluorescence and the application of retrograde tracers. GFAP immunoreactivity was significantly increased 3 days after RLN resection and it remained significantly elevated until after 28 days post injury (dpi). By 56 dpi it had returned to basal levels. In contrast, following RLN transection with repair, GFAP immunoreactivity was significantly elevated at 7 dpi and remained significantly elevated until 14 dpi. It had returned to basal levels by 28 dpi. Topographical analysis of the distribution of GFAP immunoreactivity revealed that after RLN injury, GFAP immunoreactivity was increased beyond the area of the nucleus ambiguus within which RLN motor neuron somata were located. GFAP immunoreactivity was also observed in the vicinity of neuronal somata that project into the uninjured SLN. Similarly, lesion of the SLN resulted in increased GFAP immunoreactivity around the neuronal somata projecting into it and also in the vicinity of the motor neuron somata projecting into the RLN. The increase in GFAP immunoreactivity outside of the region containing the motor neurons projecting into the injured nerve, may reflect the onset of a regenerative process attempting to compensate for impairment of one of the laryngeal nerves and may occur because of the dual innervation of the posterior cricoarytenoid muscle. This dual innervation of a very specialised muscle could provide a useful model system for studying the molecular mechanisms underlying axonal regeneration process and the results of the current study could provide the basis for studies into functional regeneration

  3. [Alterations of glial fibrillary acidic protein in rat brain after gamma knife irradiation].

    PubMed

    Ma, Z M; Jiang, B; Ma, J R

    2001-08-28

    To study glial fibrillary acidic protein (GFAP) immunoreactivity in different time and water content of the rat brain treated with gamma knife radiotherapy and to understand the alteration course of the brain lesion after a single high dose radiosurgical treatment. In the brains of the normal rats were irradiated by gamma knife with 160 Gy-high dose. The irradiated rats were then killed on the 1st day, 7th day, 14th day, and 28th day after radiotherapy, respectively. The positive cells of GFAP in brain tissue were detected by immunostaining; the water content of the brain tissue was measured by microgravimetry. The histological study of the irradiated brain tissue was performed with H.E. and examined under light microscope. The numbers of GFAP-positive astrocytes began to increase on the 1st day after gamma knife irradiation. It was enlarged markedly in the number and size of GFAP-stained astrocytes over the irradiated areas. Up to the 28th day, circumscribed necrosis foci (4 mm in diameter) was seen in the central area of the target. In the brain tissue around the necrosis, GFAP-positive astrocytes significantly increased (P < 0.01, compared with the control group). The swelling of cells in irradiated region was observed on the 1st day; after irradiation endothelial cells degenerated and red blood cells escaped from blood vessel on the 7th day; leakage of Evans blue dye was observed in the target region on the 14th day. There was a significant decrease of specific gravity in the irradiated brain tissue the 14th and 28th day after irradiation. The results suggest that GFAP can be used as a marker for the radiation-induced brain injury. The brain edema and disruption of brain-blood barrier can be occurred during the acute stage after irradiation.

  4. Germ-Line Recombination Activity of the Widely Used hGFAP-Cre and Nestin-Cre Transgenes

    PubMed Central

    Zhang, Jiong; Dublin, Pavel; Griemsmann, Stephanie; Klein, Alexandra; Brehm, Ralph; Bedner, Peter; Fleischmann, Bernd K.; Steinhäuser, Christian; Theis, Martin

    2013-01-01

    Herein we demonstrate with PCR, immunodetection and reporter gene approaches that the widely used human Glial Fibrillary Acidic Protein (hGFAP)-Cre transgene exhibits spontaneous germ-line recombination activity in leading to deletion in brain, heart and tail tissue with high frequency. The ectopic activity of hGFAP-Cre requires a rigorous control. We likewise observed that a second widely used nestin-Cre transgene shows germ-line deletion. Here we describe procedures to identify mice with germ-line recombination mediated by the hGFAP-Cre and nestin-Cre transgenes. Such control is essential to avoid pleiotropic effects due to germ-line deletion of loxP-flanked target genes and to maintain the CNS-restricted deletion status in transgenic mouse colonies. PMID:24349371

  5. Serum levels of Glial fibrillary acidic protein in Chinese children with autism spectrum disorders.

    PubMed

    Wang, Jingwei; Zou, Qiuyan; Han, Renfeng; Li, Yupeng; Wang, Yulin

    2017-04-01

    Glial fibrillary acidic protein (GFAP) has been studied in many neurological diseases. The purpose of this study is to investigate the potential role of GFAP in Chinese children with autism spectrum disorders (ASD) by measuring serum circulating levels of GFAP and comparing them with age and gender-matched typical development children. A total of one hundred and fifty 2-6 years old Chinese children (75 confirmed autism cases and 75 their age-gender matched typical development children) participated in this study. Serum levels of GFAP were assayed with enzyme-linked immunosorbent assay methods, and severity of ASD was evaluated with the Childhood Autism Rating Scale (CARS) Score. The results indicated that the mean serum GFAP level was significantly (P<0.001) higher in autistic children as compared to controls (1.71±0.53ng/ml vs. 0.99±0.25ng/ml). There was a significant positive association between serum GFAP levels and CARS scores (r [Pearson]=0.390, P=0.001). Based on the Receiver operating characteristic (ROC) curve, the optimal cut-off value of serum GFAP levels as an indicator for auxiliary diagnosis of autism was projected to be 1.28ng/ml which yielded a sensitivity of 77.3% and a specificity of 88.4%, the area under the curve was 0.895(95%CI, 0.844-0.947). Further, an increased risk of ASD was associated with GFAP levels >1.28ng/ml (adjusted OR 9.88, 95% CI: 3.32-17.82) in the multivariate logistic analysis model. The data indicates that serum GFAP levels may be associated with severity of ASD among Chinese children, suggesting the hypothesis that increased serum levels of GFAP could be implicated in the pathophysiology of autism in Chinese children. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  6. DREAM mediates cAMP-dependent, Ca2+-induced stimulation of GFAP gene expression and regulates cortical astrogliogenesis.

    PubMed

    Cebolla, Beatriz; Fernández-Pérez, Antonio; Perea, Gertrudis; Araque, Alfonso; Vallejo, Mario

    2008-06-25

    In the developing mouse brain, once the generation of neurons is mostly completed during the prenatal period, precisely coordinated signals act on competent neural precursors to direct their differentiation into astrocytes, which occurs mostly after birth. Among these signals, those provided by neurotrophic cytokines and bone morphogenetic proteins appear to have a key role in triggering the neurogenic to gliogenic switch and in regulating astrocyte numbers. In addition, we have reported previously that the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) is able to promote astrocyte differentiation of cortical precursors via activation of a cAMP-dependent pathway. Signals acting on progenitor cells of the developing cortex to generate astrocytes activate glial fibrillary acidic protein (GFAP) gene expression, but the transcriptional mechanisms that regulate this activation are unclear. Here, we identify the previously known transcriptional repressor downstream regulatory element antagonist modulator (DREAM) as an activator of GFAP gene expression. We found that DREAM occupies specific sites on the GFAP promoter before and after differentiation is initiated by exposure of cortical progenitor cells to PACAP. PACAP raises intracellular calcium concentration via a mechanism that requires cAMP, and DREAM-mediated transactivation of the GFAP gene requires the integrity of calcium-binding domains. Cortical progenitor cells from dream(-/-) mice fail to express GFAP in response to PACAP. Moreover, the neonatal cortex of dream(-/-) mice exhibits a reduced number of astrocytes and increased number of neurons. These results identify the PACAP-cAMP-Ca(2+)-DREAM cascade as a new pathway to activate GFAP gene expression during astrocyte differentiation.

  7. Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy: A Novel Meningoencephalomyelitis.

    PubMed

    Fang, Boyan; McKeon, Andrew; Hinson, Shannon R; Kryzer, Thomas J; Pittock, Sean J; Aksamit, Allen J; Lennon, Vanda A

    2016-11-01

    A novel astrocytic autoantibody has been identified as a biomarker of a relapsing autoimmune meningoencephalomyelitis that is immunotherapy responsive. Seropositivity distinguishes autoimmune glial fibrillary acidic protein (GFAP) meningoencephalomyelitis from disorders commonly considered in the differential diagnosis. To describe a novel IgG autoantibody found in serum or cerebrospinal fluid that is specific for a cytosolic intermediate filament protein of astrocytes. Retrospective review of the medical records of seropositive patients identified in the Mayo Clinic Neuroimmunology Laboratory from October 15, 1998, to April 1, 2016, in blinded comprehensive serologic evaluation for autoantibody profiles to aid the diagnosis of neurologic autoimmunity (and predict cancer likelihood). Frequency and definition of novel autoantibody, the autoantigen's immunochemical identification, clinical and magnetic resonance imaging correlations of the autoantibody, and immunotherapy responsiveness. Of 103 patients whose medical records were available for review, the 16 initial patients identified as seropositive were the subject of this study. Median age at neurologic symptom onset was 42 years (range, 21-73 years); there was no sex predominance. The novel neural autoantibody, which we discovered to be GFAP-specific, is disease spectrum restricted but not rare (frequency equivalent to Purkinje cell antibody type 1 [anti-Yo]). Its filamentous pial, subventricular, and perivascular immunostaining pattern on mouse tissue resembles the characteristic magnetic resonance imaging findings of linear perivascular enhancement in patients. Prominent clinical manifestations are headache, subacute encephalopathy, optic papillitis, inflammatory myelitis, postural tremor, and cerebellar ataxia. Cerebrospinal fluid was inflammatory in 13 of 14 patients (93%) with data available. Neoplasia was diagnosed within 3 years of neurologic onset in 6 of 16 patients (38%): prostate and gastroesophageal

  8. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus.

    PubMed

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.

  9. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus

    PubMed Central

    Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (−23%) and dentate gyrus (−48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183

  10. Diagnostic and prognostic value of preoperative combined GFAP, IGFBP-2, and YKL-40 plasma levels in patients with glioblastoma.

    PubMed

    Gállego Pérez-Larraya, Jaime; Paris, Sophie; Idbaih, Ahmed; Dehais, Caroline; Laigle-Donadey, Florence; Navarro, Soledad; Capelle, Laurent; Mokhtari, Karima; Marie, Yannick; Sanson, Marc; Hoang-Xuan, Khê; Delattre, Jean-Yves; Mallet, Alain

    2014-12-15

    Circulating proteins released by tumor cells have recently been investigated as potential single surrogate biomarkers for glioblastoma multiforme (GBM). The aim of the current hypothesis-generating study was to evaluate the diagnostic and prognostic role of preoperative insulin-like growth factor-binding protein 2 (IGFBP-2), chitinase-3-like protein 1 (YKL-40), and glial fibrillary acidic protein (GFAP) plasma levels in patients with GBM, both as single markers and as a combined profile. Plasma samples from 111 patients with GBM and a subset of 40 patients with nonglial brain tumors were obtained preoperatively. Plasma from 99 healthy controls was also analyzed. IGFBP-2, YKL-40, and GFAP levels were determined using enzyme-linked immunoadsorbent assay tests. Their association with histological and radiological variables was assessed. Circulating levels of all 3 proteins were found to be significantly higher in patients with GBM compared with healthy controls (P < .01). Only YKL-40 and GFAP were found to demonstrate significant differences between patients with GBM and nonglial brain tumors (P = .04). GFAP was undetectable (<0.02 ng/mL) in all patients without GBM. A receiver operating characteristic analysis accounting for a 2-step diagnostic procedure including the 3 biomarkers afforded an area under the curve of 0.77 for differentiating patients with GBM from those with nonglial brain tumors. There was a significant correlation between tumor volume and plasma IGFBP-2 level (Spearman Rho correlation coefficient, 0.22; P = .025) and GFAP (Spearman Rho correlation coefficient, 0.36; P < .001) among patients with GBM. Preoperative plasma IGFBP-2 levels were found to be independently associated with worse overall survival among patients with GBM (hazard ratio, 1.3; P = .05). A combined profile of preoperative IGFBP-2, GFAP, and YKL-40 plasma levels could serve as an additional diagnostic tool for patients with inoperable brain lesions suggestive of GBM. In

  11. GLUCOCORTICOIDS REGULATE THE SYNTHESIS OF GFAP IN INTACT AND ADRENALECTOMIZED RATS BUT DO NOT AFFECT ITS EXPRESSION FOLLOWING BRAIN INJURY

    EPA Science Inventory

    We examined the effects of corticosterone (CORT) on the amount of glial fibrillary acidic protein (GFAP) in INTACT, adrenalectomized (ADX) and brain-damaged rats. hort (5 days)- to long-term (4 months) CORT administration by injection, pellet implantation, or in the drinking wate...

  12. Central Nervous System and Vertebrae Development in Horses: a Chronological Study with Differential Temporal Expression of Nestin and GFAP.

    PubMed

    Rigoglio, Nathia N; Barreto, Rodrigo S N; Favaron, Phelipe O; Jacob, Júlio C F; Smith, Lawrence C; Gastal, Melba O; Gastal, Eduardo L; Miglino, Maria Angélica

    2017-01-01

    The neural system is one of the earliest systems to develop and the last to be fully developed after birth. This study presents a detailed description of organogenesis of the central nervous system (CNS) at equine embryonic/fetal development between 19 and 115 days of pregnancy. The expression of two important biomarkers in the main structure of the nervous system responsible for neurogenesis in the adult individual, and in the choroid plexus, was demonstrated by Nestin and glial fibrillary acid protein (GFAP) co-labeling. In the 29th day of pregnancy in the undifferentiated lateral ventricle wall, the presence of many cells expressing Nestin and few expressing GFAP was observed. After the differentiation of the lateral ventricle wall zones at 60 days of pregnancy, the subventricular zone, which initially had greater number of Nestin + cells, began to show higher numbers of GFAP + cells at 90 days of pregnancy. A similar pattern was observed for Nestin + and GFAP + cells during development of the choroid plexus. This study demonstrates, for the first time, detailed chronological aspects of the equine central nervous system organogenesis associated with downregulation of Nestin and upregulation of GFAP expression.

  13. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    PubMed

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  14. Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging.

    PubMed

    Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S

    2007-05-01

    Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.

  15. CDK5-induced p-PPARγ(Ser 112) downregulates GFAP via PPREs in developing rat brain: effect of metal mixture and troglitazone in astrocytes.

    PubMed

    Rai, A; Tripathi, S; Kushwaha, R; Singh, P; Srivastava, P; Sanyal, S; Bandyopadhyay, S

    2014-01-30

    The peroxisome proliferator-activated receptor gamma (PPARγ), a group of ligand-activated transcriptional factors, is expressed in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Here, we investigated the role of PPARγ in regulating GFAP using a mixture of As, Cd and Pb (metal mixture, MM) that induces apoptosis and aberrant morphology in rat brain astrocytes. We observed a phospho PPARγ (serine 112 (S112)) (p-PPARγ (S112))-mediated downregulation of GFAP in the MM-exposed astrocytes. We validated this using pure PPARγ agonist, troglitazone (TZ). As reported with MM, TZ induced astrocyte damage owing to reduced GFAP. In silico analysis in the non-coding region of GFAP gene revealed two PPARγ response elements (PPREs); inverted repeat 10 and direct repeat 1 sequences. Gel shift and chromatin immunoprecipitation assays demonstrated enhancement in binding of p-PPARγ (S112) to the sequences, and luciferase reporter assay revealed strong repression of GFAP via PPREs, in response to both MM and TZ. This indicated that suppression in GFAP indeed occurs through direct regulation of these elements by p-PPARγ (S112). Signaling studies proved that MM, as well as TZ, activated the cyclin-dependent kinase 5 (CDK5) and enhanced its interaction with PPARγ resulting into increased p-PPARγ (S112). The p-CDK5 levels were dependent on proximal activation of extracellular signal-regulated protein kinase 1/2 and downstream Jun N-terminal kinase. Taken together, these results are the first to delineate downregulation of GFAP through genomic and non-genomic signaling of PPARγ. It also brings forth a resemblance of TZ with MM in terms of astrocyte disarray in developing brain.

  16. Protein expression differs between neural progenitor cells from the adult rat brain subventricular zone and olfactory bulb.

    PubMed

    Maurer, Martin H; Feldmann, Robert E; Bürgers, Heinrich F; Kuschinsky, Wolfgang

    2008-01-16

    Neural progenitor cells can be isolated from various regions of the adult mammalian brain, including the forebrain structures of the subventricular zone and the olfactory bulb. Currently it is unknown whether functional differences in these progenitor cell populations can already be found on the molecular level. Therefore, we compared protein expression profiles between progenitor cells isolated from the subventricular zone and the olfactory bulb using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry. The subventricular zone and the olfactory bulb are connected by the Rostral Migratory Stream (RMS), in which glial fibrillary acidic protein (GFAP)-positive cells guide neuroblasts. Recent literature suggested that these GFAP-positive cells possess neurogenic potential themselves. In the current study, we therefore compared the cultured neurospheres for the fraction of GFAP-positive cells and their morphology of over a prolonged period of time. We found significant differences in the protein expression patterns between subventricular zone and olfactory bulb neural progenitor cells. Of the differentially expressed protein spots, 105 were exclusively expressed in the subventricular zone, 23 showed a lower expression and 51 a higher expression in the olfactory bulb. The proteomic data showed that more proteins are differentially expressed in olfactory bulb progenitors with regard to proteins involved in differentiation and microenvironmental integration, as compared to the subventricular zone progenitors. Compared to 94% of all progenitors of the subventricular zone expressed GFAP, nearly none in the olfactory bulb cultures expressed GFAP. Both GFAP-positive subpopulations differed also in morphology, with the olfactory bulb cells showing more branching. No differences in growth characteristics such as doubling time, and passage lengths could be found over 26 consecutive passages in the two cultures. In this study, we describe

  17. Llama VHH antibody fragments against GFAP: better diffusion in fixed tissues than classical monoclonal antibodies.

    PubMed

    Perruchini, Claire; Pecorari, Frederic; Bourgeois, Jean-Pierre; Duyckaerts, Charles; Rougeon, François; Lafaye, Pierre

    2009-11-01

    Camelids produce antibodies made of homodimeric heavy chains, and the antigen-binding region being composed of a single domain called VHH. These VHHs are much smaller than complete IgG. They are also more thermostable and more soluble in water; they should, therefore, diffuse more readily in the tissues. VHHs, expressed in bacteria, are easier to produce than conventional monoclonal antibodies. Because of these special characteristics, these antibody fragments could have interesting developments in immunohistochemistry and in the development of biomarkers. To test the possibility of their use in immunohistochemistry (IHC), we selected the glial fibrillary acidic protein (GFAP), a well-known marker of astrocytes. One alpaca (Lama pacos) was immunized against GFAP. Lymphocytes were isolated; the DNA was extracted; the VHH-coding sequences were selectively amplified. Three VHHs with a high affinity for GFAP and their corresponding mRNA were selected by ribosome display. Large quantities of the recombinant VHHs coupled with different tags were harvested from transfected bacteria. One of them was shown to immunolabel strongly and specifically to GFAP of human astrocytes in tissue sections. The quality of the IHC was comparable or, in some aspects, superior to the quality obtained with conventional IgG. The VHH was shown to diffuse on a longer distance than conventional monoclonal antibodies in fixed cortical tissue: a property that may be useful in immunolabeling of thick sections.

  18. Proteomic Analysis Reveals Differentially Regulated Protein Acetylation in Human Amyotrophic Lateral Sclerosis Spinal Cord

    PubMed Central

    Azadzoi, Kazem; Yang, Yun; Fei, Zhou; Dou, Kefeng; Kowall, Neil W.; Choi, Han-Pil; Vieira, Fernando; Yang, Jing-Hua

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Histone deacetylase (HDAC) inhibitors have neuroprotective effects potentially useful for the treatment of neurodegenerative diseases including ALS; however, the molecular mechanisms underlying their potential efficacy is not well understood. Here we report that protein acetylation in urea-soluble proteins is differently regulated in post-mortem ALS spinal cord. Two-dimensional electrophoresis (2-DE) analysis reveals several protein clusters with similar molecular weight but different charge status. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identifies glial fibrillary acidic protein (GFAP) as the dominant component in the protein clusters. Further analysis indicates six heavily acetylated lysine residues at positions 89, 153, 189, 218, 259 and 331 of GFAP. Immunoprecipitation followed by Western blotting confirms that the larger form of GFAP fragments are acetylated and upregulated in ALS spinal cord. Further studies demonstrate that acetylation of the proteins additional to GFAP is differently regulated, suggesting that acetylation and/or deacetylation play an important role in pathogenesis of ALS. PMID:24312501

  19. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP+ cells loss induced by restraint stress in mice.

    PubMed

    Perez-Urrutia, Nelson; Mendoza, Cristhian; Alvarez-Ricartes, Nathalie; Oliveros-Matus, Patricia; Echeverria, Florencia; Grizzell, J Alex; Barreto, George E; Iarkov, Alexandre; Echeverria, Valentina

    2017-09-01

    Posttraumatic stress disorder (PTSD), chronic psychological stress, and major depressive disorder have been found to be associated with a significant decrease in glial fibrillary acidic protein (GFAP) immunoreactivity in the hippocampus of rodents. Cotinine is an alkaloid that prevents memory impairment, depressive-like behavior and synaptic loss when co-administered during restraint stress, a model of PTSD and stress-induced depression, in mice. Here, we investigated the effects of post-treatment with intranasal cotinine on depressive- and anxiety-like behaviors, visual recognition memory as well as the number and morphology of GFAP+ immunoreactive cells, in the hippocampus and frontal cortex of mice subjected to prolonged restraint stress. The results revealed that in addition to the mood and cognitive impairments, restraint stress induced a significant decrease in the number and arborization of GFAP+ cells in the brain of mice. Intranasal cotinine prevented these stress-derived symptoms and the morphological abnormalities GFAP+ cells in both of these brain regions which are critical to resilience to stress. The significance of these findings for the therapy of PTSD and depression is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of enriched environment on alterations in the prefrontal cortex GFAP- and S100B-immunopositive astrocytes and behavioral deficits in MK-801-treated rats.

    PubMed

    Rahati, M; Nozari, M; Eslami, H; Shabani, M; Basiri, M

    2016-06-21

    A plethora of studies have indicated that enriched environment (EE) paradigm provokes plastic and morphological changes in astrocytes with accompanying increments of their density and positively affects the behavior of rodents. We also previously documented that EE could be employed to preclude several behavioral abnormalities, mainly cognitive deficits, attributed to postnatal N-methyl-d-aspartate (NMDA) receptor antagonist (MK-801) treatment, as a rodent model of schizophrenia (SCH) aspects. Given this, the current study quantitatively investigated the number of cells, presumed to be astrocytes, expressing two astroglia-associated proteins (S100B and glial fibrillary acidic protein (GFAP)) by immunohistochemistry in the prefrontal cortex (PFC), along with anxiety and passive avoidance (PA) learning behaviors by utilizing elevated plus maze (EPM) and shuttle-box tests, in MK-801-treated male wistar rats submitted to EE and non-EE rats. Following a treatment regime of sub-chronic MK-801 (1.0mg/kg i.p. daily for five consecutive days from postnatal day (P) 6), S-100B-positive cells and anxiety level were markedly increased, while the GFAP-positive cells and PA learning were notably attenuated. The trend of diminished GFAP-immunopositive cells and elevated S100B-immunostained cells in the PFC was reversed in the SCH-like rats by exposure of animals to EE, commencing from birth up to the time of experiments on P28-85. Additionally, EE exhibited an ameliorating effect on the behavioral abnormalities evoked by MK-801. Overall, present findings support that improper astrocyte functioning and behavioral changes, reminiscent of the many facets of SCH, occur consequential to repetitive administration of MK-801 and that raising rat pups in an EE mitigates these alterations. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients.

    PubMed

    Flanagan, Eoin P; Hinson, Shannon R; Lennon, Vanda A; Fang, Boyan; Aksamit, Allen J; Morris, P Pearse; Basal, Eati; Honorat, Josephe A; Alfugham, Nora B; Linnoila, Jenny J; Weinshenker, Brian G; Pittock, Sean J; McKeon, Andrew

    2017-02-01

    A novel autoimmune central nervous system (CNS) disorder with glial fibrillary acidic protein (GFAP)-IgG as biomarker was recently characterized. Here, 102 patients with GFAP-IgG positivity are described. The 102 included patients had: (1) serum, cerebrospinal fluid (CSF), or both that yielded a characteristic astrocytic pattern of mouse tissue immunostaining; (2) confirmation of IgG reactive with specific GFAP isoforms (α, ɛ, or κ) by cell-based assays; and (3) clinical data available. Control specimens (n = 865) were evaluated by tissue (n = 542) and cell-based (n = 323) assays. Median symptom onset age was 44 years (range = 8-103), and 54% were women. The predominant phenotype (83 patients; 81%) was inflammation of meninges, brain, spinal cord, or all 3 (meningoencephalomyelitis). Among patients, highest specificity for those phenotypes was observed for CSF testing (94%), and highest sensitivity was for the GFAPα isoform (100%). Rare GFAP-IgG positivity was encountered in serum controls by tissue-based assay (0.5%) or cell-based assay (1.5%), and in CSF controls by cell-based assay (0.9%). Among patients, striking perivascular radial enhancement was found on brain magnetic resonance imaging in 53%. Although cases frequently mimicked vasculitis, angiography was uniformly negative, and spinal imaging frequently demonstrated longitudinally extensive myelitic lesions. Diverse neoplasms encountered were found prospectively in 22%. Ovarian teratoma was most common and was predicted best when both N-methyl-D-aspartate receptor-IgG and aquaporin-4-IgG coexisted (71%). Six patients with prolonged follow-up had brisk corticosteroid response, but required additional immunosuppression to overcome steroid dependency. GFAPα-IgG, when detected in CSF, is highly specific for an immunotherapy-responsive autoimmune CNS disorder, sometimes with paraneoplastic cause. Ann Neurol 2017;81:298-309. © 2017 American Neurological Association.

  2. Age-Related Differences in Diagnostic Accuracy of Plasma GFAP and Tau For Identifying Acute Intracranial Trauma on CT: A TRACK-TBI Study.

    PubMed

    Gardner, Raquel C; Rubenstein, Richard; Wang, Kevin K W; Korley, Frederick Kofi; Yue, John K; Yuh, Esther Lim; Mukherjee, Pratik; Valadka, Alex; Okonkwo, David O; Diaz-Arrastia, Ramon; Manley, Geoffrey

    2018-05-02

    Plasma tau and glial fibrillary acidic protein (GFAP) are promising biomarkers for identifying traumatic brain injury (TBI) patients with intracranial trauma on CT. Accuracy in older adults with mild TBI (mTBI), the fastest growing TBI population, is unknown. Our aim was to assess for age-related differences in diagnostic accuracy of plasma tau and GFAP for identifying intracranial trauma on CT. Samples from 169 patients (age <40y [n=79], age 40-59y [n=60], age 60y+ [n=30]), a subset of patients from the TRACK-TBI Pilot study, who presented with mTBI (GCS 13-15), received head CT, and consented to blood-draw within 24h of injury were assayed for hyperphosphorylated-tau (P-tau), total-tau (T-tau; both via amplification-linked enhanced immunoassay using multi-arrayed fiberoptics), and GFAP (via sandwich enzyme-linked immunosorbent assay). P-tau, T-tau, P-tau:T-tau ratio, and GFAP concentration were significantly associated with CT findings. Overall, discriminative ability declined with increasing age for all assays, but this decline was only statistically significant for GFAP (area under the receiver operating characteristic curve [AUC]: old 0.73[ref] vs. young 0.93[p=0.037] or middle-aged 0.92[p<0.050]). P-tau concentration showed consistently highest diagnostic accuracy across all age-groups (AUC: old 0.84[ref] vs. young 0.95[p=0.274] or middle-aged 0.93[p=0.367]). Comparison of models including P-tau alone versus P-tau plus GFAP revealed significant added value of GFAP. In conclusion, the GFAP assay was less accurate for identifying intracranial trauma on CT among older versus younger mTBI patients. Mechanisms of this age-related difference, including role of assay methodology, specific TBI neuroanatomy, pre-existing conditions, and anti-thrombotic use warrant further study.

  3. Quiescent Oct4+ Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein+ NSCs in the Adult Mouse Brain.

    PubMed

    Reeve, Rachel L; Yammine, Samantha Z; Morshead, Cindi M; van der Kooy, Derek

    2017-09-01

    Adult primitive neural stem cells (pNSCs) are a rare population of glial fibrillary acidic protein (GFAP) - Oct4 + cells in the mouse forebrain subependymal zone bordering the lateral ventricles that give rise to clonal neurospheres in leukemia inhibitory factor in vitro. pNSC neurospheres can be passaged to self-renew or give rise to GFAP + NSCs that form neurospheres in epidermal growth factor and fibroblast growth factor 2, which we collectively refer to as definitive NSCs (dNSCs). Label retention experiments using doxycycline-inducible histone-2B (H2B)-green fluorescent protein (GFP) mice and several chase periods of up to 1 year quantified the adult pNSC cell cycle time as 3-5 months. We hypothesized that while pNSCs are not very proliferative at baseline, they may exist as a reserve pool of NSCs in case of injury. To test this function of pNSCs, we obtained conditional Oct4 knockout mice, Oct4 fl/fl ;Sox1 Cre (Oct4 CKO ), which do not yield adult pNSC-derived neurospheres. When we ablated the progeny of pNSCs, namely all GFAP + dNSCs, in these Oct4 CKO mice, we found that dNSCs did not recover as they do in wild-type mice, suggesting that pNSCs are necessary for dNSC repopulation. Returning to the H2B-GFP mice, we observed that the cytosine β-d-arabinofuranoside ablation of proliferating cells including dNSCs-induced quiescent pNSCs to proliferate and significantly dilute their H2B-GFP label. In conclusion, we demonstrate that pNSCs are the most quiescent stem cells in the adult brain reported to date and that their lineage position upstream of GFAP + dNSCs allows them to repopulate a depleted neural lineage. Stem Cells 2017;35:2071-2082. © 2017 AlphaMed Press.

  4. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells.

    PubMed

    Fielitz, Kathrin; Althoff, Kristina; De Preter, Katleen; Nonnekens, Julie; Ohli, Jasmin; Elges, Sandra; Hartmann, Wolfgang; Klöppel, Günter; Knösel, Thomas; Schulte, Marc; Klein-Hitpass, Ludger; Beisser, Daniela; Reis, Henning; Eyking, Annette; Cario, Elke; Schulte, Johannes H; Schramm, Alexander; Schüller, Ulrich

    2016-11-15

    Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies.

  5. Axonal Regeneration after Sciatic Nerve Lesion Is Delayed but Complete in GFAP- and Vimentin-Deficient Mice

    PubMed Central

    Berg, Alexander; Zelano, Johan; Pekna, Marcela; Wilhelmsson, Ulrika; Pekny, Milos; Cullheim, Staffan

    2013-01-01

    Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics. PMID:24223940

  6. Use of a heterologous monoclonal antibody for cloning and detection of glial fibrillary acidic protein in the bovine ventricular ependyma.

    PubMed

    Bouchard, P; Ravet, V; Meiniel, R; Creveaux, I; Meiniel, A; Vellet, A; Vigues, B

    1999-11-01

    From protozoans to vertebrates, ciliated cells are characterized by well-developed cytoskeletal structures. An outstanding example is the epiplasm, a thick, submembranous skeleton that serves to anchor basal bodies and other cell surface-related organelles in ciliated protozoans. An epiplasm-like cytoskeleton has not yet been observed in metazoan ciliated cells. In a previous study, we reported on MAb E501, a monoclonal antibody raised against epiplasmin-C, the major membrane skeletal protein in the ciliate Tetrahymena pyriformis. It was shown that MAb E501 cross-reacts with glial fibrillary acidic protein (GFAP), the class III intermediate filament protein found in astrocytes and other related glial elements. Here we used a post-embedding immunogold-staining method to localize MAb E501 cross-reactive antigens in ciliated cells from the ventricular ependyma in bovine embryos. When ependymocytes were treated with MAb E501, the ciliated region of the cell cortex was devoid of significant labeling. Instead, a gold particle deposit was evident around the nucleus, with only conventional ependymocytes being immunostained. Similar results were obtained by utilizing a rabbit antiserum against GFAP, revealing glial filaments and indicating an astroglial lineage of conventional bovine ependymocytes. In contrast, secretory ependymocytes of the subcommissural organ (SCO) were not stained by either of the two antibodies. Using MAb E501 as a heterologous probe, we cloned bovine GFAP cDNA. In situ hybridization experiments failed to detect GFAP transcripts in SCO ependymocytes, confirming the abscence of immunoreactivity in these cells.

  7. Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant.

    PubMed

    Melchionda, Laura; Fang, Mingyan; Wang, Hairong; Fugnanesi, Valeria; Morbin, Michela; Liu, Xuanzhu; Li, Wenyan; Ceccherini, Isabella; Farina, Laura; Savoiardo, Mario; D'Adamo, Pio; Zhang, Jianguo; Costa, Alfredo; Ravaglia, Sabrina; Ghezzi, Daniele; Zeviani, Massimo

    2013-05-01

    We studied a family including two half-siblings, sharing the same mother, affected by slowly progressive, adult-onset neurological syndromes. In spite of the diversity of the clinical features, characterized by a mild movement disorder with cognitive impairment in the elder patient, and severe motor-neuron disease (MND) in her half-brother, the brain Magnetic Resonance Imaging (MRI) features were compatible with adult-onset Alexander's disease (AOAD), suggesting different expression of the same, genetically determined, condition. Since mutations in the alpha isoform of glial fibrillary acidic protein, GFAP-α, the only cause so far known of AOAD, were excluded, we applied exome Next Generation Sequencing (NGS) to identify gene variants, which were then functionally validated by molecular characterization of recombinant and patient-derived cells. Exome-NGS revealed a mutation in a previously neglected GFAP isoform, GFAP-ϵ, which disrupts the GFAP-associated filamentous cytoskeletal meshwork of astrocytoma cells. To shed light on the different clinical features in the two patients, we sought for variants in other genes. The male patient had a mutation, absent in his half-sister, in X-linked histone deacetylase 6, a candidate MND susceptibility gene. Exome-NGS is an unbiased approach that not only helps identify new disease genes, but may also contribute to elucidate phenotypic expression.

  8. Production of transgenic pigs using a pGFAP-CreERT2/EGFP LoxP inducible system for central nervous system disease models.

    PubMed

    Hwang, Seon-Ung; Eun, Kiyoung; Yoon, Junchul David; Kim, Hyunggee; Hyun, Sang-Hwan

    2018-05-31

    Transgenic (TG) pigs are important in biomedical research and are used in disease modeling, pharmaceutical toxicity testing, and regenerative medicine. In this study, we constructed two vector systems by using the promoter of the pig glial fibrillary acidic protein ( pGFAP ) gene, which is an astrocyte cell marker. We established donor TG fibroblasts with pGFAP-CreER T2 /LCMV-EGFP LoxP and evaluated the effect of the transgenes on TG-somatic cell nuclear transfer (SCNT) embryo development. Cleavage rates were not significantly different between control and transgene-donor groups. Embryo transfer was performed thrice just before ovulation of the surrogate sows. One sow delivered 5 TG piglets at 115 days after pregnancy. Polymerase chain reaction (PCR) analysis with genomic DNA isolated from skin tissues of TG pigs revealed that all 5 TG pigs had the transgenes. EGFP expression in all organs tested was confirmed by immunofluorescence staining and PCR. Real-time PCR analysis showed that pGFAP promoter-driven Cre fused to the mutated human ligand-binding domain of the estrogen receptor ( CreER T2 ) mRNA was highly expressed in the cerebrum. Semi-nested PCR analysis revealed that CreER T2 -mediated recombination was induced in cerebrum and cerebellum but not in skin. Thus, we successfully generated a TG pig with a 4-hydroxytamoxifen (TM)-inducible pGFAP-CreER T2 /EGFP LoxP recombination system via SCNT.

  9. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.

    PubMed

    Guo, Zhibao; Wang, Xijuan; Xiao, Jun; Wang, Yihui; Lu, Hong; Teng, Junfang; Wang, Wei

    2013-09-26

    Early postnatal GFAP-expressing cells are thought to be immature astrocytes. However, it is not clear if they possess multilineage capacity and if they can generate different lineages (astrocytes, neurons and oligodendrocytes) in the brain of adult mice. In order to identify the fate of astroglial cells in the postnatal brain, hGFAP-Cre-ER(T2) transgenic mice were crossed with the R26R Cre reporter mouse strains which exhibit constitutive expression of β-galactosidase (β-gal). Mice carrying the hGFAP-Cre-ER(T2)/R26R transgene were treated with Tamoxifen to induce Cre recombination in astroglial cells at postnatal (P) day 6 and Cre recombinase-expressing cells were identified by X-gal staining. Immunohistochemical staining was used to identify the type(s) of these reporter-tagged cells. Sixty days after recombination, X-gal-positive cells in different cerebral regions of the adult mice expressed the astroglial markers Blbp and GFAP, the neuronal marker NeuN, the oligodendrocyte precursor cell marker NG2 and the mature oligodendrocyte marker CC1. X-gal-positive cells in the cerebellum coexpressed the astroglial marker Blbp, but not the granule cell marker NeuN, Purkinje cell marker Calbindin or oligodendrocyte precursor cell marker NG2. Our genetic fate mapping data demonstrated that early postnatal GFAP-positive cells possessed multilineage potential and eventually differentiated into neurons, astrocytes, and oligodendrocyte precursor cells in the cerebrum and into astrocytes (including Bergmann glia) in the cerebellum of adult mice. © 2013 Elsevier B.V. All rights reserved.

  10. Use of conserved key amino acid positions to morph protein folds.

    PubMed

    Reddy, Boojala V B; Li, Wilfred W; Bourne, Philip E

    2002-07-15

    By using three-dimensional (3D) structure alignments and a previously published method to determine Conserved Key Amino Acid Positions (CKAAPs) we propose a theoretical method to design mutations that can be used to morph the protein folds. The original Paracelsus challenge, met by several groups, called for the engineering of a stable but different structure by modifying less than 50% of the amino acid residues. We have used the sequences from the Protein Data Bank (PDB) identifiers 1ROP, and 2CRO, which were previously used in the Paracelsus challenge by those groups, and suggest mutation to CKAAPs to morph the protein fold. The total number of mutations suggested is less than 40% of the starting sequence theoretically improving the challenge results. From secondary structure prediction experiments of the proposed mutant sequence structures, we observe that each of the suggested mutant protein sequences likely folds to a different, non-native potentially stable target structure. These results are an early indicator that analyses using structure alignments leading to CKAAPs of a given structure are of value in protein engineering experiments. Copyright 2002 Wiley Periodicals, Inc.

  11. Ovarian Teratoma Associated with Coexisting Anti-N-Methyl-D-Aspartate Receptor and Glial Fibrillary Acidic Protein Autoimmune Meningoencephalitis in an Adolescent Girl: A Case Report.

    PubMed

    Martin, Alexandra L; Jolliffe, Evan; Hertweck, S Paige

    2018-06-01

    Ovarian teratomas are rarely associated with paraneoplastic autoimmune meningoencephalitis. In addition to the well known N-methyl-D-aspartate receptor (NMDA-R) antibody, the glial fibrillary acidic protein (GFAP) antibody is a novel biomarker of autoimmune meningoencephalitis that might be seen in patients with ovarian teratoma. A 13-year-old girl with acute-onset meningoencephalitis and incidental finding of ovarian teratoma was found to have coexisting anti-NMDA-R and GFAP antibodies present in her cerebrospinal fluid. NMDA-R and GFAP autoimmune encephalitis should be considered in adolescent patients with neurologic or psychiatric symptoms and an ovarian teratoma. Prompt diagnosis and surgical resection increase the likelihood of full neurologic recovery. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  12. Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 as Outcome Predictors in Traumatic Brain Injury.

    PubMed

    Takala, Riikka S K; Posti, Jussi P; Runtti, Hilkka; Newcombe, Virginia F; Outtrim, Joanne; Katila, Ari J; Frantzén, Janek; Ala-Seppälä, Henna; Kyllönen, Anna; Maanpää, Henna-Riikka; Tallus, Jussi; Hossain, Md Iftakher; Coles, Jonathan P; Hutchinson, Peter; van Gils, Mark; Menon, David K; Tenovuo, Olli

    2016-03-01

    Biomarkers ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) may help detect brain injury, assess its severity, and improve outcome prediction. This study aimed to evaluate the prognostic value of these biomarkers during the first days after brain injury. Serum UCH-L1 and GFAP were measured in 324 patients with traumatic brain injury (TBI) enrolled in a prospective study. The outcome was assessed using the Glasgow Outcome Scale (GOS) or the extended version, Glasgow Outcome Scale-Extended (GOSE). Patients with full recovery had lower UCH-L1 concentrations on the second day and patients with favorable outcome had lower UCH-L1 concentrations during the first 2 days compared with patients with incomplete recovery and unfavorable outcome. Patients with full recovery and favorable outcome had significantly lower GFAP concentrations in the first 2 days than patients with incomplete recovery or unfavorable outcome. There was a strong negative correlation between outcome and UCH-L1 in the first 3 days and GFAP levels in the first 2 days. On arrival, both UCH-L1 and GFAP distinguished patients with GOS score 1-3 from patients with GOS score 4-5, but not patients with GOSE score 8 from patients with GOSE score 1-7. For UCH-L1 and GFAP to predict unfavorable outcome (GOS score ≤ 3), the area under the receiver operating characteristic curve was 0.727, and 0.723, respectively. Neither UCHL-1 nor GFAP was independently able to predict the outcome when age, worst Glasgow Coma Scale score, pupil reactivity, Injury Severity Score, and Marshall score were added into the multivariate logistic regression model. GFAP and UCH-L1 are significantly associated with outcome, but they do not add predictive power to commonly used prognostic variables in a population of patients with TBI of varying severities. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Adaptive Calcified Matrix Response of Dental Pulp to Bacterial Invasion Is Associated with Establishment of a Network of Glial Fibrillary Acidic Protein+/Glutamine Synthetase+ Cells

    PubMed Central

    Farahani, Ramin M.; Nguyen, Ky-Anh; Simonian, Mary; Hunter, Neil

    2010-01-01

    We report evidence for anatomical and functional changes of dental pulp in response to bacterial invasion through dentin that parallel responses to noxious stimuli reported in neural crest-derived sensory tissues. Sections of resin-embedded carious adult molar teeth were prepared for immunohistochemistry, in situ hybridization, ultrastructural analysis, and microdissection to extract mRNA for quantitative analyses. In odontoblasts adjacent to the leading edge of bacterial invasion in carious teeth, expression levels of the gene encoding dentin sialo-protein were 16-fold greater than in odontoblasts of healthy teeth, reducing progressively with distance from this site of the carious lesion. In contrast, gene expression for dentin matrix protein-1 by odontoblasts was completely suppressed in carious teeth relative to healthy teeth. These changes in gene expression were related to a gradient of deposited reactionary dentin that displayed a highly modified structure. In carious teeth, interodontoblastic dentin sialo-protein− cells expressing glutamine synthetase (GS) showed up-regulation of glial fibrillary acidic protein (GFAP). These cells extended processes that associated with odontoblasts. Furthermore, connexin 43 established a linkage between adjacent GFAP+/GS+ cells in carious teeth only. These findings indicate an adaptive pulpal response to encroaching caries that includes the deposition of modified, calcified, dentin matrix associated with networks of GFAP+/GS+ interodontoblastic cells. A regulatory role for the networks of GFAP+/GS+ cells is proposed, mediated by the secretion of glutamate to modulate odontoblastic response. PMID:20802180

  14. Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein and Its Breakdown Products

    PubMed Central

    Mondello, Stefania; Newsom, Kimberly J.; Yang, Zhihui; Yang, Boxuan; Kobeissy, Firas; Guingab, Joy; Glushakova, Olena; Robicsek, Steven; Heaton, Shelley; Buki, Andras; Hannay, Julia; Gold, Mark S.; Rubenstein, Richard; Lu, Xi-chun May; Dave, Jitendra R.; Schmid, Kara; Tortella, Frank; Robertson, Claudia S.; Wang, Kevin K. W.

    2014-01-01

    The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38–50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0–1 days) to late (7–10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients. PMID:24667434

  15. Reduction in the number of astrocytes and their projections is associated with increased synaptic protein density in the hypothalamus of poorly controlled diabetic rats.

    PubMed

    Lechuga-Sancho, Alfonso M; Arroba, Ana I; Frago, Laura M; García-Cáceres, Cristina; de Célix, Arancha Delgado-Rubín; Argente, Jesús; Chowen, Julie A

    2006-11-01

    Processes under hypothalamic control, such as thermogenesis, feeding behavior, and pituitary hormone secretion, are disrupted in poorly controlled diabetes, but the underlying mechanisms are poorly understood. Because glial cells regulate neurosecretory neurons through modulation of synaptic inputs and function, we investigated the changes in hypothalamic glia in rats with streptozotocin-induced diabetes mellitus. Hypothalamic glial fibrillary acidic protein (GFAP) levels decreased significantly 6 wk after diabetes onset. This was coincident with decreased GFAP immunoreactive surface area, astrocyte number, and the extension of GFAP immunoreactive processes/astrocyte in the arcuate nucleus. Cell death, analyzed by terminal deoxyuridine 5-triphosphate nick-end labeling and ELISA, increased significantly at 4 wk of diabetes. Proliferation, measured by Western blot for proliferating cell nuclear antigen and immunostaining for phosphorylated histone H-3, decreased in the hypothalamus of diabetic rats throughout the study, becoming significantly reduced by 8 wk. Both proliferation and death affected astroctyes because both phosphorylated histone H-3- and terminal deoxyuridine 5-triphosphate nick-end labeling-labeled cells were GFAP positive. Western blot analysis revealed that postsynaptic density protein 95 and the presynaptic proteins synapsin I and synaptotagmin increased significantly at 8 wk of diabetes, suggesting increased hypothalamic synaptic density. Thus, in poorly controlled diabetic rats, there is a decrease in the number of hypothalamic astrocytes that is correlated with modifications in synaptic proteins and possibly synaptic inputs. These morphological changes in the arcuate nucleus could be involved in neurosecretory and metabolic changes seen in diabetic animals.

  16. Effects of hypothermia on S100B and glial fibrillary acidic protein in asphyxia rats after cardiopulmonary resuscitation.

    PubMed

    Liu, Sha; Zhang, Yibing; Zhao, Yong; Cui, Haifeng; Cao, Chunyu; Guo, Jianyou

    2015-01-01

    The aim of the study was to investigate the effects of hypothermia on S100B and glial fibrillary acidic protein (GFAP) in serum and hippocampus CA1 area in asphyxiated rats after cardiopulmonary resuscitation (CPR). A total of 100 SD rats were designated into four groups: group A, sham operation group; group B, rats received conventional resuscitation; group C, rats received conventional resuscitation and hypothermia at cardiac arrest; group D, rats received conventional resuscitation and hypothermia at 30 min after restoration of spontaneous circulation (ROSC). Rats were then killed by cardiac arrest at 2 and 4 h after ROSC; brain tissue was taken to observe dynamic changes of S100B and GFAP in serum and hippocampus CA1 area. Following ROSC, S100B levels increased from 2 to 4 h in group B, C, and D. In addition, S100B in serum and hippocampus CA1 area was all significantly increased at different time points compared with group A (P < 0.05). Following ROSC, serum S100B level at 2 h in group C was significantly decreased compared with group B, but the difference was not statistically significant (P > 0.05). Moreover, S100B in serum at 4 h after ROSC was significantly decreased (P < 0.05), S100B in cortex was significantly decreased (P < 0.05). The expression of GFAP was also examined. GFAP level in hippocampus CA1 area was significantly decreased in group B, C, and D at 4 h after ROSC compared with group A (P < 0.05). S100B and GFAP were expressed in rat serum and hippocampus CA2 area at early stage after ROSC, which can be used as sensitive markers for brain injury diagnosis and prognosis prediction. Hypothermia is also shown to reduce brain injury after CPR.

  17. Beta-and gamma-turns in proteins revisited: a new set of amino acid turn-type dependent positional preferences and potentials.

    PubMed

    Guruprasad, K; Rajkumar, S

    2000-06-01

    The number of beta-turns in a representative set of 426 protein three-dimensional crystal structures selected from the recent Protein Data Bank has nearly doubled and the number of gamma-turns in a representative set of 320 proteins has increased over seven times since the previous analysis. Beta-turns (7153) and gamma-turns (911) extracted from these proteins were used to derive a revised set of type-dependent amino acid positional preferences and potentials. Compared with previous results, the preference for proline, methionine and tryptophan has increased and the preference for glutamine, valine, glutamic acid and alanine has decreased for beta-turns. Certain new amino acid preferences were observed for both turn types and individual amino acids showed turn-type dependent positional preferences. The rationale for new amino acid preferences are discussed in the light of hydrogen bonds and other interactions involving the turns. Where main-chain hydrogen bonds of the type NH(i + 3) --> CO(i) were not observed for some beta-turns, other main-chain hydrogen bonds or solvent interactions were observed that possibly stabilize such beta-turns. A number of unexpected isolated beta-turns with proline at i + 2 position were also observed. The NH(i + 2) --> CO(i) hydrogen bond was observed for almost all gamma-turns. Nearly 20% classic gamma-turns and 43% inverse gamma-turns are isolated turns.

  18. Hemangioblastomas: histogenesis of the stromal cell studied by immunocytochemistry.

    PubMed

    Jurco, S; Nadji, M; Harvey, D G; Parker, J C; Font, R L; Morales, A R

    1982-01-01

    Twenty-one cases of hemangioblastoma from the cerebellum, spinal cord and retina were studied using the unlabeled antibody peroxidase-antiperoxidase technique with antibodies directed against glial fibrillary acidic protein (GFAP) and factor VIII related antigen (VIIIR:Ag). In 19 of 21 cases studied with anti-GFAP, astrocytes were identified peripherally, and in 13 cases they were found centrally within the tumor. In no instance did stromal cells react positively for GFAP. Sixteen cases with anti-VIIIR:Ag antibody were examined, and in all cases many stromal cells showed positive staining. It is concluded that the stromal cells were of endothelial origin. The occasional stromal cells that other investigators have identified as reacting positively for GFAP may represent stromal cells capable of ingesting extracellular GFAP derived from reactive astrocytes within the tumor, or they may be lipidized astrocytes.

  19. In Silico Prediction and Validation of Gfap as an miR-3099 Target in Mouse Brain.

    PubMed

    Abidin, Shahidee Zainal; Leong, Jia-Wen; Mahmoudi, Marzieh; Nordin, Norshariza; Abdullah, Syahril; Cheah, Pike-See; Ling, King-Hwa

    2017-08-01

    MicroRNAs are small non-coding RNAs that play crucial roles in the regulation of gene expression and protein synthesis during brain development. MiR-3099 is highly expressed throughout embryogenesis, especially in the developing central nervous system. Moreover, miR-3099 is also expressed at a higher level in differentiating neurons in vitro, suggesting that it is a potential regulator during neuronal cell development. This study aimed to predict the target genes of miR-3099 via in-silico analysis using four independent prediction algorithms (miRDB, miRanda, TargetScan, and DIANA-micro-T-CDS) with emphasis on target genes related to brain development and function. Based on the analysis, a total of 3,174 miR-3099 target genes were predicted. Those predicted by at least three algorithms (324 genes) were subjected to DAVID bioinformatics analysis to understand their overall functional themes and representation. The analysis revealed that nearly 70% of the target genes were expressed in the nervous system and a significant proportion were associated with transcriptional regulation and protein ubiquitination mechanisms. Comparison of in situ hybridization (ISH) expression patterns of miR-3099 in both published and in-house-generated ISH sections with the ISH sections of target genes from the Allen Brain Atlas identified 7 target genes (Dnmt3a, Gabpa, Gfap, Itga4, Lxn, Smad7, and Tbx18) having expression patterns complementary to miR-3099 in the developing and adult mouse brain samples. Of these, we validated Gfap as a direct downstream target of miR-3099 using the luciferase reporter gene system. In conclusion, we report the successful prediction and validation of Gfap as an miR-3099 target gene using a combination of bioinformatics resources with enrichment of annotations based on functional ontologies and a spatio-temporal expression dataset.

  20. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury

    PubMed Central

    Figueroa, Johnny D.; Serrano-Illan, Miguel; Licero, Jenniffer; Cordero, Kathia; Miranda, Jorge D.

    2016-01-01

    Abstract Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA–mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN+ neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP+, APC+, and NG2+) and precursor cells (DCX+, nestin+). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the

  1. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    PubMed

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  2. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis.

    PubMed

    Madeddu, Roberto; Farace, Cristiano; Tolu, Paola; Solinas, Giuliana; Asara, Yolande; Sotgiu, Maria Alessandra; Delogu, Lucia Gemma; Prados, Jose Carlos; Sotgiu, Stefano; Montella, Andrea

    2013-02-01

    The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p < 0.0001) in MS than in OND group; no significant difference (p > 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable.

  3. Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study

    PubMed Central

    2011-01-01

    Background Fragile X syndrome is caused by loss of function of the fragile X mental retardation 1 (FMR1) gene and shares multiple phenotypes with autism. We have previously found reduced expression of the protein product of FMR1 (FMRP) in vermis of adults with autism. Methods In the current study, we have investigated levels of FMRP in the superior frontal cortex of people with autism and matched controls using Western blot analysis. Because FMRP regulates the translation of multiple genes, we also measured protein levels for downstream molecules metabotropic glutamate receptor 5 (mGluR5) and γ-aminobutyric acid (GABA) A receptor β3 (GABRβ3), as well as glial fibrillary acidic protein (GFAP). Results We observed significantly reduced levels of protein for FMRP in adults with autism, significantly increased levels of protein for mGluR5 in children with autism and significantly increased levels of GFAP in adults and children with autism. We found no change in expression of GABRβ3. Our results for FMRP, mGluR5 and GFAP confirm our previous work in the cerebellar vermis of people with autism. Conclusion These changes may be responsible for cognitive deficits and seizure disorder in people with autism. PMID:21548960

  4. Mechanisms and Treatment of OP-Induced Seizures and Neuropathology

    DTIC Science & Technology

    1993-08-18

    Millan, M. H., Patel, S., Mello, L. M. and Meldrum , B. S., Focal injection of 2-amino-7- phosphonoheptanoic acid into prepiriform cortex protects against...LIST OF FIGURES Figure 1. Rapid, selective induction of c-fos and glial fibrillary acidic protein (GFAP) in piriform cortex (PC) by a single...specific to astrocytes, glial fibrillary acidic protein (GFAP). We found that there was a robust increase in GFAP staining in layers Il-III of PC that

  5. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinasemore » C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in

  6. Environmental impacts on the developing CNS: CD15, NCAM-L1, and GFAP expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Sulkowski, G. M.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl- N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which

  7. Evaluation of guggulipid and nimesulide on production of inflammatory mediators and GFAP expression in LPS stimulated rat astrocytoma, cell line (C6).

    PubMed

    Niranjan, Rituraj; Kamat, Pradeep Kumar; Nath, Chandishwar; Shukla, Rakesh

    2010-02-17

    The present study was designed to investigate effect of guggulipid, a drug developed by CDRI and nimesulide on LPS stimulated neuroinflammatory changes in rat astrocytoma cell line (C6). Rat astrocytoma cells (C6) were stimulated with LPS (10 microg/ml) alone and in combinations with different concentrations of guggulipid or nimesulide for 24h of incubation. Nitrite release in culture supernatant, ROS in cells, expressions of COX-2, GFAP and TNF-alpha in cell lysate were estimated. LPS (10 microg/ml) stimulated C6 cells to release nitrite, ROS generation, up regulated COX-2 and GFAP expressions at protein level and TNF-alpha at mRNA level. Both guggulipid and nimesulide significantly attenuated nitrite release, ROS generation and also down regulated expressions of COX-2, GFAP and TNF-alpha. Guggulipid and nimesulide per se did not have any significant effect on C6 cells. Results demonstrate the anti-inflammatory effect of guggulipid comparable to nimesulide which suggest potential use of guggulipid in neuroinflammation associated conditions in CNS disorders. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study.

    PubMed

    Wang, Kevin K W; Yang, Zhihui; Yue, John K; Zhang, Zhiqun; Winkler, Ethan A; Puccio, Ava M; Diaz-Arrastia, Ramon; Lingsma, Hester F; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Gordon, Wayne A; Okonkwo, David O; Manley, Geoffrey T; Cooper, Shelly R; Dams-O'Connor, Kristen; Hricik, Allison J; Inoue, Tomoo; Maas, Andrew I R; Menon, David K; Schnyer, David M; Sinha, Tuhin K; Vassar, Mary J

    2016-07-01

    We described recently a subacute serum autoantibody response toward glial fibrillary acidic protein (GFAP) and its breakdown products 5-10 days after severe traumatic brain injury (TBI). Here, we expanded our anti-GFAP autoantibody (AutoAb[GFAP]) investigation to the multicenter observational study Transforming Research and Clinical Knowledge in TBI Pilot (TRACK-TBI Pilot) to cover the full spectrum of TBI (Glasgow Coma Scale 3-15) by using acute (<24 h) plasma samples from 196 patients with acute TBI admitted to three Level I trauma centers, and a second cohort of 21 participants with chronic TBI admitted to inpatient TBI rehabilitation. We find that acute patients self-reporting previous TBI with loss of consciousness (LOC) (n = 43) had higher day 1 AutoAb[GFAP] (mean ± standard error: 9.11 ± 1.42; n = 43) than healthy controls (2.90 ± 0.92; n = 16; p = 0.032) and acute patients reporting no previous TBI (2.97 ± 0.37; n = 106; p < 0.001), but not acute patients reporting previous TBI without LOC (8.01 ± 1.80; n = 47; p = 0.906). These data suggest that while exposure to TBI may trigger the AutoAb[GFAP] response, circulating antibodies are elevated specifically in acute TBI patients with a history of TBI. AutoAb[GFAP] levels for participants with chronic TBI (average post-TBI time 176 days or 6.21 months) were also significantly higher (15.08 ± 2.82; n = 21) than healthy controls (p < 0.001). These data suggest a persistent upregulation of the autoimmune response to specific brain antigen(s) in the subacute to chronic phase after TBI, as well as after repeated TBI insults. Hence, AutoAb[GFAP] may be a sensitive assay to study the dynamic interactions between post-injury brain and patient-specific autoimmune responses across acute and chronic settings after TBI.

  9. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways.

    PubMed

    Su, Shao-Hua; Wu, Yi-Fang; Lin, Qi; Hai, Jian

    2017-12-01

    The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.

  10. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients

    PubMed Central

    Rao, Jagadeesh Sridhara; Kim, Hyung-Wook; Harry, Gaylia Jean; Rapoport, Stanley Isaac; Reese, Edmund Arthur

    2013-01-01

    Schizophrenia (SZ) is a progressive, neuropsychiatric disorder associated with cognitive impairment. A number of brain alterations have been linked to cognitive impairment, including neuroinflammation, excitotoxicity, increased arachidonic acid (AA) signaling and reduced synaptic protein. On this basis, we tested the hypothesis that SZ pathology is associated with these pathological brain changes. To do this, we examined postmortem frontal cortex from 10 SZ patients and 10 controls and measured protein and mRNA levels of cytokines, and astroglial, microglial, neuroinflammatory excitotoxic, AA cascade, apoptotic and synaptic markers. Mean protein and mRNA levels of interleukin-1β, tumor necrosis factor-α, glial acidic fibrillary protein (GFAP), a microglial marker CD11b, and nuclear factor kappa B subunits were significantly increased in SZ compared with control brain. Protein and mRNA levels of cytosolic and secretory phospholipase A2 and cyclooxygenase were significantly elevated in postmortem brains from SZ patients. N-methyl-D-aspartate receptor subunits 1 and 2B, inducible nitric oxide synthase and c-FOS were not significantly different. In addition, reduced protein and mRNA levels of brain-derived neurotrophic factor, synaptophysin and drebrin were found in SZ compared with control frontal cortex. Increased neuroinflammation and AA cascade enzyme markers with synaptic protein loss could promote disease progression and cognitive defects in SZ patients. Drugs that downregulate these changes might be considered for new therapies in SZ. PMID:23566496

  11. Exploratory study of serum ubiquitin carboxyl-terminal esterase L1 and glial fibrillary acidic protein for outcome prognostication after pediatric cardiac arrest.

    PubMed

    Fink, Ericka L; Berger, Rachel P; Clark, Robert S B; Watson, R Scott; Angus, Derek C; Panigrahy, Ashok; Richichi, Rudolph; Callaway, Clifton W; Bell, Michael J; Mondello, Stefania; Hayes, Ronald L; Kochanek, Patrick M

    2016-04-01

    Brain injury is the leading cause of morbidity and death following pediatric cardiac arrest. Serum biomarkers of brain injury may assist in outcome prognostication. The objectives of this study were to evaluate the properties of serum ubiquitin carboxyl-terminal esterase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) to classify outcome in pediatric cardiac arrest. Single center prospective study. Serum biomarkers were measured at 2 time points during the initial 72 h in children after cardiac arrest (n=19) and once in healthy children (controls, n=43). We recorded demographics and details of the cardiac arrest and resuscitation. We determined the associations between serum biomarker concentrations and Pediatric Cerebral Performance Category (PCPC) at 6 months (favorable (PCPC 1-3) or unfavorable (PCPC 4-6)). The initial assessment (time point 1) occurred at a median (IQR) of 10.5 (5.5-17.0)h and the second assessment (time point 2) at 59.0 (54.5-65.0)h post-cardiac arrest. Serum UCH-L1 was higher among children following cardiac arrest than among controls at both time points (p<0.05). Serum GFAP in subjects with unfavorable outcome was higher at time point 2 than in controls (p<0.05). Serum UCH-L1 at time point 1 (AUC 0.782) and both UCH-L1 and GFAP at time point 2 had good classification accuracy for outcome (AUC 0.822 and 0.796), p<0.05 for all. Preliminary data suggest that serum UCH-L1 and GFAP may be of use to prognosticate outcome after pediatric cardiac arrest at clinically-relevant time points and should be validated prospectively. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Exploratory Study of Serum Ubiquitin Carboxyl-Terminal Esterase L1 and Glial Fibrillary Acidic Protein for Outcome Prognostication after Pediatric Cardiac Arrest

    PubMed Central

    Fink, Ericka L; Berger, Rachel P; Clark, Robert SB; Watson, R. Scott; Angus, Derek C; Panigrahy, Ashok; Richichi, Rudolph; Callaway, Clifton W; Bell, Michael J; Mondello, Stefania; Hayes, Ronald L.; Kochanek, Patrick M

    2016-01-01

    Introduction Brain injury is the leading cause of morbidity and death following pediatric cardiac arrest. Serum biomarkers of brain injury may assist in outcome prognostication. The objectives of this study were to evaluate the properties of serum ubiquitin carboxyl-terminal esterase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) to classify outcome in pediatric cardiac arrest. Methods Single center prospective study. Serum biomarkers were measured at 2 time points during the initial 72 h in children after cardiac arrest (n=19) and once in healthy children (controls, n=43). We recorded demographics and details of the cardiac arrest and resuscitation. We determined the associations between serum biomarker concentrations and Pediatric Cerebral Performance Category (PCPC) at 6 months (favorable (PCPC 1–3) or unfavorable (PCPC 4–6)). Results The initial assessment (time point 1) occurred at a median (IQR) of 10.5 (5.5–17.0) h and the second assessment (time point 2) at 59.0 (54.5–65.0) h post-cardiac arrest. Serum UCH-L1 was higher among children following cardiac arrest than among controls at both time points (p<0.05). Serum GFAP in subjects with unfavorable outcome was higher at time point 2 than in controls (p<0.05). Serum UCH-L1 at time point 1 (AUC 0.782) and both UCH-L1 and GFAP at time point 2 had good classification accuracy for outcome (AUC 0.822 and 0.796), p<0.05 for all. Conclusion Preliminary data suggest that serum UCH-L1 and GFAP may be of use to prognosticate outcome after pediatric cardiac arrest at clinically-relevant time points and should be validated prospectively. PMID:26855294

  13. Use of Shark Dental Protein to Estimate Trophic Position via Amino Acid Compound-Specific Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Hayes, M.; Herbert, G.; Ellis, G.

    2017-12-01

    The diets of apex predators such as sharks are expected to change in response to overfishing of their mesopredator prey, but pre-anthropogenic baselines necessary to test for such changes are lacking. Stable isotope analysis (SIA) of soft tissues is commonly used to study diets in animals based on the bioaccumulation of heavier isotopes of carbon and nitrogen with increasing trophic level. In specimens representing pre-anthropogenic baselines, however, a modified SIA approach is needed to deal with taphonomic challenges, such as loss of soft tissues or selective loss of less stable amino acids (AAs) in other sources of organic compounds (e.g., teeth or bone) which can alter bulk isotope values. These challenges can be overcome with a compound-specific isotope analysis of individual AAs (AA-CSIA), but this first requires a thorough understanding of trophic enrichment factors for individual AAs within biomineralized tissues. In this study, we compare dental and muscle proteins of individual sharks via AA-CSIA to determine how trophic position is recorded within teeth and whether that information differs from that obtained from soft tissues. If skeletal organics reliably record information about shark ecology, then archaeological and perhaps paleontological specimens can be used to investigate pre-anthropogenic ecosystems. Preliminary experiments show that the commonly used glutamic acid/phenylalanine AA pairing may not be useful for establishing trophic position from dental proteins, but that estimated trophic position determined from alternate AA pairs are comparable to those from muscle tissue within the same species.

  14. Time Course and Diagnostic Accuracy of Glial and Neuronal Blood Biomarkers GFAP and UCH-L1 in a Large Cohort of Trauma Patients With and Without Mild Traumatic Brain Injury.

    PubMed

    Papa, Linda; Brophy, Gretchen M; Welch, Robert D; Lewis, Lawrence M; Braga, Carolina F; Tan, Ciara N; Ameli, Neema J; Lopez, Marco A; Haeussler, Crystal A; Mendez Giordano, Diego I; Silvestri, Salvatore; Giordano, Philip; Weber, Kurt D; Hill-Pryor, Crystal; Hack, Dallas C

    2016-05-01

    Glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have been widely studied and show promise for clinical usefulness in suspected traumatic brain injury (TBI) and concussion. Understanding their diagnostic accuracy over time will help translate them into clinical practice. To evaluate the temporal profiles of GFAP and UCH-L1 in a large cohort of trauma patients seen at the emergency department and to assess their diagnostic accuracy over time, both individually and in combination, for detecting mild to moderate TBI (MMTBI), traumatic intracranial lesions on head computed tomography (CT), and neurosurgical intervention. This prospective cohort study enrolled adult trauma patients seen at a level I trauma center from March 1, 2010, to March 5, 2014. All patients underwent rigorous screening to determine whether they had experienced an MMTBI (blunt head trauma with loss of consciousness, amnesia, or disorientation and a Glasgow Coma Scale score of 9-15). Of 3025 trauma patients assessed, 1030 met eligibility criteria for enrollment, and 446 declined participation. Initial blood samples were obtained in 584 patients enrolled within 4 hours of injury. Repeated blood sampling was conducted at 4, 8, 12, 16, 20, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, and 180 hours after injury. Diagnosis of MMTBI, presence of traumatic intracranial lesions on head CT scan, and neurosurgical intervention. A total of 1831 blood samples were drawn from 584 patients (mean [SD] age, 40 [16] years; 62.0% [362 of 584] male) over 7 days. Both GFAP and UCH-L1 were detectible within 1 hour of injury. GFAP peaked at 20 hours after injury and slowly declined over 72 hours. UCH-L1 rose rapidly and peaked at 8 hours after injury and declined rapidly over 48 hours. Over the course of 1 week, GFAP demonstrated a diagnostic range of areas under the curve for detecting MMTBI of 0.73 (95% CI, 0.69-0.77) to 0.94 (95% CI, 0.78-1.00), and UCH-L1 demonstrated

  15. Environmental impacts on the developing CNS: CD15, NCAM-L1, and GFAP expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Sulkowski, G. M.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    We have previously reported that the developing rat cerebellum is affected by hypergravity exposure. The effect is observed during a period of both granule and glial cell proliferation and neuronal migration in the cerebellum and coincides with changes in thyroid hormone levels. The present study begins to address the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of cerebellar proteins that are known to be directly involved in cell-cell interactions [protein expressing 3-fucosyl-N-acetyl-lactosamine antigen (CD15), neuronal cell adhesion molecule (NCAM-L1)] and those that affect cell-cell interactions indirectly [glial fibrillary acidic protein (GFAP)] in rat neonates exposed to centrifuge-produced hypergravity. Cerebellar mass and protein expression in rat neonates exposed to hypergravity (1.5 G) from gestational day (G) 11 to postnatal day (P) 30 were compared at one of six time points between P6 and P30 against rat neonates developing under normal gravity. Proteins were analyzed by quantitative western blots of cerebellar homogenates prepared from male or female neonates. Cerebellar size was most clearly reduced in male neonates on P6 and in female neonates on P9, with a significant gender difference; differences in cerebellar mass remained significant even when change in total body mass was factored in. Densitometric analysis of western blots revealed both quantitative and temporal changes in the expression of selected cerebellar proteins that coincided with changes in cerebellar mass and were gender-specific. In fact, our data indicated certain significant differences even between male and female control animals. A maximal decrease in expression of CD15 was observed in HG females on P9, coinciding with maximal change in their cerebellar mass. A shift in the time-course of NCAM-L1 expression resulted in a significant increase in NCAM-L1 in HG males on P18, an isolated time at which

  16. Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa.

    PubMed

    Trevino, Saul R; Scholtz, J Martin; Pace, C Nick

    2007-02-16

    Poor protein solubility is a common problem in high-resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all 20 amino acids to protein solubility has not been done. Here, 20 variants at the completely solvent-exposed position 76 of ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II beta-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine.

  17. Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa

    PubMed Central

    Trevino, Saul R.; Scholtz, J. Martin; Pace, C. Nick

    2009-01-01

    SUMMARY Poor protein solubility is a common problem in high resolution structural studies, formulation of protein pharmaceuticals, and biochemical characterization of proteins. One popular strategy to improve protein solubility is to use site-directed mutagenesis to make hydrophobic to hydrophilic mutations on the protein surface. However, a systematic investigation of the relative contributions of all twenty amino acids to protein solubility has not been done. Here, twenty variants at the completely solvent-exposed position 76 of Ribonuclease (RNase) Sa are made to compare the contributions of each amino acid. Stability measurements were also made for these variants, which occur at the i+1 position of a type II β-turn. Solubility measurements in ammonium sulfate solutions were made at high positive net charge, low net charge, and high negative net charge. Surprisingly, there was a wide range of contributions to protein solubility even among the hydrophilic amino acids. The results suggest that aspartic acid, glutamic acid, and serine contribute significantly more favorably than the other hydrophilic amino acids especially at high net charge. Therefore, to increase protein solubility, asparagine, glutamine, or threonine should be replaced with aspartic acid, glutamic acid or serine. PMID:17174328

  18. International Society of Sports Nutrition position stand: protein and exercise

    PubMed Central

    Campbell, Bill; Kreider, Richard B; Ziegenfuss, Tim; La Bounty, Paul; Roberts, Mike; Burke, Darren; Landis, Jamie; Lopez, Hector; Antonio, Jose

    2007-01-01

    Position Statement The following seven points related to the intake of protein for healthy, exercising individuals constitute the position stand of the Society. They have been approved by the Research Committee of the Society. 1) Vast research supports the contention that individuals engaged in regular exercise training require more dietary protein than sedentary individuals. 2) Protein intakes of 1.4 – 2.0 g/kg/day for physically active individuals is not only safe, but may improve the training adaptations to exercise training. 3) When part of a balanced, nutrient-dense diet, protein intakes at this level are not detrimental to kidney function or bone metabolism in healthy, active persons. 4) While it is possible for physically active individuals to obtain their daily protein requirements through a varied, regular diet, supplemental protein in various forms are a practical way of ensuring adequate and quality protein intake for athletes. 5) Different types and quality of protein can affect amino acid bioavailability following protein supplementation. The superiority of one protein type over another in terms of optimizing recovery and/or training adaptations remains to be convincingly demonstrated. 6) Appropriately timed protein intake is an important component of an overall exercise training program, essential for proper recovery, immune function, and the growth and maintenance of lean body mass. 7) Under certain circumstances, specific amino acid supplements, such as branched-chain amino acids (BCAA's), may improve exercise performance and recovery from exercise. PMID:17908291

  19. Database of amino acid-nucleotide contacts in contacts in DNA-homeodomain protein

    NASA Astrophysics Data System (ADS)

    Grokhlina, T. I.; Zrelov, P. V.; Ivanov, V. V.; Polozov, R. V.; Chirgadze, Yu. N.; Sivozhelezov, V. S.

    2013-09-01

    The analysis of amino acid-nucleotide contacts in interfaces of the protein-DNA complexes, intended to find consistencies in the protein-DNA recognition, is a complex problem that requires an analysis of the physicochemical characteristics of these contacts and the positions of the participating amino acids and nucleotides in the chains of the protein and the DNA, respectively, as well as conservatism of these contacts. Thus, those heterogeneous data should be systematized. For this purpose we have developed a database of amino acid-nucleotide contacts ANTPC (Amino acid Nucleotide Type Position Conservation) following the archetypal example of the proteins in the homeodomain family. We show that it can be used to compare and classify the interfaces of the protein-DNA complexes.

  20. Differential Acute and Chronic Effects of Leptin on Hypothalamic Astrocyte Morphology and Synaptic Protein Levels

    PubMed Central

    García-Cáceres, Cristina; Fuente-Martín, Esther; Burgos-Ramos, Emma; Granado, Miriam; Frago, Laura M.; Barrios, Vicente; Horvath, Tamas

    2011-01-01

    Astrocytes participate in neuroendocrine functions partially through modulation of synaptic input density in the hypothalamus. Indeed, glial ensheathing of neurons is modified by specific hormones, thus determining the availability of neuronal membrane space for synaptic inputs, with the loss of this plasticity possibly being involved in pathological processes. Leptin modulates synaptic inputs in the hypothalamus, but whether astrocytes participate in this action is unknown. Here we report that astrocyte structural proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are induced and astrocyte morphology modified by chronic leptin administration (intracerebroventricular, 2 wk), with these changes being inversely related to modifications in synaptic protein densities. Similar changes in glial structural proteins were observed in adult male rats that had increased body weight and circulating leptin levels due to neonatal overnutrition (overnutrition: four pups/litter vs. control: 12 pups/litter). However, acute leptin treatment reduced hypothalamic GFAP levels and induced synaptic protein levels 1 h after administration, with no effect on vimentin. In primary hypothalamic astrocyte cultures leptin also reduced GFAP levels at 1 h, with an induction at 24 h, indicating a possible direct effect of leptin. Hence, one mechanism by which leptin may affect metabolism is by modifying hypothalamic astrocyte morphology, which in turn could alter synaptic inputs to hypothalamic neurons. Furthermore, the responses to acute and chronic leptin exposure are inverse, raising the possibility that increased glial activation in response to chronic leptin exposure could be involved in central leptin resistance. PMID:21343257

  1. High Dietary Protein Intake and Protein-Related Acid Load on Bone Health.

    PubMed

    Cao, Jay J

    2017-12-01

    Consumption of high-protein diets is increasingly popular due to the benefits of protein on preserving lean mass and controlling appetite and satiety. The paper is to review recent clinical research assessing dietary protein on calcium metabolism and bone health. Epidemiological studies show that long-term, high-protein intake is positively associated with bone mineral density and reduced risk of bone fracture incidence. Short-term interventional studies demonstrate that a high-protein diet does not negatively affect calcium homeostasis. Existing evidence supports that the negative effects of the acid load of protein on urinary calcium excretion are offset by the beneficial skeletal effects of high-protein intake. Future research should focus on the role and the degree of contribution of other dietary and physiological factors, such as intake of fruits and vegetables, in reducing the acid load and further enhancing the anabolic effects of protein on the musculoskeletal system.

  2. Positive selection results in frequent reversible amino acid replacements in the G protein gene of human respiratory syncytial virus.

    PubMed

    Botosso, Viviane F; Zanotto, Paolo M de A; Ueda, Mirthes; Arruda, Eurico; Gilio, Alfredo E; Vieira, Sandra E; Stewien, Klaus E; Peret, Teresa C T; Jamal, Leda F; Pardini, Maria I de M C; Pinho, João R R; Massad, Eduardo; Sant'anna, Osvaldo A; Holmes, Eddie C; Durigon, Edison L

    2009-01-01

    Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a "flip-flop" phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.

  3. Positive Selection Results in Frequent Reversible Amino Acid Replacements in the G Protein Gene of Human Respiratory Syncytial Virus

    PubMed Central

    Botosso, Viviane F.; Zanotto, Paolo M. de A.; Ueda, Mirthes; Arruda, Eurico; Gilio, Alfredo E.; Vieira, Sandra E.; Stewien, Klaus E.; Peret, Teresa C. T.; Jamal, Leda F.; Pardini, Maria I. de M. C.; Pinho, João R. R.; Massad, Eduardo; Sant'Anna, Osvaldo A.; Holmes, Eddie C.; Durigon, Edison L.

    2009-01-01

    Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites. PMID:19119418

  4. A novel population of α-smooth muscle actin-positive cells activated in a rat model of stroke: an analysis of the spatio-temporal distribution in response to ischemia.

    PubMed

    Sharma, Varun; Ling, Tina W; Rewell, Sarah S; Hare, David L; Howells, David W; Kourakis, Angela; Wookey, Peter J

    2012-11-01

    In a rat model of stroke, the spatio-temporal distribution of α-smooth muscle actin-positive, (αSMA+) cells was investigated in the infarcted hemisphere (ipsilateral) and compared with the contralateral hemisphere. At day 3 postischemia, αSMA+ cells were concentrated in two main loci within the ipsilateral hemisphere (Area A) in the medial corpus callosum and (Area B) midway through the striatum adjacent to the lateral ventricle. By day 7 and further by day 14, fewer αSMA+ cells remained in Areas A and B but a steady increase in the peri-infarct was observed. αSMA+ cells also expressed glial acidic fibrillary protein [GFAP: αSMA+/GFAP+ (29%); αSMA+/GFAP- (71%) phenotypes] and feline leukemia virus C receptor 2 (FLVCR2), but not ED1(microglia) and established markers of pericytes normally located in vascular wall. αSMA+ cells were also located close to the subventricular zones (SVZ) adjacent to Areas A and B. In conclusion, αSMA+ cells have been identified in a spatial and temporal sequence from the SVZ, at intermediate loci and in the vicinity of the peri-infarct. It is hypothesized that novel populations of αSMA+ precursors of pericytes are born on the SVZ, migrate into the peri-infarct region and are incorporated into new vessels of the peri-infarct regions.

  5. Extended Solution Gate OFET-based Biosensor for Label-free Glial Fibrillary Acidic Protein Detection with Polyethylene Glycol-Containing Bioreceptor Layer.

    PubMed

    Song, Jian; Dailey, Jennifer; Li, Hui; Jang, Hyun-June; Zhang, Pengfei; Wang, Jeff Tza-Huei; Everett, Allen D; Katz, Howard E

    2017-05-25

    A novel organic field effect transistor (OFET) -based biosensor is described for label-free glial fibrillary acidic protein (GFAP) detection. We report the first use of an extended solution gate structure where the sensing area and the organic semiconductor are separated, and a reference electrode is not needed. Different molecular weight polyethylene glycols (PEGs) are mixed into the bio-receptor layer to help extend the Debye screening length. The drain current change was significantly increased with the help of higher molecular weight PEGs, as they are known to reduce the dielectric constant. We also investigated the sensing performance under different gate voltage (V g ). The sensitivity increased after we decreased V g from -5 V to -2 V, because the lower V g is much closer to the OFET threshold voltage and the influence of attached negatively charged proteins become more apparent. Finally, the selectivity experiments toward different interferents were performed. The stability and selectivity are promising for clinical applications.

  6. Neurobiology of Soman

    DTIC Science & Technology

    1991-06-30

    seizures In rats. Neurosc. Let 70. 69-74. Millan, M.H., S. Patel, and B.S. Meldrum (1988). The involvement of excitatory mino acid receptors within...a marker specific to astrocytes, glial fibrillary acidic protein (GFAP). We have used this marker to demonstrate that astrocytes are activated soon...88 I I I I I I IUST OF FIGURES Figure 1. Rapid, selective induction of c-fos and glial fibrillary acidic protein (GFAP) In piriform cortex 3 (PC

  7. Inferring Selection on Amino Acid Preference in Protein Domains

    PubMed Central

    Durbin, Richard

    2009-01-01

    Models that explicitly account for the effect of selection on new mutations have been proposed to account for “codon bias” or the excess of “preferred” codons that results from selection for translational efficiency and/or accuracy. In principle, such models can be applied to any mutation that results in a preferred allele, but in most cases, the fitness effect of a specific mutation cannot be predicted. Here we show that it is possible to assign preferred and unpreferred states to amino acid changing mutations that occur in protein domains. We propose that mutations that lead to more common amino acids (at a given position in a domain) can be considered “preferred alleles” just as are synonymous mutations leading to codons for more abundant tRNAs. We use genome-scale polymorphism data to show that alleles for preferred amino acids in protein domains occur at higher frequencies in the population, as has been shown for preferred codons. We show that this effect is quantitative, such that there is a correlation between the shift in frequency of preferred alleles and the predicted fitness effect. As expected, we also observe a reduction in the numbers of polymorphisms and substitutions at more important positions in domains, consistent with stronger selection at those positions. We examine the derived allele frequency distribution and polymorphism to divergence ratios of preferred and unpreferred differences and find evidence for both negative and positive selections acting to maintain protein domains in the human population. Finally, we analyze a model for selection on amino acid preferences in protein domains and find that it is consistent with the quantitative effects that we observe. PMID:19095755

  8. Relationship between Acute Phase Proteins and Serum Fatty Acid Composition in Morbidly Obese Patients

    PubMed Central

    Fernandes, Ricardo; Beserra, Bruna Teles Soares; Cunha, Raphael Salles Granato; Hillesheim, Elaine; Camargo, Carolina de Quadros; Pequito, Danielle Cristina Tonello; de Castro, Isabela Coelho; Fernandes, Luiz Cláudio; Nunes, Everson Araújo; Trindade, Erasmo Benício Santos de Moraes

    2013-01-01

    Background. Obesity is considered a low-grade inflammatory state and has been associated with increased acute phase proteins as well as changes in serum fatty acids. Few studies have assessed associations between acute phase proteins and serum fatty acids in morbidly obese patients. Objective. To investigate the relationship between acute phase proteins (C-Reactive Protein, Orosomucoid, and Albumin) and serum fatty acids in morbidly obese patients. Methods. Twenty-two morbidly obese patients were enrolled in this study. Biochemical and clinical data were obtained before bariatric surgery, and fatty acids measured in preoperative serum. Results. Orosomucoid was negatively correlated with lauric acid (P = 0.027) and eicosapentaenoic acid (EPA) (P = 0.037) and positively with arachidonic acid (AA) (P = 0.035), AA/EPA ratio (P = 0.005), and n-6/n-3 polyunsaturated fatty acids ratio (P = 0.035). C-Reactive Protein (CRP) was negatively correlated with lauric acid (P = 0.048), and both CRP and CRP/Albumin ratio were negatively correlated with margaric acid (P = 0.010, P = 0.008, resp.). Albumin was positively correlated with EPA (P = 0.027) and margaric acid (P = 0.008). Other correlations were not statistically significant. Conclusion. Our findings suggest that serum fatty acids are linked to acute phase proteins in morbidly obese patients. PMID:24167354

  9. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    PubMed

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  10. Patch Finder Plus (PFplus): a web server for extracting and displaying positive electrostatic patches on protein surfaces.

    PubMed

    Shazman, Shula; Celniker, Gershon; Haber, Omer; Glaser, Fabian; Mandel-Gutfreund, Yael

    2007-07-01

    Positively charged electrostatic patches on protein surfaces are usually indicative of nucleic acid binding interfaces. Interestingly, many proteins which are not involved in nucleic acid binding possess large positive patches on their surface as well. In some cases, the positive patches on the protein are related to other functional properties of the protein family. PatchFinderPlus (PFplus) http://pfp.technion.ac.il is a web-based tool for extracting and displaying continuous electrostatic positive patches on protein surfaces. The input required for PFplus is either a four letter PDB code or a protein coordinate file in PDB format, provided by the user. PFplus computes the continuum electrostatics potential and extracts the largest positive patch for each protein chain in the PDB file. The server provides an output file in PDB format including a list of the patch residues. In addition, the largest positive patch is displayed on the server by a graphical viewer (Jmol), using a simple color coding.

  11. Patch Finder Plus (PFplus): A web server for extracting and displaying positive electrostatic patches on protein surfaces

    PubMed Central

    Shazman, Shula; Celniker, Gershon; Haber, Omer; Glaser, Fabian; Mandel-Gutfreund, Yael

    2007-01-01

    Positively charged electrostatic patches on protein surfaces are usually indicative of nucleic acid binding interfaces. Interestingly, many proteins which are not involved in nucleic acid binding possess large positive patches on their surface as well. In some cases, the positive patches on the protein are related to other functional properties of the protein family. PatchFinderPlus (PFplus) http://pfp.technion.ac.il is a web-based tool for extracting and displaying continuous electrostatic positive patches on protein surfaces. The input required for PFplus is either a four letter PDB code or a protein coordinate file in PDB format, provided by the user. PFplus computes the continuum electrostatics potential and extracts the largest positive patch for each protein chain in the PDB file. The server provides an output file in PDB format including a list of the patch residues. In addition, the largest positive patch is displayed on the server by a graphical viewer (Jmol), using a simple color coding. PMID:17537808

  12. Hypothalamic distribution of astrocytes is gender-related in Mongolian gerbils.

    PubMed

    Collado, P; Beyer, C; Hutchison, J B; Holman, S D

    1995-01-23

    Hypothalamic neuroglial ontogeny was examined during neonatal development of two hormone-sensitive, sex-specific nuclei, the pars compacta of the sexually dimorphic area (SDApc) and the suprachiasmatic nucleus (SCN) in the gerbil. Specific antibodies against vimentin and glial fibrillary acidic proteins (GFAP) identified neuroglia. Unbiased measures of labelled cell anatomical parameters were taken using stereomorphometric techniques. High numbers of cells in the female and male SCN immunoreacted with vimentin in neonates and GFAP in adults. Astrocytes containing vimentin or GFAP were few in number in the SDApc and surrounding areas in neonates and adults, respectively. There was a sex difference in the numerical density of both vimentin and GFAP-positive cells in the SCN. We suggest that (a) pre-astroglia are involved in gender-related organization of the SCN but not in SDApc, and (b) neuroglia have a sex-related, functional role in the mature SCN.

  13. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup.

    PubMed

    Beck, Emily A; Llopart, Ana

    2015-11-25

    Rapid evolution of centromeric satellite repeats is thought to cause compensatory amino acid evolution in interacting centromere-associated kinetochore proteins. Cid, a protein that mediates kinetochore/centromere interactions, displays particularly high amino acid turnover. Rapid evolution of both Cid and centromeric satellite repeats led us to hypothesize that the apparent compensatory evolution may extend to interacting partners in the Condensin I complex (i.e., SMC2, SMC4, Cap-H, Cap-D2, and Cap-G) and HP1s. Missense mutations in these proteins often result in improper centromere formation and aberrant chromosome segregation, thus selection for maintained function and coevolution among proteins of the complex is likely strong. Here, we report evidence of rapid evolution and recurrent positive selection in seven centromere-associated proteins in species of the Drosophila melanogaster subgroup, and further postulate that positive selection on these proteins could be a result of centromere drive and compensatory changes, with kinetochore proteins competing for optimal spindle attachment.

  14. Immunocytochemical detection of the microsomal glucose-6-phosphatase in human brain astrocytes.

    PubMed

    Bell, J E; Hume, R; Busuttil, A; Burchell, A

    1993-10-01

    Using an antibody raised against the catalytic subunit of glucose-6-phosphatase, this enzyme was immunolocalized in many astrocytes in 20 normal human brains. Double immunofluorescence studies showed co-localization of glial fibrillary acidic protein (GFAP) with glucose-6-phosphatase in astrocytes. However, not all GFAP-positive cells were also glucose-6-phosphatase positive, indicating that some astrocytes do not contain demonstrable expression of this enzyme. Reactive astrocytes in a variety of abnormal brains were strongly glucose-6-phosphatase positive, but neoplastic astrocytes were often only weakly positive. Expression of the enzyme could not be demonstrated in radial glia, neurons or oligodendroglia. Astrocytes normally contain glycogen and the demonstration that some astrocytes also contain glucose-6-phosphatase indicates that they are competent for both glycogenolysis and gluconeogenesis, which may be critical for neuronal welfare.

  15. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching.

    PubMed

    Iijima, Issei; Hohsaka, Takahiro

    2009-04-17

    Position-specific incorporation of fluorescent groups is a useful method for analysis of the functions and structures of proteins. We have developed a method for the incorporation of visible-wavelength-fluorescent non-natural amino acids into proteins in a cell-free translation system. Using this technique, we introduced one or two BODIPY-linked amino acids into maltose-binding protein (MBP) to obtain MBP derivatives showing ligand-dependent changes in fluorescence intensity or intensity ratio. BODIPY-FL-aminophenylalanine was incorporated in place of 15 tyrosines, as well as the N-terminal Lys1, and the C-terminal Lys370 of MBP. Fluorescence measurements revealed that MBP containing a BODIPY-FL moiety in place of Tyr210 showed a 13-fold increase in fluorescence upon binding of maltose. Tryptophan-to-phenylalanine substitutions suggest that the increase in fluorescence was the result of a decrease in the quenching of BODIPY-FL by tryptophan located around the binding site. MBP containing a BODIPY-558 moiety also showed a maltose-dependent increase in fluorescence. BODIPY-FL was then additionally incorporated in place of Lys1 of the BODIPY-558-containing MBP as a response to the amber codon. Fluorescence measurements with excitation of BODIPY-FL showed a large change in fluorescence intensity ratio (0.13 to 1.25) upon binding of maltose; this change can be attributed to fluorescence resonance energy transfer (FRET) and maltose-dependent quenching of BODIPY-558. These results demonstrate the usefulness of the position-specific incorporation of fluorescent amino acids in the fluorescence-based detection of protein functions.

  16. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex.

    PubMed

    Zeng, Ling-Hui; Rensing, Nicholas R; Zhang, Bo; Gutmann, David H; Gambello, Michael J; Wong, Michael

    2011-02-01

    Tuberous Sclerosis Complex (TSC) is an autosomal dominant, multi-system disorder, typically involving severe neurological symptoms, such as epilepsy, cognitive deficits and autism. Two genes, TSC1 and TSC2, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Although there is a substantial overlap in the clinical phenotype produced by TSC1 and TSC2 mutations, accumulating evidence indicates that TSC2 mutations cause more severe neurological manifestations than TSC1 mutations. In this study, the neurological phenotype of a novel mouse model involving conditional inactivation of the Tsc2 gene in glial-fibrillary acidic protein (GFAP)-positive cells (Tsc2(GFAP1)CKO mice) was characterized and compared with previously generated Tsc1(GFAP1)CKO mice. Similar to Tsc1(GFAP1)CKO mice, Tsc2(GFAP1)CKO mice exhibited epilepsy, premature death, progressive megencephaly, diffuse glial proliferation, dispersion of hippocampal pyramidal cells and decreased astrocyte glutamate transporter expression. However, Tsc2(GFAP1)CKO mice had an earlier onset and higher frequency of seizures, as well as significantly more severe histological abnormalities, compared with Tsc1(GFAP1)CKO mice. The differences between Tsc1(GFAP1)CKO and Tsc2(GFAP1)CKO mice were correlated with higher levels of mammalian target of rapamycin (mTOR) activation in Tsc2(GFAP1)CKO mice and were reversed by the mTOR inhibitor, rapamycin. These findings provide novel evidence in mouse models that Tsc2 mutations intrinsically cause a more severe neurological phenotype than Tsc1 mutations and suggest that the difference in phenotype may be related to the degree to which Tsc1 and Tsc2 inactivation causes abnormal mTOR activation.

  17. Rewiring protein synthesis: From natural to synthetic amino acids.

    PubMed

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments

    PubMed Central

    Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V.; Rohanizadeh, Ramin

    2012-01-01

    Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m2 g–1. Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate. PMID:21957116

  19. Crystal structure of axolotl (Ambystoma mexicanum) liver bile acid-binding protein bound to cholic and oleic acid.

    PubMed

    Capaldi, Stefano; Guariento, Mara; Perduca, Massimiliano; Di Pietro, Santiago M; Santomé, José A; Monaco, Hugo L

    2006-07-01

    The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent. (c) 2006 Wiley-Liss, Inc.

  20. Human Protein and Amino Acid Requirements.

    PubMed

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. © 2016 American Society for Parenteral and Enteral Nutrition.

  1. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein.

    PubMed

    Hellberg, M E; Moy, G W; Vacquier, V D

    2000-03-01

    Male-specific proteins have increasingly been reported as targets of positive selection and are of special interest because of the role they may play in the evolution of reproductive isolation. We report the rapid interspecific divergence of cDNA encoding a major acrosomal protein of unknown function (TMAP) of sperm from five species of teguline gastropods. A mitochondrial DNA clock (calibrated by congeneric species divided by the Isthmus of Panama) estimates that these five species diverged 2-10 MYA. Inferred amino acid sequences reveal a propeptide that has diverged rapidly between species. The mature protein has diverged faster still due to high nonsynonymous substitution rates (> 25 nonsynonymous substitutions per site per 10(9) years). cDNA encoding the mature protein (89-100 residues) shows evidence of positive selection (Dn/Ds > 1) for 4 of 10 pairwise species comparisons. cDNA and predicted secondary-structure comparisons suggest that TMAP is neither orthologous nor paralogous to abalone lysin, and thus marks a second, phylogenetically independent, protein subject to strong positive selection in free-spawning marine gastropods. In addition, an internal repeat in one species (Tegula aureotincta) produces a duplicated cleavage site which results in two alternatively processed mature proteins differing by nine amino acid residues. Such alternative processing may provide a mechanism for introducing novel amino acid sequence variation at the amino-termini of proteins. Highly divergent TMAP N-termini from two other tegulines (Tegula regina and Norrisia norrisii) may have originated by such a mechanism.

  2. Cloning and characteristics of fish glial fibrillary acidic protein: implications for optic nerve regeneration.

    PubMed

    Cohen, I; Shani, Y; Schwartz, M

    1993-08-15

    Mammalian central nervous system neurons do not regenerate after axonal injury, unlike their counterparts in fish and amphibians. After axonal injury, glial cells in mammals do not support regrowth of axons, while in fish they support the regeneration process. Controversy exists as to whether or not the intact fish optic nerve expresses glial fibrillary acidic protein, a well-known marker for mature astrocytes, and thus whether its astrocytes differ in this respect from those of the brain and spinal cord, as well as from optic nerve astrocytes of other species. In an attempt to resolve this question we cloned fish glial fibrillary acidic protein. Two different complementary DNA clones were isolated from a carp brain complementary DNA library, each encoding a different form of glial fibrillary acidic protein apparently originating from different genes. Monospecific polyclonal antibodies were raised against a peptide synthesized according to the predicted amino acid sequence, and used to identify and localize the fish glial fibrillary acidic protein. Two glial fibrillary acidic proteins (of 49 kDa and 51 kDa) were identified by the antibodies in all tested fish central nervous system tissues. The antibodies were then used to examine glial fibrillary acidic protein immunoreactivity in sections taken from uninjured and injured optic nerves of goldfish. Injury was followed by an elevation in glial fibrillary acidic protein immunoreactivity along the whole length of the nerve, except at the site of the injury, where--as in the case of vimentin--no immunoreactivity was detectable. However, in contrast to vimentin-positive glial cells, which repopulate the site of the injury soon after the optic nerve is injured, glial fibrillary acidic protein-positive glial cells remained outside the injury site for as long as 6 weeks after the injury. Despite the injury-induced changes in glial fibrillary acidic protein immunoreactivity, no change was observed in the level of transcript

  3. Uric acid demonstrates neuroprotective effect on Parkinson's disease mice through Nrf2-ARE signaling pathway.

    PubMed

    Huang, Ting-Ting; Hao, Dong-Lin; Wu, Bo-Na; Mao, Lun-Lin; Zhang, Jin

    2017-12-02

    Uric acid has neuroprotective effect on Parkinson's disease (PD) by inhibiting oxidative damage and neuronal cell death. Our previous study has shown that uric acid protected dopaminergic cell line damage through inhibiting accumulation of NF-E2-related factor 2 (Nrf2). This study aimed to investigate its in vivo neuroprotective effect. PD was induced by MPTP intraperitoneally injection for 7 d in male C57BL/6 mice. Mice were treated with either uric acid (intraperitoneally injection 250 mg/kg) or saline for a total of 13 d. We showed that uric acid improved behavioral performances and cognition of PD mice, increased TH-positive dopaminergic neurons and decreased GFAP-positive astrocytes in substantia nigra (SN). Uric acid increased mRNA and protein expressions of Nrf2 and three Nrf2-responsive genes, including γ-glutamate-cysteine ligase catalytic subunit (γ-GCLC), heme oxygenase-1 (HO-1) and NQO1. Uric acid significantly increased superoxide dismutase (SOD), CAT, glutathione (GSH) levels and decreased malondialdehyde (MDA) level in SN regions of MPTP-treated mice. Uric acid inhibited the hippocampal expression of IL-1β and decreased serum and hippocampus levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). In conclusion, uric acid demonstrates neuroprotective properties for dopaminergic neurons in PD mice through modulation of neuroinflammation and oxidative stress. Copyright © 2017. Published by Elsevier Inc.

  4. International Society of Sports Nutrition Position Stand: protein and exercise.

    PubMed

    Jäger, Ralf; Kerksick, Chad M; Campbell, Bill I; Cribb, Paul J; Wells, Shawn D; Skwiat, Tim M; Purpura, Martin; Ziegenfuss, Tim N; Ferrando, Arny A; Arent, Shawn M; Smith-Ryan, Abbie E; Stout, Jeffrey R; Arciero, Paul J; Ormsbee, Michael J; Taylor, Lem W; Wilborn, Colin D; Kalman, Doug S; Kreider, Richard B; Willoughby, Darryn S; Hoffman, Jay R; Krzykowski, Jamie L; Antonio, Jose

    2017-01-01

    The International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows:An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise.For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4-2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein.Higher protein intakes (2.3-3.1 g/kg/d) may be needed to maximize the retention of lean body mass in resistance-trained subjects during hypocaloric periods.There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass).Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20-40 g.Acute protein doses should strive to contain 700-3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs).These protein doses should ideally be evenly distributed, every 3-4 h, across the day.The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely

  5. Selective Vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury

    PubMed Central

    Marmarou, Christina R.; Liang, Xiuyin; Abidi, Naqeeb H.; Parveen, Shanaz; Taya, Keisuke; Henderson, Scott C.; Young, Harold F.; Filippidis, Aristotelis S.; Baumgarten, Clive M.

    2014-01-01

    A secondary and often lethal consequence of traumatic brain injury is cellular edema that we posit is due to astrocytic swelling caused by transmembrane water fluxes augmented by vasopressin-regulated aquaporin-4 (AQP4). We therefore tested whether vasopressin 1a receptor (V1aR) inhibition would suppress astrocyte AQP4, reduce astrocytic edema, and thereby diminish TBI-induced edematous changes. V1aR inhibition by SR49059 significantly reduced brain edema after cortical contusion injury (CCI) in rat 5 h post-injury. Injured-hemisphere brain water content (n=6 animals/group) and astrocytic area (n=3/group) were significantly higher in CCI-vehicle (80.5±0.3%; 18.0±1.4 µm2) versus sham groups (78.3±0.1%; 9.5±0.9 µm2), and SR49059 blunted CCI-induced increases in brain edema (79.0±0.2%; 9.4±0.8 µm2). CCI significantly up-regulated GFAP, V1aR and AQP4 protein levels and SR49059 suppressed injury induced up regulation (n=6/group). In CCI-vehicle, sham and CCI-SR49059 groups, GFAP was 1.58±0.04, 0.47±0.02, and 0.81±0.03, respectively; V1aR was 1.00±0.06, 0.45±0.05, and 0.46±0.09; and AQP4 was 2.03± 0.34, 0.49±0.04, and 0.92±0.22. Confocal immunohistochemistry gave analogous results. In CCI-vehicle, sham and CCI-SR49059 groups, fluorescence intensity of GFAP was 349±38, 56±5, and 244±30, respectively, V1aR was 601±71, 117.8±14, and 390±76, and AQP4 was 818±117, 158±5, and 458±55 (n=3/group). The results support that edema was predominantly cellular following CCI and documented that V1aR inhibition with SR49059 suppressed injury-induced up regulation of GFAP, V1A and AQP4, blunting edematous changes. Our findings suggest V1aR inhibitors may be potential therapeutic tools to prevent cellular swelling and provide treatment for post-traumatic brain edema. PMID:24933327

  6. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury.

    PubMed

    Marmarou, Christina R; Liang, Xiuyin; Abidi, Naqeeb H; Parveen, Shanaz; Taya, Keisuke; Henderson, Scott C; Young, Harold F; Filippidis, Aristotelis S; Baumgarten, Clive M

    2014-09-18

    A secondary and often lethal consequence of traumatic brain injury is cellular edema that we posit is due to astrocytic swelling caused by transmembrane water fluxes augmented by vasopressin-regulated aquaporin-4 (AQP4). We therefore tested whether vasopressin 1a receptor (V1aR) inhibition would suppress astrocyte AQP4, reduce astrocytic edema, and thereby diminish TBI-induced edematous changes. V1aR inhibition by SR49059 significantly reduced brain edema after cortical contusion injury (CCI) in rat 5h post-injury. Injured-hemisphere brain water content (n=6 animals/group) and astrocytic area (n=3/group) were significantly higher in CCI-vehicle (80.5±0.3%; 18.0±1.4 µm(2)) versus sham groups (78.3±0.1%; 9.5±0.9 µm(2)), and SR49059 blunted CCI-induced increases in brain edema (79.0±0.2%; 9.4±0.8µm(2)). CCI significantly up-regulated GFAP, V1aR and AQP4 protein levels and SR49059 suppressed injury induced up regulation (n=6/group). In CCI-vehicle, sham and CCI-SR49059 groups, GFAP was 1.58±0.04, 0.47±0.02, and 0.81±0.03, respectively; V1aR was 1.00±0.06, 0.45±0.05, and 0.46±0.09; and AQP4 was 2.03±0.34, 0.49±0.04, and 0.92±0.22. Confocal immunohistochemistry gave analogous results. In CCI-vehicle, sham and CCI-SR49059 groups, fluorescence intensity of GFAP was 349±38, 56±5, and 244±30, respectively, V1aR was 601±71, 117.8±14, and 390±76, and AQP4 was 818±117, 158±5, and 458±55 (n=3/group). The results support that edema was predominantly cellular following CCI and documented that V1aR inhibition with SR49059 suppressed injury-induced up regulation of GFAP, V1A and AQP4, blunting edematous changes. Our findings suggest V1aR inhibitors may be potential therapeutic tools to prevent cellular swelling and provide treatment for post-traumatic brain edema. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Chronically administered 3-nitropropionic acid produces selective lesions in the striatum and reduces muscle tonus.

    PubMed

    Shimano, Y; Kumazaki, M; Sakurai, T; Hida, H; Fujimoto, I; Fukuda, A; Nishino, H

    1995-12-01

    Systemically administered 3-nitropropionic acid (3- NPA), irreversible inhibitor of succinate dehydrogenase, produced characteristic bilateral lesions in the striatum (STR) in the rat. Inside the lesion, neutrophils invaded and strong immunoreaction for IgG as well as complement factor C3b/C4b receptor (C3b/C4br) were observed. The core of the lesion lost the immunoreaction for glial fibrillary acidic protein (GFAP) while the marginal area had abundant GFAP-labeled astrocytes around the vessels. Intoxicated rats often became somnolent and were awkward in cooperative movement on a pole climbing test, but they had a quite good memory retention in a passive avoidance learning. Muscle tonus in some of the intoxicated rats became hypotonic with low voltage electromyogram (EMG) activity, especially in lower limbs. In summary, 3-NPA intoxicated rats had selective bilateral lesions in the STR and exhibited disturbances in a cooperative movement owing to the impairment in muscle tonus, thus it would be a useful animal model to deduce the central pathogenesis of Huntington's disease.

  8. [Evaluation of the adjusted amino acid score by digestibility for estimating the protein quality and protein available in food and diets].

    PubMed

    Pak, N; Vera, G; Araya, H

    1985-03-01

    The purpose of the present study was to evaluate the amino acid score adjusted by digestibility to estimate protein quality and utilizable protein in foods and diets, considering net protein utilization (NPU) as a biological reference method. Ten foods of vegetable origin and ten of animal origin, as well as eight mixtures of foods of vegetable and animal origin were studied. When all the foods were considered, a positive (r = 0.83) and highly significant correlation (p less than 0.001) between NPU and the amino acid score adjusted by digestibility was found. When the foods were separated according to their origin, this correlation was positive only for the foods of vegetable origin (r = 0.93) and statistically significant (p less than 0.001). Also, only in those foods were similar values found between NPU and amino acid score adjusted by digestibility, as well as in utilizable protein estimated considering both methods. Caution is required to interpret protein quality and utilizable protein values of foods of animal origin and mixtures of foods of vegetable and animal origin when the amino acid score method adjusted by digestibility, or NPU, are utilized.

  9. [Chromosomal proteins: histones and acid proteins].

    PubMed

    Salvini, M; Gabrielli, F

    1976-01-01

    Experimental data about the chemistry and the biology of chromosomal proteins are reviewed. Paragraphs include: aminoacid sequential data and post-translational covalent modications of histones, histone chemical differences in different tissues of the same species and in homologous organs of different species, histone synthesis subcellular localization and its association with DNA synthesis, histone synthesis transcriptional and translational control, histone synthesis during meiosis, oogenesis and early embryogenesis. The possible role of histones as controllers of gene expression is discussed and a model of primary structure of chromatine is proposed. The "acidic proteins" data concern the high tissue eterogenity of these proteins and their role in the steroid-hormon-controlled gene expression. The possible role of acidic proteins as general controllers of gene expression in eucariotic cells is discussed.

  10. Comparative characterization of random-sequence proteins consisting of 5, 12, and 20 kinds of amino acids

    PubMed Central

    Tanaka, Junko; Doi, Nobuhide; Takashima, Hideaki; Yanagawa, Hiroshi

    2010-01-01

    Screening of functional proteins from a random-sequence library has been used to evolve novel proteins in the field of evolutionary protein engineering. However, random-sequence proteins consisting of the 20 natural amino acids tend to aggregate, and the occurrence rate of functional proteins in a random-sequence library is low. From the viewpoint of the origin of life, it has been proposed that primordial proteins consisted of a limited set of amino acids that could have been abundantly formed early during chemical evolution. We have previously found that members of a random-sequence protein library constructed with five primitive amino acids show high solubility (Doi et al., Protein Eng Des Sel 2005;18:279–284). Although such a library is expected to be appropriate for finding functional proteins, the functionality may be limited, because they have no positively charged amino acid. Here, we constructed three libraries of 120-amino acid, random-sequence proteins using alphabets of 5, 12, and 20 amino acids by preselection using mRNA display (to eliminate sequences containing stop codons and frameshifts) and characterized and compared the structural properties of random-sequence proteins arbitrarily chosen from these libraries. We found that random-sequence proteins constructed with the 12-member alphabet (including five primitive amino acids and positively charged amino acids) have higher solubility than those constructed with the 20-member alphabet, though other biophysical properties are very similar in the two libraries. Thus, a library of moderate complexity constructed from 12 amino acids may be a more appropriate resource for functional screening than one constructed from 20 amino acids. PMID:20162614

  11. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  12. A supplemental intravenous amino acid infusion sustains a positive protein balance for 24 hours in critically ill patients.

    PubMed

    Sundström Rehal, Martin; Liebau, Felix; Tjäder, Inga; Norberg, Åke; Rooyackers, Olav; Wernerman, Jan

    2017-12-06

    Providing supplemental amino acids to ICU patients during a 3-h period results in improved whole-body net protein balance, without an increase in amino acid oxidation. The primary objective was to investigate if a 24-h intravenous amino acid infusion in critically ill patients has a sustained effect on whole-body protein balance as was seen after 3 h. Secondary objectives were monitoring of amino acid oxidation rate, urea and free amino acid plasma concentrations. An infusion of [1- 13 C]-phenylalanine was added to ongoing enteral nutrition to quantify the enteral uptake of amino acids. Primed intravenous infusions of [ring- 2 H 5 ]-phenylalanine and [3,3- 2 H 2 ]-tyrosine were used to assess whole-body protein synthesis and breakdown, to calculate net protein balance and to assess amino acid oxidation at baseline and at 3 and 24 hours. An intravenous amino acid infusion was added to nutrition at a rate of 1 g/kg/day and continued for 24 h. Eight patients were studied. The amino acid infusion resulted in improved net protein balance over time, from -1.6 ± 7.9 μmol phe/kg/h at 0 h to 6.0 ± 8.8 at 3 h and 7.5 ± 5.1 at 24 h (p = 0.0016). The sum of free amino acids in plasma increased from 3.1 ± 0.6 mmol/L at 0 h to 3.2 ± 0.3 at 3 h and 3.6 ± 0.5 at 24 h (p = 0.038). Amino acid oxidation and plasma urea were not altered significantly. We demonstrated that the improvement in whole-body net protein balance from a supplemental intravenous amino acid infusion seen after 3 h was sustained after 24 h in critically ill patients. This trial was prospectively registered at Australian New Zealand Clinical Trials Registry. ACTRN, 12615001314516 . Registered on 1 December 2015.

  13. Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus.

    PubMed

    Papageorgiou, Ismini E; Valous, Nektarios A; Lahrmann, Bernd; Janova, Hana; Klaft, Zin-Juan; Koch, Arend; Schneider, Ulf C; Vajkoczy, Peter; Heppner, Frank L; Grabe, Niels; Halama, Niels; Heinemann, Uwe; Kann, Oliver

    2018-05-01

    Human mesial temporal lobe epilepsy (MTLE) features subregion-specific hippocampal neurodegeneration and reactive astrogliosis, including up-regulation of the glial fibrillary acidic protein (GFAP) and down-regulation of glutamine synthetase (GS). However, the regional astrocytic expression pattern of GFAP and GS upon MTLE-associated neurodegeneration still remains elusive. We assessed GFAP and GS expression in strict correlation with the local neuronal number in cortical and hippocampal surgical specimens from 16 MTLE patients using immunohistochemistry, stereology and high-resolution image analysis for digital pathology and whole-slide imaging. In the cortex, GS-positive (GS+) astrocytes are dominant in all neuronal layers, with a neuron to GS+ cell ratio of 2:1. GFAP-positive (GFAP+) cells are widely spaced, with a GS+ to GFAP+ cell ratio of 3:1-5:1. White matter astrocytes, on the contrary, express mainly GFAP and, to a lesser extent, GS. In the hippocampus, the neuron to GS+ cell ratio is approximately 1:1. Hippocampal degeneration is associated with a reduction of GS+ astrocytes, which is proportional to the degree of neuronal loss and primarily present in the hilus. Up-regulation of GFAP as a classical hallmark of reactive astrogliosis does not follow the GS-pattern and is prominent in the CA1. Reactive alterations were proportional to the neuronal loss in the neuronal somatic layers (stratum pyramidale and hilus), while observed to a lesser extent in the axonal/dendritic layers (stratum radiatum, molecular layer). We conclude that astrocytic GS is expressed in the neuronal somatic layers and, upon neurodegeneration, is down-regulated proportionally to the degree of neuronal loss. © 2018 Wiley Periodicals, Inc.

  14. Phthalic acid chemical probes synthesized for protein-protein interaction analysis.

    PubMed

    Liang, Shih-Shin; Liao, Wei-Ting; Kuo, Chao-Jen; Chou, Chi-Hsien; Wu, Chin-Jen; Wang, Hui-Min

    2013-06-24

    Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES-SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  15. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  16. GFAP-immunopositive structures in spiny dogfish, Squalus acanthias, and little skate, Raia erinacea, brains: differences have evolutionary implications.

    PubMed

    Kálmán, M; Gould, R M

    2001-07-01

    GFAP expression patterns were compared between the brains of a spiny dogfish (Squalus acanthias) and a little skate (Raia erinacea). After anesthesia, the animals were perfused with paraformaldehyde. Serial vibratome sections were immunostained against GFAP using the avidin-biotin method. Spiny dogfish brain contained mainly uniformly-distributed, radially arranged ependymoglia. From GFAP distribution, the layered organization in both the telencephalon and the tectum were visible. In the cerebellum, the molecular and granular layers displayed conspicuously different glial structures; in the former a Bergmann glia-like population was found. No true astrocytes (i.e., stellate-shaped cells) were found. Radial glial endfeet lined all meningeal surfaces. Radial fibers also seemed to form endfeet and en passant contacts on the vessels. Plexuses of fine perivascular glial fibers also contributed to the perivascular glia. Compared with spiny dogfish brain, GFAP expression in the little skate brain was confined. Radial glia were limited to a few areas, e.g., segments of the ventricular surface of the telencephalon, and the midline of the diencephalon and mesencephalon. Scarce astrocytes occurred in every brain part, but only the optic chiasm, and the junction of the tegmentum and optic tectum contained large numbers of astrocytes. Astrocytes formed the meningeal glia limitans and the perivascular glia. No GFAP-immunopositive Bergmann glia-like structure was found. Astrocytes seen in the little skate were clearly different from the mammalian and avian ones; they had a different process system - extra large forms were frequently seen, and the meningeal and perivascular cells were spread along the surface instead of forming endfeet by processes. The differences between Squalus and Raia astroglia were much like those found between reptiles versus mammals and birds. It suggests independent and parallel glial evolutionary processes in amniotes and chondrichthyans, seemingly

  17. Role of Protein and Amino Acids in Infant and Young Child Nutrition: Protein and Amino Acid Needs and Relationship with Child Growth.

    PubMed

    Uauy, Ricardo; Kurpad, Anura; Tano-Debrah, Kwaku; Otoo, Gloria E; Aaron, Grant A; Toride, Yasuhiko; Ghosh, Shibani

    2015-01-01

    Over a third of all deaths of children under the age of five are linked to undernutrition. At a 90% coverage level, a core group of ten interventions inclusive of infant and young child nutrition could save one million lives of children under 5 y of age (15% of all deaths) (Lancet 2013). The infant and young child nutrition package alone could save over 220,000 lives in children under 5 y of age. High quality proteins (e.g. milk) in complementary, supplementary and rehabilitation food products have been found to be effective for good growth. Individual amino acids such as lysine and arginine have been found to be factors linked to growth hormone release in young children via the somatotropic axis and high intakes are inversely associated with fat mass index in pre-pubertal lean girls. Protein intake in early life is positively associated with height and weight at 10 y of age. This paper will focus on examining the role of protein and amino acids in infant and young child nutrition by examining protein and amino acid needs in early life and the subsequent relationship with stunting.

  18. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain.

    PubMed

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP), an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol), a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg) and GW9508 (1.0 µg), a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg), a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg) significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long chain fatty

  19. Hypothalamic GPR40 Signaling Activated by Free Long Chain Fatty Acids Suppresses CFA-Induced Inflammatory Chronic Pain

    PubMed Central

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP), an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol), a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg) and GW9508 (1.0 µg), a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg), a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg) significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long chain fatty

  20. Predicting nucleic acid binding interfaces from structural models of proteins.

    PubMed

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  1. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  2. Increasing the Thermostable Sugar-1-Phosphate Nucleotidylyltransferase Activities of the Archaeal ST0452 Protein through Site Saturation Mutagenesis of the 97th Amino Acid Position.

    PubMed

    Honda, Yuki; Zang, Qian; Shimizu, Yasuhiro; Dadashipour, Mohammad; Zhang, Zilian; Kawarabayasi, Yutaka

    2017-02-01

    The ST0452 protein is a bifunctional protein exhibiting sugar-1-phosphate nucleotidylyltransferase (sugar-1-P NTase) and amino-sugar-1-phosphate acetyltransferase activities and was isolated from the thermophilic archaeon Sulfolobus tokodaii Based on the previous observation that five single mutations increased ST0452 sugar-1-P NTase activity, nine double-mutant ST0452 proteins were generated with the intent of obtaining enzymes exhibiting a further increase in catalysis, but all showed less than 15% of the wild-type N-acetyl-d-glucosamine-1-phosphate uridyltransferase (GlcNAc-1-P UTase) activity. The Y97A mutant exhibited the highest activity of the single-mutant proteins, and thus site saturation mutagenesis of the 97th position (Tyr) was conducted. Six mutants showed both increased GlcNAc-1-P UTase and glucose-1-phosphate uridyltransferase activities, eight mutants showed only enhanced GlcNAc-1-P UTase activity, and six exhibited higher GlcNAc-1-P UTase activity than that of the Y97A mutant. Kinetic analyses of three typical mutants indicated that the increase in sugar-1-P NTase activity was mainly due to an increase in the apparent k cat value. We hypothesized that changing the 97th position (Tyr) to a smaller amino acid with similar electronic properties would increase activity, and thus the Tyr at the corresponding 103rd position of the Escherichia coli GlmU (EcGlmU) enzyme was replaced with the same residues. The Y103N mutant EcGlmU showed increased GlcNAc-1-P UTase activity, revealing that the Tyr at the 97th position of the ST0452 protein (103rd position in EcGlmU) plays an important role in catalysis. The present results provide useful information regarding how to improve the activity of natural enzymes and how to generate powerful enzymes for the industrial production of sugar nucleotides. It is typically difficult to increase enzymatic activity by introducing substitutions into a natural enzyme. However, it was previously found that the ST0452 protein

  3. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.

    PubMed

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-06-09

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.

  4. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    PubMed

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used.

  5. Protein and amino acid nutrition

    USDA-ARS?s Scientific Manuscript database

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  6. Mental retardation-related protease, motopsin (prss12), binds to the BRICHOS domain of the integral membrane protein 2a.

    PubMed

    Mitsui, Shinichi; Osako, Yoji; Yuri, Kazunari

    2014-01-01

    Motopsin (prss12), a mosaic serine protease secreted by neuronal cells, is believed to be important for cognitive function, as the loss of its function causes severe nonsyndromic mental retardation. To understand the molecular role of motopsin, we identified the integral membrane protein 2a (Itm2a) as a motopsin-interacting protein using a yeast two-hybrid system. A pull-down assay showed that the BRICHOS domain of Itm2a was essential for this interaction. Motopsin and Itm2a co-localized in COS cells and in cultured neurons when transiently expressed in these cells. Both proteins were co-immunoprecipitated from lysates of these transfected COS cells. Itm2a was strongly detected in a brain lysate prepared between postnatal day 0 and 10, during which period motopsin protein was also enriched in the brain. Immunohistochemistry detected Itm2a as patchy spots along endothelial cells of brain capillaries (which also expressed myosin II regulatory light chain [RLC]), and on glial fibrillary acidic protein (GFAP)-positive processes in the developing cerebral cortex. The data raise the possibility that secreted motopsin interacts with endothelial cells in the developing brain. © 2013 International Federation for Cell Biology.

  7. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family*

    PubMed Central

    Broussard, Tyler C.; Miller, Darcie J.; Jackson, Pamela; Nourse, Amanda; White, Stephen W.; Rock, Charles O.

    2016-01-01

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  8. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes.

    PubMed

    González, Antonio; Pariente, José A; Salido, Ginés M

    2007-10-31

    We have employed rat hippocampal astrocytes in culture to investigate the effect of ethanol on reactive oxygen species (ROS) production as well as its effect on [Ca2+]c and GFAP expression. Cells were loaded with the fluorescent probes fura-2 and H2DCFDA for the determination of changes in [Ca2+]c and ROS production respectively, employing spectrofluorimetry. GFAP content was determined by immunocytochemistry and confocal scanning microscopy. Our results show ROS production in response to 50 mM ethanol, that was reduced in Ca2+-free medium (containing 0.5 mM EGTA) and in the presence of the intracellular Ca2+ chelator BAPTA (10 microM). The effect of ethanol on ROS production was significantly reduced in the presence of the alcohol dehydrogenase inhibitor 4-methylpyrazole (1 mM), and the antioxidants resveratrol (100 microM) or catalase (300 U/ml). Preincubation of astrocytes in the presence of 10 microM antimycin plus 10 microM oligomycin to inhibit mitochondria completely blocked ethanol-evoked ROS production. In addition, ethanol led to a sustained increase in [Ca2+]c that reached a constant level over the prestimulation values. Finally, incubation of astrocytes in the presence of ethanol increased the content of GFAP that was significantly reduced in the absence of extracellular Ca2+ and by resveratrol and catalase pretreatment. The data obtained in the present study suggest that astrocytes are able to metabolize ethanol, which induces two effects on intracellular homeostasis: an immediate response (Ca2+ release and ROS generation) and later changes involving GFAP expression. Both effects may underline various signaling pathways which are important for cell proliferation, differentiation and function.

  10. Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury.

    PubMed

    Ghazale, Hussein; Ramadan, Naify; Mantash, Sara; Zibara, Kazem; El-Sitt, Sally; Darwish, Hala; Chamaa, Farah; Boustany, Rose Mary; Mondello, Stefania; Abou-Kheir, Wassim; Soueid, Jihane; Kobeissy, Firas

    2018-03-15

    Traumatic Brain Injury (TBI) is a major cause of death and disability worldwide with 1.5 million people inflicted yearly. Several neurotherapeutic interventions have been proposed including drug administration as well as cellular therapy involving neural stem cells (NSCs). Among the proposed drugs is docosahexaenoic acid (DHA), a polyunsaturated fatty acid, exhibiting neuroprotective properties. In this study, we utilized an innovative intervention of neonatal NSCs transplantation in combination with DHA injections in order to ameliorate brain damage and promote functional recovery in an experimental model of TBI. Thus, NSCs derived from the subventricular zone of neonatal pups were cultured into neurospheres and transplanted in the cortex of an experimentally controlled cortical impact mouse model of TBI. The effect of NSC transplantation was assessed alone and/or in combination with DHA administration. Motor deficits were evaluated using pole climbing and rotarod tests. Using immunohistochemistry, the effect of transplanted NSCs and DHA treatment was used to assess astrocytic (Glial fibrillary acidic protein, GFAP) and microglial (ionized calcium binding adaptor molecule-1, IBA-1) activity. In addition, we quantified neuroblasts (doublecortin; DCX) and dopaminergic neurons (tyrosine hydroxylase; TH) expression levels. Combined NSC transplantation and DHA injections significantly attenuated TBI-induced motor function deficits (pole climbing test), promoted neurogenesis, coupled with an increase in glial reactivity at the cortical site of injury. In addition, the number of tyrosine hydroxylase positive neurons was found to increase markedly in the ventral tegmental area and substantia nigra in the combination therapy group. Immunoblotting analysis indicated that DHA+NSCs treated animals showed decreased levels of 38kDa GFAP-BDP (breakdown product) and 145kDa αII-spectrin SBDP indicative of attenuated calpain/caspase activation. These data demonstrate that prior

  11. Folic acid modulates eNOS activity via effects on posttranslational modifications and protein–protein interactions☆

    PubMed Central

    Taylor, Sarah Y.; Dixon, Hannah M.; Yoganayagam, Shobana; Price, Natalie; Lang, Derek

    2013-01-01

    Folic acid enhances endothelial function and improves outcome in primary prevention of cardiovascular disease. The exact intracellular signalling mechanisms involved remain elusive and were therefore the subject of this study. Particular focus was placed on folic acid-induced changes in posttranslational modifications of endothelial nitric oxide synthase (eNOS). Cultured endothelial cells were exposed to folic acid in the absence or presence of phosphatidylinositol-3' kinase/Akt (PI3K/Akt) inhibitors. The phosphorylation status of eNOS was determined via western blotting. The activities of eNOS and PI3K/Akt were evaluated. The interaction of eNOS with caveolin-1, Heat-Shock Protein 90 and calmodulin was studied using co-immunoprecipitation. Intracellular localisation of eNOS was investigated using sucrose gradient centrifugation and confocal microscopy. Folic acid promoted eNOS dephosphorylation at negative regulatory sites, and increased phosphorylation at positive regulatory sites. Modulation of phosphorylation status was concomitant with increased cGMP concentrations, and PI3K/Akt activity. Inhibition of PI3K/Akt revealed specific roles for this kinase pathway in folic acid-mediated eNOS phosphorylation. Regulatory protein and eNOS protein associations were altered in favour of a positive regulatory effect in the absence of bulk changes in intracellular eNOS localisation. Folic acid-mediated eNOS activation involves the modulation of eNOS phosphorylation status at multiple residues and positive changes in important protein–protein interactions. Such intracellular mechanisms may in part explain improvements in clinical vascular outcome following folic acid treatment. PMID:23796957

  12. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Nguon, K.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion molecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development.

    PubMed

    Doodnath, Reshma; Dervan, Adrian; Wride, Michael A; Puri, Prem

    2010-12-01

    Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the first time that Tg(GFAP:GFP)(mi2001

  14. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle.

    PubMed

    Reidy, P T; Walker, D K; Dickinson, J M; Gundermann, D M; Drummond, M J; Timmerman, K L; Cope, M B; Mukherjea, R; Jennings, K; Volpi, E; Rasmussen, B B

    2014-06-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. Copyright © 2014 the American Physiological Society.

  15. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    PubMed Central

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P < 0.05). However, the ingestion of the protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P < 0.05). Postexercise myofibrillar protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  16. Electricity-Free, Sequential Nucleic Acid and Protein Isolation

    PubMed Central

    Pawlowski, David R.; Karalus, Richard J.

    2012-01-01

    Traditional and emerging pathogens such as Enterohemorrhagic Escherichia coli (EHEC), Yersinia pestis, or prion-based diseases are of significant concern for governments, industries and medical professionals worldwide. For example, EHECs, combined with Shigella, are responsible for the deaths of approximately 325,000 children each year and are particularly prevalent in the developing world where laboratory-based identification, common in the United States, is unavailable 1. The development and distribution of low cost, field-based, point-of-care tools to aid in the rapid identification and/or diagnosis of pathogens or disease markers could dramatically alter disease progression and patient prognosis. We have developed a tool to isolate nucleic acids and proteins from a sample by solid-phase extraction (SPE) without electricity or associated laboratory equipment 2. The isolated macromolecules can be used for diagnosis either in a forward lab or using field-based point-of-care platforms. Importantly, this method provides for the direct comparison of nucleic acid and protein data from an un-split sample, offering a confidence through corroboration of genomic and proteomic analysis. Our isolation tool utilizes the industry standard for solid-phase nucleic acid isolation, the BOOM technology, which isolates nucleic acids from a chaotropic salt solution, usually guanidine isothiocyanate, through binding to silica-based particles or filters 3. CUBRC's proprietary solid-phase extraction chemistry is used to purify protein from chaotropic salt solutions, in this case, from the waste or flow-thru following nucleic acid isolation4. By packaging well-characterized chemistries into a small, inexpensive and simple platform, we have generated a portable system for nucleic acid and protein extraction that can be performed under a variety of conditions. The isolated nucleic acids are stable and can be transported to a position where power is available for PCR amplification while

  17. Electricity-free, sequential nucleic acid and protein isolation.

    PubMed

    Pawlowski, David R; Karalus, Richard J

    2012-05-15

    Traditional and emerging pathogens such as Enterohemorrhagic Escherichia coli (EHEC), Yersinia pestis, or prion-based diseases are of significant concern for governments, industries and medical professionals worldwide. For example, EHECs, combined with Shigella, are responsible for the deaths of approximately 325,000 children each year and are particularly prevalent in the developing world where laboratory-based identification, common in the United States, is unavailable (1). The development and distribution of low cost, field-based, point-of-care tools to aid in the rapid identification and/or diagnosis of pathogens or disease markers could dramatically alter disease progression and patient prognosis. We have developed a tool to isolate nucleic acids and proteins from a sample by solid-phase extraction (SPE) without electricity or associated laboratory equipment (2). The isolated macromolecules can be used for diagnosis either in a forward lab or using field-based point-of-care platforms. Importantly, this method provides for the direct comparison of nucleic acid and protein data from an un-split sample, offering a confidence through corroboration of genomic and proteomic analysis. Our isolation tool utilizes the industry standard for solid-phase nucleic acid isolation, the BOOM technology, which isolates nucleic acids from a chaotropic salt solution, usually guanidine isothiocyanate, through binding to silica-based particles or filters (3). CUBRC's proprietary solid-phase extraction chemistry is used to purify protein from chaotropic salt solutions, in this case, from the waste or flow-thru following nucleic acid isolation(4). By packaging well-characterized chemistries into a small, inexpensive and simple platform, we have generated a portable system for nucleic acid and protein extraction that can be performed under a variety of conditions. The isolated nucleic acids are stable and can be transported to a position where power is available for PCR amplification

  18. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  19. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.

    PubMed

    Blatti, Jillian L; Beld, Joris; Behnke, Craig A; Mendez, Michael; Mayfield, Stephen P; Burkart, Michael D

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes.

  20. Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions

    PubMed Central

    Blatti, Jillian L.; Beld, Joris; Behnke, Craig A.; Mendez, Michael; Mayfield, Stephen P.; Burkart, Michael D.

    2012-01-01

    Microalgae are a promising feedstock for renewable fuels, and algal metabolic engineering can lead to crop improvement, thus accelerating the development of commercially viable biodiesel production from algae biomass. We demonstrate that protein-protein interactions between the fatty acid acyl carrier protein (ACP) and thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast. Using green microalga Chlamydomonas reinhardtii (Cr) as a model, a structural simulation of docking CrACP to CrTE identifies a protein-protein recognition surface between the two domains. A virtual screen reveals plant TEs with similar in silico binding to CrACP. Employing an activity-based crosslinking probe designed to selectively trap transient protein-protein interactions between the TE and ACP, we demonstrate in vitro that CrTE must functionally interact with CrACP to release fatty acids, while TEs of vascular plants show no mechanistic crosslinking to CrACP. This is recapitulated in vivo, where overproduction of the endogenous CrTE increased levels of short-chain fatty acids and engineering plant TEs into the C. reinhardtii chloroplast did not alter the fatty acid profile. These findings highlight the critical role of protein-protein interactions in manipulating fatty acid biosynthesis for algae biofuel engineering as illuminated by activity-based probes. PMID:23028438

  1. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins.

    PubMed

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N

    2014-03-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea.

  2. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins

    PubMed Central

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N.

    2014-01-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea. PMID:24371267

  3. Stabilization of Proteins and Noncovalent Protein Complexes during Electrospray Ionization by Amino Acid Additives.

    PubMed

    Zhang, Hua; Lu, Haiyan; Chingin, Konstantin; Chen, Huanwen

    2015-07-21

    Ionization of proteins and noncovalent protein complexes with minimal disturbance to their native structure presents a great challenge for biological mass spectrometry (MS). In living organisms, the native structure of intracellular proteins is commonly stabilized by solute amino acids (AAs) accumulated in cells at very high concentrations. Inspired by nature, we hypothesized that AAs could also pose a stabilizing effect on the native structure of proteins and noncovalent protein complexes during ionization. To test this hypothesis, here we explored MS response for various protein complexes upon the addition of free AAs at mM concentrations into the electrospray ionization (ESI) solution. Thermal activation of ESI droplets in the MS inlet capillary was employed as a model destabilizing factor during ionization. Our results indicate that certain AAs, in particular proline (Pro), pose considerable positive effect on the stability of noncovalent protein complexes in ESI-MS without affecting the signal intensity of protein ions and original protein-ligand equilibrium, even when added at the 20 mM concentration. The data suggest that the degree of protein stabilization is primarily determined by the osmolytic and ampholytic characteristics of AA solutes. The highest stability and visibility of noncovalent protein complexes in ESI-MS are achieved using AA additives with neutral isoelectric point, moderate proton affinity, and unfavorable interaction with the native protein state. Overall, our results indicate that the simple addition of free amino acids into the working solution can notably improve the stability and accuracy of protein analysis by native ESI-MS.

  4. DNA Asymmetric Strand Bias Affects the Amino Acid Composition of Mitochondrial Proteins

    PubMed Central

    Min, Xiang Jia; Hickey, Donal A.

    2007-01-01

    Abstract Variations in GC content between genomes have been extensively documented. Genomes with comparable GC contents can, however, still differ in the apportionment of the G and C nucleotides between the two DNA strands. This asymmetric strand bias is known as GC skew. Here, we have investigated the impact of differences in nucleotide skew on the amino acid composition of the encoded proteins. We compared orthologous genes between animal mitochondrial genomes that show large differences in GC and AT skews. Specifically, we compared the mitochondrial genomes of mammals, which are characterized by a negative GC skew and a positive AT skew, to those of flatworms, which show the opposite skews for both GC and AT base pairs. We found that the mammalian proteins are highly enriched in amino acids encoded by CA-rich codons (as predicted by their negative GC and positive AT skews), whereas their flatworm orthologs were enriched in amino acids encoded by GT-rich codons (also as predicted from their skews). We found that these differences in mitochondrial strand asymmetry (measured as GC and AT skews) can have very large, predictable effects on the composition of the encoded proteins. PMID:17974594

  5. Protein Design Using Unnatural Amino Acids

    NASA Astrophysics Data System (ADS)

    Bilgiçer, Basar; Kumar, Krishna

    2003-11-01

    With the increasing availability of whole organism genome sequences, understanding protein structure and function is of capital importance. Recent developments in the methodology of incorporation of unnatural amino acids into proteins allow the exploration of proteins at a very detailed level. Furthermore, de novo design of novel protein structures and function is feasible with unprecedented sophistication. Using examples from the literature, this article describes the available methods for unnatural amino acid incorporation and highlights some recent applications including the design of hyperstable protein folds.

  6. Nucleic acid chaperone activity of retroviral Gag proteins.

    PubMed

    Rein, Alan

    2010-01-01

    Retrovirus particles in which the Gag protein has not yet been cleaved by the viral protease are termed immature particles. The viral RNA within these particles shows clear evidence of the action of a nucleic acid chaperone (NAC): the genomic RNA is dimeric, and a cellular tRNA molecule is annealed, by its 3' 18 nucleotides, to a complementary stretch in the viral RNA, in preparation for priming reverse transcription in the next round of infection. It seems very likely that the NAC that has catalyzed dimerization and tRNA annealing is the NC domain of the Gag protein itself. However, neither the dimeric linkage nor the tRNA:viral RNA complex has the same structure as those in mature virus particles: thus the conformational effects of Gag within the particles are not equivalent to those of the free NC protein present in mature particles. It is not known whether these dissimilarities reflect intrinsic differences in the NAC activities of Gag and NC, or limitations on Gag imposed by the structure of the immature particle. Analysis of the interactions of recombinant Gag proteins with nucleic acids is complicated by the fact that they result in assembly of virus-like particles. Nevertheless, the available data indicates that the affinity of Gag for nucleic acids can be considerably higher than that of free NC. This enhanced affinity may be due to contributions of the matrix domain, a positively charged region at the N-terminus of Gag; interactions of neighboring Gag molecules with each other may also increase the affinity due to cooperativity of the binding. Recombinant HIV-1 Gag protein clearly exhibits NAC activity. In two well-studied experimental systems, Gag was more efficient than NC, as its NAC effects could be detected at a significantly lower molar ratio of protein to nucleotide than with NC. In one system, binding of nucleic acid by the matrix domain of Gag retarded the Gag-induced annealing of two RNAs; this effect could be ameliorated by the competitive

  7. Mutual positional preference of IPMDH proteins for binding studied by coarse-grained molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Ishioka, T.; Yamada, H.; Miyakawa, T.; Morikawa, R.; Akanuma, S.; Yamagishi, A.; Takasu, M.

    2016-12-01

    Proteins, which incorporate charged and hydrophobic amino acid residues, are useful as a material of nanotechnology. Among these proteins, IPMDH (3-isopropylmalate dehydrogenase), which has thermal stability, has potential as a material of nanofiber. In this study, we performed coarse-grained molecular dynamics simulation of IPMDH using MARTINI force fields, and we investigated the orientation for the binding of IPMDH. In simulation, we analyzed wild type of IPMDH and the mutated IPMDH proteins, where 13, 20, 27, 332, 335 and 338th amino acid residues are replaced by lysine residues which have positive charge and by glutamic acid residues which have negative charge. Since the binding of mutated IPMDH is advantageous compared with the binding of wild type for one orientation, we suggest that the Coulomb interaction for the binding of IPMDH is important.

  8. Oleic acid transfer from microsomes to egg lecithin liposomes: participation of fatty acid binding protein.

    PubMed

    Catalá, A; Avanzati, B

    1983-11-01

    Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.

  9. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro.

    PubMed

    Desclaux, Mathieu; Teigell, Marisa; Amar, Lahouari; Vogel, Roland; Gimenez Y Ribotta, Minerva; Privat, Alain; Mallet, Jacques

    2009-07-14

    The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP) and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both GFAP and vimentin presented lower levels of glial reactivity in vivo, significant axonal regrowth and improved functional recovery in comparison with wild-type mice after spinal cord hemisection. From these results, our objective was to develop a novel therapeutic strategy for axonal regeneration, based on the targeted suppression of astroglial reactivity and scarring by lentiviral-mediated RNA-interference (RNAi). In this study, we constructed two lentiviral vectors, Lv-shGFAP and Lv-shVIM, which allow efficient and stable RNAi-mediated silencing of endogenous GFAP or vimentin in vitro. In cultured cortical and spinal reactive astrocytes, the use of these vectors resulted in a specific, stable and highly significant decrease in the corresponding protein levels. In a second model -- scratched primary cultured astrocytes -- Lv-shGFAP, alone or associated with Lv-shVIM, decreased astrocytic reactivity and glial scarring. Finally, in a heterotopic coculture model, cortical neurons displayed higher survival rates and increased neurite growth when cultured with astrocytes in which GFAP and vimentin had been invalidated by lentiviral-mediated RNAi. Lentiviral-mediated knockdown of GFAP and vimentin in astrocytes show that GFAP is a key target for modulating reactive gliosis and monitoring neuron/glia interactions. Thus, manipulation of reactive astrocytes with the Lv-shGFAP vector constitutes a promising therapeutic strategy for increasing glial permissiveness and permitting axonal regeneration

  10. Notch1-STAT3-ETBR signaling axis controls reactive astrocyte proliferation after brain injury.

    PubMed

    LeComte, Matthew D; Shimada, Issei S; Sherwin, Casey; Spees, Jeffrey L

    2015-07-14

    Defining the signaling network that controls reactive astrogliosis may provide novel treatment targets for patients with diverse CNS injuries and pathologies. We report that the radial glial cell antigen RC2 identifies the majority of proliferating glial fibrillary acidic protein-positive (GFAP(+)) reactive astrocytes after stroke. These cells highly expressed endothelin receptor type B (ETB(R)) and Jagged1, a Notch1 receptor ligand. To study signaling in adult reactive astrocytes, we developed a model based on reactive astrocyte-derived neural stem cells isolated from GFAP-CreER-Notch1 conditional knockout (cKO) mice. By loss- and gain-of-function studies and promoter activity assays, we found that Jagged1/Notch1 signaling increased ETB(R) expression indirectly by raising the level of phosphorylated signal transducer and activator of transcription 3 (STAT3), a previously unidentified EDNRB transcriptional activator. Similar to inducible transgenic GFAP-CreER-Notch1-cKO mice, GFAP-CreER-ETB(R)-cKO mice exhibited a defect in reactive astrocyte proliferation after cerebral ischemia. Our results indicate that the Notch1-STAT3-ETB(R) axis connects a signaling network that promotes reactive astrocyte proliferation after brain injury.

  11. Notch1–STAT3–ETBR signaling axis controls reactive astrocyte proliferation after brain injury

    PubMed Central

    LeComte, Matthew D.; Shimada, Issei S.; Sherwin, Casey; Spees, Jeffrey L.

    2015-01-01

    Defining the signaling network that controls reactive astrogliosis may provide novel treatment targets for patients with diverse CNS injuries and pathologies. We report that the radial glial cell antigen RC2 identifies the majority of proliferating glial fibrillary acidic protein-positive (GFAP+) reactive astrocytes after stroke. These cells highly expressed endothelin receptor type B (ETBR) and Jagged1, a Notch1 receptor ligand. To study signaling in adult reactive astrocytes, we developed a model based on reactive astrocyte-derived neural stem cells isolated from GFAP-CreER-Notch1 conditional knockout (cKO) mice. By loss- and gain-of-function studies and promoter activity assays, we found that Jagged1/Notch1 signaling increased ETBR expression indirectly by raising the level of phosphorylated signal transducer and activator of transcription 3 (STAT3), a previously unidentified EDNRB transcriptional activator. Similar to inducible transgenic GFAP-CreER-Notch1-cKO mice, GFAP-CreER-ETBR-cKO mice exhibited a defect in reactive astrocyte proliferation after cerebral ischemia. Our results indicate that the Notch1–STAT3–ETBR axis connects a signaling network that promotes reactive astrocyte proliferation after brain injury. PMID:26124113

  12. Incorporation of Amino Acids with Long-Chain Terminal Olefins into Proteins.

    PubMed

    Exner, Matthias P; Köhling, Sebastian; Rivollier, Julie; Gosling, Sandrine; Srivastava, Puneet; Palyancheva, Zheni I; Herdewijn, Piet; Heck, Marie-Pierre; Rademann, Jörg; Budisa, Nediljko

    2016-02-29

    The increasing need for site-specific protein decorations that mimic natural posttranslational modifications requires access to a variety of noncanonical amino acids with moieties enabling bioorthogonal conjugation chemistry. Here we present the incorporation of long-chain olefinic amino acids into model proteins with rational variants of pyrrolysyl-tRNA synthetase (PylRS). Nε-heptenoyl lysine was incorporated for the first time using the known promiscuous variant PylRS(Y306A/Y384F), and Nε-pentenoyl lysine was incorporated in significant yields with the novel variant PylRS(C348A/Y384F). This is the only example of rational modification at position C348 to enlarge the enzyme's binding pocket. Furthermore, we demonstrate the feasibility of our chosen amino acids in the thiol-ene conjugation reaction with a thiolated polysaccharide.

  13. Amino acid sequence of the smaller basic protein from rat brain myelin

    PubMed Central

    Dunkley, Peter R.; Carnegie, Patrick R.

    1974-01-01

    1. The complete amino acid sequence of the smaller basic protein from rat brain myelin was determined. This protein differs from myelin basic proteins of other species in having a deletion of a polypeptide of 40 amino acid residues from the centre of the molecule. 2. A detailed comparison is made of the constant and variable regions in a group of myelin basic proteins from six species. 3. An arginine residue in the rat protein was found to be partially methylated. The ratio of methylated to unmethylated arginine at this position differed from that found for the human basic protein. 4. Three tryptic peptides were isolated in more than one form. The differences between the two forms of each peptide are discussed in relation to the electrophoretic heterogeneity of myelin basic proteins, which is known to occur at alkaline pH values. 5. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50029 at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5. PMID:4141893

  14. Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil

    NASA Astrophysics Data System (ADS)

    Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.

    2017-12-01

    The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases

  15. Two-level QSAR network (2L-QSAR) for peptide inhibitor design based on amino acid properties and sequence positions.

    PubMed

    Du, Q S; Ma, Y; Xie, N Z; Huang, R B

    2014-01-01

    In the design of peptide inhibitors the huge possible variety of the peptide sequences is of high concern. In collaboration with the fast accumulation of the peptide experimental data and database, a statistical method is suggested for peptide inhibitor design. In the two-level peptide prediction network (2L-QSAR) one level is the physicochemical properties of amino acids and the other level is the peptide sequence position. The activity contributions of amino acids are the functions of physicochemical properties and the sequence positions. In the prediction equation two weight coefficient sets {ak} and {bl} are assigned to the physicochemical properties and to the sequence positions, respectively. After the two coefficient sets are optimized based on the experimental data of known peptide inhibitors using the iterative double least square (IDLS) procedure, the coefficients are used to evaluate the bioactivities of new designed peptide inhibitors. The two-level prediction network can be applied to the peptide inhibitor design that may aim for different target proteins, or different positions of a protein. A notable advantage of the two-level statistical algorithm is that there is no need for host protein structural information. It may also provide useful insight into the amino acid properties and the roles of sequence positions.

  16. Regulation of intestinal protein metabolism by amino acids.

    PubMed

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  17. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  18. Bedside heart type fatty acid binding protein (H-FABP): Is an early predictive marker of cardiac syncope.

    PubMed

    Sonmez, Bedriye Muge; Ozturk, Derya; Yilmaz, Fevzi; Altinbilek, Ertugrul; Kavalci, Cemil; Durdu, Tamer; Hakbilir, Oktay; Turhan, Turan; Ongar, Murat

    2015-11-01

    To determine the value of bedside heart-type fatty acid binding protein in diagnosis of cardiac syncope in patients presenting with syncope or presyncope. The prospective study was conducted at Ankara Numune Training and Research Hospital, Ankara, Turkey, between September 1, 2010, and January 1, 2011, and comprised patients aged over 18 years who presented with syncope or presyncope. Patients presenting to emergency department within 4 hours of syncope or presyncope underwent a bedside heart-type fatty acid binding protein test measurement. SPSS 16 was used for statistical analysis. Of the 100 patients evaluated, 22(22%) were diagnosed with cardiac syncope. Of them, 13(59.1%) patients had a positive and 9(40.9%) had a negative heart-type fatty acid binding protein result. Consequently, the test result was 12.64 times more positive in patients with cardiac syncope compared to those without. Bedside heart-type fatty acid binding protein, particularly at early phase of myocardial injury, reduces diagnostic and therapeutic uncertainity of cardiac origin in syncope patients.

  19. Amino acid pair- and triplet-wise groupings in the interior of α-helical segments in proteins.

    PubMed

    de Sousa, Miguel M; Munteanu, Cristian R; Pazos, Alejandro; Fonseca, Nuno A; Camacho, Rui; Magalhães, A L

    2011-02-21

    A statistical approach has been applied to analyse primary structure patterns at inner positions of α-helices in proteins. A systematic survey was carried out in a recent sample of non-redundant proteins selected from the Protein Data Bank, which were used to analyse α-helix structures for amino acid pairing patterns. Only residues more than three positions apart from both termini of the α-helix were considered as inner. Amino acid pairings i, i+k (k=1, 2, 3, 4, 5), were analysed and the corresponding 20×20 matrices of relative global propensities were constructed. An analysis of (i, i+4, i+8) and (i, i+3, i+4) triplet patterns was also performed. These analysis yielded information on a series of amino acid patterns (pairings and triplets) showing either high or low preference for α-helical motifs and suggested a novel approach to protein alphabet reduction. In addition, it has been shown that the individual amino acid propensities are not enough to define the statistical distribution of these patterns. Global pair propensities also depend on the type of pattern, its composition and orientation in the protein sequence. The data presented should prove useful to obtain and refine useful predictive rules which can further the development and fine-tuning of protein structure prediction algorithms and tools. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Protein and Essential Amino Acids to Protect Musculoskeletal Health during Spaceflight: Evidence of a Paradox?

    PubMed Central

    Hackney, Kyle J.; English, Kirk L.

    2014-01-01

    Long-duration spaceflight results in muscle atrophy and a loss of bone mineral density. In skeletal muscle tissue, acute exercise and protein (e.g., essential amino acids) stimulate anabolic pathways (e.g., muscle protein synthesis) both independently and synergistically to maintain neutral or positive net muscle protein balance. Protein intake in space is recommended to be 12%–15% of total energy intake (≤1.4 g∙kg−1∙day−1) and spaceflight is associated with reduced energy intake (~20%), which enhances muscle catabolism. Increasing protein intake to 1.5–2.0 g∙kg−1∙day−1 may be beneficial for skeletal muscle tissue and could be accomplished with essential amino acid supplementation. However, increased consumption of sulfur-containing amino acids is associated with increased bone resorption, which creates a dilemma for musculoskeletal countermeasures, whereby optimizing skeletal muscle parameters via essential amino acid supplementation may worsen bone outcomes. To protect both muscle and bone health, future unloading studies should evaluate increased protein intake via non-sulfur containing essential amino acids or leucine in combination with exercise countermeasures and the concomitant influence of reduced energy intake. PMID:25370374

  1. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    PubMed

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  2. Proteins interacting with cloning scars: a source of false positive protein-protein interactions

    PubMed Central

    Banks, Charles A. S.; Boanca, Gina; Lee, Zachary T.; Florens, Laurence; Washburn, Michael P.

    2015-01-01

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine “cloning scar” present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected. PMID:25704442

  3. Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores.

    PubMed

    Parente, Daniel J; Ray, J Christian J; Swint-Kruse, Liskin

    2015-12-01

    As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. © 2015 Wiley Periodicals, Inc.

  4. Structures and functions of proteins and nucleic acids in protein biosynthesis

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tatsuo; Yokoyama, Shigeyuki

    Infrared and Raman spectroscopy is useful for studying helical conformations of polypeptides, which are determined by molecular structure parameters. Nuclear magnetic resonance spectroscopy, as well as X-ray analysis, is now established to be important for conformation studies of proteins and nucleic acids in solution. This article is mainly concerned with the conformational aspect and function regulation in protein biosynthesis. The strict recognition of transfer ribonucleic acid (tRNA) by aminoacyl-tRNA synthetase (ARS) is achieved by multi-step mutual adaptation. The conformations of ARS-bound amino acids have been elucidated by transferred nuclear Overhauser effect analysis. Aminoacyl-tRNA takes the 3‧-isomeric form in the polypeptide chain elongation cycle. The regulation of codon recognition by post-transcriptional modification is achieved by conversion of the conformational characteristic of the anticodon of tRNA. The cytidine → lysidine modification of the anticodon of minor isoleucine tRNA concurrently converts the amino acid specificity and the codon specificity. As novel protein engineering, a basic strategy has been established for in vivo biosynthesis of proteins that are substituted with unnatural amino acids (alloproteins).

  5. Interactions between Therapeutic Proteins and Acrylic Acid Leachable.

    PubMed

    Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da

    2012-01-01

    Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.

  6. Quantitative Evaluation of Brain Stem Atrophy Using Magnetic Resonance Imaging in Adult Patients with Alexander Disease.

    PubMed

    Yoshida, Tomokatsu; Yasuda, Rei; Mizuta, Ikuko; Nakagawa, Masanori; Mizuno, Toshiki

    2017-01-01

    Brain MRI in adult patients with Alexander disease (AxD) mainly shows atrophy in the medulla oblongata. However, currently there is no quantitative standard for assessing this atrophy. In this study, we quantitatively evaluated the brain stem of AxD patients with glial fibrillary acidic protein (GFAP) mutation using conventional MRI to evaluate its usefulness as an aid to diagnosing AxD in daily clinical practice. Nineteen AxD patients with GFAP mutation were compared with 14 patients negative for GFAP mutation in whom AxD was suspected due to "atrophy of the medulla oblongata." In the GFAP mutation-positive group, the sagittal diameter of the medulla oblongata, the ratio of the diameter of the medulla oblongata to that of the midbrain (MO/MB), and the ratio of the sagittal diameter of the medulla oblongata to that of the pons (MO/Po) were significantly smaller compared to those of the GFAP mutation-negative group (p < 0.01). The sensitivity and specificity of each parameter were 87.5 and 92.3%, 91.7 and 81.3%, and 88.2 and 100% with a sagittal diameter of the medulla oblongata <9.0 mm, MO/MB <0.60, and sagittal MO/Po <0.46, respectively. These parameters can provide very useful information to differentially diagnose AxD from other disorders associated with brain stem atrophy in adult patients. © 2017 S. Karger AG, Basel.

  7. Real-time Measurements of Amino Acid and Protein Hydroperoxides Using Coumarin Boronic Acid*

    PubMed Central

    Michalski, Radoslaw; Zielonka, Jacek; Gapys, Ewa; Marcinek, Andrzej; Joseph, Joy; Kalyanaraman, Balaraman

    2014-01-01

    Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems. PMID:24928516

  8. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes.

    PubMed

    Xia, Jun Hong; Li, Hong Lian; Zhang, Yong; Meng, Zi Ning; Lin, Hao Ran

    2018-05-01

    Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.

  9. Tanshinone IIA attenuates the cerebral ischemic injury-induced increase in levels of GFAP and of caspases-3 and -8.

    PubMed

    Zhou, L; Bondy, S C; Jian, L; Wen, P; Yang, F; Luo, H; Li, W; Zhou, Jun

    2015-03-12

    Tanshinone IIA (TSA) is a lipid soluble agent derived from the root of Salvia miltiorrhiza (Danshen). This plant is a traditional Chinese herb, which has been used widely in China especially for enhancing circulation. However mechanisms underlying its efficacy remain poorly understood. The present study was designed to illuminate events that may underlie the apparently neuroprotective effects of TSA following ischemic insult. Adult Sprague-Dawley rats were subjected to transient focal cerebral ischemia by use of a middle cerebral artery occlusion model. They were then randomly divided into a sham-operated control group, and cerebral ischemia/reperfusion groups receiving a two-hour occlusion. Further subsets of groups received the same durations of occlusion or were sham-operated but then received daily i.p. injections of high or low doses of TSA, for seven or 15days. Hematoxylin and eosin staining revealed lesions in the entorhinal cortex of both rats subject to ischemia and to a lesser extent to those receiving TSA after surgery. Levels of glial fibrillary acidic protein (GFAP), caspase-3 and caspase-8, were quantified by both immunohistochemistry and Western blotting. TSA treatment after middle cerebral artery occlusion, markedly reduced infarct size, and reduced the expression of caspase-3 and caspase-8. These changes were considered protective and were generally proportional to the dose of TSA used. These results suggest that TSA may effect neuroprotection by way of reduction of the extent of cell inflammation and death within affected regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  11. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    PubMed

    Gruber, David F; Gaffney, Jean P; Mehr, Shaadi; DeSalle, Rob; Sparks, John S; Platisa, Jelena; Pieribone, Vincent A

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  12. Neuroprotection by Combined Administration with Maslinic Acid, a Natural Product from Olea europaea, and MK-801 in the Cerebral Ischemia Model.

    PubMed

    Qian, Yisong; Tang, Xuzhen; Guan, Teng; Li, Yunman; Sun, Hongbin

    2016-08-19

    Glutamate-mediated excitotoxicity is a major cause of ischemic brain damage. MK-801 confers neuroprotection by attenuating the activation of the N-methyl-d-aspartate (NMDA) receptor, but it failed in clinical use due to the short therapeutic window. Here we aim to investigate the effects of maslinic acid, a natural product from Olea europaea, on the therapeutic time window and dose range for the neuroprotection of MK-801. Rats were administered with maslinic acid intracerebroventricularly and cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) followed by reperfusion. MK-801 was administered at 1 h, 2 h, 3 h and 4 h after ischemia, respectively. The cerebral infarct volume was determined by 2,3,5-Triphenyltetrazolium chloride (TTC) staining, neuronal damage was assessed by Haematoxylin Eosin (H&E) staining, and the expression of glial glutamate transporters and glial fibrillary acidic protein (GFAP) was evaluated by immunohistochemistry and Western blot post-ischemia. Results showed that the presence of maslinic acid extended the therapeutic time window for MK-801 from 1 h to 3 h. Co-treatment of maslinic acid and MK-801 at a subthreshold dosage obviously induced neuroprotection after ischemia. The combination of these two compounds improved the outcome in ischemic rats. Moreover, maslinic acid treatment promoted the expression of GLT-1 and GFAP post-ischemia. These data suggest that the synergistic effect of maslinic acid on neurological protection might be associated with the improvement of glial function, especially with the increased expression of GLT-1. The combination therapy of maslinic acid and MK-801 may prove to be a potential strategy for treating acute ischemic stroke.

  13. Self-organization and positioning of bacterial protein clusters

    NASA Astrophysics Data System (ADS)

    Murray, Seán M.; Sourjik, Victor

    2017-10-01

    Many cellular processes require proteins to be precisely positioned within the cell. In some cases this can be attributed to passive mechanisms such as recruitment by other proteins in the cell or by exploiting the curvature of the membrane. However, in bacteria, active self-positioning is likely to play a role in multiple processes, including the positioning of the future site of cell division and cytoplasmic protein clusters. How can such dynamic clusters be formed and positioned? Here, we present a model for the self-organization and positioning of dynamic protein clusters into regularly repeating patterns based on a phase-locked Turing pattern. A single peak in the concentration is always positioned at the midpoint of the model cell, and two peaks are positioned at the midpoint of each half. Furthermore, domain growth results in peak splitting and pattern doubling. We argue that the model may explain the regular positioning of the highly conserved structural maintenance of chromosomes complexes on the bacterial nucleoid and that it provides an attractive mechanism for the self-positioning of dynamic protein clusters in other systems.

  14. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    PubMed

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  15. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingxing; Cai, Ruowei; Lv, Guorong, E-mail: lxingwan502@gmail.com

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternalmore » hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.« less

  16. NPIDB: Nucleic acid-Protein Interaction DataBase.

    PubMed

    Kirsanov, Dmitry D; Zanegina, Olga N; Aksianov, Evgeniy A; Spirin, Sergei A; Karyagina, Anna S; Alexeevski, Andrei V

    2013-01-01

    The Nucleic acid-Protein Interaction DataBase (http://npidb.belozersky.msu.ru/) contains information derived from structures of DNA-protein and RNA-protein complexes extracted from the Protein Data Bank (3846 complexes in October 2012). It provides a web interface and a set of tools for extracting biologically meaningful characteristics of nucleoprotein complexes. The content of the database is updated weekly. The current version of the Nucleic acid-Protein Interaction DataBase is an upgrade of the version published in 2007. The improvements include a new web interface, new tools for calculation of intermolecular interactions, a classification of SCOP families that contains DNA-binding protein domains and data on conserved water molecules on the DNA-protein interface.

  17. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  18. Automated protein hydrolysis delivering sample to a solid acid catalyst for amino acid analysis.

    PubMed

    Masuda, Akiko; Dohmae, Naoshi

    2010-11-01

    In this study, we developed an automatic protein hydrolysis system using strong cation-exchange resins as solid acid catalysts. Examining several kinds of inorganic solid acids and cation-exchange resins, we found that a few cation-exchange resins worked as acid catalysts for protein hydrolysis when heated in the presence of water. The most efficient resin yielded amounts of amino acids that were over 70% of those recovered after conventional hydrolysis with hydrochloric acid and resulted in amino acid compositions matching the theoretical values. The solid-acid hydrolysis was automated by packing the resin into columns, combining the columns with a high-performance liquid chromatography system, and heating them. The amino acids that constitute a protein can thereby be determined, minimizing contamination from the environment.

  19. Amino acid sequences of ribosomal proteins S11 from Bacillus stearothermophilus and S19 from Halobacterium marismortui. Comparison of the ribosomal protein S11 family.

    PubMed

    Kimura, M; Kimura, J; Hatakeyama, T

    1988-11-21

    The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).

  20. [Effect of electroacupuncture on differentiation and proliferation of hippocampal nerve stem cells in splenic asthenia pedo-rats].

    PubMed

    Zhuo, Yuan-yuan; Yang, Zhuo-xin; Wu, Jia-man

    2011-10-01

    To observe the effect of electroacupuncture (EA) on the differentiation and proliferation of nerve stem cells in the hippocampal dentate gyrus (DG) in splenic asthenia pedo-rats so as to study its central mechanism. A total of 72 SD male rats were randomly assigned to normal control group (n=24), model group (n=24) and EA group (n=24) which were further divided into 7 d, 14 d, 28 d and 49 d time-points (n=6). Splenic asthenia model was established by intraperitoneal injection of reserpine and gavage of Dahuang (Radix et Rhizoma Rhei) fluid. EA was applied to bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) for 20 min, once daily for 7, 14, 28 and 49 days respectively. Brdu, Nestin, glial fibrillary acidic protein (GFAP), and neuron-specific enolase (NSE) expression in the DG of hippocampus were detected by immunohistochemistry double staining. Compared with the normal control group, the numbers of Brdu, Brdu/GFAP, Brdu/NSE Immunoreactive (IR) positive cells in the DG of hippocampus on day 7 and 14, and that of Brdu/Nestin IR-positive cells on day 7 were decreased considerably in the model group (P < 0.05). Compared to the model group, the numbers of hippocampal Brdu IR-positive cells at the 4 time-points, Brdu/Nestin and Brdu/GFAP on day 7, 14 and 49, and Brdu/NSE on day 7, 14 and 28 were increased significantly in the EA group (P < 0.05). No significant differences were found between the model and control groups in the numbers of hippocampal Brdu and Brdu/NSE IR-positive cells on day 28 and 49, in the number of Brdu/Nestin IR-positive cells on day 14 and 49, in the number of Brdu/GFAP IR-positive cells on day 28; and between the EA and model groups in the numbers of Brdu/Nestin and Brdu/GFAP IR-positive cells on day 28, and in the number of Brdu/NSE IR-positive cells on day 49 (P > 0.05). EA of ST 36 and SP 6 can effectively suppress splenic asthenia syndrome-induced decrease of the numbers of Brdu, Brdu/GFAP, Brdu/Nestin and Brdu/NSE IR-positive cells in the

  1. NMR studies of protein-nucleic acid interactions.

    PubMed

    Varani, Gabriele; Chen, Yu; Leeper, Thomas C

    2004-01-01

    Protein-DNA and protein-RNA complexes play key functional roles in every living organism. Therefore, the elucidation of their structure and dynamics is an important goal of structural and molecular biology. Nuclear magnetic resonance (NMR) studies of protein and nucleic acid complexes have common features with studies of protein-protein complexes: the interaction surfaces between the molecules must be carefully delineated, the relative orientation of the two species needs to be accurately and precisely determined, and close intermolecular contacts defined by nuclear Overhauser effects (NOEs) must be obtained. However, differences in NMR properties (e.g., chemical shifts) and biosynthetic pathways for sample productions generate important differences. Chemical shift differences between the protein and nucleic acid resonances can aid the NMR structure determination process; however, the relatively limited dispersion of the RNA ribose resonances makes the process of assigning intermolecular NOEs more difficult. The analysis of the resulting structures requires computational tools unique to nucleic acid interactions. This chapter summarizes the most important elements of the structure determination by NMR of protein-nucleic acid complexes and their analysis. The main emphasis is on recent developments (e.g., residual dipolar couplings and new Web-based analysis tools) that have facilitated NMR studies of these complexes and expanded the type of biological problems to which NMR techniques of structural elucidation can now be applied.

  2. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.

    PubMed

    Tan, Yen Hock; Huang, He; Kihara, Daisuke

    2006-08-15

    Aligning distantly related protein sequences is a long-standing problem in bioinformatics, and a key for successful protein structure prediction. Its importance is increasing recently in the context of structural genomics projects because more and more experimentally solved structures are available as templates for protein structure modeling. Toward this end, recent structure prediction methods employ profile-profile alignments, and various ways of aligning two profiles have been developed. More fundamentally, a better amino acid similarity matrix can improve a profile itself; thereby resulting in more accurate profile-profile alignments. Here we have developed novel amino acid similarity matrices from knowledge-based amino acid contact potentials. Contact potentials are used because the contact propensity to the other amino acids would be one of the most conserved features of each position of a protein structure. The derived amino acid similarity matrices are tested on benchmark alignments at three different levels, namely, the family, the superfamily, and the fold level. Compared to BLOSUM45 and the other existing matrices, the contact potential-based matrices perform comparably in the family level alignments, but clearly outperform in the fold level alignments. The contact potential-based matrices perform even better when suboptimal alignments are considered. Comparing the matrices themselves with each other revealed that the contact potential-based matrices are very different from BLOSUM45 and the other matrices, indicating that they are located in a different basin in the amino acid similarity matrix space.

  3. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system.

    PubMed

    Qi, Xu; Shao, Ming; Peng, Haisheng; Bi, Zhenggang; Su, Zhiqiang; Li, Hulun

    2010-07-01

    This study was performed to establish a bone marrow stromal cell (BMSC)/neuron two-compartment co-culture model in which differentiation of BMSCs into neurons could occur without direct contact between the two cell types, and to investigate protein expression changes during differentiation of this entirely BMSC-derived population. Cultured BMSCs isolated from Wistar rats were divided into three groups: BMSC culture, BMSC/neuron co-culture and BMSC/neuron two-compartment co-culture. Cells were examined for neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) expression. The electrophysiological behavior of the BMSCs was examined using patch clamping. Proteins that had significantly different expression levels in BMSCs cultured alone and co-cultured with neurons were studied using a protein chip-mass spectroscopy technique. Expression of NSE and GFAP were significantly higher in co-culture cells than in two-compartment co-culture cells, and significantly higher in both co-culture groups than in BMSCs cultured alone. Five proteins showed significant changes in expression during differentiation: TIP39_RAT and CALC_RAT underwent increases, and INSL6_RAT, PNOC_RAT and PCSK1_RAT underwent decreases in expression. We conclude that BMSCs can differentiate into neurons during both contact co-culture with neurons and two-compartment co-culture with neurons. The rate at which BMSCs differentiated into neurons was higher in contact co-culture than in non-contact co-culture.

  4. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue.

    PubMed Central

    Wilkinson, T C; Wilton, D C

    1986-01-01

    Fatty acid-binding protein from rat liver is shown to bind the fluorescent fatty acid probe dansyl undecanoic acid. Binding is accompanied by a shift in the fluorescence emission maximum from 550 nm to 500 nm and a 60-fold fluorescence enhancement at 500 nm. These spectral properties have allowed the use of this probe to detect and quantify microgram amounts of liver fatty acid-binding protein during purification procedures. In conjunction with h.p.l.c. the method allows the rapid estimation of liver fatty acid-binding protein in biological samples. The validity of the method is demonstrated by measuring the concentration of fatty acid-binding protein in livers from control and hypolipidaemic-drug-treated rats. The dramatic diurnal rhythm previously reported for this protein [Dempsey (1984) Curr. Top. Cell. Regul. 24, 63-86] was not observed with this method. Images Fig. 1. PMID:3800946

  5. Variability of the protein sequences of lcrV between epidemic and atypical rhamnose-positive strains of Yersinia pestis.

    PubMed

    Anisimov, Andrey P; Panfertsev, Evgeniy A; Svetoch, Tat'yana E; Dentovskaya, Svetlana V

    2007-01-01

    Sequencing of lcrV genes and comparison of the deduced amino acid sequences from ten Y. pestis strains belonging mostly to the group of atypical rhamnose-positive isolates (non-pestis subspecies or pestoides group) showed that the LcrV proteins analyzed could be classified into five sequence types. This classification was based on major amino acid polymorphisms among LcrV proteins in the four "hot points" of the protein sequences. Some additional minor polymorphisms were found throughout these sequence types. The "hot points" corresponded to amino acids 18 (Lys --> Asn), 72 (Lys --> Arg), 273 (Cys --> Ser), and 324-326 (Ser-Gly-Lys --> Arg) in the LcrV sequence of the reference Y. pestis strain CO92. One possible explanation for polymorphism in amino acid sequences of LcrV among different strains is that strain-specific variation resulted from adaptation of the plague pathogen to different rodent and lagomorph hosts.

  6. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  7. Prediction of subcellular localization of eukaryotic proteins using position-specific profiles and neural network with weighted inputs.

    PubMed

    Zou, Lingyun; Wang, Zhengzhi; Huang, Jiaomin

    2007-12-01

    Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and 1st-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy.

  8. The Protein Kinase SmSnRK2.6 Positively Regulates Phenolic Acid Biosynthesis in Salvia miltiorrhiza by Interacting with SmAREB1

    PubMed Central

    Jia, Yanyan; Bai, Zhenqing; Pei, Tianlin; Ding, Kai; Liang, Zongsuo; Gong, Yuehua

    2017-01-01

    Subclass III members of the sucrose non-fermenting-1-related protein kinase 2 (SnRK2) play essential roles in both the abscisic acid signaling and abiotic stress responses of plants by phosphorylating the downstream ABA-responsive element (ABRE)-binding proteins (AREB/ABFs). This comprehensive study investigated the function of new candidate genes, namely SmSnRK2.3, SmSnRK2.6, and SmAREB1, with a view to breeding novel varieties of Salvia miltiorrhiza with improved stress tolerance stresses and more content of bioactive ingredients. Exogenous ABA strongly induced the expression of these genes. PlantCARE predicted several hormones and stress response cis-elements in their promoters. SmSnRK2.6 and SmAREB1 showed the highest expression levels in the leaves of S. miltiorrhiza seedlings, while SmSnRK2.3 exhibited a steady expression in their roots, stems, and leaves. A subcellular localization assay revealed that both SmSnRK2.3 and SmSnRK2.6 were located in the cell membrane, cytoplasm, and nucleus, whereas SmAREB1 was exclusive to the nucleus. Overexpressing SmSnRK2.3 did not significantly promote the accumulation of rosmarinic acid (RA) and salvianolic acid B (Sal B) in the transgenic S. miltiorrhiza hairy roots. However, overexpressing SmSnRK2.6 and SmAREB1 increased the contents of RA and Sal B, and regulated the expression levels of structural genes participating in the phenolic acid-branched and side-branched pathways, including SmPAL1, SmC4H, Sm4CL1, SmTAT, SmHPPR, SmRAS, SmCHS, SmCCR, SmCOMT, and SmHPPD. Furthermore, SmSnRK2.3 and SmSnRK2.6 interacted physically with SmAREB1. In summary, our results indicate that SmSnRK2.6 is involved in stress responses and can regulate structural gene transcripts to promote greater metabolic flux to the phenolic acid-branched pathway, via its interaction with SmAREB1, a transcription factor. In this way, SmSnRK2.6 contributes to the positive regulation of phenolic acids in S. miltiorrhiza hairy roots. PMID:28848585

  9. The Protein Kinase SmSnRK2.6 Positively Regulates Phenolic Acid Biosynthesis in Salvia miltiorrhiza by Interacting with SmAREB1.

    PubMed

    Jia, Yanyan; Bai, Zhenqing; Pei, Tianlin; Ding, Kai; Liang, Zongsuo; Gong, Yuehua

    2017-01-01

    Subclass III members of the sucrose non-fermenting-1-related protein kinase 2 (SnRK2) play essential roles in both the abscisic acid signaling and abiotic stress responses of plants by phosphorylating the downstream ABA-responsive element (ABRE)-binding proteins (AREB/ABFs). This comprehensive study investigated the function of new candidate genes, namely SmSnRK2.3 , SmSnRK2.6 , and SmAREB1 , with a view to breeding novel varieties of Salvia miltiorrhiza with improved stress tolerance stresses and more content of bioactive ingredients. Exogenous ABA strongly induced the expression of these genes. PlantCARE predicted several hormones and stress response cis -elements in their promoters. SmSnRK2.6 and SmAREB1 showed the highest expression levels in the leaves of S. miltiorrhiza seedlings, while SmSnRK2.3 exhibited a steady expression in their roots, stems, and leaves. A subcellular localization assay revealed that both SmSnRK2.3 and SmSnRK2.6 were located in the cell membrane, cytoplasm, and nucleus, whereas SmAREB1 was exclusive to the nucleus. Overexpressing SmSnRK2.3 did not significantly promote the accumulation of rosmarinic acid (RA) and salvianolic acid B (Sal B) in the transgenic S. miltiorrhiza hairy roots. However, overexpressing SmSnRK2.6 and SmAREB1 increased the contents of RA and Sal B, and regulated the expression levels of structural genes participating in the phenolic acid-branched and side-branched pathways, including SmPAL1 , SmC4H , Sm4CL1 , SmTAT , SmHPPR , SmRAS , SmCHS , SmCCR , SmCOMT , and SmHPPD . Furthermore, SmSnRK2.3 and SmSnRK2.6 interacted physically with SmAREB1. In summary, our results indicate that SmSnRK2.6 is involved in stress responses and can regulate structural gene transcripts to promote greater metabolic flux to the phenolic acid-branched pathway, via its interaction with SmAREB1 , a transcription factor. In this way, SmSnRK2.6 contributes to the positive regulation of phenolic acids in S. miltiorrhiza hairy roots.

  10. Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions

    PubMed Central

    Roy, Sushmita; Martinez, Diego; Platero, Harriett; Lane, Terran; Werner-Washburne, Margaret

    2009-01-01

    Background Computational prediction of protein interactions typically use protein domains as classifier features because they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid composition (AAC) for protein interaction prediction. This simple feature, which is based on normalized counts of single or pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of domain information. Results AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized or participated in the same processes. Our high confidence interaction network included both well-studied and uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the uncharacterized proteins. Conclusion AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of interaction, but which is not necessarily restricted to domains. PMID:19936254

  11. A Seasonal and Age-Related Study of Interstitial Cells in the Pineal Gland of Male Viscacha (Lagostomus maximus maximus).

    PubMed

    Busolini, Fabricio Ivan; Rosales, Gabriela Judith; Filippa, Verónica Palmira; Mohamed, Fabian Heber

    2017-10-01

    The pineal gland of viscacha exhibits histophysiological variations throughout the year, with periods of maximal activity in winter and minimal activity in summer. The aim of this work is to analyze the interstitial cells (IC) in the pineal gland of male viscachas in relation to season and age. The S-100 protein, glio-fibrillary acidic protein (GFAP), and vimentin were detected in adult and immature animals by immunohistochemistry (IHC). Double-IHC was also performed. The S-100 protein was localized within both, IC nucleus and cytoplasm. GFAP was present only in the cytoplasm. Vimentin was expressed in some IC, besides endothelial cells, and perivascular spaces. In the adult males, the morphometric parameters analyzed for the S-100 protein and GFAP exhibited seasonal variations with higher values of immunopositive area percentage in winter and lower values in summer, whereas the immature ones showed the lowest values for all the adult animals studied. Colocalization of S-100 protein and GFAP was observed. The IC exhibited differential expression for the proteins studied, supporting the hypothesis of the neuroectodermal origin. The IC generate an intraglandular communication network, suggesting its participation in the glandular activity regulation processes. The results of double-IHC might indicate the presence of IC in different functional stages, probably related to the needs of the cellular microenvironment. The morphometric variations in the proteins analyzed between immature and adult viscachas probed to be more salient in the latter, suggesting a direct relationship between the expression of the S-100 protein and GFAP, and animal age. Anat Rec, 2017. © 2017 Wiley Periodicals Inc. Anat Rec, 300:1847-1857, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    PubMed Central

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G; Kristensen, Bjarne

    2013-01-01

    Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded astrocytomas and compared with tumor grade and overall patient survival. Moreover, double immunofluorescence stainings were performed with LAMP-1 and the astrocytic marker GFAP and the putative stem cell marker CD133 on ten glioblastomas. Most tumors expressed the LAMP-1 protein in the cytoplasm of the tumor cells, while the blood vessels were positive in all tumors. The percentage of LAMP-1 positive tumor cells and staining intensities increased with tumor grade but variations in tumors of the same grade were also found. No association was found between LAMP-1 expression and patient overall survival in the individual tumor grades. LAMP-1/GFAP showed pronounced co-expression and LAMP-1/CD133 was co-expressed as well suggesting that tumor cells including the proposed tumor stem cells contain lysosomes. The results suggest that high amounts of lysosomes are present in glioblastomas and in the proposed tumor stem cells. Targeting of lysosomes may be a promising novel therapeutic strategy against this highly malignant neoplasm. PMID:23826410

  13. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION : DELETION OF INDIVIDUAL AMINO ACIDS FROM GROWTH MIXTURE OF TEN ESSENTIAL AMINO ACIDS. SIGNIFICANT CHANGES IN URINARY NITROGEN.

    PubMed

    Robscheit-Robbins, F S; Miller, L L; Whipple, G H

    1947-02-28

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  14. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice

    PubMed Central

    Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long

    2008-01-01

    Background Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor β1 (TGF-β1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), β-amyloid precursor proteins (AβPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. Methods BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-β1, S100B, NF-L, tTG, AβPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Conclusion Further studies are needed to

  15. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice.

    PubMed

    Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long

    2008-06-24

    Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Further studies are needed to determine whether there is an

  16. Amino acid sequence analysis of the annexin super-gene family of proteins.

    PubMed

    Barton, G J; Newman, R H; Freemont, P S; Crumpton, M J

    1991-06-15

    The annexins are a widespread family of calcium-dependent membrane-binding proteins. No common function has been identified for the family and, until recently, no crystallographic data existed for an annexin. In this paper we draw together 22 available annexin sequences consisting of 88 similar repeat units, and apply the techniques of multiple sequence alignment, pattern matching, secondary structure prediction and conservation analysis to the characterisation of the molecules. The analysis clearly shows that the repeats cluster into four distinct families and that greatest variation occurs within the repeat 3 units. Multiple alignment of the 88 repeats shows amino acids with conserved physicochemical properties at 22 positions, with only Gly at position 23 being absolutely conserved in all repeats. Secondary structure prediction techniques identify five conserved helices in each repeat unit and patterns of conserved hydrophobic amino acids are consistent with one face of a helix packing against the protein core in predicted helices a, c, d, e. Helix b is generally hydrophobic in all repeats, but contains a striking pattern of repeat-specific residue conservation at position 31, with Arg in repeats 4 and Glu in repeats 2, but unconserved amino acids in repeats 1 and 3. This suggests repeats 2 and 4 may interact via a buried saltbridge. The loop between predicted helices a and b of repeat 3 shows features distinct from the equivalent loop in repeats 1, 2 and 4, suggesting an important structural and/or functional role for this region. No compelling evidence emerges from this study for uteroglobin and the annexins sharing similar tertiary structures, or for uteroglobin representing a derivative of a primordial one-repeat structure that underwent duplication to give the present day annexins. The analyses performed in this paper are re-evaluated in the Appendix, in the light of the recently published X-ray structure for human annexin V. The structure confirms most of

  17. D-amino acid oxidase is expressed in the ventral tegmental area and modulates cortical dopamine

    PubMed Central

    Betts, Jill F.; Schweimer, Judith V.; Burnham, Katherine E.; Burnet, Philip W. J.; Sharp, Trevor; Harrison, Paul J.

    2014-01-01

    D-amino acid oxidase (DAO, DAAO) degrades the NMDA receptor co-agonist D-serine, modulating D-serine levels and thence NMDA receptor function. DAO inhibitors are under development as a therapy for schizophrenia, a disorder involving both NMDA receptor and dopaminergic dysfunction. However, a direct role for DAO in dopamine regulation has not been demonstrated. Here, we address this question in two ways. First, using in situ hybridization and immunohistochemistry, we show that DAO mRNA and immunoreactivity are present in the ventral tegmental area (VTA) of the rat, in tyrosine hydroxylase (TH)-positive and -negative neurons, and in glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Second, we show that injection into the VTA of sodium benzoate, a DAO inhibitor, increases frontal cortex extracellular dopamine, as measured by in vivo microdialysis and high performance liquid chromatography. Combining sodium benzoate and D-serine did not enhance this effect, and injection of D-serine alone affected dopamine metabolites but not dopamine. These data show that DAO is expressed in the VTA, and suggest that it impacts on the mesocortical dopamine system. The mechanism by which the observed effects occur, and the implications of these findings for schizophrenia therapy, require further study. PMID:24822045

  18. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects on Polo-like Kinase 1 Polo-box Domain Binding Affinities of Peptides Incurred by Structural Variation at the Phosphoamino Acid Position

    PubMed Central

    Qian, Wenjian; Park, Jung-Eun; Liu, Fa; Lee, Kyung S.; Burke, Terrence R.

    2012-01-01

    Protein-protein interactions (PPIs) mediated by the polo-box domain (PBD) of polo-like kinase 1 (Plk1) serve important roles in cell proliferation. Critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pThr/pSer-residues in the binding ligands. However, there has been little examination of pThr/pSer mimetics within a PBD context. Our current paper compares the abilities of a variety of amino acid residues and derivatives to serve as pThr/pSer replacements by exploring the role of methyl functionality at the pThr β–position and by replacing the phosphoryl group by phosphonic acid, sulfonic acid and carboxylic acids. This work sheds new light on structure activity relationships for PBD recognition of phosphoamino acid mimetics. PMID:22743087

  20. Treadmill exercise ameliorates symptoms of attention deficit/hyperactivity disorder through reducing Purkinje cell loss and astrocytic reaction in spontaneous hypertensive rats

    PubMed Central

    Yun, Hyo-Soon; Park, Mi-Sook; Ji, Eun-Sang; Kim, Tae-Woon; Ko, Il-Gyu; Kim, Hyun-Bae; Kim, Hong

    2014-01-01

    Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum. PMID:24678501

  1. FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases.

    PubMed

    Gao, Jinpeng; Ajjawi, Imad; Manoli, Arthur; Sawin, Andrew; Xu, Changcheng; Froehlich, John E; Last, Robert L; Benning, Christoph

    2009-12-01

    Polar membrane glycerolipids occur in a mixture of molecular species defined by a polar head group and characteristic acyl groups esterified to a glycerol backbone. A molecular species of phosphatidylglycerol specific to chloroplasts of plants carries a Delta(3-trans) hexadecenoic acid in the sn-2 position of its core glyceryl moiety. The fad4-1 mutant of Arabidopsis thaliana missing this particular phosphatidylglycerol molecular species lacks the necessary fatty acid desaturase, or a component thereof. The overwhelming majority of acyl groups associated with membrane lipids in plants contains double bonds with a cis configuration. However, FAD4 is unusual because it is involved in the formation of a trans double bond introduced close to the carboxyl group of palmitic acid, which is specifically esterified to the sn-2 glyceryl carbon of phosphatidylglycerol. As a first step towards the analysis of this unusual desaturase reaction, the FAD4 gene was identified by mapping of the FAD4 locus and coexpression analysis with known lipid genes. FAD4 encodes a predicted integral membrane protein that appears to be unrelated to classic membrane bound fatty acid desaturases based on overall sequence conservation. However, the FAD4 protein contains two histidine motifs resembling those of metalloproteins such as fatty acid desaturases. FAD4 is targeted to the plastid. Overexpression of the cDNA in transgenic Arabidopsis led to increased accumulation of the Delta(3-trans) hexadecanoyl group in phosphatidylglycerol relative to wild type. Taken together these results are consistent with the hypothesis that FAD4 is the founding member of a novel class of fatty acid desaturases.

  2. The role of positively charged amino acids and electrostatic interactions in the complex of U1A protein and U1 hairpin II RNA

    PubMed Central

    Law, Michael J.; Linde, Michael E.; Chambers, Eric J.; Oubridge, Chris; Katsamba, Phinikoula S.; Nilsson, Lennart; Haworth, Ian S.; Laird-Offringa, Ite A.

    2006-01-01

    Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes. PMID:16407334

  3. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation.

    PubMed

    Seidlits, Stephanie K; Khaing, Zin Z; Petersen, Rebecca R; Nickels, Jonathan D; Vanscoy, Jennifer E; Shear, Jason B; Schmidt, Christine E

    2010-05-01

    We report the ability to direct the differentiation pathway of neural progenitor cells (NPCs) within hydrogels having tunable mechanical properties. By modifying the polymeric sugar hyaluronic acid (HA), a major extracellular matrix component in the fetal mammalian brain, with varying numbers of photocrosslinkable methacrylate groups, hydrogels could be prepared with bulk compressive moduli spanning the threefold range measured for neonatal brain and adult spinal cord. Ventral midbrain-derived NPCs were photoencapsulated into HA hydrogels and remained viable after encapsulation. After three weeks, the majority of NPCs cultured in hydrogels with mechanical properties comparable to those of neonatal brain had differentiated into neurons (ss-III tubulin-positive), many of which had extended long, branched processes, indicative of a relatively mature phenotype. In contrast, NPCs within stiffer hydrogels, with mechanical properties comparable to those of adult brain, had differentiated into mostly astrocytes (glial fibrillary acidic protein (GFAP)-positive). Primary spinal astrocytes cultured in the hydrogel variants for two weeks acquired a spread and elongated morphology only in the stiffest hydrogels evaluated, with mechanical properties similar to adult tissue. Results demonstrate that the mechanical properties of these scaffolds can assert a defining influence on the differentiation of ventral midbrain-derived NPCs, which have strong clinical relevance because of their ability to mature into dopaminergic neurons of the substantia nigra, cells that idiopathically degenerate in individuals suffering from Parkinson's disease. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Calcineurin A beta deficiency ameliorates HFD-induced hypothalamic astrocytosis in mice.

    PubMed

    Pfuhlmann, Katrin; Schriever, Sonja C; Legutko, Beata; Baumann, Peter; Harrison, Luke; Kabra, Dhiraj G; Baumgart, Emily Violette; Tschöp, Matthias H; Garcia-Caceres, Cristina; Pfluger, Paul T

    2018-02-08

    ᅟ: Astrocytosis is a reactive process involving cellular, molecular, and functional changes to facilitate neuronal survival, myelin preservation, blood brain barrier function and protective glial scar formation upon brain insult. The overall pro- or anti-inflammatory impact of reactive astrocytes appears to be driven in a context- and disease-driven manner by modulation of astrocytic Ca 2+ homeostasis and activation of Ca 2+ /calmodulin-activated serine/threonine phosphatase calcineurin. Here, we aimed to assess whether calcineurin is dispensable for astrocytosis in the hypothalamus driven by prolonged high fat diet (HFD) feeding. Global deletion of calcineurin A beta (gene name: Ppp3cb) led to a decrease of glial fibrillary acidic protein (GFAP)-positive cells in the ventromedial hypothalamus (VMH), dorsomedial hypothalamus (DMH), and arcuate nucleus (ARC) of mice exposed chronically to HFD. The concomitant decrease in Iba1-positive microglia in the VMH further suggests a modest impact of Ppp3cb deletion on microgliosis. Pharmacological inhibition of calcineurin activity by Fk506 had no impact on IBA1-positive microglia in hypothalami of mice acutely exposed to HFD for 1 week. However, Fk506-treated mice displayed a decrease in GFAP levels in the ARC. In vivo effects could not be replicated in cell culture, where calcineurin inhibition by Fk506 had no effect on astrocytic morphology, astrocytic cell death, GFAP, and vimentin protein levels or microglia numbers in primary hypothalamic astrocytes and microglia co-cultures. Further, adenoviral overexpression of calcineurin subunit Ppp3r1 in primary glia culture did not lead to an increase in GFAP fluorescence intensity. Overall, our results point to a prominent role of calcineurin in mediating hypothalamic astrocytosis as response to acute and chronic HFD exposure. Moreover, discrepant findings in vivo and in cell culture indicate the necessity of studying astrocytes in their "natural" environment, i

  5. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin, E-mail: fangfei6073@126.com; Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn; Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, andmore » abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.« less

  6. A Dominant Conformational Role for Amino Acid Diversity in Minimalist Protein-Protein Interfaces

    PubMed Central

    Gilbreth, Ryan N.; Esaki, Kaori; Koide, Akiko; Sidhu, Sachdev S.; Koide, Shohei

    2008-01-01

    Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies”. One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose binding protein (MBP). The YSX monobody bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution x-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side-chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces. PMID:18602117

  7. Isolation of an acidic protein from cholesterol gallstones, which inhibits the precipitation of calcium carbonate in vitro.

    PubMed Central

    Shimizu, S; Sabsay, B; Veis, A; Ostrow, J D; Rege, R V; Dawes, L G

    1989-01-01

    In seeking to identify nucleating/antinucleating proteins involved in the pathogenesis of cholesterol gallstones, a major acidic protein was isolated from each of 13 samples of cholesterol gallstones. After the stones were extracted with methyl t-butyl ether to remove cholesterol, and methanol to remove bile salts and other lipids, they were demineralized with EDTA. The extracts were desalted with Sephadex-G25, and the proteins separated by PAGE. A protein was isolated, of molecular weight below 10 kD, which included firmly-bound diazo-positive yellow pigments and contained 24% acidic, but only 7% basic amino acid residues. The presence of N-acetyl glucosamine suggested that this was a glycoprotein. This protein at concentrations as low as 2 micrograms/ml, but neither human serum albumin nor its complex with bilirubin, inhibited calcium carbonate precipitation from a supersaturated solution in vitro. This protein could be precipitated from 0.15 M NaCl solution by the addition of 0.5 M calcium chloride. Considering that cholesterol gallstones contain calcium and pigment at their centers, and that small acidic proteins are important regulators in other biomineralization systems, this protein seems likely to play a role in the pathogenesis of cholesterol gallstones. Images PMID:2592569

  8. Positive selection in the N-terminal extramembrane domain of lung surfactant protein C (SP-C) in marine mammals.

    PubMed

    Foot, Natalie J; Orgeig, Sandra; Donnellan, Stephen; Bertozzi, Terry; Daniels, Christopher B

    2007-07-01

    Maximum-likelihood models of codon and amino acid substitution were used to analyze the lung-specific surfactant protein C (SP-C) from terrestrial, semi-aquatic, and diving mammals to identify lineages and amino acid sites under positive selection. Site models used the nonsynonymous/synonymous rate ratio (omega) as an indicator of selection pressure. Mechanistic models used physicochemical distances between amino acid substitutions to specify nonsynonymous substitution rates. Site models strongly identified positive selection at different sites in the polar N-terminal extramembrane domain of SP-C in the three diving lineages: site 2 in the cetaceans (whales and dolphins), sites 7, 9, and 10 in the pinnipeds (seals and sea lions), and sites 2, 9, and 10 in the sirenians (dugongs and manatees). The only semi-aquatic contrast to indicate positive selection at site 10 was that including the polar bear, which had the largest body mass of the semi-aquatic species. Analysis of the biophysical properties that were influential in determining the amino acid substitutions showed that isoelectric point, chemical composition of the side chain, polarity, and hydrophobicity were the crucial determinants. Amino acid substitutions at these sites may lead to stronger binding of the N-terminal domain to the surfactant phospholipid film and to increased adsorption of the protein to the air-liquid interface. Both properties are advantageous for the repeated collapse and reinflation of the lung upon diving and resurfacing and may reflect adaptations to the high hydrostatic pressures experienced during diving.

  9. Aberrant astrocyte Ca2+ signals "AxCa signals" exacerbate pathological alterations in an Alexander disease model.

    PubMed

    Saito, Kozo; Shigetomi, Eiji; Yasuda, Rei; Sato, Ryuichi; Nakano, Masakazu; Tashiro, Kei; Tanaka, Kenji F; Ikenaka, Kazuhiro; Mikoshiba, Katsuhiko; Mizuta, Ikuko; Yoshida, Tomokatsu; Nakagawa, Masanori; Mizuno, Toshiki; Koizumi, Schuichi

    2018-05-01

    Alexander disease (AxD) is a rare neurodegenerative disorder caused by gain of function mutations in the glial fibrillary acidic protein (GFAP) gene. Accumulation of GFAP proteins and formation of Rosenthal fibers (RFs) in astrocytes are hallmarks of AxD. However, malfunction of astrocytes in the AxD brain is poorly understood. Here, we show aberrant Ca 2+ responses in astrocytes as playing a causative role in AxD. Transcriptome analysis of astrocytes from a model of AxD showed age-dependent upregulation of GFAP, several markers for neurotoxic reactive astrocytes, and downregulation of Ca 2+ homeostasis molecules. In situ AxD model astrocytes produced aberrant extra-large Ca 2+ signals "AxCa signals", which increased with age, correlated with GFAP upregulation, and were dependent on stored Ca 2+ . Inhibition of AxCa signals by deletion of inositol 1,4,5-trisphosphate type 2 receptors (IP3R2) ameliorated AxD pathogenesis. Taken together, AxCa signals in the model astrocytes would contribute to AxD pathogenesis. © 2018 Wiley Periodicals, Inc.

  10. Expression of APP pathway mRNAs and proteins in Alzheimer's disease.

    PubMed

    Matsui, Toshifumi; Ingelsson, Martin; Fukumoto, Hiroaki; Ramasamy, Karunya; Kowa, Hisatomo; Frosch, Matthew P; Irizarry, Michael C; Hyman, Bradley T

    2007-08-03

    In both trisomy 21 and rare cases of triplication of amyloid precursor protein (APP) Alzheimer's disease (AD) pathological changes are believed to be secondary to increased expression of APP. We hypothesized that sporadic AD may also be associated with changes in transcription of APP or its metabolic partners. To address this issue, temporal neocortex of 27 AD and 21 non-demented control brains was examined to assess mRNA levels of APP isoforms (total APP, APP containing the Kunitz protease inhibitor domain [APP-KPI] and APP770) and APP metabolic enzymatic partners (the APP cleaving enzymes beta-secretase [BACE] and presenilin-1 [PS-1], and putative clearance molecules, low-density lipoprotein receptor protein [LRP] and apolipoprotein E [apoE]). Furthermore, we evaluated how changes in APP at the mRNA level affect the amount of Tris buffer extractable APP protein and Abeta40 and 42 peptides in AD and control brains. As assessed by quantitative PCR, APP-KPI (p=0.007), APP770 (p=0.004), PS-1 (p=0.004), LRP (p=0.003), apoE (p=0.0002) and GFAP (p<0.0001) mRNA levels all increased in AD, and there was a shift from APP695 (a neuronal isoform) towards KPI containing isoforms that are present in glia as well. APP-KPI mRNA levels correlated with soluble APPalpha-KPI protein (sAPPalpha-KPI) levels measured by ELISA (tau=0.33, p=0.015 by Kendall's rank correlation); in turn, soluble APPalpha-KPI protein levels positively correlated with Tris-extractable, soluble Abeta40 (p=0.046) and 42 levels (p=0.007). The ratio of soluble APPalpha-KPI protein levels to total APP protein increased in AD, and also correlated with GFAP protein levels in AD. These results suggest that altered transcription of APP in AD is proportionately associated with Abeta peptide, may occur in the context of gliosis, and may contribute to Abeta deposition in sporadic AD.

  11. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation

    PubMed Central

    LING, GENG-QIANG; LIU, YI-JING; KE, YI-QUAN; CHEN, LEI; JIANG, XIAO-DAN; JIANG, CHUAN-LU; YE, WEI

    2015-01-01

    The poor therapeutic effect of traditional antiangiogenic therapy on glioblastoma multiforme (GBM) may be attributed to vasculogenic mimicry (VM), which was previously reported to be promoted by cancer stem-like cells (SLCs). All-trans retinoic acid (ATRA), a potent reagent which drives differentiation, was reported to be able to eradicate cancer SLCs in certain malignancies. The aim of the present study was to investigate the effects of ATRA on the VM formation ability of U87 glioblastoma SLCs. The expression of cancer SLC markers CD133 and nestin was detected using immunocytochemistry in order to identify U87 SLCs. In addition, the differentiation of these SLCs was observed through detecting the expression of glial fibrillary acidic protein (GFAP), β-tubulin III and galactosylceramidase (Galc) using immunofluorescent staining. The results showed that the expression levels of GFAP, β-tubulin III and Galc were upregulated following treatment with ATRA in a dose-dependent manner. Furthermore, ATRA significantly reduced the proliferation, invasiveness, tube formation and vascular endothelial growth factor (VEGF) secretion of U87 SLCs. In conclusion, the VM formation ability of SLCs was found to be negatively correlated with differentiation. These results therefore suggested that ATRA may serve as a promising novel agent for the treatment of GBM due to its role in reducing VM formation. PMID:25760394

  12. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  13. Application of 1-aminocyclohexane carboxylic acid to protein nanostructure computer design

    PubMed Central

    Rodríguez-Ropero, Francisco; Zanuy, David; Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    Conformationally restricted amino acids are promising candidates to serve as basic pieces in redesigned protein motifs which constitute the basic modules in synthetic nanoconstructs. Here we study the ability of constrained cyclic amino acid 1-aminocyclohexane-1-carboxylic acid (Ac6c) to stabilize highly regular β-helical motifs excised from naturally occurring proteins. Calculations indicate that the conformational flexibility observed in both the ring and the main chain is significantly higher than that detected for other 1-aminocycloalkane-1-carboxylic acid (Acnc, where n refers to the size of the ring) with smaller cycles. Incorporation of Ac6c into the flexible loops of β-helical motifs indicates that the stability of such excised building blocks as well as the nano-assemblies derived from them is significantly enhanced. Thus, the intrinsic Ac6c tendency to adopt folded conformations combined with the low structural strain of the cyclohexane ring confers the ability to both self-adapt to the β-helix motif and to stabilize the overall structure by absorbing part of its conformational fluctuations. Comparison with other Acnc residues indicates that the ability to adapt to the targeted position improves considerably with the ring size, i.e. when the rigidity introduced by the strain of the ring decreases. PMID:18201062

  14. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  15. Association of Takayasu arteritis with HLA-B 67:01 and two amino acids in HLA-B protein.

    PubMed

    Terao, Chikashi; Yoshifuji, Hajime; Ohmura, Koichiro; Murakami, Kosaku; Kawabata, Daisuke; Yurugi, Kimiko; Tazaki, Junichi; Kinoshita, Hideyuki; Kimura, Akinori; Akizuki, Masashi; Kawaguchi, Yasushi; Yamanaka, Hisashi; Miura, Yasuo; Maekawa, Taira; Saji, Hiroo; Mimori, Tsuneyo; Matsuda, Fumihiko

    2013-10-01

    Takayasu arteritis (TAK) is a rare autoimmune arteritis that affects large arteries. Although the association between TAK and HLA-B 52:01 is established, the other susceptibility HLA-B alleles are not fully known. We performed genetic association studies to determine independent HLA-B susceptibility alleles other than HLA-B 52:01 and to identify important amino acids of HLA-B protein in TAK susceptibility. One hundred patients with TAK and 1000 unrelated healthy controls were genotyped for HLA-B alleles in the first set, followed by a replication set containing 73 patients with TAK and 1000 controls to compare the frequencies of HLA-B alleles. Step-up logistic regression analysis was performed to identify susceptibility amino acids of HLA-B protein. Strong associations of susceptibility to TAK with HLA-B 52:01 and HLA-B 67:01 were observed (P = 1.0 × 10(-16) and 9.5 × 10(-6), respectively). An independent susceptibility effect of HLA-B 67:01 from HLA-B 52:01 was also detected (P = 1.8 × 10(-7)). Amino acid residues of histidine at position 171 and phenylalanine at position 67, both of which are located in antigen binding grooves of the HLA-B protein, were associated with TAK susceptibility (P ≤ 3.8 × 10(-5)) with a significant difference from other amino acid variations (ΔAIC ≥ 9.65). HLA-B 67:01 is associated with TAK independently from HLA-B 52:01. Two amino acids in HLA-B protein are strongly associated with TAK susceptibility.

  16. In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate

    PubMed Central

    Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver

    2011-01-01

    Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043

  17. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801

    PubMed Central

    Wang, Yueming; Li, Guanjun; Wang, Lihua; Li, Huafang

    2015-01-01

    MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling. PMID:26700309

  18. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  1. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  2. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.

    PubMed

    Raj, Dominic S C; Adeniyi, Oladipo; Dominic, Elizabeth A; Boivin, Michel A; McClelland, Sandra; Tzamaloukas, Antonios H; Morgan, Nancy; Gonzales, Lawrence; Wolfe, Robert; Ferrando, Arny

    2007-06-01

    Intradialytic protein catabolism is attributed to loss of amino acids in the dialysate. We investigated the effect of amino acid infusion during hemodialysis (HD) on muscle protein turnover and amino acid transport kinetics by using stable isotopes of phenylalanine, leucine, and lysine in eight patients with end-stage renal disease (ESRD). Subjects were studied at baseline (pre-HD), 2 h of HD without amino acid infusion (HD-O), and 2 h of HD with amino acid infusion (HD+AA). Amino acid depletion during HD-O augmented the outward transport of amino acids from muscle into the vein. Increased delivery of amino acids to the leg during HD+AA facilitated the transport of amino acids from the artery into the intracellular compartment. Increase in muscle protein breakdown was more than the increase in synthesis during HD-O (46.7 vs. 22.3%, P < 0.001). Net balance (nmol.min(-1).100 ml (-1)) was more negative during HD-O compared with pre-HD (-33.7 +/- 1.5 vs. -6.0 +/- 2.3, P < 0.001). Despite an abundant supply of amino acids, the net balance (-16.9 +/- 1.8) did not switch from net release to net uptake. HD+AA induced a proportional increase in muscle protein synthesis and catabolism. Branched chain amino acid catabolism increased significantly from baseline during HD-O and did not decrease during HD+AA. Protein synthesis efficiency, the fraction of amino acid in the intracellular pool that is utilized for muscle protein synthesis decreased from 42.1% pre-HD to 33.7 and 32.6% during HD-O and HD+AA, respectively (P < 0.01). Thus amino acid repletion during HD increased muscle protein synthesis but did not decrease muscle protein breakdown.

  3. LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro.

    PubMed

    Cheng, Rongzhu; Feng, Qi; Ortwerth, Beryl J

    2006-05-01

    We previously reported chromatographic evidence supporting the similarity of yellow chromophores isolated from aged human lens proteins, early brunescent cataract lens proteins and calf lens proteins ascorbylated in vitro [Cheng, R. et al. Biochimica et Biophysica Acta 1537, 14-26, 2001]. In this paper, new evidence supporting the chemical identity of the modified amino acids in these protein populations were collected by using a newly developed two-dimensional LC-MS mapping technique supported by tandem mass analysis of the major species. The pooled water-insoluble proteins from aged normal human lenses, early stage brunescent cataract lenses and calf lens proteins reacted with or without 20 mM ascorbic acid in air for 4 weeks were digested with a battery of proteolytic enzymes under argon to release the modified amino acids. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column and four major A330nm-absorbing peaks were collected. Peaks 1, 2 and 3, which contained most of the modified amino acids were concentrated and subjected to RP-HPLC/ESI-MS, and the mass elution maps were determined. The samples were again analyzed and those peaks with a 10(4) - 10(6) response factor were subjected to MS/MS analysis to identify the daughter ions of each modification. Mass spectrometric maps of peaks 1, 2 and 3 from cataract lenses showed 58, 40 and 55 mass values, respectively, ranging from 150 to 600 Da. Similar analyses of the peaks from digests of the ascorbylated calf lens proteins gave 81, 70 and 67 mass values, respectively, of which 100 were identical to the peaks in the cataract lens proteins. A total of 40 of the major species from each digest were analyzed by LC-MS/MS and 36 were shown to be identical. Calf lens proteins incubated without ascorbic acid showed several similar mass values, but the response factors were 100 to 1000-fold less for every modification. Based upon these data, we conclude

  4. The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein

    PubMed Central

    Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger

    2017-01-01

    Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570

  5. Uric acid contributes greatly to hepatic antioxidant capacity besides protein.

    PubMed

    Mikami, T; Sorimachi, M

    2017-12-20

    Uric acid is the end-product of purine nucleotide metabolism and an increase in uric acid concentration in the body results in hyperuricemia, ultimately leading to gout. However, uric acid is a potent antioxidant and interacts with reactive oxygen species (ROS) to be non-enzymatically converted to allantoin. Uric acid accounts for approximately 60 % of antioxidant capacity in the plasma; however, its contribution to tissue antioxidant capacity is unknown. In this study, the contribution of uric acid to tissue antioxidant capacity and its conversion to allantoin by scavenging ROS in tissue were examined. The results showed that a decrease in hepatic uric acid content via allopurinol administration significantly reduced hepatic total-radical trapping antioxidant parameter (TRAP) content in protein-free cytosol. Additionally, treating protein-free cytosol with uricase led to a further reduction of hepatic TRAP content. Allantoin was also detected in the solution containing protein-free cytosol that reacted with ROS. These findings suggest that in the absence of protein, uric acid contributes greatly to antioxidant capacity in the liver, where uric acid is converted to allantoin by scavenging ROS.

  6. Progranulin deficiency causes the retinal ganglion cell loss during development.

    PubMed

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  7. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

    PubMed Central

    Baruah, Anupaul; Rani, Pooja; Biswas, Parbati

    2015-01-01

    This work quantitatively characterizes intrinsic disorder in proteins in terms of sequence composition and backbone conformational entropy. Analysis of the normalized relative composition of the amino acid triads highlights a distinct boundary between globular and disordered proteins. The conformational entropy is calculated from the dihedral angles of the middle amino acid in the amino acid triad for the conformational ensemble of the globular, partially and completely disordered proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular Dynamics (MD) simulations are used to characterize the conformational ensemble of the representative proteins of each group. The results show that the globular proteins span approximately half of the allowed conformational states in the Ramachandran space, while the amino acid triads in disordered proteins sample the entire range of the allowed dihedral angle space following Flory’s isolated-pair hypothesis. Therefore, only the sequence information in terms of the relative amino acid triad composition may be sufficient to predict protein disorder and the backbone conformational entropy, even in the absence of well-defined structure. The predicted entropies are found to agree with those calculated using mutual information expansion and the histogram method. PMID:26138206

  8. Acute intrastriatal injection of quinolinic acid provokes long-lasting misregulation of the cytoskeleton in the striatum, cerebral cortex and hippocampus of young rats.

    PubMed

    Pierozan, Paula; Gonçalves Fernandes, Carolina; Ferreira, Fernanda; Pessoa-Pureur, Regina

    2014-08-19

    Quinolinic acid (QUIN) is a neuroactive metabolite of the kinurenine pathway, considered to be involved in aging and some neurodegenerative disorders, including Huntington׳s disease. In the present work we have studied the long-lasting effect of acute intrastriatal injection of QUIN (150 nmol/0.5 µL) in 30 day-old rats on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits (NFL, NFM and NFH) respectively, until 21 days after injection. The acute administration of QUIN altered the homeostasis of IF phosphorylation in a selective manner, progressing from striatum to cerebral cortex and hippocampus. Twenty four hours after QUIN injection, the IFs were hyperphosphorylated in the striatum. This effect progressed to cerebral cortex causing hypophosphorylation at day 14 and appeared in the hippocampus as hyperphosphorylation at day 21 after QUIN infusion. PKA and PKCaMII have been activated in striatum and hippocampus, since Ser55 and Ser57 in NFL head domain were hyperphosphorylated. However, MAPKs (Erk1/2, JNK and p38MAPK) were hyperphosphorylated/activated only in the hippocampus, suggesting different signaling mechanisms in these two brain structures during the first weeks after QUIN infusion. Also, protein phosphatase 1 (PP1) and 2B (PP2B)-mediated hypophosphorylation of the IF proteins in the cerebral cortex 14 after QUIN injection reinforce the selective signaling mechanisms in different brain structures. Increased GFAP immunocontent in the striatum and cerebral cortex 24h and 14 days after QUIN injection respectively, suggests reactive astrocytes in these brain regions. We propose that disruption of cytoskeletal homeostasis in neural cells takes part of the long-lasting molecular mechanisms of QUIN toxicity in adolescent rats, showing selective and progressive misregulation of the signaling mechanisms targeting the IF proteins in the

  9. Photo-CIDNP NMR spectroscopy of amino acids and proteins.

    PubMed

    Kuhn, Lars T

    2013-01-01

    Photo-chemically induced dynamic nuclear polarization (CIDNP) is a nuclear magnetic resonance (NMR) phenomenon which, among other things, is exploited to extract information on biomolecular structure via probing solvent-accessibilities of tryptophan (Trp), tyrosine (Tyr), and histidine (His) amino acid side chains both in polypeptides and proteins in solution. The effect, normally triggered by a (laser) light-induced photochemical reaction in situ, yields both positive and/or negative signal enhancements in the resulting NMR spectra which reflect the solvent exposure of these residues both in equilibrium and during structural transformations in "real time". As such, the method can offer - qualitatively and, to a certain extent, quantitatively - residue-specific structural and kinetic information on both the native and, in particular, the non-native states of proteins which, often, is not readily available from more routine NMR techniques. In this review, basic experimental procedures of the photo-CIDNP technique as applied to amino acids and proteins are discussed, recent improvements to the method highlighted, and future perspectives presented. First, the basic principles of the phenomenon based on the theory of the radical pair mechanism (RPM) are outlined. Second, a description of standard photo-CIDNP applications is given and it is shown how the effect can be exploited to extract residue-specific structural information on the conformational space sampled by unfolded or partially folded proteins on their "path" to the natively folded form. Last, recent methodological advances in the field are highlighted, modern applications of photo-CIDNP in the context of biological NMR evaluated, and an outlook into future perspectives of the method is given.

  10. Regulation of protein synthesis by amino acids in muscle of neonates

    PubMed Central

    Suryawan, Agus; Davis, Teresa A.

    2011-01-01

    The marked increase in skeletal muscle mass during the neonatal period is largely due to a high rate of postprandial protein synthesis that is modulated by an enhanced sensitivity to insulin and amino acids. The amino acid signaling pathway leading to the stimulation of protein synthesis has not been fully elucidated. Among the amino acids, leucine is considered to be a principal anabolic agent that regulates protein synthesis. mTORC1, which controls protein synthesis, has been implicated as a target for leucine. Until recently, there have been few studies exploring the role of amino acids in enhancing muscle protein synthesis in vivo. In this review, we discuss amino acid-induced protein synthesis in muscle in the neonate, focusing on current knowledge of the role of amino acids in the activation of mTORC1 leading to mRNA translation. The role of the amino acid transporters, SNAT2, LAT1, and PAT, in the modulation of mTORC1 activation and the role of amino acids in the activation of putative regulators of mTORC1, i.e., raptor, Rheb, MAP4K3, Vps34, and Rag GTPases, are discussed. PMID:21196241

  11. Effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain.

    PubMed

    Lv, Jing; Li, Zhenci; She, Shouzhang; Xu, Lixin; Ying, Yanlu

    2015-08-01

    To evaluate the effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain. Healthy 30 male Sprague Dawley (SD) rats were randomly divided into six groups (n = 5 in each group): (1) control group without any treatments; (2) chronic constriction injury (CCI) group; (3) Early-rapamycin group with intrathecal injection of rapamycin 4 hours after CCI days; (4) Early-vehicle group with intrathecal injection of DMSO; (5) Late-rapamycin group with intrathecal injection of rapamycin 7 days after CCI; (6) Late-vehicle group with intrathecal injection of DMSO 7 days after CCI. Rapamycin or DMSO was injected for 3 consecutive days. Mechanical and thermal threshold were tested before and after the CCI operation. Lumbar segment of spinal cords was tested for glial fibrillary acidic protein (GFAP) by immunohistochemistry on 14th day after operation. Mechanical and thermal hyperalgesia emerged on fourth day were maintained till fourteenth day after operation. After intrathecal injection of rapamycin 4 hours or 7 days after CCI, mechanical and thermal threshold significantly increased compared to injection of DMSO. The area of GFAP positive and the mean density of GFAP positive area in the dorsal horn of the ipsilateral side greatly increased in rapamycin-treated groups. Intrathecal injection of rapamycin may attenuate CCI-induced hyperalgesia and inhibit the activation of astrocyte.

  12. Amino acid and structural variability of Yersinia pestis LcrV protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisimov, A P; Dentovskaya, S V; Panfertsev, E A

    2009-11-09

    The LcrV protein is a multifunctional virulence factor and protective antigen of the plague bacterium which is generally conserved between the epidemic strains of Yersinia pestis. They investigated the diversity in the LcrV sequences among non-epidemic Y. pestis strains which have a limited virulence in selected animal models and for humans. Sequencing of lcrV genes from ten Y. pestis strains belonging to different phylogenetic groups (subspecies) showed that the LcrV proteins possess four major variable hotspots at positions 18, 72, 273, and 324-326. These major variations, together with other minor substitutions in amino acid sequences, allowed them to classify themore » LcrV alleles into five sequence types (A-E). They observed that the strains of different Y. pestis subspecies can have the same typ of LcrV, and different types of LcrV can exist within the same natural plague focus. The LcrV polymorphisms were structurally analyzed by comparing the modeled structures of LcrV from all available strains. All changes except one occurred either in flexible regions or on the surface of the protein, but local chemical properties (i.e. those of a hydrophobic, hydrophilic, amphipathic, or charged nature) were conserved across all of the strains. Polymorphisms in flexible and surface regions are likely subject to less selective pressure, and have a limited impact on the structure. In contrast, the substitution of tryptophan at position 113 with either glutamic acid or glycine likely has a serious influence on the regional structure of the protein, and these mutations might have an effect on the function of LcrV. The polymorphisms at positions 18, 72 and 273 were accountable for differences in oligomerization of LcrV. The importance of the latter property in emergence of epidemic strains of Y. pestis during evolution of this pathogen will need to be further investigated.« less

  13. Comparative proteomic analysis of differentially expressed proteins in β-aminobutyric acid enhanced Arabidopsis thaliana tolerance to simulated acid rain.

    PubMed

    Liu, Tingwu; Jiang, Xinwu; Shi, Wuliang; Chen, Juan; Pei, Zhenming; Zheng, Hailei

    2011-05-01

    Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic strategies, we analyzed 203 significantly varied proteins of which 175 proteins were identified responding to β-aminobutyric acid in the absence and presence of simulated acid rain. They could be divided into ten groups according to their biological functions. Among them, the majority was cell rescue, development and defense-related proteins, followed by transcription, protein synthesis, folding, modification and destination-associated proteins. Our conclusion is β-aminobutyric acid can lead to a large-scale primary metabolism change and simultaneously activate antioxidant system and salicylic acid, jasmonic acid, abscisic acid signaling pathways. In addition, β-aminobutyric acid can reinforce physical barriers to defend simulated acid rain stress. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  15. Dietary fatty acids and membrane protein function.

    PubMed

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  16. Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids.

    PubMed

    Kris-Etherton, Penny M; Innis, Sheila; Ammerican Dietetic Assocition; Dietitians of Canada

    2007-09-01

    It is the position of the American Dietetic Association (ADA) and Dietitians of Canada (DC) that dietary fat for the adult population should provide 20% to 35% of energy and emphasize a reduction in saturated fatty acids and trans-fatty acids and an increase in n-3 polyunsaturated fatty acids. ADA and DC recommend a food-based approach for achieving these fatty acid recommendations; that is, a dietary pattern high in fruits and vegetables, whole grains, legumes, nuts and seeds, lean protein (ie, lean meats, poultry, and low-fat dairy products), fish (especially fatty fish high in n-3 fatty acids), and use of nonhydrogenated margarines and oils. Implicit to these recommendations for dietary fatty acids is that unsaturated fatty acids are the predominant fat source in the diet. These fatty acid recommendations are made in the context of a diet consistent with energy needs (ie, to promote a healthful body weight). ADA and DC recognize that scientific knowledge about the effects of dietary fats on human health is incomplete and take a prudent approach in recommending a reduction in those fatty acids that increase risk of disease, while promoting intake of those fatty acids that benefit health. Registered dietitians play a pivotal role in translating dietary recommendations for fat and fatty acids into healthful dietary patterns for different population groups.

  17. Complex and region-specific changes in astroglial markers in the aging brain.

    PubMed

    Rodríguez, José J; Yeh, Chia-Yu; Terzieva, Slavica; Olabarria, Markel; Kulijewicz-Nawrot, Magdalena; Verkhratsky, Alexei

    2014-01-01

    Morphological aging of astrocytes was investigated in entorhinal cortex (EC), dentate gyrus (DG), and cornu ammonis 1 (CA1) regions of hippocampus of male SV129/C57BL6 mice of different age groups (3, 9, 18, and 24 months). Astroglial profiles were visualized by immunohistochemistry by using glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and s100β staining; these profiles were imaged using confocal or light microscopy for subsequent morphometric analysis. GFAP-positive profiles in the DG and the CA1 of the hippocampus showed progressive age-dependent hypertrophy, as indicated by an increase in surface, volume, and somata volume at 24 months of age compared with 3-month-old mice. In contrast with the hippocampal regions, aging induced a decrease in GFAP-positive astroglial profiles in the EC: the surface, volume, and cell body volume of astroglial cells at 24 months of age were decreased significantly compared with the 3-month group. The GS-positive astrocytes displayed smaller cellular surface areas at 24 months compared with 3-month-old animals in both areas of hippocampus, whereas GS-positive profiles remained unchanged in the EC of old mice. The morphometry of s100β-immunoreactive profiles revealed substantial increase in the EC, more moderate increase in the DG, and no changes in the CA1 area. Based on the morphological analysis of 3 astroglial markers, we conclude that astrocytes undergo a complex age-dependent remodeling in a brain region-specific manner. Copyright © 2014. Published by Elsevier Inc.

  18. Emerging roles of protein kinase CK2 in abscisic acid signaling.

    PubMed

    Vilela, Belmiro; Pagès, Montserrat; Riera, Marta

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates many aspects of plant growth and development as well as responses to multiple stresses. Post-translational modifications such as phosphorylation or ubiquitination have pivotal roles in the regulation of ABA signaling. In addition to the positive regulator sucrose non-fermenting-1 related protein kinase 2 (SnRK2), the relevance of the role of other protein kinases, such as CK2, has been recently highlighted. We have recently established that CK2 phosphorylates the maize ortholog of open stomata 1 OST1, ZmOST1, suggesting a role of CK2 phosphorylation in the control of ZmOST1 protein degradation (Vilela et al., 2015). CK2 is a pleiotropic enzyme involved in multiple developmental and stress-responsive pathways. This review summarizes recent advances that taken together suggest a prominent role of protein kinase CK2 in ABA signaling and related processes.

  19. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  20. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    PubMed

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  1. SPINAL TRANSLOCATOR PROTEIN (TSPO) MODULATES PAIN BEHAVIOR IN RATS WITH CFA-INDUCED MONOARTHRITIS

    PubMed Central

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-01-01

    Translocator protein 18kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund’s Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on day 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral lamina I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Day 7 and 14. Moreover, TSPO was co-localized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain. PMID:19555675

  2. The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro

    PubMed Central

    Cristofari, Gaël; Ivanyi-Nagy, Roland; Gabus, Caroline; Boulant, Steeve; Lavergne, Jean-Pierre; Penin, François; Darlix, Jean-Luc

    2004-01-01

    The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3′ untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication. PMID:15141033

  3. The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro.

    PubMed

    Cristofari, Gaël; Ivanyi-Nagy, Roland; Gabus, Caroline; Boulant, Steeve; Lavergne, Jean-Pierre; Penin, François; Darlix, Jean-Luc

    2004-01-01

    The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3' untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication.

  4. Environmental enrichment increases the GFAP+ stem cell pool and reverses hypoxia-induced cognitive deficits in juvenile mice.

    PubMed

    Salmaso, Natalina; Silbereis, John; Komitova, Mila; Mitchell, Patrick; Chapman, Katherine; Ment, Laura R; Schwartz, Michael L; Vaccarino, Flora M

    2012-06-27

    Premature children born with very low birth weight (VLBW) can suffer chronic hypoxic injury as a consequence of abnormal lung development and cardiovascular abnormalities, often leading to grave neurological and behavioral consequences. Emerging evidence suggests that environmental enrichment improves outcome in animal models of adult brain injury and disease; however, little is known about the impact of environmental enrichment following developmental brain injury. Intriguingly, data on socio-demographic factors from longitudinal studies that examined a number of VLBW cohorts suggest that early environment has a substantial impact on neurological and behavioral outcomes. In the current study, we demonstrate that environmental enrichment significantly enhances behavioral and neurobiological recovery from perinatal hypoxic injury. Using a genetic fate-mapping model that allows us to trace the progeny of GFAP+ astroglial cells, we show that hypoxic injury increases the proportion of astroglial cells that attain a neuronal fate. In contrast, environmental enrichment increases the stem cell pool, both through increased stem cell proliferation and stem cell survival. In mice subjected to hypoxia and subsequent enrichment there is an additive effect of both conditions on hippocampal neurogenesis from astroglia, resulting in a robust increase in the number of neurons arising from GFAP+ cells by the time these mice reach full adulthood.

  5. Protein and metabolic engineering for the production of organic acids.

    PubMed

    Liu, Jingjing; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2017-09-01

    Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future. Copyright © 2017. Published by Elsevier Ltd.

  6. Dietary supplementation with aromatic amino acids increases protein synthesis in children wHh severe acute malnutrition

    USDA-ARS?s Scientific Manuscript database

    Although 2 earlier studies reported that aromatic amino acid (AAA) supplementation of children with severe acute malnutrition (SAM) improved whole-body protein anabolism during the early postadmission (maintenance) phase of rehabilitation, it is not known whether this positive effect was maintained ...

  7. Protein secretion and surface display in Gram-positive bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique M.

    2012-01-01

    The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983

  8. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE51[OPEN

    PubMed Central

    Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen

    2015-01-01

    Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916

  9. Utilizing knowledge base of amino acids structural neighborhoods to predict protein-protein interaction sites.

    PubMed

    Jelínek, Jan; Škoda, Petr; Hoksza, David

    2017-12-06

    Protein-protein interactions (PPI) play a key role in an investigation of various biochemical processes, and their identification is thus of great importance. Although computational prediction of which amino acids take part in a PPI has been an active field of research for some time, the quality of in-silico methods is still far from perfect. We have developed a novel prediction method called INSPiRE which benefits from a knowledge base built from data available in Protein Data Bank. All proteins involved in PPIs were converted into labeled graphs with nodes corresponding to amino acids and edges to pairs of neighboring amino acids. A structural neighborhood of each node was then encoded into a bit string and stored in the knowledge base. When predicting PPIs, INSPiRE labels amino acids of unknown proteins as interface or non-interface based on how often their structural neighborhood appears as interface or non-interface in the knowledge base. We evaluated INSPiRE's behavior with respect to different types and sizes of the structural neighborhood. Furthermore, we examined the suitability of several different features for labeling the nodes. Our evaluations showed that INSPiRE clearly outperforms existing methods with respect to Matthews correlation coefficient. In this paper we introduce a new knowledge-based method for identification of protein-protein interaction sites called INSPiRE. Its knowledge base utilizes structural patterns of known interaction sites in the Protein Data Bank which are then used for PPI prediction. Extensive experiments on several well-established datasets show that INSPiRE significantly surpasses existing PPI approaches.

  10. Carbonyl-based blue autofluorescence of proteins and amino acids

    PubMed Central

    Niyangoda, Chamani; Miti, Tatiana; Breydo, Leonid; Uversky, Vladimir

    2017-01-01

    Intrinsic protein fluorescence is inextricably linked to the near-UV autofluorescence of aromatic amino acids. Here we show that a novel deep-blue autofluorescence (dbAF), previously thought to emerge as a result of protein aggregation, is present at the level of monomeric proteins and even poly- and single amino acids. Just as its aggregation-related counterpart, this autofluorescence does not depend on aromatic residues, can be excited at the long wavelength edge of the UV and emits in the deep blue. Differences in dbAF excitation and emission peaks and intensities from proteins and single amino acids upon changes in solution conditions suggest dbAF’s sensitivity to both the chemical identity and solution environment of amino acids. Autofluorescence comparable to dbAF is emitted by carbonyl-containing organic solvents, but not those lacking the carbonyl group. This implicates the carbonyl double bonds as the likely source for the autofluorescence in all these compounds. Using beta-lactoglobulin and proline, we have measured the molar extinction coefficients and quantum yields for dbAF in the monomeric state. To establish its potential utility in monitoring protein biophysics, we show that dbAF emission undergoes a red-shift comparable in magnitude to tryptophan upon thermal denaturation of lysozyme, and that it is sensitive to quenching by acrylamide. Carbonyl dbAF therefore provides a previously neglected intrinsic optical probe for investigating the structure and dynamics of amino acids, proteins and, by extension, DNA and RNA. PMID:28542206

  11. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  12. Cinnamic Acid and Its Derivatives Inhibit Fructose-Mediated Protein Glycation

    PubMed Central

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of Nɛ-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications. PMID:22408423

  13. Ellagic Acid-Changed Epigenome of Ribosomal Genes and Condensed RPA194-Positive Regions of Nucleoli in Tumour Cells.

    PubMed

    Legartová, S; Sbardella, G; Kozubek, S; Bártová, E

    2015-01-01

    We studied the effect of ellagic acid (EA) on the morphology of nucleoli and on the pattern of major proteins of the nucleolus. After EA treatment of HeLa cells, we observed condensation of nucleoli as documented by the pattern of argyrophilic nucleolar organizer regions (AgNORs). EA also induced condensation of RPA194-positive nucleolar regions, but no morphological changes were observed in nucleolar compartments positive for UBF1/2 proteins or fibrillarin. Studied morphological changes induced by EA were compared with the morphology of control, non-treated cells and with pronounced condensation of all nucleolar domains caused by actinomycin D (ACT-D) treatment. Similarly as ACT-D, but in a lesser extent, EA induced an increased number of 53BP1-positive DNA lesions. However, the main marker of DNA lesions, γH2AX, was not accumulated in body-like nuclear structures. An increased level of γH2AX was found by immunofluorescence and Western blots only after EA treatment. Intriguingly, the levels of fibrillarin, UBF1/2 and γH2AX were increased at the promoters of ribosomal genes, while 53BP1 and CARM1 levels were decreased by EA treatment at these genomic regions. In the entire genome, EA reduced H3R17 dimethylation. Taken together, ellagic acid is capable of significantly changing the nucleolar morphology and protein levels inside the nucleolus.

  14. Aspartame and the hippocampus: Revealing a bi-directional, dose/time-dependent behavioural and morphological shift in mice.

    PubMed

    Onaolapo, Adejoke Y; Onaolapo, Olakunle J; Nwoha, Polycarp U

    2017-03-01

    Changes, in behaviour, oxidative markers of stress and hippocampal morphology were evaluated following aspartame administration. Mice, (20-22g each) were given vehicle (10ml/kg) or aspartame (20, 40, 80 and 160mg/kg) daily for 28days. They were tested in the Y-maze, radial-arm maze and elevated plus-maze (EPM) after the first and last dose of vehicle or aspartame; and then sacrificed. Hippocampal slices were analysed for aspartic acid, nitric oxide (NO) and superoxide dismutase (SOD); and processed for general histology and neuritic plaques. Glial fibrillary-acid protein (GFAP) expression and neuron-specific enolase (NSE) activities were determined. Radial-arm maze scores increased significantly after acute administration at 80 and 160mg/kg. Repeated administration at 20 and 40mg/kg (Y-maze) and at 40mg/kg (radial-arm maze) was also associated with increased scores, however, performance decreased at higher doses. EPM tests revealed anxiogenic responses following both acute and repeated administration. Significant increase in SOD and NO activities were observed at 40, 80 and 160mg/kg. Neuron counts reduced at higher doses of aspartame. At 40, 80 and 160mg/kg, fewer GFAP-reactive astrocytes were observed in the cornus ammonis, but increased GFAP-reactivity was observed in the dentate gyrus subgranular zone. NSE-positive neurons were readily identifiable within the dentate gyrus at the lower doses of aspartame; but at 160mg/kg, there was marked neuron loss and reduction in NSE-positive neurons. Oral aspartame significantly altered behaviour, anti-oxidant status and morphology of the hippocampus in mice; also, it may probably trigger hippocampal adult neurogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Spindle Positioning Protein Kar9p Interacts With the Sumoylation Machinery in Saccharomyces cerevisiae

    PubMed Central

    Meednu, Nida; Hoops, Harold; D'Silva, Sonia; Pogorzala, Leah; Wood, Schuyler; Farkas, David; Sorrentino, Mark; Sia, Elaine; Meluh, Pam; Miller, Rita K.

    2008-01-01

    Accurate positioning of the mitotic spindle is important for the genetic material to be distributed evenly in dividing cells, but little is known about the mechanisms that regulate this process. Here we report that two microtubule-associated proteins important for spindle positioning interact with several proteins in the sumoylation pathway. By two-hybrid analysis, Kar9p and Bim1p interact with the yeast SUMO Smt3p, the E2 enzyme Ubc9p, an E3 Nfi1p, as well as Wss1p, a weak suppressor of a temperature-sensitive smt3 allele. The physical interaction between Kar9p and Ubc9p was confirmed by in vitro binding assays. A single-amino-acid substitution in Kar9p, L304P disrupted its two-hybrid interaction with proteins in the sumoylation pathway, but retained its interactions with the spindle positioning proteins Bim1p, Stu2p, Bik1p, and Myo2p. The kar9-L304P mutant showed defects in positioning the mitotic spindle, with the spindle located more distally than normal. Whereas wild-type Kar9p-3GFP normally localizes to only the bud-directed spindle pole body (SPB), Kar9p-L304P-3GFP was mislocalized to both SPBs. Using a reconstitution assay, Kar9p was sumoylated in vitro. We propose a model in which sumoylation regulates spindle positioning by restricting Kar9p to one SPB. These findings raise the possibility that sumoylation could regulate other microtubule-dependent processes. PMID:18832349

  16. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    PubMed Central

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  17. Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type.

    PubMed

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-05

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  18. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    NASA Astrophysics Data System (ADS)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  19. Protein and Amino Acid Requirements during Pregnancy.

    PubMed

    Elango, Rajavel; Ball, Ronald O

    2016-07-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg(-1) · d(-1), respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg(-1) · d(-1) during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14-18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. © 2016 American Society for Nutrition.

  20. Amino acid signature enables proteins to recognize modified tRNA.

    PubMed

    Spears, Jessica L; Xiao, Xingqing; Hall, Carol K; Agris, Paul F

    2014-02-25

    Human tRNA(Lys3)UUU is the primer for HIV replication. The HIV-1 nucleocapsid protein, NCp7, facilitates htRNA(Lys3)UUU recruitment from the host cell by binding to and remodeling the tRNA structure. Human tRNA(Lys3)UUU is post-transcriptionally modified, but until recently, the importance of those modifications in tRNA recognition by NCp7 was unknown. Modifications such as the 5-methoxycarbonylmethyl-2-thiouridine at anticodon wobble position-34 and 2-methylthio-N(6)-threonylcarbamoyladenosine, adjacent to the anticodon at position-37, are important to the recognition of htRNA(Lys3)UUU by NCp7. Several short peptides selected from phage display libraries were found to also preferentially recognize these modifications. Evolutionary algorithms (Monte Carlo and self-consistent mean field) and assisted model building with energy refinement were used to optimize the peptide sequence in silico, while fluorescence assays were developed and conducted to verify the in silico results and elucidate a 15-amino acid signature sequence (R-W-Q/N-H-X2-F-Pho-X-G/A-W-R-X2-G, where X can be most amino acids, and Pho is hydrophobic) that recognized the tRNA's fully modified anticodon stem and loop domain, hASL(Lys3)UUU. Peptides of this sequence specifically recognized and bound modified htRNA(Lys3)UUU with an affinity 10-fold higher than that of the starting sequence. Thus, this approach provides an effective means of predicting sequences of RNA binding peptides that have better binding properties. Such peptides can be used in cell and molecular biology as well as biochemistry to explore RNA binding proteins and to inhibit those protein functions.

  1. A combined behavioral and morphological study on the effects of fetal asphyxia on the nigrostriatal dopaminergic system in adult rats.

    PubMed

    Strackx, E; Van den Hove, D L A; Steinbusch, H P; Steinbusch, H W M; Vles, J S H; Blanco, C E; Gavilanes, A W D

    2008-06-01

    Fetal asphyxic insults in the brain are known to be associated with developmental neurological problems like neuromotor disorders. However, little is known about the long-term consequences of fetal asphyxia (FA). For that reason, the present study investigated the long-term effects of FA on motor behavior and dopaminergic circuitry. FA was induced at embryonic day 17 by 75-minute clamping of the uterine circulation. SHAM animals underwent the same procedure except for the clamping. This was followed by full-term vaginal delivery of animals in all groups (FA, SHAM and untreated controls). At 6 months, basal and amphetamine-induced locomotor activity was measured during open field testing. Brain sections were stained for tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP). TH-positive cells and GFAP-positive cells in substantia nigra pars compacta (SN(C)) and striatum were counted using design-based stereology. Moreover, TH-immunoreactivity in the striatum was assessed by grey value measurements. Behavioral analysis demonstrated that SHAM and FA showed less basal and amphetamine-induced activity than controls. Histochemically, FA decreased the number of TH-positive neurons in the SN(C) and lowered TH-positive in the striatum. Furthermore, more GFAP-positive cells were found in the SN(C) and striatum in FA than in either control and SHAM groups. Additionally, FA animals showed ventriculomegaly associated with smaller white matter as well as grey matter volumes. The data show that FA was associated with deficits in both dopamine-related motor behavior and biochemistry. These alterations were associated with nigrostriatal astrogliosis. The present study demonstrates the sensitivity of the dopaminergic system towards FA.

  2. Parsing the life-shortening effects of dietary protein: effects of individual amino acids

    PubMed Central

    Bouchebti, Sofia; Bazazi, Sepideh; Le Hesran, Sophie; Puga, Camille; Latil, Gérard; Simpson, Stephen J.

    2017-01-01

    High-protein diets shorten lifespan in many organisms. Is it because protein digestion is energetically costly or because the final products (the amino acids) are harmful? To answer this question while circumventing the life-history trade-off between reproduction and longevity, we fed sterile ant workers on diets based on whole proteins or free amino acids. We found that (i) free amino acids shortened lifespan even more than proteins; (ii) the higher the amino acid-to-carbohydrate ratio, the shorter ants lived and the lower their lipid reserves; (iii) for the same amino acid-to-carbohydrate ratio, ants eating free amino acids had more lipid reserves than those eating whole proteins; and (iv) on whole protein diets, ants seem to regulate food intake by prioritizing sugar, while on free amino acid diets, they seem to prioritize amino acids. To test the effect of the amino acid profile, we tested diets containing proportions of each amino acid that matched the ant's exome; surprisingly, longevity was unaffected by this change. We further tested diets with all amino acids under-represented except one, finding that methionine, serine, threonine and phenylalanine are especially harmful. All together, our results show certain amino acids are key elements behind the high-protein diet reduction in lifespan. PMID:28053059

  3. Parsing the life-shortening effects of dietary protein: effects of individual amino acids.

    PubMed

    Arganda, Sara; Bouchebti, Sofia; Bazazi, Sepideh; Le Hesran, Sophie; Puga, Camille; Latil, Gérard; Simpson, Stephen J; Dussutour, Audrey

    2017-01-11

    High-protein diets shorten lifespan in many organisms. Is it because protein digestion is energetically costly or because the final products (the amino acids) are harmful? To answer this question while circumventing the life-history trade-off between reproduction and longevity, we fed sterile ant workers on diets based on whole proteins or free amino acids. We found that (i) free amino acids shortened lifespan even more than proteins; (ii) the higher the amino acid-to-carbohydrate ratio, the shorter ants lived and the lower their lipid reserves; (iii) for the same amino acid-to-carbohydrate ratio, ants eating free amino acids had more lipid reserves than those eating whole proteins; and (iv) on whole protein diets, ants seem to regulate food intake by prioritizing sugar, while on free amino acid diets, they seem to prioritize amino acids. To test the effect of the amino acid profile, we tested diets containing proportions of each amino acid that matched the ant's exome; surprisingly, longevity was unaffected by this change. We further tested diets with all amino acids under-represented except one, finding that methionine, serine, threonine and phenylalanine are especially harmful. All together, our results show certain amino acids are key elements behind the high-protein diet reduction in lifespan. © 2017 The Author(s).

  4. Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry.

    PubMed

    Sultana, Azmiri; Lee, Jeffrey E

    2015-02-02

    Biolayer interferometry (BLI) is a simple, optical dip-and-read system useful for measuring interactions between proteins, peptides, nucleic acids, small molecules, and/or lipids in real time. In BLI, a biomolecular bait is immobilized on a matrix at the tip of a fiber-optic sensor. The binding between the immobilized ligand and another molecule in an analyte solution produces a change in optical thickness at the tip and results in a wavelength shift proportional to binding. BLI provides direct binding affinities and rates of association and dissociation. This unit describes an efficient approach using streptavidin-based BLI to analyze DNA-protein and protein-protein interactions. A quantitative set of equilibrium binding affinities (K(d)) and rates of association and dissociation (k(a)/k(d)) can be measured in minutes using nanomole quantities of sample. Copyright © 2015 John Wiley & Sons, Inc.

  5. Combining multiple positive training sets to generate confidence scores for protein-protein interactions.

    PubMed

    Yu, Jingkai; Finley, Russell L

    2009-01-01

    High-throughput experimental and computational methods are generating a wealth of protein-protein interaction data for a variety of organisms. However, data produced by current state-of-the-art methods include many false positives, which can hinder the analyses needed to derive biological insights. One way to address this problem is to assign confidence scores that reflect the reliability and biological significance of each interaction. Most previously described scoring methods use a set of likely true positives to train a model to score all interactions in a dataset. A single positive training set, however, may be biased and not representative of true interaction space. We demonstrate a method to score protein interactions by utilizing multiple independent sets of training positives to reduce the potential bias inherent in using a single training set. We used a set of benchmark yeast protein interactions to show that our approach outperforms other scoring methods. Our approach can also score interactions across data types, which makes it more widely applicable than many previously proposed methods. We applied the method to protein interaction data from both Drosophila melanogaster and Homo sapiens. Independent evaluations show that the resulting confidence scores accurately reflect the biological significance of the interactions.

  6. Omega-3 fatty acids are oxygenated at the n-7 carbon by the lipoxygenase domain of a fusion protein in the cyanobacterium Acaryochloris marina

    PubMed Central

    Gao, Benlian; Boeglin, William E.; Brash, Alan R.

    2009-01-01

    Lipoxygenases (LOX) are found in most organisms that contain polyunsaturated fatty acids, usually existing as individual genes although occasionally encoded as a fusion protein with a catalase-related hemoprotein. Such a fusion protein occurs in the cyanobacterium Acaryochloris marina and herein we report the novel catalytic activity of its LOX domain. The full-length protein and the C-terminal LOX domain were expressed in Escherichia coli, and the catalytic activities characterized by UV, HPLC, GC-MS, and CD. All omega-3 polyunsaturates were oxygenated by the LOX domain at the n-7 position and with R stereospecificity: α-linolenic and the most abundant fatty acid in A. marina, stearidonic acid (C18.4ω3), are converted to the corresponding 12R-hydroperoxides, eicosapentaenoic acid to its 14R-hydroperoxide, and docosahexaenoic acid to its 16R-hydroperoxide. Omega-6 polyunsaturates were oxygenated at the n-10 position, forming 9R-hydroperoxy-octadecadienoic acid from linoleic acid and 11R-hydroperoxy-eicosatetraenoic acid from arachidonic acid. The metabolic transformation of stearidonic acid by the full-length fusion protein entails its 12R oxygenation with subsequent conversion by the catalase-related domain to a novel allene epoxide, a likely precursor of cyclopentenone fatty acids or other signaling molecules (Gao et al, J. Biol. Chem. 284:22087-98, 2009). Although omega-3 fatty acids and lipoxygenases are of widespread occurrence, this appears to be the first description of a LOX-catalyzed oxygenation that specifically utilizes the terminal pentadiene of omega-3 fatty acids. PMID:19786119

  7. Alkali-catalyzed low temperature wet crosslinking of plant proteins using carboxylic acids.

    PubMed

    Reddy, Narendra; Li, Ying; Yang, Yiqi

    2009-01-01

    We report the development of a new method of alkali-catalyzed low temperature wet crosslinking of plant proteins to improve their breaking tenacity without using high temperatures or phosphorus-containing catalysts used in conventional poly(carboxylic acid) crosslinking of cellulose and proteins. Carboxylic acids are preferred over aldehyde-containing crosslinkers for crosslinking proteins and cellulose because of their low toxicity and cost and ability to improve the desired properties of the materials. However, current knowledge in carboxylic acid crosslinking of proteins and cellulose requires the use of carboxylic acids with at least three carboxylic groups, toxic phosphorous-containing catalysts and curing at high temperatures (150-185 degrees C). The use of high temperatures and low pH in conventional carboxylic acid crosslinking has been reported to cause substantial strength loss and/or undesired changes in the properties of the crosslinked materials. In this research, gliadin, soy protein, and zein fibers have been crosslinked with malic acid, citric acid, and butanetetracarboxylic acid to improve the tenacity of the fibers without using high temperatures and phosphorus-containing catalysts. The new method of wet crosslinking using carboxylic acids containing two or more carboxylic groups will be useful to crosslink proteins for various industrial applications.

  8. Cellular plasticity in the supraoptic and paraventricular nuclei after prolonged dehydration in the desert rodent Meriones shawi: Vasopressin and GFAP immunohistochemical study.

    PubMed

    Gamrani, Halima; Elgot, Abdeljalil; El Hiba, Omar; Fèvre-Montange, Michelle

    2011-02-23

    Supraoptic (SON) and paraventricular (PVN) nuclei are part of the hypothalamic-neurohypophysial system, they constitute the main source for vasopressin and they represent also obvious examples of activity-dependent neuroglial plasticity. Certain physiological conditions such as dehydration are accompanied by a structural remodeling of the neurons, their synaptic inputs and their surrounding glia. In the present work, an adult Meriones shawi (a rodent adapted to desert life) is used as an animal model. Using GFAP and vasopressin expressions as indicators successively of astrocytes and neuronal activations, the effect of a prolonged episode of water deprivation on the SON and PVN, hypothalamus nuclei were examined. We studied the immunoreactivity of GFAP and vasopressin in various hydration states (total deprivation of drinking water for 1 and 2months compared to hydrated animals). Prolonged dehydration produces an important decrease of GFAP immunoreactivity in both SON and PVN after 1 and 2months of water restriction. This decrease is accompanied by increased vasopressin immunoreactivity following the same periods of water deprivation. These findings may explain a real communication between vasopressin neurons and their surrounding astrocytes, thus the retraction of astrocytes and their processes is accompanied by an enhancement of vasopressin neuron density and their projecting fibers in response to this osmotic stress situation. Furthermore, these data could open further investigations concerning the possible involvement of the communication between astrocytes and vasopressin neurons in both PVN and SON in the regulation of Meriones hydrous balance and resistance to dehydration. Copyright © 2010. Published by Elsevier B.V.

  9. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    DTIC Science & Technology

    2012-03-01

    blast injury mechanisms in rat TBI - Roles of polyunsaturated fatty acids in traumatic brain injury vulnerabilities and resilience: evaluation of...salutary effects of DHA supplementation using neurolipidomics and functional outcome assessments - Diagnostic and Therapeutic Targeting of...immunohistochemical assessments reveal greater glial fibrillary acidic protein (GFAP) and IBa1 immunoreactivity in rats subjected to combined injuries than are

  10. Effects of Nano-MnO2 on Dopaminergic Neurons and the Spatial Learning Capability of Rats

    PubMed Central

    Li, Tao; Shi, Tingting; Li, Xiaobo; Zeng, Shuilin; Yin, Lihong; Pu, Yuepu

    2014-01-01

    This study aimed to observe the effect of intracerebrally injected nano-MnO2 on neurobehavior and the functions of dopaminergic neurons and astrocytes. Nano-MnO2, 6-OHDA, and saline (control) were injected in the substantia nigra and the ventral tegmental area of Sprague-Dawley rat brains. The neurobehavior of rats was evaluated by Morris water maze test. Tyrosine hydroxylase (TH), inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) expressions in rat brain were detected by immunohistochemistry. Results showed that the escape latencies of nano-MnO2 treated rat increased significantly compared with control. The number of TH-positive cells decreased, GFAP- and iNOS-positive cells increased significantly in the lesion side of the rat brains compared with the contralateral area in nano-MnO2 group. The same tendencies were observed in nano-MnO2-injected rat brains compared with control. However, in the the positive control, 6-OHDA group, escape latencies increased, TH-positive cell number decreased significantly compared with nano-MnO2 group. The alteration of spatial learning abilities of rats induced by nano-MnO2 may be associated with dopaminergic neuronal dysfunction and astrocyte activation. PMID:25101772

  11. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [Austin, TX

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  14. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  15. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  16. PLASMA PROTEIN PRODUCTION INFLUENCED BY AMINO ACID MIXTURES AND LACK OF ESSENTIAL AMINO ACIDS

    PubMed Central

    Madden, S. C.; Anderson, F. W.; Donovan, J. C.; Whipple, G. H.

    1945-01-01

    When blood plasma proteins are depleted by bleeding with return of red cells suspended in saline (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a constant level of plasma protein production if the diet nitrogen intake is controlled and limited. Such dogs are outwardly normal but have a lowered resistance to infection and intoxication and probably to vitamin deficiency. When the diet nitrogen is provided by certain mixtures of the ten growth essential amino acids plus glycine, given intravenously at a rapid rate, plasma protein production is good. The same mixture absorbed subcutaneously at a slower rate may be slightly better utilized. Fed orally the same mixture is better utilized and associated with a lower urinary nitrogen excretion. An ample amino acid mixture for the daily intake of a 10 kilo dog may contain in grams dl-threonine 1.4, dl-valine 3, dl-leucine 3, dl-isoleucine 2, l(+)-lysine·HCl·H2O 2.2, dl-tryptophane 0.3, dl-phenylalanine 2, dl-methionine 1.2, l(+)-histidine·HCl·H2O 1, l(+)-arginine·HCl 1, and glycine 2. Half this quantity is inadequate and not improved by addition of a mixture of alanine, serine, norleucine, proline, hydroxyproline, and tyrosine totalling 1.4 gm. Aspartic acid appears to induce vomiting when added to a mixture of amino acids. The same response has been reported for glutamic acid (8). Omission from the intake of leucine or of leucine and isoleucine results in negative nitrogen balance and rapid weight loss but plasma protein production may be temporarily maintained. It is possible that leucine may be captured from red blood cell destruction. Tryptophane deficiency causes an abrupt decline in plasma protein production. No decline occurred during 2 weeks of histidine deficiency but the urinary nitrogen increased to negative balance. Plasma protein production may be impaired during conditions of dietary deficiency not related to the protein or amino acid intake. Skin lesions and liver

  17. Computationally Efficient Multiscale Reactive Molecular Dynamics to Describe Amino Acid Deprotonation in Proteins

    PubMed Central

    2016-01-01

    An important challenge in the simulation of biomolecular systems is a quantitative description of the protonation and deprotonation process of amino acid residues. Despite the seeming simplicity of adding or removing a positively charged hydrogen nucleus, simulating the actual protonation/deprotonation process is inherently difficult. It requires both the explicit treatment of the excess proton, including its charge defect delocalization and Grotthuss shuttling through inhomogeneous moieties (water and amino residues), and extensive sampling of coupled condensed phase motions. In a recent paper (J. Chem. Theory Comput.2014, 10, 2729−273725061442), a multiscale approach was developed to map high-level quantum mechanics/molecular mechanics (QM/MM) data into a multiscale reactive molecular dynamics (MS-RMD) model in order to describe amino acid deprotonation in bulk water. In this article, we extend the fitting approach (called FitRMD) to create MS-RMD models for ionizable amino acids within proteins. The resulting models are shown to faithfully reproduce the free energy profiles of the reference QM/MM Hamiltonian for PT inside an example protein, the ClC-ec1 H+/Cl– antiporter. Moreover, we show that the resulting MS-RMD models are computationally efficient enough to then characterize more complex 2-dimensional free energy surfaces due to slow degrees of freedom such as water hydration of internal protein cavities that can be inherently coupled to the excess proton charge translocation. The FitRMD method is thus shown to be an effective way to map ab initio level accuracy into a much more computationally efficient reactive MD method in order to explicitly simulate and quantitatively describe amino acid protonation/deprotonation in proteins. PMID:26734942

  18. Computationally Efficient Multiscale Reactive Molecular Dynamics to Describe Amino Acid Deprotonation in Proteins.

    PubMed

    Lee, Sangyun; Liang, Ruibin; Voth, Gregory A; Swanson, Jessica M J

    2016-02-09

    An important challenge in the simulation of biomolecular systems is a quantitative description of the protonation and deprotonation process of amino acid residues. Despite the seeming simplicity of adding or removing a positively charged hydrogen nucleus, simulating the actual protonation/deprotonation process is inherently difficult. It requires both the explicit treatment of the excess proton, including its charge defect delocalization and Grotthuss shuttling through inhomogeneous moieties (water and amino residues), and extensive sampling of coupled condensed phase motions. In a recent paper (J. Chem. Theory Comput. 2014, 10, 2729-2737), a multiscale approach was developed to map high-level quantum mechanics/molecular mechanics (QM/MM) data into a multiscale reactive molecular dynamics (MS-RMD) model in order to describe amino acid deprotonation in bulk water. In this article, we extend the fitting approach (called FitRMD) to create MS-RMD models for ionizable amino acids within proteins. The resulting models are shown to faithfully reproduce the free energy profiles of the reference QM/MM Hamiltonian for PT inside an example protein, the ClC-ec1 H(+)/Cl(-) antiporter. Moreover, we show that the resulting MS-RMD models are computationally efficient enough to then characterize more complex 2-dimensional free energy surfaces due to slow degrees of freedom such as water hydration of internal protein cavities that can be inherently coupled to the excess proton charge translocation. The FitRMD method is thus shown to be an effective way to map ab initio level accuracy into a much more computationally efficient reactive MD method in order to explicitly simulate and quantitatively describe amino acid protonation/deprotonation in proteins.

  19. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    PubMed

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  20. The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family.

    PubMed

    Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M

    1992-02-01

    The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs

  1. AMINO ACID MIXTURES EFFECTIVE PARENTERALLY FOR LONG CONTINUED PLASMA PROTEIN PRODUCTION. CASEIN DIGESTS COMPARED

    PubMed Central

    Madden, S. C.; Woods, R. R.; Shull, F. W.; Whipple, G. H.

    1944-01-01

    When blood plasma proteins are depleted by bleeding with return of red cells suspended in saline (plasmapheresis) it is possible to bring dogs to a steady state of hypoproteinemia and a constant level of plasma protein production if the diet nitrogen intake is controlled and limited. Such dogs are outwardly normal but have a lowered resistance to infection and to certain intoxications. The ten growth essential amino acids of Rose plus glycine will maintain nitrogen balance and produce as much new plasma protein as will good diet proteins. This good utilization is demonstrated over periods of several months when the amino acids are given either orally or parenterally. There is no evidence of toxicity in general nor to unnatural forms of these synthetic amino acids in particular. Given parenterally appropriate mixtures of these amino acids are well tolerated even upon rapid injection. The minimal daily requirements for a 10 kilo dog may be given intravenously in 10 minutes without reaction. Subcutaneously a 10 per cent solution may be given rapidly without reaction. Among various mixtures tested Vt approximates a minimum for a 10 kilo dog. It contains in grams (dl-threonine 0.7, dl-valine 1.5, l-(-) leucine 1.5, dl-isoleucine 1.4, dl-lysine hydrochloride 1.5, l(-) tryptophane 0.4, dl-phenylalanine 1.0, dl-methionine 0.6, l(+)-histidine hydrochloride 0.5, l(+)-arginine hydrochloride 0.5, and glycine 1.0. The presence of glycine improves tolerance to rapid intravenous injection, but excess glycine does not improve utilization of the mixture. Over a long period this mixture appears suboptimal in quantity. Doubled it is more than ample. Of two casein digests tested the one prepared by enzymatic hydrolysis provided good nitrogen retention and fairly good plasma protein production but was much less tolerable upon intravenous injection than certain mixtures of pure amino acids. The other one prepared by acid hydrolysis and tryptophane fortification afforded bare nitrogen

  2. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins.

    PubMed

    Quintales, Luis; Soriano, Ignacio; Vázquez, Enrique; Segurado, Mónica; Antequera, Francisco

    2015-04-01

    Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.

  3. Olive oils modulate fatty acid content and signaling protein expression in apolipoprotein E knockout mice brain.

    PubMed

    Alemany, Regina; Navarro, María A; Vögler, Oliver; Perona, Javier S; Osada, Jesús; Ruiz-Gutiérrez, Valentina

    2010-01-01

    Atherosclerosis contributes to disruption of neuronal signaling pathways by producing lipid-dependent modifications of brain plasma membranes, neuroinflammation and oxidative stress. We investigated whether long-term (11 weeks) consumption of refined- (ROO) and pomace- (POO) olive oil modulated the fatty acid composition and the levels of membrane signaling proteins in the brain of apolipoprotein E (apoE) knockout (KO) mice, an animal model of atherosclerosis. Both of these oils are rich in bioactive molecules with anti-inflammatory and antioxidant effects. ROO and POO long-term consumption increased the proportion of monounsaturated fatty acids (MUFAs), particularly of oleic acid, while reducing the level of the saturated fatty acids (SFAs) palmitic and stearic acid. As a result, the MUFA:SFA ratio was higher in apoE KO mice brain fed with ROO and POO. Furthermore, both oils reduced the level of arachidonic and eicosapentaenoic acid, suggesting a decrease in the generation of pro- and anti-inflammatory eicosanoids. Finally, ROO and POO induced an increase in the density of membrane proteins implicated in both the Galphas/PKA and Galphaq/PLCbeta1/PKCalpha signaling pathways. The combined effects of long-term ROO and POO consumption on fatty acid composition and the level of signaling proteins involved in PKA and PKC activation, suggest positive effects on neuroinflammation and brain function in apoE KO mice brain, and convert these oils into promising functional foods in diseases involving apoE deficiency.

  4. Site-selective post-translational modification of proteins using an unnatural amino acid, 3-azidotyrosine.

    PubMed

    Ohno, Satoshi; Matsui, Megumi; Yokogawa, Takashi; Nakamura, Masashi; Hosoya, Takamitsu; Hiramatsu, Toshiyuki; Suzuki, Masaaki; Hayashi, Nobuhiro; Nishikawa, Kazuya

    2007-03-01

    An efficient method for site-selective modification of proteins using an unnatural amino acid, 3-azidotyrosine has been developed. This method utilizes the yeast amber suppressor tRNA(Tyr)/mutated tyrosyl-tRNA synthetase pair as a carrier of 3-azidotyrosine in an Escherichia coli cell-free translation system, and triarylphosphine derivatives for specific modification of the azido group. Using rat calmodulin (CaM) as a model protein, we prepared several unnatural CaM molecules, each carrying an azidotyrosine at predetermined positions 72, 78, 80 or 100, respectively. Post-translational modification of these proteins with a conjugate compound of triarylphosphine and biotin produced site-selectively biotinylated CaM molecules. Reaction efficiency was similar among these proteins irrespective of the position of introduction, and site-specificity of biotinylation was confirmed using mass spectrometry. In addition, CBP-binding activity of the biotinylated CaMs was confirmed to be similar to that of wild-type CaM. This method is intrinsically versatile in that it should be easily applicable to introducing any other desirable compounds (e.g., probes and cross-linkers) into selected sites of proteins as far as appropriate derivative compounds of triarylphosphine could be chemically synthesized. Elucidation of molecular mechanisms of protein functions and protein-to-protein networks will be greatly facilitated by making use of these site-selectively modified proteins.

  5. Mechanism of nonylphenol-induced neurotoxicity in F1 rats during sexual maturity.

    PubMed

    Jie, Yu; Xuefeng, Yang; Mengxue, Yang; Xuesong, Yang; Jing, Yang; Yin, Tang; Jie, Xu

    2016-06-01

    The purpose of this study was to examine whether gestational and lactational exposure to environmental endocrine disrupting chemical, nonylphenol (NP), in pregnant dams would lead to the alterations in hormone levels in the body, apoptosis and glial fibrillary acidic protein (GFAP) in hippocampus during weaning and sexual maturity periods in pups of rats. Dams were gavaged with NP at dose levels of 25 mg/kg/day (low dose), 50 mg/kg/day (middle dose), 100 mg/kg/day (high dose) and groundnut oil alone (vehicle control) respectively from gestational day 6 to postnatal day (PND) 21. At PND 21, serum testosterone (TT) level significantly decreased in the 50, 100 mg/kg NP-treated groups compared with the control (p < 0.01). Serum estradiol (E2) level was increased with the increase in the NP concentration; a dose-effect relationship was revealed (r = 0.462, p < 0.01). At both PND 21 and PND 60, pups exposed to 100 mg/kg/day NP had an obviously higher apoptotic rate than control did. We observed a significant positive correlation between the dose of NP and the apoptotic rate (r = 0.836, p < 0.05). The number of GFAP-positive cells in rat hippocampus and integral optical density (IOD) of 100 mg/kg/day NP-treated group were much higher than the control group. GFAP mRNA expressions increased at high dose (100 mg/kg/day) (p < 0.05), and positive correlations between the GFAP mRNA expressions and NP level was observed (r = 0.586, 0.737, p < 0.05). Both the number of growth-associated protein (GAP)-43 positive cells and IOD were much lower at high dose (100 mg/kg/day) than the control at both PND 21 and PND 60 (p < 0.05). The number of GAP-43 positive cells was negatively correlated with the NP exposure dose (r = - 0.562, - 0.649, p < 0.05) at these two time points. GAP-43 mRNA expressions in the hippocampus of pups decreased dramatically at high dose (100 mg/kg/day) at both PND 21 and PND 60 compared with the control (p

  6. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  7. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  8. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex.

    PubMed

    Herrera, Jose L; Ordoñez-Gutierrez, Lara; Fabrias, Gemma; Casas, Josefina; Morales, Araceli; Hernandez, Guadalberto; Acosta, Nieves G; Rodriguez, Covadonga; Prieto-Valiente, Luis; Garcia-Segura, Luis M; Alonso, Rafael; Wandosell, Francisco G

    2018-01-01

    Different dietary ratios of n -6/ n -3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n -6/ n -3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n -3 and n -6 LC-PUFAs.

  9. Crude protein and essential amino acid requirements in chicks during the first week posthatch.

    PubMed

    Sklan, D; Noy, Y

    2003-05-01

    1. This study examined optimal lysine and sulphur amino acid supply in the first week posthatch in broilers and the relationship between essential amino acids and dietary crude protein during the first week posthatch on performance at 7 d and through marketing. 2. The optimal supply during the 7 d posthatch using a 230 g/kg crude protein diet for sulphur amino acids was 9.1 and for lysine was 10.3-10.8 g/kg with maximal body weight (BW) or feed efficiency as the criteria. 3. Feeding diets with crude protein content ranging from 200 to 260 g/kg with either constant amounts of essential amino acids at different crude protein levels or constant ratios of essential amino acids to crude protein resulted in enhanced performance at 7 but not at 4 d with high protein intake and proportionally increased essential amino acids. 4. Performance on diets with crude protein ranging from 160 to 280 g/kg, with constant ratios of essential amino acid to crude protein, was much enhanced with the high crude protein diets at 7 d. All chicks were transferred to standard diets after 7 d and the BW advantage due to the balanced amino acid-high crude protein diet remained through marketing. 5. Thus increasing essential amino acids in a constant ratio to crude protein enhanced performance during the 7 d posthatch.

  10. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.

    PubMed

    Borguesan, Bruno; Inostroza-Ponta, Mario; Dorn, Márcio

    2017-03-01

    The exponential growth in the number of experimentally determined three-dimensional protein structures provide a new and relevant knowledge about the conformation of amino acids in proteins. Only a few of probability densities of amino acids are publicly available for use in structure validation and prediction methods. NIAS (Neighbors Influence of Amino acids and Secondary structures) is a web-based tool used to extract information about conformational preferences of amino acid residues and secondary structures in experimental-determined protein templates. This information is useful, for example, to characterize folds and local motifs in proteins, molecular folding, and can help the solution of complex problems such as protein structure prediction, protein design, among others. The NIAS-Server and supplementary data are available at http://sbcb.inf.ufrgs.br/nias .

  11. Interaction of melanin with proteins--the importance of an acidic intramelanosomal pH.

    PubMed

    Mani, I; Sharma, V; Tamboli, I; Raman, G

    2001-06-01

    Melanin is a highly irregular heteropolymer consisting of monomeric units derived from the enzymatic oxidation of the amino acid tyrosine. The process of melanin formation takes place in specialized acidic organelles (melanosomes) in melanocytes. The process of melanin polymerization requires an alkaline pH in vitro, and therefore, the purpose of an acidic environment in vivo remains a mystery. It is known that melanin is always bound to protein in vivo. It is also seen that polymerization in vitro at an acidic pH necessarily requires the presence of proteins. The effect of various model proteins on melanin synthesis and their interaction with melanin was studied. It was seen that many proteins could increase melanin synthesis at an acidic pH, and that different proteins resulted in the formation of different states of melanin, i.e., a precipitate or a soluble, protein-bound form. We also present evidence to show that soluble protein-bound melanin is present in vivo (in B16 cells as well as in B16 melanoma tissue). An acidic pH appeared to be necessary to ensure the formation of a uniform, very high molecular weight melano-protein complex. The interaction between melanin and proteins appears to be largely charge-dependent as evidenced by zeta potential measurements, and this interaction is also increased in an acidic pH. Thus, it appears that an acidic intramelanosomal pH is essential to ensure maximum interaction between protein and melanin, and also to ensure that all the melanin formed is protein-bound.

  12. The position of rumenic acid on triacylglycerols alters its bioavailability in rats.

    PubMed

    Chardigny, J M; Masson, E; Sergiel, J P; Darbois, M; Loreau, O; Noël, J P; Sébédio, J-L

    2003-12-01

    The metabolic fate of rumenic acid (9cis,11trans-octadecenoic acid) related to its position on the glycerol moiety has not yet been studied. In the present work, synthetic triacylglycerols (TAG) esterified with oleic and rumenic acids were prepared. Rats were force-fed synthetic dioleyl monorumenyl glycerol with (14)C labeled rumenic acid in the internal (sn-2) or in the external position (sn-1 or sn-3). Rats were then placed in metabolic cages for 16 h. At the end of the experiment, the radioactivity in tissues, carcass and expired CO(2) was measured. Rumenic acid that was esterified at the external positions on the TAG was better absorbed and oxidized to a greater extent than when esterified at the internal position. The fatty acid from the 2-TAG form was also better incorporated into the rat carcass. In the liver, rumenic acid appeared mainly in TAG (50%) and to a lesser extent in phospholipids (33%) whatever its dietary form. Moreover, analyses of lipids from Camembert cheese and butter revealed that rumenic acid was located mainly on the sn-1 or sn-3 positions (74%). Taken together, these data suggest that rumenic acid from dairy fat may be well absorbed and used extensively for energy production.

  13. Induced polymersome formation from a diblock PS-b-PAA polymer via encapsulation of positively charged proteins and peptides.

    PubMed

    Hvasanov, David; Wiedenmann, Jörg; Braet, Filip; Thordarson, Pall

    2011-06-14

    In contrast to simple salts or negatively charged macromolecules, positively charged proteins and peptides including cytochrome c (yeast) and poly-L-lysine are efficiently encapsulated while inducing the formation of polymersomes from polystyrene(140)-b-poly(acrylic acid)(48) (PS(140)-b-PAA(48)). This journal is © The Royal Society of Chemistry 2011

  14. Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure.

    PubMed

    Kramer, W; Sauber, K; Baringhaus, K H; Kurz, M; Stengelin, S; Lange, G; Corsiero, D; Girbig, F; König, W; Weyland, C

    2001-03-09

    The ileal lipid-binding protein (ILBP) is the only physiologically relevant bile acid-binding protein in the cytosol of ileocytes. To identify the bile acid-binding site(s) of ILBP, recombinant rabbit ILBP photolabeled with 3-azi- and 7-azi-derivatives of cholyltaurine was analyzed by a combination of enzymatic fragmentation, gel electrophoresis, and matrix-assisted laser desorption ionization (MALDI)-mass spectrometry. The attachment site of the 3-position of cholyltaurine was localized to the amino acid triplet His(100)-Thr(101)-Ser(102) using the photoreactive 3,3-azo-derivative of cholyltaurine. With the corresponding 7,7-azo-derivative, the attachment point of the 7-position could be localized to the C-terminal part (position 112-128) as well as to the N-terminal part suggesting more than one binding site for bile acids. By chemical modification and NMR structure of ILBP, arginine residue 122 was identified as the probable contact point for the negatively charged side chain of cholyltaurine. Consequently, bile acids bind to ILBP with the steroid nucleus deep inside the protein cavity and the negatively charged side chain near the entry portal. The combination of photoaffinity labeling, enzymatic fragmentation, MALDI-mass spectrometry, and NMR structure was successfully used to determine the topology of bile acid binding to ILBP.

  15. Optimization of Glial Fibrillary Acidic Protein Immunoreactivity in Formalin-fixed, Paraffin-Embedded Guinea Pig Brain Sections

    DTIC Science & Technology

    2003-09-01

    fixed, paraffin-embedded guinea pig brain sections using a variety of commercially available GFAP antibody clones. Of the 7 clones tested for cross...determining neuropathological consequences in the guinea pig following exposure to chemical warfare nerve agent.

  16. Improving protein complex classification accuracy using amino acid composition profile.

    PubMed

    Huang, Chien-Hung; Chou, Szu-Yu; Ng, Ka-Lok

    2013-09-01

    Protein complex prediction approaches are based on the assumptions that complexes have dense protein-protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Neurogenic and cardiomyogenic differentiation of mesenchymal stem cells isolated from minipig bone marrow.

    PubMed

    Kumar, B Mohana; Maeng, Geun-Ho; Lee, Yeon-Mi; Kim, Tae-Ho; Lee, Jeong-Hyeon; Jeon, Byeong-Gyun; Ock, Sun-A; Yoo, Jae-Gyu; Rho, Gyu-Jin

    2012-10-01

    The present study investigated the potential of minipig bone marrow-mesenchymal stem cells (BM-MSCs) to differentiate in vitro into neuron- and cardiomyocyte-like cells. Isolated BM-MSCs exhibited a fibroblast-like morphology, expressed CD29, CD44 and CD90, and differentiated into osteocytes, adipocytes and chondrocytes. Upon induction in two different neuronal specific media, most of BM-MSCs acquired the distinctive morphological features and positively stained for nestin, neurofilament-M (NF-M), neuronal nuclei (NeuN), β-tubulin, galactocerebroside (Gal-C) and glial fibrillary acidic protein (GFAP). Expression of nestin, GFAP and NF-M was further demonstrated by RT-PCR and RT-qPCR. Following cardiomyogenic induction, MSCs exhibited a stick-like morphology with extended cytoplasmic processes, and formed cluster-like structures. The expression of cardiac specific markers α-smooth muscle actin, cardiac troponin T, desmin and α-cardiac actin was positive for immunofluorescence staining, and further confirmed by RT-PCR and RT-qPCR. In conclusion, our results showed the in vitro differentiation ability of porcine BM-MSCs into neuron-like and cardiomyocyte-like cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Acid extraction and purification of recombinant spider silk proteins.

    PubMed

    Mello, Charlene M; Soares, Jason W; Arcidiacono, Steven; Butler, Michelle M

    2004-01-01

    A procedure has been developed for the isolation of recombinant spider silk proteins based upon their unique stability and solubilization characteristics. Three recombinant silk proteins, (SpI)7, NcDS, and [(SpI)4/(SpII)1]4, were purified by extraction with organic acids followed by affinity or ion exchange chromatography resulting in 90-95% pure silk solutions. The protein yield of NcDS (15 mg/L culture) and (SpI)7 (35 mg/L) increased 4- and 5-fold, respectively, from previously reported values presumably due to a more complete solubilization of the expressed recombinant protein. [(SpI)4/(SpII)1]4, a hybrid protein based on the repeat sequences of spidroin I and spidroin II, had a yield of 12.4 mg/L. This method is an effective, reproducible technique that has broad applicability for a variety of silk proteins as well as other acid stable biopolymers.

  19. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    PubMed

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. © 2014 UICC.

  20. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less

  1. Advances in protein-amino acid nutrition of poultry.

    PubMed

    Baker, David H

    2009-05-01

    The ideal protein concept has allowed progress in defining requirements as well as the limiting order of amino acids in corn, soybean meal, and a corn-soybean meal mixture for growth of young chicks. Recent evidence suggests that glycine (or serine) is a key limiting amino acid in reduced protein [23% crude protein (CP) reduced to 16% CP] corn-soybean meal diets for broiler chicks. Research with sulfur amino acids has revealed that small excesses of cysteine are growth depressing in chicks fed methionine-deficient diets. Moreover, high ratios of cysteine:methionine impair utilization of the hydroxy analog of methionine, but not of methionine itself. A high level of dietary L: -cysteine (2.5% or higher) is lethal for young chicks, but a similar level of DL: -methionine, L: -cystine or N-acetyl-L: -cysteine causes no mortality. A supplemental dietary level of 3.0% L: -cysteine (7x requirement) causes acute metabolic acidosis that is characterized by a striking increase in plasma sulfate and decrease in plasma bicarbonate. S-Methylmethionine, an analog of S-adenosylmethionine, has been shown to have choline-sparing activity, but it only spares methionine when diets are deficient in choline and(or) betaine. Creatine, or its precursor guanidinoacetic acid, can spare dietary arginine in chicks.

  2. Protein and Amino Acid Requirements during Pregnancy123

    PubMed Central

    Elango, Rajavel; Ball, Ronald O

    2016-01-01

    Protein forms an essential component of a healthy diet in humans to support both growth and maintenance. During pregnancy, an exceptional stage of life defined by rapid growth and development, adequate dietary protein is crucial to ensure a healthy outcome. Protein deposition in maternal and fetal tissues increases throughout pregnancy, with most occurring during the third trimester. Dietary protein intake recommendations are based on factorial estimates because the traditional method of determining protein requirements, nitrogen balance, is invasive and undesirable during pregnancy. The current Estimated Average Requirement and RDA recommendations of 0.88 and 1.1 g · kg−1 · d−1, respectively, are for all stages of pregnancy. The single recommendation does not take into account the changing needs during different stages of pregnancy. Recently, with the use of the minimally invasive indicator amino acid oxidation method, we defined the requirements to be, on average, 1.2 and 1.52 g · kg−1 · d−1 during early (∼16 wk) and late (∼36 wk) stages of pregnancy, respectively. Although the requirements are substantially higher than current recommendations, our values are ∼14–18% of total energy and fit within the Acceptable Macronutrient Distribution Range. Using swine as an animal model we showed that the requirements for several indispensable amino acids increase dramatically during late gestation compared with early gestation. Additional studies should be conducted during pregnancy to confirm the newly determined protein requirements and to determine the indispensable amino acid requirements during pregnancy in humans. PMID:27422521

  3. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis.

    PubMed

    Dirks, Marlou L; Groen, Bart B L; Franssen, Rinske; van Kranenburg, Janneau; van Loon, Luc J C

    2017-01-01

    Short periods of muscle disuse result in substantial skeletal muscle atrophy. Recently, we showed that both neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. In this study, we test our hypothesis that NMES can augment the use of presleep protein-derived amino acids for overnight muscle protein synthesis in older men. Twenty healthy, older [69 ± 1 (SE) yr] men were subjected to 24 h of bed rest, starting at 8:00 AM. In the evening, volunteers were subjected to 70-min 1-legged NMES, while the other leg served as nonstimulated control (CON). Immediately following NMES, 40 g of intrinsically l-[1- 13 C]-phenylalanine labeled protein was ingested prior to sleep. Blood samples were taken throughout the night, and muscle biopsies were obtained from both legs in the evening and the following morning (8 h after protein ingestion) to assess dietary protein-derived l-[1- 13 C]-phenylalanine enrichments in myofibrillar protein. Plasma phenylalanine concentrations and plasma l-[1- 13 C]-phenylalanine enrichments increased significantly following protein ingestion and remained elevated for up to 6 h after protein ingestion (P < 0.05). During overnight sleep, myofibrillar protein-bound l-[1- 13 C]-phenylalanine enrichments (MPE) increased to a greater extent in the stimulated compared with the control leg (0.0344 ± 0.0019 vs. 0.0297 ± 0.0016 MPE, respectively; P < 0.01), representing 18 ± 6% greater incorporation of presleep protein-derived amino acids in the NMES compared with CON leg. In conclusion, application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis in older men. Neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. Here we demonstrate that in older

  4. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions

    PubMed Central

    Hellman, Lance M.; Fried, Michael G.

    2009-01-01

    The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this article, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided. PMID:17703195

  5. Beneficial effect of agmatine on brain apoptosis, astrogliosis, and edema after rat transient cerebral ischemia

    PubMed Central

    2010-01-01

    Background Although agmatine therapy in a mouse model of transient focal cerebral ischemia is highly protective against neurological injury, the mechanisms underlying the protective effects of agmatine are not fully elucidated. This study aimed to investigate the effects of agmatine on brain apoptosis, astrogliosis and edema in the rats with transient cerebral ischemia. Methods Following surgical induction of middle cerebral artery occlusion (MCAO) for 90 min, agmatine (100 mg/kg, i.p.) was injected 5 min after beginning of reperfusion and again once daily for the next 3 post-operative days. Four days after reperfusion, both motor and proprioception functions were assessed and then all rats were sacrificed for determination of brain infarct volume (2, 3, 5-triphenyltetrazolium chloride staining), apoptosis (TUNEL staining), edema (both cerebral water content and amounts of aquaporin-4 positive cells), gliosis (glial fibrillary acidic protein [GFAP]-positive cells), and neurotoxicity (inducible nitric oxide synthase [iNOS] expression). Results The results showed that agmatine treatment was found to accelerate recovery of motor (from 55 degrees to 62 degrees) and proprioception (from 54% maximal possible effect to 10% maximal possible effect) deficits and to prevent brain infarction (from 370 mm3 to 50 mm3), gliosis (from 80 GFAP-positive cells to 30 GFAP-positive cells), edema (cerebral water contents decreased from 82.5% to 79.4%; AQP4 positive cells decreased from 140 to 84 per section), apoptosis (neuronal apoptotic cells decreased from 100 to 20 per section), and neurotoxicity (iNOS expression cells decreased from 64 to 7 per section) during MCAO ischemic injury in rats. Conclusions The data suggest that agmatine may improve outcomes of transient cerebral ischemia in rats by reducing brain apoptosis, astrogliosis and edema. PMID:20815926

  6. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    NASA Astrophysics Data System (ADS)

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; Vannieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-06-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.

  7. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep

    PubMed Central

    Rozance, Paul J.; Thorn, Stephanie R.; Friedman, Jacob E.; Hay, William W.

    2012-01-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion. PMID:22649066

  8. Effect of tannic acid on the synthesis of protein and nucleic acid by rat liver

    PubMed Central

    Badawy, A. A.-B.; White, Audrey E.; Lathe, G. H.

    1969-01-01

    1. As early as 1hr. after the intraperitoneal administration of tannic acid to rats, it could be demonstrated in the liver. At 3hr. the nuclear fraction contained the largest amount of tannic acid. 2. Nuclear RNA synthesis was inhibited in vivo 2hr. after the administration of tannic acid. Induction by cortisol of tryptophan pyrrolase was 90% inhibited at 24hr. 3. Incorporation of [1-14C]leucine into protein by liver slices from treated rats was decreased by 50% after 24hr. Its incorporation into postmitochondrial supernatant from treated animals was not inhibited. Incorporation into slices and postmitochondrial supernatants were inhibited in vitro by tannic acid. 4. The sequence of events: concentration of tannic acid in nuclei, inhibition of nuclear RNA synthesis, inhibition of protein synthesis and production of necrosis, is discussed. PMID:5808319

  9. Folic acid-conjugated soybean protein-based nanoparticles mediate efficient antitumor ability in vitro.

    PubMed

    Yao, Weijing; Zha, Qian; Cheng, Xu; Wang, Xin; Wang, Jun; Tang, Rupei

    2016-11-23

    In this study, soy protein isolate was hydrolyzed by compound enzymes to give aqueous soy protein with low molecular weights. Folic acid modified and free soy protein nanoparticles were successfully prepared by a desolvation method as target-specific drug delivery, respectively. Ultraviolet spectrophotometry demonstrated that folic acid was successfully grafted onto soy protein. The shape and size of folic acid modified soy protein nanoparticles were detected by transmission electron microscopy, scanning electron microscope, and dynamic light scattering. In addition, a series of characteristics including kinetic stability, pH stability, and time stability were also performed. Doxorubicin was successfully loaded into folic acid modified soy protein nanoparticles, and the encapsulation and loading efficiencies were 96.7% and 23%, respectively. Doxorubicin-loaded folic acid modified soy protein nanoparticles exhibited faster drug release rate than soy protein nanoparticles in PBS solution (pH = 5). The tumor penetration and antitumor experiments were done using three-dimensional multicellular tumor spheroids as the in vitro model. The results proved that folic acid modified soy protein nanoparticles display higher penetration and accumulation than soy protein nanoparticles, therefore possessing efficient growth inhibitory ability against multicellular tumor spheroids. © The Author(s) 2016.

  10. Cerebrospinal fluid markers of neuronal and glial cell damage to monitor disease activity and predict long-term outcome in patients with autoimmune encephalitis.

    PubMed

    Constantinescu, R; Krýsl, D; Bergquist, F; Andrén, K; Malmeström, C; Asztély, F; Axelsson, M; Menachem, E B; Blennow, K; Rosengren, L; Zetterberg, H

    2016-04-01

    Clinical symptoms and long-term outcome of autoimmune encephalitis are variable. Diagnosis requires multiple investigations, and treatment strategies must be individually tailored. Better biomarkers are needed for diagnosis, to monitor disease activity and to predict long-term outcome. The value of cerebrospinal fluid (CSF) markers of neuronal [neurofilament light chain protein (NFL), and total tau protein (T-tau)] and glial cell [glial fibrillary acidic protein (GFAP)] damage in patients with autoimmune encephalitis was investigated. Demographic, clinical, magnetic resonance imaging, CSF and antibody-related data of 25 patients hospitalized for autoimmune encephalitis and followed for 1 year were retrospectively collected. Correlations between these data and consecutive CSF levels of NFL, T-tau and GFAP were investigated. Disability, assessed by the modified Rankin scale, was used for evaluation of disease activity and long-term outcome. The acute stage of autoimmune encephalitis was accompanied by high CSF levels of NFL and T-tau, whereas normal or significantly lower levels were observed after clinical improvement 1 year later. NFL and T-tau reacted in a similar way but at different speeds, with T-tau reacting faster. CSF levels of GFAP were initially moderately increased but did not change significantly later on. Final outcome (disability at 1 year) directly correlated with CSF-NFL and CSF-GFAP levels at all time-points and with CSF-T-tau at 3 ± 1 months. This correlation remained significant after age adjustment for CSF-NFL and T-tau but not for GFAP. In autoimmune encephalitis, CSF levels of neuronal and glial cell damage markers appear to reflect disease activity and long-term disability. © 2016 EAN.

  11. Effects of antinutritional factors on protein digestibility and amino acid availability in foods.

    PubMed

    Gilani, G Sarwar; Cockell, Kevin A; Sepehr, Estatira

    2005-01-01

    Digestibility of protein in traditional diets from developing countries such as India, Guatemala, and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94%). The presence of less digestible protein fractions, high levels of insoluble fiber, and high concentrations of antinutritional factors in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, are responsible for poor digestibility of protein. The effects of the presence of some of the important antinutritional factors on protein and amino digestibilities of food and feed products are reviewed in this chapter. Food and feed products may contain a number of antinutritional factors that may adversely affect protein digestibility and amino acid availability. Antinutritional factors may occur naturally, such as glucosinolates in mustard and rapeseed protein products, trypsin inhibitors and hemagglutinins in legumes, tannins in legumes and cereals, phytates in cereals and oilseeds, and gossypol in cottonseed protein products. Antinutritional factors may also be formed during heat/alkaline processing of protein products, yielding Maillard compounds, oxidized forms of sulfur amino acids, D-amino acids, and lysinoalanine (LAL, an unnatural amino acid derivative). The presence of high levels of dietary trypsin inhibitors from soybeans, kidney beans, or other grain legumes can cause substantial reductions in protein and amino acid digestibilities (up to 50%) in rats and pigs. Similarly, the presence of high levels of tannins in cereals, such as sorghum, and grain legumes, such as fababean (Vicia faba L.), can result in significantly reduced protein and amino acid digestibilities (up to 23%) in rats, poultry, and pigs. Studies involving phytase supplementation of production rations for swine or poultry have provided indirect evidence that normally encountered levels of phytates in cereals and legumes

  12. Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Subramanian, Chitra; Saenkham, Panatda; Rock, Charles O.

    2011-01-01

    The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus pneumoniae, representing two important groups of pathogens. Both bacteria use the same enzymatic tool kit for the conversion of extracellular fatty acids to acyl-acyl carrier protein, elongation, and incorporation into phospholipids. Exogenous fatty acids completely replace the endogenous fatty acids in S. pneumoniae but support only 50% of phospholipid synthesis in S. aureus. Fatty acids overcame FASII inhibition in S. pneumoniae but not in S. aureus. Extracellular fatty acids strongly suppress malonyl-CoA levels in S. pneumoniae but not in S. aureus, showing a feedback regulatory system in S. pneumoniae that is absent in S. aureus. Fatty acids overcame either a biochemical or a genetic block at acetyl-CoA carboxylase (ACC) in S. aureus, confirming that regulation at the ACC step is the key difference between these two species. Bacteria that possess a stringent biochemical feedback inhibition of ACC and malonyl-CoA formation triggered by environmental fatty acids are able to circumvent FASII inhibition. However, if exogenous fatty acids do not suppress malonyl-CoA formation, FASII inhibitors remain effective in the presence of fatty acid supplements. PMID:21876172

  13. The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5.

    PubMed

    Guaita-Esteruelas, S; Gumà, J; Masana, L; Borràs, J

    2018-02-15

    The adipose tissue microenvironment plays a key role in tumour initiation and progression because it provides fatty acids and adipokines to tumour cells. The fatty acid-binding protein (FABP) family is a group of small proteins that act as intracellular fatty acid transporters. Adipose-derived FABPs include FABP4 and FABP5. Both have an important role in lipid-related metabolic processes and overexpressed in many cancers, such as breast, prostate, colorectal and ovarian. Moreover, their expression in peritumoural adipose tissue is deregulated, and their circulating levels are upregulated in some tumours. In this review, we discuss the role of the peritumoural adipose tissue and the related adipokines FABP4 and FABP5 in cancer initiation and progression and the possible pathways implicated in these processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs.

    PubMed

    Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong

    2017-10-25

    This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.

  15. Functional sites of the Ada regulatory protein of Escherichia coli. Analysis by amino acid substitutions.

    PubMed

    Takano, K; Nakabeppu, Y; Sekiguchi, M

    1988-05-20

    Specific cysteine residues at possible methyl acceptor sites of the Ada protein of Escherichia coli were converted to other amino acids by site-directed mutagenesis of the cloned ada gene of E. coli. Ada protein with the cysteine residue at 321 replaced by alanine was capable of accepting the methyl group from the methylphosphotriester but not from O6-methylguanine or O4-methylthymine of alkylated DNA, whereas the protein with alanine at position 69 accepted the methyl group from the methylated bases but not from the methylphosphotriester. These two mutants were used to elucidate the biological significance of repair of the two types of alkylation lesions. Introduction of the ada gene with the Ala69 mutation into an ada- cell rendered the cell more resistant to alkylating agents with respect to both killing and induction of mutations, but the gene with the Ala321 mutation exhibited no such activity. Replacement of the cysteine residue at position 69, but not at position 321, abolished the ability of Ada protein to promote transcription of both ada and alkA genes in vitro. These results are compatible with the idea that methylation of the cysteine residue at position 69 renders Ada protein active as a transcriptional regulator, whilst the cysteine residue at position 321 is responsible for repair of pre-mutagenic and lethal lesions in DNA. The actions of mutant Ada proteins on the ada and alkA promoters in vivo were investigated using an artificially composed gene expression system. When the ada gene with the Ala69 mutation was introduced into the cell, there was little induction of expression of either the ada or the alkA genes, even after treatment with an alkylating agent, in agreement with the data obtained from studies in vitro. With the Ala321 mutation, however, a considerable degree of ada gene expression occurred without adaptive treatment. The latter finding suggests that the cysteine residue at position 321, which is located near the C terminus of the Ada

  16. Effects of Low Level Radiation exposure on Neurogenesis and Cognitive Function: Mechanisms and Prevention

    DTIC Science & Technology

    2005-09-01

    precursor cells in culture with uX-lipoic acid reverses the density dependent changes observed in culture; this compound may provide an effective means...inhibited growth of precursor cells in vitro; - Antioxidant treatment of neural precursor cells in culture with a-lipoic acid (ALA) reverses the...with a single lO-Gy dose, and tissues avidin-biotinylated pemxidase complex; GFAP, glial fibrillary acidic protein; DAB, 3,3’- were collected from 6 to

  17. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2010-09-07

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  18. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  19. Serial Sampling of Serum Protein Biomarkers for Monitoring Human Traumatic Brain Injury Dynamics: A Systematic Review.

    PubMed

    Thelin, Eric Peter; Zeiler, Frederick Adam; Ercole, Ari; Mondello, Stefania; Büki, András; Bellander, Bo-Michael; Helmy, Adel; Menon, David K; Nelson, David W

    2017-01-01

    The proteins S100B, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and neurofilament light (NF-L) have been serially sampled in serum of patients suffering from traumatic brain injury (TBI) in order to assess injury severity and tissue fate. We review the current literature of serum level dynamics of these proteins following TBI and used the term "effective half-life" ( t 1/2 ) in order to describe the "fall" rate in serum. Through searches on EMBASE, Medline, and Scopus, we looked for articles where these proteins had been serially sampled in serum in human TBI. We excluded animal studies, studies with only one presented sample and studies without neuroradiological examinations. Following screening (10,389 papers), n  = 122 papers were included. The proteins S100B ( n  = 66) and NSE ( n  = 27) were the two most frequent biomarkers that were serially sampled. For S100B in severe TBI, a majority of studies indicate a t 1/2 of about 24 h, even if very early sampling in these patients reveals rapid decreases (1-2 h) though possibly of non-cerebral origin. In contrast, the t 1/2 for NSE is comparably longer, ranging from 48 to 72 h in severe TBI cases. The protein GFAP ( n  = 18) appears to have t 1/2 of about 24-48 h in severe TBI. The protein UCH-L1 ( n  = 9) presents a t 1/2 around 7 h in mild TBI and about 10 h in severe. Frequent sampling of these proteins revealed different trajectories with persisting high serum levels, or secondary peaks, in patients with unfavorable outcome or in patients developing secondary detrimental events. Finally, NF-L ( n  = 2) only increased in the few studies available, suggesting a serum availability of >10 days. To date, automated assays are available for S100B and NSE making them faster and more practical to use. Serial sampling of brain-specific proteins in serum reveals different temporal trajectories that should be

  20. Total amino acid stabilization during cell-free protein synthesis reactions.

    PubMed

    Calhoun, Kara A; Swartz, James R

    2006-05-17

    Limitations in amino acid supply have been recognized as a substantial problem in cell-free protein synthesis reactions. Although enzymatic inhibitors and fed-batch techniques have been beneficial, the most robust way to stabilize amino acids is to remove the responsible enzymatic activities by genetically modifying the source strain used for cell extract preparation. Previous work showed this was possible for arginine, serine, and tryptophan, but cysteine degradation remained a major limitation in obtaining high protein synthesis yields. Through radiolabel techniques, we confirmed that cysteine degradation was caused by the activity of glutamate-cysteine ligase (gene gshA) in the cell extract. Next, we created Escherichia coli strain KC6 that combines a gshA deletion with previously described deletions for arginine, serine, and tryptophan stabilization. Strain KC6 grows well, and active cell extract can be produced from it for cell-free protein synthesis reactions. The extract from strain KC6 maintains stable amino acid concentrations of all 20 amino acids in a 3-h batch reaction. Yields for three different proteins improved 75-250% relative to cell-free expression using the control extract.

  1. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex

    PubMed Central

    Herrera, Jose L.; Ordoñez-Gutierrez, Lara; Fabrias, Gemma; Casas, Josefina; Morales, Araceli; Hernandez, Guadalberto; Acosta, Nieves G.; Rodriguez, Covadonga; Prieto-Valiente, Luis; Garcia-Segura, Luis M.; Alonso, Rafael; Wandosell, Francisco G.

    2018-01-01

    Different dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs. PMID:29740285

  2. Physical model of protein cluster positioning in growing bacteria

    NASA Astrophysics Data System (ADS)

    Wasnik, Vaibhav; Wang, Hui; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2017-10-01

    Chemotaxic receptors in bacteria form clusters at cell poles and also laterally, and this clustering plays an important role in signal transduction. These clusters were found to be periodically arranged on the surface of the bacterium Escherichia coli, independent of any known positioning mechanism. In this work we extend a model based on diffusion and aggregation to more realistic geometries and present a means based on ‘bursty’ protein production to distinguish spontaneous positioning from an independently existing positioning mechanism. We also consider the case of isotropic cellular growth and characterize the degree of order arising spontaneously. Our model could also be relevant for other examples of periodically positioned protein clusters in bacteria.

  3. Apparent growth phase-dependent phosphorylation of malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a major fatty acid synthase II component in Mycobacterium bovis BCG.

    PubMed

    Sinha, Indrajit; Boon, Calvin; Dick, Thomas

    2003-10-10

    Probing protein extracts from exponentially growing and stationary phase cultures of Mycobacterium bovis BCG with anti-phospho amino acid antibodies revealed a 31-kDa anti-phospho threonine antibody-reactive protein specific to growing culture. The corresponding protein was purified via two-dimensional gel electrophoresis and identified via mass spectrometry to be malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a component of the fatty acid biosynthetic pathway. MCAT tagged with histidine reacted with anti-phospho threonine antibody and was positive in an in-gel chemical assay for phospho proteins. Analysis of the growth phase dependence of MCAT-His phosphorylation and protein levels showed that phosphorylated MCAT-His can be detected only in growing culture. In contrast, MCAT-His protein level was growth phase-independent. These results suggest that MCAT may be a substrate of a protein kinase and phosphatase, and that aspects of fatty acid synthesis in tubercle bacilli are regulated by protein phosphorylation.

  4. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids.

    PubMed

    Dutta, Devawati; Mandal, Chhabinath; Mandal, Chitra

    2017-12-01

    Glycosylation of proteins is the most common, multifaceted co- and post-translational modification responsible for many biological processes and cellular functions. Significant alterations and aberrations of these processes are related to various pathological conditions, and often turn out to be disease biomarkers. Conventional N-glycosylation occurs through the recognition of the consensus sequon, asparagine (Asn)-X-serine (Ser)/threonine (Thr), where X is any amino acid except for proline, with N-acetylglucosamine (GlcNAc) as the first glycosidic linkage. Usually, O-glycosylation adds a glycan to the hydroxyl group of Ser or Thr beginning with N-acetylgalactosamine (GalNAc). Protein glycosylation is further governed by additional diversifications in sequon and structure, which are yet to be fully explored. This review mainly focuses on the occurrence of N-glycosylation in non-consensus motifs, where Ser/Thr at the +2 position is substituted by other amino acids. Additionally, N-glycosylation is also observed in other amide/amine group-containing amino acids. Similarly, O-glycosylation occurs at hydroxyl group-containing amino acids other than serine/threonine. The neighbouring amino acids and local structural features around the potential glycosylation site also play a significant role in determining the extent of glycosylation. All of these phenomena that yield glycosylation at the atypical sites are reported in a variety of biological systems, including different pathological conditions. Therefore, the discovery of more novel sequence patterns for N- and O-glycosylation may help in understanding the functions of complex biological processes and cellular functions. Taken together, all these information provided in this review would be helpful for the biological readers. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis and physicochemical properties of the furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, an inhibitor of plasma protein binding in uraemia.

    PubMed

    Costigan, M G; Gilchrist, T L; Lindup, W E

    1996-06-01

    The furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (5-propyl FPA) accumulates in the plasma of patients with chronic renal failure and is a major contributor to the drug binding defect of uraemic plasma. This acid has also been implicated in several other aspects of the uraemic syndrome: anaemia, irregularities of thyroid function, neurological symptoms and inhibition of active tubular secretion. The acid is not commercially available and its synthesis, starting with Meldrum's acid and methyl succinyl chloride, is described. The pKa values were measured by titration and values of 3.2 and 3.6 respectively were assigned to the carboxylic acid groups attached directly to the ring at position 3 and at position 2 (on the side-chain). The partition coefficient (log P) between hydrochloric acid and octanol was 1.2 and the distribution coefficient (log D; octanol-phosphate buffer pH 7.4) was -0.59. The pKa values and the degree of hydrophobic character of 5-propyl FPA are consistent with those of other protein-bound acids which undergo active tubular secretion by the kidney and this substance may serve as an endogenous marker for the effects of drugs and disease on this process.

  6. AFAL: a web service for profiling amino acids surrounding ligands in proteins

    NASA Astrophysics Data System (ADS)

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S.; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  7. AFAL: a web service for profiling amino acids surrounding ligands in proteins.

    PubMed

    Arenas-Salinas, Mauricio; Ortega-Salazar, Samuel; Gonzales-Nilo, Fernando; Pohl, Ehmke; Holmes, David S; Quatrini, Raquel

    2014-11-01

    With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.

  8. In vivo treatment with diphenyl ditelluride induces neurodegeneration in striatum of young rats: Implications of MAPK and Akt pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimfarth, Luana; Loureiro, Samanta Oliveira; Dutra, Márcio Ferreira

    2012-10-15

    In the present report 15 day-old Wistar rats were injected with 0.3 μmol of diphenyl ditelluride (PhTe){sub 2}/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6 days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein—GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe){submore » 2} significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe){sub 2} provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe){sub 2} treated striatal slices suggested apoptotic cell death. (PhTe){sub 2} exposure decreased Akt immunoreactivity, however phospho-GSK-3-β (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe){sub 2}-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis. -- Highlights: ► Diphenyl ditelluride causes apoptotic neuronal death in the striatum of young rats. ► Diphenyl ditelluride causes reactive astrogliosis in the striatum of rats. ► Diphenyl ditelluride disrupts the homeostasis of the cytoskeleton of the striatum. ► The actions of diphenyl ditelluride are mediated by MAPK and

  9. Reasons for the occurrence of the twenty coded protein amino acids

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  10. Glial activation in the collagenase model of nociception associated with osteoarthritis.

    PubMed

    Adães, Sara; Almeida, Lígia; Potes, Catarina S; Ferreira, Ana Rita; Castro-Lopes, José M; Ferreira-Gomes, Joana; Neto, Fani L

    2017-01-01

    Background Experimental osteoarthritis entails neuropathic-like changes in dorsal root ganglia (DRG) neurons. Since glial activation has emerged as a key player in nociception, being reported in numerous models of neuropathic pain, we aimed at evaluating if glial cell activation may also occur in the DRG and spinal cord of rats with osteoarthritis induced by intra-articular injection of collagenase. Methods Osteoarthritis was induced by two injections, separated by three days, of 500 U of type II collagenase into the knee joint of rats. Movement-induced nociception was evaluated by the Knee-Bend and CatWalk tests during the following six weeks. Glial fibrillary acidic protein (GFAP) expression in satellite glial cells of the DRG was assessed by immunofluorescence and Western Blot analysis; the pattern of GFAP and activating transcription factor-3 (ATF-3) expression was also compared through double immunofluorescence analysis. GFAP expression in astrocytes and IBA-1 expression in microglia of the L3-L5 spinal cord segments was assessed by immunohistochemistry and Western Blot analysis. The effect of the intrathecal administration of fluorocitrate, an inhibitor of glial activation, on movement-induced nociception was evaluated six weeks after the first collagenase injection. Results GFAP expression in satellite glial cells of collagenase-injected animals was significantly increased six weeks after osteoarthritis induction. Double immunofluorescence showed GFAP upregulation in satellite glial cells surrounding ATF-3-positive neurons. In the spinal cord of collagenase-injected animals, an ipsilateral upregulation of GFAP and IBA-1 was also observed. The inhibition of glial activation with fluorocitrate decreased movement- and loading-induced nociception. Conclusion Collagenase-induced knee osteoarthritis leads to the development of nociception associated with movement of the affected joint and to the activation of glial cells in both the DRG and the spinal cord

  11. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  12. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenstein, Bruce R.; Bialas, Chris; Cerda, José F.

    2015-09-14

    The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal–tetrapyrrole cofactors, creating a 100 μs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids inmore » protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates.« less

  13. Engineering acyl carrier protein to enhance production of shortened fatty acids.

    PubMed

    Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C

    2016-01-01

    The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.

  14. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury.

    PubMed

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-02-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2'-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury.

  15. The antidepressant-like effect of Ocimum basilicum in an animal model of depression.

    PubMed

    Ali, S S; Abd El Wahab, M G; Ayuob, N N; Suliaman, M

    2017-01-01

    We investigated the efficacy of Ocimum basilicum (OB) essential oils for treating depression related behavioral, biochemical and histopathological changes caused by exposure to chronic unpredictable mild stress (CUMS) in mice and to explore the mechanism underlying the pathology. Male albino mice were divided into four groups: controls; CUMS; CUMS plus fluoxetine, the antidepressant administered for pharmacological validation of OB; and CUMS plus OB. Behavioral tests included the forced swim test (FST), elevated plus-maze (EPM) and the open field test (OFT); these tests were performed at the end of the experiment. We assessed serum corticosterone level, protein, gene and immunoexpression of brain-derived neurotropic factor (BDNF) and glucocorticoid receptors (GRs) as well as immunoexpression of glial fibrillary acidic protein (GFAP), Ki67, caspase-3 in the hippocampus. CUMS caused depression in the mice as evidenced by prolonged immobility in the FST, prolonged time spent in the open arms during the EPM test and reduction of open field activity in the OFT. OB ameliorated the CUMS induced depressive status. OB significantly reduced the corticosterone level and up-regulated protein and gene expressions of BDNF and GR. OB reduced CUMS induced hippocampal neuron atrophy and apoptosis, and increased the number of the astrocytes and new nerve cells. OB significantly increased GFAP-positive cells as well as BDNF and GR immunoexpression in the hippocampus.

  16. Similarities and differences in the nucleic acid chaperone activity of HIV-2 and HIV-1 nucleocapsid proteins in vitro.

    PubMed

    Pachulska-Wieczorek, Katarzyna; Stefaniak, Agnieszka K; Purzycka, Katarzyna J

    2014-07-03

    The nucleocapsid domain of Gag and mature nucleocapsid protein (NC) act as nucleic acid chaperones and facilitate folding of nucleic acids at critical steps of retroviral replication cycle. The basic N-terminus of HIV-1 NC protein was shown most important for the chaperone activity. The HIV-2 NC (NCp8) and HIV-1 NC (NCp7) proteins possess two highly conserved zinc fingers, flanked by basic residues. However, the NCp8 N-terminal domain is significantly shorter and contains less positively charged residues. This study characterizes previously unknown, nucleic acid chaperone activity of the HIV-2 NC protein. We have comparatively investigated the in vitro nucleic acid chaperone properties of the HIV-2 and HIV-1 NC proteins. Using substrates derived from the HIV-1 and HIV-2 genomes, we determined the ability of both proteins to chaperone nucleic acid aggregation, annealing and strand exchange in duplex structures. Both NC proteins displayed comparable, high annealing activity of HIV-1 TAR DNA and its complementary nucleic acid. Interesting differences between the two NC proteins were discovered when longer HIV substrates, particularly those derived from the HIV-2 genome, were used in chaperone assays. In contrast to NCp7, NCp8 weakly facilitates annealing of HIV-2 TAR RNA to its complementary TAR (-) DNA. NCp8 is also unable to efficiently stimulate tRNALys3 annealing to its respective HIV-2 PBS motif. Using truncated NCp8 peptide, we demonstrated that despite the fact that the N-terminus of NCp8 differs from that of NCp7, this domain is essential for NCp8 activity. Our data demonstrate that the HIV-2 NC protein displays reduced nucleic acid chaperone activity compared to that of HIV-1 NC. We found that NCp8 activity is limited by substrate length and stability to a greater degree than that of NCp7. This is especially interesting in light of the fact that the HIV-2 5'UTR is more structured than that of HIV-1. The reduced chaperone activity observed with NCp8 may

  17. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant.

    PubMed

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2014-05-01

    The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands. © 2014 FEBS.

  18. Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution

    PubMed Central

    Minakuchi, Kazunobu; Murata, Dai; Okubo, Yuji; Nakano, Yoshiyuki; Yoshida, Shinichi

    2013-01-01

    Protein A affinity chromatography is the standard purification process for the capture of therapeutic antibodies. The individual IgG-binding domains of protein A (E, D, A, B, C) have highly homologous amino acid sequences. From a previous report, it has been assumed that the C domain has superior resistance to alkaline conditions compared to the other domains. We investigated several properties of the C domain as an IgG-Fc capture ligand. Based on cleavage site analysis of a recombinant protein A using a protein sequencer, the C domain was found to be the only domain to have neither of the potential alkaline cleavage sites. Circular dichroism (CD) analysis also indicated that the C domain has good physicochemical stability. Additionally, we evaluated the amino acid substitutions at the Gly-29 position of the C domain, as the Z domain (an artificial B domain) acquired alkaline resistance through a G29A mutation. The G29A mutation proved to increase the alkaline resistance of the C domain, based on BIACORE analysis, although the improvement was significantly smaller than that observed for the B domain. Interestingly, a number of other amino acid mutations at the same position increased alkaline resistance more than did the G29A mutation. This result supports the notion that even a single mutation on the originally alkali-stable C domain would improve its alkaline stability. An engineered protein A based on this C domain is expected to show remarkable performance as an affinity ligand for immunoglobulin. PMID:23868198

  19. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  20. Increasing the fidelity of noncanonical amino acid incorporation in cell-free protein synthesis.

    PubMed

    Gan, Qinglei; Fan, Chenguang

    2017-11-01

    Cell-free protein synthesis provides a robust platform for co-translational incorporation of noncanonical amino acid (ncAA) into proteins to facilitate biological studies and biotechnological applications. Recently, eliminating the activity of release factor 1 has been shown to increase ncAA incorporation in response to amber codons. However, this approach could promote mis-incorporation of canonical amino acids by near cognate suppression. We performed a facile protocol to remove near cognate tRNA isoacceptors of the amber codon from total tRNAs, and used the phosphoserine (Sep) incorporation system as validation. By manipulating codon usage of target genes and tRNA species introduced into the cell-free protein synthesis system, we increased the fidelity of Sep incorporation at a specific position. By removing three near cognate tRNA isoacceptors of the amber stop codon [tRNA Lys , tRNA Tyr , and tRNA Gln (CUG)] from the total tRNA, the near cognate suppression decreased by 5-fold without impairing normal protein synthesis in the cell-free protein synthesis system. Mass spectrometry analyses indicated that the fidelity of ncAA incorporation was improved. Removal of near cognate tRNA isoacceptors of the amber codon could increase ncAA incorporation fidelity towards the amber stop codon in release factor deficiency systems. We provide a general strategy to improve fidelity of ncAA incorporation towards stop, quadruplet and sense codons in cell-free protein synthesis systems. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  2. Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids.

    PubMed

    Villa, Jordan K; Tran, Hong-Anh; Vipani, Megha; Gianturco, Stephanie; Bhasin, Konark; Russell, Brent L; Harbron, Elizabeth J; Young, Douglas D

    2017-07-16

    The ability to modulate protein function through minimal perturbations to amino acid structure represents an ideal mechanism to engineer optimized proteins. Due to the novel spectroscopic properties of green fluorescent protein, it has found widespread application as a reporter protein throughout the fields of biology and chemistry. Using site-specific amino acid mutagenesis, we have incorporated various fluorotyrosine residues directly into the fluorophore of the protein, altering the fluorescence and shifting the pKa of the phenolic proton associated with the fluorophore. Relative to wild type GFP, the fluorescence spectrum of the protein is altered with each additional fluorine atom, and the mutant GFPs have the potential to be employed as pH sensors due to the altered electronic properties of the fluorine atoms.

  3. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2013-03-12

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel sythetases molecules, methods for identifying and making the novel synthetases, methods for producing containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lapidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  4. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.

  5. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB.

    PubMed

    Malki, Abderrahim; Le, Hai-Tuong; Milles, Sigrid; Kern, Renée; Caldas, Teresa; Abdallah, Jad; Richarme, Gilbert

    2008-05-16

    The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.

  6. A sensitive method for measuring protein turnover based on the measurement of 2-3H-labelled amino acids in protein.

    PubMed Central

    Humphrey, T J; Davies, D D

    1976-01-01

    A method for measuring the rate of protein degradation is described. The method measures the change in 2-3H content of protein with time by racemization of the protein hydrolysate with acetic anhydride. The 3H on C-2 of amino acids is stable in proteins but becomes labile, owing to the action of transaminases, once the amino acids are released by proteolysis. The specific measurement of 2-3H in amino acids largely overcomes problems due to compartmentation and isotope recycling and evidence to support this claim is presented. Values for the half-life of Lemna minor (duckweed) protein determined by the new method are compared with values obtained by other methods. PMID:949338

  7. Glutamic Acid as Enhancer of Protein Synthesis Kinetics in Hepatocytes from Old Rats.

    PubMed

    Brodsky, V Y; Malchenko, L A; Butorina, N N; Lazarev Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2017-08-01

    Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell-cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell-cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.

  8. pH shift protein recovery with organic acids on texture and color of cooked gels.

    PubMed

    Paker, Ilgin; Beamer, Sarah; Jaczynski, Jacek; Matak, Kristen E

    2015-01-01

    Isoelectric solubilization and precipitation (ISP) processing uses pH shifts to separate protein from fish frames, which may increase commercial interest for silver carp. Texture and color properties of gels made from silver carp protein recovered at different pH strategies and organic acid types were compared. ISP was applied to headed gutted silver carp using 10 mol L(-1) sodium hydroxide (NaOH) and either glacial acetic acid (AA) or a (1:1) formic and lactic acid combination (F&L). Protein gels were made with recovered protein and standard functional additives. Texture profile analysis and the Kramer shear test showed that protein gels made from protein solubilized at basic pH values were firmer, harder, more cohesive, gummier and chewier (P < 0.05) than proteins solubilized under acidic conditions. Acidic solubilization led to whiter (P < 0.05) gels, and using F&L during ISP yielded whiter gels under all treatments (P < 0.05). Gels made from ISP-recovered silver carp protein using organic acids show potential for use as a functional ingredient in restructured foods. © 2014 Society of Chemical Industry.

  9. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  10. STRUCTURAL AND FUNCTIONAL INTERACTION OF FATTY ACIDS WITH HUMAN LIVER FATTY ACID BINDING PROTEIN (L-FABP) T94A VARIANT

    PubMed Central

    Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P.; Kier, Ann B.; Schroeder, Friedhelm

    2014-01-01

    The human liver fatty acid binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride (TG) levels. How this amino acid substitution elicits these effects is not known. This issue was addressed with human recombinant wild-type (WT, T94T) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC, and CC). T94A substitution did not or only slightly alter L-FABP binding affinities for saturated, monounsaturated, or polyunsaturated long chain fatty acids (LCFA), nor did it change the affinity for intermediates in TG synthesis. Nevertheless, T94A substitution markedly altered the secondary structural response of L-FABP induced by binding LCFA or intermediates of TG synthesis. Finally, T94A substitution markedly diminished polyunsaturated fatty acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), induction of peroxisome proliferator-activated receptor alpha (PPARα) - regulated proteins such as L-FABP, fatty acid transport protein 5 (FATP5), and PPARα itself in cultured primary human hepatocytes. Thus, while T94A substitution did not alter the affinity of human L-FABP for LCFAs, it significantly altered human L-FABP structure and stability as well as conformational and functional response to these ligands. PMID:24628888

  11. LASER BIOLOGY AND MEDICINE: Application of laser fluorimetry for determining the influence of a single amino-acid substitution on the individual photophysical parameters of a fluorescent form of a fluorescent protein mRFP1

    NASA Astrophysics Data System (ADS)

    Banishev, A. A.; Vrzheshch, E. P.; Shirshin, E. A.

    2009-03-01

    Individual photophysical parameters of the chromophore of a fluorescent protein mRFP1 and its two mutants (amino-acid substitution at position 66 - mRFP1/ Q66C and mRFP1/Q66S proteins) are determined. For this purpose, apart from conventional methods of fluorimetry and spectrophotometry, nonlinear laser fluorimetry is used. It is shown that the individual extinction coefficients of the chromophore of proteins correlate (correlation coefficient above 0.9) with the volume of the substituted amino-acid residue at position 66 (similar to the positions of the absorption, fluorescence excitation and emission maxima).

  12. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury

    PubMed Central

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-01-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2′-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury. PMID:29434805

  13. Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology.

    PubMed

    Moon, Jiyun M; Aronoff, David M; Capra, John A; Abbot, Patrick; Rokas, Antonis

    2018-03-28

    Sialic acids are nine carbon sugars ubiquitously found on the surfaces of vertebrate cells and are involved in various immune response-related processes. In humans, at least 58 genes spanning diverse functions, from biosynthesis and activation to recycling and degradation, are involved in sialic acid biology. Because of their role in immunity, sialic acid biology genes have been hypothesized to exhibit elevated rates of evolutionary change. Consistent with this hypothesis, several genes involved in sialic acid biology have experienced higher rates of non-synonymous substitutions in the human lineage than their counterparts in other great apes, perhaps in response to ancient pathogens that infected hominins millions of years ago (paleopathogens). To test whether sialic acid biology genes have also experienced more recent positive selection during the evolution of the modern human lineage, reflecting adaptation to contemporary cosmopolitan or geographically-restricted pathogens, we examined whether their protein-coding regions showed evidence of recent hard and soft selective sweeps. This examination involved the calculation of four measures that quantify changes in allele frequency spectra, extent of population differentiation, and haplotype homozygosity caused by recent hard and soft selective sweeps for 55 sialic acid biology genes using publicly available whole genome sequencing data from 1,668 humans from three ethnic groups. To disentangle evidence for selection from confounding demographic effects, we compared the observed patterns in sialic acid biology genes to simulated sequences of the same length under a model of neutral evolution that takes into account human demographic history. We found that the patterns of genetic variation of most sialic acid biology genes did not significantly deviate from neutral expectations and were not significantly different among genes belonging to different functional categories. Those few sialic acid biology genes that

  14. [Analysis of proteins, amino acids and inorganic elements in Holotrichia diomphalia from different areas].

    PubMed

    Cao, Wei; Liu, Dan; Zhang, Yi-Kai; Wang, Xiao-Yu; Chang, Yan-Rong; Yang, Qian; Wang, Si-Wang

    2010-10-01

    To analyze the content of proteins,amino acids and inorganic elements of Holotrichia diomphalia in different growing areas as the references for quality evaluation and reasonable application of them. The contents of proteins were determined using semi-micro Kjeldahl method. The contents of seventeen amino acids and inorganic elements were determined with amino acid analyzer and atomic absorption spectrometer and elemental analyzer, respectively. The contents of protein were 33.4%-44.4%, and that in Jiangxi were the highest in five different areas. There were seventeen kinds of amino acids in Holotrichia diomphalia. Among them, seven amino acids were essential to human life. The content of glutamic acid was the highest in seventeen amino acids. In inorganic elements, the content of Mg, Ca was higher in macroelements and Fe, Zn was higher in microelements. There are many kinds of necessary amino acids and inorganic elements for man kind in Holotrichia diomphalia. The contents of proteins, amino acids and inorganic elements have some difference in Holotrichia diomphalia of different growing areas.

  15. Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signalling and negatively regulates abscisic acid (ABA) signalling during root development.

    PubMed

    Choi, Yunjung; Lee, Yuree; Kim, Soo Young; Lee, Youngsook; Hwang, Jae-Ung

    2013-05-01

    Auxin and abscisic acid (ABA) modulate numerous aspects of plant development together, mostly in opposite directions, suggesting that extensive crosstalk occurs between the signalling pathways of the two hormones. However, little is known about the nature of this crosstalk. We demonstrate that ROP-interactive CRIB motif-containing protein 1 (RIC1) is involved in the interaction between auxin- and ABA-regulated root growth and lateral root formation. RIC1 expression is highly induced by both hormones, and expressed in the roots of young seedlings. Whereas auxin-responsive gene induction and the effect of auxin on root growth and lateral root formation were suppressed in the ric1 knockout, ABA-responsive gene induction and the effect of ABA on seed germination, root growth and lateral root formation were potentiated. Thus, RIC1 positively regulates auxin responses, but negatively regulates ABA responses. Together, our results suggest that RIC1 is a component of the intricate signalling network that underlies auxin and ABA crosstalk. © 2012 Blackwell Publishing Ltd.

  16. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity.

    PubMed

    Li, Minshu; Li, Zhiguo; Yao, Yang; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Shi, Fu-Dong; Hao, Junwei

    2017-01-17

    Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15-expressing transgenic mouse (GFAP-IL-15 tg ) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8 + T and natural killer (NK) cells was augmented in these GFAP-IL-15 tg mice after brain ischemia. Of note, depletion of CD8 + T or NK cells attenuated ischemic brain injury in GFAP-IL-15 tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8 + T and NK cells in GFAP-IL-15 tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8 + T and NK cell-mediated immunity.

  17. Synthesis of chlorophyll-amino acid conjugates as models for modification of proteins with chromo/fluorophores.

    PubMed

    Tamiaki, Hitoshi; Isoda, Yasuaki; Tanaka, Takuya; Machida, Shinnosuke

    2014-02-15

    A chlorophyll-a derivative bonded directly with epoxide at the peripheral position of the chlorin π-system was reacted with N-urethane and C-ester protected amino acids bearing an alcoholic or phenolic hydroxy group as well as a carboxy group at the residue to give chlorophyll-amino acid conjugates. The carboxy residues of N,C-protected aspartic and glutamic acids were esterified with the epoxide in high yields. The synthetic conjugates in dichloromethane had absorption bands throughout the visible region including intense red-side Qy and blue-side Soret bands. By their excitation at the visible bands, strong and efficient fluorescence emission was observed up to the near-infrared region. The chromo/fluorophores are promising for preparation of functional peptides and modification of proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Codes in the codons: construction of a codon/amino acid periodic table and a study of the nature of specific nucleic acid-protein interactions.

    PubMed

    Benyo, B; Biro, J C; Benyo, Z

    2004-01-01

    The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a common periodic table of codons and amino acids, where the nucleic acid table showed perfect axial symmetry for codons and the corresponding amino acid table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The table indicates that the middle (2/sup nd/) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.

  19. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    PubMed Central

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the promiscuous binding and transport properties of L-FABP, we investigated structure and dynamics of human L-FABP with and without bound ligands by means of heteronuclear NMR. The overall conformation of human L-FABP shows the typical β-clam motif. Binding of two oleic acid (OA) molecules does not alter the protein conformation substantially, but perturbs the chemical shift of certain backbone and side-chain protons that are involved in OA binding according to the structure of the human L-FABP/OA complex. Comparison of the human apo and holo L-FABP structures revealed no evidence for an “open-cap” conformation or a “swivel-back” mechanism of the K90 side chain upon ligand binding, as proposed for rat L-FABP. Instead, we postulate that the lipid binding process in L-FABP is associated with backbone dynamics. PMID:22713574

  20. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  1. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS).

    PubMed

    Mathai, John K; Liu, Yanhong; Stein, Hans H

    2017-02-01

    An experiment was conducted to compare values for digestible indispensable amino acid scores (DIAAS) for four animal proteins and four plant proteins with values calculated as recommended for protein digestibility-corrected amino acid scores (PDCAAS), but determined in pigs instead of in rats. Values for standardised total tract digestibility (STTD) of crude protein (CP) and standardised ileal digestibility (SID) of amino acids (AA) were calculated for whey protein isolate (WPI), whey protein concentrate (WPC), milk protein concentrate (MPC), skimmed milk powder (SMP), pea protein concentrate (PPC), soya protein isolate (SPI), soya flour and whole-grain wheat. The PDCAAS-like values were calculated using the STTD of CP to estimate AA digestibility and values for DIAAS were calculated from values for SID of AA. Results indicated that values for SID of most indispensable AA in WPI, WPC and MPC were greater (P<0·05) than for SMP, PPC, SPI, soya flour and wheat. With the exception of arginine and tryptophan, the SID of all indispensable AA in SPI was greater (P<0·05) than in soya flour, and with the exception of threonine, the SID of all indispensable AA in wheat was less (P<0·05) than in all other ingredients. If the same scoring pattern for children between 6 and 36 months was used to calculate PDCAAS-like values and DIAAS, PDCAAS-like values were greater (P<0·05) than DIAAS values for SMP, PPC, SPI, soya flour and wheat indicating that PDCAAS-like values estimated in pigs may overestimate the quality of these proteins.

  2. Hypercortisolemia alters muscle protein anabolism following ingestion of essential amino acids

    NASA Technical Reports Server (NTRS)

    Paddon-Jones, Douglas; Sheffield-Moore, Melinda; Creson, Daniel L.; Sanford, Arthur P.; Wolf, Steven E.; Wolfe, Robert R.; Ferrando, Arny A.

    2003-01-01

    Debilitating injury is accompanied by hypercortisolemia, muscle wasting, and disruption of the normal anabolic response to food. We sought to determine whether acute hypercortisolemia alters muscle protein metabolism following ingestion of a potent anabolic stimulus: essential amino acids (EAA). A 27-h infusion (80 microg. kg(-1). h(-1)) of hydrocortisone sodium succinate mimicked cortisol (C) levels accompanying severe injury (>30 microg/dl), (C + AA; n = 6). The control group (AA) received intravenous saline (n = 6). Femoral arteriovenous blood samples and muscle biopsies were obtained during a primed (2.0 micromol/kg) constant infusion (0.05 micromol. kg(-1). min(-1)) of l-[ring-(2)H(5)]phenylalanine before and after ingestion of 15 g of EAA. Hypercortisolemia [36.5 +/- 2.1 (C + AA) vs. 9.0 +/- 1.0 microg/dl (AA)] increased postabsorptive arterial, venous, and muscle intracellular phenylalanine concentrations. Hypercortisolemia also increased postabsorptive and post-EAA insulin concentrations. Net protein balance was blunted (40% lower) following EAA ingestion but remained positive for a greater period of time (60 vs. 180 min) in the C + AA group. Thus, although differences in protein metabolism were evident, EAA ingestion improved muscle protein anabolism during acute hypercortisolemia and may help minimize muscle loss following debilitating injury.

  3. Intramuscular fatty acid composition of lambs fed diets containing alternative protein sources.

    PubMed

    Scerra, M; Caparra, P; Foti, F; Cilione, C; Zappia, G; Motta, C; Scerra, V

    2011-03-01

    Thirty male Merinizzata italiana lambs were divided into three groups after weaning according to live weight. The diet of the three groups differed in the main protein source used in the concentrate, soybean meal for treatment SBM, faba bean for treatment FB and peas for treatment PEA. Lambs were fed ad libitum and slaughtered at about 160 days of age. Meat from the PEA group had higher proportions of the essential fatty acids C18:2 ω-6 and C18:3 ω-3 than from FB and SBM lambs and consequently its derivatives, C20:4 ω-6 and C20:5 ω-3 respectively, were higher in meat from PEA animals, compared to SBM and FB ones. The total n-3 fatty acids were highest in meat from PEA lambs and consequently PEA lambs showed a more favourable n-6/n-3 ratio. In conclusion the use of legume seeds such as peas in lamb diets positively affected intramuscular fatty acid composition. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  4. A Complex Prime Numerical Representation of Amino Acids for Protein Function Comparison.

    PubMed

    Chen, Duo; Wang, Jiasong; Yan, Ming; Bao, Forrest Sheng

    2016-08-01

    Computationally assessing the functional similarity between proteins is an important task of bioinformatics research. It can help molecular biologists transfer knowledge on certain proteins to others and hence reduce the amount of tedious and costly benchwork. Representation of amino acids, the building blocks of proteins, plays an important role in achieving this goal. Compared with symbolic representation, representing amino acids numerically can expand our ability to analyze proteins, including comparing the functional similarity of them. Among the state-of-the-art methods, electro-ion interaction pseudopotential (EIIP) is widely adopted for the numerical representation of amino acids. However, it could suffer from degeneracy that two different amino acid sequences have the same numerical representation, due to the design of EIIP. In light of this challenge, we propose a complex prime numerical representation (CPNR) of amino acids, inspired by the similarity between a pattern among prime numbers and the number of codons of amino acids. To empirically assess the effectiveness of the proposed method, we compare CPNR against EIIP. Experimental results demonstrate that the proposed method CPNR always achieves better performance than EIIP. We also develop a framework to combine the advantages of CPNR and EIIP, which enables us to improve the performance and study the unique characteristics of different representations.

  5. Combinatorial interactions of two amino acids with a single base pair define target site specificity in plant dimeric homeodomain proteins

    PubMed Central

    Tron, Adriana E.; Bertoncini, Carlos W.; Palena, Claudia M.; Chan, Raquel L.; Gonzalez, Daniel H.

    2001-01-01

    Four groups of plant homeodomain proteins contain a dimerization motif closely linked to the homeodomain. We here show that two sunflower homeodomain proteins, Hahb-4 and HAHR1, which belong to the Hd-Zip I and GL2/Hd-Zip IV groups, respectively, show different binding preferences at a defined position of a pseudopalindromic DNA-binding site used as a target. HAHR1 shows a preference for the sequence 5′-CATT(A/T)AATG-3′, rather than 5′-CAAT(A/T)ATTG-3′, recognized by Hahb-4. To analyze the molecular basis of this behavior, we have constructed a set of mutants with exchanged residues (Phe→Ile and Ile→Phe) at position 47 of the homeodomain, together with chimeric proteins between HAHR1 and Hahb-4. The results obtained indicate that Phe47, but not Ile47, allows binding to 5′-CATT(A/T)AATG-3′. However, the preference for this sequence is determined, in addition, by amino acids located C-terminal to residue 53 of the HAHR1 homeodomain. A double mutant of Hahb-4 (Ile47→Phe/Ala54→Thr) shows the same binding behavior as HAHR1, suggesting that combinatorial interactions of amino acid residues at positions 47 and 54 of the homeodomain are involved in establishing the affinity and selectivity of plant dimeric homeodomain proteins with different DNA target sequences. PMID:11726696

  6. A nine-country study of the protein content and amino acid composition of mature human milk

    PubMed Central

    Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn

    2016-01-01

    Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and

  7. Gross and true ileal digestible amino acid contents of several animal body proteins and their hydrolysates.

    PubMed

    Cui, J; Chong, B; Rutherfurd, S M; Wilkinson, B; Singh, H; Moughan, P J

    2013-07-01

    Amino acid compositions of ovine muscle, ovine myofibrillar protein, ovine spleen, ovine liver, bovine blood plasma, bovine blood globulins and bovine serum albumin and the amino acid compositions and in vivo (laboratory rat) true ileal amino acid digestibilities of hydrolysates (sequential hydrolysis with Neutrase, Alcalase and Flavourzyme) of these protein sources were determined. True ileal amino acid digestibility differed (P<0.05) among the seven protein hydrolysates. The ovine myofibrillar protein and liver hydrolysates were the most digestible, with a mean true ileal digestibility across all amino acids of 99%. The least digestible protein hydrolysate was bovine serum albumin with a comparable mean true ileal digestibility of 93%. When the digestible amino acid contents were expressed as proportions relative to lysine, considerable differences, across the diverse protein sources, were found in the pattern of predicted absorbed amino acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication.

    PubMed

    Deleuze, C; Alonso, G; Lefevre, I A; Duvoid-Guillou, A; Hussy, N

    2005-01-01

    Neurons of the rat supraoptic nucleus (SON) express glycine receptors (GlyRs), which are implicated in the osmoregulation of neuronal activity. The endogenous agonist of the receptors has been postulated to be taurine, shown to be released from astrocytes. We here provide additional pieces of evidence supporting the absence of functional glycinergic synapses in the SON. First, we show that blockade of GlyRs with strychnine has no effect on either the amplitude or frequency of miniature inhibitory postsynaptic currents recorded in SON neurons, whereas they were all suppressed by the GABA(A) antagonist gabazine. Then, double immunostaining of sections with presynaptic markers and either GlyR or GABA(A) receptor (GABA(A)R) antibodies indicates that, in contrast with GABA(A)Rs, most GlyR membrane clusters are not localized facing presynaptic terminals, indicative of their extrasynaptic localization. Moreover, we found a striking anatomical association between SON GlyR clusters and glial fibrillary acidic protein (GFAP)-positive astroglial processes, which contain high levels of taurine. This type of correlation is specific to GlyRs, since GABA(A)R clusters show no association with GFAP-positive structures. These results substantiate and strengthen the concept of extrasynaptic GlyRs mediating a paracrine communication between astrocytes and neurons in the SON.

  9. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    NASA Astrophysics Data System (ADS)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  10. Factor VII and protein C are phosphatidic acid-binding proteins.

    PubMed

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  11. Experiment K-6-18. Study of muscarinic and gaba (benzodiazepine) receptors in the sensory-motor cortex, hippcampus and spinal code

    NASA Technical Reports Server (NTRS)

    Daunton, N.; Damelio, F.; Krasnov, I.

    1990-01-01

    Frontal lobe samples of rat brains flown aboard Cosmos 1887 were processed for the study of muscarinic (cholinergic) and GABA (benzodiazepine) receptors and for immunocytochemical localization of the neurotransmitter gamma-aminobutyric acid (GABA) and glial fibrillary acidic protein (GFAP). Although radioactive labeling of both muscarinic cholinergic and GABA (benzodiazepine) receptors proved to be successful with the techniques employed, distinct receptor localization of individual laminae of the frontal neocortex was not possible since the sampling of the area was different in the various groups of animals. In spite of efforts made for proper orientation and regional identification of laminae, it was found that a densitometric (quantitation of autoradiograms) analysis of the tissue did not contribute to the final interpretation of the effects of weightlessness on these receptors. As to the immunocytochemical studies the use of both markers, GFAP and GABA antiserum, confirmed the suitability of the techniques for use in frozen material. However, similar problems to those encountered in the receptor studies prevented an adequate interpretation of the effects of micro-G exposure on the localization and distribution of GABA and GFAP. This study did, however, confirm the feasibility of investigating neurotransmitters and their receptors in future space flight experiments.

  12. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Gideon; Zhang Chunyan; Zhuo Lang

    2007-05-15

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH{sub 3}-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acutemore » gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity.« less

  13. Immunohistochemical Characterization of Connexin43 Expression in a Mouse Model of Diabetic Retinopathy and in Human Donor Retinas

    PubMed Central

    Mugisho, Odunayo O.; Green, Colin R.; Zhang, Jie; Binz, Nicolette; Acosta, Monica L.; Rakoczy, Elizabeth

    2017-01-01

    Diabetic retinopathy (DR) develops due to hyperglycemia and inflammation-induced vascular disruptions in the retina with connexin43 expression patterns in the disease still debated. Here, the effects of hyperglycemia and inflammation on connexin43 expression in vitro in a mouse model of DR and in human donor tissues were evaluated. Primary human retinal microvascular endothelial cells (hRMECs) were exposed to high glucose (HG; 25 mM) or pro-inflammatory cytokines IL-1β and TNF-α (10 ng/mL each) or both before assessing connexin43 expression. Additionally, connexin43, glial fibrillary acidic protein (GFAP), and plasmalemma vesicular associated protein (PLVAP) were labeled in wild-type (C57BL/6), Akita (diabetic), and Akimba (DR) mouse retinas. Finally, connexin43 and GFAP expression in donor retinas with confirmed DR was compared to age-matched controls. Co-application of HG and cytokines increased connexin43 expression in hRMECs in line with results seen in mice, with no significant difference in connexin43 or GFAP expression in Akita but higher expression in Akimba compared to wild-type mice. On PLVAP-positive vessels, connexin43 was higher in Akimba but unchanged in Akita compared to wild-type mice. Connexin43 expression appeared higher in donor retinas with confirmed DR compared to age-matched controls, similar to the distribution seen in Akimba mice and correlating with the in vitro results. Although connexin43 expression seems reduced in diabetes, hyperglycemia and inflammation present in the pathology of DR seem to increase connexin43 expression, suggesting a causal role of connexin43 channels in the disease progression. PMID:29186067

  14. Single substitutions to closely related amino acids contribute to the functional diversification of an insect-inducible, positively selected plant cystatin.

    PubMed

    Rasoolizadeh, Asieh; Goulet, Marie-Claire; Sainsbury, Frank; Cloutier, Conrad; Michaud, Dominique

    2016-04-01

    A causal link has been reported between positively selected amino acids in plant cystatins and the inhibitory range of these proteins against insect digestive cysteine (Cys) proteases. Here we assessed the impact of single substitutions to closely related amino acids on the contribution of positive selection to cystatin diversification. Cystatin sequence alignments, while confirming hypervariability, indicated a preference for related amino acids at positively selected sites. For example, the non-polar residues leucine (Leu), isoleucine (Ile) and valine (Val) were shown to predominate at positively selected site 2 in the N-terminal region, unlike selected sites 6 and 10, where polar residues are preferred. The model cystatin SlCYS8 and single variants with Leu, Ile or Val at position 2 were compared with regard to their ability to bind digestive proteases of the coleopteran pest Leptinotarsa decemlineata and to induce compensatory responses in this insect. A functional proteomics procedure to capture target Cys proteases in midgut extracts allowed confirmation of distinct binding profiles for the cystatin variants. A shotgun proteomics procedure to monitor whole Cys protease complements revealed protease family specific compensatory responses in the insect, dependent on the variant ingested. Our data confirm the contribution of closely related amino acids to the functional diversity of positively selected plant cystatins in a broader structure/function context imposing physicochemical constraints to primary structure alterations. They also underline the complexity of protease/inhibitor interactions in plant-insect systems, and the challenges still to be met in order to harness the full potential of ectopically expressed protease inhibitors in crop protection. © 2016 Federation of European Biochemical Societies.

  15. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and their Complexes with Proteins

    PubMed Central

    Nguyen, Hai; Pérez, Alberto; Bermeo, Sherry; Simmerling, Carlos

    2016-01-01

    The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures, or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software. PMID:26574454

  16. Temporal lobe epilepsy patients with severe hippocampal neuron loss but normal hippocampal volume: Extracellular matrix molecules are important for the maintenance of hippocampal volume.

    PubMed

    Peixoto-Santos, Jose Eduardo; Velasco, Tonicarlo Rodrigues; Galvis-Alonso, Orfa Yineth; Araujo, David; Kandratavicius, Ludmyla; Assirati, Joao Alberto; Carlotti, Carlos Gilberto; Scandiuzzi, Renata Caldo; Santos, Antonio Carlos dos; Leite, Joao Pereira

    2015-10-01

    Hippocampal sclerosis is a common finding in patients with temporal lobe epilepsy (TLE), and magnetic resonance imaging (MRI) studies associate the reduction of hippocampal volume with the neuron loss seen on histologic evaluation. Astrogliosis and increased levels of chondroitin sulfate, a major component of brain extracellular matrix, are also seen in hippocampal sclerosis. Our aim was to evaluate the association between hippocampal volume and chondroitin sulfate, as well as neuronal and astroglial populations in the hippocampus of patients with TLE. Patients with drug-resistant TLE were subdivided, according to hippocampal volume measured by MRI, into two groups: hippocampal atrophy (HA) or normal volume (NV) cases. Hippocampi from TLE patients and age-matched controls were submitted to immunohistochemistry to evaluate neuronal population, astroglial population, and chondroitin sulfate expression with antibodies against neuron nuclei protein (NeuN), glial fibrillary acidic protein (GFAP), and chondroitin sulfate (CS-56) antigens, respectively. Both TLE groups were clinically similar. NV cases had higher hippocampal volume, both ipsilateral and contralateral, when compared to HA. Compared to controls, NV and HA patients had reduced neuron density, and increased GFAP and CS-56 immunopositive area. There was no statistical difference between NV and HA groups in neuron density or immunopositive areas for GFAP and CS-56. Hippocampal volume correlated positively with neuron density in CA1 and prosubiculum, and with immunopositive areas for CS-56 in CA1, and negatively with immunopositive area for GFAP in CA1. Multiple linear regression analysis indicated that both neuron density and CS-56 immunopositive area in CA1 were statistically significant predictors of hippocampal volume. Our findings indicate that neuron density and chondroitin sulfate immunopositive area in the CA1 subfield are crucial for the hippocampal volume, and that chondroitin sulfate is important for

  17. Nucleic acid encoding DS-CAM proteins and products related thereto

    DOEpatents

    Korenberg, Julie R.

    2005-11-01

    In accordance with the present invention, there are provided Down Syndrome-Cell Adhesion Molecule (DS-CAM) proteins. Nucleic acid sequences encoding such proteins and assays employing same are also disclosed. The invention DS-CAM proteins can be employed in a variety of ways, for example, for the production of anti-DS-CAM antibodies thereto, in therapeutic compositions and methods employing such proteins and/or antibodies. DS-CAM proteins are also useful in bioassays to identify agonists and antagonists thereto.

  18. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.

    PubMed

    Shamim, Mohammad Tabrez Anwar; Anwaruddin, Mohammad; Nagarajaram, H A

    2007-12-15

    Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. Dataset and stand-alone program are available upon request.

  19. Association of serum uric acid with high-sensitivity C-reactive protein in postmenopausal women.

    PubMed

    Raeisi, A; Ostovar, A; Vahdat, K; Rezaei, P; Darabi, H; Moshtaghi, D; Nabipour, I

    2017-02-01

    To explore the independent correlation between serum uric acid and low-grade inflammation (measured by high-sensitivity C-reactive protein, hs-CRP) in postmenopausal women. A total of 378 healthy Iranian postmenopausal women were randomly selected in a population-based study. Circulating hs-CRP levels were measured by highly specific enzyme-linked immunosorbent assay method and an enzymatic calorimetric method was used to measure serum levels of uric acid. Pearson correlation coefficient, multiple linear regression and logistic regression models were used to analyze the association between uric acid and hs-CRP levels. A statistically significant correlation was seen between serum levels of uric acid and log-transformed circulating hs-CRP (r = 0.25, p < 0.001). After adjustment for age and cardiovascular risk factors (according to NCEP ATP III criteria), circulating hs-CRP levels were significantly associated with serum uric acid levels (β = 0.20, p < 0.001). After adjustment for age and cardiovascular risk factors, hs-CRP levels ≥3 mg/l were significantly associated with higher uric acid levels (odds ratio =1.52, 95% confidence interval 1.18-1.96). Higher serum uric acid levels were positively and independently associated with circulating hs-CRP in healthy postmenopausal women.

  20. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    PubMed

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions.

  1. Allspice and Clove As Source of Triterpene Acids Activating the G Protein-Coupled Bile Acid Receptor TGR5

    PubMed Central

    Ladurner, Angela; Zehl, Martin; Grienke, Ulrike; Hofstadler, Christoph; Faur, Nadina; Pereira, Fátima C.; Berry, David; Dirsch, Verena M.; Rollinger, Judith M.

    2017-01-01

    Worldwide, metabolic diseases such as obesity and type 2 diabetes have reached epidemic proportions. A major regulator of metabolic processes that gained interest in recent years is the bile acid receptor TGR5 (Takeda G protein-coupled receptor 5). This G protein-coupled membrane receptor can be found predominantly in the intestine, where it is mainly responsible for the secretion of the incretins glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). The aim of this study was (i) to identify plant extracts with TGR5-activating potential, (ii) to narrow down their activity to the responsible constituents, and (iii) to assess whether the intestinal microbiota produces transformed metabolites with a different activity profile. Chenodeoxycholic acid (CDCA) served as positive control for both, the applied cell-based luciferase reporter gene assay for TGR5 activity and the biotransformation assay using mouse fecal slurry. The suitability of the workflow was demonstrated by the biotransformation of CDCA to lithocholic acid resulting in a distinct increase in TGR5 activity. Based on a traditional Tibetan formula, 19 plant extracts were selected and investigated for TGR5 activation. Extracts from the commonly used spices Syzygium aromaticum (SaroE, clove), Pimenta dioica (PdioE, allspice), and Kaempferia galanga (KgalE, aromatic ginger) significantly increased TGR5 activity. After biotransformation, only KgalE showed significant differences in its metabolite profile, which, however, did not alter its TGR5 activity compared to non-transformed KgalE. UHPLC-HRMS (high-resolution mass spectrometry) analysis revealed triterpene acids (TTAs) as the main constituents of the extracts SaroE and PdioE. Identification and quantification of TTAs in these two extracts as well as comparison of their TGR5 activity with reconstituted TTA mixtures allowed the attribution of the TGR5 activity to TTAs. EC50s were determined for the main TTAs, i.e., oleanolic acid (2.2 ± 1.6 μM), ursolic

  2. Plasma Levels of Fatty Acid-Binding Protein 4, Retinol-Binding Protein 4, High-Molecular-Weight Adiponectin, and Cardiovascular Mortality Among Men With Type 2 Diabetes: A 22-Year Prospective Study.

    PubMed

    Liu, Gang; Ding, Ming; Chiuve, Stephanie E; Rimm, Eric B; Franks, Paul W; Meigs, James B; Hu, Frank B; Sun, Qi

    2016-11-01

    To examine select adipokines, including fatty acid-binding protein 4, retinol-binding protein 4, and high-molecular-weight (HMW) adiponectin in relation to cardiovascular disease (CVD) mortality among patients with type 2 diabetes mellitus. Plasma levels of fatty acid-binding protein 4, retinol-binding protein 4, and HMW adiponectin were measured in 950 men with type 2 diabetes mellitus in the Health Professionals Follow-up Study. After an average of 22 years of follow-up (1993-2015), 580 deaths occurred, of whom 220 died of CVD. After multivariate adjustment for covariates, higher levels of fatty acid-binding protein 4 were significantly associated with a higher CVD mortality: comparing extreme tertiles, the hazard ratio and 95% confidence interval of CVD mortality was 1.78 (1.22-2.59; P trend=0.001). A positive association was also observed for HMW adiponectin: the hazard ratio (95% confidence interval) was 2.07 (1.42-3.06; P trend=0.0002), comparing extreme tertiles, whereas higher retinol-binding protein 4 levels were nonsignificantly associated with a decreased CVD mortality with an hazard ratio (95% confidence interval) of 0.73 (0.50-1.07; P trend=0.09). A Mendelian randomization analysis suggested that the causal relationships of HMW adiponectin and retinol-binding protein 4 would be directionally opposite to those observed based on the biomarkers, although none of the Mendelian randomization associations achieved statistical significance. These data suggest that higher levels of fatty acid-binding protein 4 and HMW adiponectin are associated with elevated CVD mortality among men with type 2 diabetes mellitus. Biological mechanisms underlying these observations deserve elucidation, but the associations of HMW adiponectin may partially reflect altered adipose tissue functionality among patients with type 2 diabetes mellitus. © 2016 American Heart Association, Inc.

  3. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  4. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  5. Total protein, albumin and low-molecular-weight protein excretion in HIV-positive patients.

    PubMed

    Campbell, Lucy J; Dew, Tracy; Salota, Rashim; Cheserem, Emily; Hamzah, Lisa; Ibrahim, Fowzia; Sarafidis, Pantelis A; Moniz, Caje F; Hendry, Bruce M; Poulton, Mary; Sherwood, Roy A; Post, Frank A

    2012-08-10

    Chronic kidney disease is common in HIV positive patients and renal tubular dysfunction has been reported in those receiving combination antiretroviral therapy (cART). Tenofovir (TFV) in particular has been linked to severe renal tubular disease as well as proximal tubular dysfunction. Markedly elevated urinary concentrations of retinal-binding protein (RBP) have been reported in patients with severe renal tubular disease, and low-molecular-weight proteins (LMWP) such as RBP may be useful in clinical practice to assess renal tubular function in patients receiving TFV. We analysed 3 LMWP as well as protein and albumin in the urine of a sample of HIV positive patients. In a cross-sectional fashion, total protein, albumin, RBP, cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL) were quantified in random urine samples of 317 HIV positive outpatients and expressed as the ratio-to-creatinine (RBPCR, CCR and NGALCR). Exposure to cART was categorised as none, cART without TFV, and cART containing TFV and a non-nucleoside reverse-transcriptase-inhibitor (TFV/NNRTI) or TFV and a protease-inhibitor (TFV/PI). Proteinuria was present in 10.4 % and microalbuminuria in 16.7 % of patients. Albumin accounted for approximately 10 % of total urinary protein. RBPCR was within the reference range in 95 % of patients while NGALCR was elevated in 67 % of patients. No overall differences in urine protein, albumin, and LMWP levels were observed among patients stratified by cART exposure, although a greater proportion of patients exposed to TFV/PI had RBPCR >38.8 μg/mmol (343 μg/g) (p = 0.003). In multivariate analyses, black ethnicity (OR 0.43, 95 % CI 0.24, 0.77) and eGFR <75 mL/min/1.73 m2 (OR 3.54, 95 % CI 1.61, 7.80) were independently associated with upper quartile (UQ) RBPCR. RBPCR correlated well to CCR (r2 = 0.71), but not to NGALCR, PCR or ACR. In HIV positive patients, proteinuria was predominantly of tubular origin and microalbuminuria

  6. Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection.

    PubMed

    Rosberg-Cody, Eva; Liavonchanka, Alena; Göbel, Cornelia; Ross, R Paul; O'Sullivan, Orla; Fitzgerald, Gerald F; Feussner, Ivo; Stanton, Catherine

    2011-02-17

    The aim of this study was to determine the catalytic activity and physiological role of myosin-cross-reactive antigen (MCRA) from Bifidobacterium breve NCIMB 702258. MCRA from B. breve NCIMB 702258 was cloned, sequenced and expressed in heterologous hosts (Lactococcus and Corynebacterium) and the recombinant proteins assessed for enzymatic activity against fatty acid substrates. MCRA catalysed the conversion of palmitoleic, oleic and linoleic acids to the corresponding 10-hydroxy fatty acids, but shorter chain fatty acids were not used as substrates, while the presence of trans-double bonds and double bonds beyond the position C12 abolished hydratase activity. The hydroxy fatty acids produced were not metabolised further. We also found that heterologous Lactococcus and Corynebacterium expressing MCRA accumulated increasing amounts of 10-HOA and 10-HOE in the culture medium. Furthermore, the heterologous cultures exhibited less sensitivity to heat and solvent stresses compared to corresponding controls. MCRA protein in B. breve can be classified as a FAD-containing double bond hydratase, within the carbon-oxygen lyase family, which may be catalysing the first step in conjugated linoleic acid (CLA) production, and this protein has an additional function in bacterial stress protection.

  7. Cellular Fatty Acid Composition, Soluble-Protein Profile, and Antimicrobial Resistance Pattern of Eubacterium lentum

    PubMed Central

    Mosca, Adriana; Summanen, Paula; Finegold, Sydney M.; De Michele, Giampiero; Miragliotta, Giuseppe

    1998-01-01

    Phenotypic heterogeneity among isolates of Eubacterium lentum has been recognized for many years. To better delineate their taxonomic relatedness, 29 clinical isolates of E. lentum were examined for soluble-protein content, cellular fatty acid profile, and antimicrobial resistance pattern in order to ascertain whether differences in these characteristics could be correlated with differences in biochemical activities. Among 29 isolates we could identify 6 that were different from all the others. These strains were coccobacilli with translucent colonies; they were catalase and H2S negative, not fluorescent under UV light, and susceptible to beta-lactam drugs; growth was not stimulated by arginine; and fatty acid analysis revealed the presence of straight-chain fatty acids. The remainder of the strains, including the type species, were pleomorphic bacilli with speckled colonies and were catalase and H2S positive; all but two were fluorescent under UV light; they were resistant to beta-lactam antibiotics; growth was greatly stimulated by arginine; and they demonstrated saturated branched-chain fatty acids. Our data suggest that E. lentum can be further differentiated into different types. PMID:9508307

  8. Distribution of stable free radicals among amino acids of isolated soy proteins.

    PubMed

    Lei, Qingxin; Liebold, Christopher M; Boatright, William L; Shah Jahan, M

    2010-09-01

    Application of deuterium sulfide to powdered isolated soy proteins (ISP) was used to quench stable free radicals and produce a single deuterium label on amino acids where free radicals reside. The deuterium labels rendered increases of isotope ratio for the specific ions of radical-bearing amino acids. Isotope ratio measurements were achieved by gas chromatography/mass spectrometry (GC/MS) analyses after the amino acids were released by acidic hydrolysis and converted to volatile derivatives with propyl chloroformate. The isotope enrichment data showed the stable free radicals were located on Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp but not on Val, Pro, Met, Phe, Lys, and His. Due to the low abundance of Ser, Thr, and Cys derivatives and the impossibility to accurately measure their isotope ratios, the radical bearing status for these amino acids remained undetermined even though their derivatives were positively identified from ISP hydrolysates. The relative isotope enrichment for radical-bearing amino acids Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp were 8.67%, 2.96%, 2.90%, 3.94%, 6.03%, 3.91%, and 21.48%, respectively. Isotope ratio increase for Tyr was also observed but further investigation revealed such increase was mainly from nonspecific deuterium-hydrogen exchange not free radical quenching. The results obtained from the present study provide important information for a better understanding of the mechanisms of free radical formation and stabilization in "dry" ISP.

  9. The effect of feeding high corn oil on fatty-acid-binding-protein isolated from rat liver.

    PubMed

    Catalá, A

    1987-12-01

    Fatty-acid-binding-protein isolated from liver of rats receiving normal or high fat diet was studied by three different methods. The effect of high fat diet on the thermal stability of the protein was determined employing differential scanning calorimetry. Fatty acids have a stabilizing effect on the thermal stability of the protein. In order to determine the relative binding affinity of native and delipidated protein a Sephadex G-50 assay was employed using [1-14C] oleate as ligand. The delipidated protein exhibited greater binding of oleate than did the native material. Increases in the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes in vitro were also observed when protein obtained from both sources were delipidated. The results suggest that high corn oil diet would modify the properties of fatty-acid-binding-protein in the uptake and cytosolic transport of long-chain fatty acids.

  10. Evaluation of hyaluronic acid-protein conjugates for polymer masked-unmasked protein therapy.

    PubMed

    Ferguson, Elaine L; Alshame, Alshame M J; Thomas, David W

    2010-12-15

    Bioresponsive polymers may effectively be utilized to enhance the circulation time and stability of biologically active proteins and peptides, while reducing their immunogenicity and toxicity. Recently, dextrin-epidermal growth factor (EGF) conjugates, which make use of the Polymer-masked UnMasked Protein Therapy (PUMPT) concept, have been developed and shown potential as modulators of impaired wound healing. This study investigated the potential of PUMPT using hyaluronic acid (HA) conjugates to mask activity and enhance protein stability, while allowing restoration of biological activity following triggered degradation. HA fragments (Mw ∼90,000g/mol), obtained by acid hydrolysis of Rooster comb HA, were conjugated to trypsin as a model enzyme or to EGF as a model growth factor. Conjugates contained 2.45 and 0.98% (w/w) trypsin or EGF, respectively, and contained <5% free protein. HA conjugation did not significantly alter trypsin's activity. However, incubation of the conjugate with physiological concentrations of HAase increased its activity to ∼145% (p<0.001) that of the free enzyme. In contrast, when HA-EGF conjugates were tested in vitro, no effect on cell proliferation was seen, even in the presence of HAase. HA conjugates did not display typical masking/unmasking behavior, HA-trypsin conjugates exhibited ∼52% greater stability in the presence of elastase, compared to free trypsin, demonstrating the potential of HA conjugates for further development as modulators of tissue repair. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ΔG o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ΔG o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ΔG o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  12. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    PubMed

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  13. Mitochondrial genetic codes evolve to match amino acid requirements of proteins.

    PubMed

    Swire, Jonathan; Judson, Olivia P; Burt, Austin

    2005-01-01

    Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular--and contrary to the predictions of the mutation-drift hypothesis--the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.

  14. Enantiomeric separation of non-protein amino acids by electrokinetic chromatography.

    PubMed

    Pérez-Míguez, Raquel; Marina, María Luisa; Castro-Puyana, María

    2016-10-07

    New analytical methodologies enabling the enantiomeric separation of a group of non-protein amino acids of interest in the pharmaceutical and food analysis fields were developed in this work using Electrokinetic Chromatography. The use of FMOC as derivatization reagent and the subsequent separation using acidic conditions (formate buffer at pH 2.0) and anionic cyclodextrins as chiral selectors allowed the chiral separation of eight from the ten non-protein amino acids studied. Pyroglutamic acid, norvaline, norleucine, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, and selenomethionine were enantiomericaly separated using sulfated-α-CD while sulfated-γ-CD enabled the enantiomeric separation of norvaline, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, selenomethionie, citrulline, and pipecolic acid. Moreover, the potential of the developed methodologies was demonstrated in the analysis of citrulline and its enantiomeric impurity in food supplements. For that purpose, experimental and instrumental variables were optimized and the analytical characteristics of the proposed method were evaluated. LODs of 2.1×10 -7 and 1.8×10 -7 M for d- and l-citrulline, respectively, were obtained. d-Cit was not detectable in any of the six food supplement samples analyzed showing that the effect of storage time on the racemization of citrulline was negligible. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Acidic Ribosomal Proteins from the Extreme ’Halobacterium cutirubrum’,

    DTIC Science & Technology

    the extreme halophilic bacterium, Halobacterium cutirubrum. The identification of the protein moieties involved in these and other interactions in...the halophile ribosome requires a rapid and reproducible screening method for the separation, enumeration and identification of these acidic...polypeptides in the complex ribosomal protein mixtures. In this paper the authors present the results of analyses of the halophile ribosomal proteins using a

  16. The fragile X mental retardation protein has nucleic acid chaperone properties

    PubMed Central

    Gabus, Caroline; Mazroui, Rachid; Tremblay, Sandra; Khandjian, Edouard W.; Darlix, Jean-Luc

    2004-01-01

    The fragile X syndrome is the most common cause of inherited mental retardation resulting from the absence of the fragile X mental retardation protein (FMRP). FMRP contains two K-homology (KH) domains and one RGG box that are landmarks characteristic of RNA-binding proteins. In agreement with this, FMRP associates with messenger ribonucleoparticles (mRNPs) within actively translating ribosomes, and is thought to regulate translation of target mRNAs, including its own transcript. To investigate whether FMRP might chaperone nucleic acid folding and hybridization, we analysed the annealing and strand exchange activities of DNA oligonucleotides and the enhancement of ribozyme-directed RNA substrate cleavage by FMRP and deleted variants relative to canonical nucleic acid chaperones, such as the cellular YB-1/p50 protein and the retroviral nucleocapsid protein HIV-1 NCp7. FMRP was found to possess all the properties of a potent nucleic acid chaperone, requiring the KH motifs and RGG box for optimal activity. These findings suggest that FMRP may regulate translation by acting on RNA–RNA interactions and thus on the structural status of mRNAs. PMID:15096575

  17. The fragile X mental retardation protein has nucleic acid chaperone properties.

    PubMed

    Gabus, Caroline; Mazroui, Rachid; Tremblay, Sandra; Khandjian, Edouard W; Darlix, Jean-Luc

    2004-01-01

    The fragile X syndrome is the most common cause of inherited mental retardation resulting from the absence of the fragile X mental retardation protein (FMRP). FMRP contains two K-homology (KH) domains and one RGG box that are landmarks characteristic of RNA-binding proteins. In agreement with this, FMRP associates with messenger ribonucleoparticles (mRNPs) within actively translating ribosomes, and is thought to regulate translation of target mRNAs, including its own transcript. To investigate whether FMRP might chaperone nucleic acid folding and hybridization, we analysed the annealing and strand exchange activities of DNA oligonucleotides and the enhancement of ribozyme-directed RNA substrate cleavage by FMRP and deleted variants relative to canonical nucleic acid chaperones, such as the cellular YB-1/p50 protein and the retroviral nucleocapsid protein HIV-1 NCp7. FMRP was found to possess all the properties of a potent nucleic acid chaperone, requiring the KH motifs and RGG box for optimal activity. These findings suggest that FMRP may regulate translation by acting on RNA-RNA interactions and thus on the structural status of mRNAs.

  18. Association of high-sensitivity C-reactive protein and uric acid with the metabolic syndrome components.

    PubMed

    Sah, Santosh Kumar; Khatiwada, Saroj; Pandey, Sunil; Kc, Rajendra; Das, Binod Kumar Lal; Baral, Nirmal; Lamsal, Madhab

    2016-01-01

    Metabolic syndrome (MetS) has been found to be associated with inflammatory molecules. This study was conducted among 125 MetS patients at B P Koirala Institute of Health Sciences, Dharan, Nepal to find an association of high-sensitivity C-reactive protein (hs-CRP) and serum uric acid with MetS components. Anthropometric measurements, blood pressure, medical history and blood samples were taken. Estimation of hs-CRP, serum uric acid, blood glucose, triglyceride and high density lipoprotein (HDL) cholesterol was done. hs-CRP had positive correlation with blood glucose (r = 0.2, p = 0.026) and negative with HDL cholesterol (r = -0.361, p < 0.001). Serum uric acid had positive correlation with waist circumference (r = 0.178, p = 0.047). Patients with elevated hs-CRP and uric acid had higher waist circumference (p = 0.03), diastolic BP (p = 0.002) and lower HDL cholesterol (p = 0.004) than others. Elevated hs-CRP and high uric acid were individually associated with higher odds for low HDL cholesterol (7.992; 1.785-35.774, p = 0.002) and hyperglycemia (2.471; 1.111-5.495, p = 0.029) respectively. Combined rise of hs-CRP and uric acid was associated with severity of MetS (p < 0.001) and higher odds for hyperglycemia (8.036; 2.178-29.647, p = 0.001) as compared to individual rise of hs-CRP or uric acid. The present study demonstrates that hs-CRP and serum uric acid are associated with MetS components, and the combined rise of hs-CRP and uric acid is associated with the increase in severity of MetS.

  19. Miniaturized technology for protein and nucleic acid point-of-care testing.

    PubMed

    Olasagasti, Felix; Ruiz de Gordoa, Juan Carlos

    2012-11-01

    The field of point-of-care (POC) testing technology is developing quickly and producing instruments that are increasingly reliable, while their size is being gradually reduced. Proteins are a common target for POC analyses and the detection of protein markers typically involves immunoassays aimed at detecting different groups of proteins such as tumor markers, inflammation proteins, and cardiac markers; but other techniques can also be used to analyze plasma proteins. In the case of nucleic acids, hybridization and amplification strategies can be used to record electromagnetic or electric signals. These techniques allow for the identification of specific viral or bacterial infections as well as specific cancers. In this review, we consider some of the latest advances in the analysis of specific nucleic acid and protein biomarkers, taking into account their trend toward miniaturization and paying special attention to the technology that can be implemented in future applications, such as lab-on-a-chip instruments. Copyright © 2012 Mosby, Inc. All rights reserved.

  20. Amino Acid Distribution Rules Predict Protein Fold: Protein Grammar for Beta-Strand Sandwich-Like Structures

    PubMed Central

    Kister, Alexander

    2015-01-01

    We present an alternative approach to protein 3D folding prediction based on determination of rules that specify distribution of “favorable” residues, that are mainly responsible for a given fold formation, and “unfavorable” residues, that are incompatible with that fold, in polypeptide sequences. The process of determining favorable and unfavorable residues is iterative. The starting assumptions are based on the general principles of protein structure formation as well as structural features peculiar to a protein fold under investigation. The initial assumptions are tested one-by-one for a set of all known proteins with a given structure. The assumption is accepted as a “rule of amino acid distribution” for the protein fold if it holds true for all, or near all, structures. If the assumption is not accepted as a rule, it can be modified to better fit the data and then tested again in the next step of the iterative search algorithm, or rejected. We determined the set of amino acid distribution rules for a large group of beta sandwich-like proteins characterized by a specific arrangement of strands in two beta sheets. It was shown that this set of rules is highly sensitive (~90%) and very specific (~99%) for identifying sequences of proteins with specified beta sandwich fold structure. The advantage of the proposed approach is that it does not require that query proteins have a high degree of homology to proteins with known structure. So long as the query protein satisfies residue distribution rules, it can be confidently assigned to its respective protein fold. Another advantage of our approach is that it allows for a better understanding of which residues play an essential role in protein fold formation. It may, therefore, facilitate rational protein engineering design. PMID:25625198

  1. Effectively identifying compound-protein interactions by learning from positive and unlabeled examples.

    PubMed

    Cheng, Zhanzhan; Zhou, Shuigeng; Wang, Yang; Liu, Hui; Guan, Jihong; Chen, Yi-Ping Phoebe

    2016-05-18

    Prediction of compound-protein interactions (CPIs) is to find new compound-protein pairs where a protein is targeted by at least a compound, which is a crucial step in new drug design. Currently, a number of machine learning based methods have been developed to predict new CPIs in the literature. However, as there is not yet any publicly available set of validated negative CPIs, most existing machine learning based approaches use the unknown interactions (not validated CPIs) selected randomly as the negative examples to train classifiers for predicting new CPIs. Obviously, this is not quite reasonable and unavoidably impacts the CPI prediction performance. In this paper, we simply take the unknown CPIs as unlabeled examples, and propose a new method called PUCPI (the abbreviation of PU learning for Compound-Protein Interaction identification) that employs biased-SVM (Support Vector Machine) to predict CPIs using only positive and unlabeled examples. PU learning is a class of learning methods that leans from positive and unlabeled (PU) samples. To the best of our knowledge, this is the first work that identifies CPIs using only positive and unlabeled examples. We first collect known CPIs as positive examples and then randomly select compound-protein pairs not in the positive set as unlabeled examples. For each CPI/compound-protein pair, we extract protein domains as protein features and compound substructures as chemical features, then take the tensor product of the corresponding compound features and protein features as the feature vector of the CPI/compound-protein pair. After that, biased-SVM is employed to train classifiers on different datasets of CPIs and compound-protein pairs. Experiments over various datasets show that our method outperforms six typical classifiers, including random forest, L1- and L2-regularized logistic regression, naive Bayes, SVM and k-nearest neighbor (kNN), and three types of existing CPI prediction models. Source code, datasets and

  2. Role of the Acidic Tail of High Mobility Group Protein B1 (HMGB1) in Protein Stability and DNA Bending

    PubMed Central

    Belgrano, Fabricio S.; de Abreu da Silva, Isabel C.; Bastos de Oliveira, Francisco M.; Fantappié, Marcelo R.; Mohana-Borges, Ronaldo

    2013-01-01

    High mobility group box (HMGB) proteins are abundant nonhistone proteins found in all eukaryotic nuclei and are capable of binding/bending DNA. The human HMGB1 is composed of two binding motifs, known as Boxes A and B, are L-shaped alpha-helix structures, followed by a random-coil acidic tail that consists of 30 Asp and Glu residues. This work aimed at evaluating the role of the acidic tail of human HMGB1 in protein stability and DNA interactions. For this purpose, we cloned, expressed and purified HMGB1 and its tailless form, HMGB1ΔC, in E. coli strain. Tryptophan fluorescence spectroscopy and circular dichroism (CD) experiments clearly showed an increase in protein stability promoted by the acidic tail under different conditions, such as the presence of the chemical denaturant guanidine hydrochloride (Gdn.HCl), high temperature and low pH. Folding intermediates found at low pH for both proteins were denatured only in the presence of chemical denaturant, thus showing a relatively high stability. The acidic tail did not alter the DNA-binding properties of the protein, although it enhanced the DNA bending capability from 76° (HMGB1ΔC) to 91° (HMGB1), as measured using the fluorescence resonance energy transfer technique. A model of DNA bending in vivo was proposed, which might help to explain the interaction of HMGB1 with DNA and other proteins, i.e., histones, and the role of that protein in chromatin remodeling. PMID:24255708

  3. Idiopathic preretinal glia in aging and age-related macular degeneration

    PubMed Central

    Edwards, Malia M.; McLeod, D. Scott; Bhutto, Imran A.; Villalonga, Mercedes B.; Seddon, Johanna M.; Lutty, Gerard A.

    2015-01-01

    During analysis of glia in wholemount aged human retinas, frequent projections onto the vitreal surface of the inner limiting membrane (ILM) were noted. The present study characterized these preretinal glial structures. The amount of glial cells on the vitreal side of the ILM was compared between eyes with age-related macular degeneration (AMD) and age-matched control eyes. Retinal wholemounts were stained for markers of retinal astrocytes and activated Müller cells (glial fibrillary acidic protein, GFAP), Müller cells (vimentin, glutamine synthetase) and microglia/hyalocytes (IBA-1). Retinal vessels were labeled with UEA lectin. Images were collected using a Zeiss 710 confocal microscope. Retinas were then cryopreserved. Laminin labeling of cryosections determined the location of glial structures in relation to the ILM. All retinas investigated herein had varied amounts of preretinal glial. These glial structures were classified into three groups based on size: sprouts, blooms, and membranes. The simplest of the glial structures observed were focal sprouts of singular GFAP-positive cells or processes on the vitreal surface of the ILM. The intermediate structures observed, glial blooms, were created by multiple cells/processes exiting from a single point and extending along the vitreoretinal surface. The most extensive structures, glial membranes, consisted of compact networks of cells and processes. Preretinal glia were observed in all areas of the retina but they were most prominent over large vessels. While all glial blooms and membranes contained vimentin and GFAP-positive cells, these proteins did not always co-localize. Many areas had no preretinal GFAP but had numerous vimentin only glial sprouts. In double labelled glial sprouts, vimentin staining extended beyond that of GFAP. Hyalocytes and microglia were detected along with glial sprouts, blooms, and membranes. They did not, however, concentrate in the retina below these structures. Cross sectional

  4. Human long intrinsically disordered protein regions are frequent targets of positive selection.

    PubMed

    Afanasyeva, Arina; Bockwoldt, Mathias; Cooney, Christopher R; Heiland, Ines; Gossmann, Toni I

    2018-06-01

    Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species, it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here, we address this question by investigating the evolutionary pattern of more than 6600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a priori knowledge of disordered protein regions, and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs fourfold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts. © 2018 Afanasyeva et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Lentivirus-mediated silencing of the PTC1 and PTC2 genes promotes recovery from spinal cord injury by activating the Hedgehog signaling pathway in a rat model.

    PubMed

    Zhang, Ya-Dong; Zhu, Zhong-Sheng; Zhang, Dong; Zhang, Zhen; Ma, Bin; Zhao, Shi-Chang; Xue, Feng

    2017-12-15

    This study aimed to investigate the effect of Patched-1 (PTC1) and PTC2 silencing in a rat model, on Hedgehog (Hh) pathway-mediated recovery from spinal cord injury (SCI). An analytical emphasis on the relationship between the sonic hedgehog (Shh) pathway and nerve regeneration was explored. A total of 126 rats were divided into normal, sham, SCI, negative control (NC), PTC1-RNAi, PTC2-RNAi and PTC1/PTC2-RNAi groups. The Basso, Beattie and Bresnahan (BBB) scale was employed to assess hind limb motor function. Quantitative real-time polymerase chain reaction and western blotting were performed to examine the mRNA and protein levels of PTC1, PTC2, Shh, glioma-associated oncogene homolog 1 (Gli-1), Smo and Nestin. Tissue morphology was analyzed using immunohistochemistry, and immunofluorescent staining was conducted to detect neurofilament protein 200 (NF-200) and glial fibrillary acidic protein (GFAP). The PTC1/PTC2-RNAi group displayed higher BBB scores than the SCI and NC groups. Shh, Gli-1, Smo and Nestin expression levels were elevated in the PTC1/PTC2-RNAi group. PTC1 and PTC2 mRNA and protein expression was lower in the PTC1/PTC2-RNAi group than in the normal, sham and SCI groups. Among the seven groups, the PTC1/PTC2-RNAi group had the largest positive area of NF-200 staining, whereas the SCI group exhibited a larger GFAP-positive area than both the normal and the sham groups. The Shh pathway may provide new insights into therapeutic indications and regenerative recovery tools for the treatment of SCI. Activation of the Hh signaling pathway by silencing PTC1 and PTC2 may reduce inflammation and may ultimately promote SCI recovery.

  6. A dominant conformational role for amino acid diversity in minimalist protein–protein interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbreth, Ryan N.; Esaki, Kaori; Koide, Akiko

    Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies.” One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose-binding protein. The YSX monobodymore » bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution X-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces.« less

  7. Effects of non-protein amino acids on survival and locomotion of Osmia bicornis.

    PubMed

    Felicioli, Antonio; Sagona, Simona; Galloni, Marta; Bortolotti, Laura; Bogo, Gherardo; Guarnieri, Massimo; Nepi, Massimo

    2018-04-17

    To investigate the effects of two non-protein amino acids, β-alanine and γ-amino butyric acid (GABA), on Osmia bicornis survival and locomotion, two groups of caged bees were fed with sugar syrup enriched with β-alanine and GABA, respectively. A further control group was fed with sugar syrup. Five behavioural categories were chosen according to the principle of parsimony and intrinsic unitary consistency from start to end, and recorded by scan sampling: two states (remaining under paper or in tubes) and three events (walking on net, feeding from flower and flying). We also analysed the amino acid content of haemolymph sampled from an additional 45 bees fed the same diets (15 per diet type). Bees fed with ß-alanine had a significantly shorter survival than those fed with control and GABA diets. The GABA diet induced higher locomotion than β-alanine. The former non-protein amino acid was only detected in the haemolymph of bees fed GABA. The results suggest that insects consuming non-protein amino-acid-rich diets absorb and transfer these substances to the haemolymph and that non-protein amino acids affect survival and locomotion. Ecological consequences are discussed in the framework of plant reproductive biology. This article is protected by copyright. All rights reserved. © 2018 The Royal Entomological Society.

  8. Cinnamic Acid Derivatives as Inhibitors of Oncogenic Protein Kinases--Structure, Mechanisms and Biomedical Effects.

    PubMed

    Mielecki, Marcin; Lesyng, Bogdan

    2016-01-01

    Cinnamic acid belongs to phenolic-acid class of polyphenols, one of the most abundant plant secondary metabolites. These substances are widely studied because of plethora of their biological activities. In particular, their inhibition of protein kinases contributes to the pleiotropic effects in the cell. Protein kinases are essential in controlling cell signaling networks. Selective targeting of oncogenic protein kinases increases clinical anticancer efficacy. Cinnamic acid and related compounds have inspired researchers in the design of numerous synthetic and semisynthetic inhibitors of oncogenic protein kinases for the past three decades. Interest in cinnamoyl-scaffold-containing compounds revived in recent years, which was stimulated by modern drug design and discovery methodologies such as in vitro and in silico HTS. This review presents cinnamic acid derivatives and analogs for which direct inhibition of protein kinases was identified. We also summarize significance of the above protein kinase families - validated or promising targets for anticancer therapies. The inhibition mode may vary from ATP-competitive, through bisubstrate-competitive and mixedcompetitive, to non-competitive one. Kinase selectivity is often correlated with subtle chemical modifications, and may also be steered by an additional non-cinnamoyl fragment of the inhibitor. Specific cinnamic acid congeners may synergize their effects in the cell by a wider range of activities, like suppression of additional enzymes, e.g. deubiquitinases, influencing the same signaling pathways (e.g. JAK2/STAT). Cinnamic acid, due to its biological and physicochemical properties, provides nature-inspired ideas leading to novel inhibitors of oncogenic protein kinases and related enzymes, capable to target a variety of cancer cells.

  9. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet.

    PubMed

    Teplan, V; Schück, O; Horácková, M; Skibová, J; Holecek, M

    2000-10-27

    The aim of our study was to evaluate the effect of a low-protein diet supplemented with keto acids-amino acids on renal function and urinary excretion of branched-chain amino acids (BCAA) in patients with chronic renal insufficiency (CRI). In a prospective investigation 28 patients with CRI (16 male, 12 female, aged 28-66 yrs, CCr 18.6 +/- 10.2 ml/min) on a low-protein diet (0.6 g of protein /kg BW/day and energy intake 140 kJ/kg BW/day) for a period of one month were included. Subsequently, this low protein diet was supplemented with keto acids-amino acids at a dose of 0.1 g/kg BW/day orally for a period of 3 months. Examinations performed at baseline and at the end of the follow-up period revealed significant increase in the serum levels of BCAA leucine (p < 0.02), isoleucine (p < 0.03), and valine (p < 0.02) while their renal fractional excretion declined (p < 0.02, p < 0.01 resp.). Keto acid-amino acid administration had no effect on renal function and on the clearance of inulin, para-aminohippuric acid. Endogenous creatinine and urea clearance remained unaltered. A significant correlation between fractional excretion of sodium and leucine (p < 0.05) and a hyperbolic relationship between inulin clearance and fractional excretion of BCAA (p < 0.01) were seen. Moreover, a significant decrease in proteinuria (p < 0.02), plasma urea concentration and renal urea excretion and a rise in albumin level (p < 0.03) were noted. We conclude that in patients with CRI on a low protein diet the supplementation of keto acids-amino acids does not affect renal hemodynamics, but is associated--despite increases in plasma concentrations--with a reduction of renal amino acid and protein excretion suggesting induction of alterations in the tubular transport mechanisms.

  10. Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou's pseudo amino acid composition.

    PubMed

    Chen, Yen-Kuang; Li, Kuo-Bin

    2013-02-07

    The type information of un-annotated membrane proteins provides an important hint for their biological functions. The experimental determination of membrane protein types, despite being more accurate and reliable, is not always feasible due to the costly laboratory procedures, thereby creating a need for the development of bioinformatics methods. This article describes a novel computational classifier for the prediction of membrane protein types using proteins' sequences. The classifier, comprising a collection of one-versus-one support vector machines, makes use of the following sequence attributes: (1) the cationic patch sizes, the orientation, and the topology of transmembrane segments; (2) the amino acid physicochemical properties; (3) the presence of signal peptides or anchors; and (4) the specific protein motifs. A new voting scheme was implemented to cope with the multi-class prediction. Both the training and the testing sequences were collected from SwissProt. Homologous proteins were removed such that there is no pair of sequences left in the datasets with a sequence identity higher than 40%. The performance of the classifier was evaluated by a Jackknife cross-validation and an independent testing experiments. Results show that the proposed classifier outperforms earlier predictors in prediction accuracy in seven of the eight membrane protein types. The overall accuracy was increased from 78.3% to 88.2%. Unlike earlier approaches which largely depend on position-specific substitution matrices and amino acid compositions, most of the sequence attributes implemented in the proposed classifier have supported literature evidences. The classifier has been deployed as a web server and can be accessed at http://bsaltools.ym.edu.tw/predmpt. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. P2Y12 shRNA treatment decreases SGC activation to relieve diabetic neuropathic pain in type 2 diabetes mellitus rats.

    PubMed

    Wang, Shouyu; Wang, Zilin; Li, Lin; Zou, Lifang; Gong, Yingxin; Jia, Tianyu; Zhao, Shanhong; Yuan, Huilong; Shi, Liran; Liu, Shuangmei; Wu, Bing; Yi, Zhihua; Liu, Hui; Gao, Yun; Li, Guilin; Deussing, Jan M; Li, Man; Zhang, Chunping; Liang, Shangdong

    2018-06-26

    Diabetic neuropathic pain is a common complication of type 2 diabetes mellitus (DM). Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in neuropathic pain through the release of proinflammatory cytokines. The P2Y12 receptor is expressed in SGCs of the DRG. In this study, our aim was to investigate the role of the P2Y12 receptor on the pathological changes in diabetic neuropathic pain. The present study showed that diabetic neuropathic pain increased mechanical and thermal hyperalgesia in type 2 DM model rats. The results showed that the expression levels of P2Y12 messenger RNA (mRNA) and protein in DRG SGCs were increased in DM model rats compared with control rats. Glial fibrillary acidic protein (GFAP) and interleukin-1β (IL-1β) expression levels in the DRG were increased in DM rats. Upregulation of GFAP is a marker of SGC activation. Targeting the P2Y12 receptor by short hairpin RNA (shRNA) decreased the upregulated expression of P2Y12 mRNA and protein, coexpression of P2Y12 and GFAP, the expression of GFAP, IL-1β, and tumor necrosis factor-receptor 1 in the DRG of DM rats, and relieved mechanical and thermal hyperalgesia in DM rats. After treatment with the P2Y12 receptor shRNA, the enhancing integrated OPTICAL density (IOD) ratios of p-P38 MAPK to P38 mitogen activated protein kinase (MAPK) in the DM rats treated with P2Y12 shRNA were significantly lower than that in the untreated DM rats. Therefore, P2Y12 shRNA treatment decreased SGC activation to relieve mechanical and thermal hyperalgesia in DM rats. © 2018 Wiley Periodicals, Inc.

  12. In vivo encapsulation of nucleic acids using an engineered nonviral protein capsid.

    PubMed

    Lilavivat, Seth; Sardar, Debosmita; Jana, Subrata; Thomas, Geoffrey C; Woycechowsky, Kenneth J

    2012-08-15

    In Nature, protein capsids function as molecular containers for a wide variety of molecular cargoes. Such containers have great potential for applications in nanotechnology, which often require encapsulation of non-native guest molecules. Charge complementarity represents a potentially powerful strategy for engineering novel encapsulation systems. In an effort to explore the generality of this approach, we engineered a nonviral, 60-subunit capsid, lumazine synthase from Aquifex aeolicus (AaLS), to act as a container for nucleic acid. Four mutations were introduced per subunit to increase the positive charge at the inner surface of the capsid. Characterization of the mutant (AaLS-pos) revealed that the positive charges lead to the uptake of cellular RNA during production and assembly of the capsid in vivo. Surprisingly, AaLS-pos capsids were found to be enriched with RNA molecules approximately 200-350 bases in length, suggesting that this simple charge complementarity approach to RNA encapsulation leads to both high affinity and a degree of selectivity. The ability to control loading of RNA by tuning the charge at the inner surface of a protein capsid could illuminate aspects of genome recognition by viruses and pave the way for the development of improved RNA delivery systems.

  13. Occurrence of positional isomers of octadecenoic and hexadecenoic acids in human depot fat.

    PubMed

    Jacob, J; Grimmer, G

    1967-07-01

    Positional isomers of hexadecenoic aud octadecenoic acids of human adipose tissue have been separated by gas-liquid chromatography and their amounts determined by oxidative cleavage (MnO(4) and IO(4)). The following isomeric octadecenoic acids were present: 7-octadecenoic acid (0.4%), 8- (1.9%), 9- (73.0%), 10- (2.5%), 11- (19.0%) and 12- (3.2%). The hexadecenoic acids have also been shown to be a mixture of positional isomers, in which the cis-9-isomer predominates. 10-Hexadecenoic and 12-octadecenoic acids could conceivably be precursors of linoleic acid. The following branched fatty acids have also been determined in human depot fat: 13-methyltetradecanoic, 12-methyltetradecanoic, 14-methylpentadecanoic, 14-methylhexadecanoic, and 16-methylheptadecanoic acid. They were present in percentages of 0.02-0.6% and their identification rests solely on comparison of their gas-liquid chromatographic retention times with those of synthetic compounds.

  14. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    PubMed

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  15. FAX1, a Novel Membrane Protein Mediating Plastid Fatty Acid Export

    PubMed Central

    Li, Nannan; Gügel, Irene Luise; Giavalisco, Patrick; Zeisler, Viktoria; Schreiber, Lukas; Soll, Jürgen; Philippar, Katrin

    2015-01-01

    Fatty acid synthesis in plants occurs in plastids, and thus, export for subsequent acyl editing and lipid assembly in the cytosol and endoplasmatic reticulum is required. Yet, the transport mechanism for plastid fatty acids still remains enigmatic. We isolated FAX1 (fatty acid export 1), a novel protein, which inserts into the chloroplast inner envelope by α-helical membrane-spanning domains. Detailed phenotypic and ultrastructural analyses of FAX1 mutants in Arabidopsis thaliana showed that FAX1 function is crucial for biomass production, male fertility and synthesis of fatty acid-derived compounds such as lipids, ketone waxes, or pollen cell wall material. Determination of lipid, fatty acid, and wax contents by mass spectrometry revealed that endoplasmatic reticulum (ER)-derived lipids decreased when FAX1 was missing, but levels of several plastid-produced species increased. FAX1 over-expressing lines showed the opposite behavior, including a pronounced increase of triacyglycerol oils in flowers and leaves. Furthermore, the cuticular layer of stems from fax1 knockout lines was specifically reduced in C29 ketone wax compounds. Differential gene expression in FAX1 mutants as determined by DNA microarray analysis confirmed phenotypes and metabolic imbalances. Since in yeast FAX1 could complement for fatty acid transport, we concluded that FAX1 mediates fatty acid export from plastids. In vertebrates, FAX1 relatives are structurally related, mitochondrial membrane proteins of so-far unknown function. Therefore, this protein family might represent a powerful tool not only to increase lipid/biofuel production in plants but also to explore novel transport systems involved in vertebrate fatty acid and lipid metabolism. PMID:25646734

  16. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids

    PubMed Central

    Li, Yushuang; Yang, Jiasheng; Zhang, Yi

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector. PMID:27918587

  17. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming [San Diego, CA; Wang, Lei [San Diego, CA; Wu, Ning [Boston, MA; Schultz, Peter G [La Jolla, CA

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  18. The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins.

    PubMed

    Ponce de Leon, Miguel; de Miranda, Antonio Basilio; Alvarez-Valin, Fernando; Carels, Nicolas

    2014-01-01

    For this report, we analyzed protein secondary structures in relation to the statistics of three nucleotide codon positions. The purpose of this investigation was to find which properties of the ribosome, tRNA or protein level, could explain the purine bias (Rrr) as it is observed in coding DNA. We found that the Rrr pattern is the consequence of a regularity (the codon structure) resulting from physicochemical constraints on proteins and thermodynamic constraints on ribosomal machinery. The physicochemical constraints on proteins mainly come from the hydropathy and molecular weight (MW) of secondary structures as well as the energy cost of amino acid synthesis. These constraints appear through a network of statistical correlations, such as (i) the cost of amino acid synthesis, which is in favor of a higher level of guanine in the first codon position, (ii) the constructive contribution of hydropathy alternation in proteins, (iii) the spatial organization of secondary structure in proteins according to solvent accessibility, (iv) the spatial organization of secondary structure according to amino acid hydropathy, (v) the statistical correlation of MW with protein secondary structures and their overall hydropathy, (vi) the statistical correlation of thymine in the second codon position with hydropathy and the energy cost of amino acid synthesis, and (vii) the statistical correlation of adenine in the second codon position with amino acid complexity and the MW of secondary protein structures. Amino acid physicochemical properties and functional constraints on proteins constitute a code that is translated into a purine bias within the coding DNA via tRNAs. In that sense, the Rrr pattern within coding DNA is the effect of information transfer on nucleotide composition from protein to DNA by selection according to the codon positions. Thus, coding DNA structure and ribosomal machinery co-evolved to minimize the energy cost of protein coding given the functional

  19. Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus

    PubMed Central

    Yamada, Shinya; Hatta, Masato; Staker, Bart L.; Watanabe, Shinji; Imai, Masaki; Shinya, Kyoko; Sakai-Tagawa, Yuko; Ito, Mutsumi; Ozawa, Makoto; Watanabe, Tokiko; Sakabe, Saori; Li, Chengjun; Kim, Jin Hyun; Myler, Peter J.; Phan, Isabelle; Raymond, Amy; Smith, Eric; Stacy, Robin; Nidom, Chairul A.; Lank, Simon M.; Wiseman, Roger W.; Bimber, Benjamin N.; O'Connor, David H.; Neumann, Gabriele; Stewart, Lance J.; Kawaoka, Yoshihiro

    2010-01-01

    Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. PMID:20700447

  20. Serum protein adsorption and platelet adhesion on aspartic-acid-immobilized polysulfone membranes.

    PubMed

    Higuchi, Akon; Hashiba, Hirokazu; Hayashi, Rika; Yoon, Boo Ok; Sakurai, Masaru; Hara, Mariko

    2004-01-01

    Polysulfone (PSf) membranes that covalently conjugated with aspartic acid (ASP-PSf) were prepared and analyzed for hemocompatability. Compared to PSf or other types of surface-modified PSf membranes, the ASP-PSf membranes had a reduced ability to adsorb protein from either a plasma solution or a mixed solution of albumin, globulin and fibrinogen. This appears to be due to the creation of a hydrophilic surface by the aspartic acid zwitterion immobilized on the ASP-PSf membranes. Furthermore, the analyses of membrane protein adsorption showed that a mixed protein solution recapitulates the cooperative adsorption of proteins that occurs in plasma. We also found that the number of adhering platelets was the lowest on the ASP-PSf membranes and, in general, that platelet adhesion decreased in parallel with fibrinogen adsorption. In summary, aspartic acid immobilized on the ASP-PSf membranes, which have zwitterions with a net zero charge, effectively contributes to the hydrophilic and hemocompatible sites on the surface of the hydrophobic PSf membranes.

  1. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states.

    PubMed

    Holecek, Milan; Siman, Pavel; Vodenicarovova, Melita; Kandar, Roman

    2016-01-01

    Many people believe in favourable effects of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine), especially leucine, on muscle protein balance and consume BCAAs for many years. We determined the effects of the chronic intake of a BCAA- or leucine-enriched diet on protein and amino acid metabolism in fed and postabsorptive states. Rats were fed a standard diet, a diet with a high content of valine, leucine, and isoleucine (HVLID), or a high content of leucine (HLD) for 2 months. Half of the animals in each group were sacrificed in the fed state on the last day, and the other half were sacrificed after overnight fast. Protein synthesis was assessed using the flooding dose method (L-[3,4,5-(3)H]phenylalanine), proteolysis on the basis of chymotrypsin-like activity (CHTLA) of proteasome and cathepsin B and L activities. Chronic intake of HVLID or HLD enhanced plasma levels of urea, alanine and glutamine. HVLID also increased levels of all three BCAA and branched-chain keto acids (BCKA), HLD increased leucine, ketoisocaproate and alanine aminotransferase and decreased valine, ketovaline, isoleucine, ketoisoleucine, and LDL cholesterol. Tissue weight and protein content were lower in extensor digitorum longus muscles in the HLD group and higher in kidneys in the HVLID and HLD groups. Muscle protein synthesis in postprandial state was higher in the HVLID group, and CHTLA was lower in muscles of the HVLID and HLD groups compared to controls. Overnight starvation enhanced alanine aminotransferase activity in muscles, and decreased protein synthesis in gastrocnemius (in HVLID group) and extensor digitorum longus (in HLD group) muscles more than in controls. Effect of HVLID and HLD on CHTLA in muscles in postabsorptive state was insignificant. The results failed to demonstrate positive effects of the chronic consumption of a BCAA-enriched diet on protein balance in skeletal muscle and indicate rather negative effects from a leucine-enriched diet. The primary

  2. Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes.

    PubMed Central

    Culver, J N; Lehto, K; Close, S M; Hilf, M E; Dawson, W O

    1993-01-01

    Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes. Images Fig. 2 Fig. 3 Fig. 4 PMID:8446627

  3. Dissecting protein:protein interactions between transcription factors with an RNA aptamer.

    PubMed Central

    Tian, Y; Adya, N; Wagner, S; Giam, C Z; Green, M R; Ellington, A D

    1995-01-01

    Nucleic acid aptamers isolated from random sequence pools have generally proven useful at inhibiting the interactions of nucleic acid binding proteins with their cognate nucleic acids. In order to develop reagents that could also be used to study protein:protein interactions, we have used in vitro selection to search for RNA aptamers that could interact with the transactivating protein Tax from human T-cell leukemia virus. Tax does not normally bind to nucleic acids, but instead stimulates transcription by interacting with a variety of cellular transcription factors, including the cyclic AMP-response element binding protein (CREB), NF-kappa B, and the serum response factor (SRF). Starting from a pool of greater than 10(13) different RNAs with a core of 120 random sequence positions, RNAs were selected for their ability to be co-retained on nitrocellulose filters with Tax. After five cycles of selection and amplification, a single nucleic acid species remained. This aptamer was found to bind Tax with high affinity and specificity, and could disrupt complex formation between Tax and NF-kappa B, but not with SRF. The differential effects of our aptamer probe on protein:protein interactions suggest a model for how the transcription factor binding sites on the surface of the Tax protein are organized. This model is consistent with data from a variety of other studies. PMID:7489503

  4. Designing medical foods for inherited metabolic disorders: why intact protein is superior to amino acids.

    PubMed

    Ney, Denise Marie; Etzel, Mark Raymond

    2017-04-01

    Phenylketonuria and tyrosinemia are inherited metabolic disorders characterized by high blood levels of phenylalanine (Phe) or tyrosine (Tyr), due to mutations in genes affecting Phe and Tyr metabolism, respectively. The primary management is a lifelong diet restricted in protein from natural foods in combination with medical foods comprised mixtures of synthetic amino acids. Compliance is often poor after childhood leading to neuropsychological sequela. Glycomacropeptide, an intact 64 amino acid glycophosphopeptide isolated from cheese whey, provides a new paradigm for the management of phenylketonuria and tyrosinemia because glycomacropeptide contains no Phe and Tyr in its pure form, and is also a prebiotic. Medical foods made from glycomacropeptide have been used successfully for the management of phenylketonuria and tyrosinemia. Preclinical and clinical studies demonstrate that intact protein from glycomacropeptide provides a more acceptable and physiologic source of defined protein compared to amino acids in medical foods. For example, harmful gut bacteria were reduced, beneficial short chain fatty acids increased, renal workload decreased, protein utilization increased, and bone fragility decreased using intact protein versus amino acids. Advances in biotechnology will propel the transition from synthetic amino acids to intact proteins for the management of inherited metabolic disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A method for analysing small samples of floral pollen for free and protein-bound amino acids.

    PubMed

    Stabler, Daniel; Power, Eileen F; Borland, Anne M; Barnes, Jeremy D; Wright, Geraldine A

    2018-02-01

    Pollen provides floral visitors with essential nutrients including proteins, lipids, vitamins and minerals. As an important nutrient resource for pollinators, including honeybees and bumblebees, pollen quality is of growing interest in assessing available nutrition to foraging bees. To date, quantifying the protein-bound amino acids in pollen has been difficult and methods rely on large amounts of pollen, typically more than 1 g. More usual is to estimate a crude protein value based on the nitrogen content of pollen, however, such methods provide no information on the distribution of essential and non-essential amino acids constituting the proteins.Here, we describe a method of microwave-assisted acid hydrolysis using low amounts of pollen that allows exploration of amino acid composition, quantified using ultra high performance liquid chromatography (UHPLC), and a back calculation to estimate the crude protein content of pollen.Reliable analysis of protein-bound and free amino acids as well as an estimation of crude protein concentration was obtained from pollen samples as low as 1 mg. Greater variation in both protein-bound and free amino acids was found in pollen sample sizes <1 mg. Due to the variability in recovery of amino acids in smaller sample sizes, we suggest a correction factor to apply to specific sample sizes of pollen in order to estimate total crude protein content.The method described in this paper will allow researchers to explore the composition of amino acids in pollen and will aid research assessing the available nutrition to pollinating animals. This method will be particularly useful in assaying the pollen of wild plants, from which it is difficult to obtain large sample weights.

  6. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  7. Amino- and carboxyl-terminal amino acid sequences of proteins coded by gag gene of murine leukemia virus

    PubMed Central

    Oroszlan, Stephen; Henderson, Louis E.; Stephenson, John R.; Copeland, Terry D.; Long, Cedric W.; Ihle, James N.; Gilden, Raymond V.

    1978-01-01

    The amino- and carboxyl-terminal amino acid sequences of proteins (p10, p12, p15, and p30) coded by the gag gene of Rauscher and AKR murine leukemia viruses were determined. Among these proteins, p15 from both viruses appears to have a blocked amino end. Proline was found to be the common NH2 terminus of both p30s and both p12s, and alanine of both p10s. The amino-terminal sequences of p30s are identical, as are those of p10s, while the p12 sequences are clearly distinctive but also show substantial homology. The carboxyl-terminal amino acids of both viral p30s and p12s are leucine and phenylalanine, respectively. Rauscher leukemia virus p15 has tyrosine as the carboxyl terminus while AKR virus p15 has phenylalanine in this position. The compositional and sequence data provide definite chemical criteria for the identification of analogous gag gene products and for the comparison of viral proteins isolated in different laboratories. On the basis of amino acid sequences and the previously proposed H-p15-p12-p30-p10-COOH peptide sequence in the precursor polyprotein, a model for cleavage sites involved in the post-translational processing of the precursor coded for by the gag gene is proposed. PMID:206897

  8. Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents

    PubMed Central

    Rohloff, John C; Gelinas, Amy D; Jarvis, Thale C; Ochsner, Urs A; Schneider, Daniel J; Gold, Larry; Janjic, Nebojsa

    2014-01-01

    Limited chemical diversity of nucleic acid libraries has long been suspected to be a major constraining factor in the overall success of SELEX (Systematic Evolution of Ligands by EXponential enrichment). Despite this constraint, SELEX has enjoyed considerable success over the past quarter of a century as a result of the enormous size of starting libraries and conformational richness of nucleic acids. With judicious introduction of functional groups absent in natural nucleic acids, the “diversity gap” between nucleic acid–based ligands and protein-based ligands can be substantially bridged, to generate a new class of ligands that represent the best of both worlds. We have explored the effect of various functional groups at the 5-position of uracil and found that hydrophobic aromatic side chains have the most profound influence on the success rate of SELEX and allow the identification of ligands with very low dissociation rate constants (named Slow Off-rate Modified Aptamers or SOMAmers). Such modified nucleotides create unique intramolecular motifs and make direct contacts with proteins. Importantly, SOMAmers engage their protein targets with surfaces that have significantly more hydrophobic character compared with conventional aptamers, thereby increasing the range of epitopes that are available for binding. These improvements have enabled us to build a collection of SOMAmers to over 3,000 human proteins encompassing major families such as growth factors, cytokines, enzymes, hormones, and receptors, with additional SOMAmers aimed at pathogen and rodent proteins. Such a large and growing collection of exquisite affinity reagents expands the scope of possible applications in diagnostics and therapeutics. PMID:25291143

  9. Free fatty acid particles in protein formulations, part 1: microspectroscopic identification.

    PubMed

    Cao, Xiaolin; Fesinmeyer, R Matthew; Pierini, Christopher J; Siska, Christine C; Litowski, Jennifer R; Brych, Stephen; Wen, Zai-Qing; Kleemann, Gerd R

    2015-02-01

    We report, for the first time, the identification of fatty acid particles in formulations containing the surfactant polysorbate 20. These fatty acid particles were observed in multiple mAb formulations during their expected shelf life under recommended storage conditions. The fatty acid particles were granular or sand-like in morphology and were several microns in size. They could be identified by distinct IR bands, with additional confirmation from energy-dispersive X-ray spectroscopy analysis. The particles were readily distinguishable from protein particles by these methods. In addition, particles containing a mixture of protein and fatty acids were also identified, suggesting that the particulation pathways for the two particle types may not be distinct. The techniques and observations described will be useful for the correct identification of proteinaceous versus nonproteinaceous particles in pharmaceutical products. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. White clover fractions as protein source for monogastrics: dry matter digestibility and protein digestibility-corrected amino acid scores.

    PubMed

    Stødkilde, Lene; Damborg, Vinni K; Jørgensen, Henry; Laerke, Helle N; Jensen, Søren K

    2018-05-01

    The present study aimed to evaluate the use of white clover as an alternative protein source for monogastrics. White clover plant and leaves were processed using a screw-press resulting in a solid pulp and a juice from which protein was acid-precipitated. The chemical composition of all fractions was determined and digestibility of dry matter (DM) and protein was assessed in an experiment with growing rats. Protein concentrates were produced with crude protein (CP) contents of 451 g kg -1 and 530 g kg -1 DM for white clover plant and leaves, respectively, and a pulp with CP contents of 313 and 374 g kg -1 DM from plant and leaves, respectively. The amino acid composition ranged from 4.72 to 6.49 g per 16 g of nitrogen (N) for lysine, 1.82-2.6 g per 16 g N for methionine and cysteine, and 3.66-5.24 g per 16 g N for threonine. True faecal digestibility of protein varied from 0.81 to 0.88, whereas DM digestibility was in the range 0.72-0.80. Methionine and cysteine were found to be limiting in all fractions, regardless of the reference group used. A high digestibility of white clover protein was found irrespective of the physical fractionation. Together with a well-balanced amino acid composition, this makes white clover a promising protein source for monogastrics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus

    PubMed Central

    Selle, Kurt; Goh, Yong J.; Johnson, Brant R.; O’Flaherty, Sarah; Andersen, Joakim M.; Barrangou, Rodolphe; Klaenhammer, Todd R.

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-characterized probiotic microorganism, supported by a decade of genomic and functional phenotypic investigations. L. acidophilus deficient in lipoteichoic acid (LTA), a major immunostimulant in Gram-positive bacteria, has been shown to shift immune system responses in animal disease models. However, the pleiotropic effects of removing LTA from the cell surface in lactobacilli are unknown. In this study, we surveyed the global transcriptional and extracellular protein profiles of two strains of L. acidophilus deficient in LTA. Twenty-four differentially expressed genes specific to the LTA-deficient strains were identified, including a predicted heavy metal resistance operon and several putative peptidoglycan hydrolases. Cell morphology and manganese sensitivity phenotypes were assessed in relation to the putative functions of differentially expressed genes. LTA-deficient L. acidophilus exhibited elongated cellular morphology and their growth was severely inhibited by elevated manganese concentrations. Exoproteomic surveys revealed distinct changes in the composition and relative abundances of several extracellular proteins and showed a bias of intracellular proteins in LTA-deficient strains of L. acidophilus. Taken together, these results elucidate the impact of ltaS deletion on the transcriptome and extracellular proteins of L. acidophilus, suggesting roles of LTA in cell morphology and ion homeostasis as a structural component of the Gram positive cell wall. PMID:28443071

  12. Deletion of Lipoteichoic Acid Synthase Impacts Expression of Genes Encoding Cell Surface Proteins in Lactobacillus acidophilus.

    PubMed

    Selle, Kurt; Goh, Yong J; Johnson, Brant R; O'Flaherty, Sarah; Andersen, Joakim M; Barrangou, Rodolphe; Klaenhammer, Todd R

    2017-01-01

    Lactobacillus acidophilus NCFM is a well-characterized probiotic microorganism, supported by a decade of genomic and functional phenotypic investigations. L. acidophilus deficient in lipoteichoic acid (LTA), a major immunostimulant in Gram-positive bacteria, has been shown to shift immune system responses in animal disease models. However, the pleiotropic effects of removing LTA from the cell surface in lactobacilli are unknown. In this study, we surveyed the global transcriptional and extracellular protein profiles of two strains of L. acidophilus deficient in LTA. Twenty-four differentially expressed genes specific to the LTA-deficient strains were identified, including a predicted heavy metal resistance operon and several putative peptidoglycan hydrolases. Cell morphology and manganese sensitivity phenotypes were assessed in relation to the putative functions of differentially expressed genes. LTA-deficient L. acidophilus exhibited elongated cellular morphology and their growth was severely inhibited by elevated manganese concentrations. Exoproteomic surveys revealed distinct changes in the composition and relative abundances of several extracellular proteins and showed a bias of intracellular proteins in LTA-deficient strains of L. acidophilus . Taken together, these results elucidate the impact of ltaS deletion on the transcriptome and extracellular proteins of L. acidophilus , suggesting roles of LTA in cell morphology and ion homeostasis as a structural component of the Gram positive cell wall.

  13. Improvement of the performance of the positive electrode in the lead/acid battery by addition of boric acid

    NASA Astrophysics Data System (ADS)

    Badawy, W. A.; El-Egamy, S. S.

    A major disadvantage of the lead/acid battery is the decrease in voltage during operation which makes it unsuitable for systems sensitive to voltage fluctuations. Additives like BaSO 4 or SrSO 4, which are isomorphous to PbSO 4, have been used to overcome this problem. Phosphoric acid and the various phosphates have long been used to improve the performance of the positive electrode of the battery. A beneficial effect of phosphoric acid is to inhibit the rate of the self-discharge reaction of the positive electrode in the lead/acid battery. However, adverse effects of phosphoric acid include capacity loss in the initial cycles, excessive mossing, especially at high H 3PO 4 concentrations, and poor low-temperature performance (decrease in the rate of PbSO 4 oxidation). The effect of boric acid as an additive substituting for H 3PO 4 has been investigated using linear sweep voltammetry, constant potential and impedance measurements. The results show that boric acid markedly improves the kinetics of the {PbO 2}/{PbSO 4} couple and removes the problems encountered during the usage of H 3PO 4.

  14. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice

    PubMed Central

    Kraft, Andrew W.; Hu, Xiaoyan; Yoon, Hyejin; Yan, Ping; Xiao, Qingli; Wang, Yan; Gil, So Chon; Brown, Jennifer; Wilhelmsson, Ulrika; Restivo, Jessica L.; Cirrito, John R.; Holtzman, David M.; Kim, Jungsu; Pekny, Milos; Lee, Jin-Moo

    2013-01-01

    The accumulation of aggregated amyloid-β (Aβ) in amyloid plaques is a neuropathological hallmark of Alzheimer's disease (AD). Reactive astrocytes are intimately associated with amyloid plaques; however, their role in AD pathogenesis is unclear. We deleted the genes encoding two intermediate filament proteins required for astrocyte activation—glial fibrillary acid protein (Gfap) and vimentin (Vim)—in transgenic mice expressing mutant human amyloid precursor protein and presenilin-1 (APP/PS1). The gene deletions increased amyloid plaque load: APP/PS1 Gfap−/−Vim−/− mice had twice the plaque load of APP/PS1 Gfap+/+Vim+/+ mice at 8 and 12 mo of age. APP expression and soluble and interstitial fluid Aβ levels were unchanged, suggesting that the deletions had no effect on APP processing or Aβ generation. Astrocyte morphology was markedly altered by the deletions: wild-type astrocytes had hypertrophied processes that surrounded and infiltrated plaques, whereas Gfap−/−Vim−/− astrocytes had little process hypertrophy and lacked contact with adjacent plaques. Moreover, Gfap and Vim gene deletion resulted in a marked increase in dystrophic neurites (2- to 3-fold higher than APP/PS1 Gfap+/+Vim+/+ mice), even after normalization for amyloid load. These results suggest that astrocyte activation limits plaque growth and attenuates plaque-related dystrophic neurites. These activities may require intimate contact between astrocyte and plaque.—Kraft, A. W., Hu, X., Yoon, H., Yan, P., Xiao, Q., Wang, Y., Gil, S. C., Brown, J., Wilhelmsson, U., Restivo, J. L., Cirrito, J. R., Holtzman, D. M., Kim, J., Pekny, M., Lee, J.-M. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. PMID:23038755

  15. Brain–blood amino acid correlates following protein restriction in murine maple syrup urine disease

    PubMed Central

    2014-01-01

    Background Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. Methods To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. Results LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Conclusions Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders. PMID:24886632

  16. Brain-blood amino acid correlates following protein restriction in murine maple syrup urine disease.

    PubMed

    Vogel, Kara R; Arning, Erland; Wasek, Brandi L; McPherson, Sterling; Bottiglieri, Teodoro; Gibson, K Michael

    2014-05-08

    Conventional therapy for patients with maple syrup urine disease (MSUD) entails restriction of protein intake to maintain acceptable levels of the branched chain amino acid, leucine (LEU), monitored in blood. However, no data exists on the correlation between brain and blood LEU with protein restriction, and whether correction in blood is reflected in brain. To address this question, we fed intermediate MSUD mice diets of 19% (standard) and 6% protein, with collection of sera (SE), striata (STR), cerebellum (CE) and cortex (CTX) for quantitative amino acid analyses. LEU and valine (VAL) levels in all brain regions improved on average 28% when shifting from 19% to 6% protein, whereas the same improvements in SE were on average 60%. Isoleucine (ILE) in brain regions did not improve, while the SE level improved 24% with low-protein consumption. Blood-branched chain amino acids (LEU, ILE, and VAL in sera (SE)) were 362-434 μM, consistent with human values considered within control. Nonetheless, numerous amino acids in brain regions remained abnormal despite protein restriction, including glutamine (GLN), aspartate (ASP), glutamate (GLU), gamma-aminobutyric acid (GABA), asparagine (ASN), citrulline (CIT) and serine (SER). To assess the specificity of these anomalies, we piloted preliminary studies in hyperphenylalaninemic mice, modeling another large neutral aminoacidopathy. Employing an identical dietary regimen, we found remarkably consistent abnormalities in GLN, ASP, and GLU. Our results suggest that blood amino acid analysis may be a poor surrogate for assessing the outcomes of protein restriction in the large neutral amino acidopathies, and further indicate that chronic neurotransmitter disruptions (GLU, GABA, ASP) may contribute to long-term neurocognitive dysfunction in these disorders.

  17. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA.

    PubMed Central

    Prats, A C; Sarih, L; Gabus, C; Litvak, S; Keith, G; Darlix, J L

    1988-01-01

    Retrovirus virions carry a diploid genome associated with a large number of small viral finger protein molecules which are required for encapsidation. Our present results show that finger protein p12 of Rous sarcoma virus (RSV) and p10 of murine leukaemia virus (MuLV) positions replication primer tRNA on the replication initiation site (PBS) at the 5' end of the RNA genome. An RSV mutant with a Val-Pro insertion in the finger motif of p12 is able to partially encapsidate genomic RNA but is not infectious because mutated p12 is incapable of positioning the replication primer, tRNATrp. Since all known replication competent retroviruses, and the plant virus CaMV, code for finger proteins analogous to RSV p12 or MuLV p10, the initial stage of reverse transcription in avian, mammalian and human retroviruses and in CaMV is probably controlled in an analogous way. Images PMID:2458920

  18. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA.

    PubMed

    Prats, A C; Sarih, L; Gabus, C; Litvak, S; Keith, G; Darlix, J L

    1988-06-01

    Retrovirus virions carry a diploid genome associated with a large number of small viral finger protein molecules which are required for encapsidation. Our present results show that finger protein p12 of Rous sarcoma virus (RSV) and p10 of murine leukaemia virus (MuLV) positions replication primer tRNA on the replication initiation site (PBS) at the 5' end of the RNA genome. An RSV mutant with a Val-Pro insertion in the finger motif of p12 is able to partially encapsidate genomic RNA but is not infectious because mutated p12 is incapable of positioning the replication primer, tRNATrp. Since all known replication competent retroviruses, and the plant virus CaMV, code for finger proteins analogous to RSV p12 or MuLV p10, the initial stage of reverse transcription in avian, mammalian and human retroviruses and in CaMV is probably controlled in an analogous way.

  19. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity

    PubMed Central

    Caljon, Guy; Ridder, Karin De; Stijlemans, Benoît; Coosemans, Marc; Magez, Stefan; De Baetselier, Patrick; Van Den Abbeele, Jan

    2012-01-01

    Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents. PMID:23110062

  20. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  1. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    PubMed

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  2. Consumer perception of astringency in clear acidic whey protein beverages.

    PubMed

    Childs, Jessica L; Drake, MaryAnne

    2010-01-01

    Acidic whey protein beverages are a growing component of the functional food and beverage market. These beverages are also astringent, but astringency is an expected and desirable attribute of many beverages (red wine, tea, coffee) and may not necessarily be a negative attribute of acidic whey protein beverages. The goal of this study was to define the consumer perception of astringency in clear acidic whey protein beverages. Six focus groups (n=49) were held to gain understanding of consumer knowledge of astringency. Consumers were presented with beverages and asked to map them based on astringent mouthfeel and liking. Orthonasal thresholds for whey protein isolate (WPI) in water and flavored model beverages were determined using a 7-series ascending forced choice method. Mouthfeel/basic taste thresholds were determined for WPI in water. Acceptance tests on model beverages were conducted using consumers (n=120) with and without wearing nose clips. Consumers in focus groups were able to identify astringency in beverages. Astringency intensity was not directly related to dislike. The orthonasal threshold for WPI in water was lower (P < 0.05) than the mouthfeel/basic taste threshold of WPI in water. Consumer acceptance of beverages containing WPI was lower (P < 0.05) when consumers were not wearing nose clips compared to acceptance scores of beverages when consumers were wearing nose clips. These results suggest that flavors contributed by WPI in acidic beverages are more objectionable than the astringent mouthfeel and that both flavor and astringency should be the focus of ongoing studies to improve the palatability of these products. © 2010 Institute of Food Technologists®

  3. Identifying protein kinase target preferences using mass spectrometry

    PubMed Central

    Douglass, Jacqueline; Gunaratne, Ruwan; Bradford, Davis; Saeed, Fahad; Hoffert, Jason D.; Steinbach, Peter J.; Pisitkun, Trairak

    2012-01-01

    A general question in molecular physiology is how to identify candidate protein kinases corresponding to a known or hypothetical phosphorylation site in a protein of interest. It is generally recognized that the amino acid sequence surrounding the phosphorylation site provides information that is relevant to identification of the cognate protein kinase. Here, we present a mass spectrometry-based method for profiling the target specificity of a given protein kinase as well as a computational tool for the calculation and visualization of the target preferences. The mass spectrometry-based method identifies sites phosphorylated in response to in vitro incubation of protein mixtures with active recombinant protein kinases followed by standard phosphoproteomic methodologies. The computational tool, called “PhosphoLogo,” uses an information-theoretic algorithm to calculate position-specific amino acid preferences and anti-preferences from the mass-spectrometry data (http://helixweb.nih.gov/PhosphoLogo/). The method was tested using protein kinase A (catalytic subunit α), revealing the well-known preference for basic amino acids in positions −2 and −3 relative to the phosphorylated amino acid. It also provides evidence for a preference for amino acids with a branched aliphatic side chain in position +1, a finding compatible with known crystal structures of protein kinase A. The method was also employed to profile target preferences and anti-preferences for 15 additional protein kinases with potential roles in regulation of epithelial transport: CK2, p38, AKT1, SGK1, PKCδ, CaMK2δ, DAPK1, MAPKAPK2, PKD3, PIM1, OSR1, STK39/SPAK, GSK3β, Wnk1, and Wnk4. PMID:22723110

  4. Spinal Cord Repair with Engineered Nervous Tissue

    DTIC Science & Technology

    2014-04-01

    anti-SMI31 (1:1000, Covance ), mouse anti-SMI32 (1:1000, Covance ), chicken anti-Glial Fibrillary Acidic Protein (GFAP; 1:250, Millipore), rabbit anti...PRINCIPAL INVESTIGATOR: Douglas H. Smith, M.D. CONTRACTING ORGANIZATION : University of Pennsylvania Philadelphia PA 19104...PROJECT NUMBER 5e. TASK NUMBER Email: smithdou@mail.med.upenn.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND

  5. Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs

    PubMed Central

    Suryawan, Agus; O’Connor, Pamela M. J.; Bush, Jill A.; Nguyen, Hanh V.

    2009-01-01

    The high efficiency of protein deposition during the neonatal period is driven by high rates of protein synthesis, which are maximally stimulated after feeding. In the current study, we examined the individual roles of amino acids and insulin in the regulation of protein synthesis in peripheral and visceral tissues of the neonate by performing pancreatic glucose–amino acid clamps in overnight-fasted 7-day-old pigs. We infused pigs (n = 8–12/group) with insulin at 0, 10, 22, and 110 ng kg−0.66 min−1 to achieve ~0, 2, 6 and 30 μU ml−1 insulin so as to simulate below fasting, fasting, intermediate, and fed insulin levels, respectively. At each insulin dose, amino acids were maintained at the fasting or fed level. In conjunction with the highest insulin dose, amino acids were also allowed to fall below the fasting level. Tissue protein synthesis was measured using a flooding dose of L-[4-3H] phenylalanine. Both insulin and amino acids increased fractional rates of protein synthesis in longissimus dorsi, gastrocnemius, masseter, and diaphragm muscles. Insulin, but not amino acids, increased protein synthesis in the skin. Amino acids, but not insulin, increased protein synthesis in the liver, pancreas, spleen, and lung and tended to increase protein synthesis in the jejunum and kidney. Neither insulin nor amino acids altered protein synthesis in the stomach. The results suggest that the stimulation of protein synthesis by feeding in most tissues of the neonate is regulated by the post-prandial rise in amino acids. However, the feeding-induced stimulation of protein synthesis in skeletal muscles is independently mediated by insulin as well as amino acids. PMID:18683020

  6. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis.

    PubMed

    Wilson, Fiona A; Suryawan, Agus; Orellana, Renán A; Nguyen, Hanh V; Jeyapalan, Asumthia S; Gazzaneo, Maria C; Davis, Teresa A

    2008-10-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.

  7. Nucleic acid programmable protein array a just-in-time multiplexed protein expression and purification platform.

    PubMed

    Qiu, Ji; LaBaer, Joshua

    2011-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielmann, Regula; Habann, Matthias; Eugster, Marcel R.

    Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly understood. We present the first description of receptor binding proteins and a tail tip structure for the siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were identified as RBPs in phage A118. Rhamnose residues in wallmore » teichoic acids represent the binding ligands for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission electron microscopy allowed the creation of a topological model of the A118 phage tail. - Highlights: • We present the first description of receptor binding proteins and a tail tip structure for the Siphovirus group infecting Listeria monocytogenes. • The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. • Rhamnose residues in wall teichoic acids represent the binding ligands for both receptor binding proteins in phage A118. • Rhamnose and N-acetylglucosamine are required for adsorption of phage P35. • We preset a topological model of the A118 phage tail.« less

  9. Dietary Docosahexaenoic Acid Supplementation Enhances Expression of Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier and Brain Docosahexaenoic Acid Levels.

    PubMed

    Pan, Yijun; Morris, Elonie R; Scanlon, Martin J; Marriott, Philip J; Porter, Christopher Jh; Nicolazzo, Joseph A

    2018-03-27

    The cytoplasmic trafficking of docosahexaenoic acid (DHA), a cognitively-beneficial fatty acid, across the blood-brain barrier (BBB) is governed by fatty acid-binding protein 5 (FABP5). Lower levels of brain DHA have been observed in Alzheimer's disease (AD), which is associated with diminished BBB expression of FABP5. Therefore, upregulating FABP5 expression at the BBB may be a novel approach for enhancing BBB transport of DHA in AD. DHA supplementation has been shown to be beneficial in various mouse models of AD, and therefore, the aim of this study was to determine whether DHA has the potential to upregulate the BBB expression of FABP5, thereby enhancing its own uptake into the brain. Treating human brain microvascular brain endothelial (hCMEC/D3) cells with the maximum tolerable concentration of DHA (12.5 μM) for 72 hr resulted in a 1.4-fold increase in FABP5 protein expression. Associated with this was increased expression of fatty acid transport proteins 1 and 4. To study the impact of dietary DHA supplementation, 6-8 week old C57BL/6 mice were fed with a control diet or a DHA-enriched diet for 21 days. Brain microvascular FABP5 protein expression was upregulated 1.7-fold in mice fed the DHA-enriched diet, and this was associated with increased brain DHA levels (1.3-fold). Despite an increase in brain DHA levels, reduced BBB transport of 14 C-DHA was observed over a 1 min perfusion, possibly as a result of competitive binding to FABP5 between dietary DHA and 14 C-DHA. The current study has demonstrated that DHA can increase BBB expression of FABP5, as well as fatty acid transporters, overall increasing brain DHA levels. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Omega-3 fatty acids revert high-fat diet-induced neuroinflammation but not recognition memory impairment in rats.

    PubMed

    de Andrade, Aline Marcelino; Fernandes, Marilda da Cruz; de Fraga, Luciano Stürmer; Porawski, Marilene; Giovenardi, Márcia; Guedes, Renata Padilha

    2017-12-01

    Neuroinflammation is a consequence of overeating and may predispose to the development of cognitive decline and neurological disorders. This study aimed to evaluate the impact of omega-3 supplementation on memory and neuroinflammatory markers in rats fed a high-fat diet. Male Wistar rats were divided into four groups: standard diet (SD); standard diet + omega-3 (SD + O); high fat diet (HFD); and high fat diet + omega-3 (HFD + O). Diet administration was performed for 20 weeks and omega-3 supplementation started at the 16th week. HFD significantly increased body weight, while omega-3 supplementation did not modify the total weight gain. However, animals from the HFD + O group showed a lower level of visceral fat along with an improvement in insulin sensitivity following HFD. Thus, our results demonstrate a beneficial metabolic role of omega-3 following HFD. On the other hand, HFD animals presented an impairment in object recognition memory, which was not recovered by omega-3. In addition, there was an increase in GFAP-positive cells in the cerebral cortex of the HFD group, showing that omega-3 supplementation can be effective to decrease astrogliosis. However, no differences in GFAP number of cells were found in the hippocampus. We also demonstrated a significant increase in gene expression of pro-inflammatory cytokines IL-6 and TNF-α in cerebral cortex of the HFD group, reinforcing the anti-inflammatory role of this family of fatty acids. In summary, omega-3 supplementation was not sufficient to reverse the memory deficit caused by HFD, although it played an important role in reducing the neuroinflammatory profile. Therefore, omega-3 fatty acids may play an important role in the central nervous system, preventing the progression of neuroinflammation in obesity.

  11. Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations.

    PubMed

    Ul Ain, Qurrat; Lee, Jong Hwan; Woo, Young Sun; Kim, Yong-Hee

    2016-09-01

    Protein drugs have attracted considerable attention as therapeutic agents due to their diversity and biocompatibility. However, hydrophilic proteins possess difficulty in penetrating lipophilic cell membrane. Although protein transduction domains (PTDs) have shown effectiveness in protein delivery, the importance of selection and position of PTDs in recombinant protein vector constructs has not been investigated. This study intends to investigate the significance of PTD selection and position for therapeutic protein delivery. Heat shock protein 27 (Hsp27) would be a therapeutic protein for the treatment of ischemic heart diseases, but itself is insufficient to prevent systemic degradation and overcoming biochemical barriers during cellular transport. Among all PTD-Hsp27 fusion proteins we cloned, Tat-Hsp27 fusion protein showed the highest efficacy. Nona-arginine (9R) conjugation to the N-terminal of Hsp27 (Hsp27-T) showed higher efficacy than C-terminal. To test the synergistic effect of two PTDs, Tat was inserted to the N-terminal of Hsp27-9R. Tat-Hsp27-9R exhibited enhanced transduction efficiency and significant improvement against oxidative stress and apoptosis. PTD-Hsp27 fusion proteins have strong potential to be developed as therapeutic proteins for the treatment of ischemic heart diseases and selection and position of PTDs for improved efficacy of PTD-fusion proteins need to be optimized considering protein's nature, transduction efficiency and stability.

  12. Free-Energy-Based Protein Design: Re-Engineering Cellular Retinoic Acid Binding Protein II Assisted by the Moveable-Type Approach.

    PubMed

    Zhong, Haizhen A; Santos, Elizabeth M; Vasileiou, Chrysoula; Zheng, Zheng; Geiger, James H; Borhan, Babak; Merz, Kenneth M

    2018-03-14

    How to fine-tune the binding free energy of a small-molecule to a receptor site by altering the amino acid residue composition is a key question in protein engineering. Indeed, the ultimate solution to this problem, to chemical accuracy (±1 kcal/mol), will result in profound and wide-ranging applications in protein design. Numerous tools have been developed to address this question using knowledge-based models to more computationally intensive molecular dynamics simulations-based free energy calculations, but while some success has been achieved there remains room for improvement in terms of overall accuracy and in the speed of the methodology. Here we report a fast, knowledge-based movable-type (MT)-based approach to estimate the absolute and relative free energy of binding as influenced by mutations in a small-molecule binding site in a protein. We retrospectively validate our approach using mutagenesis data for retinoic acid binding to the Cellular Retinoic Acid Binding Protein II (CRABPII) system and then make prospective predictions that are borne out experimentally. The overall performance of our approach is supported by its success in identifying mutants that show high or even sub-nano-molar binding affinities of retinoic acid to the CRABPII system.

  13. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction.

    PubMed

    De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele

    2018-01-01

    The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  14. Trends of amino acid usage in the proteins from the unicellular parasite Giardia lamblia.

    PubMed

    Garat, B; Musto, H

    2000-12-29

    Correspondence analysis of amino acid frequencies was applied to 75 complete coding sequences from the unicellular parasite Giardia lamblia, and it was found that three major factors influence the variability of amino acidic composition of proteins. The first trend strongly correlated with (a) the cysteine content and (b) the mean weight of the amino acids used in each protein. The second trend correlated with the global levels of hydropathy and aromaticity of each protein. Both axes might be related with the defense of the parasite to oxygen free radicals. Finally, the third trend correlated with the expressivity of each gene, indicating that in G. lamblia highly expressed sequences display a tendency to preferentially use a subset of the total amino acids.

  15. In Silico Evidence for the Horizontal Transfer of gsiB, a σΒ-Regulated Gene in Gram-Positive Bacteria, to Lactic Acid Bacteria ▿

    PubMed Central

    Asteri, Ioanna-Areti; Boutou, Effrossyni; Anastasiou, Rania; Pot, Bruno; Vorgias, Constantinos E.; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2011-01-01

    gsiB, coding for glucose starvation-inducible protein B, is a characteristic member of the σΒ stress regulon of Bacillus subtilis and several other Gram-positive bacteria. Here we provide in silico evidence for the horizontal transfer of gsiB in lactic acid bacteria that are devoid of the σΒ factor. PMID:21421783

  16. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  17. Changes of protein expression profiles in the amygdala during the process of morphine-induced conditioned place preference in rats.

    PubMed

    Lin, XiaoJing; Wang, QingSong; Cheng, Yong; Ji, JianGuo; Yu, Long-Chuan

    2011-08-01

    Repeated exposures to addictive drugs result in persistent or even permanent expression changes of proteins in addiction-related brain regions, such as nucleus accumbens, hippocampus and prefrontal cortex while the changes of protein content in amygdala were seldom studied. Here we aimed to find the proteins involved in the process of morphine-induced conditioned place preference (CPP). The model of morphine-induced CPP was established in rats and the rat amygdala tissues were obtained in different stages of morphine-induced CPP: establishment group, extinction group, reinstatement group and saline group as a control. Two-dimensional electrophoresis (2-DE) was performed to analyze and compare the changes of protein expression profiles in the amygdala of rats during the process of morphine-induced CPP. There were eighty proteins with 1.3-fold changes in amygdala relative to saline group, most of which were down-regulated. These differentially expressed proteins were mainly involved in metabolism, structure, cell signaling pathway and ubiquitin-proteasome pathway. And we further used methods of reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting to confirm the results of proteomics. Mitosis activated protein kinase1 (MAPK1) was increased in the stages of extinction and reinstatement of morphine-induced CPP, while glial fibrillary acidic protein (GFAP) was decreased in the stage of extinction. Our results provide some proteins and cellular signaling pathways involved in the molecular mechanisms of opioid addiction in amygdala. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.

    PubMed Central

    Grange, T; de Sa, C M; Oddos, J; Pictet, R

    1987-01-01

    We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805

  19. Calorie restriction attenuates astrogliosis but not amyloid plaque load in aged rhesus macaques: a preliminary quantitative imaging study

    PubMed Central

    Sridharan, Aadhavi; Pehar, Mariana; Salamat, M Shahriar; Pugh, Thomas D; Bendlin, Barbara B; Willette, Auriel A; Anderson, Rozalyn M; Kemnitz, Joseph W; Colman, Ricki J; Weindruch, Richard H; Puglielli, Luigi; Johnson, Sterling C

    2013-01-01

    While moderate calorie restriction (CR) in the absence of malnutrition has been consistently shown to have a systemic, beneficial effect against aging in several animals models, its effect on the brain microstructure in a non-human primate model remains to be studied using post-mortem histopathologic techniques. In the present study, we investigated differences in expression levels of glial fibrillary acid protein (GFAP) and β-amyloid plaque load in the hippocampus and the adjacent cortical areas of 7 Control (ad libitum)-fed and 6 CR male rhesus macaques using immunostaining methods. CR monkeys expressed significantly lower levels (∼30% on average) of GFAP than Controls in the CA region of the hippocampus and entorhinal cortex, suggesting a protective effect of CR in limiting astrogliosis. These results recapitulate the neuroprotective effects of CR seen in shorter-lived animal models. There was a significant positive association between age and average amyloid plaque pathology in these animals, but there was no significant difference in amyloid plaque distribution between the two groups. Two of the seven Control animals (28.6%) and one of the six CR animal (16.7%) did not express any amyloid plaques, five of seven Controls (71.4%) and four of six CR animals (66.7%) expressed minimal to moderate amyloid pathology, and one of six CR animals (16.7%) expressed severe amyloid pathology. That CR affects levels of GFAP expression but not amyloid plaque load provides some insight into the means by which CR is beneficial at the microstructural level, potentially by offsetting the increased load of oxidatively damaged proteins, in this non-human primate model of aging. The present study is a preliminary post-mortem histological analysis of the effects of CR on brain health, and further studies using molecular and biochemical techniques are warranted to elucidate underlying mechanisms. PMID:23473840

  20. Identification of a maize nucleic acid-binding protein (NBP) belonging to a family of nuclear-encoded chloroplast proteins.

    PubMed Central

    Cook, W B; Walker, J C

    1992-01-01

    A cDNA encoding a nuclear-encoded chloroplast nucleic acid-binding protein (NBP) has been isolated from maize. Identified as an in vitro DNA-binding activity, NBP belongs to a family of nuclear-encoded chloroplast proteins which share a common domain structure and are thought to be involved in posttranscriptional regulation of chloroplast gene expression. NBP contains an N-terminal chloroplast transit peptide, a highly acidic domain and a pair of ribonucleoprotein consensus sequence domains. NBP is expressed in a light-dependent, organ-specific manner which is consistent with its involvement in chloroplast biogenesis. The relationship of NBP to the other members of this protein family and their possible regulatory functions are discussed. Images PMID:1346929

  1. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean.

    PubMed

    Kulkarni, Krishnanand P; Patil, Gunvant; Valliyodan, Babu; Vuong, Tri D; Shannon, J Grover; Nguyen, Henry T; Lee, Jeong-Dong

    2018-03-01

    The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.

  2. Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins.

    PubMed

    Chavali, Sreenivas; Chavali, Pavithra L; Chalancon, Guilhem; de Groot, Natalia Sanchez; Gemayel, Rita; Latysheva, Natasha S; Ing-Simmons, Elizabeth; Verstrepen, Kevin J; Balaji, Santhanam; Babu, M Madan

    2017-09-01

    Proteins with amino acid homorepeats have the potential to be detrimental to cells and are often associated with human diseases. Why, then, are homorepeats prevalent in eukaryotic proteomes? In yeast, homorepeats are enriched in proteins that are essential and pleiotropic and that buffer environmental insults. The presence of homorepeats increases the functional versatility of proteins by mediating protein interactions and facilitating spatial organization in a repeat-dependent manner. During evolution, homorepeats are preferentially retained in proteins with stringent proteostasis, which might minimize repeat-associated detrimental effects such as unregulated phase separation and protein aggregation. Their presence facilitates rapid protein divergence through accumulation of amino acid substitutions, which often affect linear motifs and post-translational-modification sites. These substitutions may result in rewiring protein interaction and signaling networks. Thus, homorepeats are distinct modules that are often retained in stringently regulated proteins. Their presence facilitates rapid exploration of the genotype-phenotype landscape of a population, thereby contributing to adaptation and fitness.

  3. The human fatty acid-binding protein family: Evolutionary divergences and functions

    PubMed Central

    2011-01-01

    Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied. PMID:21504868

  4. Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging.

    PubMed

    Platre, Matthieu Pierre; Jaillais, Yvon

    2016-01-01

    Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS), and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach.

  5. Molecular taxonomy and phylogenetic position of lactic acid bacteria.

    PubMed

    Stackebrandt, E; Teuber, M

    1988-03-01

    Lactic acid bacteria, important in food technology, are Gram-positive organisms exhibiting a DNA G + C content of less than 50 mol%. Phylogenetically they are members of the Clostridium-Bacillus subdivision of Gram-positive eubacteria. Lactobacillus and streptococci together with related facultatively anaerobic taxa evolved as individual lines of descent about 1.5-2 billion years ago when the earth passed from an anaerobic to an aerobic environment. In contrast to the traditional, morphology-based classification, the genus Lactobacillus is intermixed with strains of Pediococcus and Leuconostoc. Similarly, the physiology-based clustering of lactobacilli into Thermo-, Strepto- and Betabacterium does not agree with their phylogenetic relationships. On the other hand, the phenotypically defined genus Streptococcus is not a phylogenetic coherent genus but its members fall into at least 3 moderately related genera, i.e. Streptococcus, Lactococcus and Enterococcus. The genus Bifidobacterium, frequently grouped with the lactobacilli, is the most ancient group of the second, the Actinomycetes subdivision of the Gram-positive eubacteria. In addition, propionibacteria, microbacteria and brevibacteria belong to this subdivision but the latter organisms appear as offshoots of non-lactic acid bacteria.

  6. Nuclear translocation of proteins and the effect of phosphatidic acid.

    PubMed

    Yao, Hongyan; Wang, Geliang; Wang, Xuemin

    2014-01-01

    Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.

  7. Experimental assessment of the importance of amino acid positions identified by an entropy-based correlation analysis of multiple-sequence alignments.

    PubMed

    Dietrich, Susanne; Borst, Nadine; Schlee, Sandra; Schneider, Daniel; Janda, Jan-Oliver; Sterner, Reinhard; Merkl, Rainer

    2012-07-17

    The analysis of a multiple-sequence alignment (MSA) with correlation methods identifies pairs of residue positions whose occupation with amino acids changes in a concerted manner. It is plausible to assume that positions that are part of many such correlation pairs are important for protein function or stability. We have used the algorithm H2r to identify positions k in the MSAs of the enzymes anthranilate phosphoribosyl transferase (AnPRT) and indole-3-glycerol phosphate synthase (IGPS) that show a high conn(k) value, i.e., a large number of significant correlations in which k is involved. The importance of the identified residues was experimentally validated by performing mutagenesis studies with sAnPRT and sIGPS from the archaeon Sulfolobus solfataricus. For sAnPRT, five H2r mutant proteins were generated by replacing nonconserved residues with alanine or the prevalent residue of the MSA. As a control, five residues with conn(k) values of zero were chosen randomly and replaced with alanine. The catalytic activities and conformational stabilities of the H2r and control mutant proteins were analyzed by steady-state enzyme kinetics and thermal unfolding studies. Compared to wild-type sAnPRT, the catalytic efficiencies (k(cat)/K(M)) were largely unaltered. In contrast, the apparent thermal unfolding temperature (T(M)(app)) was lowered in most proteins. Remarkably, the strongest observed destabilization (ΔT(M)(app) = 14 °C) was caused by the V284A exchange, which pertains to the position with the highest correlation signal [conn(k) = 11]. For sIGPS, six H2r mutant and four control proteins with alanine exchanges were generated and characterized. The k(cat)/K(M) values of four H2r mutant proteins were reduced between 13- and 120-fold, and their T(M)(app) values were decreased by up to 5 °C. For the sIGPS control proteins, the observed activity and stability decreases were much less severe. Our findings demonstrate that positions with high conn(k) values have an

  8. Chronic administration of docosahexaenoic acid or eicosapentaenoic acid, but not arachidonic acid, alone or in combination with uridine, increases brain phosphatide and synaptic protein levels in gerbils.

    PubMed

    Cansev, M; Wurtman, R J

    2007-08-24

    Synthesis of phosphatidylcholine, the most abundant brain membrane phosphatide, requires three circulating precursors: choline; a pyrimidine (e.g. uridine); and a polyunsaturated fatty acid. Supplementing a choline-containing diet with the uridine source uridine-5'-monophosphate (UMP) or, especially, with UMP plus the omega-3 fatty acid docosahexaenoic acid (given by gavage), produces substantial increases in membrane phosphatide and synaptic protein levels within gerbil brain. We now compare the effects of various polyunsaturated fatty acids, given alone or with UMP, on these synaptic membrane constituents. Gerbils received, daily for 4 weeks, a diet containing choline chloride with or without UMP and/or, by gavage, an omega-3 (docosahexaenoic or eicosapentaenoic acid) or omega-6 (arachidonic acid) fatty acid. Both of the omega-3 fatty acids elevated major brain phosphatide levels (by 18-28%, and 21-27%) and giving UMP along with them enhanced their effects significantly. Arachidonic acid, given alone or with UMP, was without effect. After UMP plus docosahexaenoic acid treatment, total brain phospholipid levels and those of each individual phosphatide increased significantly in all brain regions examined (cortex, striatum, hippocampus, brain stem, and cerebellum). The increases in brain phosphatides in gerbils receiving an omega-3 (but not omega-6) fatty acid, with or without UMP, were accompanied by parallel elevations in levels of pre- and post-synaptic proteins (syntaxin-3, PSD-95 and synapsin-1) but not in those of a ubiquitous structural protein, beta-tubulin. Hence administering omega-3 polyunsaturated fatty acids can enhance synaptic membrane levels in gerbils, and may do so in patients with neurodegenerative diseases, especially when given with a uridine source, while the omega-6 polyunsaturated fatty acid arachidonic acid is ineffective.

  9. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism

    PubMed Central

    Fatemi, S. Hossein; Folsom, Timothy D.; Kneeland, Rachel E.; Liesch, Stephanie B.

    2011-01-01

    Recent work has demonstrated the impact of dysfunction of the GABAergic signaling system in brain and the resultant behavioral pathologies in subjects with autism. In animal models, altered expression of Fragile X mental retardation protein (FMRP) has been linked to downregulation of GABA receptors. Interestingly, the autistic phenotype is also observed in individuals with Fragile X syndrome. This study was undertaken to test previous theories relating abnormalities in levels of FMRP to GABAA receptor underexpression. We observed a significant reduction in levels of FMRP in the vermis of adults with autism. Additionally, we found that levels of metabotropic glutamate receptor 5 (mGluR5) protein were significantly increased in vermis of children with autism vs. age and postmortem interval (PMI) matched controls. There was also a significant decrease in level of GABAA receptor beta 3 (GABRβ3) protein in vermis of adult subjects with autism. Finally, we found significant increases in glial fibrillary acidic protein (GFAP) in vermis of both children and adults with autism when compared with controls. Taken together, our results provide further evidence that altered FMRP expression and increased mGluR5 protein production potentially leads to altered expression of GABAA receptors. PMID:21901840

  10. Immunocytochemical characterisation of neural stem-progenitor cells from green terror cichlid Aequidens rivulatus.

    PubMed

    Wen, C M; Chen, M M; Nan, F H; Wang, C S

    2017-01-01

    In this study, cultures of neural stem-progenitor cells (NSPC) from the brain of green terror cichlid Aequidens rivulatus were established and various NSPCs were demonstrated using immunocytochemistry. All of the NSPCs expressed brain lipid-binding protein, dopamine- and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32), oligodendrocyte transcription factor 2, paired box 6 and sex determining region Y-box 2. The intensity and localisation of these proteins, however, varied among the different NSPCs. Despite being intermediate cells, NSPCs can be divided into radial glial cells, oligodendrocyte progenitor cells (OPC) and neuroblasts by expressing the astrocyte marker glial fibrillary acidic protein (GFAP), OPC marker A2B5 and neuronal markers, including acetyl-tubulin, βIII-tubulin, microtubule-associated protein 2 and neurofilament protein. Nevertheless, astrocytes were polymorphic and were the most dominant cells in the NSPC cultures. By using Matrigel, radial glia exhibiting a long GFAP + or DARPP-32 + fibre and neurons exhibiting a significant acetyl-tubulin + process were obtained. The results confirmed that NSPCs obtained from A. rivulatus brains can proliferate and differentiate into neurons in vitro. Clonal culture can be useful for further studying the distinct NSPCs. © 2016 The Fisheries Society of the British Isles.

  11. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise–Induced Muscle Protein Anabolism123

    PubMed Central

    Rasmussen, Blake B

    2016-01-01

    The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose–dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor

  12. Role of positively charged residues of the second transmembrane domain in the ion transport activity and conformation of human uncoupling protein-2.

    PubMed

    Hoang, Tuan; Matovic, Tijana; Parker, James; Smith, Matthew D; Jelokhani-Niaraki, Masoud

    2015-04-14

    Residing at the inner mitochondrial membrane, uncoupling protein-2 (UCP2) mediates proton transport from the intermembrane space (IMS) to the mitochondrial matrix and consequently reduces the rate of ATP synthesis in the mitochondria. The ubiquitous expression of UCP2 in humans can be attributed to the protein's multiple physiological roles in tissues, including its involvement in protective mechanisms against oxidative stress, as well as glucose and lipid metabolisms. Currently, the structural properties and ion transport mechanism of UCP2 and other UCP homologues remain poorly understood. UCP2-mediated proton transport is activated by fatty acids and inhibited by di- and triphosphate purine nucleotides. UCP2 also transports chloride and some other small anions. Identification of key amino acid residues of UCP2 in its ion transport pathway can shed light on the protein's ion transport function. On the basis of our previous studies, the second transmembrane helix segment (TM2) of UCP2 exhibited chloride channel activity. In addition, it was suggested that the positively charged residues on TM2 domains of UCPs 1 and 2 were important for their chloride transport activity. On this basis, to further understand the role of these positively charged residues on the ion transport activity of UCP2, we recombinantly expressed four TM2 mutants: R76Q, R88Q, R96Q, and K104Q. The wild type UCP2 and its mutants were purified and reconstituted into liposomes, and their conformation and ion (proton and chloride) transport activity were studied. TM2 Arg residues at the matrix interface of UCP2 proved to be crucial for the protein's anion transport function, and their absence resulted in highly diminished Cl(-) transport rates. On the other hand, the two other positively charged residues of TM2, located at the UCP2-IMS interface, could participate in the salt-bridge formation in the protein and promote the interhelical tight packing in the UCP2. Absence of these residues did not

  13. Acidic and basic solutions dissolve protein plugs made of lithostathine complicating choledochal cyst/pancreaticobiliary maljunction.

    PubMed

    Kaneko, Kenitiro; Ono, Yasuyuki; Tainaka, Takahisa; Sumida, Wataru; Ando, Hisami

    2009-07-01

    Symptoms of choledochal cysts are caused by protein plugs made of lithostathine, which block the long common channel and increase pancreaticobiliary ductal pressure. Agents that dissolve protein plugs can provide relief from or prevent symptoms. In the present study, drugs reportedly effective for pancreatic and biliary stones were used in dissolution tests. Protein plugs were obtained from choledochal cysts during surgery in two children (5- and 6-year-old girls). Plugs approximately 2 mm in diameter were immersed in citric acid, tartaric acid, dimethadione, bromhexine, dehydrocholic acid, sodium citrate, hydrochloric acid, and sodium hydroxide solutions under observation with a digital microscope. The pH of each solution was measured using a pH meter. Plugs dissolved in citric acid (5.2 mM; pH 2.64), tartaric acid (6.7 mM; pH 2.51), dimethadione (75 mM; pH 3.70), hydrochloric acid (0.5 mM; pH 3.13), and sodium hydroxide (75 mM; pH 12.75) solutions. Plugs did not dissolve in dimethadione (7.5 mM; pH 4.31), bromhexine (0.1%; pH 4.68), dehydrocholic acid (5%; pH 7.45), and sodium citrate (75 mM; pH 7.23) solutions. Protein plugs in choledochal cysts are dissolved in acidic and basic solutions, which may eliminate longitudinal electrostatic interactions of the lithostathine protofibrils.

  14. Computational mining for hypothetical patterns of amino acid side chains in protein data bank (PDB)

    NASA Astrophysics Data System (ADS)

    Ghani, Nur Syatila Ab; Firdaus-Raih, Mohd

    2018-04-01

    The three-dimensional structure of a protein can provide insights regarding its function. Functional relationship between proteins can be inferred from fold and sequence similarities. In certain cases, sequence or fold comparison fails to conclude homology between proteins with similar mechanism. Since the structure is more conserved than the sequence, a constellation of functional residues can be similarly arranged among proteins of similar mechanism. Local structural similarity searches are able to detect such constellation of amino acids among distinct proteins, which can be useful to annotate proteins of unknown function. Detection of such patterns of amino acids on a large scale can increase the repertoire of important 3D motifs since available known 3D motifs currently, could not compensate the ever-increasing numbers of uncharacterized proteins to be annotated. Here, a computational platform for an automated detection of 3D motifs is described. A fuzzy-pattern searching algorithm derived from IMagine an Amino Acid 3D Arrangement search EnGINE (IMAAAGINE) was implemented to develop an automated method for searching of hypothetical patterns of amino acid side chains in Protein Data Bank (PDB), without the need for prior knowledge on related sequence or structure of pattern of interest. We present an example of the searches, which is the detection of a hypothetical pattern derived from known structural motif of C2H2 structural pattern from zinc fingers. The conservation of particular patterns of amino acid side chains in unrelated proteins is highlighted. This approach can act as a complementary method for available structure- and sequence-based platforms and may contribute in improving functional association between proteins.

  15. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice

    PubMed Central

    Saito, Mariko; Wu, Gusheng; Hui, Maria; Masiello, Kurt; Dobrenis, Kostantin; Ledeen, Robert W.; Saito, Mitsuo

    2015-01-01

    Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration. PMID:26063460

  16. A Thermoacidophile-Specific Protein Family, DUF3211, Functions as a Fatty Acid Carrier with Novel Binding Mode

    PubMed Central

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Miyauchi, Yumiko; Hatano, Ken-ichi

    2013-01-01

    STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.79-Å resolution to predict its probable function using structure similarity searches. The structure adopts an α/β structure of a helix-grip fold, which is found in the START domain proteins with cavities for hydrophobic substrates or ligands. The detailed structural features implied that fatty acids are the primary ligand candidates for STK_08120, and binding assays revealed that the protein bound long-chain saturated fatty acids (>C14) and their trans-unsaturated types with an affinity equal to that for major fatty acid binding proteins in mammals and plants. Moreover, the structure of an STK_08120-myristic acid complex revealed a unique binding mode among fatty acid binding proteins. These results suggest that the thermoacidophile-specific protein family DUF3211 functions as a fatty acid carrier with a novel binding mode. PMID:23836863

  17. Associations of erythrocyte membrane fatty acids with the concentrations of C-reactive protein, interleukin 1 receptor antagonist and adiponectin in 1373 men.

    PubMed

    Takkunen, M J; de Mello, V D F; Schwab, U S; Ågren, J J; Kuusisto, J; Uusitupa, M I J

    2014-10-01

    Dietary and endogenous fatty acids could play a role in low-grade inflammation. In this cross-sectional study the proportions of erythrocyte membrane fatty acids (EMFA) and the concentrations of C-reactive protein (CRP), interleukin-1 receptor antagonist (IL-1Ra) and adiponectin were measured and their confounder-adjusted associations examined in 1373 randomly selected Finnish men aged 45-70 years participating in the population based Metsim study in Eastern Finland. The sum of n-6 EMFAs, without linoleic acid (LA), was positively associated with concentrations of CRP and IL-1Ra (r partial=0.139 and r partial=0.115, P<0.001). These associations were especially strong among lean men (waist circumference <94 cm; r partial=0.156 and r partial=0.189, P<0.001). Total n-3 EMFAs correlated inversely with concentrations of CRP (r partial=-0.098, P<0.001). Palmitoleic acid (16:1n-7) correlated positively with CRP (r partial=0.096, P<0.001). Cis-vaccenic acid (18:1n-7) was associated with high concentrations of adiponectin (r partial=0.139, P<0.001). In conclusion, n-6 EMFAs, except for LA, correlated positively with the inflammatory markers. Palmitoleic acid was associated with CRP, whereas, interestingly, its elongation product, cis-vaccenic acid, associated with anti-inflammatory adiponectin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Amino acid selective unlabeling for sequence specific resonance assignments in proteins

    PubMed Central

    Krishnarjuna, B.; Jaipuria, Garima; Thakur, Anushikha

    2010-01-01

    Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective ‘unlabeling’ or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly 13C/15N labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {12COi–15Ni+1}-filtered HSQC, which aids in linking the 1HN/15N resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i − 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to 2H labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of 14N at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies. Electronic supplementary material The online version of this article (doi:10.1007/s10858-010-9459-z) contains supplementary material, which is available to authorized users. PMID:21153044

  19. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation.

    PubMed

    Orellana, Renán A; Jeyapalan, Asumthia; Escobar, Jeffery; Frank, Jason W; Nguyen, Hanh V; Suryawan, Agus; Davis, Teresa A

    2007-11-01

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.

  20. Mechanism of Nucleic Acid Chaperone Function of Retroviral Nuceleocapsid (NC) Proteins

    NASA Astrophysics Data System (ADS)

    Rouzina, Ioulia; Vo, My-Nuong; Stewart, Kristen; Musier-Forsyth, Karin; Cruceanu, Margareta; Williams, Mark

    2006-03-01

    Recent studies have highlighted two main activities of HIV-1 NC protein contributing to its function as a universal nucleic acid chaperone. Firstly, it is the ability of NC to weakly destabilize all nucleic acid,(NA), secondary structures, thus resolving the kinetic traps for NA refolding, while leaving the annealed state stable. Secondly, it is the ability of NC to aggregate NA, facilitating the nucleation step of bi-molecular annealing by increasing the local NA concentration. In this work we use single molecule DNA stretching and gel-based annealing assays to characterize these two chaperone activities of NC by using various HIV-1 NC mutants and several other retroviral NC proteins. Our results suggest that two NC functions are associated with its zinc fingers and cationic residues, respectively. NC proteins from other retroviruses have similar activities, although expressed to a different degree. Thus, NA aggregating ability improves, and NA duplex destabilizing activity decreases in the sequence: MLV NC, HIV NC, RSV NC. In contrast, HTLV NC protein works very differently from other NC proteins, and similarly to typical single stranded NA binding proteins. These features of retroviral NCs co-evolved with the structure of their genomes.

  1. Photocrosslinking and Photodamage in Protein-Nucleic Acid Systems Resulting from UV and IR Radiation.

    NASA Astrophysics Data System (ADS)

    Kozub, John Andrew

    1995-01-01

    Photocrosslinking of protein-nucleic acid complexes with low intensity UV has frequently been used to study biological systems. We have investigated the photochemistry of protein-nucleic acid systems using nanosecond UV pulses from a Nd:YAG-pumped dye laser system, low-intensity continuous UV from a typical germicidal lamp, and high-intensity mid -IR pulses from the Vanderbilt Free Electron Laser. Quantum yields for UV-induced nucleic acid damage from laser pulses and the germicidal lamp were found to be nearly equivalent. We have demonstrated the general applicability of the laser to this technique by successfully crosslinking hnRNP protein to RNA, yeast TATA-binding protein to dsDNA, and gene 32 protein to ssDNA with UV laser pulses. Our results indicate that UV-crosslinking has an intrinsic specificity for nucleic acid sites containing thymidine (or uridine), forcing a distinction between preferred binding sites and favorable crosslinking sites. We have found in each system that protein and nucleic acid photodamage competes with crosslinking, limits the yield, and may interfere with subsequent analysis. The distribution of photoproducts in the gene 32 protein-ssDNA system was investigated as a function of the total dose of UV radiation and the intensity of UV laser pulses. It was found that laser pulses providing up to 50 photons per nucleic acid base induce a linear response from the system; the absolute and relative yields of photoproducts depend only on the total dose of UV and not on the rate of delivery. At higher intensities, the yield of crosslinks per incident photon was reduced. A single pulse at the optimum intensity (about 100-200 photons per nucleic acid base) induced roughly 80% of the maximum attainable yield of crosslinks in this system. The early results of our search for photochemistry induced by Free Electron Laser pulses indicate the potential to induce a unique photoreaction in the gene 32 protein -ssDNA system. The yield is apparently

  2. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation

    PubMed Central

    2014-01-01

    Background Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. Methods The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. Results TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. Conclusions We show a triple anti-inflammatory effect of TUDCA on glial cells: i

  3. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation.

    PubMed

    Yanguas-Casás, Natalia; Barreda-Manso, M Asunción; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo

    2014-03-19

    Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii

  4. Proximate composition and fatty acid analysis of Lablab purpureus (L.) legume seed: implicates to both protein and essential fatty acid supplementation.

    PubMed

    Hossain, Shahdat; Ahmed, Rashed; Bhowmick, Sujan; Mamun, Abdullah Al; Hashimoto, Michio

    2016-01-01

    The high mortality rate in Bangladesh is related to poverty, which results in protein malnutrition, essential fatty acid deficiency and lacks in adequate vitamins, minerals and calorie. Exploring new food items with improved dietary nutrition factors may, therefore, help to decrease the mortality rate in the poor countries like Bangladesh. Accordingly, the present study was a proximate composition and fatty acid analysis of L. purpureus seed-a legume seed which is given no careful attention locally, though it might be a good source of valuable nutrition factors for both animals and humans. The purpose of the study was, therefore, to generate awareness that L. purpureus could also act as a good source of food components essential for good health. Proximate analysis revealed that the seed powder contained 8.47 ± 0.52% moisture; 3.50 ± 0.0.07% ash; 1.02 ± 0.06% total fat; 23.95 ± 0.15% total protein; 1.21 ± 0.16% total dietary fiber; 61.86 ± 0.70% total carbohydrate and 352.4 ± 2.66 kcal/100 g energy. Phytic acid content (%) was 1.014 ± 0.048. Major fatty acid composition (%): the essential fatty acid linoleic acid (C18:2, ω-6) was 9.50 ± 0.68, while the linolenic acid (C18:3, ω-3) was 1.95 ± 0.18. Palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1) were, respectively, 2.96 ± 0.19, 0.77 ± 0.04 and 1.10 ± 0.06. Lignoceric acid (C24:0) was 0.11 ± 0.007%. Monounsaturated palmitoleic acid (0.006 ± 0.0), docosapentaenoic acid (DPA, C22:5, ω-3) and nervonic acid (0.002 ± 0.0) were present in trace amounts. Arachidonic acid (AA, C20:4, ω-6), eicosapentaenoic acid (C20:5, ω-3), and docosahexaenoic acid (C22:6, ω-3) were not detected. The fatty acid profile, thus, suggests that essential omega-6 fatty acid linoleic acid (C18:3, ω-6) and omega-3 linolenic acid (C18:3, ω-3) were the major polyunsaturated fatty acids (PUFA) present in L. purpureus seed. In addition, the seed contained high amount of proteins

  5. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.

    PubMed

    Servais, P

    1995-03-01

    In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.

  6. A model for protocellular coordination of nucleic acid and protein syntheses

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    The proteinoid model for the coordination of protein synthesis with nucleic acid coding within the evolving protocell is discussed. Evidence for the self-ordering of amino acid chains, which would enhance the catalytic activity of a lysine-rich proteinoid, is presented, along with that for the preferential formation of microparticles, particularly proteinoid microparticles, in various solutions. Demonstrations of the catalytic activity of lysine-rich proteinoids in the synthesis of peptide and internucleotide bonds are pointed out. The view of evolution as a two stage sequence in which the geological synthesis of peptides evolved to the protocellular synthesis of peptides and oligonucleotides is discussed, and contrasted with the alternative view, in accord with the central dogma, that nucleic acids arose first then governed the production of proteins and protocells.

  7. Effect of 12-Day Spaceflight on Brain of Thick-Toed Geckos

    NASA Astrophysics Data System (ADS)

    Proshchina, A. E.; Karlamova, A. S.; Barabanovet, V. M.; Godovalova, O. S.; Guilimova, V. I.; Krivova, Y. S.; Makarov, A. N.; Nikitin, V. B.; Savelieva, E. S.; Saveliev, S. V.

    2008-06-01

    In the frames of Russian-American joint space experiment onboard Foton-M3 satellite there was undertaken a study of spaceflight influence on brain of the thick-toed gecko (Pachydactylus turneri Gray, 1864). Serial brain sections were stained according to Nissl and also the immunohistochemical method with antibodies to NGF-receptor (p75NGFR), CD95 (also known as Fas and APO-1), glial fibrillary acidic protein (GFAP) and transferrin-receptor (CD71). Detailed examination of the sections of rhombencephalon revealed cytological changes in the neuron bodies of vestibular nuclei inside the flight group. Immunohistochemicaly we found the increase density of CD95 and p75NGFR and decrease of GFAP expression in medial cortex and epithalamus in flight group compared both control.

  8. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed

    McCormack, M; Brecher, P

    1987-06-15

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.

  9. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins.

  10. Direct demodulation method for heavy atom position determination in protein crystallography

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Liu, Zhong-Chuan; Liu, Peng; Dong, Yu-Hui

    2013-01-01

    The first step of phasing in any de novo protein structure determination using isomorphous replacement (IR) or anomalous scattering (AD) experiments is to find heavy atom positions. Traditionally, heavy atom positions can be solved by inspecting the difference Patterson maps. Due to the weak signals in isomorphous or anomalous differences and the noisy background in the Patterson map, the search for heavy atoms may become difficult. Here, the direct demodulation (DD) method is applied to the difference Patterson maps to reduce the noisy backgrounds and sharpen the signal peaks. The real space Patterson search by using these optimized maps can locate the heavy atom positions more accurately. It is anticipated that the direct demodulation method can assist in heavy atom position determination and facilitate the de novo structure determination of proteins.

  11. Perlwapin, an Abalone Nacre Protein with Three Four-Disulfide Core (Whey Acidic Protein) Domains, Inhibits the Growth of Calcium Carbonate Crystals

    PubMed Central

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-01-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of ∼40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  12. Nuclear translocation of proteins and the effect of phosphatidic acid

    PubMed Central

    Yao, Hongyan; Wang, Geliang; Wang, Xuemin

    2014-01-01

    Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm. PMID:25482760

  13. Plasma fatty acid-binding protein 4, nonesterified fatty acids, and incident diabetes in older adults.

    PubMed

    Djoussé, Luc; Khawaja, Owais; Bartz, Traci M; Biggs, Mary L; Ix, Joachim H; Zieman, Susan J; Kizer, Jorge R; Tracy, Russell P; Siscovick, David S; Mukamal, Kenneth J

    2012-08-01

    To examine the relation of fatty acid-binding protein (FABP)4 and nonesterified fatty acids (NEFAs) to diabetes in older adults. We ascertained incident diabetes among 3,740 Cardiovascular Health Study participants (1992-2007) based on the use of hypoglycemic medications, fasting glucose ≥ 126 mg/dL, or nonfasting glucose ≥ 200 mg/dL. FABP4 and NEFA were measured on specimens collected between 1992 and 1993. Mean age of the 3,740 subjects studied was 74.8 years. For each SD increase in log FABP4, hazard ratios (HRs) for diabetes were 1.35 (95% CI 1.10-1.65) for women and 1.45 (1.13-1.85) for men controlling for age, race, education, physical activity, cystatin C, alcohol intake, smoking, self-reported health status, and estrogen use for women (P for sex-FABP4 interaction 0.10). BMI modified the FABP4-diabetes relation (P = 0.009 overall; 0.02 for women and 0.135 for men), in that statistically significant higher risk of diabetes was mainly seen in men with BMI <25 kg/m(2) (HR per SD: 1.78 [95% CI 1.13-2.81]). There was a modest and nonsignificant association of NEFA with diabetes (P(trend) = 0.21). However, when restricted to the first 5 years of follow-up, multivariable-adjusted HRs for diabetes were 1.0 (ref.), 1.68 (95% CI 1.12-2.53), and 1.63 (1.07-2.50) across consecutive tertiles of NEFA (P(trend) = 0.03). Plasma FABP4 was positively associated with incident diabetes in older adults, and such association was statistically significant in lean men only. A significant positive association between plasma NEFA and incident diabetes was observed during the first 5 years of follow-up.

  14. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis

    PubMed Central

    Wilson, Fiona A.; Suryawan, Agus; Orellana, Renán A.; Nguyen, Hanh V.; Jeyapalan, Asumthia S.; Gazzaneo, Maria C.; Davis, Teresa A.

    2008-01-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 μg·kg−1·day−1) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P < 0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P < 0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1·eIF4E complex association, and increased active eIF4E·eIF4G complex formation (P < 0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex. PMID:18682537

  15. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner.

    PubMed

    Zou, Jia; Zhang, Bo; Gutmann, David H; Wong, Michael

    2017-12-01

    Epilepsy is one of the most prominent symptoms of tuberous sclerosis complex (TSC), a genetic disorder, and may be related to developmental defects resulting from impaired TSC1 or TSC2 gene function in astrocytes and neurons. Inactivation of the Tsc1 gene driven by a glial-fibrillary acidic protein (GFAP) promoter during embryonic brain development leads to widespread pathologic effects on astrocytes and neurons, culminating in severe, progressive epilepsy in mice (Tsc1 GFAP -Cre mice). However, the developmental timing and cellular specificity relevant to epileptogenesis in this model has not been well defined. The present study evaluates the effect of postnatal Tsc1 gene inactivation on pathologic features of astrocytes and neurons and development of epilepsy. An inducible Tsc1 knock-out mouse was created utilizing a tamoxifen-driven GFAP-CreER line (Tsc1 GFAP -Cre ER mice) with TSC1 reduction induced postnatally at 2 and 6 weeks of age, and compared to conventional Tsc1 GFAP -Cre mice with prenatal TSC1 reduction. Western blotting, immunohistochemistry, histology, and video-electroencephalography (EEG) assessed mechanistic target of rapamycin (mTOR) pathway activation, astrogliosis, neuronal organization, and spontaneous seizures, respectively. Tsc1 gene inactivation at 2 weeks of age was sufficient to cause astrogliosis and mild epilepsy in Tsc1 GFAP -Cre ER mice, but the phenotype was much less severe than that observed with prenatal Tsc1 gene inactivation in Tsc1 GFAP -Cre mice. Both astrocytes and neurons were affected by prenatal and postnatal Tsc1 gene activation to a degree similar to the severity of epilepsy, suggesting that both cellular types may contribute to epileptogenesis. These findings support a model in which the developmental timing of TSC1 loss dictates the severity of neuronal and glial abnormalities and resulting epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  16. Acid-degradable lactobionic acid-modified soy protein nanogels crosslinked by ortho ester linkage for efficient antitumor in vivo.

    PubMed

    Cheng, Xu; Qin, Jiejie; Wang, Xin; Zha, Qian; Yao, Weijing; Fu, Shengxiang; Tang, Rupei

    2018-05-03

    It remains a crucial challenge to achieve efficient cellular uptake and intracellular drug release in tumor cells for the nanoscale drug delivery systems. Herein, acid-degradable nanogels were prepared by cross-linking methacrylated soy protein with an acid-labile ortho ester cross-linker (NG1), and then modified with lactobionic acid (LA) to give tumor-targeted nanogels (NG2). Both NG1 and NG2 displayed excellent stability in neutral environment, while showed pH-triggered degradation behaviors under mildly acidic conditions resulting from the breakage of ortho ester bonds. Doxorubicin (DOX) was successfully loaded into nanogels, which exhibited an accelerated release at low pH. In vitro cell studies demonstrated that LA-modified nanogels could effectively improve cellular internalization, show higher cytotoxicity and apoptosis toward asialoglycoprotein receptor (ASGPR) over-expressed HepG2 cells. In vivo antitumor experimentproved that LA modification could significantly enhance the tumor-targeting ability of nanogels and increase DOX concentration in tumor site, leading to better therapeutic efficacy. Histological analysis further demonstrated that soy protein-based nanogels did not cause any damage to normal organs. Overall, these pH-sensitive and tumor-targeting soy protein-based nanogels can be potential drug carriers for efficient tumor treatment. Copyright © 2018. Published by Elsevier B.V.

  17. The Positive Regulatory Roles of the TIFY10 Proteins in Plant Responses to Alkaline Stress

    PubMed Central

    Zhu, Dan; Li, Rongtian; Liu, Xin; Sun, Mingzhe; Wu, Jing; Zhang, Ning; Zhu, Yanming

    2014-01-01

    The TIFY family is a novel plant-specific protein family, and is characterized by a conserved TIFY motif (TIFF/YXG). Our previous studies indicated the potential roles of TIFY10/11 proteins in plant responses to alkaline stress. In the current study, we focused on the regulatory roles and possible physiological and molecular basis of the TIFY10 proteins in plant responses to alkaline stress. We demonstrated the positive function of TIFY10s in alkaline responses by using the AtTIFY10a and AtTIFY10b knockout Arabidopsis, as evidenced by the relatively lower germination rates of attify10a and attify10b mutant seeds under alkaline stress. We also revealed that ectopic expression of GsTIFY10a in Medicago sativa promoted plant growth, and increased the NADP-ME activity, citric acid content and free proline content but decreased the MDA content of transgenic plants under alkaline stress. Furthermore, expression levels of the stress responsive genes including NADP-ME, CS, H+-ppase and P5CS were also up-regulated in GsTIFY10a transgenic plants under alkaline stress. Interestingly, GsTIFY10a overexpression increased the jasmonate content of the transgenic alfalfa. In addition, we showed that neither GsTIFY10a nor GsTIFY10e exhibited transcriptional activity in yeast cells. However, through Y2H and BiFc assays, we demonstrated that GsTIFY10a, not GsTIFY10e, could form homodimers in yeast cells and in living plant cells. As expected, we also demonstrated that GsTIFY10a and GsTIFY10e could heterodimerize with each other in both yeast and plant cells. Taken together, our results provided direct evidence supporting the positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PMID:25375909

  18. Protein-bound D-amino acids, and to a lesser extent lysinoalanine, decrease true ileal protein digestibility in minipigs as determined with (15)N-labeling.

    PubMed

    de Vrese, M; Frik, R; Roos, N; Hagemeister, H

    2000-08-01

    Heat and alkali treatment of food may increase the concentrations of protein-bound D-amino acids and cross-links such as lysinoalanine (LAL). To examine how protein treatment affects digestibility, purified test meals [total protein 150 g/kg dry matter (DM), 0.44 MJ/(kg BW(0.75). d)] were prepared, containing (g/kg DM) casein, 75; beta-lactoglobulin, 50; or wheat protein, 40. Each was (15)N-labeled. Test proteins were used either in their native form or after treatment for 6 or 24 h at 65 degrees C, pH 10.5-11.5. Each meal was fed to nine adult miniature pigs (twofold complete cross-classification). Chyme was collected continuously over 33 h postprandially via T-fistulas in the terminal ileum, and digestibilities of test proteins and individual L- and D-amino acids were calculated on the basis of recovery of (15)N and the respective amino acids in the chyme. Treatment of casein, beta-lactoglobulin or wheat protein for 24 h increased levels of D-amino acid residues. L-Asparagine and aspartate (L-Asx) were particularly susceptible; 14. 7 +/- 0.4, 11.7 +/- 0.2 and 11.0 +/- 0.9%, respectively, underwent racemization. LAL levels increased in parallel; 11.7 +/- 0.3, 13.6 +/- 0 and 14.8 +/- 0.0%, respectively, of total lysine was converted to LAL. At the same time, prececal protein digestibility was decreased by 13.4 +/- 2.3, 15.3 +/- 1.4 and 17.8 +/- 1.2% units, respectively (P < 0.05; mean +/- SEM, n = 9). Digestibility of individual L-amino acids decreased by 10-15%, but L-amino acids prone to peptic cleavage, such as L-phenylalanine and L-tyrosine, were not affected. Digestibilities of D-amino acids and LAL were approximately 35%. It seems that mainly D-amino acids, and to a lesser extent LAL, were responsible for lower digestibility by interfering with peptic cleavage.

  19. The MAP Kinase Cascade Is Activated prior to the Induction of Gliosis in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Model of Dopaminergic Neurotoxicity.

    PubMed

    Callaghan, James P; Martin, Parthena M; Mass, Marc J

    1998-05-01

    Injury to the central nervous system (CNS) provokes microglial activation and astrocytic hypertrophy at the site of damage. The signaling events that underlie these cellular responses remain unknown. Recent evidence has implicated tyrosine phosphorylation systems, in general, and the mitogen-activated protein kinase (MAP kinase) cascade, in particular, in the mediation of growth-associated events linked to neural degeneration, such as glial activation. 1 Moreover, an increase in the mRNA coding for the 14.3.3 protein, a known regulator of the MAP kinase pathway, 2 appears to be involved in methamphetamine neurotoxicity. 3 To examine the potential role of these protein kinase pathways in drug-induced damage to the CNS, we used the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to damage nerve terminals in the mouse neostriatum and elicit a glial reaction. The onset of reactive gliosis then was verified by Northern blot analysis of glial fibrillary acidic protein (GFAP) mRNA and qualified by enzyme-linked immunosorbent assay (ELISA) of GFAP (protein). A single administration of MPTP (12.5 mg/kg, subcutaneously (s.c.)) to the C57B1/6J mouse resulted in a 10-fold increase in GFAP mRNA by 1 day and a 4-fold increase in GFAP (protein) by 2 days. To determine the potential role of protein tyrosine phosphorylation and MAP kinase activation in these events, blots of striatal homogenates were probed with antibodies directed against phospho-tyr 204 and phospho-thr 202, residues corresponding to the active sites of p42/44 MAP kinase. After mice were sacrificed by focused microwave irradiation to preserve steady-state phosphorylation, proteins from striatal homogenates were resolved by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). Immunoblots of these samples showed a number of phosphotyrosine-labeled bands, but there were no apparent differences between control and MPTP groups. In contrast, phospho-MAP kinase was

  20. Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy.

    PubMed

    Camborde, Laurent; Jauneau, Alain; Brière, Christian; Deslandes, Laurent; Dumas, Bernard; Gaulin, Elodie

    2017-09-01

    DNA-binding proteins (DNA-BPs) and RNA-binding proteins (RNA-BPs) have critical roles in living cells in all kingdoms of life. Various experimental approaches exist for the study of nucleic acid-protein interactions in vitro and in vivo, but the detection of such interactions at the subcellular level remains challenging. Here we describe how to detect nucleic acid-protein interactions in plant leaves by using a fluorescence resonance energy transfer (FRET) approach coupled to fluorescence lifetime imaging microscopy (FLIM). Proteins of interest (POI) are tagged with a GFP and transiently expressed in plant cells to serve as donor fluorophore. After sample fixation and cell wall permeabilization, leaves are treated with Sytox Orange, a nucleic acid dye that can function as a FRET acceptor. Upon close association of the GFP-tagged POI with Sytox-Orange-stained nucleic acids, a substantial decrease of the GFP lifetime due to FRET between the donor and the acceptor can be monitored. Treatment with RNase before FRET-FLIM measurements allows determination of whether the POI associates with DNA and/or RNA. A step-by-step protocol is provided for sample preparation, data acquisition and analysis. We describe how to calibrate the equipment and include a tutorial explaining the use of the FLIM software. To illustrate our approach, we provide experimental procedures to detect the interaction between plant DNA and two proteins (the AeCRN13 effector from the oomycete Aphanomyces euteiches and the AtWRKY22 defensive transcription factor from Arabidopsis). This protocol allows the detection of protein-nucleic acid interactions in plant cells and can be completed in <2 d.