Science.gov

Sample records for acidic protein-positive cells

  1. Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone.

    PubMed

    Pushkar, Yulia; Robison, Gregory; Sullivan, Brendan; Fu, Sherleen X; Kohne, Meghan; Jiang, Wendy; Rohr, Sven; Lai, Barry; Marcus, Matthew A; Zakharova, Taisiya; Zheng, Wei

    2013-10-01

    Analysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state and the sulfur ligand environment. Cu K-edge X-ray absorption near edge spectroscopy is consistent with Cu being bound as a multimetallic Cu-S cluster similar to one present in Cu-metallothionein. Analysis of age-related changes show that Cu content in astrocytes of the SVZ increases fourfold from 3 weeks to 9 months, while Cu concentration in other brain areas remain essentially constant. This increase in Cu correlates with a decrease in adult neurogenesis assessed using the Ki67 marker (both, however, can be age-related effects). We demonstrate that the Cu distribution and age-related concentration changes in the brain are highly cell specific.

  2. A mesenchymal-like ZEB1(+) niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord.

    PubMed

    Sabourin, Jean-Charles; Ackema, Karin B; Ohayon, David; Guichet, Pierre-Olivier; Perrin, Florence E; Garces, Alain; Ripoll, Chantal; Charité, Jeroen; Simonneau, Lionel; Kettenmann, H; Zine, Azel; Privat, Alain; Valmier, Jean; Pattyn, Alexandre; Hugnot, Jean-Philippe

    2009-11-01

    In humans and rodents the adult spinal cord harbors neural stem cells located around the central canal. Their identity, precise location, and specific signaling are still ill-defined and controversial. We report here on a detailed analysis of this niche. Using microdissection and glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP) transgenic mice, we demonstrate that neural stem cells are mostly dorsally located GFAP(+) cells lying ependymally and subependymally that extend radial processes toward the pial surface. The niche also harbors doublecortin protein (Dcx)(+) Nkx6.1(+) neurons sending processes into the lumen. Cervical and lumbar spinal cord neural stem cells maintain expression of specific rostro-caudal Hox gene combinations and the niche shows high levels of signaling proteins (CD15, Jagged1, Hes1, differential screening-selected gene aberrative in neuroblastoma [DAN]). More surprisingly, the niche displays mesenchymal traits such as expression of epithelial-mesenchymal-transition zinc finger E-box-binding protein 1 (ZEB1) transcription factor and smooth muscle actin. We found ZEB1 to be essential for neural stem cell survival in vitro. Proliferation within the niche progressively ceases around 13 weeks when the spinal cord reaches its final size, suggesting an active role in postnatal development. In addition to hippocampus and subventricular zone niches, adult spinal cord constitutes a third central nervous system stem cell niche with specific signaling, cellular, and structural characteristics that could possibly be manipulated to alleviate spinal cord traumatic and degenerative diseases.

  3. S-100 protein-positive cells in hidrocystomas.

    PubMed

    Tokura, Y; Takigawa, M; Inoue, K; Matsumoto, K; Yamada, M

    1986-04-01

    The histogenesis of hidrocystomas was examined by the use of immunostaining for S-100 protein. In normal sweat glands, S-100 protein was found exclusively in the secretory cells of eccrine glands, whereas this protein was not present in the other parts of eccrine glands or at any levels of the structure of apocrine glands. On the bases of this immunostaining pattern in normal sweat glands, we attempted to correlate the origin of 8 cases of hidrocystoma to the presence of S-100 protein-positive cells. S-100 protein was detected in the cells of one solitary eccrine hidrocystoma, but not in those of 2 cases of "classic", multiple-lesion type of eccrine hidrocystoma. This indicated that the former arose from the secretory portion of the eccrine gland and the latter from the eccrine ductal cells. Two of the 5 cases of apocrine hidrocystoma showed positive staining in a part of the lining cells of the cyst wall, while the other 3 cases were negative to this protein. This finding suggests that some of the tumors diagnosed morphologically as apocrine hidrocystoma differentiate in the direction of eccrine secretory cells. In addition to S-100 protein, we also surveyed for the presence of carcinoembryonic antigen (CEA), and all cases examined were consistently positive to this substance. The detection of S-100 protein was considered to be more helpful in classifying hidrocystomas than that of CEA.

  4. Immunohistochemical localization of anterior pituitary hormones in S-100 protein-positive cells in the rat pituitary gland.

    PubMed

    Kikuchi, Motoshi; Yatabe, Megumi; Tando, Yukiko; Yashiro, Takashi

    2011-09-01

    In the anterior and intermediate lobes of the rat pituitary gland, non-hormone-producing cells that express S-100 protein coexist with various types of hormone-producing cells and are believed to function as phagocytes, supporting and paracrine-controlling cells of hormone-producing cells and stem cells, among other functions; however, their cytological characteristics are not yet fully understood. Using a transgenic rat that expresses green fluorescent protein under the promoter of the S100β protein gene, we immunohistochemically detected expression of the luteinizing hormone, thyroid-stimulating hormone, prolactin, growth hormone and proopiomelanocortin by S-100 protein-positive cells located between clusters of hormone-producing cells in the intermediate lobe. These findings lend support to the hypothesis that S-100 protein-positive cells are capable of differentiating into hormone-producing cells in the adult rat pituitary gland.

  5. S100 protein positive dendritic cells in primary biliary cirrhosis and other chronic inflammatory liver diseases. Relevance to pathogenesis?

    PubMed Central

    Demetris, A. J.; Sever, C.; Kakizoe, S.; Oguma, S.; Starzl, T. E.; Jaffe, R.

    1989-01-01

    A study to determine the location of dendritic cells, in chronic inflammatory liver disease was performed. S100 protein positivity and dendritic cytoplasmic morphology were used to identify dendritic cells. S100 protein positive dendritic cells (S100 + DC) were found inside the basement membrane between biliary epithelial cells of septal bile ducts of livers affected by early stage PBC, but were not present at later stages. S100 + DC also were seen in areas of piecemeal necrosis in chronic active hepatitis of various etiologies. In contrast, intra-epithelial S100 + DC were not found with any consistency in sclerosing cholangitis, secondary biliary cirrhosis, extrahepatic biliary atresia, or chronic liver allograft rejection, all of which are characterized by inflammatory bile duct damage. The possible relevance of DC in the pathogenesis of PBC is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2705505

  6. Expression of Slug in S100β-protein-positive cells of postnatal developing rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Yako, Hideji; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2016-02-01

    Among heterogeneous S100β-protein-positive (S100β-positive) cells, star-like cells with extended cytoplasmic processes, the so-called folliculo-stellate cells, envelop hormone-producing cells or interconnect homophilically in the anterior pituitary. S100β-positive cells are known, from immunohistochemistry, to emerge from postnatal day (P) 10 and to proliferate and migrate in the parenchyma of the anterior pituitary with growth. Recent establishment of S100β-GFP transgenic rats expressing specifically green fluorescent protein (GFP) under the control of the S100β-promoter has allowed us to observe living S100β-positive cells. In the present study, we first confirmed that living S100β-positive cells in tissue cultures of S100β-GFP rat pituitary at P5 were present prior to P10 by means of confocal laser microscopy and that they proliferated and extended their cytoplasmic processes. Second, we examined the expression of the Snail-family zinc-finger transcription factors, Snail and Slug, to investigate the mechanism behind the morphological changes and the proliferation of S100β-positive cells. Interestingly, we detected Slug expression in S100β-positive cells and its increase together with development in the anterior pituitary. To analyze downstream of SLUG in S100β-positive cells, we utilized specific small interfering RNA for Slug mRNAs and observed that the expression of matrix metalloprotease (Mmp) 9, Mmp14 and chemokine Cxcl12 was down-regulated and that morphological changes and proliferation were decreased. Thus, our findings suggest that S100β-positive cells express Slug and that its expression is important for subsequent migration and proliferation.

  7. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  8. The Zebrafish Period2 Protein Positively Regulates the Circadian Clock through Mediation of Retinoic Acid Receptor (RAR)-related Orphan Receptor α (Rorα)*

    PubMed Central

    Wang, Mingyong; Zhong, Zhaomin; Zhong, Yingbin; Zhang, Wei; Wang, Han

    2015-01-01

    We report the characterization of a null mutant for zebrafish circadian clock gene period2 (per2) generated by transcription activator-like effector nuclease and a positive role of PER2 in vertebrate circadian regulation. Locomotor experiments showed that per2 mutant zebrafish display reduced activities under light-dark and 2-h phase delay under constant darkness, and quantitative real time PCR analyses showed up-regulation of cry1aa, cry1ba, cry1bb, and aanat2 but down-regulation of per1b, per3, and bmal1b in per2 mutant zebrafish, suggesting that Per2 is essential for the zebrafish circadian clock. Luciferase reporter assays demonstrated that Per2 represses aanat2 expression through E-box and enhances bmal1b expression through the Ror/Rev-erb response element, implicating that Per2 plays dual roles in the zebrafish circadian clock. Cell transfection and co-immunoprecipitation assays revealed that Per2 enhances bmal1b expression through binding to orphan nuclear receptor Rorα. The enhancing effect of mouse PER2 on Bmal1 transcription is also mediated by RORα even though it binds to REV-ERBα. Moreover, zebrafish Per2 also appears to have tissue-specific regulatory roles in numerous peripheral organs. These findings help define the essential functions of Per2 in the zebrafish circadian clock and in particular provide strong evidence for a positive role of PER2 in the vertebrate circadian system. PMID:25544291

  9. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  10. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  11. Ascorbic acid transport into cultured pituitary cells

    SciTech Connect

    Cullen, E.I.; May, V.; Eipper, R.A.

    1986-05-01

    An amidating enzyme designated peptidyl-glycine ..cap alpha..-amidating monooxygenase (PAM) has been studied in a variety of tissues and is dependent on molecular oxygen and stimulated by copper and ascorbic acid. To continue investigating the relationship among cellular ascorbic acid concentrations, amidating ability, and PAM activity, the authors studied ascorbic acid transport in three cell preparations that contain PAM and produce amidated peptides: primary cultures of rat anterior and intermediate pituitary and mouse AtT-20 tumor cells. When incubated in 50 ..mu..M (/sup 14/C)ascorbic acid all three cell preparations concentrated ascorbic acid 20- to 40-fold, producing intracellular ascorbate concentrations of 1 to 2 mM, based on experimentally determined cell volumes. All three cell preparations displayed saturable ascorbic acid uptake with half-maximal initial rates occurring between 9 and 18 ..mu..M ascorbate. Replacing NaCl in the uptake buffer with choline chloride significantly diminished ascorbate uptake in all three preparations. Ascorbic acid efflux from these cells was slow, displaying half-lives of 7 hours. Unlike systems that transport dehydroascorbic acid, the transport system for ascorbic acid in these cells was not inhibited by glucose. Thus, ascorbate is transported into pituitary cells by a sodium-dependent, active transport system.

  12. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  13. CELL PENETRATION BY ACIDS : VI. THE CHLOROACETIC ACIDS.

    PubMed

    Crozier, W J

    1922-09-20

    Measurements of the penetration of tissue from Chromodoris zebra are believed to show that a determining factor in penetration involves the establishment of a critical pH (near 3.5) in relation to superficial cell proteins. The rapidity with which this state is produced depends upon acid strength, and upon some property of the acid influencing the speed of absorption; hence it is necessary to compare acids within groups of chemical relationship. The actual speed of penetration observed with any acid is dependent upon two influences: preliminary chemical combination with the outer protoplasm, followed by diffusion. The variation of the temperature coefficient of penetration velocity with the concentration of acid, and the effect of size (age) of individual providing the tissue sample agree in demonstrating the significant part played by diffusion. In comparing different acids, however, their mode of chemical union with the protoplasm determines the general order of penetrating ability.

  14. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc.

  15. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  16. Acid detection by taste receptor cells.

    PubMed

    DeSimone, J A; Lyall, V; Heck, G L; Feldman, G M

    2001-12-01

    Sourness is a primary taste quality that evokes an innate rejection response in humans and many other animals. Acidic stimuli are the unique sources of sour taste so a rejection response may serve to discourage ingestion of foods spoiled by acid producing microorganisms. The investigation of mechanisms by which acids excite taste receptor cells (TRCs) is complicated by wide species variability and within a species, apparently different mechanisms for strong and weak acids. The problem is further complicated by the fact that the receptor cells are polarized epithelial cells with different apical and basolateral membrane properties. The cellular mechanisms proposed for acid sensing in taste cells include, the direct blockage of apical K(+) channels by protons, an H(+)-gated Ca(2+) channel, proton conduction through apical amiloride-blockable Na(+) channels, a Cl(-) conductance blocked by NPPB, the activation of the proton-gated channel, BNC-1, a member of the Na(+) channel/degenerin super family, and by stimulus-evoked changes in intracellular pH. Acid-induced intracellular pH changes appear to be similar to those reported in other mammalian acid-sensing cells, such as type-I cells of the carotid body, and neurons found in the ventrolateral medulla, nucleus of the solitary tract, the medullary raphe, and the locus coceuleus. Like type-I carotid body cells and brainstem neurons, isolated TRCs demonstrate a linear relationship between intracellular pH (pH(i)) and extracellular pH (pH(o)) with slope, DeltapH(i)/DeltapH(o) near unity. Acid-sensing cells also appear to regulate pH(i) when intracellular pH changes occur under iso-extracellular pH conditions, but fail to regulate their pH when pH(i) changes are induced by decreasing extracellular pH. We shall discuss the current status of proposed acid-sensing taste mechanisms, emphasizing pH-tracking in receptor cells.

  17. Solid Acid Based Fuel Cells

    DTIC Science & Technology

    2007-11-02

    superprotonic solid acids with elements such as P, As, Si and Ge, which have greater affinities to oxygen , we anticipate that the reduction reaction will be...bulk material consisted of an apatite phase (hexagonal symmetry) of variable composition, LixLa10-x(SiO4)6O3-x, with excess lithium residing in the...in Tables 1 and 2, indicate that this compound is a rather conventional apatite with fixed stoichiometry, LiLa9(SiO4)6O2 (x = 1). Such a result is

  18. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  19. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  20. Stabilizing platinum in phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Remick, R. J.

    1981-10-01

    A carbon substrate for use in fabricating phosphoric acid fuel cell cathodes was modified by catalytic oxidation to stabilize the platinum catalyst by retarding the sintering of small platinum crystallites. Results of 100-hour operational tests confirmed that the rate of platinum surface area loss observed on catalytically oxidized supports was less than that observed with unmodified supports of the same starting material. Fuel cell electrodes fabricated from Vulcan XC-72R, which was modified by catalytic in a nitric oxide atmosphere, produced low platium sintering rates and high activity for the reduction of oxygen in the phosphoric acid environment.

  1. Formic acid fuel cells and catalysts

    DOEpatents

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  2. Amino Acid Transport into Cultured Tobacco Cells

    PubMed Central

    Harrington, H. Michael; Henke, Randolph R.

    1981-01-01

    Lysine transport into suspension-cultured Wisconsin-38 tobacco cells was observed. Uptake was linear (up to 90 minutes) with respect to time and amount of tissue only after 4 to 6 hours preincubation in calcium-containing medium. The observed cellular accumulation of lysine was against a concentration gradient and not due to exchange diffusion. Transport was stimulated by low pH and characterized by a biphasic uptake isotherm with two Km values for lysine. System I (Km ≃ 5 × 10−6 molar; Vmax ≃ 180 nanomoles per gram fresh weight per hour) and system II (Km ≃ 10−4 molar; Vmax ≃ 1900 nanomoles per gram fresh weight per hour) were inhibited by N-ethylmaleimide and a variety of respiratory inhibitors. This inhibition was not due to increased efflux. In antagonism experiments, system I was inhibited most effectively by basic amino acids, followed by the sulfur amino acids. System I was only slightly inhibited by the neutral and aromatic amino acids and was not inhibited by the acidic amino acids aspartic and glutamic acids. Transport by system II was inhibited by all of the tested amino acids (including aspartic and glutamic acids) and analogs; however, this system was not inhibited by d-arginine. Neither system was strongly inhibited by d-lysine or the lysine analog S-2-aminoethyl-l-cysteine. Arginine was shown to be a competitive inhibitor of both systems with values for Ki similar to the respective Km values. These studies suggest the presence of at least two amino acid permeases in W-38 tobacco cells. PMID:16661678

  3. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  4. Aqueous Trifluoromethane Sulfonic Acid Fuel Cells.

    DTIC Science & Technology

    1981-02-01

    Development of Low Tempera- ture Acid Electrolytes," National Fuel Cell Seminar, Bethesda, MD, June 1979. 8 George, M. and Januszkiewicz , S., "New Materials...Department 2- K US Department of Energy (1) LaVerne, CA 91750 ATTN: Mr. Gary Voelker 20 Massachusetts Avenue, NW Union Carbide Corporation (1) Washington, DC

  5. Amino acid pools in cultured muscle cells.

    PubMed

    Low, R B; Stirewalt, W S; Rittling, S R; Woodworth, R C

    1984-01-01

    Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships--in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.

  6. Different effects of bile acids, ursodeoxycholic acid and deoxycholic acid, on cell growth and cell death in human colonic adenocarcinoma cells.

    PubMed

    Shiraki, Katsuya; Ito, Takeshi; Sugimoto, Kazushi; Fuke, Hiroyuki; Inoue, Tomoko; Miyashita, Kazumi; Yamanaka, Takenari; Suzuki, Masahiro; Nabeshima, Kazuo; Nakano, Takeshi; Takase, Koujiro

    2005-10-01

    Secondary bile acids have been implicated as an important etiological factor in colorectal cancer. We investigated the effects of ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) on the growth and cytotoxicity in HT29 human colonic adenocarcinoma cells. Proliferation assay, cell cycle analysis and cell death characterization by bile acids were performed. Both UDCA and DCA reduced their proliferation rate of HT29 over 48 h in a concentration- and time-dependent manner compared with control cultures. In terms of cell cycle effects, however, UDCA induced G2/M arrest, while DCA induced G1 arrest in a concentration- and time-dependent manner. As for the effects of each bile acid on cell toxicity, UDCA induced early apoptosis and DCA induced both early apoptosis and necrosis. Bile acids play an important role in regulating cell survival and cell death in colon adenocarcinoma cells.

  7. Recent advances in amino acid production by microbial cells.

    PubMed

    Hirasawa, Takashi; Shimizu, Hiroshi

    2016-12-01

    Amino acids have been utilized for the production of foods, animal feeds and pharmaceuticals. After the discovery of the glutamic acid-producing bacterium Corynebacterium glutamicum by Japanese researchers, the production of amino acids, which are primary metabolites, has been achieved using various microbial cells as hosts. Recently, metabolic engineering studies on the rational design of amino acid-producing microbial cells have been successfully conducted. Moreover, the technology of systems biology has been applied to metabolic engineering for the creation of amino acid-producing microbial cells. Currently, new technologies including synthetic biology, single-cell analysis, and evolutionary engineering have been utilized to create amino acid-producing microbial cells. In addition, useful compounds from amino acids have been produced by microbial cells. Here, current researches into the metabolic engineering of microbial cells toward production of amino acids and amino acid-related compounds are reviewed.

  8. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1981-01-01

    The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.

  9. FUEL CELL ELECTRODES FOR ACID MEDIA

    DTIC Science & Technology

    fuel cell electrodes for acid media. Activated carbon electrodes were prepared, wetproofed with paraffin or Teflon, and catalyzed with platinum. The wetproofing agent was applied by immersion or electrodeposition and the catalyst applied by chemical decomposition of H2P+Cl6 solutions. Half cell studies with hydrogen anodes and oxygen (air) cathodes showed that electrochemical performance is essentially the same for paraffin and Teflontreated electrodes; however, the life of the Teflon-treated electrodes under equal conditions of load is greater than that for

  10. Polysialic acid modification of the synaptic cell adhesion molecule SynCAM 1 in human embryonic stem cell-derived oligodendrocyte precursor cells.

    PubMed

    Werneburg, Sebastian; Buettner, Falk F R; Mühlenhoff, Martina; Hildebrandt, Herbert

    2015-05-01

    Oligodendrocyte precursor cells (OPCs) are the progenitors of myelinating oligodendrocytes in brain development and repair. Successful myelination depends on the control of adhesiveness during OPC migration and axon contact formation. The decoration of cell surface proteins with the glycan polysialic acid (polySia) is a key regulatory element of OPC interactions during development and under pathological conditions. By far the major protein carrier of polySia is the neural cell adhesion molecule NCAM, but recently, polysialylation of the synaptic cell adhesion molecule SynCAM 1 has been detected in the developing mouse brain. In mice, polySia-SynCAM 1 is associated with cells expressing NG2, a marker of a heterogeneous precursor cell population, which is the primary source for oligodendrocytes in development and myelin repair but can also give rise to astrocytes and possibly neurons. It is not yet clear if polySia-SynCAM 1 is expressed by OPCs and its occurrence in humans is elusive. By generating uniform human embryonic stem cell-derived OPC cultures, we demonstrate that polySia is present on human OPCs but down-regulated during differentiation into myelin basic protein-positive oligodendrocytes. PolySia on NCAM resides on the isoforms NCAM-180 and NCAM-140, and SynCAM 1 is identified as a novel polySia acceptor in human OPCs.

  11. Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells.

    PubMed

    Morita, T; Takeda, K; Okumura, K

    1990-03-01

    Using Chinese hamster ovary K1 cells, chromosomal aberration tests were carried out with formic acid, acetic acid and lactic acid, and the relationship between the pH of the medium and the clastogenic activity was examined. The medium used was Ham's F12 supplemented with 17 mM NaHCO3 and 10% fetal calf serum. All of these acids induced chromosomal aberrations at the initial pH of ca. 6.0 or below (about 10-14 mM of each acid) both with and without S9 mix. Exposure of cells to about pH 5.7 or below (about 12-16 mM of each acid) was found to be toxic. When the culture medium was first acidified with each of these acids and then neutralized to pH 6.4 or pH 7.2 with NaOH, no clastogenic activity was observed. Using F12 medium supplemented with 34 mM NaHCO3 as a buffer, no clastogenic activity was observed at doses up to 25 mM of these acids (initial pH 5.8-6.0). However, it was found that about 10% of the cells had aberrations at pH 5.7 or below (27.5-32.5 mM of each acid). Furthermore, when 30 mM HEPES was used as a buffer, chromosomal aberrations were not induced at doses up to 20 mM formic acid and acetic acid (initial pH 7.0-7.1), and at doses up to 30 mM lactic acid (initial pH 6.6). In the initial pH range of 6.4-6.7 (25-32.5 mM of each acid), chromosomal aberrations were observed. The above results show that these acids themselves are non-clastogenic, and the pseudo-positive reactions attributable to non-physiological pH could be eliminated by either neutralization of the treatment medium or enhancement of the buffering ability.

  12. World wide IFC phosphoric acid fuel cell implementation

    SciTech Connect

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  13. Evaluation of organic acids as fuel cell electrolytes

    SciTech Connect

    Ahmad, J.; Nguyen, T.H.; Foley, R.T.

    1981-11-01

    The electrochemical behavior of methanesulfonic acid, ethanesulfonic acid, and sulfoacetic acid as fuel cell electrolytes was studied in half-cell at various temperatures. The rate of the electro-oxidation of hydrogen at 115/degree/C was very high in methanesulfonic acid. The rate of the electro-oxidation of propane in all three acids was low even at 135/degree/C. Further, there is evidence for adsorption of these acids on the platinum electrode. It is concluded that anhydrous sulfonic acids are not good electrolytes; water solutions are required. Sulfonic acids containing unprotected carbon-hydrogen bonds are adsorbed on platinum and probably decompose during electrolysis. 9 refs.

  14. Polysialic acid in human neuroblastoma cells

    SciTech Connect

    Livingston, B.D.; Jacobs, J.; Shaw, G.W.; Glick, M.C.; Troy, F.A.

    1987-05-01

    Prokaryotic-derived probes that specifically detect ..cap alpha..-2,8-linked polysialic acid (PSA) units on embryonic neural cell adhesion molecules (N-CAM) were used to show that membrane glycoproteins (GPs) from metastatic human neuroblastoma cells (CHP-134) also contain these unique carbohydrate moieties. This conclusion was based on the following evidence: (1) membranes from CHP-134 cells served as an exogenous acceptor of (/sup 14/C)NeuNAc units in an E. coli K1 sialyltransferase (ST) assay. The bacterial ST is specific for the transfer of (/sup 14/C)NeuNAc to exogenous acceptors containing at least 3 sialyl units (DP3); (2) in SDS-PAGE, the (/sup 14/C)NeuNAc-labeled CHP-134 membranes showed a major peak of radioactivity that was polydisperse. N-CAM shows a similar Mr heterogeneity; (3) treatment of the high Mr CHP-134 product with Endo-N-acetylneuraminidase (Endo-N) released the (/sup 14/C)NeuNAc label as a DP4. Endo-N is specific for hydrolysing ..cap alpha..-2,8-linked PSA chains containing a minimum of 5 sialyl residues; (4) treatment of the DP4 with sialidase converted the label to (/sup 14/C)NeuNAc, thus proving the tetramer contained sialic acid; (5) CHP-134 cells were labeled in vivo with (/sup 3/H)GlcN. A glycopeptide fraction representing ca. 1% of the (/sup 3/H)GlcN incorporated was isolated. Based on Endo-N sensitivity, this glycopeptide contained at least 15-20% of the (/sup 3/H)GlcN label as PSA. Endo-N digestion of the (/sup 3/H)-labeled glycopeptide released (/sup 3/H)-DP4. These results suggest that the surface expression of PSA-containing GPs may be important in neuroblastoma metastasis.

  15. New applications for phosphoric acid fuel cells

    SciTech Connect

    Stickles, R.P.; Breuer, C.T.

    1983-11-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on-site total energy systems, industrial co-generation, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting is power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  16. New applications for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stickles, R. P.; Breuer, C. T.

    1983-01-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  17. Lysophosphatidic acid synthesis and phospholipid metabolism in rat mast cells

    SciTech Connect

    Fagan, D.L.

    1986-01-01

    The role of lysophosphatidic acid in mast cell response to antigen was investigated using an isolated rat serosal mast cell model. The cells were incubated with monoclonal murine immunoglobulin E to the dinitrophenyl hapten and prelabeled with /sup 32/P-orthophosphate or /sup 3/H-fatty acids. Lysophosphatidic acid was isolated form cell extracts by 2-dimensional thin-layer chromatography, and the incorporated radioactivity was assessed by liquid scintillation counting. Lysophosphatidic acid labeling with /sup 32/P was increased 2-4 fold within 5 minutes after the addition of antigen or three other mast cell agonists. Functional group analyses unequivocally showed that the labeled compound was lysophosphatidic acid. Lysophosphatidic acid synthesis was dependent on the activity of diacylglycerol lipase, suggesting formation from monoacylglycerol. In addition, the studies of lysophosphatidic acid synthesis suggest that the addition of antigen to mast cells may initiate more than one route of phospholipid degradation and resynthesis. Whatever the origin of lysophosphatidic acid, the results of this study demonstrated that lysophosphatidic acid synthesis is stimulated by a variety of mast cell agonists. Dose-response, kinetic, and pharmacologic studies showed close concordance between histamine release and lysophosphatidic acid labeling responses. These observations provide strong evidence that lysophosphatidic acid plays an important role in mast cell activation.

  18. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid

    PubMed Central

    Hulikova, Alzbeta; Black, Nicholas; Hsia, Lin-Ting; Wilding, Jennifer; Bodmer, Walter F.; Swietach, Pawel

    2016-01-01

    Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer–stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities. PMID:27543333

  19. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  20. Influence of acid and bile acid on ERK activity, PPARγ expression and cell proliferation in normal human esophageal epithelial cells

    PubMed Central

    Jiang, Zhi-Ru; Gong, Jun; Zhang, Zhen-Ni; Qiao, Zhe

    2006-01-01

    AIM: To observe the effects of acid and bile acid exposure on cell proliferation and the expression of extracellular signal-regulated protein kinase (ERK) and peroxisome proliferator-activated receptor γ (PPARγ) in normal human esophageal epithelial cells in vitro. METHODS: In vitro cultured normal human esophageal epithelial cells were exposed to acidic media (pH 4.0 - 6.5), media containing different bile acid (250 μmol/L), media containing acid and bile acid, respectively. Cell proliferation was assessed using MTT and flow cytometry. The expressions of phosphorylated ERK1/2 and PPARγ protein were determined by the immunoblotting technique. RESULTS: Acid-exposed (3 min) esophageal cells exhibited a significant increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and the level of phosphorylated ERK1/2 protein. When the acid-exposure period exceeded 6 min, we observed a decrease in proliferation ratio and S phase of the cell cycle, with an increased apoptosis ratio (P < 0.05). Bile acid exposure (3-12 min) also produced an increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and phosphorylated ERK1/2 expression. On the contrary, deoxycholic acid (DCA) exposure (> 20 min) decreased proliferation ratio. Compared with bile acid exposure (pH 7.4), bile acid exposure (pH 6.5, 4) significantly decreased proliferation ratio (P < 0.05). There was no expression of PPARγ in normal human esophageal epithelial cells. CONCLUSION: The rapid stimuli of acid or bile acid increase proliferation in normal human esophageal epithelial cells by activating the ERK pathway. PMID:16688842

  1. Amino acids in the cultivation of mammalian cells.

    PubMed

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  2. Targeting cancer cells with folic acid-iminoboronate fluorescent conjugates.

    PubMed

    Cal, Pedro M S D; Frade, Raquel F M; Chudasama, Vijay; Cordeiro, Carlos; Caddick, Stephen; Gois, Pedro M P

    2014-05-25

    Herein we present the synthesis of fluorescent 2-acetylbenzeneboronic acids that undergo B-N promoted conjugation with lysozyme and N-(2-aminoethyl) folic acid (EDA-FA), generating conjugates that are selectively recognized and internalized by cancer cells that over-express folic acid receptors.

  3. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  4. Phosphoric acid fuel cell platinum use study

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  5. High dose of ascorbic acid induces cell death in mesothelioma cells.

    PubMed

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  6. Maslinic Acid Inhibits Proliferation of Renal Cell Carcinoma Cell Lines and Suppresses Angiogenesis of Endothelial Cells

    PubMed Central

    Thakor, Parth; Song, Wenzhe; Subramanian, Ramalingam B.; Thakkar, Vasudev R.; Vesey, David A.

    2017-01-01

    Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC) remains a treatment-resistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1), endothelial cells (human umbilical vein endothelial cell line [HUVEC]), and primary cultures of kidney proximal tubular epithelial cells (PTEC) were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  7. Intercellular communications within the rat anterior pituitary. XVI: postnatal changes of distribution of S-100 protein positive cells, connexin 43 and LH-RH positive sites in the pars tuberalis of the rat pituitary gland. An immunohistochemical and electron microscopic study.

    PubMed

    Wada, Ikuo; Sakuma, Eisuke; Shirasawa, Nobuyuki; Wakabayashi, Kenjiro; Otsuka, Takanobu; Hattori, Kazuki; Yashiro, Takashi; Herbert, Damon C; Soji, Tsuyoshi

    2014-02-01

    The architecture of luteinizing hormone-releasing hormone (LH-RH) nerve ends and the S-100 protein containing folliculo-stellate cells forming gap junctions in the pars tuberalis is basically important in understanding the regulation of the hormone producing mechanism of anterior pituitary glands. In this study, intact male rats 5-60 days old were prepared for immunohistochemistry and electron microscopy. From immunostained sections, the S-100 containing cells in pars tuberalis were first detected on day 30 and increased in number to day 60; this was parallel to the immunohistochemical staining of gap junction protein, connexin 43. LH-RH positive sites were clearly observed on just behind the optic chiasm and on the root of pituitary stalk on day 30. On day 60, the width of layer increased, while follicles and gap junctions were frequently observed between agranular cells in 10 or more layers of pars tuberalis. In the present study, we investigated the sexual maturation of the anterior pituitary glands through the postnatal development of S-100 positive cells, connexin 43 and LH-RH nerves. It is suggested that the folliculo-stellate cell system including the LH-RH neurons in the pars tuberalis participates in the control of LH secretion along with the portal vein system.

  8. Designer nucleic acids to probe and program the cell.

    PubMed

    Krishnan, Yamuna; Bathe, Mark

    2012-12-01

    Recent advances in nucleic acid sequencing, structural, and computational technologies have resulted in dramatic progress in our understanding of nucleic acid structure and function in the cell. This knowledge, together with the predictable base-pairing of nucleic acids and powerful synthesis and expression capabilities now offers the unique ability to program nucleic acids to form precise 3D architectures with diverse applications in synthetic and cell biology. The unique modularity of structural motifs that include aptamers, DNAzymes, and ribozymes, together with their well-defined construction rules, enables the synthesis of functional higher-order nucleic acid complexes from these subcomponents. As we illustrate here, these highly programmable, smart complexes are increasingly enabling researchers to probe and program the cell in a sophisticated manner that moves well beyond the use of nucleic acids for conventional genetic manipulation alone.

  9. Arachidonic acid inhibits glycine transport in cultured glial cells.

    PubMed Central

    Zafra, F; Alcantara, R; Gomeza, J; Aragon, C; Gimenez, C

    1990-01-01

    The effects of arachidonic acid on glycine uptake, exchange and efflux in C6 glioma cells were investigated. Arachidonic acid produced a dose-dependent inhibition of high-affinity glycine uptake. This effect was not due to a simple detergent-like action on membranes, as the inhibition of glycine transport was most pronounced with cis-unsaturated long-chain fatty acids, whereas saturated and trans-unsaturated fatty acids had relatively little or no effect. Endogenous unsaturated non-esterified fatty acids may exert a similar inhibitory effect on the transport of glycine. The mechanism for this inhibitory effect has been examined in a plasma membrane vesicle preparation derived from C6 cells, which avoids metabolic or compartmentation interferences. The results suggest that part of the selective inhibition of glycine transport by arachidonic acid could be due to the effects of the arachidonic acid on the lipid domain surrounding the carrier. PMID:2121132

  10. Lactic acid fermentation in cell-recycle membrane bioreactor.

    PubMed

    Choudhury, B; Swaminathan, T

    2006-02-01

    Traditional lactic acid fermentation suffers from low productivity and low product purity. Cell-recycle fermentation has become one of the methods to obtain high cell density, which results in higher productivity. Lactic acid fermentation was investigated in a cell-recycle membrane bioreactor at higher substrate concentrations of 100 and 120 g/dm3. A maximum cell density of 145 g/dm3 and a maximum productivity of 34 g/(dm3.h) were achieved in cell-recycle fermentation. In spite of complete consumption of substrate, there was a continuous increase in cell density in cell-recycle fermentation. Control of cell density in cell-recycle fermentation was attempted by cell bleeding and reduction in yeast extract concentration.

  11. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    PubMed

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  12. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  13. Establishment of a GM-CSF-dependent megakaryoblastic cell line with the potential to differentiate into an eosinophilic lineage in response to retinoic acids.

    PubMed

    Ma, F; Koike, K; Higuchi, T; Kinoshita, T; Takeuchi, K; Mwamtemi, H H; Sawai, N; Kamijo, T; Shiohara, M; Horie, S; Kawa, S; Sasaki, Y; Hidaka, E; Yamagami, O; Yamashita, T; Koike, T; Ishii, E; Komiyama, A

    1998-02-01

    We recently established a human granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent cell line (HML) from colony-constituent cells grown by peripheral blood cells of a patient with acute megakaryoblastic leukaemia. The HML cells possessed megakaryocytic features, as determined by cytochemical, electron microscopic and flow cytometric analysis. In the present study we examined the effects of retinoic acid (RA) on the development of HML cells. All-trans-RA, 13-cis-RA and 9-cis-RA at 10(-8) mol/l to 10(-5) mol/l inhibited the GM-CSF-dependent cell growth. Some of the RA-treated cells contained prominent azurophilic granules and were positive for peroxidase. They also reacted with Biebrich scarlet, Luxol fast blue and a monoclonal antibody against eosinophil peroxidase. In addition, exposure to RA increased the frequency and the intensity of major basic protein-positive cells. However, eosinophil-derived neurotoxin and eosinophil cationic protein were not detected or were only detected at a low level in the lysates of the HML cells treated with RA. Although IL-5 alone could not stimulate cell growth, the addition of IL-5 to the cultures containing stem cell factor + all-trans-RA was required for the expression of the eosinophilic phenotype. These results suggest that the HML cell line is a megakaryoblastic cell line with the potential to differentiate into the eosinophilic lineage. HML cells may be a useful model for elucidating the eosinophilic differentiation programme.

  14. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    PubMed

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  15. Effect of essential fatty acids on tumor cells.

    PubMed

    Ramesh, G; Das, U N; Koratkar, R; Padma, M; Sagar, P S

    1992-01-01

    An earlier study showed that essential fatty acids and their metabolites can kill tumor cells in vitro. This tumoricidal action can be correlated to an increase in generation of free radicals in the tumor cells. Evening primrose oil (EPO) is a rich source of linoleic acid and gamma-linolenic acid. We report that EPO can kill tumor cells both in vitro and in vivo. This tumoricidal action of EPO was associated with a threefold increase in superoxide generation. One of the factors that is capable of interfering with the cytotoxic action of fatty acids appears to be the protein content of the medium. Fatty acids can bind to protein and thus prevent their cytotoxic action.

  16. Irbic acid, a dicaffeoylquinic acid derivative from Centella asiatica cell cultures.

    PubMed

    Antognoni, Fabiana; Perellino, Nicoletta Crespi; Crippa, Sergio; Dal Toso, Roberto; Danieli, Bruno; Minghetti, Anacleto; Poli, Ferruccio; Pressi, Giovanna

    2011-10-01

    3,5-O-dicaffeoyl-4-O-malonilquinic acid (1) (irbic acid) has been isolated for the first time from cell cultures of Centella asiatica and till now it has never been reported to be present in the intact plant. Evidence of its structure was obtained by spectroscopic analyses (MS/NMR). Besides 1, cell cultures produce also the known 3,5-O-dicaffeoylquinic acid, chlorogenic acid, and the triferulic acid 2 (4-O-8'/4'-O-8″-didehydrotriferulic acid). Biological activities were evaluated for compound 1, which showed to have a strong radical scavenging capacity, together with a high inhibitory activity on collagenase. This suggests a possible utilization of this substance as a topical agent to reduce the skin ageing process.

  17. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  18. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  19. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (...

  20. The effect of propionic acid and valeric acid on the cell cycle in root meristems of Pisum sativum

    SciTech Connect

    Tramontano, W.A.; Yang, Shauyu; Delillo, A.R. )

    1990-01-01

    Propionic acid and valeric acid at 1mM reduced the mitotic index of root meristem cells of Pisum sativum to < 1% after 12 hr in aerated White's medium. This effect varied with different acid concentrations. After a 12 hr exposure to either acid, seedlings transferred to fresh medium without either acid, resumed their normal mitotic index after 12 hr, with a burst of mitosis 8 hr post-transfer. Exposure of root meristem cells to either acid also inhibited ({sup 3}H)-TdR incorporation. Neither acid significantly altered the distribution of meristematic cells in G1 and G2 after 12 hr. The incorporation of ({sup 3}H) - uridine was also unaltered by the addition of either acid. This information suggests that propionic acid and valeric acid, limit progression through the cell cycle by inhibiting DNA synthesis and arresting cells in G1 and G2. These results were consistent with previous data which utilized butyric acid.

  1. Expanding the diversity of unnatural cell surface sialic acids

    SciTech Connect

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  2. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  3. Low contaminant formic acid fuel for direct liquid fuel cell

    DOEpatents

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  4. Electrochemical characteristics of acid electrolytes for fuel cells

    NASA Astrophysics Data System (ADS)

    Gervasio, D.; Razaq, M.; Razaq, A.; Adzic, R.; Kanamura, K.; Yeager, E. B.

    1992-01-01

    The electrochemical evaluation of new perfluorinated fuel cell electrolytes provided by GRI contractors at Clemson and Iowa shows the kinetics for O2 reduction on Pt improves with these acids compared to with phosphoric acid. The improvement is mainly due to the lesser tendency of these acids to absorb on Pt. Kinetics do not have a strong dependence on pH or O2 solubility when mass transport is not involved. Concentrated sulfonyl acids were usually found to wet Teflon resulting in the flooding of Teflon-bonded gas fed electrodes and poor performance at high current densities. These perfluorinated electrolytes were, however, found to be useful as performance enhancing additives to concentrated phosphoric acid in some cases. The alpha, omega-bis-phosphonic acid with a perfluoroethylene bridge gave superior performance compared to phosphoric acid at elevated temperatures (up to 200 C) for 500 hours. Bis-phosphonic acids with higher CF2 to PO3H2 ratios dehydrated more readily at elevated temperatures, resulting in resistive voltage losses. New perfluorinated phosphonic acid containing olefins were found to be polymerizable. This suggests that with a reasonable synthetic effort, new kinds of ionomer membrames are attainable, and these may be superior to Nafion for fuel cell applications.

  5. Amino acid transporters: roles in amino acid sensing and signalling in animal cells.

    PubMed Central

    Hyde, Russell; Taylor, Peter M; Hundal, Harinder S

    2003-01-01

    Amino acid availability regulates cellular physiology by modulating gene expression and signal transduction pathways. However, although the signalling intermediates between nutrient availability and altered gene expression have become increasingly well documented, how eukaryotic cells sense the presence of either a nutritionally rich or deprived medium is still uncertain. From recent studies it appears that the intracellular amino acid pool size is particularly important in regulating translational effectors, thus, regulated transport of amino acids across the plasma membrane represents a means by which the cellular response to amino acids could be controlled. Furthermore, evidence from studies with transportable amino acid analogues has demonstrated that flux through amino acid transporters may act as an initiator of nutritional signalling. This evidence, coupled with the substrate selectivity and sensitivity to nutrient availability classically associated with amino acid transporters, plus the recent discovery of transporter-associated signalling proteins, demonstrates a potential role for nutrient transporters as initiators of cellular nutrient signalling. Here, we review the evidence supporting the idea that distinct amino acid "receptors" function to detect and transmit certain nutrient stimuli in higher eukaryotes. In particular, we focus on the role that amino acid transporters may play in the sensing of amino acid levels, both directly as initiators of nutrient signalling and indirectly as regulators of external amino acid access to intracellular receptor/signalling mechanisms. PMID:12879880

  6. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  7. Solid Acid Fuel Cell Stack for APU Applications

    SciTech Connect

    Duong, Hau H.

    2011-04-15

    Solid acid fuel cell technology affords the opportunity to operate at the 200-300 degree centigrade regime that would allow for more fuel flexibility, compared to polymer electrode membrane fuel cell, while avoiding the relatively more expensive and complex system components required by solid oxide fuel cell. This project addresses many factors such as MEA size scalability, fuel robustness, stability, etc., that are essential for successful commercialization of the technology.

  8. Silicon dioxide thin film mediated single cell nucleic acid isolation.

    PubMed

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube.

  9. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    PubMed Central

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  10. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  11. Characterization of ascorbic acid uptake by isolated rat kidney cells

    SciTech Connect

    Bowers-Komro, D.M.; McCormick, D.B. )

    1991-01-01

    Isolated kidney cells accumulated L(1-14C)ascorbic acid in a time-dependent manner and reached a steady state after 15 min at 37 degrees C. Initial velocity for uptake was over 300 pmol/mg protein per min when cells were separated from the bathing solution using a density gradient established during centrifugation. The uptake process was saturable with an apparent concentration at half maximal uptake of 36 mumols/L. Ascorbate uptake was reduced by metabolic inhibitors and was temperature dependent. Although ascorbic acid is an acid anion at pH 7.4, uptake did not appear to be inhibited by other acid anions such as p-aminohippurate and probenecid; however, involvement of the ion gradient established by Na+, H(+)-adenosine triphosphatase could not be confirmed. Replacing the sodium ion with other monovalent ions reduced the accumulation of ascorbate significantly. Isoascorbic and dehydroascorbic acids inhibited ascorbate uptake (34 and 13 mmol/L, respectively), whereas high concentrations of glucose showed some stimulation. These findings indicated that ascorbic acid is reabsorbed by the kidney in a sodium-dependent active transport process that is not common to other acid anions and has some specificity for the ascorbic acid structure.

  12. The effect of ascetic acid on mammalian cells

    SciTech Connect

    Mariana, Oana C; Trujillo, Antoinette; Sanders, Claire K; Burnett, Kassidy S; Freyer, James P; Mourant, Judith R

    2010-01-01

    Effects of the contrast agent, acetic acid, on mammalian cells are studied using light scattering measurements, viability and fluorescence pH assays. Results depend on whether cells are in PBS or are live and metabolizing. Acetic acid is a contrast agent used to aid the detection of cancerous and precancerous lesions of the uterine cervix. Typically 3% or 5% acetic acid is applied to the swface of the cervix and areas of the tissue that turn 'acetowhite' are considered more likely to be precancerous. The mechanism of action of acetic acid has never been understood in detail, although there are several hypotheses. One is that a decrease in pH causes cytokeratins in epithelial cells to polymerize. We will present data demonstrating that this is not the sole mechanism of acetowhitening. Another hypothesis is that a decrease in pH in the nucleus causes deacetylation of the histones which in turn results in a dense chromatin structure. Relevant to this hypothesis we have measured the internal pH of cells. Additional goals of this work are to understand what physical changes result in acetowhitening, to understand why there is variation in how cells respond to acetic acid, and to investigate how acetowhitening affects the light scatter properties measured by a fiber-optic probe we have developed for cervical cancer diagnostics.

  13. High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici.

    PubMed

    Wang, Zhongqiang; Jin, Ying; Yang, Shang-Tian

    2015-03-01

    Propionic acid is an important chemical with wide applications and its production via fermentation is of great interest. However, economic production of bio-based propionic acid requires high product titer, yield, and productivity in the fermentation. A highly efficient and stable high cell density (HCD) fermentation process with cell recycle by centrifugation was developed for propionic acid production from glucose using an acid-tolerant strain of Propionibacterium acidipropionici, which had a higher specific growth rate, productivity, and acid tolerance compared to the wild type ATCC 4875. The sequential batch HCD fermentation at pH 6.5 produced propionic acid at a high titer of ∼40 g/L and productivity of 2.98 g/L h, with a yield of ∼0.44 g/g. The product yield increased to 0.53-0.62 g/g at a lower pH of 5.0-5.5, which, however, decreased the productivity to 1.28 g/L h. A higher final propionic acid titer of >55 g/L with a productivity of 2.23 g/L h was obtained in fed-batch HCD fermentation at pH 6.5. A 3-stage simulated fed-batch process in serum bottles produced 49.2 g/L propionic acid with a yield of 0.53 g/g and productivity of 0.66 g/L h. These productivities, yields and propionic acid titers were among the highest ever obtained in free-cell propionic acid fermentation.

  14. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  15. Materials characterization of phosphoric acid fuel cell system

    NASA Technical Reports Server (NTRS)

    Venkatesh, Srinivasan

    1986-01-01

    The component materials used in the fabrication of phosphoric acid fuel cells (PAFC) must have mechanical, chemical, and electrochemical stability to withstand the moderately high temperature (200 C) and pressure (500 kPa) and highly oxidizing nature of phosphoric acid. This study discusses the chemical and structural stability, performance and corrosion data on certain catalysts, catalyst supports, and electrode support materials used in PAFC applications.

  16. Docosahexaenoic Acid Induces Apoptosis in Primary Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Gyan, Emmanuel; Tournilhac, Olivier; Halty, Christelle; Veyrat-Masson, Richard; Akil, Saïda; Berger, Marc; Hérault, Olivier; Callanan, Mary; Bay, Jacques-Olivier

    2015-01-01

    Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6) is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 µM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity. PMID:26734128

  17. Inorganic nanoparticles as nucleic acid transporters into eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Amirkhanov, R. N.; Zarytova, V. F.; Zenkova, M. A.

    2017-02-01

    The review is concerned with inorganic nanoparticles (gold, titanium dioxide, silica, iron oxides, calcium phosphate) used as nucleic acid transporters into mammalian cells. Methods for the synthesis of nanoparticles and approaches to surface modification through covalent or noncovalent attachment of low- or high-molecular-weight compounds are considered. The data available from the literature on biological action of nucleic acids delivered into the cells by nanoparticles and on the effect of nanoparticles and their conjugates and complexes on the cell survival are summarized. Pathways of cellular internalization of nanoparticles and the mechanism of their excretion, as well as the ways of release of nucleic acids from their complexes with nanoparticles after the cellular uptake are described. The bibliography includes 161 references.

  18. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.

    PubMed

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-03-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis.

  19. Amino acids of the cell wall of Nocardia rubra.

    PubMed

    Beaman, B L; Kim, K S; Salton, M R; Barksdale, L

    1971-11-01

    Two classes of preparations of cell walls of Nocardia rubra strain 721-A, digested by trypsin and pepsin with or without subsequent extraction in alkaline ethanol, when examined by electron microscope and analyzed quantitatively for amino acid content differ in ultrastructure and constituent amino acids. Evidence suggests that the lipid-associated amino acids (as peptide or protein) occupy a location superficial to the basal peptido-glycan layer of this nocardia. Their removal is associated with the loss of a characteristic pattern of the outer envelope.

  20. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I.

    PubMed

    Boshoff, Helena I; Mizrahi, Valerie; Barry, Clifton E

    2002-04-01

    The effects of low extracellular pH and intracellular accumulation of weak organic acids were compared with respect to fatty acid synthesis by whole cells of Mycobacterium tuberculosis and Mycobacterium smegmatis. The profile of fatty acids synthesized during exposure to benzoic, nicotinic, or pyrazinoic acids, as well as that observed during intracellular hydrolysis of the corresponding amides, was not a direct consequence of modulation of fatty acid synthesis by these compounds but reflected the response to inorganic acid stress. Analysis of fatty acid synthesis in crude mycobacterial cell extracts demonstrated that pyrazinoic acid failed to directly modulate the fatty acid synthase activity catalyzed by fatty acid synthase I (FAS-I). However, fatty acid synthesis was irreversibly inhibited by 5-chloro-pyrazinamide in a time-dependent fashion. Moreover, we demonstrate that pyrazinoic acid does not inhibit purified mycobacterial FAS-I, suggesting that this enzyme is not the immediate target of pyrazinamide.

  1. Chromatin Remodeling, Cell Proliferation and Cell Death in Valproic Acid-Treated HeLa Cells

    PubMed Central

    Felisbino, Marina Barreto; Tamashiro, Wirla M. S. C.; Mello, Maria Luiza S.

    2011-01-01

    Background Valproic acid (VPA) is a potent anticonvulsant that inhibits histone deacetylases. Because of this inhibitory action, we investigated whether VPA would affect chromatin supraorganization, mitotic indices and the frequency of chromosome abnormalities and cell death in HeLa cells. Methodology/Principal Findings Image analysis was performed by scanning microspectrophotometry for cells cultivated for 24 h, treated with 0.05, 0.5 or 1.0 mM VPA for 1–24 h, and subjected to the Feulgen reaction. TSA-treated cells were used as a predictable positive control. DNA fragmentation was investigated with the TUNEL assay. Chromatin decondensation was demonstrated under TSA and all VPA treatments, but no changes in chromosome abnormalities, mitotic indices or morphologically identified cell death were found with the VPA treatment conditions mentioned above, although decreased mitotic indices were detected under higher VPA concentration and longer exposure time. The frequency of DNA fragmentation identified with the TUNEL assay in HeLa cells increased after a 24-h VPA treatment, although this fragmentation occurred much earlier after treatment with TSA. Conclusions/Significance The inhibition of histone deacetylases by VPA induces chromatin remodeling in HeLa cells, which suggests an association to altered gene expression. Under VPA doses close to the therapeutic antiepileptic plasma range no changes in cell proliferation or chromosome abnormalities are elicited. The DNA fragmentation results indicate that a longer exposure to VPA or a higher VPA concentration is required for the induction of cell death. PMID:22206001

  2. Induction of apoptotic cell death in HL-60 cells by jacaranda seed oil derived fatty acids.

    PubMed

    Yamasaki, Masao; Motonaga, Chihiro; Yokoyama, Marino; Ikezaki, Aya; Kakihara, Tomoka; Hayasegawa, Rintaro; Yamasaki, Kaede; Sakono, Masanobu; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2013-01-01

    Various fatty acids are attracting considerable interest for their anticancer effects. Among them, fatty acids containing conjugated double bonds show one of the most potent cytotoxic effects on cancer cells. Here, we focused on the cancer cell killing activity of jacaranda seed oil. The seed oil of jacaranda harvested from Miyazaki in Japan contained 30.9% cis-8, trans-10, cis-12 octadecatrienoic acid, called jacaric acid (JA). Fatty acid prepared from this oil (JFA) and JA strongly induced cell death in human leukemia HL-60 cells. On the other hand, linoleic acid and trans-10, cis-12 conjugated linoleic acid (<10 μM) did not affect cell proliferation and viability. An increase in the sub-G₁ population and internucleosomal fragmentation of DNA was observed in JA- and JFA-treated cells, indicating induction of apoptotic cell death. Finally, the cytotoxic effects of JA and JFA were completely abolished by α-tocopherol. Taken together, these data suggest that jacaranda seed oil has potent apoptotic activity in HL-60 cells through induction of oxidative stress.

  3. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    PubMed

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  4. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  5. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  6. Lysophosphatidic acid possesses dual action in cell proliferation.

    PubMed Central

    Tigyi, G; Dyer, D L; Miledi, R

    1994-01-01

    Lysophosphatidic acid (LPA) induces mitogenic responses in cultured fibroblasts through a pertussis toxin-sensitive signaling pathway. In contrast, we have shown that LPA inhibits the proliferation of Sp2/0-Ag14 myeloma cells. To resolve this apparent controversy, LPA-elicited responses in cell proliferation and the underlying second messenger mechanisms were compared in Sp2/0-Ag14 myeloma and NIH 3T3 fibroblast cells. The antimitogenic response was not elicited by micromolar concentrations of phosphatidic acid, phosphatidylglycerol, or diacylglycerol. In NIH 3T3 and Sp2 cells, LPA elicited an increase in inositol trisphosphate and a subsequent transient increase in free cytoplasmic Ca2+. Unlike the mitogenic response in NIH 3T3 cells, the antimitogenic effect was not affected by pertussis toxin; on the contrary, it was accompanied by an increase in cAMP. In Sp2 cells, cAMP analogs, forskolin, and isobutylmethylxanthine inhibited cell proliferation and enhanced LPA action in an additive manner, suggesting that an LPA-elicited increase in cAMP-mediated signaling was responsible for the antimitogenic response. In addition to the mitogenic response in fibroblasts and the antimitogenic response in tumor cell lines, there are some cell types (Jurkat T-cell lymphoma and primary astrocytes) in which LPA is ineffective in altering cell proliferation. The cell-type-specific dual action of LPA suggests that this endogenous lipid mediator when released from activated cells might play an important role as a regulator, rather than a ubiquitous inducer, of cell proliferation. Images PMID:8127904

  7. Integral edge seals for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Granata, Jr., Samuel J. (Inventor); Woodle, Boyd M. (Inventor); Dunyak, Thomas J. (Inventor)

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  8. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  9. Cell wall teichoic acids of two Brevibacterium strains.

    PubMed

    Shashkov, A S; Potekhina, N V; Evtushenko, L I; Naumova, I B

    2004-06-01

    Structurally identical teichoic acids were detected in cell walls of two soil isolates assigned to Brevibacterium linens based on phylogenetic data. Both cell walls contain unsubstituted 1,3-poly(glycerol phosphate) and poly(glycosylglycerol phosphate). Repeating units of the latter--alpha-D-GlcpNAc-(1-->4)-beta-D-Galp-(1-->1)-Gro--are bound by phosphodiester bonds including OH-3 of galactose and OH-3 of glycerol. Some of the N-acetylglucosamine residues have 4,6-pyruvic acid acetal, amounts of the latter in the two strains being unequal. Species-specificity of the structures of teichoic acids in the genus Brevibacterium is discussed.

  10. Cystine and dibasic amino acid uptake by opossum kidney cells

    SciTech Connect

    States, B.; Segal, S. )

    1990-06-01

    The characteristics of the uptake of L-cystine by the continuous opossum kidney cell line, OK, were examined. Uptake of cystine is rapid and, in contrast to other continuous cultured cell lines, these cells retain the cystine/dibasic amino acid transport system which is found in vivo and in freshly isolated kidney tissue. Confluent monolayers of cells also fail to show the presence of the cystine/glutamate transport system present in LLC-PK1 cells, fibroblasts, and cultured hepatocytes. Uptake of cystine occurs via a high-affinity saturable process which is independent of medium sodium concentration. The predominant site of cystine transport is across the apical cell membrane. The intracellular concentration of GSH far exceeds that of cystine with a ratio greater than 100:1 for GSH:cysteine. Incubation of cells for 5 minutes with a physiological level of labelled cystine resulted in the labelling of 66% and 5% of the total intracellular cysteine and glutathione, respectively. The ability of these cells to reflect the shared cystine/dibasic amino acid transport system makes them a suitable model for investigation of the cystine carrier which is altered in human cystinuria.

  11. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells.

    PubMed

    Ramanauskiene, Kristina; Raudonis, Raimondas; Majiene, Daiva

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80-130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM-200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  12. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies. PMID:27688825

  13. Germ cell mutagenicity of phthalic acid in mice.

    PubMed

    Jha, A M; Singh, A C; Bharti, M

    1998-12-03

    Mutagenicity of phthalic acid was evaluated by employing dominant lethal mutation and sperm head abnormality assays in male Swiss albino mice. For the dominant lethal mutation assay, adult male mice received a single intraperitoneal (i.p.) injection of either 40 mg or 80 mg/kg b.w. of phthalic acid for 5 consecutive days. For the sperm head abnormality assay, the mice were treated with 50, 100, 150, 200 and 300 mg/kg b.w. as a single i.p. injection. Treatment of adult male mice with phthalic acid resulted in induction of dominant lethal mutations and abnormal sperm heads. The results obtained indicate that phthalic acid is a germ cell mutagen.

  14. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  15. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts.

    PubMed

    Dounchis, J S; Bae, W C; Chen, A C; Sah, R L; Coutts, R D; Amiel, D

    2000-08-01

    The repair of articular cartilage injuries remains a challenge, with many of the current therapeutic strategies based on the grafting or recruitment of chondrogenic tissues or cells. This 1-year study compared the repair of a 3.7-mm diameter by 3-mm deep osteochondral defect in the medial femoral condyle of 24 New Zealand White rabbits; the defect was obtained using an autogenic perichondrium cell polylactic acid composite graft with a contralateral control in which the osteochondral defect remained empty. To elucidate the effect of host immune responses on the repair process after perichondrium cell transplantation, the results of the autogenic perichondrium cell polylactic acid graft group were compared with those obtained in the authors' previous 1-year study of allogenic perichondrium cell polylactic acid composite grafts implanted in a similar model. One year after surgery, the repair site underwent gross inspection and histologic, histomorphometric, biochemical, and biomechanical analyses. The autogenic perichondrium cell polylactic acid graft group (92%) and the control group in which the osteochondral defect remained empty (88%) resulted in a high percentage of grossly acceptable repairs. The autogenic grafts appeared to augment the intrinsic healing capacity of the animals (as compared with the animals in the No Implant Group). The autogenic perichondrium cell polylactic and grafts improved the histologic appearance and percentage of Type II collagen of the cartilaginous repair tissue. Compared with allogenic grafts, the autogenic grafts had better reconstitution of the subchondral bone. However, the results of this experimental model suggest a suboptimal concentration of glycosaminoglycans in the neocartilage matrix, a depressed surface of the repair tissue, a histologic appearance that was not equivalent to that of normal articular cartilage, and reduced biomechanical properties for the repair tissue. The future application of growth factors to this

  16. Retinoic acid, meiosis and germ cell fate in mammals.

    PubMed

    Bowles, Josephine; Koopman, Peter

    2007-10-01

    Although mammalian sex is determined genetically, the sex-specific development of germ cells as sperm or oocytes is initiated by cues provided by the gonadal environment. During embryogenesis, germ cells in an ovary enter meiosis, thereby committing to oogenesis. By contrast, germ cells in a testicular environment do not enter meiosis until puberty. Recent findings indicate that the key to this sex-specific timing of meiosis entry is the presence or absence of the signaling molecule retinoic acid. Although this knowledge clarifies a long-standing mystery in reproductive biology, it also poses many new questions, which we discuss in this review.

  17. Cell nucleus directed 2,3,5-triiodobenzoic acid conjugates.

    PubMed

    Sturzu, Alexander; Vogel, Ulrich; Gharabaghi, Alireza; Beck, Alexander; Kalbacher, Hubert; Echner, Hartmut; Heckl, Stefan

    2009-07-01

    Triiodobenzoic acid (TIBA) represents the core structure of most clinically used contrast agents for computed tomography and other X-ray procedures. To construct an intracellular radiopaque contrast agent, TIBA was coupled to various different positively and negatively charged fluorescein iothiocyanate (FITC)-labelled peptides. TIBA coupled to the SV40 T Antigen nuclear localization sequence (NLS) stained 80% of human glioma cells and caused cell death. This occurred with C- or N-terminal binding of TIBA and with the correct or mutant NLS. No cell death and only small numbers of stained cells (below 3 %) were observed after incubation with NLS conjugates lacking TIBA or after incubation with TIBA-conjugates containing a negatively charged polyglutamic acid stretch. TIBA-conjugates containing the Antennapedia-derived cell-penetrating peptide penetratin were only nuclearly taken up when TIBA and FITC were coupled to lysines outside the 16-amino acid peptide sequence. The study shows that intracellular TIBA may have potential as a chemotherapeutic agent rather than a contrast agent.

  18. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation.

    PubMed

    Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz

    2015-11-01

    Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools.

  19. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation

    PubMed Central

    Badr, Haitham A.; AlSadek, Dina M.M.; Mathew, Mohit P.; Li, Chen-Zhong; Djansugurova, Leyla B.; Yarema, Kevin J.; Ahmed, Hafiz

    2015-01-01

    Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools. PMID:26295436

  20. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    PubMed

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  1. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  2. Perfluorodecanoic acid stimulates NLRP3 inflammasome assembly in gastric cells

    PubMed Central

    Zhou, Xiangyu; Dong, Tianyi; Fan, Ziyan; Peng, Yanping; Zhou, Rongbin; Wang, Xiaqiong; Song, Ning; Han, Mingyong; Fan, Bingbing; Jia, Jihui; Liu, Shili

    2017-01-01

    Perfluorodecanoic acid (PFDA), a perfluorinated carboxylic acid, presents in the environment and accumulates in human blood and organs, but its association with tumor promotion are not clear. Given that inflammation plays a significant role in the development of gastric malignancies, we evaluated the effects of PFDA on activation of the inflammasome and inflammation regulation in the gastric cell line AGS. When added to cell cultures, PFDA significantly stimulated IL-1β and IL18 secretion and their mRNA levels compared with control cells. By RT-PCR and western-blot we found that up-regulation of NLRP3 were associated with promotion of IL-1β and IL-18 production. Then expression variation of cIAP1/2, c-Rel and p52 were analyzed, the results demonstrated raised mRNA expression in all the tested genes concomitant with enhanced inflammasome activity after exposure to PFDA. Assays with cIAP2 siRNA and NFκB reporter provided additional evidence that these genes were involved in PFDA-induced inflammasome assembly. Furthermore, increased secretion of IL-1β and IL-18 were detected in stomach of PFDA-treated mice, disorganized alignment of epithelial cells and inflammatory cell infiltration were also observed in the stomach tissues upon PFDA treatment. This study reports for the first time that PFDA regulates inflammasome assembly in human cells and mice tissues. PMID:28367997

  3. Polysialic acid of the neural cell adhesion molecule distinguishes small cell lung carcinoma from carcinoids.

    PubMed Central

    Komminoth, P.; Roth, J.; Lackie, P. M.; Bitter-Suermann, D.; Heitz, P. U.

    1991-01-01

    The neural cell adhesion molecule (NCAM) exists in various types of neuroendocrine cells and their tumors. A typical feature of NCAM is polysialic acid, of which the chain length is developmentally regulated. The authors have performed a comparative immunohistochemical study on small cell lung carcinomas and bronchial as well as gastrointestinal carcinoids with the monoclonal antibody (MAb) 735 reactive with the long-chain form of polysialic acid. The small cell lung carcinomas, irrespective of their histological type, were positive for polysialic acid. Metastatic tumor cell complexes also exhibited immunostaining. The tumor cell-surface-associated immunostaining for polysialic acid was sensitive to endoneuraminidase. The mature and atypical bronchial and gastrointestinal carcinoids were not immunoreactive for polysialic acid. Cytoplasmic staining in groups of cells of carcinoids (2 of 28 cases) was due to nonspecific antibody binding, which could be prevented by increased ion strength. These data indicate that neuroendocrine tumors of the lung can be distinguished by their content of highly sialylated NCAM. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1651057

  4. alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress.

    PubMed

    Katsoulieris, Elias; Mabley, Jon G; Samai, Mohamed; Green, Irene C; Chatterjee, Prabal K

    2009-11-25

    Unsaturated fatty acids may counteract the lipotoxicity associated with saturated fatty acids. Palmitic acid induced endoplasmic reticulum (ER) stress and caused apoptotic and necrotic cell death in the renal proximal tubular cell line, NRK-52E. We investigated whether alpha-linolenic acid, an unsaturated fatty acid, protected against ER stress and cell death induced by palmitic acid or by other non-nutrient ER stress generators. Incubation of NRK-52E cells for 24h with palmitic acid produced a significant increase in apoptosis and necrosis. Palmitic acid also increased levels of three indicators of ER stress - the phosphorylated form of the eukaryotic initiation factor 2alpha (eIF2alpha), C/EBP homologous protein (CHOP), and glucose regulated protein 78 (GRP78). alpha-Linolenic acid dramatically reduced cell death and levels of all three indicators of ER stress brought about by palmitic acid. Tunicamycin, which induces ER stress by glycosylation of proteins, produced similar effects to those obtained using palmitic acid; its effects were partially reversed by alpha-linolenic acid. Salubrinal (a phosphatase inhibitor) causes increased levels of the phosphorylated form of eIF2alpha - this effect was partially reversed by alpha-linolenic acid. Palmitoleate, a monosaturated fatty acid, had similar effects to those of alpha-linolenic acid. These results suggest that part of the mechanism of protection of the kidney by unsaturated fatty acids is through inhibition of ER stress, eIF2alpha phosphorylation and consequential reduction of CHOP protein expression and apoptotic renal cell death.

  5. Ferulic acid promoting apoptosis in human osteosarcoma cell lines

    PubMed Central

    Zhang, Xu-dong; Wu, Qiang; Yang, Shu-hua

    2017-01-01

    Objective: To explore the promoting apoptosis and antitumor activities of ferulic acid (FA) in human osteosarcoma and its potential mechanism. Methods: The SaOS-2 and MG63 osteosarcoma cell lines were opted to experiment and these cells were, respectively, cultured with various concentrations of FA (0 μM, 10 μM, 20 μM, 40 μM) for 72 hours at 37°C. The viabilities of the FA treated cells were monitored by MTT. Apoptosis cells were evaluated using annexin V/PI by flow cytometry. Apoptosis proteins caspase-3, procaspase-3, Bcl-2 and Bax were detected by western blot. Expressions of apoptotic genes Bcl-2 and Bax were quantified by qPCR. Results: The cell viabilities were critically declined in the concentration-dependent manner in FA groups (P < 0.01). The apoptosis cells were increased proportionately with the concentration of FA (P < 0.05). The procaspase-3 protein contents, and Bcl-2 mRNA and protein contents were significantly decreased while caspase-3 protein contents, and Bax mRNA and protein contents were concomitantly increased in the concentration-dependent manner in FA groups (P < 0.05). The response to FA by the SaOS-2 osteosarcoma cell was similar with the MG63 osteosarcoma cell (P > 0.05). Conclusion: Ferulic acid could significantly descend osteosarcoma cell viability through the promoting apoptosis pathway in which FA activates both caspase-3 and Bax and inactivates Bcl-2. PMID:28367185

  6. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  7. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures.

    PubMed

    Croce, Nicoletta; Bernardini, Sergio; Di Cecca, Stefano; Caltagirone, Carlo; Angelucci, Francesco

    2013-07-15

    l-Glutamic acid (l-glutamate) is used to induce excitotoxicity and test neuroprotective compounds in cell cultures. However, because l-glutamate powder is nearly insoluble in water, many manufacturers recommend reconstituting l-glutamate in hydrochloric acid (HCl) prior to successive dilutions. Nevertheless, HCl, even at low concentrations, may alter the pH of the cell culture medium and interfere with cell activity. Thus, the aim of this study was to evaluate whether the reconstitution of l-glutamate powder in HCl alters its capacity to induce neurotoxicity in different human neuroblastoma cell lines. SH-SY5Y, IMR-32 and SK-N-BE(2) cells were exposed to various concentrations of l-glutamate, which was either reconstituted in HCl (1M) or post re-equilibrated to the pH of the culture medium (7.5). After 24 and 48h of incubation, changes in the cell viability of treated versus untreated cells were evaluated. The effect of an identical amount of HCl present in the l-glutamate dilutions on neuroblastoma cell survival was also investigated. Our data showed that the neurotoxicity of glutamate reconstituted in HCl was comparable to that of HCl alone. Moreover, the pH variations induced by glutamate or HCl in the culture medium were similar. When the pH of the glutamate stock solution was re-equilibrated, l-glutamate induced variation in cell viability to a lower extent and after a longer incubation time. This study demonstrated that HCl used to reconstitute l-glutamate powder might alter the effect of glutamate itself in neuroblastoma cell cultures. Thus, this information might be useful to scientists who use l-glutamate to induce excitotoxicity or to test neuroprotective agents.

  8. Acid fuel cell technologies for vehicular power plants

    SciTech Connect

    Huff, J.R.; Srinivasan, S.

    1982-08-01

    Fuel cells offer a number of significant advantages as vehicular power sources. These include high efficiency, virtually no pollution, and the ability to use nonpetroleum fuel. To date, most fuel cell systems have been designed for either utility or space applications, which have substantially different requirements than vehicular applications. Several fuel cell technologies were assessed specifically for vehicular applications. The results of these assessments were used to calculate the performance and fuel consumption of a fuel cell powered GM X car. Results indicate that the phosphoric acid technology, which has the most development experience, can power a vehicle with reasonable performance, with a range of over 350 miles on 20 gallons of methanol and with high energy efficiency. Solid polymer electrolyte technology, which is second in development experience, can provide performance approaching that of an ICE vehicle and an energy efficiency 149% higher than the ICE-powered version.

  9. The inhibitory effect of glycolic acid and lactic acid on melanin synthesis in melanoma cells.

    PubMed

    Usuki, Akiko; Ohashi, Akiko; Sato, Hirofumi; Ochiai, Yasunobu; Ichihashi, Masamitsu; Funasaka, Yoko

    2003-01-01

    Alpha-hydroxy acids (AHAs) such as glycolic acid (GA) and lactic acid (LA) have been reported to be effective in treating pigmentary lesions such as melasma, solar lentigines, and postinflammatory hyperpigmentation. The mechanism of this effect might be due to epidermal remodeling and accelerated desquamation, which would result in quick pigment dispersion. However, the direct effect of AHAs on melanin synthesis has not yet been well studied. To elucidate such a direct effect of AHAs on melanogenesis, we performed melanin assays, growth curve determinations, Northern and Western blotting for melanogenic proteins [tyrosinase, tyrosinase related protein (TRP)-1 and TRP-2], and tyrosinase and, 4-dihydroxyphenylalaninechrome tautomerase enzyme activity assays using mouse B16 and human melanoma cells. GA or LA (at doses of 300 or 500 microg/ml) inhibited melanin formation in similar dose-dependent manner, without affecting cell growth. Although the mRNA and protein expression or molecular size of tyrosinase, TRP-1 and TRP-2 were not affected, tyrosinase activity was inhibited. To see whether GA and/or LA directly inhibit tyrosinase catalytic function, the effect of GA and LA on human tyrosinase purified from the melanosome-rich large granule fraction of human melanoma cells was performed. GA or LA were shown to inhibit tyrosinase enzyme activity directly, but this effect was not due to the acidity of GA or LA, because adjusting the pH to 5.6 (the pH of GA and LA at concentrations of 2500 microg/ml), did not affect tyrosinase activity. Taken together, these results show that GA and LA suppress melanin formation by directly inhibiting tyrosinase activity, an effect independent of their acidic nature. GA and LA might work on pigmentary lesions not only by accelerating the turnover of the epidermis but also by directly inhibiting melanin formation in melanocytes.

  10. Catalyst and electrode research for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  11. Status of commercial phosphoric acid fuel cell system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  12. Omega-3 fatty acids, lipid rafts, and T cell signaling.

    PubMed

    Hou, Tim Y; McMurray, David N; Chapkin, Robert S

    2016-08-15

    n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation.

  13. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  14. Pharmacological effects of asiatic acid in glioblastoma cells under hypoxia.

    PubMed

    Thakor, Flourina Kumar; Wan, Ka-Wai; Welsby, Philip John; Welsby, Gail

    2017-02-15

    Glioblastoma multiforme is the most common and malignant primary brain tumor in adults. Despite current treatment options including surgery followed by radiation and chemotherapy with temozolomide and cisplatin, the median survival rate remains low (<16 months). Combined with increasing drug resistance and the inability of some compounds to cross the blood-brain barrier, novel compounds are being sought for the treatment of this disease. Here, we aimed to examine the pharmacological effect of Asiatic acid (AA) in glioblastoma under hypoxia. To investigate the effects of AA on cell viability, proliferation, apoptosis, and wound healing, SVG p12 fetal glia and U87-MG grade IV glioblastoma cells were cultured under normoxic (21% O2) and hypoxic (1% O2) conditions. In normoxia, AA reduced cell viability in U87-MG cells in a time and concentration-dependent manner. A significant decrease in viability, compared to cisplatin, was observed following 2 h of AA treatment with no significant changes in cell proliferation or cell cycle progression observed. Under hypoxia, a significantly greater number of cells underwent apoptosis in comparison to cisplatin. While cisplatin showed a reduction in wound healing in normoxia, a significantly greater reduction was observed following AA treatment. An overall reduction in wound healing was observed under hypoxia. The results of this study show that AA has cytotoxic effects on glioma cell lines and has the potential to become an alternative treatment for glioblastoma.

  15. Cell patterning on polylactic acid through surface-tethered oligonucleotides.

    PubMed

    Matsui, Toshiki; Arima, Yusuke; Takemoto, Naohiro; Iwata, Hiroo

    2015-02-01

    Polylactic acid (PLA) is a candidate material to prepare scaffolds for 3-D tissue regeneration. However, cells do not adhere or proliferate well on the surface of PLA because it is hydrophobic. We report a simple and rapid method for inducing cell adhesion to PLA through DNA hybridization. Single-stranded DNA (ssDNA) conjugated to poly(ethylene glycol) (PEG) and to a terminal phospholipid (ssDNA-PEG-lipid) was used for cell surface modification. Through DNA hybridization, modified cells were able to attach to PLA surfaces modified with complementary sequence (ssDNA'). Different cell types can be attached to PLA fibers and films in a spatially controlled manner by using ssDNAs with different sequences. In addition, they proliferate well in a culture medium supplemented with fetal bovine serum. The coexisting modes of cell adhesion through DNA hybridization and natural cytoskeletal adhesion machinery revealed no serious effects on cell growth. The combination of a 3-D scaffold made of PLA and cell immobilization on the PLA scaffold through DNA hybridization will be useful for the preparation of 3-D tissue and organs.

  16. Boswellic acid activity against glioblastoma stem-like cells

    PubMed Central

    SCHNEIDER, HANNAH; WELLER, MICHAEL

    2016-01-01

    Boswellic acids (BAs) have long been considered as useful adjunct pharmacological agents for the treatment of patients with malignant brain tumors, notably glioblastoma. Two principal modes of action associated with BAs have been postulated: i) Anti-inflammatory properties, which are useful for containing edema formation, and ii) intrinsic antitumor cell properties, with a hitherto ill-defined mode of action. The present study assessed the effects of various BA derivatives on the viability and clonogenicity of a panel of nine long-term glioma cell lines and five glioma-initiating cell lines, studied cell cycle progression and the mode of cell death induction, and explored potential synergy with temozolomide (TMZ) or irradiation. BA induced the concentration-dependent loss of viability and clonogenicity that was independent of tumor protein 53 status and O6-methylguanine DNA methyltransferase expression. The treatment of glioma cells with BA resulted in cell death induction, prior to or upon S phase entry, and exhibited features of apoptotic cell death. Synergy with irradiation or TMZ was detected at certain concentrations; however, the inhibitory effects were mostly additive, and never antagonistic. While the intrinsic cytotoxic properties of BA at low micromolecular concentrations were confirmed and the potential synergy with irradiation and TMZ was identified, the proximate pharmacodynamic target of BA remains to be identified. PMID:27313764

  17. Apoptotic effect of tannic acid on fatty acid synthase over-expressed human breast cancer cells.

    PubMed

    Nie, Fangyuan; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-02-01

    Breast cancer is one of the most common cancers and is the second leading cause of cancer mortality in women worldwide. Novel therapies and chemo-therapeutic drugs are urgently needed to be developed for the treatment of breast cancer. Increasing evidence suggests that fatty acid synthase (FAS) plays an important role in breast cancer, for the expression of FAS is significantly higher in human breast cancer cells than in normal cells. Tannic acid (TA), a natural polyphenol, possesses significant biological functions, including bacteriostasis, hemostasis, and anti-oxidant. Our previous studies demonstrated that TA is a natural FAS inhibitor whose inhibitory activity is stronger than that of classical FAS inhibitors, such as C75 and cerulenin. This study further assessed the effect and therapeutic potential of TA on FAS over-expressed breast cancer cells, and as a result, TA had been proven to possess the functions of inhibiting intracellular FAS activity, down-regulating FAS expression in human breast cancer MDA-MB-231 and MCF-7 cells, and inducing cancer cell apoptosis. Since high-expressed FAS is recognized as a molecular marker for breast cancer and plays an important role in cancer prognosis, these findings suggest that TA is a potential drug candidate for treatment of breast cancer.

  18. Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury

    PubMed Central

    Himpe, Eddy; Cunha, Daniel A.; Song, Imane; Bugliani, Marco; Marchetti, Piero; Cnop, Miriam; Bouwens, Luc

    2016-01-01

    Objective Previous studies demonstrated that a phenylpropenoic acid glucoside (PPAG) from rooibos (Aspalathus linearis) extract had anti-hyperglycemic activity and significant protective effects on the pancreatic beta cell mass in a chronic diet-induced diabetes model. The present study evaluated the cytoprotective effect of the phytochemical on beta cells exposed to acute cell stress. Methods Synthetically prepared PPAG was administered orally in mice treated with a single dose of streptozotocin to acutely induce beta cell death and hyperglycemia. Its effect was assessed on beta cell mass, proliferation and apoptotic cell death. Its cytoprotective effect was also studied in vitro on INS-1E beta cells and on human pancreatic islet cells. Results Treatment with the phytochemical PPAG protected beta cells during the first days after the insult against apoptotic cell death, as evidenced by TUNEL staining, and prevented loss of expression of anti-apoptotic protein BCL2 in vivo. In vitro, PPAG protected INS-1E beta cells from streptozotocin-induced apoptosis and necrosis in a BCL2-dependent and independent way, respectively, depending on glucose concentration. PPAG also protected human pancreatic islet cells against the cytotoxic action of the fatty acid palmitate. Conclusions These findings show the potential use of PPAG as phytomedicine which protects the beta cell mass exposed to acute diabetogenic stress. PMID:27299564

  19. Lysophosphatidic acid mediates pleiotropic responses in skeletal muscle cells

    SciTech Connect

    Jean-Baptiste, Gael; Yang Zhao; Khoury, Chamel; Greenwood, Michael T.; E-mail: michael.greenwood@mcgill.ca

    2005-10-07

    Lysophosphatidic acid (LPA) is a potent modulator of growth, cell survival, and apoptosis. Although all four LPA receptors are expressed in skeletal muscle, very little is known regarding the role they play in this tissue. We used RT-PCR to demonstrate that cultured skeletal muscle C2C12 cells endogenously express multiple LPA receptor subtypes. The demonstration that LPA mediates the activation of ERK1/2 MAP kinase and Akt/PKB in C2C12 cells is consistent with the widely observed mitogenic properties of LPA. In spite of these observations, LPA did not induce proliferation in C2C12 cells. Paradoxically, we found that prolonged treatment of C2C12 cells with LPA led to caspase 3 and PARP cleavage as well as the activation of stress-associated MAP kinases JNK and p38. In spite of these typically pro-apoptotic responses, LPA did not induce cell death. Blocking ERK1/2 and Akt/PKB activation with specific pharmacological inhibitors, nevertheless, stimulated LPA-mediated apoptosis. Taken together, these results suggest that both mitogenic and apoptotic responses serve to counterbalance the effects of LPA in cultured C2C12 cells.

  20. Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites.

    PubMed Central

    Balsevich, J. J.; Cutler, A. J.; Lamb, N.; Friesen, L. J.; Kurz, E. U.; Perras, M. R.; Abrams, S. R.

    1994-01-01

    The metabolism and effects of (+)-S- and (-)-R-abscisic acid (ABA) and some metabolites were studied in maize (Zea mays L. cv Black Mexican Sweet) suspension-cultured cells. Time-course studies of metabolite formation were performed in both cells and medium via analytical high-performance liquid chromatography. Metabolites were isolated and identified using physical and chemical methods. At 10 [mu]M concentration and 28[deg] C, (+)-ABA was metabolized within 24 h, yielding natural (-)-phaseic acid [(-)-PA] as the major product. The unnatural enantiomer (-)-ABA was less than 50% metabolized within 24 h and gave primarily (-)-7[prime]-hydroxyABA [(-)-7[prime]-HOABA], together with (+)-PA and ABA glucose ester. The distribution of metabolites in cells and medium was different, reflecting different sites of metabolism and membrane permeabilities of conjugated and nonconjugated metabolites. The results imply that (+)-ABA was oxidized to (-)-PA inside the cell, whereas (-)-ABA was converted to (-)-7[prime]-HOABA at the cell surface. Growth of maize cells was inhibited by both (+)- and (-)-ABA, with only weak contributions from their metabolites. The concentration of (+)-ABA that caused a 50% inhibition of growth of maize cells was approximately 1 [mu]M, whereas that for its metabolite (-)-PA was approximately 50 [mu]M. (-)-ABA was less active than (+)-ABA, with 50% growth inhibition observed at about 10 [mu]M. (-)-7[prime]-HOABA was only weakly active, with 50% inhibition caused by approximately 500 [mu]M. Time-course studies of medium pH indicated that (+)-ABA caused a transient pH increase (+0.3 units) at 6 h after addition that was not observed in controls or in samples treated with (-)-PA. The effect of (-)-ABA on medium Ph was marginal. No racemization at C-1[prime] of (+)-ABA, (-)-ABA, or metabolites was observed during the studies. PMID:12232311

  1. Retinoic Acid as a Modulator of T Cell Immunity.

    PubMed

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-06-13

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity.

  2. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  3. Monomethylarsonous acid induces transformation of human bladder cells

    SciTech Connect

    Bredfeldt, Tiffany G.; Jagadish, Bhumasamudram; Eblin, Kylee E.; Mash, Eugene A.; Gandolfi, A. Jay . E-mail: gandolfi@pharmacy.arizona.edu

    2006-10-01

    Arsenic is a human bladder carcinogen. Arsenic is methylated to both monomethyl and dimethyl metabolites which have been detected in human urine. The trivalent methylated arsenicals are more toxic than inorganic arsenic. It is unknown if these trivalent methylated metabolites can directly cause malignant transformation in human cells. The goal of this study is determine if monomethylarsonous acid (MMA{sup III}) can induce malignant transformation in a human bladder urothelial cell line. To address this goal, a non-tumorigenic human urothelial cell line (UROtsa) was continuously exposed to 0.05 {mu}M MMA{sup III} for 52 weeks. Hyperproliferation was the first phenotypic change observed in exposed UROtsa (URO-MSC). After 12 weeks of exposure, doubling time had decreased from 42 h in unexposed control cells to 27 h in URO-MSC. Hyperproliferation continued to be a quality possessed by the URO-MSC cells after both 24 and 52 weeks of exposure to MMA{sup III}, which had a 40-50% reduction in doubling time. Throughout the 52-week exposure, URO-MSC cells retained an epithelial morphology with subtle morphological differences from control cells. 24 weeks of MMA{sup III} exposure was required to induce anchorage-independent growth as detected by colony formation in soft agar, a characteristic not found in UROtsa cells. To further substantiate that malignant transformation had occurred, URO-MSC cells were tested after 24 and 52 weeks of exposure to MMA{sup III} for the ability to form tumors in SCID mice. Enhanced tumorigenicity in SCID mouse xenografts was observed after 52 weeks of treatment with MMA{sup III}. These observations are the first demonstration of MMA{sup III}-induced malignant transformation in a human bladder urothelial cell line and provide important evidence that MMA{sup III} may be carcinogenic in human tissues.

  4. Effects of Ascorbic Acid, Phytic Acid and Tannic Acid on Iron Bioavailability from Reconstituted Ferritin Measured by an In Vitro Digestion/Caco-2 Cell Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of ascorbic acid, phytate and tannic acid on Fe bioavailability from Fe supplied as ferritin was compared to FeSO4 using an in vitro digestion/Caco-2 cell model. Horse spleen ferritin (HSF) was chemically reconstituted into a plant-type ferritin (P-HSF). In the presence of ascorbic acid...

  5. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  6. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Walsh, Fraser

    1987-03-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  7. Intelligent machine learning analysis for phosphoric acid fuel cell operations

    SciTech Connect

    Hoyt, W.; Foote, J.P.; Murphy, R.W.; Chen, F.C.

    1998-07-01

    Several fuel cell types are available and are in various stages of technology development. The complex nature of the balance of plant and fuel cell interface poses many technical challenges to achieve proper system control under commercial operating conditions. Real-time predictive diagnostic computer systems based on advanced intelligent machine learning technologies offer a means to facilitate the detection, understanding, and control of fuel cell subsystems to avoid system instabilities and failures that can result in costly plant shutdowns. The objectives reported herein are the development of physical and empirical computer models for application and testing of predictive control strategies based on intelligent machine learning techniques for fuel cells. A physical/empirical model was built and validated using available operating data from commercial fuel cells. Neural networks were then used to build an empirical model from the original physical/empirical model. Using the neural network model, a predictive, feedforward strategy was developed to control the fuel flow for a phosphoric acid fuel cell physical/empirical model. The predictive control strategy was compared to traditional proportional integral derivative control schemes.

  8. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    PubMed

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  9. Steering Siglec-Sialic Acid Interactions on Living Cells using Bioorthogonal Chemistry.

    PubMed

    Büll, Christian; Heise, Torben; van Hilten, Niek; Pijnenborg, Johan F A; Bloemendal, Victor R L J; Gerrits, Lotte; Kers-Rebel, Esther D; Ritschel, Tina; den Brok, Martijn H; Adema, Gosse J; Boltje, Thomas J

    2017-03-13

    Sialic acid sugars that terminate cell-surface glycans form the ligands for the sialic acid binding immunoglobulin-like lectin (Siglec) family, which are immunomodulatory receptors expressed by immune cells. Interactions between sialic acid and Siglecs regulate the immune system, and aberrations contribute to pathologies like autoimmunity and cancer. Sialic acid/Siglec interactions between living cells are difficult to study owing to a lack of specific tools. Here, we report a glycoengineering approach to remodel the sialic acids of living cells and their binding to Siglecs. Using bioorthogonal chemistry, a library of cells with more than sixty different sialic acid modifications was generated that showed dramatically increased binding toward the different Siglec family members. Rational design reduced cross-reactivity and led to the discovery of three selective Siglec-5/14 ligands. Furthermore, glycoengineered cells carrying sialic acid ligands for Siglec-3 dampened the activation of Siglec-3(+) monocytic cells through the NF-κB and IRF pathways.

  10. [Change in the sensitivity to methotrexate of neoplastic cells cultivated in the presence of folic acid].

    PubMed

    Leĭpunskaia, I L; Svet-Moldavskiĭ, G I

    1976-01-01

    Cultivation of tumour L-cells in the presence of increasing folic acid concentrations led to the rise in the resistance of these cells population to metotrexate. With the subsequent cultivation, when the folic acid concentration was not increased the population of such cells became more sensitive to metotrexate even in comparison with the initial L-cells.

  11. Valproic acid induces the glutamate transporter excitatory amino acid transporter-3 in human oligodendroglioma cells.

    PubMed

    Bianchi, M G; Franchi-Gazzola, R; Reia, L; Allegri, M; Uggeri, J; Chiu, M; Sala, R; Bussolati, O

    2012-12-27

    Glutamate transport in early, undifferentiated oligodendrocytic precursors has not been characterized thus far. Here we show that human oligodendroglioma Hs683 cells are not endowed with EAAT-dependent anionic amino acid transport. However, in these cells, but not in U373 human glioblastoma cells, valproic acid (VPA), an inhibitor of histone deacetylases, markedly induces SLC1A1 mRNA, which encodes for the glutamate transporter EAAT3. The effect is detectable after 8h and persists up to 120h of treatment. EAAT3 protein increase becomes detectable after 24h of treatment and reaches its maximum after 72-96h, when it is eightfold more abundant than control. The initial influx of d-aspartate increases in parallel, exhibiting the typical features of an EAAT3-mediated process. SLC1A1 mRNA induction is associated with the increased expression of PDGFRA mRNA (+150%), a marker of early oligodendrocyte precursor cells, while the expression of GFAP, CNP and TUBB3 remains unchanged. Short term experiments have indicated that the VPA effect is shared by trichostatin A, another inhibitor of histone deacetylases. On the contrary, EAAT3 induction is neither prevented by inhibitors of mitogen-activated protein kinases nor triggered by a prolonged incubation with lithium, thus excluding a role for the GSK3β/β-catenin pathway. Thus, the VPA-dependent induction of the glutamate transporter EAAT3 in human oligodendroglioma cells likely occurs through an epigenetic mechanism and may represent an early indicator of commitment to oligodendrocytic differentiation.

  12. Dry compliant seal for phosphoric acid fuel cell

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1990-01-01

    A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.

  13. Mechanism of L-lactic acid transport in L6 skeletal muscle cells.

    PubMed

    Kobayashi, Masaki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2004-10-01

    L-lactic acid transport plays an important role in the regulation of L-lactic acid circulation into and out of muscle. To clarify the transport mechanism of L-lactic acid in skeletal muscle, L-lactic acid uptake was investigated using a L6 cell line. mRNAs of monocarboxylate transporter (MCT) 1, 2 and 4 were found to be expressed in L6 cells. The [(14)C] L-lactic acid uptake by L6 cells increased up to pH of 6.0. The [(14)C] L-lactic acid uptake at pH 6.0 was concentration-dependent with a K(m) of 3.7 mM. This process was reduced by alpha-cyano-4-hydroxycinnamate, a typical MCT1, 2 and 4 inhibitor. These results suggest that an MCT participates in the uptake of L-lactic acid by L6 cells. [(14)C] L-lactic acid uptake was markedly inhibited by monocarboxylic acids and monocarboxylate drugs but not by dicarboxylic acids and amino acids. Moreover, benzoic acid, a substrate for MCT1, competitively inhibited this process with K(i) of 1.7 mM. [(14)C] L-lactic acid efflux in L6 cells was inhibited by alpha-cyano-4-hydroxycinnamate but not by benzoic acid. These results suggest that [(14)C] L-lactic acid efflux in L6 cells is mediated by MCT other than MCT1.

  14. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  15. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  16. Metabolism of oleic acid in differentiating BFC-1 preadipose cells.

    PubMed

    Abumrad, N A; Forest, C; Regen, D M; Barnella, U S; Melki, S A

    1991-07-01

    Incorporation of [3H]oleate and [14C]glucose into cellular lipids was studied in the preadipose cell line BFC-1 to determine flux changes that accompany the adipose conversion process. Dilution of oleate by intracellular fatty acids (FA) was estimated from the 3H/14C incorporation ratios and from relating steady-state radioactivity in diglycerides to their measured cellular levels. The data indicated that exogenous FA mixed with less than 1% of endogenous FA on its pathway to esterification. Conversion of preadipocytes to adipocytes increased uptake of FA and glucose by approximately 3-fold and synthesis of diglycerides and triglycerides by 5- and 16-fold, respectively, with little if any increase of phospholipid synthesis. A 50% drop in 3H/14C incorporation ratio indicated a doubling of the rate at which endogenous FA mixed with the exogenous FA that had entered the cell. Adipocytes compared with preadipocytes exhibited a 50% greater cell diameter and a doubling of intracellular water volume and of protein and phospholipid levels, reflecting cellular enlargement consequent to the arrest of cell division that precedes adipose conversion. Diglyceride levels were also increased in adipocytes, however, since their turnover was fast, as indicated by rapid equilibration of diglyceride labeling; the increase reflected changes in their relative rates of synthesis and disposal. Diglyceride levels related to cell phospholipid, and other indexes of cell size remained constant. This indicated that the supply of diglycerides was tightly coupled to the synthesis of triglycerides and phospholipids, which suggested feedback regulation of diglyceride formation. The studies provide a methodological approach to measurement and interpretation of rates of lipid deposition in cultured cells.

  17. Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression

    PubMed Central

    Peppicelli, Silvia; Bianchini, Francesca; Toti, Alessandra; Laurenzana, Anna; Fibbi, Gabriella; Calorini, Lido

    2015-01-01

    Mesenchymal stem cells (MSC) participate to tumor stroma development and several evidence suggests that they play a role in facilitating cancer progression. Because melanoma often shows extracellular pH low enough to influence host cell as tumor cell behavior, the aim of this study is to elucidate whether acidity affects cross talk between MSC and melanoma cells to disclose new liaisons promoting melanoma progression, and to offer new therapeutic opportunities. We found that MSC grown in a low pH medium (LpH-MSC) stimulate melanoma xenografts more than MSC grown in a standard pH medium. LpH-MSC express a higher level of TGFβ that is instrumental of epithelial-to-mesenchymal transition (EMT)-like phenotype induction in melanoma cells. LpH-MSC profile also shows a switching to an oxidative phosphorylation metabolism that was accompanied by a forced glycolytic pathway of melanoma cells grown in LpH-MSC-conditioned medium. Metformin, an inhibitor of mitochondrial respiratory chain was able to reconvert oxidative metabolism and abrogate TGFβ expression in LpH-MSC. In addition, esomeprazole, a proton pump inhibitor activated in acidosis, blocked TGFβ expression in LpH-MSC through the downregulation of IkB. Both agents, metformin and esomeprazole, inhibited EMT profile in melanoma cells grown in LpH-MSC medium, and reduced glycolytic markers. Thus, acidosis of tumor microenvironment potentiates the pro-tumoral activity of MSC and orchestrates for a new potential symbiosis, which could be target to limit melanoma progression. PMID:26496168

  18. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  19. Pulse charging of lead-acid traction cells

    NASA Astrophysics Data System (ADS)

    Smithrick, J. J.

    1980-05-01

    Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.

  20. Pulse charging of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1980-01-01

    Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.

  1. Effect of calcium, tannic acid, phytic acid and pectin over iron uptake in an in vitro Caco-2 cell model.

    PubMed

    Andrews, M; Briones, L; Jaramillo, A; Pizarro, F; Arredondo, M

    2014-04-01

    Calcium, phytic acid, polyphenols and fiber are major inhibitors of iron absorption and they could be found in excess in some diets, thereby altering or modifying the iron nutrition status. The purpose of this study is to evaluate the effect of calcium, tannic acid, phytic acid, and pectin over iron uptake, using an in vitro model of epithelial cells (Caco-2 cell line). Caco-2 cells were incubated with iron (10-30 μM) with or without CaCl2 (500 and 1,000 μM) for 24 h. Then, cells were challenged with phytic acid (50-150 μM); pectin (50-150 nM) or tannic acid (100-500 μM) for another 24 h. Finally, (55)Fe (10 μM) uptake was determined. Iron dialyzability was studied using an in vitro digestion method. Iron uptake in cells pre-incubated with 20 and 30 μM Fe was inhibited by CaCl2 (500 μM). Iron uptake decreased in cells cultured with tannic acid (300 μM) and CaCl2 (500-1,000 μM) (two-way ANOVA, p = 0.002). Phytic acid also decreased iron uptake mainly when cells were treated with CaCl2 (1,000 μM) (two-way ANOVA; p < 0.05). Pectin slightly decreased iron uptake (p = NS). Iron dialyzability decreased when iron was mixed with CaCl2 and phytic or tannic acid (T test p < 0.0001, for both) but not when mixed with pectin. Phytic acid combined with calcium is a strong iron uptake inhibitor. Pectin slightly decreased iron uptake with or without calcium. Tannic acid showed an unexpected behavior, inducing an increase on iron uptake, despite its low Fe dialyzability.

  2. Universal nucleic acids sample preparation method for cells, spores and their mixture

    DOEpatents

    Bavykin, Sergei [Darien, IL

    2011-01-18

    The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.

  3. Shedding light on proteins, nucleic acids, cells, humans and fish

    NASA Technical Reports Server (NTRS)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  4. Neutral amino acid transport across brain microvessel endothelial cell monolayers

    SciTech Connect

    Audus, K.L.; Borchardt, R.T.

    1986-03-01

    Brain microvessel endothelial cells (BMEC) which form the blood-brain barrier (BBB) possess an amino acid carrier specific for large neutral amino acids (LNAA). The carrier is important for facilitating the delivery of nutrient LNAA's and centrally acting drugs that are LNAA's, to the brain. Bovine BMEC's were isolated and grown up to complete monolayers on regenerated cellulose-membranes in primary culture. To study the transendothelial transport of leucine, the monolayers were placed in a side-by-side diffusion cell, and transport across the monolayers followed with (/sup 3/H)-leucine. The transendothelial transport of leucine in this in vitro model was determined to be bidirectional, and time-, temperature-, and concentration-dependent. The transport of leucine was saturable and the apparent K/sub m/ and V/sub max/, 0.18 mM and 6.3 nmol/mg/min, respectively. Other LNAA's, including the centrally acting drugs, ..cap alpha..-methyldopa, L-DOPA, ..cap alpha..-methyl-tyrosine, and baclofen, inhibited leucine transport. The leucine carrier was also found to be stereospecific and not sensitive to inhibitors of active transport. These results are consistent with previous in vitro and in vivo studies. Primary cultures of BMEC's appear to be a potentially important tool for investigating at the cellular level, the transport mechanisms of the BBB.

  5. Hormonal control of somatic embryo development from cultured cells of caraway: interactions of abscisic Acid, zeatin, and gibberellic Acid.

    PubMed

    Ammirato, P V

    1977-04-01

    The effects of abscisic acid, zeatin, and gibberellic acid on the development of somatic embryos from cultured cells of caraway (Carum carvi L.) were observed.Somatic embryos complete development on a basal medium without exogenous hormones, but some are subject to developmental abnormalities including malformed cotyledons and accessory embryos. Both zeatin and gibberellic acid, especially in combination, stimulate growth and increase the frequency of aberrant forms. Zeatin causes the formation of multiple shoots, leafy and abnormal cotyledons, and in the dark, enlarged hypocotyls; gibberellic acid effects root elongation, polycotyledony, and some callus formation. In contrast, abscisic acid, at concentrations which do not inhibit embryo maturation, selectively suppresses abnormal proliferations. With abscisic acid, and especially in the dark, a high percentage of embryos complete development with two fleshy cotyledons on unelongated axes free of accessory embryos.In the light, zeatin eliminates abscisic acid inhibition while gibberellic acid only partially counters its effect, promoting elongated radicles and green rather than white cotyledons. In the dark, zeatin in combination with abscisic acid stimulates extensive callusing. Gibberellic acid does not reverse the effects of abscisic acid but rather enhances them and can counter the disruptive effects of zeatin.The results demonstrate that the balance between abscisic acid on the one hand and zeatin and gibberellic acid on the other can effectively control somatic embryo development and either disrupt or ensure normal maturation.

  6. Hepatic Stellate Cells Preferentially Induce Foxp3+ Regulatory T Cells by Production of Retinoic Acid

    PubMed Central

    Dunham, Richard M.; Thapa, Manoj; Velazquez, Victoria M.; Elrod, Elizabeth J.; Denning, Timothy L.; Pulendran, Bali

    2013-01-01

    The liver has long been described as immunosuppressive, although the mechanisms underlying this phenomenon are incompletely understood. Hepatic stellate cells (HSCs), a population of liver nonparenchymal cells, are potent producers of the regulatory T cell (Treg)–polarizing molecules TGF-β1 and all-trans retinoic acid, particularly during states of inflammation. HSCs are activated during hepatitis C virus infection and may therefore play a role in the enrichment of Tregs during infection. We hypothesized that Ag presentation in the context of HSC activation will induce naive T cells to differentiate into Foxp3+ Tregs. To test this hypothesis, we investigated the molecular interactions between murine HSCs, dendritic cells, and naive CD4+ T cells. We found that HSCs alone do not present Ag to naive CD4+ T cells, but in the presence of dendritic cells and TGF-β1, preferentially induce functional Tregs. This Treg induction was associated with retinoid metabolism by HSCs and was dependent on all-trans retinoic acid. Thus, we conclude that HSCs preferentially generate Foxp3+ Tregs and, therefore, may play a role in the tolerogenic nature of the liver. PMID:23359509

  7. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition.

    PubMed

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-04-08

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.

  8. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  9. Proteomic analysis of MOLT-4 cells treated by valproic acid.

    PubMed

    Vávrová, Jirina; Janovská, Sylva; Rezácová, Martina; Hernychová, Lenka; Tichá, Zuzana; Vokurková, Doris; Záskodová, Darina; Lukásová, Emilie

    2007-09-01

    The effect of valproic acid (VA) on protein expression in human T-lymphocytic leukemia cells MOLT-4 was studied. VA is an inhibitor of histonedeacetylases and has a potential use as antitumor agent in leukemia treatment. The authors in this work prove that 4 h long incubation with 2 mmol/l VA causes phosphorylation of histone H2A.X and its colocalization with 53BP1 in nuclear foci. Their co-localization is typical for DSB signaling machinery. These foci were detected in cells after 4 h exposure without increase of Annexin V positive apoptotic cells. Slight increase in apoptosis (Annexin V positivity) after 24 h is accompanied by more intensive increase in phosphorylation of H2A.X and also by formation of nuclear foci containing gammaH2A.X and 53BP1. Treatment of cells with 2 mmol/l VA resulted in induction of apoptosis affecting about 30% of cells after incubation for 72 h. The changes in protein expression were examined after cell incubation with 2 mmol/l VA for 4 h. Proteins were separated by two-dimensional electrophoresis and quantified using image evaluation system. Those exhibiting significant VA-induced abundance alterations were identified by mass spectrometry. Changes in expression of 22 proteins were detected, of which 15 proteins were down-regulated. Proteomic analysis resulted in successful identification of three proteins involving alfa-tubulin 3, tubulin-specific chaperone and heterogeneous nuclear ribonucloprotein F. Expression of seven proteins was up-regulated, including heterogeneous nuclear ribonucloprotein A/B. Identified proteins are related to microtubular system and hnRNP family. Suppression of microtubular proteins and changes of balance among hnRNPs can contribute to proliferation arrest and apoptosis induction.

  10. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    SciTech Connect

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil Lee, Zang Hee

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  11. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    PubMed

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100 µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC.

  12. Innovative use of a bacterial enzyme involved in sialic acid degradation to initiate sialic acid biosynthesis in glycoengineered insect cells

    PubMed Central

    Geisler, Christoph; Jarvis, Donald L.

    2012-01-01

    The baculovirus/insect cell system is widely used for recombinant protein production, but it is suboptimal for recombinant glycoprotein production because it does not provide sialylation, which is an essential feature of many glycoprotein biologics. This problem has been addressed by metabolic engineering, which has extended endogenous insect cell N-glycosylation pathways and enabled glycoprotein sialylation by baculovirus/insect cell systems. However, further improvement is needed because even the most extensively engineered baculovirus/insect cell systems require media supplementation with N-acetylmannosamine, an expensive sialic acid precursor, for efficient recombinant glycoprotein sialylation. Our solution to this problem focused on E. coli N-acetylglucosamine-6-phosphate 2′-epimerase (GNPE), which normally functions in bacterial sialic acid degradation. Considering that insect cells have the product, but not the substrate for this enzyme, we hypothesized that GNPE might drive the reverse reaction in these cells, thereby initiating sialic acid biosynthesis in the absence of media supplementation. We tested this hypothesis by isolating transgenic insect cells expressing E. coli GNPE together with a suite of mammalian genes needed for N-glycoprotein sialylation. Various assays showed that these cells efficiently produced sialic acid, CMP-sialic acid, and sialylated recombinant N-glycoproteins even in growth media without N-acetylmannosamine. Thus, this study demonstrated that a eukaryotic recombinant protein production platform can be glycoengineered with a bacterial gene, that a bacterial enzyme which normally functions in sialic acid degradation can be used to initiate sialic acid biosynthesis, and that insect cells expressing this enzyme can produce sialylated N-glycoproteins without N-acetylmannosamine supplementation, which will reduce production costs in glycoengineered baculovirus/insect cell systems. PMID:23022569

  13. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  14. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density

    PubMed Central

    Guo, Zhong-peng; Olsson, Lisbeth

    2016-01-01

    High initial cell density is used to increase volumetric productivity and shorten production time in lignocellulosic hydrolysate fermentation. Comparison of physiological parameters in high initial cell density cultivation of Saccharomyces cerevisiae in the presence of acetic, formic, levulinic and cinnamic acids demonstrated general and acid-specific responses of cells. All the acids studied impaired growth and inhibited glycolytic flux, and caused oxidative stress and accumulation of trehalose. However, trehalose may play a role other than protecting yeast cells from acid-induced oxidative stress. Unlike the other acids, cinnamic acid did not cause depletion of cellular ATP, but abolished the growth of yeast on ethanol. Compared with low initial cell density, increasing initial cell density reduced the lag phase and improved the bioconversion yield of cinnamic acid during acid adaptation. In addition, yeast cells were able to grow at elevated concentrations of acid, probable due to the increase in phenotypic cell-to-cell heterogeneity in large inoculum size. Furthermore, the specific growth rate and the specific rates of glucose consumption and metabolite production were significantly lower than at low initial cell density, which was a result of the accumulation of a large fraction of cells that persisted in a viable but non-proliferating state. PMID:27620460

  15. [Alpha-lipoic acid triggers elimination of cells with abnormal nuclei in human carcinoma epidermoid cell line].

    PubMed

    Kisurina-Evgen'eva, O P; Onishchenko, G E

    2010-01-01

    The skin is usually exposed to adverse environmental conditions that may cause pathological cell proliferation and cellular transformations leading to the formation of malignant cells. Antioxidants may affect these processes and induce the elimination of transformed cell. The purpose of this work was to investigate the effect of alfa-lipoic acid on human carcinoma epidermoid cell line A431. Our results showed that alfa-lipoic acid induced inhibition of cell proliferation or stimulated apoptotic cell death. Cells with abnormal nuclei were eliminated by apoptosis. Electron microscopy showed that survived cells had typical for control cells shape and organization of the nuclei, organization of the cytoplasm and organelles. Thus, alfa-lipoic acid not only triggered apoptosis of carcinoma cells, but it may also activate the mechanism of elimination of cells with abnormal chromosome number.

  16. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  17. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-26

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  18. Simultaneous determination of docosahexaenoic acid and eicosapentaenoic acid in common seafood using ultrasonic cell crusher extraction combined with gas chromatography.

    PubMed

    Zhao, Juanjuan; Ren, Yan; Yu, Chen; Chen, Xiangming; Shi, Yanan

    2017-02-01

    An effective method for the simultaneous determination of docosahexaenoic acid and eicosapentaenoic acid in common seafood by gas chromatography was developed and validated. Total docosahexaenoic acid and eicosapentaenoic acid were extracted from seafood by ultrasonic cell crusher assisted extraction and methyl esterified for gas chromatography analysis in the presence of the internal standard. The linearity was good (r > 0.999) in 9.59 ∼ 479.5 μg/mL for docosahexaenoic acid and 9.56 ∼ 477.8 μg/mL for eicosapentaenoic acid. The intrarun and interrun precisions were both within 4.8 and 6.1% for the two analytes, while the accuracy was less than 5.8%. The developed method was applied for determination of docosahexaenoic acid and eicosapentaenoic acid in six kinds of seafood. The result showed the content of docosahexaenoic acid and eicosapentaenoic acid was all higher than 1 mg/g in yellow croaker, hairtail, venerupis philippinarum, mussel, and oyster. Our work may be helpful for dietary optimization and production of docosahexaenoic acid and eicosapentaenoic acid.

  19. Molecular dissection of the valproic acid effects on glioma cells

    PubMed Central

    Hoja, Sabine; Schulze, Markus; Rehli, Michael; Proescholdt, Martin; Herold-Mende, Christel; Hau, Peter; Riemenschneider, Markus J.

    2016-01-01

    Many glioblastoma patients suffer from seizures why they are treated with antiepileptic agents. Valproic acid (VPA) is a histone deacetylase inhibitor that apart from its anticonvulsive effects in some retrospective studies has been suggested to lead to a superior outcome of glioblastoma patients. However, the exact molecular effects of VPA treatment on glioblastoma cells have not yet been deciphered. We treated glioblastoma cells with VPA, recorded the functional effects of this treatment and performed a global and unbiased next generation sequencing study on the chromatin (ChIP) and RNA level. 1) VPA treatment clearly sensitized glioma cells to temozolomide: A protruding VPA-induced molecular feature in this context was the transcriptional upregulation/reexpression of numerous solute carrier (SLC) transporters that was also reflected by euchromatinization on the histone level and a reexpression of SLC transporters in human biopsy samples after VPA treatment. DNA repair genes were adversely reduced. 2) VPA treatment, however, also reduced cell proliferation in temozolomide-naive cells: On the molecular level in this context we observed a transcriptional upregulation/reexpression and euchromatinization of several glioblastoma relevant tumor suppressor genes and a reduction of stemness markers, while transcriptional subtype classification (mesenchymal/proneural) remained unaltered. Taken together, these findings argue for both temozolomide-dependent and -independent effects of VPA. VPA might increase the uptake of temozolomide and simultaneously lead to a less malignant glioblastoma phenotype. From a mere molecular perspective these findings might indicate a surplus value of VPA in glioblastoma therapy and could therefore contribute an additional ratio for clinical decision making. PMID:27556305

  20. Farnesylthiosalicylic acid sensitizes hepatocarcinoma cells to artemisinin derivatives

    PubMed Central

    Wu, Liping; Pang, Yilin; Qin, Guiqi; Xi, Gaina; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2017-01-01

    Dihydroartemisinin (DHA) and artesunate (ARS), two artemisinin derivatives, have efficacious anticancer activities against human hepatocarcinoma (HCC) cells. This study aims to study the anticancer action of the combination treatment of DHA/ARS and farnesylthiosalicylic acid (FTS), a Ras inhibitor, in HCC cells (Huh-7 and HepG2 cell lines). FTS pretreatment significantly enhanced DHA/ARS-induced phosphatidylserine (PS) externalization, Bak/Bax activation, mitochondrial membrane depolarization, cytochrome c release, and caspase-8 and -9 activations, characteristics of the extrinsic and intrinsic apoptosis. Pretreatment with Z-IETD-FMK (caspase-8 inhibitor) potently prevented the cytotoxicity of the combination treatment of DHA/ARS and FTS, and pretreatment with Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited the loss of ΔΨm induced by DHA/ARS treatment or the combination treatment of DHA/ARS and FTS in HCC cells. Furthermore, silencing Bak/Bax modestly but significantly inhibited the cytotoxicity of the combination treatment of DHA/ARS and FTS. Interestingly, pretreatment with an antioxidant N-Acetyle-Cysteine (NAC) significantly prevented the cytotoxicity of the combination treatment of DHA and FTS instead of the combination treatment of ARS and FTS, suggesting that reactive oxygen species (ROS) played a key role in the anticancer action of the combination treatment of DHA and FTS. Similar to FTS, DHA/ARS also significantly prevented Ras activation. Collectively, our data demonstrate that FTS potently sensitizes Huh-7 and HepG2 cells to artemisinin derivatives via accelerating the extrinsic and intrinsic apoptotic pathways. PMID:28182780

  1. Transport mechanism for L-lactic acid in human myocytes using human prototypic embryonal rhabdomyosarcoma cell line (RD cells).

    PubMed

    Kobayashi, Masaki; Fujita, Itaru; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2005-07-01

    Monocarboxylate transporter (MCT), which cotransport L-lactic acid and protons across cell membranes, are important for regulation of muscle pH. However, it has not been demonstrated in detail whether MCT isoform contribute to the transport of L-lactic acid in skeletal muscle. The aim of this study was to characterize L-lactic acid transport using an human rhabdomyosarcoma (RD) cell line as a model of human skeletal muscle. mRNAs of MCT 1, 2 and 4 were found to be expressed in RD cells. The [14C] L-lactic acid uptake was concentration-dependent with a Km of 1.19 mM. This Km value was comparable to its Km values for MCT1 or MCT2. MCT1 mRNA was found to be present markedly greater than that MCT2. Therefore, MCT1 most probably acts on L-lactic acid uptake at RD cells. [14C] L-Lactic acid efflux in RD cells was inhibited by alpha-cyano-4-hydroxycinnamate (CHC) but not by butyric acid, a substrate of MCT1. Accordingly, MCT2 or MCT4 is responsible for L-lactic acid efflux by RD cells. MCT4 mRNA was found to be present significantly greater than that MCT2. We conclude that MCT1 is responsible for L-lactic acid uptake and L-lactic acid efflux is mediated by MCT4 in RD cells.

  2. Fatty acid metabolism in L1210 murine leukemia cells: differences in modification of fatty acids incorporated into various lipids.

    PubMed

    Burns, C P; Wei, S P; Spector, A A

    1978-10-01

    L1210 leukemia cells can utilize all of the main fatty acids that normally are present in the ascites fluid in which they grow. This finding is consistent with the view that L1210 cells derive most of their fatty acids from the ascites fluid. From 80--90% of each fatty acid was incorporated into cell lipids without structural modification, suggesting that the lipid composition of these cells can be altered by changing the type of fatty acids to which they are exposed. Most importantly, the palmitate that was subsequently incorporated into total cell phospholipids was elongated and desaturated somewhat more than that incorporated into triglycerides. This difference was due primarily to more extensive modification of the palmitate incorporated into the ethanolamine phosphoglycerides fraction. Although there was no difference between total phospholipids and triglycerides with linoleate, more of the linoleate incorporated into ethanolamine phosphoglycerides was elongated and further desaturated than that incorporated into choline phosphoglycerides and triglycerides. These findings indicate fatty acids incorporated into various cell lipid fractions are not structurally modified to the same extent. There appears to be greater modification of fatty acid used for ethanolamine phosphoglyceride synthesis as compared with triglyceride and choline phosphoglyceride synthesis.

  3. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells

    SciTech Connect

    Hayashi, Mai; Okabe, Kyoko; Yamawaki, Yasuna; Teranishi, Miki; Honoki, Kanya; Mori, Toshio; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2011-02-18

    Research highlights: {yields} Loss of the Lpar3 expression due to aberrant DNA methylation occurred in rat lung tumor cells. {yields} The Lpar3 inhibited cell migration of rat lung tumor cells. {yields} The Lpar3 may act as a negative regulator of rat lung tumor cells. -- Abstract: Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

  4. Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting

    SciTech Connect

    Suriamoorthy, Preethi; Zhang, Xing; Hao, Guiyang; Joly, Alan G.; Singh, S.; Hossu, Marius; Sun, Xiankai; Chen, Wei

    2010-12-01

    In this study, we report the preparation,luminescence, and targeting properties of folic acid- CdTe quantum dot conjugates. Water-soluble CdTe quantum dots were synthesized and conjugated with folic acid using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide chemistry. The in-fluence of folic acid on the luminescence properties of CdTe quantum dots was investigated, and no energy transfer between them was observed. To investigate the efficiency of folic acid-CdTe nanoconjugates for tumor targeting, pure CdTe quantum dots and folic acid-coated CdTe quantum dots were incubated with human naso- pharyngeal epidermal carcinoma cell line with positive expressing folic acid receptors (KB cells) and lung cancer cells without expression of folic acid receptors (A549 cells). For the cancer cells with positive folate receptors (KB cells), the uptake for CdTe quantum dots is very low, but for folic acid-CdTe nanoconjugates, the uptake is very high. For the lung cancer cells without folate receptors (A549 cells), the uptake for folic acid- CdTe nanoconjugates is also very low. The results indicate that folic acid is an effective targeting molecule for tumor cells with overexpressed folate receptors.

  5. Proposed Ancestors of Phage Nucleic Acid Packaging Motors (and Cells)

    PubMed Central

    Serwer, Philip

    2011-01-01

    I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells) include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1) initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2) are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke. PMID:21994778

  6. Delta-6 desaturase from borage converts linoleic acid to gamma-linolenic acid in HEK293 cells.

    PubMed

    Chen, Qing; Nimal, Jonathan; Li, Wanli; Liu, Xia; Cao, Wenguang

    2011-07-08

    Gamma-linolenic acid (GLA, 18:3 n6) is an essential polyunsaturated fatty acid of the omega-6 family and is found to be effective in prevention and/or treatment of various health problems. In this study, we evaluated the possibility of increasing γ-linolenic acid contents in mammalian cells using the delta-6 gene from Borago officinalis. The borage Δ6-desaturase gene (sDelta-6) was codon-optimized and introduced into HEK293 cells by lipofectin transfection. Co-expression of GFP with sDelta-6 and RT-PCR analysis indicated that sDelta-6 could be expressed in mammalian cells. Subsequently, the heterologous expression of borage Δ6-desaturase was evaluated by fatty acid analysis. Total cellular lipid analysis of transformed cells fed with linoleic acid (LA 18:2 n6) as a substrate showed that the expression of sDelta-6 resulted in an 228-483% (p<0.05) increase of GLA when compared with that in the control cells. The highest conversion efficiency of LA into GLA in sDelta-6(+) cells was 6.9 times higher than that in the control group (11.59% vs. 1.69%; p<0.05). Our present work demonstrated that the sDelta-6 gene from borage could be functionally expressed in mammalian cells, and could convert LA into GLA. Furthermore, this study may pave the way to generate transgenic livestock that can synthesise GLA.

  7. Lactic acid-producing yeast cells having nonfunctional L- or D-lactate:ferricytochrome C oxidoreductase cells

    DOEpatents

    Miller, Matthew [Boston, MA; Suominen, Pirkko [Maple Grove, MN; Aristidou, Aristos [Highland Ranch, CO; Hause, Benjamin Matthew [Currie, MN; Van Hoek, Pim [Camarillo, CA; Dundon, Catherine Asleson [Minneapolis, MN

    2012-03-20

    Yeast cells having an exogenous lactate dehydrogenase gene ae modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

  8. Transmission electron microscopic examination of phosphoric acid fuel cell components

    NASA Technical Reports Server (NTRS)

    Pebler, A.

    1986-01-01

    Transmission electron microscopy (TEM) was used to physically characterize tested and untested phosphoric acid fuel cell (PAFC) components. Those examined included carbon-supported platinum catalysts, carbon backing paper, and Teflon-bonded catalyst layers at various stages of fabrication and after testing in pressurized PAFC's. Applicability of electron diffraction and electron energy loss spectroscopy for identifying the various phases was explored. The discussion focuses on the morphology and size distribution of platinum, the morphology and structural aspects of Teflon in catalyst layers, and the structural evidence of carbon corrosion. Reference is made to other physical characterization techniques where appropriate. A qualitative model of the catalyst layer that emerged from the TEM studies is presented.

  9. Asiatic acid inhibits adipogenic differentiation of bone marrow stromal cells.

    PubMed

    Li, Zheng-Wei; Piao, Cheng-dong; Sun, Hong-hui; Ren, Xian-Sheng; Bai, Yun-Shen

    2014-03-01

    Bone marrow mesenchymal stromal cells (BMSCs) are the common precursors for both osteoblasts and adipocytes. With aging, BMSC osteoblast differentiation decreases whereas BMSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. In the present study, we investigated the effect of asiatic acid (AA) on adipocytic differentiation of BMSCs. AA inhibited the adipogenic induction of lipid accumulation, activity of glycerol-3-phosphate dehydrogenase, and expression of marker genes in adipogenesis: peroxisome proliferation-activated receptor (PPAR)γ, adipocyte fatty acid-binding protein (ap) 2, and adipsin. Further, we found that AA did not alter clonal expansion rate and expression of C/EBPβ, upstream key regulator of PPARγ, and binding activity of C/EBPβ to PPARγ promoter was not affected by AA as well. These findings suggest that AA may modulate differentiation of BMSCs to cause a lineage shift away from the adipocytes, and inhibition of PPARγ by AA is through C/EBPβ-independent mechanisms. Thus, AA could be a potential candidate for a novel drug against osteoporosis.

  10. Engineering a Cyanobacterial Cell Factory for Production of Lactic Acid

    PubMed Central

    Angermayr, S. Andreas; Paszota, Michal

    2012-01-01

    Metabolic engineering of microorganisms has become a versatile tool to facilitate production of bulk chemicals, fuels, etc. Accordingly, CO2 has been exploited via cyanobacterial metabolism as a sustainable carbon source of biofuel and bioplastic precursors. Here we extended these observations by showing that integration of an ldh gene from Bacillus subtilis (encoding an l-lactate dehydrogenase) into the genome of Synechocystis sp. strain PCC6803 leads to l-lactic acid production, a phenotype which is shown to be stable for prolonged batch culturing. Coexpression of a heterologous soluble transhydrogenase leads to an even higher lactate production rate and yield (lactic acid accumulating up to a several-millimolar concentration in the extracellular medium) than those for the single ldh mutant. The expression of a transhydrogenase alone, however, appears to be harmful to the cells, and a mutant carrying such a gene is rapidly outcompeted by a revertant(s) with a wild-type growth phenotype. Furthermore, our results indicate that the introduction of a lactate dehydrogenase rescues this phenotype by preventing the reversion. PMID:22865063

  11. Engineering a cyanobacterial cell factory for production of lactic acid.

    PubMed

    Angermayr, S Andreas; Paszota, Michal; Hellingwerf, Klaas J

    2012-10-01

    Metabolic engineering of microorganisms has become a versatile tool to facilitate production of bulk chemicals, fuels, etc. Accordingly, CO(2) has been exploited via cyanobacterial metabolism as a sustainable carbon source of biofuel and bioplastic precursors. Here we extended these observations by showing that integration of an ldh gene from Bacillus subtilis (encoding an l-lactate dehydrogenase) into the genome of Synechocystis sp. strain PCC6803 leads to l-lactic acid production, a phenotype which is shown to be stable for prolonged batch culturing. Coexpression of a heterologous soluble transhydrogenase leads to an even higher lactate production rate and yield (lactic acid accumulating up to a several-millimolar concentration in the extracellular medium) than those for the single ldh mutant. The expression of a transhydrogenase alone, however, appears to be harmful to the cells, and a mutant carrying such a gene is rapidly outcompeted by a revertant(s) with a wild-type growth phenotype. Furthermore, our results indicate that the introduction of a lactate dehydrogenase rescues this phenotype by preventing the reversion.

  12. Bioorthogonal metabolic glycoengineering of human larynx carcinoma (HEp-2) cells targeting sialic acid.

    PubMed

    Homann, Arne; Qamar, Riaz-Ul; Serim, Sevnur; Dersch, Petra; Seibel, Jürgen

    2010-03-08

    Sialic acids are located at the termini of mammalian cell-surface glycostructures, which participate in essential interaction processes including adhesion of pathogens prior to infection and immunogenicity. Here we present the synthesis and bioorthogonal metabolic incorporation of the sialic acid analogue N-(1-oxohex-5-ynyl)neuraminic acid (Neu5Hex) into the cell-surface glycocalyx of a human larynx carcinoma cell line (HEp-2) and its fluorescence labelling by click chemistry.

  13. Phosphoric acid impurities in phosphoric acid fuel cell electrolytes. 2: Effects on the oxygen reduction reaction at platinum electrodes

    SciTech Connect

    Sugishima, Noboru; Hinatsu, J.T.; Foulkes, F.R. . Dept. of Chemical Engineering and Applied Chemistry)

    1994-12-01

    The effects of phosphorus acid additions on the oxygen reduction reaction at platinum electrodes in concentrated phosphoric acid were studied. The oxygen reduction currents decreased, and the Tafel slopes became more negative upon the addition of small concentrations of phosphorus acid. In addition,the phosphorus acid oxidation current tended to complete with the oxygen reduction current. These effects became more pronounced at higher phosphorus acid concentrations and at higher temperatures. Upon the addition of phosphorus acid the number of electrons involved in the oxygen reduction reaction decreased from a value close to four to a value approaching two, suggesting promotion of a two-electron reduction to peroxide. Therefore, in studies of the electrochemical reduction of oxygen in hot concentrated phosphoric acid or in fuel cell systems using hot concentrated phosphoric acid as electrolyte, it is recommended that precautions be taken against the inadvertent formation of the phosphorus acid. The removal of phosphorus acid from concentrated phosphoric acid by repeated potential cycling at 100 mV/s between + 0.5 and +1.50 V (vs. dynamic hydrogen electrode) was demonstrated.

  14. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure

    PubMed Central

    Shimizu, T.; Kira, T.; Onishi, T.; Uchihara, Y.; Imamura, T.; Tanaka, Y.

    2016-01-01

    Objectives To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569–576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. PMID:27881440

  15. High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells.

    PubMed

    Pellis, Linette; Dommels, Yvonne; Venema, Dini; Polanen, Ab van; Lips, Esther; Baykus, Hakan; Kok, Frans; Kampman, Ellen; Keijer, Jaap

    2008-04-01

    Folate, a water-soluble B vitamin, is a cofactor in one-carbon metabolism and is essential for DNA synthesis, amino acid interconversion, methylation and, consequently, normal cell growth. In animals with existing pre-neoplastic and neoplastic lesions, folic acid supplementation increases the tumour burden. To identify processes that are affected by increased folic acid levels, we compared HT29 human colon cancer cells exposed to a chronic supplemental (100 ng/ml) level of folic acid to cells exposed to a normal (10 ng/ml) level of folic acid, in the presence of vitamin B12 and other micronutrients involved in the folate-methionine cycle. In addition to higher intracellular folate levels, HT29 cells at 100 ng folic acid/ml displayed faster growth and higher metabolic activity. cDNA microarray analysis indicated an effect on cell turnover and Fe metabolism. We fully confirmed these effects at the physiological level. At 100 ng/ml, cell assays showed higher proliferation and apoptosis, while gene expression analysis and a lower E-cadherin protein expression indicated decreased differentiation. These results are in agreement with the promoting effect of folic acid supplementation on established colorectal neoplasms. The lower expression of genes related to Fe metabolism at 100 ng folic acid/ml was confirmed by lower intracellular Fe levels in the cells exposed to folic acid at 100 ng/ml. This suggests an effect of folate on Fe metabolism.

  16. Stimulation of phosphatidic acid of calcium influx and cyclic GMP synthesis in neuroblastoma cells.

    PubMed

    Ohsako, S; Deguchi, T

    1981-11-10

    Phosphatidic acid added to the medium markedly elevated intracellular cyclic GMP content in cultured neuroblastoma N1E 115 cells. There was a significant elevation of cyclic GMP with 1 micrograms/ml and a maximum (70-fold) elevation with 100 micrograms/ml of phosphatidic acid. Other natural phospholipids did not increase, or increased only slightly, the cyclic GMP content in the cells. The elevation of cyclic GMP content by phosphatidic acid was absolutely dependent on extracellular calcium. Phosphatidic acid stimulated the influx of calcium into neuroblastoma cells 2- to 5-fold. The pattern of the calcium influx induced by phosphatidic acid was comparable to that of cyclic GMP elevation. The stimulation of calcium influx by phosphatidic acid was also observed in cultured heart cells, indicating that phosphatidic acid acts as a calcium ionophore or opens a specific calcium-gate in a variety of cell membranes. Treatment of neuroblastoma cells with phospholipase C increased 32Pi labeling of phosphatidic acid, stimulated the influx of calcium, and elevated the cyclic GMP content in the cells. Thus exogenous as well as endogenous phosphatidic acid stimulates the translocation of calcium across cell membranes and, as a consequence, induces the synthesis of cyclic GMP in the neuroblastoma cells.

  17. Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells.

    PubMed

    Brown, Geoffrey; Marchwicka, Aleksandra; Cunningham, Alan; Toellner, Kai-Michael; Marcinkowska, Ewa

    2017-02-01

    Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D3 to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC50-0.3 nM): ~50-fold more is required for activation of RARα (EC50-16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation.

  18. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    SciTech Connect

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  19. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  20. Development of advanced kocite electrocatalysts for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Welsh, L. S.; Leyerle, R. W.; Scarlata, D. S.; Vanek, M. A.

    1981-01-01

    These improved electrocatalysts should demonstrate a larger initial catalytic metal surface area, and a better catalytic metal surface area retention during fuel cell operation than present state-of-the-art phosphoric acid electrocatalysts. Kocite electrocatalysts impregnated with platinum and platinum-vanadium alloys were tested. The Kocite electrocatalysts were aged in electrodes potentiostated in H3PO4 half cells, and were then analyzed for catalytic metals surface area retention. Compared with the state-of-the-art platinum electrocatalysts, as represented by a standard Kocite electrocatalyst, the Kocite electrocatalysts impregnated by the techniques used in this study have a better initial platinum surface area. This initial surface area difference appeared to be maintained when the catalysts are aged at 700 mV, but was not maintained when the catalysts were aged at 800 mV. Variations of the alumina substrate and of the post-treatment of the leached Kocite catalyst support did not produce any catalysts with better platinum surface area retention than the standard catalyst. Alloying of vanadium with the platinum did produce Kocite electrocatalysts which maintained their alloy surface area better than the standard catalyst maintained its platinum surface area.

  1. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells.

    PubMed

    Catalano, Maria G; Fortunati, Nicoletta; Pugliese, Mariateresa; Costantino, Lucia; Poli, Roberta; Bosco, Ornella; Boccuzzi, Giuseppe

    2005-03-01

    Poorly differentiated thyroid carcinoma is an aggressive human cancer that is resistant to conventional therapy. Histone deacetylase inhibitors are a promising class of drugs, acting as antiproliferative agents by promoting differentiation, as well as inducing apoptosis and cell cycle arrest. Valproic acid (VPA), a class I selective histone deacetylase inhibitor widely used as an anticonvulsant, promotes differentiation in poorly differentiated thyroid cancer cells by inducing Na(+)/I(-) symporter and increasing iodine uptake. Here, we show that it is also highly effective at suppressing growth in poorly differentiated thyroid cancer cell lines (N-PA and BHT-101). Apoptosis induction and cell cycle arrest are the underlying mechanisms of VPA's effect on cell growth. It induces apoptosis by activating the intrinsic pathway; caspases 3 and 9 are activated but not caspase 8. Cell cycle is selectively arrested in G(1) and is associated with the increased expression of p21 and the reduced expression of cyclin A. Both apoptosis and cell cycle arrest are induced by treatment with 1 mm VPA, a dose that promotes cell redifferentiation and that is slightly above the serum concentration reached in patients treated for epilepsy. These multifaceted properties make VPA of clinical interest as a new approach to treating poorly differentiated thyroid cancer.

  2. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    PubMed Central

    Aldhahrani, Adil; Verdon, Bernard; Pearson, Jeffery

    2017-01-01

    Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B). The immortalised human bronchial epithelial cell line (BEAS-2B) was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL)-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury. PMID:28344983

  3. Proliferation in culture of primordial germ cells derived from embryonic stem cell: induction by retinoic acid

    PubMed Central

    Makoolati, Zohreh; Movahedin, Mansoureh; Forouzandeh-Moghadam, Mehdi

    2016-01-01

    An in vitro system that supports primordial germ cells (PGCs) survival and proliferation is useful for enhancement of these cells and efficient transplantation in infertility disorders. One approach is cultivation of PGCs under proper conditions that allow self-renewal and proliferation of PGCs. For this purpose, we compared the effects of different concentrations of retinoic acid (RA), and the effect of PGCs co-culture (Co-C) with SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) cells on the proliferation of embryonic stem cells (ESCs)-derived PGCs. One-day-old embryoid body (EB) was cultured for 4 days in simple culture system in the presence of 5 ng/ml bone morphogenetic protein-4 (BMP4) (SCB group) for PGC induction. For PGC enrichment, ESCs-derived germ cells were cultured for 7 days in the presence of different doses (0–5  μM) of RA, both in the simple and STO Co-C systems. At the end of the culture period, viability and proliferation rates were assessed and expression of mouse vasa homologue (Mvh),  α6 integrin,  β1 integrin, stimulated by retinoic acid 8 (Stra8) and piwi (Drosophila)-like 2 (Piwil2) was evaluated using quantitative PCR. Also, the inductive effects were investigated immunocytochemically with Mvh and cadherin1 (CDH1) on the selected groups. Immunocytochemistry/PCR results showed higher expression of Mvh, the PGC-specific marker, in 3  μM RA concentrations on the top of the STO feeder layer. Meanwhile, assessment of the Stra8 mRNA and CDH1 protein, the specific makers for spermatogonia, showed no significant differences between groups. Based on the results, it seems that in the presence of 3 μM RA on top of the STO feeder layer cells, the majority of the cells transdifferentiated into germ cells were PGCs. PMID:27834666

  4. Protective effects of arachidonic acid against palmitic acid-mediated lipotoxicity in HIT-T15 cells.

    PubMed

    Cho, Young Sik; Kim, Chi Hyun; Kim, Ki Young; Cheon, Hyae Gyeong

    2012-05-01

    Saturated fatty acids have been considered major contributing factors in type 2 diabetes, whereas unsaturated fatty acids have beneficial effects for preventing the development of diabetes. However, the effects of polyunsaturated fatty acids in pancreatic β cells have not been reported. Here, we examined the effects of arachidonic acid (AA) on palmitic acid (PA)-mediated lipotoxicity in clonal HIT-T15 pancreatic β cells. AA prevented the PA-induced lipotoxicity as indicated by cell viability, DNA fragmentation and mitochondrial membrane potential, whereas eicosatetraynoic acid (ETYA), a non-metabolizable AA, had little effect on PA-induced lipotoxicity. In parallel with its protective effects against PA-induced lipotoxicity, AA restored impaired insulin expression and secretion induced by PA. AA but not ETYA increased intracellular triglyceride (TG) in the presence of PA compared with PA alone, and xanthohumol, a diacylglycerol acyltransferase (DGAT) inhibitor, reversed AA-induced protection from PA. Taken together, our results suggest that AA protects against PA-induced lipotoxicity in clonal HIT-T15 pancreatic β cells, and the protective effects may be associated with TG accumulation, possibly through sequestration of lipotoxic PA into TG.

  5. Lens epithelial cell apoptosis and intracellular Ca2+ increase in the presence of xanthurenic acid

    PubMed Central

    Malina, Halina; Richter, Christoph; Frueh, Beatrice; Hess, Otto M

    2002-01-01

    Background Xanthurenic acid is an endogenous product of tryptophan degradation by indoleamine 2,3-dioxygenase (IDO). We have previously reported that IDO is present in mammalian lenses, and xanthurenic acid is accumulated in the lenses with aging. Here, we studied the involvement of xanthurenic acid in the human lens epithelial cell physiology. Methods Human lens epithelial cells primary cultures were used. Control cells, and cells in the presence of xanthurenic acid grow in the dark. Western blot analysis and immunofluorescence studies were performed. Results In the presence of xanthurenic acid human lens epithelial cells undergo apoptosis-like cell death. In the control cells gelsolin stained the perinuclear region, whereas in the presence of 10 μM xanthurenic acid gelsolin is translocated to the cytoskeleton, but does not lead to cytoskeleton breakdown. In the same condition caspase-3 activation, and DNA fragmentation was observed. At low (5 to 10 μM) of xanthurenic acid concentration, the elongation of the cytoskeleton was associated with migration of mitochondria and cytochrome c release. At higher concentrations xanthurenic acid (20 μM and 40 μM) damaged mitochondria were observed in the perinuclear region, and nuclear DNA cleavage was observed. We observed an induction of calpain Lp 82 and an increase of free Ca2+ in the cells in a xanthurenic acid concentration-dependent manner. Conclusions The results show that xanthurenic acid accumulation in human lens epithelial cells disturbs the normal cell physiology and leads to a cascade of pathological events. Xanthurenic acid induces calpain Lp82 and caspases in the cells growing in the dark and can be involved in senile cataract development. PMID:11934353

  6. Stearidonic acid, a plant-based dietary fatty acid, enhances the chemosensitivity of canine lymphoid tumor cells.

    PubMed

    Pondugula, Satyanarayana R; Ferniany, Glennie; Ashraf, Farah; Abbott, Kodye L; Smith, Bruce F; Coleman, Elaine S; Mansour, Mahmoud; Bird, R Curtis; Smith, Annette N; Karthikeyan, Chandrabose; Trivedi, Piyush; Tiwari, Amit K

    2015-05-15

    Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma.

  7. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate.

    PubMed

    Dueregger, Andrea; Schöpf, Bernd; Eder, Theresa; Höfer, Julia; Gnaiger, Erich; Aufinger, Astrid; Kenner, Lukas; Perktold, Bernhard; Ramoner, Reinhold; Klocker, Helmut; Eder, Iris E

    2015-01-01

    Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies.

  8. Differential Utilization of Dietary Fatty Acids in Benign and Malignant Cells of the Prostate

    PubMed Central

    Eder, Theresa; Höfer, Julia; Gnaiger, Erich; Aufinger, Astrid; Kenner, Lukas; Perktold, Bernhard; Ramoner, Reinhold; Klocker, Helmut; Eder, Iris E.

    2015-01-01

    Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies. PMID:26285134

  9. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    SciTech Connect

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika . E-mail: monika.leonhardt@inw.agrl.ethz.ch

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.

  10. Increased production of γ-lactones from hydroxy fatty acids by whole Waltomyces lipofer cells induced with oleic acid.

    PubMed

    An, Jung-Ung; Oh, Deok-Kun

    2013-09-01

    Among several fatty acids tested, oleic acid was selected as the most efficient inducer for the production of 4-hydroxydodecanoic acid, a metabolite of β-oxidation, by Waltomyces lipofer. Cells were induced by incubation for 12 h in a medium containing 10 g l(-1) yeast extract, 10 g l(-1) peptone, 5 g l(-1) oleic acid, 1 g l(-1) glucose, and 0.05 % (w/v) Tween 80. The optimal reaction conditions for the production of γ-lactones by induced cells were pH 6.5, 35 °C, 200 rpm, 0.71 M Tris, 60 g l(-1) hydroxy fatty acid, and 20 g l(-1) cells. Non-induced cells produced 38 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 63 % (w/w) and a productivity of 1.3 g l(-1) h(-1) under the optimized conditions, whereas induced cells produced 51 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 85 % (w/w) and a productivity of 1.7 g l(-1) h(-1). The conversion yield and productivity of induced cells were 22 % and 1.3-fold higher, respectively, than those of non-induced cells. Induced cells also produced 28 g l(-1) γ-decalactone and 12 g l(-1) γ-butyrolactone from 60 g l(-1) 12-hydroxystearic acid and 60 g l(-1) 10-hydroxydecanoic acid, respectively, after 30 h. The concentration, conversion yield, and productivity of γ-dodecalactone and γ-decalactone are the highest reported thus far. This is the first study on the biotechnological production of γ-butyrolactone.

  11. In vitro effects of tetraiodothyroacetic acid combined with X-irradiation on basal cell carcinoma cells.

    PubMed

    Leith, John T; Davis, Paul J; Mousa, Shaker A; Hercbergs, Aleck A

    2017-02-16

    We investigated radiosensitization in an untreated basal cell carcinoma (TE.354.T) cell line and post-pretreatment with tetraiodothyroacetic acid (tetrac) X 1 h at 37°C, 0.2 and 2.0 µM tetrac. Radioresistant TE.354.T cells were grown in modified medium containing fibroblast growth factor-2, stem cell factor-1 and a reduced calcium level. We also added reproductively inactivated (30 Gy) "feeder cells" to the medium. The in vitro doubling time was 34.1 h, and the colony forming efficiency was 5.09 percent. These results were therefore suitable for clonogenic radiation survival assessment. The 250 kVp X-ray survival curve of control TE.354.T cells showed linear-quadratic survival parameters of αX-ray = 0.201 Gy(-1) and βX-ray = 0.125 Gy(-2). Tetrac concentrations of either 0.2 or 2.0 µM produced αX-ray and βX-ray parameters of 2.010 and 0.282 Gy(-1) and 2.050 and 0.837 Gy(-2), respectively. The surviving fraction at 2 Gy (SF2) for control cells was 0.581, while values for 0.2 and 2.0 µM tetrac were 0.281 and 0.024. The SF2 data show that tetrac concentrations of 0.2 and 2.0 µM sensitize otherwise radioresistant TE.354.T cells by factors of 2.1 and 24.0, respectively. Thus, radioresistant basal cell carcinoma cells may be radiosensitized pharmacologically by exposure to tetrac.

  12. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha

    PubMed Central

    Hall, J.A.; Cannons, J.L.; Grainger, J.R.; Santos, L.M. Dos; Hand, T.W.; Naik, S.; Wohlfert, E.A.; Chou, D.B.; Oldenhove, G.; Robinson, M.; Grigg, M.E.; Kastenmayer, R.; Schwartzberg, P.L.; Belkaid, Y.

    2012-01-01

    SUMMARY Vitamin A and its metabolite, retinoic acid (RA), have recently been implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we show that RA is also required to elicit proinflammatory CD4+ helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) is the critical mediator of these effects. Strikingly, antagonism of RAR signaling and deficiency in RARα(Rara−/−) results in a cell autonomous CD4+ T cell activation defect. Altogether, these findings reveal a fundamental role for the RA/RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses. PMID:21419664

  13. Whole-cell bioconversion of vanillin to vanillic acid by Streptomyces viridosporus

    SciTech Connect

    Pometto, A.L. III; Crawford, D.L.

    1983-05-01

    A two-step batch fermentation-bioconversion of vanillin (4-hydroxy-3-methoxybenzaldehyde) to vanillic acid (4-hydroxy-3-methoxybenzoic acid) was developed, utilizing whole cells of Streptomyces viridosporus T7A. In the first step, cells were grown in a yeast extract-vanillin medium under conditions where cells produced an aromatic aldehyde oxidase. In the second step, vanillin was incubated with the active cells and was quantitatively oxidized to vanillic acid which accumulated in the growth medium. Vanillic acid was readily recovered from the spent medium by a combination of acid precipitation and ether extraction at greater than or equal to96% molar yield and upon recrystallization from glacial acetic acid was obtained in greater than or equal to99% purity.

  14. Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro.

    PubMed

    Takigawa, Satoko; Sugano, Naoyuki; Ochiai, Kuniyasu; Arai, Noriyuki; Ota, Noriko; Ito, Koichi

    2008-12-01

    Butyric acid is detected in periodontal pockets and is thought to be involved in the initiation and progression of periodontal disease. We examined the effects of sodium bicarbonate on the butyric acid-induced epithelial cell damage. The human gingival carcinoma cell line Ca9-22 was cultured in medium that contained butyric acid with or without sodium bicarbonate. The viability of cells treated with sodium bicarbonate was significantly higher than that of cells treated with butyric acid alone. The effects of butyric acid on ICAM-1 expression were significantly improved by sodium bicarbonate. Within the limitations of this in vitro study, sodium bicarbonate was indicated to be a useful therapeutic agent to reduce the butyric acid-induced periodontal tissue damage.

  15. Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells.

    PubMed

    Basiricò, L; Morera, P; Dipasquale, D; Tröscher, A; Bernabucci, U

    2017-03-01

    Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H2O2 exposure was assessed to evaluate and to compare the potential protection of different FA against H2O2-induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H2O2 compared with other FA.

  16. Hydroxycarboxylic acid receptors are essential for breast cancer cells to control their lipid/fatty acid metabolism.

    PubMed

    Stäubert, Claudia; Broom, Oliver Jay; Nordström, Anders

    2015-08-14

    Cancer cells exhibit characteristic changes in their metabolism with efforts being made to address them therapeutically. However, targeting metabolic enzymes as such is a major challenge due to their essentiality for normal proliferating cells. The most successful pharmaceutical targets are G protein-coupled receptors (GPCRs), with more than 40% of all currently available drugs acting through them.We show that, a family of metabolite-sensing GPCRs, the Hydroxycarboxylic acid receptor family (HCAs), is crucial for breast cancer cells to control their metabolism and proliferation.We found HCA1 and HCA3 mRNA expression were significantly increased in breast cancer patient samples and detectable in primary human breast cancer patient cells. Furthermore, siRNA mediated knock-down of HCA3 induced considerable breast cancer cell death as did knock-down of HCA1, although to a lesser extent. Liquid Chromatography Mass Spectrometry based analyses of breast cancer cell medium revealed a role for HCA3 in controlling intracellular lipid/fatty acid metabolism. The presence of etomoxir or perhexiline, both inhibitors of fatty acid β-oxidation rescues breast cancer cells with knocked-down HCA3 from cell death.Our data encourages the development of drugs acting on cancer-specific metabolite-sensing GPCRs as novel anti-proliferative agents for cancer therapy.

  17. Structure-activity relationship between carboxylic acids and T cell cycle blockade.

    PubMed

    Gilbert, Kathleen M; DeLoose, Annick; Valentine, Jimmie L; Fifer, E Kim

    2006-04-04

    This study was designed to examine the potential structure-activity relationship between carboxylic acids, histone acetylation and T cell cycle blockade. Toward this goal a series of structural homologues of the short-chain carboxylic acid n-butyrate were studied for their ability to block the IL-2-stimulated proliferation of cloned CD4+ T cells. The carboxylic acids were also tested for their ability to inhibit histone deacetylation. In addition, Western blotting was used to examine the relative capacity of the carboxlic acids to upregulate the cyclin kinase-dependent inhibitor p21cip1 in T cells. As shown earlier n-butyrate effectively inhibited histone deacetylation. The increased acetylation induced by n-butyrate was associated with the upregulation of the cyclin-dependent kinase inhibitor p21cip1 and the cell cycle blockade of CD4+ T cells. Of the other carboxylic acids studied, the short chain acids, C3-C5, without branching were the best inhibitors of histone deacetylase. This inhibition correlated with increased expression of the cell cycle blocker p21cip1, and the associated suppression of CD4+ T cell proliferation. The branched-chain carboxylic acids tested were ineffective in all the assays. These results underline the relationship between the ability of a carboxylic acid to inhibit histone deacetylation, and their ability to block T cell proliferation, and suggests that branching inhibits these effects.

  18. Oleic acid promotes the expression of neural markers in differentiated human endometrial stem cells.

    PubMed

    Kojour, Maryam Ali Mohammadie; Ebrahimi-Barough, Somayeh; Kouchesfehani, Homa Mohseni; Jalali, Hanieh; Ebrahim, Mohammah Hosein Karbalaie

    2017-01-01

    Variety of neurodegenerative diseases in humans are caused by loss of cells along with loss of function and disability. Cell replacement therapy is a potential strategy to cure neurodegenerative diseases. Mesenchymal stem cells are pluripotent non-hematopoietic cells that can be isolated from numerous tissues. Human endometrial-derived stem cell (hEnSC) are the abundant and easy available source with no immunological response, for cell replacement therapy. In the nervous system, where fatty acids are found in huge amounts, they participate in its development and maintenance throughout life. Oleic acid is a kind of the saturated fatty acids which plays crucial role in brain development. Oleic acid released by astrocytes is used by neurons for the synthesis of phospholipids and is specifically incorporated into growth cones. Human endometrial-derived stem cells in the third passage were divided into 3 groups including: control, sham (cultured in full differentiation medium without oleic acid) and experimental group (cultured in full differentiation medium with oleic acid) to differentiate over a 18-day period. Data from Real-Time PCR showed that mRNA levels of NF and β-TUBULIN were increased significantly (p<0.05) in oleic acid treated cells in comparison to control and sham groups. Immunocytochemistry analysis of Chat and NF expression also showed the same results. The present study clearly demonstrates that oleic acid promotes neural differentiation of hEnSC through regulation of gene expression.

  19. Sasa quelpaertensis and p-coumaric acid attenuate oleic acid-induced lipid accumulation in HepG2 cells.

    PubMed

    Kim, Jeong-Hwan; Kang, Seong-Il; Shin, Hye-Sun; Yoon, Seon-A; Kang, Seung-Woo; Ko, Hee-Chul; Kim, Se-Jae

    2013-01-01

    In this study, we examined the effects of Jeju dwarf bamboo (Sasa quelpaertensis Nakai) extract (JBE) and p-coumaric acid (CA) on oleic acid (OA)-induced lipid accumulation in HepG2 cells. JBE and CA increased the phosphorylation of AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase (ACC) and the expression of carnitine palmitoyl transferase 1a (CPT1a) in OA-treated HepG2 cells. Additionally, these compounds decreased sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and OA-induced lipid accumulation, suggesting that JBE and CA modulate lipid metabolism in HepG2 cells via the AMPK activation pathway.

  20. Tranexamic Acid and Hyaluronate/Carboxymethylcellulose Create Cell Injury

    PubMed Central

    Yılmaz, Bayram; Dilbaz, Serdar; Üstün, Yusuf; Kumru, Selahattin

    2014-01-01

    Background and Objectives: Postoperative pelvic adhesions are associated with chronic pelvic pain, dyspareunia, and infertility. The aim of this study was to evaluate the adhesion prevention effects of tranexamic acid (TA) and hyaluronate/carboxymethylcellulose (HA/CMC) barrier in the rat uterine horn models on the basis of macroscopic and microscopic adhesion scores and histopathological as well as biochemical parameters of inflammation. Methods: Twenty-one Wistar rats were randomly divided into 3 groups. Ten lesions were created on the antimesenteric surface of both uterine horns by bipolar cautery. Three milliliters of 0.9% sodium chloride solution were administered in the control group. A single layer of 2 × 2 cm HA/CMC was plated in group 2. Two milliliters of TA was applied in the last group. All rats were sacrificed at postoperative day 21. Results: No significant difference was found among the control group, the HA/CMC group, and the TA group in terms of macro-adhesion score (P = .206) and microadhesion score (P = .056). No significant difference was found among the 3 groups in terms of inflammation score (P = .815) and inflammatory cell activity (P = .835). Malondialdehyde levels were significantly lower in the control group than in the TA group and HA/CMC group (P = .028). Superoxide dismutase and glutathione S-transferase activities were found to be higher in the control group than in the TA group (P = .005) and HA/CMC group (P = .009). Conclusions: TA and HA/CMC had no efficacy in preventing macroscopic or microscopic adhesion formation and decreasing inflammatory cell activity or inflammation score in our rat models. TA and HA/CMC increased the levels of free radicals and reduced the activities of superoxide dismutase and glutathione S-transferase enzymes, which act to reduce tissue injury. PMID:25392658

  1. Bioavailability of hydroxycinnamic acids from Crepidiastrum denticulatum using simulated digestion and Caco-2 intestinal cells.

    PubMed

    Lee, Hee Ju; Cha, Kwang Hyun; Kim, Chul Young; Nho, Chu Won; Pan, Cheol-Ho

    2014-06-11

    Hydroxycinnamic acids have antioxidant properties and potentially beneficial effects on human health. This study investigated the digestive stability, bioaccessibility, and permeability of hydroxycinnamic acids from Crepidiastrum denticulatum using simulated digestion and Caco-2 intestinal cells. The major compounds of C. denticulatum were determined to be four hydroxycinnamic acids [caftaric acid, chlorogenic acid, chicoric acid, and 3,5-di-O-caffeoylquinic acid (3,5-DCQA)] and one flavonoid (luteolin-7-O-glucuronide) by high-performance liquid chromatography and electrospray ionization mass spectrometry. Hydroxycinnamic acids from C. denticulatum were rapidly released in the stomach and duodenum phase, maximizing the possibility of absorption in the intestinal Caco-2 cells. The digestive stability and bioaccessibility of hydroxycinnamic acids from C. denticulatum were markedly low after simulated digestion and remained minimal in the soluble fraction of the ileum phase. Unlike the four hydroxycinnamic acids, luteolin-7-O-glucuronide was stable in terms of digestive stability and bioaccessibility during simulated digestion. The cell permeabilities (P(app A to B)/P(app B to A)) of caftaric acid (0.054) and chlorogenic acid (0.055) were higher than those of chicoric acid (0.011) and 3,5-DCQA (0.006) in general. That of luteolin-7-O-glucuronide was not detectable, showing its low absorption in Caco-2 cells. These results indicate that the rapid release of hydroxycinnamic acids in the stomach and duodenum phase may increase the potential for absorption in Caco-2 cells, and that luteolin-7-O-glucuronide, which was stable in terms of digestive stability and bioaccessibility, has relatively low absorption compared with hydroxycinnamic acids.

  2. Gibberellic acid production by free and immobilized cells in different culture systems.

    PubMed

    Durán-Páramo, Enrique; Molina-Jiménez, Héctor; Brito-Arias, Marco A; Robles-Martínez, Fabián

    2004-01-01

    Gibberellic acid production was studied in different fermentation systems. Free and immobilized cells of Gibberella fujikuroi cultures in shake-flask, stirred and fixed-bed reactors were evaluated for the production of gibberellic acid (GA3). Gibberellic acid production with free cells cultured in a stirred reactor reached 0.206 g/L and a yield of 0.078 g of GA3/g biomass.

  3. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells.

    PubMed

    Berod, Luciana; Friedrich, Christin; Nandan, Amrita; Freitag, Jenny; Hagemann, Stefanie; Harmrolfs, Kirsten; Sandouk, Aline; Hesse, Christina; Castro, Carla N; Bähre, Heike; Tschirner, Sarah K; Gorinski, Nataliya; Gohmert, Melanie; Mayer, Christian T; Huehn, Jochen; Ponimaskin, Evgeni; Abraham, Wolf-Rainer; Müller, Rolf; Lochner, Matthias; Sparwasser, Tim

    2014-11-01

    Interleukin-17 (IL-17)-secreting T cells of the T helper 17 (TH17) lineage play a pathogenic role in multiple inflammatory and autoimmune conditions and thus represent a highly attractive target for therapeutic intervention. We report that inhibition of acetyl-CoA carboxylase 1 (ACC1) restrains the formation of human and mouse TH17 cells and promotes the development of anti-inflammatory Foxp3(+) regulatory T (Treg) cells. We show that TH17 cells, but not Treg cells, depend on ACC1-mediated de novo fatty acid synthesis and the underlying glycolytic-lipogenic metabolic pathway for their development. Although TH17 cells use this pathway to produce phospholipids for cellular membranes, Treg cells readily take up exogenous fatty acids for this purpose. Notably, pharmacologic inhibition or T cell-specific deletion of ACC1 not only blocks de novo fatty acid synthesis but also interferes with the metabolic flux of glucose-derived carbon via glycolysis and the tricarboxylic acid cycle. In vivo, treatment with the ACC-specific inhibitor soraphen A or T cell-specific deletion of ACC1 in mice attenuates TH17 cell-mediated autoimmune disease. Our results indicate fundamental differences between TH17 cells and Treg cells regarding their dependency on ACC1-mediated de novo fatty acid synthesis, which might be exploited as a new strategy for metabolic immune modulation of TH17 cell-mediated inflammatory diseases.

  4. Retinoic acid stimulates interstitial collagenase messenger ribonucleic acid in osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Connolly, T. J.; Clohisy, J. C.; Shilt, J. S.; Bergman, K. D.; Partridge, N. C.; Quinn, C. O.

    1994-01-01

    The rat osteoblastic osteosarcoma cell line UMR 106-01 secretes interstitial collagenase in response to retinoic acid (RA). The present study demonstrates by Northern blot analysis that RA causes an increase in collagenase messenger RNA (mRNA) at 6 h, which is maximal at 24 h (20.5 times basal) and declines toward basal level by 72 h. This stimulation is dose dependent, with a maximal response at 5 x 10(-7) M RA. Nuclear run-on assays show a greater than 20-fold increase in the rate of collagenase mRNA transcription between 12-24 h after RA treatment. Cycloheximide blocks RA stimulation of collagenase mRNA, demonstrating the need for de novo protein synthesis. RA not only causes an increase in collagenase secretion, but is known to decrease collagen synthesis in UMR 106-01 cells. In this study, the increase in collagenase mRNA is accompanied by a concomitant decrease in the level of alpha 1(I) procollagen mRNA, which is maximal at 24 h (70% decrease), with a return to near-control levels by 72 h. Nuclear run-on assays demonstrated that the decrease in alpha 1 (I) procollagen expression does not have a statistically significant transcriptional component. RA did not statistically decrease the stability of alpha 1 (I) procollagen mRNA (calculated t1/2 = 8.06 +/- 0.30 and 9.01 +/- 0.62 h in the presence and absence of RA, respectively). However, transcription and stability together probably contribute to the major decrease in stable alpha 1 (I) procollagen mRNA observed. Cycloheximide treatment inhibits basal level alpha 1 (I) procollagen mRNA accumulation, demonstrating the need for on-going protein synthesis to maintain basal expression of this gene.

  5. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  6. Lysophosphatidic acid induced red blood cell aggregation in vitro.

    PubMed

    Kaestner, Lars; Steffen, Patrick; Nguyen, Duc Bach; Wang, Jue; Wagner-Britz, Lisa; Jung, Achim; Wagner, Christian; Bernhardt, Ingolf

    2012-10-01

    Under physiological conditions healthy RBCs do not adhere to each other. There are indications that RBCs display an intercellular adhesion under certain (pathophysiological) conditions. Therefore we investigated signaling steps starting with transmembrane calcium transport by means of calcium imaging. We found a lysophosphatidic acid (LPA) concentration dependent calcium influx with an EC(50) of 5 μM LPA. Downstream signaling was investigated by flow cytometry as well as by video-imaging comparing LPA induced with "pure" calcium mediated phosphatidylserine exposure and concluded the coexistence of two branches of the signaling pathway. Finally we performed force measurements with holographic optical tweezers (HOT): The intercellular adhesion of RBCs (aggregation) exceeds a force of 25 pN. These results support (i) earlier data of a RBC associated component in thrombotic events under certain pathophysiological conditions and (ii) the concept to use RBCs in studies of cellular adhesion behavior, especially in combination with HOT. The latter paves the way to use RBCs as model cells to investigate molecular regulation of cellular adhesion processes.

  7. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis.

    PubMed

    Raverdeau, Mathilde; Gely-Pernot, Aurore; Féret, Betty; Dennefeld, Christine; Benoit, Gérard; Davidson, Irwin; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B

    2012-10-09

    Direct evidence for a role of endogenous retinoic acid (RA), the active metabolite of vitamin A in the initial differentiation and meiotic entry of spermatogonia, and thus in the initiation of spermatogenesis is still lacking. RA is synthesized by dedicated enzymes, the retinaldehyde dehydrogenases (RALDH), and binds to and activates nuclear RA receptors (RARA, RARB, and RARG) either within the RA-synthesizing cells or in the neighboring cells. In the present study, we have used a combination of somatic genetic ablations and pharmacological approaches in vivo to show that during the first, prepubertal, spermatogenic cycle (i) RALDH-dependent synthesis of RA by Sertoli cells (SC), the supporting cells of the germ cell (GC) lineage, is indispensable to initiate differentiation of A aligned into A1 spermatogonia; (ii) RARA in SC mediates the effects of RA, possibly through activating Mafb expression, a gene whose Drosophila homolog is mandatory to GC differentiation; (iii) RA synthesized by premeiotic spermatocytes cell autonomously induces meiotic initiation through controlling the RAR-dependent expression of Stra8. Furthermore, we show that RA of SC origin is no longer necessary for the subsequent spermatogenic cycles but essential to spermiation. Altogether, our data establish that the effects of RA in vivo on spermatogonia differentiation are indirect, via SC, but direct on meiotic initiation in spermatocytes, supporting thereby the notion that, contrary to the situation in the female, RA is necessary to induce meiosis in the male.

  8. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia.

    PubMed

    Topçu, Gülaçti; Herrmann, Gabriele; Kolak, Ufuk; Gören, C; Porzel, Andrea; Kutchan, Toni M

    2007-02-01

    Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and beta-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

  9. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells

    PubMed Central

    Huang, Wen-Shih; Yang, Jen-Tsung; Lu, Chien-Chang; Chang, Shun-Fu; Chen, Cheng-Nan; Su, Yu-Ping; Lee, Ko-Chao

    2015-01-01

    A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC). Hence, resistin may play a role in CRC development. Fulvic acid (FA), a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative) and SW-48 (p53-positive) CRC cells and human umbilical vein endothelial cells (HUVECs) were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin. PMID:26690142

  10. In vitro effects of tetraiodothyroacetic acid combined with X-irradiation on basal cell carcinoma cells

    PubMed Central

    Leith, John T.; Davis, Paul J.; Mousa, Shaker A.; Hercbergs, Aleck A.

    2017-01-01

    ABSTRACT We investigated radiosensitization in an untreated basal cell carcinoma (TE.354.T) cell line and post-pretreatment with tetraiodothyroacetic acid (tetrac) X 1 h at 37°C, 0.2 and 2.0 µM tetrac. Radioresistant TE.354.T cells were grown in modified medium containing fibroblast growth factor-2, stem cell factor-1 and a reduced calcium level. We also added reproductively inactivated (30 Gy) “feeder cells” to the medium. The in vitro doubling time was 34.1 h, and the colony forming efficiency was 5.09 percent. These results were therefore suitable for clonogenic radiation survival assessment. The 250 kVp X-ray survival curve of control TE.354.T cells showed linear-quadratic survival parameters of αX-ray = 0.201 Gy−1 and βX-ray = 0.125 Gy−2. Tetrac concentrations of either 0.2 or 2.0 µM produced αX-ray and βX-ray parameters of 2.010 and 0.282 Gy−1 and 2.050 and 0.837 Gy−2, respectively. The surviving fraction at 2 Gy (SF2) for control cells was 0.581, while values for 0.2 and 2.0 µM tetrac were 0.281 and 0.024. The SF2 data show that tetrac concentrations of 0.2 and 2.0 µM sensitize otherwise radioresistant TE.354.T cells by factors of 2.1 and 24.0, respectively. Thus, radioresistant basal cell carcinoma cells may be radiosensitized pharmacologically by exposure to tetrac. PMID:28113001

  11. Polyunsaturated fatty acids trigger apoptosis of colon cancer cells through a mitochondrial pathway

    PubMed Central

    Zhang, Chengcheng; Yu, Haining; Shen, Yuzhen; Ni, Xiaofeng; Das, Undurti N.

    2015-01-01

    Introduction Colorectal cancer is common in developed countries. Polyunsaturated fatty acids (PUFAs) have been reported to possess tumoricidal action, but the exact mechanism of their action is not clear. Material and methods In the present study, we studied the effect of various n-6 and n-3 fatty acids on the survival of the colon cancer cells LoVo and RKO and evaluated the possible involvement of a mitochondrial pathway in their ability to induce apoptosis. Results It was observed that n-3 α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid (ALA, EPA and DHA respectively) and n-6 linoleic acid, gamma-linolenic acid and arachidonic acid (LA, GLA and AA respectively) induced apoptosis of the colon cancer cells LoVo and RKO at concentrations above 120 μM (p < 0.01 compared to control). The semi-differentiated colon cancer cell line RKO was more sensitive to the cytotoxic action of PUFAs compared to the undifferentiated colon cancer cell line LoVo. PUFA-treated cells showed an increased number of lipid droplets in their cytoplasm. PUFA-induced apoptosis of LoVo and RKO cells is mediated through a mitochondria-mediated pathway as evidenced by loss of mitochondrial membrane potential, generation of ROS, accumulation of intracellular Ca2+, activation of caspase-9 and caspase-3, decreased ATP level and increase in the Bax/Bcl2 expression ratio. Conclusions PUFAs induced apoptosis of colon cancer cells through a mitochondrial dependent pathway. PMID:26528354

  12. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid.

    PubMed

    Kwan, Hiu Yee; Fu, Xiuqiong; Liu, Bin; Chao, Xiaojuan; Chan, Chi Leung; Cao, Huihui; Su, Tao; Tse, Anfernee Kai Wing; Fong, Wang Fun; Yu, Zhi-Ling

    2014-10-31

    Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.

  13. An acid phosphatase assay for quantifying the growth of adherent and nonadherent cells.

    PubMed

    Yang, T T; Sinai, P; Kain, S R

    1996-10-01

    We describe an acid phosphatase assay for determination of cell growth based on quantification of cytosolic acid phosphatase activity. The assay is based on the hydrolysis of the p-nitrophenyl phosphate by intracellular acid phosphatases in viable cells to produce p-nitrophenol. For all cell types examined, absorbance of p-nitrophenol at 405 nm is directly proportional to the cell number in the range of 10(3)-10(5) cells. The assay can quantify as few as 1000 cells per well in 96-well microtiter plates. The acid phosphatase assay was used to count various adherent and nonadherent cells, including human tumors, L6, and HT-2 cells. We also demonstrate the utility of this assay for analysis of growth factor and cytokine bioactivity on mammalian cells in culture. In comparison to [3H]thymidine incorporation, the acid phosphatase assay has similar sensitivity but a wider linear response range. The method also shows higher sensitivity and reproducibility in comparison to cell proliferation assays based on the reduction of tetrazolium salts. Because of the ease of use, sensitivity, and low cost, the acid phosphatase method is especially suited to applications where a large number of samples are assayed.

  14. Combined effects of zoledronic acid and doxorubicin on breast cancer cell invasion in vitro.

    PubMed

    Woodward, Julia K L; Neville-Webbe, Helen L; Coleman, Robert E; Holen, Ingunn

    2005-09-01

    The bisphosphonate zoledronic acid and the cytotoxic drug doxorubicin induce synergistic levels of apoptosis in breast cancer cells. As zoledronic acid and doxorubicin have been shown to reduce cell invasion and migration, we have investigated if these drugs also act synergistically on breast cancer invasion in vitro. MCF7 cells were treated with 0.05 microM doxorubicin/4 h followed by 1 or 10 microM zoledronic acid/24 h (or the reverse sequence). To study invasion, MCF7 cells were either grown on Transwell membranes coated with Matrigel or in a 24-well plate. Cells were treated sequentially using the above drug combinations, prior to starting the invasion assays for 48 h. Cell growth and death were also assessed under the same conditions. We found that invasion of MCF7 cells treated with zoledronic acid and doxorubicin was significantly reduced when compared with control, but the effect was dependent on drug sequence. At 1 microM, zoledronic acid significantly reduced invasion only if cells were pre-treated with doxorubicin, but cell growth was unaffected. For 10 microM zoledronic acid, invasion was reduced when administered before or after the doxorubicin, but this dose of zoledronic acid caused a significant reduction in MCF7 growth. Apoptosis was not induced by any of the drug doses and combinations. We conclude that pre-treatment with 0.05 microM doxorubicin followed by 1 microM zoledronic acid reduces invasion when cells were grown on Matrigel. For 10 microM zoledronic acid, pre- or post-doxorubicin also reduces invasion, but for this combination inhibition of cell growth may contribute to the reduction in invasion observed.

  15. Oleic acid stimulates system A amino acid transport in primary human trophoblast cells mediated by toll-like receptor 4.

    PubMed

    Lager, Susanne; Gaccioli, Francesca; Ramirez, Vanessa I; Jones, Helen N; Jansson, Thomas; Powell, Theresa L

    2013-03-01

    Obese women have an increased risk to deliver large babies. However, the mechanisms underlying fetal overgrowth in these pregnancies are not well understood. Obese pregnant women typically have elevated circulating lipid levels. We tested the hypothesis that fatty acids stimulate placental amino acid transport, mediated via toll-like receptor 4 (TLR4) and mammalian target of rapamycin (mTOR) signaling pathways. Circulating NEFA levels and placental TLR4 expression were assessed in women with varying prepregnancy body mass index (BMI). The effects of oleic acid on system A and system L amino acid transport, and on the activation of the mTOR (4EBP1, S6K1, rpS6), TLR4 (IĸB, JNK, p38 MAPK), and STAT3 signaling pathways were determined in cultured primary human trophoblast cells. Maternal circulating NEFAs (n = 33), but not placental TLR4 mRNA expression (n = 16), correlated positively with BMI (P < 0.05). Oleic acid increased trophoblast JNK and STAT3 phosphorylation (P < 0.05), whereas mTOR activity was unaffected. Furthermore, oleic acid doubled trophoblast system A activity (P < 0.05), without affecting system L activity. siRNA-mediated silencing of TLR4 expression prevented the stimulatory effect of oleic acid on system A activity. Our data suggest that maternal fatty acids can increase placental nutrient transport via TLR4, thereby potentially affecting fetal growth.

  16. Cytotoxicity of sulfurous acid on cell membrane and bioactivity of Nitrosomonas europaea.

    PubMed

    Jiang, Ruiyu; Wang, Mingqing; Xue, Jianliang; Xu, Ning; Hou, Guihua; Zhang, Wubing

    2015-01-01

    Nitrosomonas europaea, an ammonia oxidizing bacterium, was chosen as a research model to study the alteration of cell membrane in the presence of sulfurous acid and biodegradation of acetochlor. Significant changes of the outer cell membrane were observed in the presence of sulfurous acid using scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. Lysozyme experiment show the cell becomes easily influenced by substance in medium. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) measurements show considerable amount of Ca(2+) and Mg(2+) in the supernatant from the sulfurous acid exposed cells. Sulfurous acid treatment enhanced the ability of N. europaea to degrade acetochlor. On this basis, it can be concluded that the increased cell permeability is favor for the absorbability of nutrition. As a result, N. europaea grows faster and the biodegradation efficiency was improved.

  17. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  18. Pseudolaric acid B activates autophagy in MCF-7 human breast cancer cells to prevent cell death

    PubMed Central

    YU, JINGHUA; CHEN, CHUNHAI; XU, TIANYANG; YAN, MINGHUI; XUE, BIANBIAN; WANG, YING; LIU, CHUNYU; ZHONG, TING; WANG, ZENGYAN; MENG, XIANYING; HU, DONGHUA; YU, XIAOFANG

    2016-01-01

    Pseudolaric acid B (PAB) has been demonstrated to exert antitumor effects in MCF-7 human breast cancer cells. The present study aimed to investigate the mechanism of resistance to PAB-induced cell death. Following incubation with 4 µM of PAB for 3 days, the majority of MCF-7 cells became senescent, while some retained the same morphology as control cells, as assessed using a senescence detection kit. Additionally, 36 h of treatment with 4 µM of PAB increased the positive staining of autophagy markers, as shown by monodansylcadaverine and acridine orange staining. Western blot analysis indicated that this treatment also increased expression of the autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3. Furthermore, treatment with PAB and the autophagy inhibitor 3-methyl adenine significantly decreased the ratio of autophagy, as assessed by flow cytometric analysis of monodansylcadaverine staining density (P<0.001), and increased the ratio of cell death, as assessed by MTT analysis (P<0.001). This indicated that autophagy promotes cell survival as a resistance mechanism to PAB treatment. Additionally, the present study demonstrated that PAB treatment did not affect the mitochondrial membrane potential, which may be related to autophagy. Increased Bcl-2 expression may explain why PAB did not affect the mitochondrial membrane potential. A Bcl-2 binding test demonstrated that PAB treatment inhibits the binding of Bcl-2 and Beclin-1, which may free Beclin-1 to participate in autophagy. Therefore, the present study demonstrated that autophagy may be activated by PAB treatment in human breast cancer MCF-7 cells, contributing to resistance to cell death. PMID:26998069

  19. Pseudolaric acid B activates autophagy in MCF-7 human breast cancer cells to prevent cell death.

    PubMed

    Yu, Jinghua; Chen, Chunhai; Xu, Tianyang; Yan, Minghui; Xue, Bianbian; Wang, Ying; Liu, Chunyu; Zhong, Ting; Wang, Zengyan; Meng, Xianying; Hu, Donghua; Yu, Xiaofang

    2016-03-01

    Pseudolaric acid B (PAB) has been demonstrated to exert antitumor effects in MCF-7 human breast cancer cells. The present study aimed to investigate the mechanism of resistance to PAB-induced cell death. Following incubation with 4 µM of PAB for 3 days, the majority of MCF-7 cells became senescent, while some retained the same morphology as control cells, as assessed using a senescence detection kit. Additionally, 36 h of treatment with 4 µM of PAB increased the positive staining of autophagy markers, as shown by monodansylcadaverine and acridine orange staining. Western blot analysis indicated that this treatment also increased expression of the autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3. Furthermore, treatment with PAB and the autophagy inhibitor 3-methyl adenine significantly decreased the ratio of autophagy, as assessed by flow cytometric analysis of monodansylcadaverine staining density (P<0.001), and increased the ratio of cell death, as assessed by MTT analysis (P<0.001). This indicated that autophagy promotes cell survival as a resistance mechanism to PAB treatment. Additionally, the present study demonstrated that PAB treatment did not affect the mitochondrial membrane potential, which may be related to autophagy. Increased Bcl-2 expression may explain why PAB did not affect the mitochondrial membrane potential. A Bcl-2 binding test demonstrated that PAB treatment inhibits the binding of Bcl-2 and Beclin-1, which may free Beclin-1 to participate in autophagy. Therefore, the present study demonstrated that autophagy may be activated by PAB treatment in human breast cancer MCF-7 cells, contributing to resistance to cell death.

  20. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    PubMed

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-07

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection.

  1. Induction of phenolsulfotransferase expression by phenolic acids in human hepatoma HepG2 cells.

    PubMed

    Yeh, Chi-Tai; Huang, Shang-Ming; Yen, Gow-Chin

    2005-06-15

    Phenolic acids are antioxidant phenolic compounds, widespread in plant foods, which contribute significant biological and pharmacological properties; some have demonstrated a remarkable ability to alter sulfate conjugation. However, the modulation mechanisms of antioxidant phenolic acids on phenolsulfotransferase activity have not yet been described. In the present study, the human hepatoma cell line, HepG2, was used as a model to investigate the effect of antioxidant phenolic acids on enzymatic activity and expression of one of the major phase II sulfate conjugation enzymes, P-form phenolsulfotransferase (PST-P). The results showed that gallic acid, gentisic acid, p-hydroxybenzoic acid, and p-coumaric acid increased PST-P activity, in a dose-dependent manner. A maximum of 4- and 5-fold induction of PST-P activity was observed for both gallic acid and gentisic acid; however, they showed an adverse effect on cell growth at higher concentrations. A 2- or 2.5-fold increase of PST-P activity was found with either p-coumaric or p-hydroxybenzoic acid treatment, whereas no significant effect was found for ferulic acid treatment. PST-P induction, by gallic acid, was further confirmed, using reverse transcription PCR and Western blotting techniques to measure mRNA expression and protein translation. A significant correlation (r = 0.74, p < 0.01) between the expressions of PST-P mRNA and the corresponding PST-P activity was observed. Thus, gallic acid increased PST-P protein expression in HepG2 cells, in a dose- and time-dependent manner. The results demonstrated that certain antioxidant phenolic acids could induce PST-P activity in HepG2 cells, by promoting PST-P mRNA and protein expression, suggesting a novel mechanism by which phenolic acids may be implicated in phase II sulfate conjugation.

  2. Fatty acid composition of the red blood cell membrane in relation to menopausal status.

    PubMed

    Tworek; Muti; Micheli; Krogh; Riboli; Berrino

    2000-10-01

    PURPOSE: Menopausal status effects female anatomical functioning at a variety of system-wide and cellular levels, including cellular membrane composition. This study analyzed a nested case-control ORDET data set of 433 pre and post-menopausal breast cancer controls to examine the effects of menopausal status on the fatty acid composition of the red blood cell membrane.METHODS: ORDET is a prospective cohort study conducted in Italy to investigate the etiologic role of hormones and diet in breast cancer development. The fatty acid composition was measured and analyzed by gas chromotography, comparing retention time with standard measurement. Twenty-two individual fatty acids were measured, recorded, and categorized into four fatty acid groups: saturated, monounsaturated, polyunsaturated n-6 (PUFA n-6), and polyunsaturated (PUFA n-3) fatty acids.RESULTS: Post-menopausal women had consistently lower mean values for all four fatty acid categories and all individual fatty acids. Statistically significant mean differences, by menopausal status, were observed for three of the four fatty acid categories: saturated fatty acids (p = 0.006), PUFA n-6 acids (p = 0.001), and PUFA n-3 acids (p = 0.000). The biggest statistically significant differences in mean values among individual fatty acids for each category were observed for Palmitic acid (p = 0.009), Oleic acid (p = 0.040), Linoleic acid (p = 0.000), and Docosahexaenoic acid (p = 0.000). Individual fatty acids were also less highly correlated among post-menopausal women.CONCLUSIONS: There was an observed relationship between menopausal status and the fatty acid composition of the red blood cell membrane that warrants further study. This relationship may contribute to the physiological and psychological changes that occur during and after menopause, and may have far-reaching implications for women's health.

  3. Okadaic Acid Toxin at Sublethal Dose Produced Cell Proliferation in Gastric and Colon Epithelial Cell Lines

    PubMed Central

    del Campo, Miguel; Toledo, Héctor; Lagos, Néstor

    2013-01-01

    The aim of this study was to analyze the effect of Okadaic Acid (OA) on the proliferation of gastric and colon epithelial cells, the main target tissues of the toxin. We hypothesized that OA, at sublethal doses, activates multiple signaling pathways, such as Erk and Akt, through the inhibition of PP2A. To demonstrate this, we carried out curves of doses and time response against OA in AGS, MKN-45 and Caco 2 cell lines, and found an increase in the cell proliferation at sublethal doses, at 24 h or 48 h exposure. Indeed, cells can withstand high concentrations of the toxin at 4 h exposure, the time chosen considering the maximum time before total gastric emptying. We have proved that this increased proliferation is due to an overexpression of Cyclin B, a cyclin that promotes the passage from G2 to mitosis. In addition, we have demonstrated that OA induces activation of Akt and Erk in the three cells lines, showing that OA can activate pathways involved in oncogenesis. In conclusion, this study contributes to the knowledge about the possible effects of chronic OA consumption. PMID:24317467

  4. Combined impact of pH and organic acids on iron uptake by Caco-2 cells.

    PubMed

    Salovaara, Susan; Sandberg, Ann-Sofie; Andlid, Thomas

    2003-12-17

    Previous studies have shown that organic acids have an impact on both Fe(II) and Fe(III) uptake in Caco-2 cell. However, to what extent this effect is correlated with the anion of organic acids per se, or with the resulting decrease in pH, has not yet been clarified. Therefore, we studied the effect of five organic acids (tartaric, succinic, citric, oxalic, and propionic acid) on the absorption of Fe(II) and Fe(III) in Caco-2 cells and compared this with sample solutions without organic acids but set to equivalent pH by HCl. The results showed that the mechanisms behind the enhancing effect of organic acids differed for the two forms of iron. For ferric iron the organic acids promoted uptake both by chelation and by lowering the pH, whereas for ferrous iron the promoting effect was caused only by the lowered pH.

  5. Uric Acid Promotes Osteogenic Differentiation and Inhibits Adipogenic Differentiation of Human Bone Mesenchymal Stem Cells.

    PubMed

    Li, Hui-Zhang; Chen, Zhi; Hou, Cang-Long; Tang, Yi-Xing; Wang, Fei; Fu, Qing-Ge

    2015-08-01

    To investigate the effect of uric acid on the osteogenic and adipogenic differentiation of human bone mesenchymal stem cells (hBMSCs). The hBMSCs were isolated from bone marrow of six healthy donors. Cell morphology was observed by microscopy and cell surface markers (CD44 and CD34) of hBMSCs were analyzed by immunofluorescence. Cell morphology and immunofluorescence analysis showed that hBMSCs were successfully isolated from bone marrow. The number of hBMSCs in uric acid groups was higher than that in the control group on day 3, 4, and 5. Alizarin red staining showed that number of calcium nodules in uric acid groups was more than that of the control group. Oil red-O staining showed that the number of red fat vacuoles decreased with the increased concentration of uric acid. In summary, uric acid could promote the proliferation and osteogenic differentiation of hBMSCs while inhibit adipogenic differentiation of hBMSCs.

  6. Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction.

    PubMed

    Wang, Jie; Cheng, Bo; Li, Jie; Zhang, Zhaoyue; Hong, Weiyao; Chen, Xing; Chen, Peng R

    2015-04-27

    We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium-mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N-(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell-surface glycans. This conversion chemically mimics the enzymatic de-N-acetylation of N-acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell-surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell-surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.

  7. Phytic acid protects porcine intestinal epithelial cells from deoxynivalenol (DON) cytotoxicity.

    PubMed

    Pacheco, Graziela Drociunas; Silva, Caio Abércio da; Pinton, Philippe; Oswald, Isabelle P; Bracarense, Ana Paula Frederico Rodrigues Loureiro

    2012-05-01

    The purpose of this study was to evaluate the effects of phytic acid (IP(6)) as a possible inhibitor of cellular damage induced by toxic substances such as mycotoxins on a porcine intestinal epithelial cell line (IPEC-1). We first observed that a dose of 5 mM phytic acid decreases cell viability and transepithelial electrical resistance (TEER) of cell monolayer. We next investigate the effect of non-cytotoxic dose of phytic acid on the deoxinivalenol (DON) induced decreased TEER. We showed that treatment with 0.5 mM or 1.0 mM phytic acid restores the decrease in TEER caused by 25 μM DON. In conclusion this study demonstrates that phytic acid decreased the negative effects of deoxynivalenol on the membrane integrity of the IPEC-1 intestinal epithelial cell line.

  8. Cholic acid functionalized star poly(DL-lactide) for promoting cell adhesion and proliferation.

    PubMed

    Fu, Hui-Li; Zou, Tao; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2007-01-01

    Cholic acid functionalized star poly(DL-lactide) was synthesized through the ring-opening polymerization of DL-lactide initiated by cholic acid. The properties and cell behaviour of the cholic acid functionalized star poly(DL-lactide) were investigated as compared with linear poly(DL-lactide)s with different molecular weights and a star poly(DL-lactide) initiated by glycerol. In comparison to linear poly(DL-lactide)s, the cholic acid functionalized star poly(DL-lactide) had better wettability and slightly higher surface energy. The cell adhesion and proliferation on different materials were evaluated using two types of cells, 3T3 mouse fibroblasts and ECV304 human endothelial cells. Compared with the linear poly(DL-lactide)s, the cholic acid functionalized star poly(DL-lactide) showed obviously improved property for cell adhesion. The cell proliferation on the cholic acid functionalized star poly(DL-lactide) was also enhanced. The improvement in cell proliferation was not so significant as compared with the improvement in cell adhesion. This modification strategy provides an effective and simple way to promote cell attachment and growth in tissue engineering.

  9. Amino-acid transporters in T-cell activation and differentiation.

    PubMed

    Ren, W; Liu, G; Yin, J; Tan, B; Wu, G; Bazer, F W; Peng, Y; Yin, Y

    2017-03-02

    T-cell-mediated immune responses aim to protect mammals against cancers and infections, and are also involved in the pathogenesis of various inflammatory or autoimmune diseases. Cellular uptake and the utilization of nutrients is closely related to the T-cell fate decision and function. Research in this area has yielded surprising findings in the importance of amino-acid transporters for T-cell development, homeostasis, activation, differentiation and memory. In this review, we present current information on amino-acid transporters, such as LAT1 (l-leucine transporter), ASCT2 (l-glutamine transporter) and GAT-1 (γ-aminobutyric acid transporter-1), which are critically important for mediating peripheral naive T-cell homeostasis, activation and differentiation, especially for Th1 and Th17 cells, and even memory T cells. Mechanically, the influence of amino-acid transporters on T-cell fate decision may largely depend on the mechanistic target of rapamycin complex 1 (mTORC1) signaling. These discoveries remarkably demonstrate the role of amino-acid transporters in T-cell fate determination, and strongly indicate that manipulation of the amino-acid transporter-mTORC1 axis could ameliorate many inflammatory or autoimmune diseases associated with T-cell-based immune responses.

  10. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites.

    PubMed

    Kumar, Mrinal Nishant; Gialleli, Angelika-Ioanna; Masson, Jean Bernard; Kandylis, Panagiotis; Bekatorou, Argyro; Koutinas, Athanasios A; Kanellaki, Maria

    2014-08-01

    Porous delignified cellulose (or tubular cellulose, abbr. TC) from Indian Mango (Mangifera indica) and Sal (Shorea robusta) wood and Rice husk, and TC/Ca-alginate/polylactic acid composites, were used as Lactobacillus bulgaricus immobilisation carriers leading to improvements in lactic acid fermentation of cheese whey and synthetic lactose media, compared to free cells. Specifically, shorter fermentation rates, higher lactic acid yields (g/g sugar utilised) and productivities (g/Ld), and higher amounts of volatile by-products were achieved, while no significant differences were observed on the performance of the different immobilised biocatalysts. The proposed biocatalysts are of food grade purity, cheap and easy to prepare, and they are attractive for bioprocess development based on immobilised cells. Such composite biocatalysts may be used for the co-immobilisation of different microorganisms or enzymes (in separate layers of the biocatalyst), to efficiently conduct different types of fermentations in the same bioreactor, avoiding inhibition problems of chemical or biological (competition) nature.

  11. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    PubMed

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors.

  12. Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration.

    PubMed

    McAuley, Erin M; Bradke, Tiffany A; Plopper, George E

    2011-01-01

    Previous studies from our lab have shown that both boric (BA) and phenylboronic- acid (PBA) inhibit the migration of prostate cancer cell lines, as well as non-tumorigenic prostate cells. Our results indicate that PBA is more potent than BA in targeting metastatic and proliferative properties of cancer cells. Here we focus on the impact of BA and PBA on Rho family of GTP-binding proteins and their downstream targets. Treatment with 1mM PBA and BA decreases activities of RhoA, Rac1, and Cdc42 in DU-145 metastatic prostate cancer cells, but not in normal RWPE-1 prostate cells. Furthermore, ROCKII activity and phosphorylation of myosin light chain kinase decrease as a result of either PBA or BA treatment in DU-145 cells, suggesting these compounds target actomyosin-based contractility.

  13. The effect of trinitrobenzene sulfonic acid on gut-derived smooth muscle cell arachidonic acid metabolism: role of endogenous prostanoids.

    PubMed

    Longo, W E; Smith, G S; Deshpande, Y; Reickenberg, C; Kaminski, D L

    1997-01-01

    The contribution of smooth muscle cells as a potential source of eicosanoid production during inflammatory states remains to be elucidated. We investigated the effect of trinitrobenzene sulfonic acid (TNB), a known pro-inflammatory agent, on jejunal smooth muscle cell eicosanoid production. Human gut-derived smooth muscle cells (HISM) were incubated with TNB for 1 hour. Additionally, some cells were preincubated with either dimethylthiourea, or indomethacin for 1 hour before exposure to identical concentrations of TNB. Incubation with TNB led to significant increases in PGE(2) and 6-keto PGF-1(alpha) release, but not leukotriene B(4) release; responses which were both inhibited by dimethylthiourea and indomethacin treatment. Our results suggest that gutderived smooth muscle cells may represent an important source of proinflammatory prostanoids but not leukotrienes during inflammatory states of the intestine. The inhibition of prostanoid activity by thiourea may be mediated by suppression of cyclooxygenase activity in this cell line.

  14. Inhibition of TNF-alpha induced cell death in human umbilical vein endothelial cells and Jurkat cells by protocatechuic acid.

    PubMed

    Zhou-Stache, J; Buettner, R; Artmann, G; Mittermayer, C; Bosserhoff, A K

    2002-11-01

    The Chinese herb radix Salviae miltiorrhizae (RSM) is used in traditional Chinese medicine as a treatment for cardiovascular and cerebrovascular diseases. Several components of the plant extract from salvia mitorrhiza bunge have been determined previously, one of which is protocatechuic acid (PAC). It has been found, in the study, that PAC inhibited TNF-alpha-induced cell death of human umbilical vein endothelial cells (HUVECs) and Jurkat cells in a concentration of 100 microM when applied 2 h prior to TNF-alpha exposure. Molecular studies revealed that PAC activated NF-kappaB with a maximum effect after 30 min of treatment. Inhibition of NF-kappaB action by MG132 and NF-kappaB inhibitory peptide suppressed the cell-protective effect of PAC. Further, degradation of IkBalpha occurred in response to PAC treatment. The results provide evidence that activation of NF-kappaB plays an important role in mediating the cell-protecting effect of PAC on HUVECs and Jurkat cells. Further studies are required to test whether PAC, a component of radix salviae miltiorrhizae, could be useful in preventing in vivo cell death resulting from cardiovascular or cerebrovascular diseases.

  15. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  16. High folic acid intake reduces natural killer cell cytotoxicity in aged mice.

    PubMed

    Sawaengsri, Hathairat; Wang, Junpeng; Reginaldo, Christina; Steluti, Josiane; Wu, Dayong; Meydani, Simin Nikbin; Selhub, Jacob; Paul, Ligi

    2016-04-01

    Presence of unmetabolized folic acid in plasma, which is indicative of folic acid intake beyond the metabolic capacity of the body, is associated with reduced natural killer (NK) cell cytotoxicity in postmenopausal women ≥50years. NK cells are cytotoxic lymphocytes that are part of the innate immune system critical for surveillance and defense against virus-infected and cancer cells. We determined if a high folic acid diet can result in reduced NK cell cytotoxicity in an aged mouse model. Female C57BL/6 mice (16-month-old) were fed an AIN-93M diet with the recommended daily allowance (1× RDA, control) or 20× RDA (high) folic acid for 3months. NK cytotoxicity was lower in splenocytes from mice fed a high folic acid diet when compared to mice on control diet (P<.04). The lower NK cell cytotoxicity in high folic acid fed mice could be due to their lower mature cytotoxic/naïve NK cell ratio (P=.03) when compared to the control mice. Splenocytes from mice on high folic acid diet produced less interleukin (IL)-10 when stimulated with lipopolysaccharide (P<.05). The difference in NK cell cytotoxicity between dietary groups was abolished when the splenocytes were supplemented with exogenous IL-10 prior to assessment of the NK cytotoxicity, suggesting that the reduced NK cell cytotoxicity of the high folic acid group was at least partially due to reduced IL-10 production. This study demonstrates a causal relationship between high folic acid intake and reduced NK cell cytotoxicity and provides some insights into the potential mechanisms behind this relationship.

  17. Collagen biomaterial doped with colominic acid for cell culture applications with regard to peripheral nerve repair.

    PubMed

    Bruns, Stephanie; Stark, Yvonne; Röker, Stefanie; Wieland, Martin; Dräger, Gerald; Kirschning, Andreas; Stahl, Frank; Kasper, Cornelia; Scheper, Thomas

    2007-09-15

    Colominic acid (CA) is a homopolymer of sialic acid residues and is solely composed of polymerised units of alpha-2,8-linked N-acetylneuraminic acid. CA is a specific derivative of polysialic acid (PSA), produced as the capsular polysaccharide of Escherichia coli K1 derived molecule of PSA. PSA in vivo plays a significant role in synaptic plasticity and neural development. The use of collagen materials doped with defined CA is presented for the cultivation of various cell lines relevant for possible applications in Tissue Engineering. First, the release behaviour under culture conditions of the collagen-based (C-CA) materials was investigated by thiobarbituric acid assay. Additionally, the established cell lines, PC-12 and immortalised Schwann cells (ISC), used for neurobiological and neurochemical studies and the model liver cell line Hep-G2 as indicator for biocompatibility testing, were cultured on the C-CA matrix. Cell proliferation (MTT-test) and cell adhesion (DAPI-staining) of the cell lines on the matrices were observed. Likewise, gene expression of the marker genes thyrosine hydroxylase for the PC-12 cells, and albumin, transferrin and CYP3A4 for the Hep-G2 cells was evaluated via RT-PCR. The results indicate that CA integration in established biomaterial constructs enhances cell proliferation and offers promising features as conduits additive in regarding peripheral nerve regeneration.

  18. Ursolic acid suppresses leptin-induced cell proliferation in rat vascular smooth muscle cells.

    PubMed

    Yu, Ya-Mei; Tsai, Chiang-Chin; Tzeng, Yu-Wen; Chang, Weng-Cheng; Chiang, Su-Yin; Lee, Ming-Fen

    2017-01-29

    Accumulating lines of evidence indicate that high leptin levels are associated with adverse cardiovascular health in obese individuals. Proatherogenic effects of leptin include endothelial cell activation, vascular smooth muscle cell proliferation and migration. Ursolic acid (UA) has been reported to exhibit multiple biological effects including antioxidant and anti-inflammatory properties. In this study, we investigated the effect of UA on leptin-induced biological responses in rat vascular smooth muscle cells (VSMCs). A-10 VSMCs were treated with leptin in the presence or absence of UA. Intracellular reactive oxygen species (ROS) was probed by 2',7'-dichlorofluorescein diacetate. The expression of extracellular signal-regulated kinase (ERK)1/2, phospho-(ERK)1/2, nuclear factor-kappa B (NF-κB) p65 and p50, and matrix metalloproteinase-2 (MMP2) was determined by Western blotting. Immunocytochemistry and confocal laser scanning microscopy were also used for the detection of NF-κB. The secretion of MMP2 was detected by gelatin zymography. UA exhibited antioxidant activities in vitro. In rat VSMCs, UA effectively inhibited cell growth and the activity of MMP2 induced by leptin. These suppressive effects appeared by decreasing the activation of (ERK)1/2, the nuclear expression and translocation of NF-κB, and the production of ROS. UA appeared to inhibit leptin-induced atherosclerosis, which may prevent the development of obesity-induced cardiovascular diseases.

  19. Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells.

    PubMed

    Bimczok, D; Kao, J Y; Zhang, M; Cochrun, S; Mannon, P; Peter, S; Wilcox, C M; Mönkemüller, K E; Harris, P R; Grams, J M; Stahl, R D; Smith, P D; Smythies, L E

    2015-05-01

    Despite the high prevalence of chronic gastritis caused by Helicobacter pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule retinol (ROL), and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of ROL synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric dendritic cells (DCs). Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation.

  20. Influence of Decenylsuccinic Acid on Water Permeability of Plant Cells 1

    PubMed Central

    Lee, O. Y.; Stadelmann, Ed. J.; Weiser, C. J.

    1972-01-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid × minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury. At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule × minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm × minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm × minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified. Images PMID:16658227

  1. Anti-inflammatory drugs and uterine cervical cancer cells: Antineoplastic effect of meclofenamic acid

    PubMed Central

    SORIANO-HERNANDEZ, ALEJANDRO D.; MADRIGAL-PÉREZ, DANIELA; GALVAN-SALAZAR, HECTOR R.; MARTINEZ-FIERRO, MARGARITA L.; VALDEZ-VELAZQUEZ, LAURA L.; ESPINOZA-GÓMEZ, FRANCISCO; VAZQUEZ-VUELVAS, OSCAR F.; OLMEDO-BUENROSTRO, BERTHA A.; GUZMAN-ESQUIVEL, JOSE; RODRIGUEZ-SANCHEZ, IRAM P.; LARA-ESQUEDA, AGUSTIN; MONTES-GALINDO, DANIEL A.; DELGADO-ENCISO, IVAN

    2015-01-01

    Uterine cervical cancer (UCC) is one of the main causes of cancer-associated mortality in women. Inflammation has been identified as an important component of this neoplasia; in this context, anti-inflammatory drugs represent possible prophylactic and/or therapeutic alternatives that require further investigation. Anti-inflammatory drugs are common and each one may exhibit a different antineoplastic effect. As a result, the present study investigated different anti-inflammatory models of UCC in vitro and in vivo. Celecoxib, sulindac, nimesulide, dexamethasone, meclofenamic acid, flufenamic acid and mefenamic acid were tested in UCC HeLa, VIPA, INBL and SiHa cell lines. The cytotoxicity of the drugs was evaluated in vitro. Celecoxib, sulindac, nimesulide, mefenamic acid and flufenamic acid presented with slight to moderate toxicity (10–40% of cell death corresponding to 100 µM) in certain cell lines, while meclofenamic acid exhibited significant cytotoxicity in all essayed cell lines (50–90% of cell death corresponding to 100 µM). The meclofenamic acid was tested in murine models (immunodeficient and immunocompetent) of UCC, which manifested a significant reduction in tumor growth and increased mouse survival. It was demonstrated that of the evaluated anti-inflammatory drugs, meclofenamic acid was the most cytotoxic, with a significant antitumor effect in murine models. Subsequent studies are necessary to evaluate the clinical utility of this drug. PMID:26622892

  2. Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells.

    PubMed

    Huang, Shang-Ming; Chuang, Hong-Chih; Wu, Chi-Hao; Yen, Gow-Chin

    2008-08-01

    In the process of glycation, methylglyoxal is a reactive dicarbonyl compound physiologically generated as an intermediate of glycolysis, and is found in high levels in blood or tissue of diabetic models. Biological glycation has been commonly implicated in the development of diabetic microvascular complications of neuropathy. Increasing evidence suggests that neuronal cell cycle regulatory failure followed by apoptosis is an important mechanism in the development of diabetic neuropathy complication. Naturally occurring antioxidants, especially phenolic acids have been recommended as the major bioactive compounds to prevent chronic diseases and promote health benefits. The objective of this study was to investigate the inhibitory abilities of phenolic acids (chlorogenic acid, syringic acid and vanillic acid) on methylglyoxal-induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis in the progression of diabetic neuropathy. The data indicated that methylglyoxal induced mouse Neuro-2A neuroblastoma (Neuro-2A) cell apoptosis via alternation of mitochondria membrane potential and Bax/Bcl-2 ratio, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase. Furthermore, the results demonstrated that activation of mitogen-activated protein kinase signal pathways (JNK and p38) participated in the methylglyoxal-induced Neuro-2A cell apoptosis process. Treatment of Neuro-2A cells with phenolic acids markedly suppresses cell apoptosis induced by methylglyoxal, suggesting that phenolic acids possess cytoprotective ability in the prevention of diabetic neuropathy complication.

  3. In vitro antimetastatic activity of koetjapic acid against breast cancer cells.

    PubMed

    Nassar, Zeyad D; Aisha, Abdalrahim F A; Al Suede, Fouad Saleih R; Abdul Majid, Aman Shah; Abdul Majid, Amin Malik Shah

    2012-01-01

    Breast cancer is the most common cancer in women, and it can metastasize very rapidly. Tumor metastasis is the primary cause of cancer deaths. In the present study, we investigated the capability of koetjapic acid, a natural triterpene, in the induction of apoptosis and the inhibition of metastasis in the breast cancer cell line (MCF 7). The effects of koetjapic acid against 4 steps of metastasis have been assessed, including cell survival, clonogenicity, migration and invasion. Koetjapic acid exhibited cytotoxic activity against MCF 7 cells with an IC(50) of 68.88±6.075 μg/mL. The mechanism of cell death was confirmed due to the induction of apoptosis machineries; early and late apoptosis-related changes were detected, including the stimulation of caspase 3/7 activities, apoptosis-related morphological changes such as membrane blebbing, chromatin condensation and DNA fragmentation. A mitochondrial apoptosis pathway was found to be involved in koetjapic acid-induced cell death induction. Moreover, at a sub-toxic dose (15 μg/mL), Koetjapic acid inhibited cell migration and invasion significantly. Finally, koetjapic acid inhibited the colony formation properties of MCF 7 significantly. These results indicate that koetjapic acid possesses significant antitumor and antimetastatic effects, and warrants further investigation.

  4. Induction of Cell Cycle Arrest and Apoptotic Response of Head and Neck Squamous Carcinoma Cells (Detroit 562) by Caffeic Acid and Caffeic Acid Phenethyl Ester Derivative

    PubMed Central

    Tanasiewicz, Marta

    2017-01-01

    Natural polyphenols have been observed to possess antiproliferative properties. The effects, including apoptotic potential of bioactive phenolic compounds, caffeic acid (CA) and its derivative caffeic acid phenethyl ester (CAPE), on cell proliferation and apoptosis in human head and neck squamous carcinoma cells (HNSCC) line (Detroit 562) were investigated and compared. Cancer cells apoptosis rates and cell cycle arrests were analysed by flow cytometry. Exposure to CA and CAPE was found to result in a dose-dependent decrease in the viability of Detroit 562 cells at different levels. CA/CAPE treatment did significantly affect the viability of Detroit 562 cells (MTT results). CAPE-mediated loss of viability occurred at lower doses and was more pronounced, with the concentrations which inhibit the growth of cells by 50% estimated at 201.43 μM (CA) and 83.25 μM (CAPE). Dead Cell Assay with Annexin V labelling demonstrated that CA and CAPE treatment of Detroit 562 cells resulted in an induction of apoptosis at 50 μM and 100 μM doses. The rise of mainly late apoptosis was observed for 100 μM dose and CA/CAPE treatment did affect the distribution of cells in G0/G1 phase. A combination of different phenolic compounds, potentially with chemotherapeutics, could be considered as an anticancer drug. PMID:28167973

  5. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  6. Granulosa cells and retinoic acid co-treatment enrich potential germ cells from manually selected Oct4-EGFP expressing human embryonic stem cells.

    PubMed

    Chen, Hsin-Fu; Jan, Pey-Shynan; Kuo, Hung-Chih; Wu, Fang-Chun; Lan, Chen-Wei; Huang, Mei-Chi; Chien, Chung-Liang; Ho, Hong-Nerng

    2014-09-01

    Differentiation of human embryonic stem (HES) cells to germ cells may become clinically useful in overcoming diseases related to germ-cell development. Niches were used to differentiate HES cell lines, NTU1 and H9 Oct4-enhanced green fluorescence protein (EGFP), including laminin, granulosa cell co-culture or conditioned medium, ovarian stromal cell co-culture or conditioned medium, retinoic acid, stem cell factor (SCF) and BMP4-BMP7-BMP8b treatment. Flow cytometry showed that granulosa cell co-culture (P < 0.001) or conditioned medium (P = 0.007) treatment for 14 days significantly increased the percentages of differentiated H9 Oct4-EGFP cells expressing early germ cell marker stage-specific embryonic antigen 1(SSEA1); sorted SSEA1[+] cells did not express higher levels of germ cell gene VASA and GDF9. Manually collected H9 Oct4-EGFP[+] cells expressed significantly higher levels of VASA (P = 0.005) and GDF9 (P = 0.001). H9 Oct4-EGFP[+] cells developed to ovarian follicle-like structures after culture for 28 days but with low efficiency. Unlike SCF and BMP4, retinoic acid co-treatment enhanced VASA, GDF9 and SCP3 expression. A protocol is recommended to enrich differentiated HES cells with germ-cell potential by culture with granulosa cells, conditioned medium or retinoic acid, manual selection of Oct4-EGFP[+] cells, and analysis of VASA, GDF9 expression, or both.

  7. Folic acid rivals methylenetetrahydrofolate reductase (MTHFR) gene-silencing effect on MEPM cell proliferation and apoptosis.

    PubMed

    Xiao, Wen-Lin; Wu, Min; Shi, Bing

    2006-11-01

    It's clear that environmental factors play a role in the aetiology of orofacial clefting (OFC) and an important area of future research will be to unravel interactions that occur between candidate genes and environmental factors during early development of the embryo. Periconceptional folic acid supplementation may reduce the risk of OFC. Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene reduce availability of 5-methylenetetrahydrofolate, the predominant circulating form of folic acid. To determine the effect of MTHFR gene mutation on murine embryonic palatal mesenchymal (MEPM) cells and the interaction with folic acid supplement, we used RNAi study in the primary cultures of MEPM cells. The cells of MTHFR gene silencing grew slower and the apoptosis cell number was more than the cells of control. Supplement with 20 microg/ml folic acid was the best to preventing teratogenic effect of MTHFR gene silencing. By flow cytometry analysis of cell cycle, results were shown that the MEPM cells were retarded in G(0)/G(1) after MTHFR gene silencing. While using 20 microg/ml folic acid supplements could make cell transit the G(1)/S restriction point and the cells growth was close to normal level.

  8. Preferential lectin binding of cancer cells upon sialic acid treatment under nutrient deprivation.

    PubMed

    Badr, Haitham A; Elsayed, Abdelaleim I; Ahmed, Hafiz; Dwek, Miriam V; Li, Chen-Zhong; Djansugurova, Leyla B

    2013-10-01

    The terminal monosaccharide of glycoconjugates on a eukaryotic cell surface is typically a sialic acid (Neu5Ac). Increased sialylation usually indicates progression and poor prognosis of most carcinomas. Here, we utilize two human mammary epithelial cell lines, HB4A (breast normal cells) and T47D (breast cancer cells), as a model system to demonstrate differential surface glycans when treated with sialic acid under nutrient deprivation. Under a starved condition, sialic acid treatment of both cells resulted in increased activities of α2→3/6 sialyltransferases as demonstrated by solid phase assay using lectin binding. However, a very strong Maackia amurensis agglutinin I (MAL-I) staining on the membrane of sialic acid-treated T47D cells was observed, indicating an increase of Neu5Acα2→3Gal on the cell surface. To our knowledge, this is a first report showing the utility of lectins, particularly MAL-I, as a means to discriminate between normal and cancer cells after sialic acid treatment under nutrient deprivation. This method is sensitive and allows selective detection of glycan sialylation on a cancer cell surface.

  9. Salicylic Acid Has Cell-Specific Effects on Tobacco mosaic virus Replication and Cell-to-Cell Movement1

    PubMed Central

    Murphy, Alex M.; Carr, John P.

    2002-01-01

    Tobacco mosaic virus (TMV) and Cucumber mosaic virus expressing green fluorescent protein (GFP) were used to probe the effects of salicylic acid (SA) on the cell biology of viral infection. Treatment of tobacco with SA restricted TMV.GFP to single-epidermal cell infection sites for at least 6 d post inoculation but did not affect infection sites of Cucumber mosaic virus expressing GFP. Microinjection experiments, using size-specific dextrans, showed that SA cannot inhibit TMV movement by decreasing the plasmodesmatal size exclusion limit. In SA-treated transgenic plants expressing TMV movement protein, TMV.GFP infection sites were larger, but they still consisted overwhelmingly of epidermal cells. TMV replication was strongly inhibited in mesophyll protoplasts isolated from SA-treated nontransgenic tobacco plants. Therefore, it appears that SA has distinct cell type-specific effects on virus replication and movement in the mesophyll and epidermal cell layers, respectively. Thus, SA can have fundamentally different effects on the same pathogen in different cell types. PMID:11842159

  10. Brown but not white adipose cells synthesize omega-3 docosahexaenoic acid in culture.

    PubMed

    Qin, Xia; Park, Hui Gyu; Zhang, Ji Yao; Lawrence, Peter; Liu, Guowen; Subramanian, Nivetha; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-01-01

    Adipose tissue is a complex endocrine organ which coordinates several crucial biological functions including fatty acid metabolism, glucose metabolism, energy homeostasis, and immune function. Brown adipose tissue (BAT) is most abundant in young infants during the brain growth spurt when demands for omega-3 docosahexaenoic acid (DHA, 22:6n-3) is greatest for brain structure. Our aim was to characterize relative biosynthesis of omega-3 long chain polyunsaturated fatty acids (LCPUFA) from precursors in cultured white (WAT) and brown (BAT) cells and study relevant gene expression. Mouse WAT and BAT cells were grown in regular DMEM media to confluence, and differentiation was induced. At days 0 and 8 cells were treated with albumin bound d5-18:3n-3 (d5-ALA) and analyzed 24h later. d5-ALA increased cellular eicosapentaenoic acid (EPA, 20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3) in undifferentiated BAT cells, whereas differentiated BAT cells accumulated 20:4n-3, EPA and DPA. DHA as a fraction of total omega-3 LCPUFA was greatest in differentiated BAT cells compared to undifferentiated cells. Undifferentiated WAT cells accumulated EPA, whereas differentiated cells accumulated DPA. WAT accumulated trace newly synthesized DHA. Zic1 a classical brown marker and Prdm16 a key driver of brown fat cell fate are expressed only in BAT cells. Ppargc1a is 15 fold higher in differentiated BAT cells. We conclude that in differentiated adipose cells accumulating fat, BAT cells but not WAT cells synthesize DHA, supporting the hypothesis that BAT is a net producer of DHA.

  11. Muramic acid, endotoxin, 3-hydroxy fatty acids, and ergosterol content explain monocyte and epithelial cell inflammatory responses to agricultural dusts.

    PubMed

    Poole, Jill A; Dooley, Gregory P; Saito, Rena; Burrell, Angela M; Bailey, Kristina L; Romberger, Debra J; Mehaffy, John; Reynolds, Stephen J

    2010-01-01

    In agricultural and other environments, inhalation of airborne microorganisms is linked to respiratory disease development. Bacterial endotoxins, peptidoglycans, and fungi are potential causative agents, but relative microbial characterization and inflammatory comparisons amongst agricultural dusts are not well described. The aim of this study was to determine the distribution of microbial endotoxin, 3-hydroxy fatty acids (3-OHFA), muramic acid, and ergosterol and evaluate inflammatory responses in human monocytes and bronchial epithelial cells with various dust samples. Settled surface dust was obtained from five environments: swine facility, dairy barn, grain elevator, domestic home (no pets), and domestic home with dog. Endotoxin concentration was determined by recombinant factor C (rFC). 3-OHFA, muramic acid, and ergosterol were measured using gas chromatography-mass spectrometry. Dust-induced inflammatory cytokine secretion in human monocytes and bronchial epithelial cells was evaluated. Endotoxin-independent dust-induced inflammatory responses were evaluated. Endotoxin and 3-OHFA levels were highest in agricultural dusts. Muramic acid, endotoxin, 3-OHFA, and ergosterol were detected in dusts samples. Muramic acid was highest in animal farming dusts. Ergosterol was most significant in grain elevator dust. Agricultural dusts induced monocyte tumor necrosis factor (TNF) alpha, interleukin (IL)-6, IL-8, and epithelial cell IL-6 and IL-8 secretion. Monocyte and epithelial IL-6 and IL-8 secretion was not dependent on endotoxin. House dust(s) induced monocyte TNFalpha, IL-6, and IL-8 secretion. Swine facility dust generally produced elevated responses compared to other dusts. Agricultural dusts are complex with significant microbial component contribution. Large animal farming dust(s)-induced inflammation is not entirely dependent on endotoxin. Addition of muramic acid to endotoxin in large animal farming environment monitoring is warranted.

  12. Mechanisms for stimulation of rat anterior pituitary cells by arginine and other amino acids.

    PubMed Central

    Villalobos, C; Núñez, L; García-Sancho, J

    1997-01-01

    1. Arginine and other amino acids are secretagogues for growth hormone and prolactin in the intact animal, but the mechanism of action is unclear. We have studied the effects of amino acids on cytosolic free calcium concentration ([Ca2+]i) in single rat anterior pituitary (AP) cells. Arginine elicited a large increase of [Ca2+]i) in about 40% of all the AP cells, suggesting that amino acids may modulate hormone secretion by acting directly on the pituitary. 2. Cell typing by immunofluorescence of the hormone the cells store showed that the arginine-sensitive cells are distributed uniformly within all the five AP cell types. The arginine-sensitive cells overlapped closely with the subpopulation of cells sensitive to thyrotrophin-releasing hormone. 3. Other cationic as well as several neutral (dipolar) amino acids had the same effect as arginine. The increase of [Ca2+]i was dependent on extracellular Ca2+ and blocked by dihydropyridine, suggesting that it is due to Ca2+ influx through L-type voltage-gated Ca2+ channels. The [Ca2+]i increase was also blocked by removal of extracellular Na+ but not by tetrodotoxin. The substrate specificity for stimulation of AP cells resembled closely that of the amino acid transport system B0+. We propose that electrogenic amino acid influx through this pathway depolarizes the plasma membrane with the subsequent activation of voltage-gated Ca2+ channels and Ca2+ entry. 4. Amino acids also stimulated prolactin secretion in vitro with a similar substrate specificity to that found for the [Ca2+]i increase. Existing data on the stimulation of secretion of other hormones by amino acids suggest that a similar mechanism could apply to other endocrine glands. PMID:9263921

  13. A disposable voltammetric cell for determining the titratable acidity in vinegar.

    PubMed

    Kotani, Akira; Miyaguchi, Yuji; Harada, Dai; Kusu, Fumiyo

    2003-11-01

    A disposable voltammetric cell using three pencil leads as working, reference, and counter electrodes was developed for determining the titratable acidity, i.e. the acid content in vinegar. The materials of the pencil leads were graphite-reinforcement carbons (GRCs). A voltammetric determination of acid was made by measuring the reduction prepeak current of 3,5-di-t-butyl-1,2-benzoquinone (DBBQ) due to the presence of acids in unbuffered solution. The potential stability of the pseudo-reference electrode of GRC was examined. The prepeak current was found to be proportional to the acetic acid concentration from 0.05 to 2.7 mM with a correlation coefficient of 0.999. The cell-to-cell reproducibility for 1 mM acetic acid was evaluated with ten individual disposable cells. The RSD of the prepeak current and the SD of the prepeak potential were 2.56% and 0.008, respectively. The titratable acidity in five vinegar samples was determined by voltammetry using disposable cells and compared with that of the titratable acidity determined by the conventional potentiometric titration method. We then observed the results by both methods, and found a correlation coefficient of 0.972. As such, the voltammetry using disposable-cell required only one thousandth the volume of a vinegar sample for the titration method. The disposable cell was superior to the conventional electrochemical cell, in terms of facility, environment-friendly, and economy, and thus a sensor using the present cell would be useful for routine work in the quality control of vinegar.

  14. A review on synthesis and characterization of solid acid materials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mohammad, Norsyahida; Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Loh, Kee Shyuan

    2016-08-01

    Solid acids emerged as an electrolyte material for application in fuel cells due to their high protonic conductivity and stability at high temperatures between 100 °C and 250 °C. This paper gives an overview of the different solid acid materials and their properties, such as high protonic conductivity and thermal stability, in relation to phase transitions and mechanisms of proton transport. Various solid acid synthesis methods including aqueous and dry mixing, electrospinning, sol-gel, impregnation and thin-film casting will be discussed, and the impact of synthesis methods on the properties of solid acids will be highlighted. The properties of solid acids synthesized as either single crystals and or polycrystalline powders were identified via X-ray diffraction, nuclear magnetic resonance, thermal analyses, optical microscopy and infrared spectroscopy. A selection of electrolyte-electrode assembly methods and the performance of solid acid fuel cell prototypes are also reviewed.

  15. Valproic Acid Increases the Hepatic Differentiation Potential of Salivary Gland Cells

    PubMed Central

    Petrakova, O. S.; Ashapkin, V. V.; Shtratnikova, V. Y.; Kutueva, L. I.; Vorotelyak, E. A.; Borisov, M. A.; Terskikh, V. V.; Gvazava, I. G.; Vasiliev, A. V.

    2015-01-01

    The studies of cell plasticity and differentiation abilities are important problems in modern cellular biology. The use of histone deacetylase inhibitor - valproic acid is a promising approach to increasing the differentiation efficiency of various cell types. In this paper we investigate the ability of mouse submandibular salivary gland cells to differentiate into the hepatic direction and the effect of valproic acid on the efficiency of this differentiation. It was shown that the gene expression levels of hepatocyte markers (Aat, Afp, G6p, Pepck, Tat, Cyp3a13) and liver-enriched transcription factors (Hnf-3α, Hnf-3β, Hnf-4α, Hnf-6) were increased after differentiation in salivary gland cells. Valproic acid increases the specificity of hepatic differentiation, reducing the expression levels of the ductal (Krt19, Hhex1, Cyp7a1) and acinar (Ptf1a) markers. After valproic acid exposure, the efficiency of hepatic differentiation also increases, as evidenced by the increase in the gene expression level of Alb and Tdo, and increase in urea production by differentiated cells. No change was found in DNA methylation of the promoter regions of the genes; however, valproic acid treatment and subsequent hepatic differentiation largely affected the histone H3 methylation of liver-enriched genes. Thus, mouse submandibular salivary gland cells are capable of effective differentiation in the hepatic direction. Valproic acid increases the specificity and efficiency of the hepatic differentiation of these cells. PMID:26798494

  16. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    PubMed

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources.

  17. Profiling transcriptomes of human SH-SY5Y neuroblastoma cells exposed to maleic acid

    PubMed Central

    Wang, Chia-Chi; Lin, Yin-Chi; Cheng, Yin-Hua

    2017-01-01

    Background Maleic acid is a multi-functional chemical widely used in the field of industrial chemistry for producing food additives and food contact materials. As maleic acid may contaminate food by the release from food packages or intentional addition, it raises the concern about the effects of excessive dietary exposure to maleic acid on human health. However, the influence of maleic acid on human health has not been thoroughly studied. In silico toxicogenomics approaches have found the association between maleic acid and nervous system disease in human. The aim of this study is to experimentally explore the effects of maleic acid on human neuronal cells. Methods A microarray-based transcriptome profiling was performed to offer a better understanding of the effects of maleic acid on human health. Gene expression profiles of human neuroblastoma SH-SY5Y cells exposed to three concentrations of maleic acid (10, 50, and 100 μM) for 24 h were analyzed. Genes which were differentially expressed in dose-dependent manners were identified and further analyzed with an enrichment analysis. The expression profile of selected genes related to the inferred functional changes was validated using quantitative polymerase chain reaction (qPCR). Specific fluorescence probes were applied to observe the inferred functional changes in maleic acid-treated neuronal cells. Results A total of 316 differentially expressed genes (141 upregulated and 175 downregulated) were identified in response to the treatment of maleic acid. The enrichment analysis showed that DNA binding and metal ion binding were the significant molecular functions (MFs) of the neuronal cells affected by maleic acid. Maleic acid exposure decreased the expression of genes associated with calcium and thiol levels of the cells in a dose-dependent manner. The levels of intracellular calcium and thiol levels were also affected by maleic acid dose-dependent. Discussion The exposure to maleic acid is found to decrease the

  18. Mechanisms of endothelial cell protection by hydroxycinnamic acids.

    PubMed

    Fuentes, Eduardo; Palomo, Iván

    2014-12-01

    An endothelial dysfunction generates a proatherogenic environment characterized by stimulating thrombus formation. Epidemiological studies have provided evidence of a protective role of healthy diets in the prevention of cardiovascular diseases. Hydroxycinnamic acids constitute abundant polyphenols in our diets as they are present in high levels in many widely consumed foods, such as fruit, vegetables and beverages. Therefore, it can be established that due to the hydroxycinnamic acid content (caffeic, chlorogenic, feluric and p-coumaric acids), fruit, vegetables and beverages contribute to endothelial protection (attenuates oxidative stress, improved nitric oxide bioavailability and decreased E-selectin, ICAM-1 and VCAM-1 expression, among others). In this article, we systematically examine the mechanisms of endothelium protection of hydroxycinnamic acids.

  19. Fatty acid composition, cell morphology and responses to challenge by organic acid and sodium chloride of heat-shocked Vibrio parahaemolyticus.

    PubMed

    Chiang, Ming-Lun; Yu, Roch-Chui; Chou, Cheng-Chun

    2005-10-15

    Vibrio parahaemolyticus 690, a clinical strain, was subjected to heat shock at 42 degrees C for 45 min. The fatty acid profile and recovery of the heat-shocked cells of V. parahaemolyticus on TSA-3.0% NaCl, APS agar (Alkaline peptone salt broth supplemented with 1.5% agar) and TCBS (Thiosulfate-citrate-bile salts-sucrose agar) were compared with those of the nonheat-shocked cells. Furthermore, the morphology of V. parahaemolyticus and survival in the presence of various organic acids (25 mM acetic acid, lactic acid, citric acid or tartaric acid) and NaCl (0.1% and 20.0%) as influenced by heat shock treatment were also investigated. It was found that heat shock caused a change in the proportions of the unsaturated and saturated fatty acid. The ratio of saturated fatty acids to unsaturated fatty acids observed on heat-shocked V. parahaemolyticus cells was significantly (p<0.05) higher than that on the control cells. Extensive cell-wall pitting and cell disruption, representing cell-surface damage, were also observed on the cells which were subjected to heat shock treatment. Recovery of heat-shocked cells of V. parahaemolyticus was significantly less on TCBS and APS agar than on TSA-3.0% NaCl. Heat shock decreased the tolerance of V. parahaemolyticus to organic acids. The extent of decreased acid tolerance observed on heat-shocked cells varied with the organic acid tested. While heat shock increased the survival of V. parahaemolyticus in the presence of 0.1% NaCl and made the test organism more susceptible to 20.0% NaCl than the control cells.

  20. Chemical and biological characterization of cinnamic acid derivatives from cell cultures of lavender (Lavandula officinalis) induced by stress and jasmonic acid.

    PubMed

    Nitzsche, Astrid; Tokalov, Sergey V; Gutzeit, Herwig O; Ludwig-Müller, Jutta

    2004-05-19

    Cell cultures of lavender (Lavandula officinalis) were analyzed for the metabolite profile under normal growth conditions and under stress as well as after jasmonic acid treatment. The main compound synthesized was rosmarinic acid, which was also secreted into the culture medium. Different solvent extraction methods at different pH values altered the profile slightly. Anoxic stress induced the synthesis of a cinnamic acid derivative, which was identified as caffeic acid by gas chromatography-mass spectrometry. Caffeic acid was also induced after treatment of the cell cultures with jasmonic acid. Although the antioxidative activity of both compounds, rosmarinic acid and caffeic acid, was confirmed in an assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH), it was demonstrated that both substances have a low cytotoxic potential in vitro using acute myeloid leukemia (HL-60) cells. The potential of the system for finding new bioactive compounds is discussed.

  1. Migration of Co-cultured Endothelial Cells and Osteoblasts in Composite Hydroxyapatite/Polylactic Acid Scaffolds

    DTIC Science & Technology

    2011-07-16

    Migration of Co-cultured Endothelial Cells and Osteoblasts in Composite Hydroxyapatite/ Polylactic Acid Scaffolds AMITA R. SHAH,1,2,3 SARITA R. SHAH,2...bone. A scaffold design consisting of a hydroxy apatite (HA) ring surrounding a polylactic acid (PLA) core simulates the structure of bone and provides...and osteoblasts in composite hydroxyapatite/ polylactic acid scaffolds. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  2. Omega-3 polyunsaturated fatty acids accelerate airway repair by activating FFA4 in club cells.

    PubMed

    Lee, Kyoung-Pil; Park, Soo-Jin; Kang, Saeromi; Koh, Jung-Min; Sato, Koichi; Chung, Hae Young; Okajima, Fumikazu; Im, Dong-Soon

    2017-03-17

    A GPCR named FFA4 (also known as GPR120) was found to act as a GPCR for omega-3 polyunsaturated fatty acids. Its expression has been reported in lung epithelial club cells. The authors investigated whether supplementation of the omega-3 fatty acids benefits lung health. Omacor® (7.75 mg kg-1), clinically prescribed preparation of omega-3 fatty acids and FFA4-knockout mice were utilized in a naphthalene-induced mouse model of acute airway injury (one injection of 30 mg kg-1, i.p.). Naphthalene injection induced complete destruction of bronchiolar epithelial cells within a day. Appearance of bronchiolar epithelial cells was observed after 21 days in control mice. It was found, however, that supplementation of omacor accelerated the recovery. The appearance of bronchiolar epithelial cells was observed between 7 and 14 days after naphthalene injury in omacor-treated mice. In isolated club cells, omega-3 fatty acids were found to stimulate cell proliferation and migration but to inhibit cell differentiation. Using pharmacological tools and FFA4-knockout mice, FFA4 was found to be responsible for omega-3 fatty acids-induced proliferation in vitro in club cells. Furthermore, accelerated recovery from naphthalene-induced airway injury in omacor-treated mice was not observed in FFA4-knockout mice in vivo. Present findings indicate that omega-3 fatty acids-induced proliferation of bronchiole epithelial cells through FFA4 is responsible for omacor-induced accelerated recovery from airway injury. Therefore, intermittent administration of omacor needs to be tested for acute airway injury, because omega-3 fatty acids stimulate proliferation but inhibits differentiation of club cells.

  3. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  4. Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival

    PubMed Central

    Villa, Stephanie R.; Priyadarshini, Medha; Fuller, Miles H.; Bhardwaj, Tanya; Brodsky, Michael R.; Angueira, Anthony R.; Mosser, Rockann E.; Carboneau, Bethany A.; Tersey, Sarah A.; Mancebo, Helena; Gilchrist, Annette; Mirmira, Raghavendra G.; Gannon, Maureen; Layden, Brian T.

    2016-01-01

    The regulation of pancreatic β cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of β cell function, including regulation of β cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of β cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote β cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a β cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of β cell function. Here, we set out to explore what role FFA2 may play in regulation of β cell mass. Interestingly, Ffar2−/− mice exhibit diminished β cell mass at birth and throughout adulthood, and increased β cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of β cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased β cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate β cell growth and proliferation. PMID:27324831

  5. Vascular lipoxygenase activity: synthesis of 15-hydroxyeicosatetraenoic acid from arachidonic acid by blood vessels and cultured vascular endothelial cells.

    PubMed

    Takayama, H; Gimbrone, M A; Schafer, A I

    1987-03-15

    Although indirect pharmacologic evidence has suggested the presence of a lipoxygenase pathway of arachidonic acid (AA) metabolism in blood vessels, direct biochemical evidence has been difficult to demonstrate. We have investigated lipoxygenase metabolism in both fresh vessel preparations and cultured vascular cells from various sources and species. Lipoxygenase-derived [3H] HETE (composed of 12-HETE, 15-HETE and 5-HETE), which was abolished by ETYA but not by aspirin, was formed when [3H]AA was incubated with fresh sections of rat aorta. Lipoxygenase activity was lost following deendothelialization. A single peak of [3H] 15-HETE was produced by cultured bovine aortic and human umbilical vein endothelial cells (EC) in response to exogenous [3H]AA or from [3H]AA released by ionophore A23187 from endogenous EC membrane phospholipid pools. Cultured bovine, rabbit or rat aorta smooth muscle cells had no detectable 15-lipoxygenase activity. [14C] Linoleic acid was converted by EC to its 15-lipoxygenase metabolite, [14C] 13-hydroxyoctadecadienoic acid. These results indicate that blood vessels from different sources and species have a 15-lipoxygenase system, and this activity resides predominantly in the endothelial cells.

  6. Red blood cell fatty acid composition and the metabolic syndrome: NHLBI GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different fatty acids may vary in their effect on the metabolic syndrome (MetS). We tested whether fatty acid classes measured in red blood cells (RBC) are associated with the MetS or its components. Included were men (n=497, 49+/-16 y) and women (n=539, 48+/-16 y) from 187 families in the Genetics ...

  7. Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability.

    PubMed

    Bradke, Tiffany M; Hall, Casey; Carper, Stephen W; Plopper, George E

    2008-01-01

    We compared the in vitro effect of boric acid (BA) versus phenylboronic acid (PBA) on the migration of prostate and breast cancer cell lines and non-tumorigenic cells from the same tissues. Treatment at 24 hours with BA (< or =500 microM) did not inhibit chemotaxis on fibronectin in any cell line. However, treatment over the same time course with concentrations of PBA as low as 1 muM significantly inhibited cancer cell migration without effecting non-tumorigenic cell lines. The compounds did not affect cell adhesion or viability at 24 hours but did alter morphology; both decreased cancer cell viability at eight days. These results suggest that PBA is more potent than BA in targeting the metastatic and proliferative properties of cancer cells.

  8. Pinolenic Acid Downregulates Lipid Anabolic Pathway in HepG2 Cells.

    PubMed

    Lee, Ah Ron; Han, Sung Nim

    2016-07-01

    Pine nut oil (PNO) was reported to reduce lipid accumulation in the liver. However, the specific effect of pinolenic acid (18:3, all-cis-Δ5,9,12), a unique component of PNO, on lipid metabolism has not been studied. We hypothesized that pinolenic acid downregulates the lipid anabolic pathway in HepG2 cells. HepG2 cells were incubated in serum-free medium supplemented with 50 μM bovine serum albumin (BSA), palmitic acid, oleic acid, γ-linolenic acid, pinolenic acid, eicosapentaenoic acid (EPA), or α-linolenic acid for 24 h. Lipid accumulation was determined by Oil Red O (ORO) staining. The mRNA levels of genes related to fatty acid biosynthesis (SREBP1c, FAS, SCD1, and ACC1), fatty acid oxidation (ACC2, PPARα, CPT1A, and ACADL), cholesterol synthesis (SREBP2 and HMGCR), and lipoprotein uptake (LDLr) and of genes that may be involved in the downregulation of the lipogenic pathway (ACSL3, ACSL4, and ACSL5) were determined by qPCR. LDLR protein levels were measured by Western blot analysis. The mRNA levels of SREBP1c, FAS, and SCD1 were significantly downregulated by pinolenic acid treatment compared to BSA control (53, 54, and 38 % lower, respectively). In addition, the mRNA levels of HMGCR, ACSL3, and LDLr were significantly lower (30, 30, and 43 % lower, respectively), and ACSL4 tended to be lower in the pinolenic acid group (20 % lower, P = 0.082) relative to the control group. In conclusion, pinolenic acid downregulated the lipid anabolic pathway in HepG2 cells by reducing expression of genes related to lipid synthesis, lipoprotein uptake, and the regulation of the lipogenic pathway.

  9. 5-aminolevulinic acid-mediated photodynamic therapy on Hep-2 and MCF-7c3 cells.

    PubMed

    Alvarez, María Gabriela; Lacelli, M S; Rivarola, Viviana; Batlle, Alcira; Fukuda, Haydée

    2007-01-01

    The cytotoxic effect of 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PPIX) on two human carcinoma cell lines, MCF-7c3 cells and Hep 2 cells, was studied. In both cell lines, PPIX content depends on the ALA concentration and incubation time. The maximal PPIX content was higher in the MCF-7c3 cells, reaching a value of 8 microg/10(6) cells, compared to the Hep-2 cells, which accumulated 3.2 microg/10(6) cells. Treatment of cells with the iron chelator desferrioxamine prior to ALA exposure enhances the amount of PPIX, consequently diminishing enzymatic activity of ferroquelatase. Photo sensitization of the cells was in correlation with the PPIX content; therefore, conditions leading to 80% cell death in the MCF-7c3 cells provoke a 50% cell death in the Hep 2 cells. Using fluorescence microscopy, cell morphology was analyzed after incubation with 1 mM ALA during 5 hr and irradiation with 54 Jcm(-2); 24 hr post-PDT, MCF-7c3 cells revealed the typical morphological changes of necrosis. Under the same conditions, Hep-2 cells produced chromatine fragmentation characteristic of apoptosis. PPIX accumulation was observed to occur in a perinuclear region in the MCF-7c3 cells; while in Hep-2 cells, it was localized in lysosomes. Different mechanisms of cell death were observed in both cell lines, depending on the different intracellular localization of PPIX.

  10. EAAT3 promotes amino acid transport and proliferation of porcine intestinal epithelial cells.

    PubMed

    Ye, Jin-Ling; Gao, Chun-Qi; Li, Xiang-Guang; Jin, Cheng-Long; Wang, Dan; Shu, Gang; Wang, Wen-Ce; Kong, Xiang-Feng; Yao, Kang; Yan, Hui-Chao; Wang, Xiu-Qi

    2016-06-21

    Excitatory amino acid transporter 3 (EAAT3, encoded by SLC1A1) is an epithelial type high-affinity anionic amino acid transporter, and glutamate is the major oxidative fuel for intestinal epithelial cells. This study investigated the effects of EAAT3 on amino acid transport and cell proliferation through activation of the mammalian target of the rapamycin (mTOR) pathway in porcine jejunal epithelial cells (IPEC-J2). Anionic amino acid and cystine (Cys) transport were increased (P<0.05) by EAAT3 overexpression and decreased (P<0.05) by EAAT3 knockdown rather than other amino acids. MTT and cell counting assays suggested that IPEC-J2 cell proliferation increased (P<0.05) with EAAT3 overexpression. Phosphorylation of mTOR (Ser2448), ribosomal protein S6 kinase-1 (S6K1, Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1, Thr70) was increased by EAAT3 overexpression and decreased by EAAT3 knockdown (P<0.05), as were levels of activating transcription factor 4 (ATF4) and cystine/glutamate antiporter (xCT) (P<0.05). Our results demonstrate for the first time that EAAT3 facilitates anionic amino acid transport and activates the mTOR pathway, promoting Cys transport and IPEC-J2 cell proliferation.

  11. EAAT3 promotes amino acid transport and proliferation of porcine intestinal epithelial cells

    PubMed Central

    Jin, Cheng-long; Wang, Dan; Shu, Gang; Wang, Wen-ce; Kong, Xiang-feng; Yao, Kang; Yan, Hui-chao; Wang, Xiu-qi

    2016-01-01

    Excitatory amino acid transporter 3 (EAAT3, encoded by SLC1A1) is an epithelial type high-affinity anionic amino acid transporter, and glutamate is the major oxidative fuel for intestinal epithelial cells. This study investigated the effects of EAAT3 on amino acid transport and cell proliferation through activation of the mammalian target of the rapamycin (mTOR) pathway in porcine jejunal epithelial cells (IPEC-J2). Anionic amino acid and cystine (Cys) transport were increased (P<0.05) by EAAT3 overexpression and decreased (P<0.05) by EAAT3 knockdown rather than other amino acids. MTT and cell counting assays suggested that IPEC-J2 cell proliferation increased (P<0.05) with EAAT3 overexpression. Phosphorylation of mTOR (Ser2448), ribosomal protein S6 kinase-1 (S6K1, Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1, Thr70) was increased by EAAT3 overexpression and decreased by EAAT3 knockdown (P<0.05), as were levels of activating transcription factor 4 (ATF4) and cystine/glutamate antiporter (xCT) (P<0.05). Our results demonstrate for the first time that EAAT3 facilitates anionic amino acid transport and activates the mTOR pathway, promoting Cys transport and IPEC-J2 cell proliferation. PMID:27231847

  12. Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer.

    PubMed Central

    Baró, L.; Hermoso, J. C.; Núñez, M. C.; Jiménez-Rios, J. A.; Gil, A.

    1998-01-01

    We evaluated total plasma fatty acid concentrations and percentages, and the fatty acid profiles for the different plasma lipid fractions and red blood cell lipids, in 17 patients with untreated colorectal cancer and 12 age-matched controls with no malignant diseases, from the same geographical area. Cancer patients had significantly lower total plasma concentrations of saturated, monounsaturated and essential fatty acids and their polyunsaturated derivatives than healthy controls; when the values were expressed as relative percentages, cancer patients had significantly higher proportions of oleic acid and lower levels of linoleic acid than controls. With regard to lipid fractions, cancer patients had higher proportions of oleic acid in plasma phospholipids, triglycerides and cholesterol esters, and lower percentages of linoleic acid and its derivatives. On the other hand, alpha-linolenic acid was significantly lower in triglycerides from cancer patients and tended to be lower in phospholipids. Its derivatives also tended to be lower in phospholipids and triglycerides from cancer patients. Our findings suggest that colorectal cancer patients present abnormalities in plasma and red blood cell fatty acid profiles characterized by lower amounts of most saturated, monounsaturated and essential fatty acids and their polyunsaturated derivatives, especially members of the n-6 series, than their healthy age-matched counterparts. These changes are probably due to metabolic changes caused by the illness per se but not to malnutrition. PMID:9667678

  13. Mathematical models of antisickling activities of benzoic acid derivatives on red blood cells of sicklers.

    PubMed

    Fasanmade, A A; Olaniyi, A A; Ab-Yisak, W

    1994-12-01

    A classical drug design technique based on the quantitative structure--activity relationship is applied to a series of synthetic benzoic acid derivatives. Some of the active derivatives tested include; p-toluic acid, p-dimethyl-amino benzoic acid, p-fluorobenzoic acid, p-chlorobenzoic acid, m-chlorobenzoic acid, p-bromobenzoic acid, p-nitrobenzoic acid, and p-iodobenzoic acid. The Hansch lipophilicity, pi, and the Hammett electronic parameters; sigma, were found to predict activities of the agents on the reversal of sickle-shaped deoxygenated sickle red blood cell to normal morphology. A series of equations correlating the biological activities with the structure of the tested compounds were analysed using multiple regression techniques. The most applicable of the equations was found to be; Log BR = -A sigma + B pi--C pi 2 + K Interpretation of this equation in terms of the biological action of the drugs on red blood cells was attempted. In designing a potent antisickling agent, the benzoic acid should have strong electron donating group(s) attached to the benzene ring and should be made averagely lipophilic to satisfy the relationship derived in this study.

  14. Synthesis of Nucleic Acid and Protein in L Cells Infected with the Agent of Meningopneumonitis

    PubMed Central

    Schechter, Esther M.

    1966-01-01

    Schechter, Esther M. (The University of Chicago, Chicago, Ill.). Synthesis of nucleic acid and protein in L cells infected with the agent of meningopneumonitis. J. Bacteriol. 91:2069–2080. 1966.—Synthesis of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein in uninfected L cells and in L cells infected with the meningopneumonitis agent was compared by measuring rates of incorporation of H3-cytidine and C14-lysine into nuclear, cytoplasmic, and agent fractions in successive 5-hr periods during the meningopneumonitis growth cycle. Synthesis of meningopneumonitis DNA, RNA, and protein was first clearly evident in the labeling period 15 to 20 hr after infection, soon after initiation of agent multiplication. The rates of synthesis of agent DNA, RNA, and protein increased logarithmically for a brief period and then declined. However, rates of isotope incorporation into all three meningopneumonitis macromolecules were sustained at near maximal values throughout the remainder of the meningopneumonitis growth cycle. These data are most readily interpreted in terms of multiplication of the meningopneumonitis agent by binary fission. The L cell response to infection was a decreased rate of DNA and RNA synthesis and an accelerated rate of cell death. Host protein synthesis was unaffected. The inhibition of nucleic acid synthesis in infected L cells probably involved competition between host and parasite for nucleic acid precursors. Different sublines of L cells varied greatly in the degree to which their nucleic acid-synthesizing mechanisms were damaged by infection. The cytoplasm of infected L cells contained newly synthesized DNA and RNA that could not be accounted for as intact meningopneumonitis cells. This nucleic acid probably arose from disintegration of the fragile intracellular forms of the meningopneumonitis agent. Images PMID:5937251

  15. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis.

    PubMed

    Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Liu, Long; Chen, Jian

    2014-01-01

    The goal of this work was to develop an immobilized whole-cell biocatalytic process for the environment-friendly synthesis of α-ketoglutaric acid (α-KG) from l-glutamic acid. We compared the suitability of Escherichia coli and Bacillus subtilis strains overexpressing Proteus mirabilisl-amino acid deaminase (l-AAD) as potential biocatalysts. Although both recombinant strains were biocatalytically active, the performance of B. subtilis was superior to that of E. coli. With l-glutamic acid as the substrate, α-KG production levels by membranes isolated from B. subtilis and E. coli were 55.3±1.73 and 21.7±0.39μg/mg protein/min, respectively. The maximal conversion ratio of l-glutamic acid to α-KG was 31% (w/w) under the following optimal conditions: 15g/L l-glutamic acid, 20g/L whole-cell biocatalyst, 5mM MgCl2, 40°C, pH 8.0, and 24-h incubation. Immobilization of whole cells with alginate increased the recyclability by an average of 23.33% per cycle. This work established an efficient one-step biotransformation process for the production of α-KG using immobilized whole B. subtilis overexpressing P. mirabilisl-AAD. Compared with traditional multistep chemical synthesis, the biocatalytic process described here has the advantage of reducing environmental pollution and thus has great potential for the large-scale production of α-KG.

  16. Acid base activity of live bacteria: Implications for quantifying cell wall charge

    NASA Astrophysics Data System (ADS)

    Claessens, Jacqueline; van Lith, Yvonne; Laverman, Anniet M.; Van Cappellen, Philippe

    2006-01-01

    To distinguish the buffering capacity associated with functional groups in the cell wall from that resulting from metabolic processes, base or acid consumption by live and dead cells of the Gram-negative bacterium Shewanella putrefaciens was measured in a pH stat system. Live cells exhibited fast consumption of acid (pH 4) or base (pH 7, 8, 9, and 10) during the first few minutes of the experiments. At pH 5.5, no acid or base was required to maintain the initial pH constant. The initial amounts of acid or base consumed by the live cells at pH 4, 8, and 10 were of comparable magnitudes as those neutralized at the same pHs by intact cells killed by exposure to gamma radiation or ethanol. Cells disrupted in a French press required higher amounts of acid or base, due to additional buffering by intracellular constituents. At pH 4, acid neutralization by suspensions of live cells stopped after 50 min, because of loss of viability. In contrast, under neutral and alkaline conditions, base consumption continued for the entire duration of the experiments (5 h). This long-term base neutralization was, at least partly, due to active respiration by the cells, as indicated by the build-up of succinate in solution. Qualitatively, the acid-base activity of live cells of the Gram-positive bacterium Bacillus subtilis resembled that of S. putrefaciens. The pH-dependent charging of ionizable functional groups in the cell walls of the live bacteria was estimated from the initial amounts of acid or base consumed in the pH stat experiments. From pH 4 to 10, the cell wall charge increased from near-zero values to about -4 × 10 -16 mol cell -1 and -6.5 × 10 -16 mol cell -1 for S. putrefaciens and B. subtilis, respectively. The similar cell wall charging of the two bacterial strains is consistent with the inferred low contribution of lipopolysaccharides to the buffering capacity of the Gram-negative cell wall (of the order of 10%).

  17. Polyunsaturated fatty acid enrichment enhances endothelial cell-induced low-density-lipoprotein peroxidation.

    PubMed Central

    Mazière, C; Dantin, F; Conte, M A; Degonville, J; Ali, D; Dubois, F; Mazière, J C

    1998-01-01

    Oxidative modification of low-density lipoprotein (LDL) is an important feature in the initiation and progression of atherosclerosis. LDL modification by endothelial cells was studied after supplementation of the cells with oleic acid and polyunsaturated fatty acids (PUFA) of the n-6 and n-3 series. In terms of the lipid peroxidation product [thiobarbituric acid reactive substances (TBARS)] content and diene level of the LDL particle, oleic acid had no significant effect, and linoleic acid was poorly effective. Gamma linolenic acid (C18:3,n-6) and arachidonic acid (C20:4,n-6) increased by about 1.6-1.9-fold the cell-mediated LDL modification. PUFA from the n-3 series, alpha linolenic acid (C18:3,n-3), eicosapentaenoic acid (C20:5,n-3) and docosahexaenoic acid (C22:6,n-3), induced a less marked effect (1. 3-1.6-fold increase). The relative electrophoretic mobility of the LDL particle and its degradation by macrophages were enhanced in parallel. Concomitantly, PUFA stimulated superoxide anion secretion by endothelial cells. The intracellular TBARS content was also increased by PUFA. Comparison of PUFA from the two series indicates a good correlation between LDL oxidative modification, superoxide anion secretion and intracellular lipid peroxidation. The lipophilic antioxidant vitamin E decreased the basal as well as the PUFA-stimulated LDL peroxidation. These results indicate that PUFAs with a high degree of unsaturation of the n-6 and n-3 series could accelerate cell-mediated LDL peroxidation and thus aggravate the atherosclerotic process. PMID:9806884

  18. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  19. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase.

    PubMed Central

    Yamagata, M.; Hasuda, K.; Stamato, T.; Tannock, I. F.

    1998-01-01

    Solid tumours develop an acidic extracellular environment with high concentration of lactic acid, and lactic acid produced by glycolysis has been assumed to be the major cause of tumour acidity. Experiments using lactate dehydrogenase (LDH)-deficient ras-transfected Chinese hamster ovarian cells have been undertaken to address directly the hypothesis that lactic acid production is responsible for tumour acidification. The variant cells produce negligible quantities of lactic acid and consume minimal amounts of glucose compared with parental cells. Lactate-producing parental cells acidified lightly-buffered medium but variant cells did not. Tumours derived from parental and variant cells implanted into nude mice were found to have mean values of extracellular pH (pHe) of 7.03 +/- 0.03 and 7.03 +/- 0.05, respectively, both of which were significantly lower than that of normal muscle (pHe = 7.43 +/- 0.03; P < 0.001). Lactic acid concentration in variant tumours (450 +/- 90 microg g(-1) wet weight) was much lower than that in parental tumours (1880 +/- 140 microg/g(-1)) and similar to that in serum (400 +/- 35 microg/g(-1)). These data show discordance between mean levels of pHe and lactate content in tumours; the results support those of Newell et al (1993) and suggest that the production of lactic acid via glycolysis causes acidification of culture medium, but is not the only mechanism, and is probably not the major mechanism responsible for the development of an acidic environment within solid tumours. PMID:9667639

  20. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors.

  1. Effect of progesterone on the release of arachidonic acid from human endometrial cells stimulated by histamine

    SciTech Connect

    Wilson, T.; Liggins, G.C.; Aimer, G.P.; Watkins, E.J.

    1986-02-01

    Progesterone at concentrations of 10(-7)M and 10(-8)M inhibits release of (/sup 3/H)-arachidonic acid from stimulated, perfused, endometrial cells. The effect is independent of the mechanism of stimulation. Cortisol (10(-5)M but not 10(-7)M) has a similar effect in this system but estradiol (10(-7)M) is without effect. There was a positive correlation (p less than 0.05) between the magnitude of inhibition by progesterone and the day of cycle. The inhibitory action of progesterone on the release of arachidonic acid was greater in endometrial cells than in decidual cells and was apparent after fifteen minutes. The activities of commercial and endometrial cell-free preparations of phospholipase A2 and phospholipase C were unaffected by the presence of progesterone. We conclude that progesterone modulates release of (/sup 3/H)-arachidonic acid from endometrial cells by a rapid, indirect action on phospholipase activity.

  2. Enhanced amino acid utilization sustains growth of cells lacking Snf1/AMPK.

    PubMed

    Nicastro, Raffaele; Tripodi, Farida; Guzzi, Cinzia; Reghellin, Veronica; Khoomrung, Sakda; Capusoni, Claudia; Compagno, Concetta; Airoldi, Cristina; Nielsen, Jens; Alberghina, Lilia; Coccetti, Paola

    2015-07-01

    The metabolism of proliferating cells shows common features even in evolutionary distant organisms such as mammals and yeasts, for example the requirement for anabolic processes under tight control of signaling pathways. Analysis of the rewiring of metabolism, which occurs following the dysregulation of signaling pathways, provides new knowledge about the mechanisms underlying cell proliferation. The key energy regulator in yeast Snf1 and its mammalian ortholog AMPK have earlier been shown to have similar functions at glucose limited conditions and here we show that they also have analogies when grown with glucose excess. We show that loss of Snf1 in cells growing in 2% glucose induces an extensive transcriptional reprogramming, enhances glycolytic activity, fatty acid accumulation and reliance on amino acid utilization for growth. Strikingly, we demonstrate that Snf1/AMPK-deficient cells remodel their metabolism fueling mitochondria and show glucose and amino acids addiction, a typical hallmark of cancer cells.

  3. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.

  4. Phosphatidic acid metabolism in rat liver cell nuclei.

    PubMed

    Gaveglio, Virginia L; Pasquaré, Susana J; Giusto, Norma M

    2013-04-02

    The aim of the present research was to analyze the pathways for phosphatidic acid metabolism in purified nuclei from liver. Lipid phosphate phosphatase, diacylglycerol lipase, monoacylglycerol lipase and PA-phospholipase type A activities were detected. The presence of lysophosphatidic acid significantly reduced DAG production while sphingosine 1-phoshate and ceramide 1-phosphate reduced MAG formation from PA. Using different enzymatic modulators (detergents and ions) an increase in the PA metabolism by phospholipase type A was observed. Our findings evidence an active PA metabolism in purified liver nuclei which generates important lipid second messengers, and which could thus be involved in nuclear processes such as gene transcription.

  5. Selective precipitation of ribonucleic acid from a mixture of total cellular nucleic acids extracted from cultured mammalian cells

    PubMed Central

    Harrison, P. R.

    1971-01-01

    A simple and reproducible method is described for precipitating RNA selectively from total mammalian-cell nucleic acids extracted by the phenol–sodium dodecyl sulphate procedure at pH8.0. Under specified conditions bulk RNA is precipitated almost quantitatively whereas bulk DNA remains in solution. Minor components of RNA (detected by pulse-labelling and chromatography on methylated albumin–kieselguhr) and rapidly labelled components of DNA containing single-stranded regions are also precipitated. The usefulness of the method is discussed in the context of isolating separately both RNA and DNA from cultured cells that are difficult to obtain in quantity. PMID:5165620

  6. Fatty acids and cholesterol in the liver cell nuclei of hibernating Yakutian ground squirrels.

    PubMed

    Kolomiytseva, I K; Lakhina, A A; Markevich, L N; Fesenko, E E

    2016-09-01

    The content of neutral lipids in tissue homogenates and liver cell nuclei of hibernating Yakutian ground squirrels was studied. In homogenates, hibernation increases the content of fatty acids and reduces the content of glycerides and cholesterol. When studying the liver cell nuclei of torpid winter ground squirrels, we detected a twofold increase in the content of fatty acids, cholesterol, and monoglycerides as compared to the "summer" ground squirrels. In the active "winter" ground squirrels, as compared to the torpid winter ones, the content of cholesterol did not change, whereas the content of fatty acids, monoglycerides, and diglycerides decreased but remained higher than in the "summer" ground squirrels.

  7. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    PubMed

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  8. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  9. Removal of sialic acid from the surface of human MCF-7 mammary cancer cells abolishes E-cadherin-dependent cell-cell adhesion in an aggregation assay.

    PubMed

    Deman, J J; Van Larebeke, N A; Bruyneel, E A; Bracke, M E; Vermeulen, S J; Vennekens, K M; Mareel, M M

    1995-09-01

    MCF-7 human breast cancer cells express E-cadherin and show, at least in some circumstances, E-cadherin-dependent cell-cell adhesion (Bracke et al., 1993). The MCF-7/AZ variant spontaneously displays E-cadherin-dependent fast aggregation; in the MCF-7/6 variant, E-cadherin appeared not to be spontaneously functional in the conditions of the fast aggregation assay, but function could be induced by incubation of the suspended cells in the presence of insulinlike growth factor I (IGF-I) (Bracke et al., 1993). E-cadherin from MCF-7 cells was shown to contain sialic acid. Treatment with neuraminidase was shown to remove this sialic acid, as well as most of the sialic acid present at the cell surface. Applied to MCF-7/AZ, and MCF-7/6 cells, pretreatment with neuraminidase abolished spontaneous as well as IGF-I induced, E-cadherin-dependent fast cell-cell adhesion of cells in suspension, as measured in the fast aggregation assay. Treatment with neuraminidase did not, however, inhibit the possibly different, but equally E-cadherin-mediated, process of cell-cell adhesion of MCF-7 cells on a flat plastic substrate as assessed by determining the percentage of cells remaining isolated (without contact with other cells) 24 h after plating.

  10. Fluorescent macrocyclic probes with pendant functional groups as markers of acidic organelles within live cells.

    PubMed

    Wadhavane, Prashant D; Izquierdo, M Ángeles; Lutters, Dennis; Burguete, M Isabel; Marín, María J; Russell, David A; Galindo, Francisco; Luis, Santiago V

    2014-02-07

    A new family of acidity sensitive fluorescent macrocycles has been synthesized and fully characterized. Their photophysical properties including emission quantum yield and fluorescence lifetime have been determined. The acid-base properties of the new molecules can be tuned by the incorporation of pendant functional groups. The nature of such functional groups (carboxylic acid or ester) influences dramatically the pKa of the probes, two compounds of which exhibit low values. Preliminary intracellular studies using confocal microscopy together with emission spectra of the probes from the cellular environment have shown that the synthesized fluorescent macrocycles mark the acidic organelles of RAW 264.7 macrophage cells.

  11. Linoleic acid supplementation results in increased arachidonic acid and eicosanoid production in CF airway cells and in cftr−/− transgenic mice

    PubMed Central

    Zaman, Munir M.; Martin, Camilia R.; Andersson, Charlotte; Bhutta, Abdul Q.; Cluette-Brown, Joanne E.; Laposata, Michael

    2010-01-01

    Cystic fibrosis (CF) patients display a fatty acid imbalance characterized by low linoleic acid levels and variable changes in arachidonic acid. This led to the recommendation that CF patients consume a high-fat diet containing >6% linoleic acid. We hypothesized that increased conversion of linoleic acid to arachidonic acid in CF leads to increased levels of arachidonate-derived proinflammatory metabolites and that this process is exacerbated by increasing linoleic acid levels in the diet. To test this hypothesis, we determined the effect of linoleic acid supplementation on downstream proinflammatory biomarkers in two CF models: 1) in vitro cell culture model using 16HBE14o− sense [wild-type (WT)] and antisense (CF) human airway epithelial cells; and 2) in an in vivo model using cftr−/− transgenic mice. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC/MS), and IL-8 and eicosanoids were measured by ELISA. Neutrophils were quantified in bronchoalveolar lavage fluid from knockout mice following linoleic acid supplementation and exposure to aerosolized Pseudomonas LPS. Linoleic acid supplementation increased arachidonic acid levels in CF but not WT cells. IL-8, PGE2, and PGF2α secretion were increased in CF compared with WT cells, with a further increase following linoleic acid supplementation. cftr−/− Mice supplemented with 100 mg of linoleic acid had increased arachidonic acid levels in lung tissue associated with increased neutrophil infiltration into the airway compared with control mice. These findings support the hypothesis that increasing linoleic acid levels in the setting of loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to increased arachidonic acid levels and proinflammatory mediators. PMID:20656894

  12. Cell organelles from crassulacean acid metabolism (CAM) plants : II. Compartmentation of enzymes of the crassulacean acid metabolism.

    PubMed

    Schnarrenberger, C; Groß, D; Burkhard, C; Herbert, M

    1980-02-01

    The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed.

  13. Assessing physio-macromolecular effects of lactic acid on Zygosaccharomyces bailii cells during microaerobic fermentation.

    PubMed

    Kuanyshev, Nurzhan; Ami, Diletta; Signori, Lorenzo; Porro, Danilo; Morrissey, John P; Branduardi, Paola

    2016-08-01

    The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties.

  14. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  15. Mycolic Acid Cyclopropanation is Essential for Viability, Drug Resistance, and Cell Wall Integrity of Mycobacterium tuberculosis

    SciTech Connect

    Barkan, Daniel; Liu, Zhen; Sacchettini, James C.; Glickman, Michael S.

    2009-12-01

    Mycobacterium tuberculosis infection remains a major global health problem complicated by escalating rates of antibiotic resistance. Despite the established role of mycolic acid cyclopropane modification in pathogenesis, the feasibility of targeting this enzyme family for antibiotic development is unknown. We show through genetics and chemical biology that mycolic acid methyltransferases are essential for M. tuberculosis viability, cell wall structure, and intrinsic resistance to antibiotics. The tool compound dioctylamine, which we show acts as a substrate mimic, directly inhibits the function of multiple mycolic acid methyltransferases, resulting in loss of cyclopropanation, cell death, loss of acid fastness, and synergistic killing with isoniazid and ciprofloxacin. These results demonstrate that mycolic acid methyltransferases are a promising antibiotic target and that a family of virulence factors can be chemically inhibited with effects not anticipated from studies of each individual enzyme.

  16. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells.

    PubMed

    Janicke, Birgit; Hegardt, Cecilia; Krogh, Morten; Onning, Gunilla; Akesson, Björn; Cirenajwis, Helena M; Oredsson, Stina M

    2011-01-01

    Epidemiological and animal studies have shown that dietary fiber is protective against the development of colon cancer. Dietary fiber is a rich source of the hydroxycinnamic acids ferulic acid (FA) and p-coumaric acid (p-CA), which both may contribute to the protective effect. We have investigated the effects of FA and p-CA treatment on global gene expression in Caco-2 colon cancer cells. The Caco-2 cells were treated with 150 μM FA or p-CA for 24 h, and gene expression was analyzed with cDNA microarray technique. A total of 517 genes were significantly affected by FA and 901 by p-CA. As we previously have found that FA or p-CA treatment delayed cell cycle progression, we focused on genes involved in proliferation and cell cycle regulation. The expressions of a number of genes involved in centrosome assembly, such as RABGAP1 and CEP2, were upregulated by FA treatment as well as the gene for the S phase checkpoint protein SMC1L1. p-CA treatment upregulated CDKN1A expression and downregulated CCNA2, CCNB1, MYC, and ODC1. Some proteins corresponding to the affected genes were also studied. Taken together, the changes found can partly explain the effects of FA or p-CA treatment on cell cycle progression, specifically in the S phase by FA and G(2)/M phase by p-CA treatment.

  17. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  18. Anti-allergic effect of the naturally-occurring conjugated linolenic acid isomer, jacaric acid, on the activated human mast cell line-1

    PubMed Central

    LIU, WAI NAM; LEUNG, KWOK NAM

    2015-01-01

    The present study aimed to investigate the immunomodulatory effect of jacaric acid, a naturally-occurring conjugated linolenic acid isomer that can be found in jacaranda seed oil, on the activated human mast cell line-1 (HMC-1). Our previous studies have demonstrated that jacaric acid only exerted minimal, if any, cytotoxicity on normal murine cells. In the present study, jacaric acid at concentrations ≤100 µM did not exhibit direct cytotoxicity on human peripheral blood mononuclear cells after 72 h of incubation, as determined by the MTT reduction assay. By contrast, jacaric acid could alleviate the calcium ionophore A23187 and phorbol 12-myristate 13-acetate-triggered allergic response in the HMC-1 cells at concentrations that were non-cytotoxic to the HMC-1 cells. Following pre-treatment with jacaric acid, the secretion of two inflammatory mediators, β-N-acetylglucosaminidase and tryptase, as well as the T helper 2 cytokines [interleukin (IL)-4 and IL-13] was significantly reduced in HMC-1 cells. The alleviation of allergic response was accompanied by downregulation of the matrix metalloproteinase-2 and −9 proteins and upregulation of the tissue inhibitor of metalloproteinase-1 protein. Collectively, the results indicated that the naturally-occurring jacaric acid exhibits a suppressive effect on the allergic response in activated human mast cells in vitro, and this could not be attributed to the direct cytotoxicity of jacaric acid on the treated cells. PMID:26623027

  19. Anti-allergic effect of the naturally-occurring conjugated linolenic acid isomer, jacaric acid, on the activated human mast cell line-1.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-11-01

    The present study aimed to investigate the immunomodulatory effect of jacaric acid, a naturally-occurring conjugated linolenic acid isomer that can be found in jacaranda seed oil, on the activated human mast cell line-1 (HMC-1). Our previous studies have demonstrated that jacaric acid only exerted minimal, if any, cytotoxicity on normal murine cells. In the present study, jacaric acid at concentrations ≤100 µM did not exhibit direct cytotoxicity on human peripheral blood mononuclear cells after 72 h of incubation, as determined by the MTT reduction assay. By contrast, jacaric acid could alleviate the calcium ionophore A23187 and phorbol 12-myristate 13-acetate-triggered allergic response in the HMC-1 cells at concentrations that were non-cytotoxic to the HMC-1 cells. Following pre-treatment with jacaric acid, the secretion of two inflammatory mediators, β-N-acetylglucosaminidase and tryptase, as well as the T helper 2 cytokines [interleukin (IL)-4 and IL-13] was significantly reduced in HMC-1 cells. The alleviation of allergic response was accompanied by downregulation of the matrix metalloproteinase-2 and -9 proteins and upregulation of the tissue inhibitor of metalloproteinase-1 protein. Collectively, the results indicated that the naturally-occurring jacaric acid exhibits a suppressive effect on the allergic response in activated human mast cells in vitro, and this could not be attributed to the direct cytotoxicity of jacaric acid on the treated cells.

  20. Liquid biopsy of gastric cancer patients: circulating tumor cells and cell-free nucleic acids.

    PubMed

    Tsujiura, Masahiro; Ichikawa, Daisuke; Konishi, Hirotaka; Komatsu, Shuhei; Shiozaki, Atsushi; Otsuji, Eigo

    2014-03-28

    To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called "liquid biopsy", would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of "tailor-made" cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC.

  1. Liquid biopsy in patients with pancreatic cancer: Circulating tumor cells and cell-free nucleic acids.

    PubMed

    Imamura, Taisuke; Komatsu, Shuhei; Ichikawa, Daisuke; Kawaguchi, Tsutomu; Miyamae, Mahito; Okajima, Wataru; Ohashi, Takuma; Arita, Tomohiro; Konishi, Hirotaka; Shiozaki, Atsushi; Morimura, Ryo; Ikoma, Hisashi; Okamoto, Kazuma; Otsuji, Eigo

    2016-07-07

    Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer (PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs), such as DNA, mRNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called "liquid biopsy" has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfNAs in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field.

  2. Liquid biopsy in patients with pancreatic cancer: Circulating tumor cells and cell-free nucleic acids

    PubMed Central

    Imamura, Taisuke; Komatsu, Shuhei; Ichikawa, Daisuke; Kawaguchi, Tsutomu; Miyamae, Mahito; Okajima, Wataru; Ohashi, Takuma; Arita, Tomohiro; Konishi, Hirotaka; Shiozaki, Atsushi; Morimura, Ryo; Ikoma, Hisashi; Okamoto, Kazuma; Otsuji, Eigo

    2016-01-01

    Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer (PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs), such as DNA, mRNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called “liquid biopsy” has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfNAs in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field. PMID:27433079

  3. Removal of an acid fume system contaminated with perchlorates located within hot cell

    SciTech Connect

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.; Krsul, J.R.; Michelbacher, J.A.; Knighton, G.C.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W and used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers.

  4. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  5. Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells.

    PubMed

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Kovář, Jan

    2016-09-12

    Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells.

  6. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels.

    PubMed

    Park, Woo Hyun

    2017-02-01

    Gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) is widely dispersed in various plants, fruits and foods and it shows various biological properties including anticancer effects. This study investigated the effects of GA on HeLa cervical cancer cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). GA dose-dependently inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC) at 24 or 72 h. The susceptibility of HeLa cells to GA was higher than that of HUVEC. GA induced apoptosis in HeLa cells, which was accompanied by the loss of mitochondrial membrane potential (MMP; ∆ψm). GA increased ROS levels including O2•- in HeLa cells at 24 h and it also induced GSH depletion. N-acetyl cysteine (NAC) increased the growth inhibition of GA-treated HeLa cells and enhanced the death of these cells. NAC differently influenced ROS levels in GA-treated HeLa cells and significantly increased GSH depletion in these cells. L-buthionine sulfoximine (BSO) increased MMP (∆ψm) loss, ROS levels and GSH depletion in GA-treated HeLa cells. In conclusion, GA significantly inhibited the growth of HeLa cells. GA-induced HeLa cell death was tightly related to GSH depletion rather than ROS level changes.

  7. Adherence of group B streptococci to adult and neonatal epithelial cells mediated by lipoteichoic acid.

    PubMed Central

    Teti, G; Tomasello, F; Chiofalo, M S; Orefici, G; Mastroeni, P

    1987-01-01

    We have investigated the role of lipoteichoic acid in mediating the adherence of different serotypes of group B streptococci to human adult and neonatal epithelial cells. Pretreatment of neonatal buccal and vaginal epithelial cells with lipoteichoic acid, but not with deacylated lipoteichoic acid, induced a marked inhibition in the adherence of all strains tested. Pretreatment of bacteria with substances known to bind lipoteichoic acid, such as monoclonal and polyclonal antipolyglycerophosphate antibodies and albumin, also resulted in adherence inhibition. Group B streptococci adhered in 6- to 10-fold-higher numbers to buccal epithelial cells from neonates older than 3 days than to those from neonates less than 1 day old. This increase in receptiveness for group B streptococci was paralleled by an increased ability of epithelial cells from older neonates to bind group B streptococcal lipoteichoic acid. These data suggest a role for the lipid portion of lipoteichoic acid in the adherence of different serotypes of group B streptococci to vaginal and neonatal epithelial cells. PMID:3316030

  8. Induction of thrombospondin 1 by retinoic acid is important during differentiation of neuroblastoma cells.

    PubMed Central

    Castle, V P; Ou, X; O'Shea, S; Dixit, V M

    1992-01-01

    Neuroblastoma, a malignant neoplasm that arises in the adrenal medulla or sympathetic ganglion, is one of the most common solid tumors of childhood. Reports that neuroblastomas spontaneously mature to form benign ganglioneuromas have prompted investigations into the efficacy of using agents that induce neuronal differentiation in the treatment of this malignancy. Retinoic acid is one agent in particular that has been shown to induce growth inhibition and terminal differentiation of neuroblastoma cell lines in vitro. Using the human neuroblastoma cell line SMH-KCNR, we have investigated the role of the extracellular matrix protein thrombospondin in retinoic acid induced neuroblastoma differentiation. Treatment with retinoic acid results in a rapid induction (within 4 h) of thrombospondin (TSP) message which is independent of intervening protein synthesis and superinducible in the presence of cycloheximide. This suggests that TSP functions as a retinoic acid inducible immediate early response gene. A concomitant increase in both cell associated and soluble forms of TSP protein can be detected within 24 h of retinoic acid treatment. A functional role for TSP in SMH-KCNR differentiation was established in experiments which showed that exposure to anti-TSP monoclonal antibodies delay retinoic acid differentiation for 48 h. At the time the cells overcome the effects of TSP inhibition, laminin production becomes maximal. Treatment of the cells with a combination of anti-TSP and antilaminin antibodies results in complete inhibition of differentiation. Images PMID:1430209

  9. Role of Fatty-acid Synthesis in Dendritic Cell Generation and Function

    PubMed Central

    Rehman, Adeel; Hemmert, Keith C.; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R.; Barilla, Rocky; Quesada, Juan P.; Zambirinis, Constantinos P.; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S.; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H. Leon; Graffeo, Christopher S.; Acehan, Devrim; Miller, George

    2013-01-01

    Dendritic cells (DC) are professional antigen presenting cells that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of Cleaved Caspase 3 and BCL-xL, and down-regulation of Cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHCII, ICAM-1, B7-1, B7-2 but increased their production of selected pro-inflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacityto activate allogeneic as well as antigen-restricted CD4+ and CD8+ T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune-phenotype and IFN-γ production. Since endoplasmic reticular (ER)-stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAP kinase and Akt signaling. Further, lowering ER-stress by 4-phenylbutyrate mitigated the enhanced immune-stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy. PMID:23536633

  10. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  11. Current legal and institutional issues in the commercialization of phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Nimmons, J. T.; Sheehy, K. D.; Singer, J. R.; Gardner, T. C.

    1982-01-01

    Legal and institutional factors affecting the development and commercial diffusion of phosphoric acid fuel cells are assessed. Issues for future research and action are suggested. Perceived barriers and potential opportunities for fuel cells in central and dispersed utility operations and on-site applications are reviewed, as well as the general concept of commercialization as applied to emerging energy technologies.

  12. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology.

  13. Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii.

    PubMed

    Zuo, Zhaojiang; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2012-02-01

    Acetic acid widely spreads in atmosphere, aquatic ecosystems containing residues and anoxic soil. It can inhibit aquatic plant germination and growth, and even cause programmed cell death (PCD) of yeast. In the present study, biochemical and physiological responses of the model unicellular green algae Chlamydomonas reinhardtii were examined after acetic acid stress. H(2)O(2) burst was found in C. reinhardtii after acetic acid stress at pH 5.0 for 10 min. The photosynthetic pigments were degraded, gross photosynthesis and respiration were disappeared gradually, and DNA fragmentation was also detected. Those results indicated that C. reinhardtii cells underwent a PCD but not a necrotic, accidental cell death event. It was noticed that C. reinhardtii cells in PCD released abundant volatile organic compounds (VOCs) upon acetic acid stress. Therefore, we analyzed the VOCs and tested their effects on other normal cells. The treatment of C. reinhardtii cultures with VOCs reduced the cell density and increased antioxidant enzyme activity. Therefore, a function of VOCs as infochemicals involved in cell-to-cell communication at the conditions of applied stress is suggested.

  14. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  15. HALOACETIC ACIDS AND KINASE INHIBITORS PERTURB MOUSE NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    HUNTER, E.S.1, J. SMITH2, J. ANDREWS1. 1 Reproductive Toxicology Division, NHEERL, US EPA, Research Triangle Park and 2 Department of Cell and Developmental Biology, UNC-CH, Chapel Hill, North Carolina. Haloacetic acids and kinase inhibitors perturb mouse neural crest cells in vi...

  16. Human colon cell culture models of different transformation stages to assess conjugated linoleic acid and conjugated linolenic acid metabolism: Challenges and chances.

    PubMed

    Degen, Christian; Habermann, Nina; Piegholdt, Stefanie; Glei, Michael; Jahreis, Gerhard

    2012-09-01

    Both cellular transformation status and cell culture conditions affect fatty acid metabolism. Hence, the incorporation and metabolism of c9,t11-CLA (conjugated linoleic acid) and other CFAs (conjugated fatty acids) were compared in colon cells (LT-97, adenoma; HT-29, adenocarcinoma). Growth inhibition by CFA in LT-97 cells was assessed via the DAPI (4',6-diamidino-2-phenylindole dihydrochloride) assay. Basal gene expression of desaturases (Δ5, Δ6 and Δ9) and elongases (1, 2, 5 and 6) was determined in LT-97 using PCR. Analysis of cellular fatty acids revealed a 2-fold higher incorporation of c9,t11-CLA (40 and 80μM) in HT-29 cells compared to LT-97 cells. The β-oxidized and elongated conjugated dienoic (CD) fatty acids differed by 8-fold (CD-C16:2/CD-C20:2; HT-29: 8:1; LT-97: 1:1). Notably, LT-97 cells were shown to convert conjugated linolenic acid (CLnA) to CLA. Moreover, LT-97 cells revealed no basal expression of elongase 2. CLnA caused stronger growth inhibition (≤80μM) compared to CLA (200μM). The results indicate that LT-97 cells represent a superior model to carry out elongation and desaturation studies of unsaturated and conjugated fatty acids compared to HT-29 cells. Nevertheless, further in-depth metabolic and transcriptomic analyses are required to confirm this suggestion.

  17. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion

    PubMed Central

    Zahran, R.; Rosales Leal, J. I.; Rodríguez Valverde, M. A.; Cabrerizo Vílchez, M. A.

    2016-01-01

    Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time. PMID:27824875

  18. Tailoring folic acid and methotrexate-attributed quantum dots for integrated cancer cell imaging and therapy

    NASA Astrophysics Data System (ADS)

    Fahmi, Mochamad Zakki; Chang, Jia-Yaw

    2016-03-01

    Potential application of folic acid and methotrexate-attributed AgInS2-ZnS quantum dots on both detection and therapeutic of cancer cell were intensively investigated on this study. In the initial step, the bright luminescent of QDs, with % QY up to 55.3, were synthesized with one-pot two-step process resulting narrow particle distribution and successfully transferred to water phase without significant effect on optical properties. The water-soluble AgInS2-ZnS quantum dots (QDs) encapsulated with oleylamine have been successfully prepared by ultrasonication assisting. Several aspect including QDs characterization, pH stability, ionic strength, and bonding properties were investigated to reach desired condition of water-soluble AgInS2-ZnS QDs. Folic acid was further conjugated to QDs for HeLa and MCF7 cancer cell imaging to performs the targeting capability. Moreover, folic acid is efficiently internalized into cell through the receptor-mediated endocytosis even when conjugated with a wide variety of molecules. Confocal imaging characterization further informs folic acid-conjugated AgInS2-ZnS QDs could most specific targeted to the human cervical (HeLa) cells. The therapeutic feature of QDs on HeLa cancer cell was conjugated by attributing methotrexate on the QDs, instead of folic acid, and the design could improve on inhibiting the cancer cell viability as well as its fluorescent intensity.

  19. Source of the arachidonic acid released on stimulation of rat basophilic leukemia cells

    SciTech Connect

    Garcia-Gil, M.; Siraganian, R.P.

    1986-05-15

    Triggering of rat basophilic leukemia cells for histamine secretion is accompanied by arachidonic acid release. The source of this arachidonic acid released after IgE or calcium ionophore A23187 stimulation was studied. The 48-hr culture of the cells with (/sup 14/C)arachidonic acid resulted in labeling of the phospholipids to constant specific activity. After IgE stimulation, 8.8% of the cellular (/sup 14/C)arachidonate was released; this was predominantly from phosphatidylinositol (PI)/phosphatidylserine (PS) (66.3%), less from phosphatidylethanolamine (PE) (25.9%), and minimally from phosphatidylcholine (PC). In contrast, after ionophore stimulation the cells released 16.4% of cellular (/sup 14/C)arachidonate, most of this was from PE (55.4%) followed by about equal amounts from PS/PI and PC (24% and 20%, respectively). Therefore, the source of the released arachidonic acid depends on the stimulus. In contrast, the results are different when the cells are cultured for only 2 hr with (/sup 14/C)arachidonic acid. The label in phospholipids was in PC (44%), PE (38%), and PI/PS (20%); the stimulation of the cells with IgE or ionophore resulted in the release of the (/sup 14/C)arachidonate from PC (81% and 96%, respectively). This suggests the presence of several pools of phospholipids that are labeled at different rates and have variable proximity and/or accessibility to the phospholipase(s) enzyme(s) activated during cell secretion.

  20. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    SciTech Connect

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W. )

    1991-05-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.

  1. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  2. Anti-inflammatory signaling actions of electrophilic nitro-arachidonic acid in vascular cells and astrocytes.

    PubMed

    Trostchansky, Andrés; Rubbo, Homero

    2017-03-01

    Nitrated derivatives of unsaturated fatty acids (nitro-fatty acids) are being formed and detected in human plasma, cell membranes and tissue, triggering signaling cascades via covalent and reversible post-translational modifications of nucleophilic amino acids in transcriptional regulatory proteins. Arachidonic acid (AA) represents a precursor of potent signaling molecules, i.e., prostaglandins and thromboxanes through enzymatic and non-enzymatic oxidative pathways. Arachidonic acid can be nitrated by reactive nitrogen species leading to the formation of nitro-arachidonic acid (NO2-AA). A critical issue is the influence of NO2-AA on prostaglandin endoperoxide H synthases, modulating inflammatory processes through redirection of AA metabolism and signaling. In this prospective article, we describe the key chemical and biochemical actions of NO2-AA in vascular and astrocytes. This includes the ability of NO2-AA to mediate unique redox signaling anti-inflammatory actions along with its therapeutic potential.

  3. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    SciTech Connect

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to {approx} 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research Highlights: > MCF-7/Adr cells showed decreases in cellular GSH

  4. Acidic fibroblast growth factor modulates Staphylococcus aureus adherence to human endothelial cells.

    PubMed Central

    Blumberg, E A; Hatcher, V B; Lowy, F D

    1988-01-01

    Alteration of human endothelial cells may increase their susceptibility to staphylococcal invasion and thus may contribute to the development of intravascular staphylococcal disease. Acidic fibroblast growth factor, a potent regulator of endothelial cell function, had a significant effect on Staphylococcus aureus infection of cultured human endothelial cells. Three of four S. aureus strains had diminished adherence to endothelial cells when the latter were grown in the presence of acidic fibroblast growth factor (P less than 0.05). The diminished adherence was time dependent, maximal at 72 h, and independent of the initial bacterial inoculum. A twofold enhancement of S. aureus adherence was observed when endothelial cells were pretreated with heparitinase. Adherence was unaffected by endothelial cell activation by interleukin-1 or endotoxin. Thus, acidic fibroblast growth factor exerted a protective effect, deterring S. aureus adherence to cultured endothelial cells. Endothelial cell heparan sulfate was also directly involved in the adherence process. Subtle modulations of endothelial cells can significantly affect the ability of S. aureus to adhere to and then infect these cells. Similar alterations may contribute to the ability of S. aureus to infect endovascular tissue in vivo. PMID:3259546

  5. Chemical inhibition of fatty acid absorption and cellular uptake limits lipotoxic cell death

    PubMed Central

    Ahowesso, Constance; Black, Paul N.; Saini, Nipun; Montefusco, David; Chekal, Jessica; Malosh, Chrysa; Lindsley, Craig W.; Stauffer, Shaun R.; DiRusso, Concetta C.

    2015-01-01

    Chronic elevation of plasma free fatty acid (FFA) levels is commonly associated with obesity, type 2 diabetes, cardiovascular disease and some cancers. Experimental evidence indicates FFA and their metabolites contribute to disease development through lipotoxicity. Previously, we identified a specific fatty acid transport inhibitor CB16.2, a.k.a. Lipofermata, using high throughput screening methods. In this study, efficacy of transport inhibition was measured in four cell lines that are models for myocytes (mmC2C12), pancreatic ß-cells (rnINS-1E), intestinal epithelial cells (hsCaco-2), and hepatocytes (hsHepG2), as well as primary human adipocytes. The compound was effective in inhibiting uptake with IC50s between 3 and 6 µM for all cell lines except human adipocytes (39 µM). Inhibition was specific for long and very long chain fatty acids but had no effect on medium chain fatty acids (C6-C10), which are transported by passive diffusion. Derivatives of Lipofermata were evaluated to understand structural contributions to activity. Lipofermata prevented palmitate-mediated oxidative stress, induction of BiP and CHOP, and cell death in a dose-dependent manner in hsHepG2 and rnINS-1E cells, suggesting it will prevent induction of fatty acid-mediated cell death pathways and lipotoxic disease by channeling excess fatty acids to adipose tissue and away from liver and pancreas. Importantly, mice dosed orally with Lipofermata were not able to absorb 13C-oleate demonstrating utility as an inhibitor of fatty acid absorption from the gut. PMID:26394026

  6. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid

    SciTech Connect

    Löfling, Jonas; Michael Lyi, Sangbom; Parrish, Colin R.; Varki, Ajit

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. - Highlights: ► Feline and canine parvoviruses recognize Neu5Gc but not Neu5Ac, which differ by one oxygen atom. ► The underlying linkage of these sialic acids does not affect recognition. ► Induced Neu5Gc expression on target cells that normally express Neu5Ac did not enhance infection. ► Thus, the conserved binding preference plays an important yet unknown role in in vivo infections. ► Population and breed variations in Neu5Gc expression occur, likely by regulating the gene CMAH.

  7. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells.

    PubMed

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA1-LPA6) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA1 and LPA5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA1.

  8. Bordetella dermonecrotic toxin binds to target cells via the N-terminal 30 amino acids.

    PubMed

    Fukui-Miyazaki, Aya; Ohnishi, Shinya; Kamitani, Shigeki; Abe, Hiroyuki; Horiguchi, Yasuhiko

    2011-03-01

    Bordetella dermonecrotic toxin (DNT) affects the biological function of host cells by activating intracellular Rho GTPases. The toxin binds to unidentified receptor(s) via 54 N-terminal amino acids, undergoes intramolecular cleavage on the C-terminal side of Arg(44) by furin or furin-like protease, and eventually enters the cytoplasm where the Rho GTPases reside. The binding to the receptor(s) and intramolecular cleavage are essential for DNT to intoxicate cells, and the 54 amino-acid binding domain encompasses the cleavage site, however, it is unclear whether these two events are related. In this study, we could narrow down the cell-binding domain to the N-terminal amino acids 2-30. The region does not contain the furin-recognition site, indicating that the cell binding and the intramolecular cleavage are independent events.

  9. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Teow, Yiwei; Valiyaveettil, Suresh

    2010-12-01

    Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized viareduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml-1 for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.

  10. Modulation of redox status in human lung cell lines by organoselenocompounds: selenazolidines, selenomethionine and methylseleninic acid

    PubMed Central

    Poerschke, Robyn L.; Franklin, Michael R.; Moos, Philip J.

    2008-01-01

    Cancer prevention strategies utilizing selenium-containing compounds have demonstrated reduced cancer mortality and efficacy for some cancer types but considerable differences in cellular effects exist among the selenocompounds employed. The variability of the effects on cell viability, redox modulation, and disruption of subcellular compartments by the conventional selenium-containing amino acid, selenomethionine, the oxidized selenosugar metabolite, methylseleninic acid, and selenazolidines was investigated in A549 and BEAS-2B human lung cell lines. Selenomethionine had little effect whereas methylseleninic acid increased cellular thiols and stress in the endoplasmic reticulum. The cyclohexylselenazolidine increased mild oxidative stress in the adenocarcinoma cell line, A549, but the effects were attenuated in the normal, but virally transformed cell line, BEAS-2B. These data demonstrate that all selenocompounds are not equal and that the form of the organic selenocompound is a major determinant in the expected cellular response. PMID:18768157

  11. A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells.

    PubMed

    Tran, Daniel; Kadono, Takashi; Molas, Maria Lia; Errakhi, Rafik; Briand, Joël; Biligui, Bernadette; Kawano, Tomonori; Bouteau, François

    2013-03-01

    Ozone (O(3) ) is an air pollutant with an impact increasingly important in our industrialized world. It affects human health and productivity in various crops. We provide the evidences that treatment of Arabidopsis thaliana with O(3) results in ascorbate-derived oxalic acid production. Using cultured cells of A. thaliana as a model, here we further showed that oxalic acid induces activation of anion channels that trigger depolarization of the cell, increase in cytosolic Ca(2+) concentration, generation of reactive oxygen species and cell death. We confirmed that O(3) reacts with ascorbate in the culture, thus resulting in production of oxalic acid and this could be part of the O(3) -induced signalling pathways that trigger programmed cell death.

  12. Lactic acid bacteria as a cell factory for riboflavin production

    PubMed Central

    Thakur, Kiran; De, Sachinandan

    2015-01-01

    Summary Consumers are increasingly becoming aware of their health and nutritional requirements, and in this context, vitamins produced in situ by microbes may suit their needs and expectations. B groups vitamins are essential components of cellular metabolism and among them riboflavin is one of the vital vitamins required by bacteria, plants, animals and humans. Here, we focus on the importance of microbial production of riboflavin over chemical synthesis. In addition, genetic abilities for riboflavin biosynthesis by lactic acid bacteria are discussed. Genetically modified strains by employing genetic engineering and chemical analogues have been developed to enhance riboflavin production. The present review attempts to collect the currently available information on riboflavin production by microbes in general, while placing greater emphasis on food grade lactic acid bacteria and human gut commensals. For designing riboflavin‐enriched functional foods, proper selection and exploitation of riboflavin‐producing lactic acid bacteria is essential. Moreover, eliminating the in situ vitamin fortification step will decrease the cost of food production. PMID:26686515

  13. Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells.

    PubMed

    Lima, Kelly Goulart; Krause, Gabriele Catyana; Schuster, Aline Daniele; Catarina, Anderson Velasque; Basso, Bruno Souza; De Mesquita, Fernanda Cristina; Pedrazza, Leonardo; Marczak, Elisa Simon; Martha, Bianca Andrade; Nunes, Fernanda Bordignon; Chiela, Eduardo Cremonese Filippi; Jaeger, Natália; Thomé, Marcos Paulo; Haute, Gabriela Viegas; Dias, Henrique Bregolin; Donadio, Márcio Vinícius Fagundes; De Oliveira, Jarbas Rodrigues

    2016-12-01

    Hepatocellular carcinoma is the most prevalent primary liver tumor and is among the top ten cancer that affect the world population. Its development is related, in most cases, to the existence of chronic liver injury, such as in cirrhosis. The knowledge about the correlation between chronic inflammation and cancer has driven new researches with anti-inflammatory agents that have potential for the development of antitumor drugs. Gallic acid is a phenolic acid found in many natural products and have shown anti-inflammatory, anti-tumor, anti-mutagenic and antioxidant actions. The purpose of this study was to investigate the effect of gallic acid on acute and chronic cell proliferation and inflammatory parameters of hepatocellular carcinoma cells (HepG2), as well as to investigate the mechanisms involved. Results showed that the gallic acid decreased the proliferation of HepG2 cells in a dose-dependent manner (Trypan blue exclusion assay), without causing necrosis (LDH assay). We observed a significant increase in the percentage of small and regular nuclei (Nuclear Morphometric Analysis assay), a significant induction of apoptosis by Annexin V-FITC and PI assay and no interference with the cell cycle using the FITC BrdU Flow Kit. We observed a significant reduction in the levels of IL-8 and increased levels of IL-10 and IL-12 (Cytometric Bead Array Human Inflammation Assay). Furthermore, gallic acid caused no cancer cells regrowth at a long term (Cumulative Population Doubling assay). According to these results, gallic acid showed a strong potential as an anti-tumor agent in hepatocellular carcinoma cells.

  14. Phospholipase D1-regulated autophagy supplies free fatty acids to counter nutrient stress in cancer cells

    PubMed Central

    Cai, Ming; He, Jingquan; Xiong, Jian; Tay, Li Wei Rachel; Wang, Ziqing; Rog, Colin; Wang, Jingshu; Xie, Yizhao; Wang, Guobin; Banno, Yoshiko; Li, Feng; Zhu, Michael; Du, Guangwei

    2016-01-01

    Cancer cells utilize flexible metabolic programs to maintain viability and proliferation under stress conditions including nutrient deprivation. Here we report that phospholipase D1 (PLD1) participates in the regulation of metabolic plasticity in cancer cells. PLD1 activity is required for cancer cell survival during prolonged glucose deprivation. Blocking PLD1 sensitizes cancer cells to glycolysis inhibition by 2-deoxy-D-glucose (2-DG) and results in decreased autophagic flux, enlarged lysosomes, and increased lysosomal pH. Mechanistically, PLD1-regulated autophagy hydrolyzes bulk membrane phospholipids to supply fatty acids (FAs) for oxidation in mitochondria. In low glucose cultures, the blockade of fatty acid oxidation (FAO) by PLD1 inhibition suppresses adenosine triphosphate (ATP) production and increases reactive oxygen species (ROS), leading to cancer cell death. In summary, our findings reveal a novel role of PLD1 in sustaining cancer cell survival during metabolic stress, and suggest PLD1 as a potential target for anticancer metabolism therapy. PMID:27809301

  15. Differential effects of deoxycholic acid versus selenium metabolite methylselenol on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: A typical part of the Western diet is a high fat intake that leads to increased levels of fecal bile acids, and these bile acids, primarily deoxycholic acid (DCA) in humans, have been believed to be tumor promoters of colon cancer. The cell growth inhibition induced by bile acid deoxyc...

  16. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells.

    PubMed

    Mitchell, Ryan W; On, Ngoc H; Del Bigio, Marc R; Miller, Donald W; Hatch, Grant M

    2011-05-01

    The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.

  17. Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L.

    PubMed

    Deepthi, S; Satheeshkumar, K

    2017-01-01

    Ophiorrhiza mungos is a herbaceous medicinal plant which contains a quinoline alkaloid, camptothecin (CPT), an anticancer compound. A high-yielding cell line, O. mungos cell line-3 (OMC3) was selected from cell suspension cultures of O. mungos using cell aggregate cloning method and established cell suspension culture. OMC3 cell suspension produced significantly high biomass (9.25 ± 1.3 g/flask fresh weight (FW)) and CPT yield (0.095 ± 0.002 mg g(-1) dry weight (DW)) compared with the original cell suspension. Inoculum size of OMC3 cell suspension culture was optimised as 14 g L(-1). Media optimisation has shown that 5 % (w/v) sucrose and an increased ammonium/nitrate concentration of 40/20 mM favoured CPT production, whereas 3 % (w/v) sucrose, an ammonium/nitrate concentration of 20/40 mM and 1.25 mM of phosphate favoured biomass accumulation. Jasmonic acid, chitin and salicylic acid was used to elicit CPT production in the original cell suspension culture and achieved significantly high CPT production with jasmonic acid (JA) elicitation. Further, OMC3 cell suspension culture was elicited with JA (50 μM) and obtained 1.12 ± 0.08 mg g(-1) DW CPT and 9.52 ± 1.4 g/flask FW (190.4 g L(-1) FW). The combination of cell line selection and elicitation has produced 18.66-fold increases in CPT production together with significantly high biomass yield. The study is helpful in the scale-up studies of O. mungos cell suspension culture in suitable bioreactor systems for the production of CPT.

  18. Apoptosis- and differentiation-inducing activities of jacaric acid, a conjugated linolenic acid isomer, on human eosinophilic leukemia EoL-1 cells.

    PubMed

    Liu, Wai-Nam; Leung, Kwok-Nam

    2014-11-01

    Conjugated linolenic acids (CLNAs) are a group of naturally occurring positional and geometrical isomers of the C18 polyunsaturated essential fatty acid, linolenic acid (LNA), with three conjugated double bonds (C18:3). Although previous research has demonstrated the growth-inhibitory effects of CLNA on a wide variety of cancer cell lines in vitro, their action mechanisms and therapeutic potential on human myeloid leukemia cells remain poorly understood. In the present study, we found that jacaric acid (8Z,10E,12Z-octadecatrienoic acid), a CLNA isomer which is present in jacaranda seed oil, inhibited the in vitro growth of human eosinophilic leukemia EoL-1 cells in a time- and concentration-dependent manner. Mechanistic studies showed that jacaric acid triggered cell cycle arrest of EoL-1 cells at the G0/G1 phase and induced apoptosis of the EoL-1 cells, as measured by the Cell Death Detection ELISAPLUS kit, Annexin V assay and JC-1 dye staining. Notably, the jacaric acid-treated EoL-1 cells also underwent differentiation as revealed by morphological and phenotypic analysis. Collectively, our results demonstrated the capability of jacaric acid to inhibit the growth of EoL-1 cells in vitro through triggering cell cycle arrest and by inducing apoptosis and differentiation of the leukemia cells. Therefore, jacaric acid might be developed as a potential candidate for the treatment of certain forms of myeloid leukemia with minimal toxicity and few side effects.

  19. Effects of Asiatic Acid on Spatial Working Memory and Cell Proliferation in the Adult Rat Hippocampus.

    PubMed

    Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanan; Leksomboon, Ratana; Chaichun, Amnart; Wigmore, Peter; Welbat, Jariya Umka

    2015-10-05

    Asiatic acid is a pentacyclic triterpene from Centella asiatica. Previous studies have reported that asiatic acid exhibits antioxidant and neuroprotective activities in cell culture. It also prevents memory deficits in animal models. The objective of this study was to investigate the relationship between spatial working memory and changes in cell proliferation within the hippocampus after administration of asiatic acid to male Spraque-Dawley rats. Control rats received vehicle (propylene glycol) while treated rats received asiatic acid (30 mg/kg) orally for 14 or 28 days. Spatial memory was determined using the novel object location (NOL) test. In animals administered asiatic acid for both 14 and 28 days, the number of Ki-67 positive cells in the subgranular zone of the dentate gyrus was significantly higher than in control animals. This was associated with a significant increase in their ability to discriminate between novel and familiar object locations in a novel object discrimination task, a hippocampus-dependent spatial memory test. Administration of asiatic acid also significantly increased doublecortin (DCX) and Notch1 protein levels in the hippocampus. These findings demonstrate that asiatic acid treatment may be a potent cognitive enhancer which improves hippocampal-dependent spatial memory, likely by increasing hippocampal neurogenesis.

  20. The antioxidant, cytotoxic, and antigenotoxic effects of galangin, puerarin, and ursolic acid in mammalian cells.

    PubMed

    Bacanlı, Merve; Başaran, A Ahmet; Başaran, Nurşen

    2016-07-27

    Phenolic compounds not only contribute to the sensory qualities of fruits and vegetables but also exhibit several health protective properties. Galangin, puerarin, and ursolic acid are commonly used plant phenolics in folk medicine. In this study, the antioxidant capacities of galangin, puerarin, and ursolic acid by the trolox equivalent antioxidant capacity (TEAC) assay and the cytotoxic effects by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in V79 cells were investigated. The genotoxic potentials of galangin, puerarin, and ursolic acid were evaluated by micronucleus (MN) and alkaline COMET assays in human lymphocytes and in V79 cells. Galangin, puerarin, and ursolic acid (10, 100, 500, 1000, 2000, 5000, 10 000, and 20 000 μM) were found to have antioxidant activities at the studied concentrations. IC50 values of galangin, puerarin, and ursolic acid in V79 cells were found to be 275.48 μM, 2503.712 μM, and 224.85 μM, respectively. Galangin, puerarin, and ursolic acid, at the all concentrations, have not exerted genotoxic effects and galangin, puerarin, and ursolic acid revealed a reduction in the frequency of MN and DNA damage induced by H2O2.

  1. Effects of Asiatic Acid on Spatial Working Memory and Cell Proliferation in the Adult Rat Hippocampus

    PubMed Central

    Sirichoat, Apiwat; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanan; Leksomboon, Ratana; Chaichun, Amnart; Wigmore, Peter; Umka Welbat, Jariya

    2015-01-01

    Asiatic acid is a pentacyclic triterpene from Centella asiatica. Previous studies have reported that asiatic acid exhibits antioxidant and neuroprotective activities in cell culture. It also prevents memory deficits in animal models. The objective of this study was to investigate the relationship between spatial working memory and changes in cell proliferation within the hippocampus after administration of asiatic acid to male Spraque-Dawley rats. Control rats received vehicle (propylene glycol) while treated rats received asiatic acid (30 mg/kg) orally for 14 or 28 days. Spatial memory was determined using the novel object location (NOL) test. In animals administered asiatic acid for both 14 and 28 days, the number of Ki-67 positive cells in the subgranular zone of the dentate gyrus was significantly higher than in control animals. This was associated with a significant increase in their ability to discriminate between novel and familiar object locations in a novel object discrimination task, a hippocampus-dependent spatial memory test. Administration of asiatic acid also significantly increased doublecortin (DCX) and Notch1 protein levels in the hippocampus. These findings demonstrate that asiatic acid treatment may be a potent cognitive enhancer which improves hippocampal-dependent spatial memory, likely by increasing hippocampal neurogenesis. PMID:26445061

  2. Assessment of the environmental aspects of the DOE phosphoric acid fuel cell program

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.; Cavagrotti, R. R.

    1983-01-01

    The likely facets of a nationwide phosphoric acid fuel cell (PAFC) power plant commercial system are described. The beneficial and adverse environmental impacts produced by the system are assessed. Eleven specific system activities are characterized and evaluated. Also included is a review of fuel cell technology and a description of DOE's National Fuel Cell Program. Based on current and reasonably foreseeable PAFC characteristics, no environmental or energy impact factor was identified that would significantly inhibit the commercialization of PAFC power plant technology.

  3. Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium.

    PubMed

    Sugimoto, Ryo; Nabeshima, Yo-ichi; Yoshida, Shosei

    2012-01-01

    Homeostasis of tissues relies on the regulated differentiation of stem cells. In the epithelium of mouse seminiferous tubules, the differentiation process from undifferentiated spermatogonia (A(undiff)), which harbor the stem cell functions, to sperm occurs in a periodical manner, known as the "seminiferous epithelial cycle". To identify the mechanism underlying this periodic differentiation, we investigated the roles of Sertoli cells (the somatic supporting cells) and retinoic acid (RA) in the seminiferous epithelial cycle. Sertoli cells cyclically change their functions in a coordinated manner with germ cell differentiation and support the entire process of spermatogenesis. RA is known to play essential roles in this periodic differentiation, but its precise mode of action and its regulation remains largely obscure. We showed that an experimental increase in RA signaling was capable of both inducing A(undiff) differentiation and resetting the Sertoli cell cycle to the appropriate stage. However, these actions of exogenous RA signaling on A(undiff) and Sertoli cells were strongly interfered by the differentiating germ cells of intimate location. Based on the expression of RA metabolism-related genes among multiple cell types - including germ and Sertoli cells - and their regulation by RA signaling, we propose here that differentiating germ cells play a primary role in modulating the local RA metabolism, which results in the timed differentiation of A(undiff) and the appropriate cycling of Sertoli cells. Similar regulation by differentiating progeny through the modulation of local environment could also be involved in other stem cell systems.

  4. Oncogene-Selective Sensitivity to Synchronous Cell Death following Modulation of the Amino Acid Nutrient Cystine.

    PubMed

    Poursaitidis, Ioannis; Wang, Xiaomeng; Crighton, Thomas; Labuschagne, Christiaan; Mason, David; Cramer, Shira L; Triplett, Kendra; Roy, Rajat; Pardo, Olivier E; Seckl, Michael J; Rowlinson, Scott W; Stone, Everett; Lamb, Richard F

    2017-03-14

    Cancer cells reprogram their metabolism, altering both uptake and utilization of extracellular nutrients. We individually depleted amino acid nutrients from isogenic cells expressing commonly activated oncogenes to identify correspondences between nutrient supply and viability. In HME (human mammary epithelial) cells, deprivation of cystine led to increased cell death in cells expressing an activated epidermal growth factor receptor (EGFR) mutant. Cell death occurred via synchronous ferroptosis, with generation of reactive oxygen species (ROS). Hydrogen peroxide promoted cell death, as both catalase and inhibition of NADPH oxidase 4 (NOX4) blocked ferroptosis. Blockade of EGFR or mitogen-activated protein kinase (MAPK) signaling similarly protected cells from ferroptosis, whereas treatment of xenografts derived from EGFR mutant non-small-cell lung cancer (NSCLC) with a cystine-depleting enzyme inhibited tumor growth in mice. Collectively, our results identify a potentially exploitable sensitization of some EGFR/MAPK-driven tumors to ferroptosis following cystine depletion.

  5. Role of fatty-acid synthesis in dendritic cell generation and function.

    PubMed

    Rehman, Adeel; Hemmert, Keith C; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R; Barilla, Rocky; Quesada, Juan P; Zambirinis, Constantinos P; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H Leon; Graffeo, Christopher S; Acehan, Devrim; Miller, George

    2013-05-01

    Dendritic cells (DC) are professional APCs that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of cleaved caspase-3 and BCL-xL and downregulation of cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHC class II, ICAM-1, B7-1, and B7-2 but increased their production of selected proinflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacity to activate allogeneic as well as Ag-restricted CD4(+) and CD8(+) T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune phenotype and IFN-γ production. Because endoplasmic reticulum (ER) stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAPK and Akt signaling. Further, lowering ER stress by 4-phenylbutyrate mitigated the enhanced immune stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy.

  6. Effects of omega-3 fatty acids on regulatory T cells in hematologic neoplasms

    PubMed Central

    Betiati, Dayanne da Silva Borges; de Oliveira, Paula Fernanda; Camargo, Carolina de Quadros; Nunes, Everson Araújo; Trindade, Erasmo Benício Santos de Moraes

    2013-01-01

    The development of leukemia and lymphomas is related to the increase in inflammatory process modulators. These, in turn, have divergent actions on the neoplastic process. Populations of T cells have different roles in the neoplastic environment; while interferon-gamma positive T cells have antitumor activity, the FoxP3+interleukin-10 positive population present a pro-tumor activity. Simultaneously, the inflammatory process promotes the mobilization of fatty acids from the cell membrane to produce lipid mediators, which also participate of the inflammatory response. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) omega-3 fatty acids, when incorporated in the plasmatic membrane, decrease the arachidonic acid (AA) metabolism and the production of eicosanoids derived from it. Thus, an alternative family of lipid mediators are produced that are often less inflammatory than those produced from arachidonic acid. Fatty acids can also influence the production of peptide mediators such as cytokines, and the expression of transcription factors, which can determine the production patterns of eicosanoids and cytokines as well as cell differentiation. Due to these properties, the objective of this literature review was to investigate studies published over the last 15 years on the effects of using omega-3 fatty acids on inflammatory markers in leukemia and lymphomas. PMID:23741190

  7. Docosahexaenoic acid regulates gene expression in HUVEC cells treated with polycyclic aromatic hydrocarbons.

    PubMed

    Gdula-Argasińska, Joanna; Czepiel, Jacek; Totoń-Żurańska, Justyna; Jurczyszyn, Artur; Perucki, William; Wołkow, Paweł

    2015-07-16

    The molecular mechanism of inflammation and carcinogenesis induced by exposure of polycyclic aromatic hydrocarbons (PAHs) is not clearly understood. Our study was undertaken due to the strong pro-carcinogenic potential and reactivity of PAH-metabolites, as well as the susceptibility of polyunsaturated fatty acids to oxidation. The aim of this study was to evaluate the pro- or anti-inflammatory impact of n-3 docosahexaenoic acid on human primary umbilical vein endothelial cells (HUVEC) exposed to polycyclic aromatic hydrocarbons. We analysed the influence of docosahexaenoic acid (DHA) and/or PAHs supplementation on the fatty acid profile of cell membranes, on cyclooxygenase-2 (COX-2), aryl hydrocarbon receptor (AHR), and glutathione S transferase Mu1 (GSTM1) protein expression as well as on the prostaglandin synthase 2 (PTGS2), AHR, GSTM1, PLA2G4A, and cytochrome P450 CYP1A1 gene expression. We observed that COX-2 and AHR protein expression was increased while GSTM1 expression was decreased in cells exposed to DHA and PAHs. Docosahexaenoic acid down-regulated CYP1A1 and up-regulated the AHR and PTGS2 genes. Our findings suggested that DHA contributes significantly to alleviate the harmful effects caused by PAHs in endothelial cells. Moreover, these results suggest that a diet rich in n-3 fatty acids is helpful to reduce the harmful effects of PAHs exposure on human living in heavily polluted areas.

  8. Synergistic cytotoxic effects of zoledronic acid and radiation in human prostate cancer and myeloma cell lines

    SciTech Connect

    Algur, Ece; Macklis, Roger M.; Haefeli, Urs O. . E-mail: uhafeli@interchange.ubc.ca

    2005-02-01

    Purpose: The clinical use of the potent bisphosphonate zoledronic acid has increased recently, especially for the treatment of bone metastases. Synergistic effects with chemotherapeutic agents (e.g., doxorubicin, paclitaxel) have been shown. It is not known whether similar synergistic effects exist with radiation. Methods and materials: IM-9 myeloma cells and C4-2 prostate cancer cells were treated with up to 200 {mu}M concentrations of zoledronic acid, irradiated with single doses of up to 1,000 cGy, or exposed to combinations of both treatments. Cell viability was then determined via yellow dye 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assay and the affected fractions analyzed using the median effect principal, a method developed and validated by Chou and Talalay. Results: A statistically significant synergistic cytotoxic effect of the combination of zoledronic acid and radiation was documented. The extent of the effect was cell type-dependent, with the C4-2 cells showing a greater synergistic effect than the IM-9 cells. Conclusions: The combined use of zoledronic acid and radiotherapy shows enhanced in vitro cytotoxicity for two human prostate and myeloma cancer cell lines over that expected for a simple additive effect from each treatment alone. A clinical trial is under way to test this combination therapy.

  9. Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens using an internal membrane filtration system.

    PubMed

    Lee, Pyung-Cheon; Lee, Sang-Yup; Chang, Ho-Nam

    2008-07-01

    Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens was anaerobically carried out using an internal membrane filter module in order to examine the physiological response of A. succiniciproducens to a high-cell-density environment. The optimal growth of A. succiniciproducens and its enhanced succinic acid productivity were observed under CO2-rich conditions, established by adding NaHCO3 and Na2CO3, in the cell recycled system. A. succiniciproducens grew up to 6.50 g-DCW/l, the highest cell concentration obtained so far, in cell recycled cultures. The cells did not change their morphology, which is known to be easily changed in unfavorable or stress environments. The maximum productivity of succinic acid was about 3.3 g/l/h, which is 3.3 times higher than those obtained in batch cultures. These results can serve as a guide for designing highly efficient cell recycled systems for succinic acid at a commercial level.

  10. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    PubMed

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  11. Effect of Chicoric Acid on Mast Cell-Mediated Allergic Inflammation in Vitro and in Vivo.

    PubMed

    Lee, Na Young; Chung, Kyung-Sook; Jin, Jong Sik; Bang, Keuk Soo; Eom, Ye-Jin; Hong, Chul-Hee; Nugroho, Agung; Park, Hee-Jun; An, Hyo-Jin

    2015-12-24

    Chicoric acid (dicaffeoyl-tartaric acid), is a natural phenolic compound found in a number of plants, such as chicory (Cichorium intybus) and Echinacea (Echinacea purpurea), which possesses antioxidant, anti-inflammatory, antiviral, and analgesic activities. Although these biological effects of chicoric acid have been investigated, there are no reports of its antiallergic-related anti-inflammatory effects in human mast cells (HMC)-1 or anaphylactic activity in a mouse model. Therefore, we investigated the antiallergic-related anti-inflammatory effect of chicoric acid and its underlying mechanisms of action using phorbol-12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated HMC-1 cells. Chicoric acid decreased the mRNA expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. We studied the inhibitory effects of chicoric acid on the nuclear translocation of nuclear factor kappa B (NF-κB) and activation of caspase-1. However, mitogen-activated protein kinase (MAPK) activation was not sufficient to abrogate the stimulus. In addition, we investigated the ability of chicoric acid to inhibit compound 48/80-induced systemic anaphylaxis in vivo. Oral administration of chicoric acid at 20 mg/kg inhibited histamine release and protected mice against compound 48/80-induced anaphylactic mortality. These results suggest that chicoric acid has an antiallergic-related anti-inflammatory effect that involves modulating mast cell-mediated allergic responses. Therefore, chicoric acid could be an efficacious agent for allergy-related inflammatory disorders.

  12. Ursodeoxycholic acid protects colon cancer HCT116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosome formation.

    PubMed

    Saeki, Tohru; Yui, Satoko; Hirai, Tadashi; Fujii, Takami; Okada, Sawami; Kanamoto, Ryuhei

    2012-01-01

    We previously demonstrated that ursodeoxycholic acid (UDC) requires prolonged (≥5 h) preincubation to exhibit effective protection of colon cancer HCT116 cells from deoxycholic acid (DC)-induced apoptosis. Although UDC diminished DC-mediated caspase-9 activation, cytochrome c release from the mitochondria was not inhibited, indicating that UDC acts on the steps of caspase-9 activation. In the present study, therefore, we investigated the effects of UDC on the factors involved in caspase-9 activation. We found that UDC had no significant effect on the expression of antiapoptotic XIAP. Furthermore, UDC did not affect the expression or release of proapoptotic Smac/DIABLO, or the association of XIAP and Smac/DIABLO. In contrast, association of Apaf-1 and caspase-9 stimulated by 500 μM DC was inhibited by UDC pretreatment. Although UDC caused remarkable activation of Akt/PKB, phosphatidylinositol-3-kinase (PI3K) inhibitor did not significantly reduce UDC-mediated cytoprotection. Furthermore, phosphorylation of threonine residues on caspase-9 after UDC pretreatment could not be detected. UDC-mediated cytoprotection was independent of the MAPK pathway, and cyclic AMP (cAMP) analogue did not inhibit DC-induced apoptosis. Our results indicate that UDC protects colon cancer cells from apoptosis induced by hydrophobic bile acids, by inhibiting apoptosome formation independently of the survival signals mediated by the PI3K, MAPK, or cAMP pathways.

  13. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid.

    PubMed

    Löfling, Jonas; Lyi, Sangbom Michael; Parrish, Colin R; Varki, Ajit

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells.

  14. Defects in Postabsorptive Plasma Homeostasis of Fatty Acids in Sickle Cell Disease

    PubMed Central

    Buchowski, Maciej S.; Swift, Larry L.; Akohoue, Sylvie A.; Shankar, Sadhna M.; Flakoll, Paul J.; Abumrad, Naji

    2010-01-01

    Background The chronic hemolytic anemia experienced by sickle cell disease (SCD) patients leads to adverse effects on oxygen transport by the blood and to a decrease in oxygen availability for peripheral tissues. Limited tissue oxygen availability has the potential to modify events of intracellular metabolism and, thus, alter lipid homeostasis. Methods The impact of SCD on plasma fatty acid homeostasis was determined in 8 African American SCD patients and in 6 healthy African American control subjects under postabsorptive conditions and during a 3-hour IV infusion of a nutrient solution containing lipid, glucose, and amino acids. Results SCD patients had higher fasting levels of plasma nonesterified fatty acids (NEFA), triglycerides, and phospholipids than healthy controls. Similarly, SCD patients had higher fasting levels of fatty acids in plasma triglycerides and phospholipids than healthy controls. Infusion of nutrients resulted in equivalent plasma NEFA profiles, total NEFA, and triglycerides in SCD patients and controls. However, the plasma phospholipid concentrations and fatty acid composition of plasma triglycerides and phospholipids were significantly higher in SCD patients; in particular, plasma pools of oleic acid were consistently increased in SCD. Plasma free oleic acid levels were elevated basally, leading to increased oleic acid content in triglycerides and phospholipids both postabsorptively and during nutrient infusion. Conclusions There is an underlying defect in lipid metabolism associated with SCD best manifested during the fasting state. This abnormality in lipid homeostasis has the potential to alter red blood cell (RBC) membrane fluidity and function in SCD patients. PMID:17595432

  15. Antiangiogenic effects of p-coumaric acid in human endothelial cells.

    PubMed

    Kong, Chang-Seok; Jeong, Chul-Ho; Choi, Jae-Sun; Kim, Kil-Jung; Jeong, Joo-Won

    2013-03-01

    p-Coumaric acid, a hydroxy derivative of cinnamic acid, has been known to possess antioxidant and anticancer activities. Despite its potential contribution to chemopreventive effects, the mechanism by which p-coumaric acid exerts its antiangiogenic actions remains elusive. In this study, we revealed that p-coumaric acid inhibited the sprouting of endothelial cells in rat aortic rings and inhibited the tube formation and migration of endothelial cells. We observed that p-coumaric acid could downregulate mRNA expression levels of the key angiogenic factors vascular endothelial growth factor and basic fibroblast growth factor. Also, we demonstrated that p-coumaric acid inhibited both the AKT and ERK signaling pathways, which are known to be crucial for angiogenesis. Using a mouse model, we also showed that p-coumaric acid effectively suppressed tumor growth in vivo by lowering hemoglobin contents. Collectively, these findings indicate that p-coumaric acid possesses potent anticancer properties due to the inhibition of angiogenesis in vivo.

  16. All-trans and 9-cis retinoic acid alter rat hepatic stellate cell phenotype differentially

    PubMed Central

    Hellemans, K; Grinko, I; Rombouts, K; Schuppan, D; Geerts, A

    1999-01-01

    BACKGROUND—Hepatic stellate cells exert specific functions in the liver: storage of large amounts of retinyl esters, synthesis and breakdown of hepatic extracellular matrix, secretion of a variety of cytokines, and control of the diameter of the sinusoids.
AIMS—To examine the influence of all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9RA) on extracellular matrix production and proliferation of activated hepatic stellate cells.
METHODS—Cells were isolated using collagenase/pronase, purified by centrifugation in nycodenz, and cultured for two weeks. At this time point the cells exhibited the activated phenotype. Cells were exposed to various concentrations of ATRA and 9RA. The expression of procollagens I, III, and IV, of fibronectin and of laminin were analysed by immunoprecipitation and northern hybridisation.
RESULTS—ATRA exerted a significant inhibitory effect on the synthesis of procollagens type I, III, and IV, fibronectin, and laminin, but did not influence stellate cell proliferation, whereas 9RA showed a clear but late effect on proliferation. 9RA increased procollagen I mRNA 1.9-fold, but did not affect the expression of other matrix proteins.
CONCLUSION—Results showed that ATRA and 9RA exert different, often contrary effects on activated stellate cells. These observations may explain prior divergent results obtained following retinoid administration to cultured stellate cells or in animals subjected to fibrogenic stimuli.


Keywords: hepatic stellate cells; retinoic acid; extracellular matrix proteins; proliferation PMID:10369717

  17. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy

    PubMed Central

    D’Eliseo, Donatella; Velotti, Francesca

    2016-01-01

    Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy. PMID:26821053

  18. Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells.

    PubMed

    Liu, Shuanghu; Chen, Ren; Hagedorn, Curt H

    2015-01-01

    Chronic infection with the hepatitis C virus (HCV) is a cause of cirrhosis and hepatocellular carcinoma worldwide. Although antiviral therapy has dramatically improved recently, a number of patients remain untreated and some do not clear infection with treatment. Viral entry is an essential step in initiating and maintaining chronic HCV infections. One dramatic example of this is the nearly 100% infection of newly transplanted livers in patients with chronic hepatitis C. HCV entry inhibitors could play a critical role in preventing HCV infection of newly transplanted livers. Tannic acid, a polymer of gallic acid and glucose molecules, is a plant-derived polyphenol that defends some plants from insects and microbial infections. It has been shown to have a variety of biological effects, including antiviral activity, and is used as a flavoring agent in foods and beverages. In this study, we demonstrate that tannic acid is a potent inhibitor of HCV entry into Huh7.5 cells at low concentrations (IC50 5.8 μM). It also blocks cell-to-cell spread in infectious HCV cell cultures, but does not inhibit HCV replication following infection. Moreover, experimental results indicate that tannic acid inhibits an early step of viral entry, such as the docking of HCV at the cell surface. Gallic acid, tannic acid's structural component, did not show any anti-HCV activity including inhibition of HCV entry or replication at concentrations up to 25 μM. It is possible the tannin structure is related on the effect on HCV inhibition. Tannic acid, which is widely distributed in plants and foods, has HCV antiviral activity in cell culture at low micromolar concentrations, may provide a relative inexpensive adjuvant to direct-acting HCV antivirals and warrants future investigation.

  19. Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation.

    PubMed

    Baker, Paul R S; Schopfer, Francisco J; Sweeney, Scott; Freeman, Bruce A

    2004-08-10

    Nitric oxide (*NO) and its reactive metabolites mediate the oxidation, nitration, and nitrosation of DNA bases, amino acids, and lipids. Here, we report the structural characterization and quantitation of two allylic nitro derivatives of linoleic acid (LNO(2)), present as both free and esterified species in human red cell membranes and plasma lipids. The LNO(2) isomers 10-nitro-9-cis, 12-cis-octadecadienoic acid and 12-nitro-9-cis, 12-cis-octadecadienoic acid were synthesized and compared with red cell and plasma LNO(2) species based on chromatographic elution and mass spectral properties. Collision-induced dissociation fragmentation patterns from synthetic LNO(2) isomers were identical to those of the two most prevalent LNO(2) positional isomers found in red cells and plasma. By using [(13)C]LNO(2) as an internal standard, red cell free and esterified LNO(2) content was 50 +/- 17 and 249 +/- 104 nM, respectively. The free and esterified LNO(2) content of plasma was 79 +/- 35 and 550 +/- 275 nM, respectively. Nitrated fatty acids, thus, represent the single largest pool of bioactive oxides of nitrogen in the vasculature, with a net LNO(2) concentration of 477 +/- 128 nM, excluding buffy coat cells. These observations affirm that basal oxidative and nitrating conditions occur in healthy humans to an extent that is sufficient to induce abundant membrane and lipoprotein-fatty acid nitration. Given that LNO(2) is capable of mediating cGMP and non-cGMP-dependent signaling reactions, fatty acid nitration products are species representing the convergence of ()NO and oxygenated lipid cell-signaling pathways.

  20. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity.

    PubMed

    Lolicato, Francesca; Brouwers, Jos F; de Lest, Chris H A van; Wubbolts, Richard; Aardema, Hilde; Priore, Paola; Roelen, Bernard A J; Helms, J Bernd; Gadella, Bart M

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report, we described the effects of the three predominant fatty acids in follicular fluid (saturated palmitate and stearate and unsaturated oleate) on oocyte maturation and quality. In the current study, the effects of elevated fatty acid levels on cumulus cells were investigated. In a dose-dependent manner, the three fatty acids induced lipid storage in cumulus cells accompanied by an enhanced immune labeling of perilipin-2, a marker for lipid droplets. Lipidomic analysis confirmed incorporation of the administered fatty acids into triglyceride, resulting in a 3- to 6-fold increase of triglyceride content. In addition, palmitate selectively induced ceramide formation, which has been implicated in apoptosis. Indeed, of the three fatty acids tested, palmitate induced reactive oxygen species formation, caspase 3 activation, and mitochondria deterioration, leading to degeneration of the cumulus cell layers. This effect could be mimicked by addition of the ceramide-C2 analog and could be inhibited by the ceramide synthase inhibitor fumonisin-B1. Interfering with the intactness of the cumulus cell layers, either by mechanical force or by palmitate treatment, resulted in enhanced uptake of lipids in the oocyte and increased radical formation. Our results show that cumulus cells act as a barrier, protecting oocytes from in vitro induced lipotoxic effects. We suggest that this protective function of the cumulus cell layers is important for the developmental competence of the oocyte. The relevance of our findings for assisted reproduction technologies is discussed.

  1. Glycosylated carriers for cell-selective and nuclear delivery of nucleic acids.

    PubMed

    Wijagkanalan, Wassana; Kawakami, Shigeru; Hashida, Mitsuru

    2011-06-01

    Targeted gene delivery via selective cellular receptors has been realized as a crucial strategy for successful gene therapy by maximizing therapeutic efficiency in target cells and minimizing systemic toxicity. The membrane carbohydrate-binding proteins (membrane lectins) with different carbohydrate specificities are differentially expressed on the cellular and intracellular membranes of a number of cells. Their multiplicity, high affinity, and effective endocytosis after receptor binding as well as the biocompatibility of carbohydrate ligands endow them as potential ligands for glycosylated carriers in cell-selective delivery of nucleic acids. To achieve the in vivo application, glycosylated carriers/nucleic acid complexes have to fulfill certain conditions, including having a suitable size, minimal nonspecific interactions, low immunogenicity, and high uptake in target cells. Accordingly, the effective nuclear delivery of nucleic acids is the paramount important step for efficient gene transfer. This review summarizes the recent progress regarding application of glycosylated carriers for cell-selective and nuclear delivery of nucleic acids and their critical factors for efficient gene transfer. In addition, the development of new materials, such as carbon nanotubes, carbon nanospheres, and gold nanoparticles, as innovative carriers will be discussed with regards to glycosylation-mediated delivery of nucleic acids.

  2. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  3. Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Yubo; Su, Chao; Zheng, Tao; Shao, Zongping

    2012-12-01

    Formic acid is investigated as a fuel for Solid Oxide Fuel Cells (SOFCs) for the first time. Thermodynamic calculations demonstrate that carbon deposition is avoidable above 600 °C. The carbon deposition properties are also investigated experimentally by first treating a nickel plus yttria-stabilized zirconia (Ni-YSZ) anode material in particle form under a formic acid-containing atmosphere for a limited time at 500-800 °C and then analyzing the particles by O2-TPO. This analysis confirms that carbon deposition on Ni-YSZ is weak above 600 °C. We further treat half-cells composed of YSZ electrolyte and Ni-YSZ anode under formic acid-containing atmosphere at 600, 700 and 800 °C; the anodes maintain their original geometric shape and microstructure and show no obvious weight gain. It suggests that formic acid can be directly fed into SOFCs constructed with conventional nickel-based cermet anodes. I-V tests show that the cell delivers a promising peak power density of 571 mW cm-2 at 800 °C. In addition, the cells also show good performance stability. The results indicate that formic acid is highly promising as a direct fuel for SOFCs without the need for cell material modifications.

  4. Alkenyl Carboxylic Acid: Engineering the Nanomorphology in Polymer-Polymer Solar Cells as Solvent Additive.

    PubMed

    Zhang, Yannan; Yuan, Jianyu; Sun, Jianxia; Ding, Guanqun; Han, Lu; Ling, Xufeng; Ma, Wanli

    2017-04-06

    We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.

  5. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  6. In Vitro Cytotoxic Effects of Celecoxib, Mefenamic Acid, Aspirin and Indometacin on Several Cells Lines

    PubMed Central

    Hashemipour, Maryam Alsadat; Mehrabizadeh Honarmand, Hoda; Falsafi, Farideh; Tahmasebi Arashlo, Mehrnaz; Rajabalian, Saied; Gandjalikhan Nassab, Sayed Amir Hossein

    2016-01-01

    Statement of the Problem Use of cyclooxygenase inhibitors as chemotherapy agents has attracted the attention of a large number of investigators in recent years. Given the importance of cancer therapy, only a limited number of studies have been carried out to investigate the effects of cyclooxygenase inhibitors on specific cell lines. Purpose This research aimed to determine the in vitro cytotoxic effects of cyclooxygenase inhibitors (COX-1 and COX-2 inhibitors) on KB, Saos-2, 1321N, U-87MG, SFBF-PI 39 cell lines. Materials and Method Powders of celecoxib, mefenamic acid, aspirin and indometacin were dissolved in the appropriate solvent. The viability of cell lines was carried out by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay technique. Data gathered from four separate experiments were expressed as mean±SD. Statistical significance was defined at p< 0.05 by using analysis of variance. Significant treatment mean values were subjected to post-hoc Tukey’s test. Results Celecoxib showed marked cytotoxic effects on KB, Saos-2, and 1321N cells, which was significant in comparison with the control group. Celecoxib was not effective in killing U-87MG cell line. Mefenamic acid exerted cytotoxic effects on KB, Saos-2, and 1321N cells, where the viability was approximately 75%. U-87MG cells were resistant to mefenamic acid. Indometacin had the highest rate of activity on U-87MG cells, which was significant in comparison with the control group. Aspirin did not exhibit any activity on these cell lines and was not effective in killing U-87MG, KB, Saos-2, and 1321N cells. Conclusion This research showed that celecoxib, indometacin, and mefenamic acid have the cytotoxic effects on KB, Saos-2, 1321N and U-87MG cell lines. Therefore, it appears that these drugs can be considered as anti-neoplastic agents in the experimental phase. PMID:27602398

  7. CHR-2797: an antiproliferative aminopeptidase inhibitor that leads to amino acid deprivation in human leukemic cells.

    PubMed

    Krige, David; Needham, Lindsey A; Bawden, Lindsay J; Flores, Nicolas; Farmer, Hannah; Miles, Lauren E C; Stone, Erica; Callaghan, Juliana; Chandler, Stephen; Clark, Vanessa L; Kirwin-Jones, Patricia; Legris, Valérie; Owen, Jo; Patel, Thakor; Wood, Steve; Box, Gary; Laber, David; Odedra, Rajesh; Wright, Annette; Wood, L Michael; Eccles, Suzanne A; Bone, Elisabeth A; Ayscough, Andrew; Drummond, Alan H

    2008-08-15

    CHR-2797 is a novel metalloenzyme inhibitor that is converted into a pharmacologically active acid product (CHR-79888) inside cells. CHR-79888 is a potent inhibitor of a number of intracellular aminopeptidases, including leucine aminopeptidase. CHR-2797 exerts antiproliferative effects against a range of tumor cell lines in vitro and in vivo and shows selectivity for transformed over nontransformed cells. Its antiproliferative effects are at least 300 times more potent than the prototypical aminopeptidase inhibitor, bestatin. However, the mechanism by which inhibition of these enzymes leads to proliferative changes is not understood. Gene expression microarrays were used to profile changes in mRNA expression levels in the human promyelocytic leukemia cell line HL-60 treated with CHR-2797. This analysis showed that CHR-2797 treatment induced a transcriptional response indicative of amino acid depletion, the amino acid deprivation response, which involves up-regulation of amino acid synthetic genes, transporters, and tRNA synthetases. These changes were confirmed in other leukemic cell lines sensitive to the antiproliferative effects of CHR-2797. Furthermore, CHR-2797 treatment inhibited phosphorylation of mTOR substrates and reduced protein synthesis in HL-60 cells, both also indicative of amino acid depletion. Treatment with CHR-2797 led to an increase in the concentration of intracellular small peptides, the substrates of aminopeptidases. It is suggested that aminopeptidase inhibitors, such as CHR-2797 and bestatin, deplete sensitive tumor cells of amino acids by blocking protein recycling, and this generates an antiproliferative effect. CHR-2797 is orally bioavailable and currently undergoing phase II clinical investigation in the treatment of myeloid leukemia.

  8. Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells.

    PubMed

    Jiao, Jiao; Sun, Ling; Zhou, Benguo; Gao, Zhengliang; Hao, Yu; Zhu, Xiaoping; Liang, Yuancun

    2014-08-15

    Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells.

  9. Dimethylarsenic acid induces tetraploids in Chinese hamster cells

    SciTech Connect

    Endo, Ginji; Horiguchi, Shun'ichi ); Kuroda, Koichi; Okamoto, Akiyoshi )

    1992-01-01

    Arsenic has been documented as a human carcinogen of the skin and lungs. However, attempts to induce tumors in experimental animals with inorganoarsenic compounds have mostly failed except in a few studies in which animals were given arsenic trioxide by intratracheal instillation. Moreover, inorganoarsenics are either inactive or too weak to induce gene mutations in vitro. The mechanism of arsenic carcinogenicity has not yet been discovered. Most mammals including human are able to methylate inorganoarsenic compounds to methylarsonic acid and dimethylarsenic acid. However, the genotoxicity of organoarsenic compounds has hardly been examined. The authors therefore decided to study this genotoxicity, including the frequency of sister chromatid exchange (SCE) of nine organic and three inorganic arsenic compounds. Observation of the metaphases in the SCE test revealed that only DMA of the organo- and inorgano-arsenic compounds induces tetraploids and mitotic arrest. This indicates that the role of DMA may be important in arsenic genotoxicity and may give a clue to the carcinogenic mechanism of arsenic.

  10. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  11. Effects of C18 Fatty Acids on Intracellular Ca(2+) Mobilization and Histamine Release in RBL-2H3 Cells.

    PubMed

    Kim, Myung Chul; Kim, Min Gyu; Jo, Young Soo; Song, Ho Sun; Eom, Tae In; Sim, Sang Soo

    2014-06-01

    To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and α-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular Ca(2+) mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular Ca(2+) mobilization, whereas linoleic acid and α-linolenic acid gradually increased this mobilization. In the absence of extracellular Ca(2+), stearic acid (100 µM) did not cause any increase of intracellular Ca(2+) mobilization. Both linoleic acid and α-linolenic acid increased intracellular Ca(2+) mobilization, but the increase was smaller than that in the presence of extracellular Ca(2+). These results suggest that C18 fatty acid-induced intracellular Ca(2+) mobilization is mainly dependent on extracellular Ca(2+) influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular Ca(2+) mobilization, but did not affect both linoleic acid and α-linolenic acid-induced intracellular Ca(2+) mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and α-linolenic acid on intracellular Ca(2+) mobilization may differ. Linoleic acid and α-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: ω-6)-induced intracellular Ca(2+) mobilization and histamine release were more prominent than α-linolenic acid (C18:3: ω-3). These data support the view that the intake of more α-linolenic acid than linoleic acid is useful in preventing inflammation.

  12. Effects of C18 Fatty Acids on Intracellular Ca2+ Mobilization and Histamine Release in RBL-2H3 Cells

    PubMed Central

    Kim, Myung Chul; Kim, Min Gyu; Jo, Young Soo; Song, Ho Sun; Eom, Tae In

    2014-01-01

    To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and α-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular Ca2+ mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular Ca2+ mobilization, whereas linoleic acid and α-linolenic acid gradually increased this mobilization. In the absence of extracellular Ca2+, stearic acid (100 µM) did not cause any increase of intracellular Ca2+ mobilization. Both linoleic acid and α-linolenic acid increased intracellular Ca2+ mobilization, but the increase was smaller than that in the presence of extracellular Ca2+. These results suggest that C18 fatty acid-induced intracellular Ca2+ mobilization is mainly dependent on extracellular Ca2+ influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular Ca2+ mobilization, but did not affect both linoleic acid and α-linolenic acid-induced intracellular Ca2+ mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and α-linolenic acid on intracellular Ca2+ mobilization may differ. Linoleic acid and α-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: ω-6)-induced intracellular Ca2+ mobilization and histamine release were more prominent than α-linolenic acid (C18:3: ω-3). These data support the view that the intake of more α-linolenic acid than linoleic acid is useful in preventing inflammation. PMID:24976764

  13. Interactions of chrysotile and crocidolite asbestos with red blood cell membranes. Chrysotile binds to sialic acid.

    PubMed

    Brody, A R; George, G; Hill, L H

    1983-10-01

    Chrysotile and crocidolite are commonly used forms of asbestos. Hemolysis has been widely used as a test of membrane injury, and it has been shown previously that chrysotile causes rapid breakdown of red blood cells (RBCs), whereas crocidolite is only weakly hemolytic. A reasonable hypothesis set forth to explain the cytotoxic effects of chrysotile maintains that positively charged chrysotile fibers bind to negatively charged sialic acid residues on RBC membranes causing clustering of membrane proteins and increased cell permeability to Na and K ions. Our studies presented here provide two lines of evidence in direct support of this hypothesis. (a) Morphologic--Ultrastructural techniques showed that both chrysotile and crocidolite asbestos bind to and distort more than 85% of RBCs treated for 15 minutes. The distorting effects of chrysotile, but not crocidolite, were almost totally ablated by pretreating the cells with neuraminidase. In addition, gold-conjugated wheat germ agglutinin was used to label the distribution of sialic acid groups on RBC membranes. Pretreatment of the RBCs with chrysotile, but not crocidolite, reduced the number of gold-conjugated wheat germ agglutinin-labeled sites to less than 30% of the control level. (b) Biochemical--The thiobarbituric acid assay was used to determine the percentage of sialic acid that remained with the cell pellet after neuraminidase and/or asbestos treatment. Asbestos treatment alone caused no release of sialic acid from the cells. Neuraminidase treatment for 3.5 hours removed more than 80% of the sialic acid from cell surfaces. Chrysotile, but not crocidolite, asbestos prevented neuraminidase-mediated removal of sialic acid from RBCs. In addition, x-ray energy spectrometry of freeze-dried cells showed that RBCs distorted by chrysotile, but not by crocidolite, exhibited significant alterations in intracellular Na:K ratios. The morphologic and biochemical data strongly support the hypothesis that chrysotile asbestos

  14. Deoxycholic Acid and Selenium Metabolite Methylselenol Exert Common and Distinct Effects on Cell Cycle, Apoptosis, and MAP Kinase Pathway in HCT116 Human Colon Cancer Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acid deoxycholic acid (DCA) is a known tumor promoter in colon tumor development. The cell growth inhibition induced by DCA may cause compensatory hyperproliferation of colonic epithelial cells and provide selection for subpopulations of cells resistant to DCA’s inhibitory effect. These survivi...

  15. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe

    PubMed Central

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V.

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  16. Biotechnological production of caffeic acid derivatives from cell and organ cultures of Echinacea species.

    PubMed

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Park, So-Young; Paek, Kee-Yoeup

    2014-09-01

    Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.

  17. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli.

    PubMed

    Clark, Michelle W; Yie, Anna M; Eder, Elizabeth K; Dennis, Richard G; Basting, Preston J; Martinez, Keith A; Jones, Brian D; Slonczewski, Joan L

    2015-01-01

    Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  18. Intraluminal acid activates esophageal nodose C fibers after mast cell activation

    PubMed Central

    Zhang, Shizhong; Liu, Zhenyu; Heldsinger, Andrea; Owyang, Chung

    2013-01-01

    Acid reflux in the esophagus can induce esophageal painful sensations such as heartburn and noncardiac chest pain. The mechanisms underlying acid-induced esophageal nociception are not clearly understood. In our previous studies, we characterized esophageal vagal nociceptive afferents and defined their responses to noxious mechanical and chemical stimulation. In the present study, we aim to determine their responses to intraluminal acid infusion. Extracellular single-unit recordings were performed in nodose ganglion neurons with intact nerve endings in the esophagus using ex vivo esophageal-vagal preparations. Action potentials evoked by esophageal intraluminal acid perfusion were compared in naive and ovalbumin (OVA)-challenged animals, followed by measurements of transepithelial electrical resistance (TEER) and the expression of tight junction proteins (zona occludens-1 and occludin). In naive guinea pigs, intraluminal infusion with either acid (pH = 2–3) or capsaicin did not evoke an action potential discharge in esophageal nodose C fibers. In OVA-sensitized animals, following esophageal mast cell activation by in vivo OVA inhalation, intraluminal acid infusion for about 20 min started to evoke action potential discharges. This effect is further confirmed by selective mast cell activation using in vitro tissue OVA challenge in esophageal-vagal preparations. OVA inhalation leads to decreased TEER and zona occludens-1 expression, suggesting an impaired esophageal epithelial barrier function after mast cell activation. These data for the first time provide direct evidence of intraluminal acid-induced activation of esophageal nociceptive C fibers and suggest that mast cell activation may make esophageal epithelium more permeable to acid, which subsequently may increase esophageal vagal nociceptive C fiber activation. PMID:24264049

  19. The enhancement of reproduction and biodegradation activity of eukaryiotic cells by humic acids.

    PubMed

    Siglova, M; Cejkova, A; Masak, J; Jirku, V; Snajdr, J; Valina, O

    2003-01-01

    Fourteen samples of humic acids (HA) were screened for ability to influence reproduction and biodegradation activity of eukaryotic cells in the presence of chosen toxic pollutants. Microorganisms Candida maltosa and Rhodotorula mucilaginosa (soil isolates) were used for all tests. It was observed during our experiments that some samples of humic acids served as a protection against the high concentration of toxic pollutants (phenol, naphtalene etc). This effect can be widely used in many bioremediation technologies.

  20. Deoxycholic acid impairs glycosylation and fucosylation processes in esophageal epithelial cells.

    PubMed

    Byrne, Anne-Marie; Sharma, Ruchika; Duggan, Gina; Kelleher, Dermot; Long, Aideen

    2012-05-01

    It is generally accepted that esophageal adenocarcinoma arises from a Barrett's metaplastic lesion. Altered glycoprotein expression has been demonstrated in tissue from patients with Barrett's esophagus and esophageal cancer but the mechanisms regarding such changes are unknown. The bile acid deoxycholic acid (DCA) alters many cell signaling pathways and is implicated in esophageal cancer progression. We have demonstrated that DCA disrupts Golgi structure and affects protein secretion and glycosylation processes in cell lines derived from normal squamous epithelium (HET-1A) and Barrett's metaplastic epithelium (QH). Cell surface expression of glycans was identified using carbohydrate-specific probes (wheat germ agglutinate, conconavalin A, peanut agglutinin, lithocholic acid and Ulex europaeus agglutinin) that monitored N-glycosylation, O-glycosylation and core fucosylation in resting and DCA-treated cells. DCA altered intracellular localization and reduced cell surface expression of N-acetyl-D-glucosamine, α-methyl-mannopyranoside (Man/Glc) and fucose in both cell lines. Furthermore, DCA reduced the expression of epithelial growth factor receptor and E-cadherin in a manner analogous to treatment of cells with the N-glycan biosynthesis inhibitor tunicamycin. This is the first study to identify an altered Golgi structure and glycomic profile in response to DCA in esophageal epithelial cells, a process which could potentially contribute to metaplasia, dysplasia and cancer of the esophagus.

  1. Evaluation of cell interaction with polymeric biomaterials based on hyaluronic acid and chitosan.

    PubMed

    do Nascimento, Mônica Helena Monteiro; Ferreira, Mariselma; Malmonge, Sônia Maria; Lombello, Christiane Bertachini

    2017-05-01

    Tissue engineering involves the development of new materials or devices capable of specific interactions with biological tissues, searching the use of biocompatible materials as scaffolds for in vitro cell growth, and functional tissue development, that is subsequently implanted into patient. The aim of the current study was to evaluate the initial aspects of cell interaction with the polymeric biomaterials blends based on hyaluronic acid with chitosan. The hypothesis approach involves synthesis and analysis of swelling and thermal degradation (thermal gravimetric analysis) of the polymer blend; and Vero cell interaction with the biomaterial, through analysis of cytotoxicity, adhesion and cell morphology. The blend resulted in a biomaterial with a high swelling ratio that can allow nutrient distribution and absorption. The thermal gravimetric analysis results showed that the blend had two stages of degradation at temperatures very close to those observed for pure polymers, confirming that the physical mixing of hydrogels occurred, resulting in the presence of both hyaluronic acid and chitosan in the blend. The evaluation of indirect cytotoxicity showed that the blend was non cytotoxic for Vero cells, and the quantitative analysis performed with the MTT could verify a cell viability of 98%. The cells cultured on the blend showed adhesion, spreading and proliferation on this biomaterial, distinguished from the pattern of the control cells. These results showed that the blends produced from hyaluronic acid and chitosan hydrogels are promising for applications in tissue engineering, aiming at future cartilaginous tissue.

  2. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells.

    PubMed

    Park, Eun-Jung; Lee, Ah Young; Chang, Seung-Hee; Yu, Kyeong-Nam; Kim, Jae-Ho; Cho, Myung-Haing

    2014-01-03

    Abnormal accumulation of fatty acids triggers the harmful cellular response called lipotoxicity. In this study, we investigated the cellular response following accumulation of oleic acid (OA), a monounsaturated fatty acid, in human Chang liver cells. OA droplets were distributed freely in the cytoplasm and/or degraded within lysosomes. OA exposure increased ATP production and concomitantly dilated mitochondria. At 24h after OA exposure, cell viability decreased slightly and was coupled with a reduction in mitochondrial Ca(2+) concentration, the alteration in cell viability was also associated with the generation of reactive oxygen species and changes in the cell cycle. Moreover, OA treatment increased the expression of autophagy- and apoptotic cell death-related proteins in a dose-dependent manner. Furthermore, we investigated the role of p53, a tumor suppressor protein, in the cellular response elicited by OA accumulation. OA-induced changes in cell viability and ATP production were rescued to control levels when cells were pretreated with pifithrin-alpha (PTA), a p53 inhibitor. By contrast, the expressions of LC3-II and perilipin, proteins required for lipophagy, were down-regulated by PTA pretreatment. Taken together, our results suggest that p53 plays a key role in the cellular response elicited by OA accumulation in Chang liver cells.

  3. Effects of cigarette smoke on cell viability, linoleic acid metabolism and cholesterol synthesis, in THP-1 cells.

    PubMed

    Ghezzi, Silvia; Risé, Patrizia; Ceruti, Stefania; Galli, Claudio

    2007-07-01

    Cigarette smoke (CS) contains thousands of substances, mainly free radicals that have as a target the polyunsaturated fatty acids (PUFA). Long chain PUFA are produced through elongation and desaturation reactions from their precursors; the desaturation reactions are catalyzed by different enzymes: the conversion of 18:2n-6 (linoleic acid, LA) to 18:3n-6 by Delta6 desaturase, while that of 20:3n-6 to 20:4n-6 by Delta5 desaturase. The aim of this work is to evaluate the effect of serum exposed to cigarette smoke (SE-FBS) on (1) cell viability and proliferation, (2) [1-(14)C] LA conversion and desaturase activities in THP-1 cells, a monocytic cell line. In THP-1, CS inhibits cell proliferation dose-dependently, by producing a modification in the cell cycle with a reduced number of cells in synthesis and mitosis phases at higher concentrations. CS also decreases [1-(14)C] LA conversion to its derivatives in a concentration-dependent manner, inhibiting the activities of Delta6 and mainly Delta5 desaturase. In addition, CS does not modify the incorporation of LA into various lipid classes but it reduces cholesterol synthesis from radiolabelled acetate, and increases free fatty acid, TG and CE levels. In conclusion, CS affects lipid metabolism, inhibiting LA conversion and desaturase activities. CS also shifts the "de novo" lipid synthesis from free cholesterol to TG and CE, where LA is preferentially esterified.

  4. PSL, a nuclear cell-cycle associated antigen is increased during retinoic acid-induced differentiation of HL-60 cells.

    PubMed

    Barque, J P; Lagaye, S; Ladoux, A; Della Valle, V; Abita, J P; Larsen, C J

    1987-09-30

    PSL(p55) is a nuclear 55kD antigen present in various mammalian cell systems, which has been first identified by use of human autoimmune antibodies (Barque et al. 1983, EMBO J. 2, 743). It has been shown to be associated with interphase chromatine and to be synthesized in during the S phase of the cell cycle. In this work, we have analysed the status of PSL in promyelocytic HL-60 human cells in exponential or stationary growth, or undergoing granulocytic differentiation in presence of Retinoic acid. By use of 2-dimensional electrophoresis, PSL was found to be composed of two acidic proteins designated p55A and p55B. Unexpectedly, estimated 10-20 fold higher amounts of each species were found in cells treated for 5 days with 10(-6)M Retinoic acid, than in asynchronously growing cells or resting cells. Moreover, the p55A protein was phosphorylated during the process. On the basis of these results, PSL appears to be involved in some steps of the granulocytic differentiation process.

  5. The Influence of 13-cis Retinoic Acid on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Ding, Juan; Kam, Wendy R.; Dieckow, Julia; Sullivan, David A.

    2013-01-01

    Purpose. Meibomian gland dysfunction (MGD) is a primary cause of dry eye disease. One of the risk factors for MGD is exposure to 13-cis retinoic acid (13-cis RA), a metabolite of vitamin A. However, the mechanism is not well understood. We hypothesize that 13-cis RA inhibits cell proliferation, promotes cell death, alters gene and protein expressions, and attenuates cell survival pathways in human meibomian gland epithelial cells. Methods. To test our hypotheses, immortalized human meibomian gland epithelial cells were cultured with or without 13-cis RA for varying doses and time. Cell proliferation, cell death, gene expression, and proteins involved in proliferation/survival and inflammation were evaluated. Results. We found that 13-cis RA inhibited cell proliferation, induced cell death, and significantly altered the expression of 6726 genes, including those involved in cell proliferation, cell death, differentiation, keratinization, and inflammation, in human meibomian gland epithelial cells. Further, 13-cis RA also reduced the phosphorylation of Akt and increased the generation of interleukin-1β and matrix metallopeptidase 9. Conclusions. Exposure to 13-cis RA inhibits cell proliferation, increases cell death, alters gene expression, changes signaling pathways, and promotes inflammatory mediator and protease expression in meibomian gland epithelial cells. These effects may be responsible, at least in part, for the 13-cis RA–related induction of MGD. PMID:23722388

  6. Jacaric acid and its octadecatrienoic acid geoisomers induce apoptosis selectively in cancerous human prostate cells: a mechanistic and 3-D structure-activity study.

    PubMed

    Gasmi, Jihane; Thomas Sanderson, J

    2013-06-15

    Plant-derived non-essential fatty acids are important dietary nutrients, and some are purported to have chemopreventive properties against various cancers, including that of the prostate. In this study, we determined the ability of seven dietary C-18 fatty acids to cause cytotoxicity and induce apoptosis in various types of human prostate cancer cells. These fatty acids included jacaric and punicic acid found in jacaranda and pomegranate seed oil, respectively, three octadecatrienoic geometric isomers (alpha- and beta-calendic and catalpic acid) and two mono-unsaturated C-18 fatty acids (trans- and cis-vaccenic acid). Jacaric acid and four of its octadecatrienoic geoisomers selectively induced apoptosis in hormone-dependent (LNCaP) and -independent (PC-3) human prostate cancer cells, whilst not affecting the viability of normal human prostate epithelial cells (RWPE-1). Jacaric acid induced concentration- and time-depedent LNCaP cell death through activation of intrinsic and extrinsic apoptotic pathways resulting in cleavage of PARP-1, modulation of pro- and antiapoptotic Bcl-2 family of proteins and increased cleavage of caspase-3, -8 and -9. Moreover, activation of a cell death-inducing signalling cascade involving death receptor 5 was observed. Jacaric acid induced apoptosis in PC-3 cells by activation of the intrinsic pathway only. The spatial conformation cis, trans, cis of jacaric and punicic acid was shown to play a key role in the increased potency and efficacy of these two fatty acids in comparison to the five other C-18 fatty acids tested. Three-dimensional conformational analysis using the PubChem Database (http://pubchem.ncbi.nlm.nih.gov) showed that the cytotoxic potency of the C-18 fatty acids was related to their degree of conformational similarity to our cytotoxic reference compound, punicic acid, based on optimized shape (ST) and feature (CT) similarity scores, with jacaric acid being most 'biosimilar' (ST(ST-opt)=0.81; CT(CT-opt)=0.45). This 3-D

  7. Batch- and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici.

    PubMed

    Dishisha, Tarek; Alvarez, Maria Teresa; Hatti-Kaul, Rajni

    2012-08-01

    Propionic acid production from glycerol was studied using Propionibacterium acidipropionici DSM 4900 cells immobilized on polyethylenimine-treated Poraver (PEI-Poraver) and Luffa (PEI-Luffa), respectively. Using PEI-Luffa, the average productivity, yield and concentration of propionic acid from 40 g L(-1) glycerol were 0.29 g L(-1) h(-1), 0.74 mol(PA) mol(Gly)(-1) and 20 g L(-1), respectively, after four consecutive recycle-batches. PEI-Poraver supported attachment of 31 times higher amounts of cells than PEI-Luffa and produced 20, 28 and 35 g L(-1) propionic acid from 40, 65 and 85 g L(-1) glycerol, respectively (0.61 mol(PA) mol(Gly)(-1)). The corresponding production rates were 0.86, 0.43 and 0.35 g L(-1) h(-1), which are the highest reported from glycerol via batch or fed-batch fermentations for equivalent propionic acid concentrations. Using a continuous mode of operation at a dilution rate of 0.1 h(-1), cell washout was observed in the bioreactor with free cells; however, propionic acid productivity, yield and concentration were 1.40 g L(-1) h(-1), 0.86 mol(PA) mol(Gly)(-1), and 15 g L(-1), respectively, using immobilized cells in the PEI-Poraver bioreactor. The choice of the immobilization matrix can thus significantly influence the fermentation efficiency and profile. The bioreactor using cells immobilized on PEI-Poraver allowed the fermentation of higher glycerol concentrations and provided stable and higher fermentation rates than that using free cells or the cells immobilized on PEI-Luffa.

  8. Nature and nurture in atherosclerosis: The roles of acylcarnitine and cell membrane-fatty acid intermediates.

    PubMed

    Blair, Harry C; Sepulveda, Jorge; Papachristou, Dionysios J

    2016-03-01

    Macrophages recycle components of dead cells, including cell membranes. When quantities of lipids from cell membranes of dead cells exceed processing capacity, phospholipid and cholesterol debris accumulate as atheromas. Plasma lipid profiles, particularly HDL and LDL cholesterol, are important tools to monitor atherosclerosis risk. Membrane lipids are exported, as triglycerides or phospholipids, or as cholesterol or cholesterol esters, via lipoproteins for disposal, for re-use in cell membranes, or for fat storage. Alternative assays evaluate other aspects of lipid pathology. A key process underlying atherosclerosis is backup of macrophage fatty acid catabolism. This can be quantified by accumulation of acylcarnitine intermediates in extracellular fluid, a direct assay of adequacy of β-oxidation to deal with membrane fatty acid recycling. Further, membranes of somatic cells, such as red blood cells (RBC), incorporate fatty acids that reflect dietary intake. Changes in RBC lipid composition occur within days of ingesting modified fats. Since diets with high saturated fat content or artificial trans-fatty acids promote atherosclerosis, RBC lipid content shifts occur with atherosclerosis, and can show cellular adaptation to pathologically stiff membranes by increased long-chain doubly unsaturated fatty acid production. Additional metabolic changes with atherosclerosis of potential utility include inflammatory cytokine production, modified macrophage signaling pathways, and altered lipid-handling enzymes. Even after atherosclerotic lesions appear, approaches to minimize macrophage overload by reducing rate of fat metabolism are promising. These include preventive measures, and drugs including statins and the newer PCSK9 inhibitors. New cell-based biochemical and cytokine assays provide data to prevent or monitor atherosclerosis progression.

  9. Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells.

    PubMed

    George, Kerri L; Saltman, Laura H; Stein, Gary S; Lian, Jane B; Zurier, Robert B

    2008-03-01

    Oral administration of ajulemic acid (AjA), a cannabinoid acid devoid of psychoactivity, prevents joint tissue injury in rats with adjuvant induced arthritis. Because activation of osteoclasts is central to the pathogenesis of bone erosion in patients with rheumatoid arthritis (RA), we investigated the influence of AjA on osteoclast differentiation and survival. Osteoclast cultures were established by stimulation of RAW264.7 cells and primary mouse bone marrow cultures with receptor activator of NF-kappaB ligand (RANKL). Simultaneous addition of AjA (15 and 30 microM) and RANKL to both culture systems significantly suppressed development of multinucleated osteoclasts (osteoclastogenesis) in a dose dependent manner, as determined by quantification of multinuclear, tartrate-resistant acid phosphatase (TRAP)-positive cells. AjA impaired growth of RAW264.7 monocytes and prevented further osteoclast formation in cultures in which osteoclastogenesis had already begun. Reduction by AjA of both monocyte growth and osteoclast formation was associated with apoptosis, assayed by annexin V and propidium iodide staining, and caspase activity. The anti-osteoclastogenic effects of AjA did not require the continuous presence of AjA in the cell cultures. Based on these findings, we propose that AjA or other nonpsychoactive synthetic analogs of Cannabis constituents may be useful therapy for diseases such as RA and osteoporosis in which bone resorption is a central feature.

  10. Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo

    PubMed Central

    Melchionda, Manuela; Pittman, Jon K.

    2016-01-01

    Increasing evidence implicates Ca2+ in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca2+ stores are fast emerging as signaling centers. But how Ca2+ is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca2+/H+ exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca2+ signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca2+ is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca2+ stores in the control of Ca2+-dependent function. PMID:27002171

  11. Polyamino acid display on cell surfaces enhances salt and alcohol tolerance of Escherichia coli.

    PubMed

    Suzuki, Hirokazu; Ishii, Jun; Kondo, Akihiko; Yoshida, Ken-Ichi

    2015-02-01

    Microbes employ cell membranes for reducing exogenous stresses. Polyamino acid display on microbial cell surfaces and their effects on microbial chemical stress tolerance were examined. Growth analysis revealed that displays of polyarginine, polyaspartate and polytryptophan substantially enhanced tolerance of Escherichia coli to NaCl. A titration assay indicated that polyarginine and polyaspartate altered cell surface charges, implying tolerance enhancement via ion atmosphere and/or ionic bond network formations for electrostatic ion repulsion. The enhancement by polytryptophan may have arisen from surface hydrophobicity increase for hydrophobic ion exclusion, because of a strong correlation between hydrophobic characters of amino acids and their effects on tolerance enhancement. The display also enhanced tolerance to other salts and/or alcohols in E. coli and to NaCl in Saccharomyces cerevisiae. Thus polyamino acid display has the potential as an approach for conferring chemical stress tolerance on various microbes.

  12. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Ludovico, Paula; Sansonetty, Filipe; Silva, Manuel T; Côrte-Real, Manuela

    2003-03-01

    Here we show that 320-800 mM acetic acid induces in Zygosaccharomyces bailii a programmed cell death (PCD) process that is inhibited by cycloheximide, is accompanied by structural and biochemical alterations typical of apoptosis, and occurs in cells with preserved mitochondrial and plasma membrane integrity (as revealed by rhodamine 123 (Rh123) and propidium iodide (PI) staining, respectively). Mitochondrial ultrastructural changes, namely decrease of the cristae number, formation of myelinic bodies and swelling were also seen. Exposure to acetic acid above 800 mM resulted in killing by necrosis. The occurrence of an acetic acid-induced active cell death process in Z. bailii reinforces the concept of a physiological role of the PCD in the normal yeast life cycle.

  13. Radical quenching by rosmarinic acid from Lavandula vera MM cell culture.

    PubMed

    Kovacheva, Elena; Georgiev, Milen; Pashova, Svetlana; Angelova, Maria; Ilieva, Mladenka

    2006-01-01

    This study was conducted to evaluate the radical scavenging capacities of extracts and preparations from a Lavandula vera MM plant cell culture with different rosmarinic acid content and to compare them with pure rosmarinic and caffeic acids as well. The methods, which were used are superoxide anion and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radicals scavenging assays. Results showed that extracts and preparations from Lavandula vera MM possess strong radical scavengers, as the best both radical scavengers appeared to be the fractions with enriched rosmarinic acid content, obtained after ethylacetate fractioning (47.7% inhibition of superoxide radicals and 14.2 microM 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid equivalents, respectively). These data reveal the possibilities for application of these preparations as antioxidants.

  14. Evidence for a bladder cell glycolipid receptor for Escherichia coli and the effect of neuraminic acid and colominic acid on adherence.

    PubMed Central

    Davis, C P; Avots-Avotins, A E; Fader, R C

    1981-01-01

    The rat bladder epithelial cell receptors involved in mannose-sensitive adherence of Escherichia coli strains were studied. Sodium metaperiodate and lipase pretreatment of epithelial cells significantly reduced bacterial adherence to cells whereas trypsin and phospholipase C had a marginal or insignificant effect on adherence. Neuraminidase and colominic acid significantly increased adherence, whereas N-acetylneuraminic acid significantly reduced adherence. These data suggest that the rat bladder epithelial cell receptors involved in mannose-sensitive adherence are glycolipids. In addition, the data suggested that sialic acid on bladder epithelial cells acts as a nonspecific inhibitor of adherence, whereas colominic acid, a component of some E. coli K1 capsules, may act as a promoter of adherence. PMID:6277793

  15. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells.

    PubMed

    Oström, Maria; Loffler, Kelly A; Edfalk, Sara; Selander, Lars; Dahl, Ulf; Ricordi, Camillo; Jeon, Jongmin; Correa-Medina, Mayrin; Diez, Juan; Edlund, Helena

    2008-07-30

    The identification of secreted factors that can selectively stimulate the generation of insulin producing beta-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based beta-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of beta-cells during normal pancreatic development such putative factors may be identified. In the mouse, beta-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of beta-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when beta-cells are generated. We also provide evidence that RA induces the generation of Ngn3(+) endocrine progenitor cells and stimulates their further differentiation into beta-cells by activating a program of cell differentiation that recapitulates the normal temporal program of beta-cell differentiation.

  16. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells.

    PubMed

    Ignacio Barrasa, Juan; Olmo, Nieves; Pérez-Ramos, Pablo; Santiago-Gómez, Angélica; Lecona, Emilio; Turnay, Javier; Antonia Lizarbe, M

    2011-10-01

    The continuous exposure of the colonic epithelium to high concentrations of bile acids may exert cytotoxic effects and has been related to pathogenesis of colon cancer. A better knowledge of the mechanisms by which bile acids induce toxicity is still required and may be useful for the development of new therapeutic strategies. We have studied the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) treatments in BCS-TC2 human colon adenocarcinoma cells. Both bile acids promote cell death, being this effect higher for CDCA. Apoptosis is detected after 30 min-2 h of treatment, as observed by cell detachment, loss of membrane asymmetry, internucleosomal DNA degradation, appearance of mitochondrial transition permeability (MPT), and caspase and Bax activation. At longer treatment times, apoptosis is followed in vitro by secondary necrosis due to impaired mitochondrial activity and ATP depletion. Bile acid-induced apoptosis is a result of oxidative stress with increased ROS generation mainly by activation of plasma membrane enzymes, such as NAD(P)H oxidases and, to a lower extent, PLA2. These effects lead to a loss of mitochondrial potential and release of pro-apoptotic factors to the cytosol, which is confirmed by activation of caspase-9 and -3, but not caspase-8. This initial apoptotic steps promote cleavage of Bcl-2, allowing Bax activation and formation of additional pores in the mitochondrial membrane that amplify the apoptotic signal.

  17. In vitro synergistic cytoreductive effects of zoledronic acid and radiation on breast cancer cells

    PubMed Central

    Ural, A Ugur; Avcu, Ferit; Candir, Muhammed; Guden, Metin; Ozcan, M Ali

    2006-01-01

    Introduction Bisphosphonates are mostly used in the treatment of bone metastases. They have been shown to act synergistically with other chemotherapeutic agents. It is not known, however, whether similar synergistic effects exist with radiation on breast cancer cells. Methods Human MCF-7 breast cancer cells were treated with up to 100 μM zoledronic acid, were irradiated with up to 800 cGy or were exposed to combinations of both treatments to determine the antiproliferative effects of zoledronic acid and radiation. Results Zoledronic acid and radiation caused a dose-dependent and time-dependent decrease in cell viability (approximate 50% growth inhibition values were 48 μM and 20 μM for 24 hours and 72 hours, respectively, for zoledronic acid and 500 cGy for radiation). A synergistic cytotoxic effect of the combination of zoledronic acid and radiation was confirmed by isobologram analysis. Conclusion These data constitute the first in vitro evidence for synergistic effects between zoledronic acid and radiation. This combination therapy might thus be expected to be more effective than either treatment alone in patients with metastatic breast carcinoma. PMID:16925824

  18. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  19. Computing in mammalian cells with nucleic acid strand exchange

    PubMed Central

    Pochekailov, Sergii; Kirschman, Jonathan L.; Santangelo, Philip J.; Seelig, Georg

    2015-01-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution. PMID:26689378

  20. Computing in mammalian cells with nucleic acid strand exchange

    NASA Astrophysics Data System (ADS)

    Groves, Benjamin; Chen, Yuan-Jyue; Zurla, Chiara; Pochekailov, Sergii; Kirschman, Jonathan L.; Santangelo, Philip J.; Seelig, Georg

    2016-03-01

    DNA strand displacement has been widely used for the design of molecular circuits, motors, and sensors in cell-free settings. Recently, it has been shown that this technology can also operate in biological environments, but capabilities remain limited. Here, we look to adapt strand displacement and exchange reactions to mammalian cells and report DNA circuitry that can directly interact with a native mRNA. We began by optimizing the cellular performance of fluorescent reporters based on four-way strand exchange reactions and identified robust design principles by systematically varying the molecular structure, chemistry and delivery method. Next, we developed and tested AND and OR logic gates based on four-way strand exchange, demonstrating the feasibility of multi-input logic. Finally, we established that functional siRNA could be activated through strand exchange, and used native mRNA as programmable scaffolds for co-localizing gates and visualizing their operation with subcellular resolution.

  1. Electrochemical Hydrogen Concentrator for Phosphoric Acid Fuel Cells.

    DTIC Science & Technology

    1987-11-01

    cathode, no systematic relationship between contaminant concentrations and operating conditions could be discerned in any of the cell configurations... the cathode. No * systematic relationship between contaminant concentrations in the product gas and operating conditions or anode catalyst could be...34-l,, PElO3.-l ’ T DISCLAIMERS THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED

  2. Boric acid enhances in vivo Ehrlich ascites carcinoma cell proliferation in Swiss albino mice.

    PubMed

    Qureshi, S; Al-Shabanah, O A; Al-Harbi, M M; Al-Bekairi, A M; Raza, M

    2001-08-13

    The influence of boric acid, a boron carrier, on Ehrlich ascites carcinoma (EAC) cell-bearing mice was investigated in view of its importance in the boron neutron capture therapy and the influence of boron on proliferation and progression of cancer cells mediated by proteoglycans and collagen. The present study included the evaluation of boric acid for the effects on total count and viability of EAC cells in addition to their non-protein sulfhydryls (NP-SH) and malondialdehyde (MDA) contents as parameters for conjugative detoxication potency and possible oxidative damage. The EAC cell-bearing animals were also observed for the effect on survival, body weight changes, and histopathological evaluation of the tumors grown at the site of inoculation. The treatment with boric acid significantly increased the total number of peritoneal EAC cells and their viability. A significant increase in the body weight was observed that dose-dependently reached plateau levels by 20 days of treatment. Conversely, a reduction in the duration of survival of these animals was evident with the same protocol. Boric acid treatment resulted in a decrease in NP-SH contents with a concomitant increase in MDA levels in EAC cells as revealed by the results of the biochemical analysis. These data are supported by our results on histopathological investigations, which apparently showed fast growth, in addition to several mitotic figures and mixed inflammatory reaction, after treatment with boric acid. It seems likely that a particular combination of properties of boric acid, rather than a single characteristic alone, will provide useful information on the use of this boron carrier in neutron capture therapy.

  3. Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells.

    PubMed

    Antal, Otilia; Péter, Mária; Hackler, László; Mán, Imola; Szebeni, Gábor; Ayaydin, Ferhan; Hideghéty, Katalin; Vigh, László; Kitajka, Klára; Balogh, Gábor; Puskás, Laszló G

    2015-09-01

    Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas.

  4. Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells.

    PubMed

    Goverse, Gera; Molenaar, Rosalie; Macia, Laurence; Tan, Jian; Erkelens, Martje N; Konijn, Tanja; Knippenberg, Marlene; Cook, Emma C L; Hanekamp, Diana; Veldhoen, Marc; Hartog, Anita; Roeselers, Guus; Mackay, Charles R; Mebius, Reina E

    2017-03-01

    The gastrointestinal tract is continuously exposed to many environmental factors that influence intestinal epithelial cells and the underlying mucosal immune system. In this article, we demonstrate that dietary fiber and short chain fatty acids (SCFAs) induced the expression of the vitamin A-converting enzyme RALDH1 in intestinal epithelial cells in vivo and in vitro, respectively. Furthermore, our data showed that the expression levels of RALDH1 in small intestinal epithelial cells correlated with the activity of vitamin A-converting enzymes in mesenteric lymph node dendritic cells, along with increased numbers of intestinal regulatory T cells and a higher production of luminal IgA. Moreover, we show that the consumption of dietary fiber can alter the composition of SCFA-producing microbiota and SCFA production in the small intestines. In conclusion, our data illustrate that dietary adjustments affect small intestinal epithelial cells and can be used to modulate the mucosal immune system.

  5. Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic Neuro-2A cells.

    PubMed

    Huang, Shang-Ming; Hsu, Chin-Lin; Chuang, Hong-Chih; Shih, Ping-Hsiao; Wu, Chi-Hao; Yen, Gow-Chin

    2008-11-01

    Methylglyoxal is a reactive dicarbonyl compound generated as an intermediate of glycolysis during the physical glycation in the diabetic condition. It is considered to be a potent precursor of advanced glycation end products (AGEs) formation. Methylglyoxal itself and methylglyoxal-derived AGEs have been commonly implicated in the development of diabetic neuropathy. Our previous study indicated that vanillic acid showed an inhibitory effect against methylglyoxal-mediated Neuro-2A cell apoptosis, suggesting that vanillic acid might possess cytoprotective properties in the prevention of diabetic neuropathy complication. In this study, the effects of vanillic acid on the methylglyoxal-mediated glycation system involved in the progression of Neuro-2A cell apoptosis were further investigated. Our findings indicated that methylglyoxal-induced Neuro-2A cell apoptosis was mediated through the possible glycation mechanism of oxidative stress, activation of the MAPK signaling pathway (p38 and JNK) and oxidation-sensitive protein expression (PKC and p47(phox)) and methylglyoxal-derived N-epsilon-(carboxymethyl)lysine (CML) formation. Vanillic acid, however, suppressed methylglyoxal-induced Neuro-2A cell apoptosis via inhibition of glycation mechanisms including ROS, p38 and JNK, PKC and p47(phox), and methylglyoxal-derived CML formation. In the present study, we established the first evidence that vanillic acid might contribute to the prevention of the development of diabetic neuropathy by blocking the methylglyoxal-mediated intracellular glycation system.

  6. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration

    PubMed Central

    Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss. PMID:26379056

  7. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration.

    PubMed

    Gómez-Vicente, Violeta; Lax, Pedro; Fernández-Sánchez, Laura; Rondón, Netxibeth; Esquiva, Gema; Germain, Francisco; de la Villa, Pedro; Cuenca, Nicolás

    2015-01-01

    Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss.

  8. Transcriptomes of purified gastric ECL and parietal cells: identification of a novel pathway regulating acid secretion.

    PubMed

    Lambrecht, Nils W G; Yakubov, Iskandar; Zer, Cindy; Sachs, George

    2006-03-13

    The gastric entero-chromaffin-like (ECL) cell plays a key regulatory role in peripheral regulation of acid secretion due to the release of histamine that stimulates acid secretion by the parietal cell. Studies in intact animals, gastric glands, and isolated cells after short-term culture have shown expression of stimulatory CCK2 and PAC1 and inhibitory SST2 and Gal1 receptors as well as histidine decarboxylase. However, the pattern of its gene expression as a neuroendocrine cell has not been explored. Comparison of gene expression by 95% pure ECL cells obtained by density gradient, elutriation, and fluorescence-assisted cell sorting with isolates of the intact fundic gastric epithelium (i.e., "subtractive hybridization") identified a variety of additional expressed gene families characteristic of this neuroendocrine cell. These include genes 1) involved in neuropeptide synthesis and secretory vesicle exocytosis, 2) involved in control of inflammation, 3) implicated in healing of the epithelium, 4) encoding inhibitory Gi protein-coupled receptors, 5) playing a role in neuroendocrine regulation of food intake, and 6) encoding proteins likely involved in maintenance of circadian rhythm, in addition to the ECL cell-specific genes histidine decarboxylase and monoamine transporter. Particularly, the inhibitory apelin receptor gene, APJ, was highly expressed in the ECL cell preparation. Because parietal cells express apelin, immunohistochemical and functional studies showed that there is an inhibitory feed back loop between the parietal and ECL cell during gastrin stimulation, providing evidence for a novel pathway of downregulation of acid secretion due to interaction between these two cell types.

  9. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    PubMed

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  10. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells

    PubMed Central

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  11. Acid Gradient across Plasma Membrane Can Drive Phosphate Bond Synthesis in Cancer Cells: Acidic Tumor Milieu as a Potential Energy Source

    PubMed Central

    Dhar, Gautam; Sen, Suvajit; Chaudhuri, Gautam

    2015-01-01

    Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target. PMID:25874623

  12. Alpha-aminoisobutyric acid transport into human glia and glioma cells in culture.

    PubMed

    Ronquist, G; Agren, G; Ponten, J; Westermark, B

    1976-11-01

    The AIB transport into human glia and glioma cells in culture has been studied. Because of the high affinity of AIB to the plastic culture dishes, a special washing technique had to be developed. With this technique, it was possible to perform transport experiments in a single plate containing about one million cells. The cells were viable, intact and adhered to the supporting medium throughout the experiment. The AIB transport into both types of cells was Na+-dependent and showed saturation kinetics when the small component of the transport due to diffusion had been subtracted. The AIB transport capacity of neoplastic glioma cells was 3.6 times higher than that of glia cells. This difference was related to the Vmax-values for the two types of cells. The apparent Km-values were the same. Inhibition experiments with other amino acids support the view that AIB is transported via System A in both glia and glioma cells. Sulfhydryl reagents (ethacrynic acid and NEM) and cytochalasin B clearly inhibited the AIB transport into glia cells whereas the effect on glioma cells was minimal.

  13. Dynamics of amino acid metabolism of primary human liver cells in 3D bioreactors

    PubMed Central

    Zeilinger, K.; Sickinger, S.; Schmidt-Heck, W.; Buentemeyer, H.; Iding, K.; Lehmann, J.; Pfaff, M.; Pless, G.; Gerlach, J.C.

    2006-01-01

    The kinetics of 18 amino acids, ammonia (NH3) and urea (UREA) in 18 liver cell bioreactor runs were analyzed and simulated by a two-compartment model consisting of a system of 42 differential equations. The model parameters, most of them representing enzymatic activities, were identified and their values discussed with respect to the different liver cell bioreactor performance levels. The nitrogen balance based model was used as a tool to quantify the variability of runs and to describe different kinetic patterns of the amino acid metabolism, in particular with respect to glutamate (GLU) and aspartate (ASP). PMID:16550345

  14. Wall teichoic acids prevent antibody binding to epitopes within the cell wall of Staphylococcus aureus.

    PubMed

    Gautam, Samir; Kim, Taehan; Lester, Evan; Deep, Deeksha; Spiegel, David A

    2016-01-15

    Staphylococcus aureus is a Gram-positive bacterial pathogen that produces a range of infections including cellulitis, pneumonia, and septicemia. The principle mechanism in antistaphylococcal host defense is opsonization with antibodies and complement proteins, followed by phagocytic clearance. Here we use a previously developed technique for installing chemical epitopes in the peptidoglycan cell wall to show that surface glycopolymers known as wall teichoic acids conceal cell wall epitopes, preventing their recognition and opsonization by antibodies. Thus, our results reveal a previously unrecognized immunoevasive role for wall teichoic acids in S. aureus: repulsion of peptidoglycan-targeted antibodies.

  15. Lysophosphatidic acid induces cell migration through the selective activation of Akt1

    PubMed Central

    Kim, Eun Kyoung; Yun, Sung Ji; Do, Kee Hun; Kim, Min Sung; Cho, Mong; Suh, Dong-Soo; Kim, Chi Dae; Kim, Jae Ho; Birnbaum, Morris J.

    2008-01-01

    Akt plays pivotal roles in many physiological responses including growth, proliferation, survival, metabolism, and migration. In the current studies, we have evaluated the isoform-specific role of akt in lysophosphatidic acid (LPA)-induced cell migration. Ascites from ovarian cancer patients (AOCP) induced mouse embryo fibroblast (MEF) cell migration in a dose-dependent manner. On the other hand, ascites from liver cirrhosis patients (ALCP) did not induce MEF cell migration. AOCP-induced MEF cell migration was completely blocked by pre-treatment of cells with LPA receptor antagonist, Ki16425. Both LPA- and AOCP-induced MEF cell migration was completely attenuated by PI3K inhibitor, LY294002. Furthermore, cells lacking Akt1 displayed defect in LPA-induced cell migration. Re-expression of Akt1 in DKO (Akt1-/-Akt2-/-) cells restored LPA-induced cell migration, whereas re-expression of Akt2 in DKO cells could not restore the LPA-induced cell migration. Finally, Akt1 was selectively phosphorylated by LPA and AOCP stimulation. These results suggest that LPA is a major factor responsible for AOCP-induced cell migration and signaling specificity of Akt1 may dictate LPA-induced cell migration. PMID:18779657

  16. Deoxyribonucleic acid repair in Bacillus subtilis: development of competent cells into a tester for carcinogens

    SciTech Connect

    Yasbin, R.E.; Miehl, R.

    1980-04-01

    The development of competent transformed Bacillus subtilis into a tester system for carcinogens is described. Precocious or noninduced activation of SOS functions occurs in competent cells. Thus, lower doses or concentrations of SOS inducing agents are needed to cause cell death due to indigenous prophage activation and lysis of bacteria. The two known defective prophages in B. subtilis enhance the sensitivity of competent cells to the carcinogens ultraviolet light, mitomycin C, and methyl methanesulfonate. However, these same cells have no enhanced sensitivity for the non-carcinogenic ethyl methanesulfonate or for nalidixic acid. Therefore, competent B. subtilis appears to be a sensitive tester for carcinogens.

  17. Lectin staining and Western blot data showing differential sialylation of nutrient-deprived cancer cells to sialic acid supplementation.

    PubMed

    Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz

    2015-12-01

    This report provides data that are specifically related to the differential sialylation of nutrient deprived breast cancer cells to sialic acid supplementation in support of the research article entitled, "Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation" [1]. Particularly, breast cancer cells, when supplemented with sialic acid under nutrient deprivation, display sialylated glycans at the cell surface, but non-malignant mammary cells show sialylated glycans intracellularly. The impact of sialic acid supplementation under nutrient deprivation was demonstrated by measuring levels of expression and sialylation of two markers, EGFR1 and MUC1. This Data in Brief article complements the main manuscript by providing detailed instructions and representative results for cell-level imaging and Western blot analyses of changes in sialylation during nutrient deprivation and sialic acid supplementation. These methods can be readily generalized for the study of many types of glycosylation and various glycoprotein markers through the appropriate selection of fluorescently-labeled lectins.

  18. TGF-beta and TNF-a affect cell surface proteoglycan and sialic acid expression on vascular endothelial cells.

    PubMed

    Doiron, Amber L; Kirkpatrick, Allison P; Rinker, Kristina D

    2004-01-01

    Atherosclerosis is the formation of plaques in the arterial wall brought about by numerous events including the accumulation of oxidized low density lipoprotein (LDL), stimulation of inflammatory responses, the release of cytokines, and the attachment of monocytes to the arterial wall. Proteoglycans are implicated in many aspects of atherosclerosis including the metabolism of lipoproteins, regulation of cytokine activity, cell adhesion, and modification of the extracellular matrix. Due to their complex role in molecular recognition and cellular adhesion, the glycosaminoglycan (GAG) chains attached to the proteoglycan core and sialic acids on the terminal ends of the glycan chains are of interest. This study investigated the effects of exposure to transforming growth factor-beta 1 (TGF-beta 1) and tumor necrosis factor-a (TNF-a) on the expression of cell surface GAGs and sialic acids on human umbilical vein endothelial cells (HUVECs). Initial results show that TGF-beta 1 affected GAG expression compared to a control condition. Results also show that the combination of TGF-beta 1 and TNF-a affected GAG expression differently than does TGF-beta 1 alone. Additionally, TNF-a decreased the number of sialic acid residues per cell and TGF-beta 1 slightly upregulated sialic acid expression as compared to the control. The combination of the two cytokines showed a larger upward trend in this value. These data indicate that TNF-a and TGF-beta 1 play a role in the expression of GAG chains and sialic acids on the cell surface. Further study may clarify the implications of these findings for atherosclerosis.

  19. Combinational Treatment with Retinoic Acid Derivatives in Non-small Cell Lung Carcinoma In Vitro

    PubMed Central

    Choi, Eun Jung; Whang, Young Mi; Kim, Seok Jin; Kim, Hyun Jin

    2007-01-01

    The growth inhibitory effects of four retinoic acid (RA) derivatives, 9-cis RA, 13-cis RA, N-(4-hydroxyphenyl) retinamide (4-HPR), and all-trans retinoic acid (ATRA) were compared. In addition, the effects of various combinations of these four agents were examined on non-small cell lung carcinoma (NSCLC) cell-lines, and on the expressions of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) on these cells. At the clinically achievable concentration of 1 µM, only 4-HPR inhibited the growths of H1299 and H460 cells-lines. However, retinoic acid receptor β (RARβ) expression was up-regulated on H460 and H1299 cells treated with 1 µM of ATRA, 13-cis RA, or 9-cis RA. All NSCLC cell lines showed growth inhibition when exposed sequentially to 1 µM ATRA and 0.1 µM 4-HPR. In particular, sequential treatment with 1 µM ATRA or 13-cis RA and 4-HPR markedly inhibited H1703 cell growth; these cells exhibited no basal RARβ expression and were refractory to 4-HPR. However, in NSCLC cell lines that expressed RARβ, the expressional levels of RARβ were up-regulated by ATRA alone and by sequential treatment with ATRA and 4-HPR. 4-HPR was found to be the most active of the four agents in terms of NSCLC growth-inhibition. Moreover, sequential treatments with ATRA or 13-cis RA followed by 4-HPR were found to have synergistic growth-inhibitory effects and to regulate RAR expression. PMID:17923756

  20. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells.

    PubMed

    Heo, Sook-Kyoung; Noh, Eui-Kyu; Yoon, Dong-Joon; Jo, Jae-Cheol; Koh, SuJin; Baek, Jin Ho; Park, Jae-Hoo; Min, Young Joo; Kim, Hawk

    2015-01-15

    Rosmarinic acid (RA, an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid) has a number of biological activities, but little is known about anti-leukemic activities of RA combined with all-trans retinoic acid (ATRA) against acute promyelocytic leukemia (APL) cells. We examined the differentiation marker, CD11b, in bone marrow cells (BMC) of an APL patient, in NB4 cells (APL cell line), and in normal BMC and peripheral blood mononuclear cells (PBMC) of healthy subjects by flow cytometric analysis. ATRA/RA induced expression of CD11b in the BMC of the APL patient and in NB4 cells, but not in normal BMC or PBMC. Therefore, we realized that RA potentiated ATRA-induced macrophage differentiation in APL cells. Further characterization of the induced macrophages showed that they exhibited morphological changes and were able to phagocytose and generate reactive oxygen species. Th also had typical expression of C-C chemokine receptor type 1 (CCR1), CCR2, and intercellular adhesion molecule-1 (ICAM-1). Moreover, the expression of CD11b(+) and CD14(+) cells depended on ERK-NF-κB axis activation. Together, these results indicate that RA potentiates ATRA-induced macrophage differentiation in APL cells. Thus, RA may play an important role as an appurtenant differentiation agent for functional macrophage differentiation in APL. Additionally, the differentiated macrophages might have a normal life span and, they could die. These data indicate that co-treatment with RA and ATRA has potential as an anti-leukemic therapy in APL.

  1. ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells

    PubMed Central

    Leonhardt, N; Vavasseur, A; Forestier, C

    1999-01-01

    In animal cells, ATP binding cassette (ABC) proteins are a large family of transporters that includes the sulfonylurea receptor and the cystic fibrosis transmembrane conductance regulator (CFTR). These two ABC proteins possess an ion channel activity and bind specific sulfonylureas, such as glibenclamide, but homologs have not been identified in plant cells. We recently have shown that there is an ABC protein in guard cells that is involved in the control of stomatal movements and guard cell outward K+ current. Because the CFTR, a chloride channel, is sensitive to glibenclamide and able to interact with K+ channels, we investigated its presence in guard cells. Potent CFTR inhibitors, such as glibenclamide and diphenylamine-2-carboxylic acid, triggered stomatal opening in darkness. The guard cell protoplast slow anion current that was recorded using the whole-cell patch-clamp technique was inhibited rapidly by glibenclamide in a dose-dependent manner; the concentration producing half-maximum inhibition was at 3 &mgr;M. Potassium channel openers, which bind to and act through the sulfonylurea receptor in animal cells, completely suppressed the stomatal opening induced by glibenclamide and recovered the glibenclamide-inhibited slow anion current. Abscisic acid is known to regulate slow anion channels and in our study was able to relieve glibenclamide inhibition of slow anion current. Moreover, in epidermal strip bioassays, the stomatal closure triggered by Ca2+ or abscisic acid was reversed by glibenclamide. These results suggest that the slow anion channel is an ABC protein or is tightly controlled by such a protein that interacts with the abscisic acid signal transduction pathway in guard cells. PMID:10368184

  2. Initial uptake and insulin releasing action of chloromercuribenzene-p-sulphonic acid (CMBS) in suspensions of pancreatic islet cells.

    PubMed

    Idahl, L A; Lernmark, A; Söderberg, M; Winblad, B

    1980-04-01

    The effects of chloromercuribenzene-p-sulphonic acid on dispersed cells prepared from beta-cell-rich ob/ob-mouse islets were studied. 1) Chloromercuribenzene-p-sulphonic acid at concentrations of 0.1 mmol/l or higher diminished cell viability which was partially counteracted by increasing concentrations of bovine serum albumin. 2) The uptake of 203Hg-chloromercuribenzene-p-sulphonic acid after incubation for 4 seconds or longer showed that most of the non-toxic concentrations of chloromercuribenzene-p-sulphonic acid was bound to the cell within 40 seconds. Maximal uptake was achieved after 3 minutes of incubation. The uptake of radioactive chloromercuribenzene-p-sulphonic acid was inhibited by bovine serum albumin. 3) The dynamics of insulin release from perifused dispersed beta-cells embedded in fibrin showed a maximal 40--50-fold stimulation by 0.03 mmol/l chloromercuribenzene-p-sulphonic acid within 10 minutes of perifusion. 4) Scanning electron microscopy of beta-cells revealed no major changes in the cell surface under conditions of maximal binding and insulin releasing effects of chloromercuribenzene-p-sulphonic acid. These data support the concept that the ability of chloromercuribenzene-p-sulphonic acid to induce insulin release is related to its initial binding to the beta-cell surface. The binding of chloromercuribenzene-p-sulphonic acid and the subsequent release of insulin seem to occur without major changes in beta-cell surface morphology.

  3. Uncoupling protein 2 regulates palmitic acid-induced hepatoma cell autophagy.

    PubMed

    Lou, Jiaxin; Wang, Yunjiao; Wang, Xuejiang; Jiang, Ying

    2014-01-01

    Mitochondrial uncoupling protein 2 (UCP2) is suggested to have a role in the development of nonalcoholic steatohepatitis (NASH). However, the mechanism remains unclear. Autophagy is an important mediator of many pathological responses. This study aims to investigate the relationship between UCP2 and hepatoma cells autophagy in palmitic acid- (PA-) induced lipotoxicity. H4IIE cells were treated with palmitic acid (PA), and cell autophagy and apoptosis were examined. UCP2 expression, in association with LC3-II and caspase-3, which are indicators of cell autophagy and apoptosis, respectively,was measured. Results demonstrated that UCP2 was associated with autophagy during PA-induced hepatic carcinoma cells injury. Tests on reactive oxygen species (ROS) showed that UCP2 overexpression strongly decreases PA-induced ROS production and apoptosis. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing enhances PA-induced ROS production and apoptosis. Autophagy partially participates in this progress. Moreover, UCP2 was associated with ATP synthesis during PA-induced autophagy. In conclusion, increasing UCP2 expression in hepatoma cells may contribute to cell autophagy and antiapoptotic as result of fatty acid injury. Our results may bring new insights for potential NASH therapies.

  4. CCN1 is critical for acid-induced esophageal epithelial cell transformation.

    PubMed

    Modak, Cristina; Mouazzen, Wasim; Narvaez, Reinier; Reavis, Kevin M; Chai, Jianyuan

    2010-02-19

    CCN1 is a matricellular protein involved in both wound healing and cancer cell invasion. Increased CCN1 expression has been associated with the development of Barrett's esophagus and the increased risk of progression to esophageal adenocarcinoma. In both cases, acid reflux is a major contributor. Low pH has been shown to induce CCN1 gene expression in esophageal epithelial cells. Here we demonstrated that both CCN1 and low pH could cause esophageal epithelial cell transformation, including loss of E-cadherin, disruption of cell-cell junctions, and expression of mesenchymal markers. Furthermore, knockdown of CCN1 through RNA interference sufficiently attenuated acid-driven cell phenotypic changes, while over-expression of CCN1 exacerbated these effects, indicating a critical role of CCN1 in acid-induced esophageal epithelial cell transformation. Given the pivotal role of low pH in gastro-esophageal reflux disease and its progression towards esophageal adenocarcinoma, our study identified CCN1 as a key molecule mediating this process.

  5. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction

    PubMed Central

    Samudio, Ismael; Harmancey, Romain; Fiegl, Michael; Kantarjian, Hagop; Konopleva, Marina; Korchin, Borys; Kaluarachchi, Kumar; Bornmann, William; Duvvuri, Seshagiri; Taegtmeyer, Heinrich; Andreeff, Michael

    2009-01-01

    The traditional view is that cancer cells predominately produce ATP by glycolysis, rather than by oxidation of energy-providing substrates. Mitochondrial uncoupling — the continuing reduction of oxygen without ATP synthesis — has recently been shown in leukemia cells to circumvent the ability of oxygen to inhibit glycolysis, and may promote the metabolic preference for glycolysis by shifting from pyruvate oxidation to fatty acid oxidation (FAO). Here we have demonstrated that pharmacologic inhibition of FAO with etomoxir or ranolazine inhibited proliferation and sensitized human leukemia cells — cultured alone or on bone marrow stromal cells — to apoptosis induction by ABT-737, a molecule that releases proapoptotic Bcl-2 proteins such as Bak from antiapoptotic family members. Likewise, treatment with the fatty acid synthase/lipolysis inhibitor orlistat also sensitized leukemia cells to ABT-737, which supports the notion that fatty acids promote cell survival. Mechanistically, we generated evidence suggesting that FAO regulates the activity of Bak-dependent mitochondrial permeability transition. Importantly, etomoxir decreased the number of quiescent leukemia progenitor cells in approximately 50% of primary human acute myeloid leukemia samples and, when combined with either ABT-737 or cytosine arabinoside, provided substantial therapeutic benefit in a murine model of leukemia. The results support the concept of FAO inhibitors as a therapeutic strategy in hematological malignancies. PMID:20038799

  6. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.

    PubMed

    Shen, Zheyu; Li, Yan; Kohama, Kazuhiro; Oneill, Brian; Bi, Jingxiu

    2011-01-01

    Folic acid-conjugated albumin nanospheres (FA-AN) have been developed to provide an actively targetable drug delivery system for improved drug targeting of cancer cells with reduced side effects. The nanospheres were prepared by conjugating folic acid onto the surface of albumin nanospheres using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as a catalyst. To test the efficacy of these nanospheres as a potential delivery platform, doxorubicin-loaded albumin nanospheres (DOX-AN) and doxorubicin-loaded FA-AN (FA-DOX-AN) were prepared by entrapping DOX (an anthracycline, antibiotic drug widely used in cancer chemotherapy that works by intercalating DNA) into AN and FA-AN nanoparticles. Cell uptake of the DOX was then measured. The results show that FA-AN was incorporated into HeLa cells (tumor cells) only after 2.0h incubation, whereas HeLa cells failed to incorporate albumin nanospheres without conjugated folic acid after 4.0h incubation. When HeLa cells were treated with the DOX-AN, FA-DOX-AN nanoparticles or free DOX, cell viability decreased with increasing culture time (i.e. cell death increases with time) over a 70h period. Cell viability was always the lowest for free DOX followed by FA-DOX-AN4 and then DOX-AN. In a second set of experiments, HeLa cells washed to remove excess DOX after an initial incubation for 2h were incubated for 70h. The corresponding cell viability was slightly higher when the cells were treated with FA-DOX-AN or free DOX whilst cells treated with DOX-AN nanoparticles remained viable. The above experiments were repeated for non-cancerous, aortic smooth muscle cells (AoSMC). As expected, cell viability of the HeLa cells (with FA receptor alpha, FRα) and AoSMC cells (without FRα) decreased rapidly with time in the presence of free DOX, but treatment with FA-DOX-AN resulted in selective killing of the tumor cells. These results indicated that FA-AN may be used as a promising actively targetable drug delivery system to improve drug

  7. Ethacrynic acid and 1 alpha,25-dihydroxyvitamin D3 cooperatively inhibit proliferation and induce differentiation of human myeloid leukemia cells.

    PubMed

    Makishima, M; Honma, Y

    1996-09-01

    The active form of vitamin D, 1 alpha,25-dihydroxyvitamin D3 (VD3), inhibits proliferation and induces differentiation of leukemia cells, but its clinical use is limited by the adverse effect of hypercalcemia. In this study we found that the loop diuretic ethacrynic acid, which is used to treat hypercalcemia, enhanced the differentiation of human leukemia cells induced by VD3. Ethacrynic acid alone inhibited the proliferation of human promyelocytic HL-60 cells while only slightly increasing differentiation markers such as nitroblue tetrazolium (NBT)-reducing and lysozyme activities. Ethacrynic acid effectively enhanced the growth-inhibiting action of VD3. In the presence of ethacrynic acid, VD3 increased the NBT-reducing and lysozyme activities and the CD11b expression of HL-60 cells more effectively than VD3 alone. Other loop diuretics, furosemide and bumetanide, also enhanced the differentiation of HL-60 cells induced by VD3, but to a lesser extent than ethacrynic acid. The differentiation of HL-60 cells induced by all-trans retinoic acid, dimethyl sulfoxide or phorbol-12-myristate 13-acetate was also enhanced by ethacrynic acid with increasing NBT-reducing and lysozyme activities and the expression of CD11b or CD14 surface antigen. Morphologically, ethacrynic acid enhanced the monocytic differentiation of HL-60 cells induced by VD3 and phorbol ester and the granulocytic differentiation by retinoic acid and dimethyl sulfoxide. Other human myelomonocytic leukemia ML-1, U937, P39/TSU and P31/FUJ cells were induced to differentiate by VD3 and this was also enhanced by ethacrynic acid. The long-term culture of HL-60 cells showed that ethacrynic acid plus VD3 induced the complete growth arrest of HL-60 cells. Therefore ethacrynic acid, which is used to treat hypercalcemia, enhanced the proliferation-inhibiting and differentiation-inducing activities of VD3 and the combination of ethacrynic acid and VD3 may be useful in therapy for myeloid leukemia.

  8. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells

    PubMed Central

    Lin, Hua; Patel, Shaan; Affleck, Valerie S.; Wilson, Ian; Turnbull, Douglass M.; Joshi, Abhijit R.; Maxwell, Ross

    2017-01-01

    Background. Glioma is the most common form of primary malignant brain tumor in adults, with approximately 4 cases per 100 000 people each year. Gliomas, like many tumors, are thought to primarily metabolize glucose for energy production; however, the reliance upon glycolysis has recently been called into question. In this study, we aimed to identify the metabolic fuel requirements of human glioma cells. Methods. We used database searches and tissue culture resources to evaluate genotype and protein expression, tracked oxygen consumption rates to study metabolic responses to various substrates, performed histochemical techniques and fluorescence-activated cell sorting-based mitotic profiling to study cellular proliferation rates, and employed an animal model of malignant glioma to evaluate a new therapeutic intervention. Results. We observed the presence of enzymes required for fatty acid oxidation within human glioma tissues. In addition, we demonstrated that this metabolic pathway is a major contributor to aerobic respiration in primary-cultured cells isolated from human glioma and grown under serum-free conditions. Moreover, inhibiting fatty acid oxidation reduces proliferative activity in these primary-cultured cells and prolongs survival in a syngeneic mouse model of malignant glioma. Conclusions. Fatty acid oxidation enzymes are present and active within glioma tissues. Targeting this metabolic pathway reduces energy production and cellular proliferation in glioma cells. The drug etomoxir may provide therapeutic benefit to patients with malignant glioma. In addition, the expression of fatty acid oxidation enzymes may provide prognostic indicators for clinical practice. PMID:27365097

  9. A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae.

    PubMed

    Wang, Zhen; Wang, Yuanliang; Yang, Shang-Tian; Wang, Runguang; Ren, Huiqing

    2010-07-01

    A new support matrix inspired by honeycomb was developed for cell immobilization to control fungal morphology and enhance mass transfer in bioreactor for lactic acid production by Rhizopus oryzae. The immobilization matrix composed of asterisk-shaped fibrous matrices in a honeycomb configuration provided high surface areas for cell attachment and biofilm growth. More than 90% of inoculated spores were adsorbed onto the matrices within 6-8h and after 10h there was no suspended cell in the fermentation broth, indicating a 100% immobilization efficiency. Compared to free-cell fermentation, lactic acid production increased approximately 70% (49.5 g/L vs. 29.3g/L) and fermentation time reduced 33% (48 h vs. 72 h) in shake-flasks with 80 g/L initial glucose. The immobilized-cell fermentation was evaluated for its long-term performance in a bubble-column bioreactor operated in a repeated batch mode for nine cycles in 36 days. The highest lactic acid production was 68.8 g/L, corresponding to a volumetric productivity of 0.72 g/Lh and 93.4% (w/w) lactic acid yield from consumed glucose. The overall yield and productivity were 77.6% and 0.57 g/Lh, respectively. The fermentation can be improved by increasing aeration and mixing in the bubble-column bioreactor.

  10. Nucleic Acid Encoding A Lectin-Derived Progenitor Cell Preservation Factor

    DOEpatents

    Colucci, M. Gabriella; Chrispeels, Maarten J.; Moore, Jeffrey G.

    2001-10-30

    The invention relates to an isolated nucleic acid molecule that encodes a protein that is effective to preserve progenitor cells, such as hematopoietic progenitor cells. The nucleic acid comprises a sequence defined by SEQ ID NO:1, a homolog thereof, or a fragment thereof. The encoded protein has an amino acid sequence that comprises a sequence defined by SEQ ID NO:2, a homolog thereof, or a fragment thereof that contains an amino acid sequence TNNVLQVT. Methods of using the encoded protein for preserving progenitor cells in vitro, ex vivo, and in vivo are also described. The invention, therefore, include methods such as myeloablation therapies for cancer treatment wherein myeloid reconstitution is facilitated by means of the specified protein. Other therapeutic utilities are also enabled through the invention, for example, expanding progenitor cell populations ex vivo to increase chances of engraftation, improving conditions for transporting and storing progenitor cells, and facilitating gene therapy to treat and cure a broad range of life-threatening hematologic diseases.

  11. Three sesquiterpene compounds biosynthesised from artemisinic acid using suspension-cultured cells of Averrhoa carambola (Oxalidaceae).

    PubMed

    Yang, Li; Zhu, Jianhua; Song, Liyan; Shi, Xiaojian; Li, Xingyi; Yu, Rongmin

    2012-01-01

    A new sesquiterpene glycoside, artemisinic acid 3-β-O-β-D-glucopyranoside (3, 31.24%) and other two biotransformation products, 3-β-hydroxyartemisinic acid (2, 36.69%) and 3-β-hydroxyartemisinic acid β-D-glucopyranosyl ester (4, 7.03%), were biosynthesised after artemisinic acid (1) was administered to the cultured cells of Averrhoa carambola. The three biotransformation products were obtained for the first time by using the suspension-cultured cells of A. carambola as a new biocatalyst system, and their structures were identified on the basis of the physico-chemical properties, NMR and mass spectral analyses. The results indicate that the cultured cells of A. carambola have the abilities to hydroxylate and glycosylate sesquiterpene compounds in a regio- and stereoselective manner. Furthermore, the anti-tumour activity of compounds 3 and 4 was evaluated against K562 and HeLa cell lines. Compound 4 showed strong activity against HeLa cell line, with the IC₅₀ value of 0.56 µmol mL⁻¹.

  12. Effect of phytic acid used as etchant on bond strength, smear layer, and pulpal cells.

    PubMed

    Nassar, Mohannad; Hiraishi, Noriko; Islam, Md Sofiqul; Aizawa, Mamoru; Tamura, Yukihiko; Otsuki, Masayuki; Kasugai, Shohei; Ohya, Keiichi; Tagami, Junji

    2013-10-01

    This study aimed to evaluate the effect of phytic acid (IP6), used as etchant, on resin-dentin bond strength, smear layer removal, and the viability of pulpal cells. Flat dentin surfaces with smear layer were etched with 1% IP6 for 60, 30, or 15 s; in the control group 37% phosphoric acid (PA) was used. Dentin surfaces were rinsed, blot-dried, and bonded with an etch-and-rinse adhesive, followed by composite build-ups. The specimens were subjected to tensile testing after 24 h of water storage at 37°C, and failure modes were determined using scanning electron microscopy. The effectiveness of IP6 to remove the smear layer was observed using scanning electron microscopy. To evaluate the effect on pulpal cells, solutions of 0.1 and 0.01% IP6 and of 3.7 and 0.37% PA were prepared and rat pulpal cells were treated with these solutions for 6 and 24 h. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results demonstrated that all application times of IP6 produced bond-strength values that were significantly higher than that of the control. Phytic acid effectively removed the smear layer and plugs, thus exposing the collagen network. Phytic acid had a minimal effect on pulpal cells, whereas PA resulted in a marked decrease in their viability.

  13. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.

    1984-01-01

    The important considerations that presently exist for achieving commercial acceptance of fuel cells are centered on cost (which translates to efficiency) and lifetime. This paper addresses the questions of electrocatalyst utilization within porous electrode structures and the preparation of low-cost noble metal electrocatalyst combinations with extreme dispersions of the metal. Now that electrocatalyst particles can be prepared with dimensions of 10 A, either singly or in alloy combinations, a very large percentage of the noble metal atoms in a crystallite are available for reaction. The cost savings for such electrocatalysts in the present commercially driven environment are considerable.

  14. [Effects of niflumic acid on the proliferation of human hepatoma cells].

    PubMed

    Tian, Jing; Tao, Ling; Cao, Yun-Xin; Dong, Ling; Hu, Yu-Zhen; Yang, An-Gang; Zhou, Shi-Sheng

    2003-04-25

    The purpose of this work was to investigate the effects of niflumic acid (NFA), a chloride channel blocker, on the proliferation of human hepatoma cell line (HHCC). Cell proliferation was analyzed by cell count and MTT assay. Cell cycle analysis was carried out by flow cytometry. [Ca(2+)](i) was determined by laser scanning confocal system. It was found that NFA decreased significantly the cell number and the MTT optical density (OD) of HHCC cells, and that the OD value was reversed after washout of NFA. Compared with control, NFA blocked cell cycle progression in G(1) phase. Extracellular application of NFA (100 micromol/L) induced a rapid decrease in [Ca(2+)](i). These findings demonstrate that blockage of chloride channels by NFA induces growth arrest of HHCC in G(1) phase, which may be due to the inhibition of Ca(2+)/CaM-dependent signaling pathways.

  15. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Chen, Y.; Tjandrawinata, R. R.

    2001-01-01

    It has been proposed that the omega-6 fatty acids increase the rate of tumor growth. Here we test that hypothesis in the PC-3 human prostate tumor. We found that the essential fatty acids, linoleic acid (LA) and arachidonic acid (AA), and the AA metabolite PGE(2) stimulate tumor growth while oleic acid (OA) and the omega-3 fatty acid, eicosapentaenoic acid (EPA) inhibited growth. In examining the role of AA in growth response, we extended our studies to analyze changes in early gene expression induced by AA. We demonstrate that c-fos expression is increased within minutes of addition in a dose-dependent manner. Moreover, the immediate early gene cox-2 is also increased in the presence of AA in a dose-dependent manner, while the constitutive cox-1 message was not increased. Three hours after exposure to AA, the synthesis of PGE(2) via COX-2 was also increased. Previous studies have demonstrated that AA was primarily delivered by low density lipoprotein (LDL) via its receptor (LDLr). Since it is known that hepatomas, acute myelogenous leukemia and colorectal tumors lack normal cholesterol feedback, we examined the role of the LDLr in growth regulation of the PC-3 prostate cancer cells. Analysis of ldlr mRNA expression and LDLr function demonstrated that human PC-3 prostate cancer cells lack normal feedback regulation. While exogenous LDL caused a significant stimulation of cell growth and PGE(2) synthesis, no change was seen in regulation of the LDLr by LDL. Taken together, these data show that normal cholesterol feedback of ldlr message and protein is lost in prostate cancer. These data suggest that unregulated over-expression of LDLr in tumor cells would permit increased availability of AA, which induces immediate early genes c-fos and cox-2 within minutes of uptake.

  16. Regulation of the Nucleolar DNA-Dependent RNA Polymerase by Amino Acids in Ehrlich Ascites Tumor Cells

    PubMed Central

    Franze-Fernández, M. T.; Pogo, A. O.

    1971-01-01

    Experiments were performed to ascertain the degree to which the amount of amino acids might be one of the regulatory factors that control the activity of the nucleolar RNA polymerase. Assays of the enzymatic activity were done with isolated nuclei from cells incubated with low and high concentrations of amino acids. Soon after the cells were exposed to a medium enriched in amino acids, a rapid increase of nucleolar RNA polymerase activity occurred. A similar result was obtained in cells incubated with lower concentrations of amino acids. However, the rate of ribosomal RNA synthesized was regularly much higher in cells incubated in a medium enriched with amino acids than in a medium low in amino acids. Apparently, the amino acids only controlled ribosomal RNA synthesis. Thus, neither maturation, processing, and transport of nuclear precursors into cytoplasmic ribosomal RNA, nor the synthesis of rapidly labeled RNA was affected. PMID:4108870

  17. Delivery of nucleic acid therapeutics by genetically engineered hematopoietic stem cells

    PubMed Central

    Doering, Christopher B.; Archer, David; Spencer, H. Trent

    2010-01-01

    Several populations of adult human stem cells have been identified, but only a few of these are in routine clinical use. The hematopoietic stem cell (HSC) is arguably the most well characterized and the most routinely transplanted adult stem cell. Although details regarding several aspects of this cell’s phenotype are not well understood, transplant of HSCs has advanced to become the standard of care for the treatment of a range of monogenic diseases and several types of cancer. It has also proven to be an excellent target for genetic manipulation, and clinical trials have already demonstrated the usefulness of targeting this cell as a means of delivering nucleic acid therapeutics for the treatment of several previously incurable diseases. It is anticipated that additional clinical trials will soon follow, such as genetically engineering HSCs with vectors to treat monogenic diseases such as hemophilia A. In addition to the direct targeting of HSCs, induced pluripotent stem (iPS) cells have the potential to replace virtually any engineered stem cell therapeutic, including HSCs. We now know that for the broad use of genetically-modified HSCs for the treatment of non-lethal diseases, e.g. hemophilia A, we must be able to regulate the introduction of nucleic acid sequences into these target cells. We can begin to refine transduction protocols to provide safer approaches to genetically manipulate HSCs and strategies are being developed to improve the overall safety of gene transfer. This review focuses on recent advances in the systemic delivery of nucleic acid therapeutics using genetically-modified stem cells, specifically focusing on i) the use of retroviral vectors to genetically modify HSCs, ii) the expression of fVIII from hematopoietic stem cells for the treatment of hemophilia A, and iii) the use of genetically engineered hematopoietic cells generated from iPS cells as treatment for disorders of hematopoiesis. PMID:20869414

  18. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    PubMed Central

    Dong, Xue-Jun; Zhang, Guo-Rong; Zhou, Qing-Jun; Pan, Ruo-Lang; Chen, Ye; Xiang, Li-Xin; Shao, Jian-Zhong

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  19. Cell nucleus targeting for living cell extraction of nucleic acid associated proteins with intracellular nanoprobes of magnetic carbon nanotubes.

    PubMed

    Zhang, Yi; Hu, Zhengyan; Qin, Hongqiang; Liu, Fangjie; Cheng, Kai; Wu, Ren'an; Zou, Hanfa

    2013-08-06

    Since nanoparticles could be ingested by cells naturally and target at a specific cellular location as designed, the extraction of intracellular proteins from living cells for large-scale analysis by nanoprobes seems to be ideally possible. Nucleic acid associated proteins (NAaP) take the crucial position during biological processes in maintaining and regulating gene structure and gene related behaviors, yet there are still challenges during the global investigation of intracellular NAaP, especially from living cells. In this work, a strategy to extract intracellular proteins from living cells with the magnetic carbon nanotube (oMWCNT@Fe3O4) as an intracellular probe is developed, to achieve the high throughput analysis of NAaP from living human hepatoma BEL-7402 cells with a mass spectrometry-based proteomic approach. Due to the specific intracellular localization of the magnetic carbon nanotubes around nuclei and its strong interaction with nucleic acids, the highly efficient extraction was realized for cellular NAaP from living cells, with the capability of identifying 2383 intracellular NAaP from only ca. 10,000 living cells. This method exhibited potential applications in dynamic and in situ analysis of intracellular proteins.

  20. Nonrandom distribution of sialic acid over the cell surface of bristle- coated endocytic vesicles of the sinusoidal endothelium cells

    PubMed Central

    1978-01-01

    Previous studies with protein tracers have shown that the luminal surface of the vascular endothelium of the bone marrow is endocytic. The endocytosis occurs through the formation of large bristle-coated vesicles (LCV). The anionic charge distribution in this process was examined at the luminal surface of the endothelial cell, At pH 1.8, colloidal iron (CI), native ferritin, and polycationic ferritin (PCF) are bound by the luminal surface of the endothelial cell, but not at the sites of LCV formation. PCF used over a pH range of 1.8--7.2 (CI is unstable at higher pH levels) revealed LCV binding of this agent in increasing manner from pH 3.5 upwards. PCF binding at low pH (1.8) at the endothelial cell surface was markedly reduced by neuraminidase. Neuraminidase did not reduce PCF binding by the endothelial cell surface nor by the LCV at higher pH levels. It is concluded that the luminal surface of the endothelial cell has exposed sialic acid groups which are absent or significantly diminished at endocytic sites. The free surface of the endothelial cells as well as the sites of endocytosis have, in addition, anionic material with a pKa higher than that of sialic acid (pKa 2.6). These anionic materials may be different at the sites of endocytosis as compared to those present at the free cell surface. PMID:29050

  1. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells.

    PubMed

    Poór, Péter; Kovács, Judit; Szopkó, Dóra; Tari, Irma

    2013-02-01

    Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10(-3) M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca(2+) chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension.

  2. Ascorbic acid protects against colistin sulfate-induced neurotoxicity in PC12 cells.

    PubMed

    Liu, Yang; Dai, Chongshan; Gao, Ruixia; Li, Jichang

    2013-10-01

    This study aimed to examine the protective effect of ascorbic acid against colistin-induced neurotoxicity mediated by oxidative stress, a potential mechanism. An in vitro neurotoxicity model was established with PC12 cells exposed to 125 µg/mL colistin sulfate for 24 h. PC12 cells were treated with colistin (125 µg/mL) in the absence and presence of ascorbic acid (0.1, 1.0 and 10 µM/mL) for 24 h. Both 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) assay were carried out to evaluate cell viability. The levels of intracellular reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) levels were assessed. Moreover, we tested the level of DNA fragmentation, the release of cytochrome-c and the expressions of caspase-9 and -3 mRNA. The results showed that 1 and 10 µM/mL ascorbic acid significantly increased the cell viability and the levels of SOD and GSH (both p<0.05), while 0.1, 1 and 10 µM/mL ascorbic acid significantly decreased the generation of ROS, the release of cytochrome-c, formation of DNA fragmentation and the expressions of caspase-9 and -3 mRNA in colistin-treated PC12 cells, compared with the colistin model group. These results suggest that ascorbic acid could reduce colistin sulfate-induced neurotoxicity through the resistance of oxidative stress and the prevention of apoptosis mediated via mitochondria pathway. They also highlight the potential of coadministering ascorbic acid to widen the therapeutic dose of colistin.

  3. Transport of Corilagin, Gallic Acid, and Ellagic Acid from Fructus Phyllanthi Tannin Fraction in Caco-2 Cell Monolayers

    PubMed Central

    Zhao, Hai-juan; Liang, Wen-Yi; Chen, Wen-Jing; Han, Shu-Xian; Qi, Qi; Cui, Ya-Ping; Li, Shi; Yang, Guang-Hui; Shao, Yan-Yan; Zhu, Dan

    2016-01-01

    Objective. To investigate the absorption property of the representative hydrolyzable tannin, namely corilagin, and its hydrolysates gallic acid (GA) and ellagic acid (EA) from the Fructus Phyllanthi tannin fraction (PTF) in vitro. Methods.