Science.gov

Sample records for acidic reaction conditions

  1. Formation of phenol under conditions of the reaction of oxidative carbonylation of benzene to benzoic acid

    SciTech Connect

    Kalinovsky, I.O.; Leshcheva, A.N.; Pogorelov, V.V.; Gelbshtein, A.I.

    1993-12-31

    This paper describes conditions for the oxidation of benzene to phenol. It is shown that a reaction mixture of water, carbon monoxide, and oxygen are essential to the oxidation. The oxidation is a side reaction found to occur during the oxidative carbonylation of benzene to benzoic acid in a medium of trifluoroacetic acid.

  2. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides.

    PubMed

    Wang, Qing-Chi; Zhao, Xia; Pu, Jiang-Hua; Luan, Xiao-Hong

    2016-06-01

    Monosaccharide composition analysis is important for structural characterization of polysaccharides. To investigate the influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of polysaccharides, we chose alginate, starch, chitosan and chondroitin sulfate as representative of acidic, neutral, basic and complex polysaccharides to compare the release degree of monosaccharides under different hydrolytic conditions. The hydrolysis stability of 10 monosaccharide standards was also explored. Results showed that the basic sugars were hard to release but stable, the acidic sugars (uronic acids) were easy to release but unstable, and the release and stability of neutral sugars were in between acidic and basic sugars. In addition, the hydrolysis process was applied to monosaccharide composition analysis of Hippocampus trimaculatus polysaccharide and the appropriate hydrolytic condition was accorded with that of the above four polysaccharides. Thus, different hydrolytic conditions should be used for the monosaccharide composition analysis of polysaccharides based on their structural characteristics. PMID:27083372

  3. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    PubMed Central

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  4. Dissolution and precipitation reactions in human tooth enamel under weak acid conditions.

    PubMed

    Borggreven, J M; Driessens, F C; van Dijk, J W

    1986-01-01

    Slices of enamel were demineralized in weak acid solutions at pH 5. The solutions were analysed for Ca, P, Na and Mg. A substantial increase of the Ca/P ratio in the solution after about 6 h of demineralization was ascribed to brushite formation. The ratios of liberated Ca/Na, P/Na, Ca/Mg and P/Mg were always lower than the correspondent ratios in sound enamel. It was concluded that precipitation of brushite, and a preferential dissolution of Na and Mg compounds from the enamel both play a role in the dissolution-precipitation reactions in dental enamel during acid attack.

  5. Merging Photoredox with Palladium Catalysis: Decarboxylative ortho-Acylation of Acetanilides with α-Oxocarboxylic Acids under Mild Reaction Conditions.

    PubMed

    Zhou, Chao; Li, Pinhua; Zhu, Xianjin; Wang, Lei

    2015-12-18

    A room temperature decarboxylative ortho-acylation of acetanilides with α-oxocarboxylic acids has been developed via a novel Eosin Y with Pd dual catalytic system. This dual catalytic reaction shows a broad substrate scope and good functional group tolerance, and an array of ortho-acylacetanilides can be afforded in high yields under mild conditions.

  6. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    PubMed

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes. PMID:27396413

  7. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    PubMed

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes.

  8. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated.

  9. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated. PMID:27561540

  10. Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinsky reaction under batch conditions.

    PubMed

    Blagojević, Slavica M; Anić, Slobodan R; Cupić, Zeljko D; Pejić, Natasa D; Kolar-Anić, Ljiljana Z

    2008-11-28

    The influence of the initial malonic acid concentration [MA]0 (8.00 x 10(-3) < or = [MA]0 < or = 4.30 x 10(-2) mol dm(-3)) in the presence of bromate (6.20 x 10(-2) mol dm(-3)), bromide (1.50 x 10(-5) mol dm(-3)), sulfuric acid (1.00 mol dm(-3)) and cerium sulfate (2.50 x 10(-3) mol dm(-3)) on the dynamics and the kinetics of the Belousov-Zhabotinsky (BZ) reactions was examined under batch conditions at 30.0 degrees C. The kinetics of the BZ reaction was analyzed by the earlier proposed method convenient for the examinations of the oscillatory reactions. In the defined region of parameters where oscillograms with only large-amplitude relaxation oscillations appeared, the pseudo-first order of the overall malonic acid decomposition with a corresponding rate constant of 2.14 x 10(-2) min(-1) was established. The numerical results on the dynamics and kinetics of the BZ reaction, carried out by the known skeleton model including the Br2O species, were in good agreement with the experimental ones. The already found saddle node infinite period (SNIPER) bifurcation point in transition from a stable quasi-steady state to periodic orbits and vice versa is confirmed by both experimental and numerical investigations of the system under consideration. Namely, the large-amplitude relaxation oscillations with increasing periods between oscillations in approaching the bifurcation points at the beginning and the end of the oscillatory domain, together with excitability of the stable quasi-steady states in their vicinity are obtained.

  11. Universal reaction mechanism of boronic acids with diols in aqueous solution: kinetics and the basic concept of a conditional formation constant.

    PubMed

    Furikado, Yuki; Nagahata, Tomomi; Okamoto, Takuya; Sugaya, Tomoaki; Iwatsuki, Satoshi; Inamo, Masahiko; Takagi, Hideo D; Odani, Akira; Ishihara, Koji

    2014-10-01

    To establish a detailed reaction mechanism for the condensation between a boronic acid, RB(OH)2, and a diol, H2L, in aqueous solution, the acid dissociation constants (Ka(BL)) of boronic acid diol esters (HBLs) were determined based on the well-established concept of conditional formation constants of metal complexes. The pKa values of HBLs were 2.30, 2.77, and 2.00 for the reaction systems, 2,4-difluorophenylboronic acid and chromotropic acid, 3-nitrophenylboronic acid and alizarin red S, and phenylboronic acid and alizarin red S, respectively. A general and precise reaction mechanism of RB(OH)2 with H2L in aqueous solution, which can serve as a universal reaction mechanism for RB(OH)2 and H2L, was proposed on the basis of (a) the relative kinetic reactivities of the RB(OH)2 and its conjugate base, that is, the boronate ion, toward H2L, and (b) the determined pKa values of HBLs. The use of the conditional formation constant, K', based on the main reaction: RB(OH)2 + H2L (K1)⇌ RB(L)(OH)(-) + H3O(+) instead of the binding constant has been proposed for the general reaction of uncomplexed boronic acid species (B') with uncomplexed diol species (L') to form boronic acid diol complex species (esters, BL') in aqueous solution at pH 5-11: B' + L' (K')⇌ BL'. The proposed reaction mechanism explains perfectly the formation of boronic acid diol ester in aqueous solution.

  12. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  13. Expert system for predicting reaction conditions: the Michael reaction case.

    PubMed

    Marcou, G; Aires de Sousa, J; Latino, D A R S; de Luca, A; Horvath, D; Rietsch, V; Varnek, A

    2015-02-23

    A generic chemical transformation may often be achieved under various synthetic conditions. However, for any specific reagents, only one or a few among the reported synthetic protocols may be successful. For example, Michael β-addition reactions may proceed under different choices of solvent (e.g., hydrophobic, aprotic polar, protic) and catalyst (e.g., Brønsted acid, Lewis acid, Lewis base, etc.). Chemoinformatics methods could be efficiently used to establish a relationship between the reagent structures and the required reaction conditions, which would allow synthetic chemists to waste less time and resources in trying out various protocols in search for the appropriate one. In order to address this problem, a number of 2-classes classification models have been built on a set of 198 Michael reactions retrieved from literature. Trained models discriminate between processes that are compatible and respectively processes not feasible under a specific reaction condition option (feasible or not with a Lewis acid catalyst, feasible or not in hydrophobic solvent, etc.). Eight distinct models were built to decide the compatibility of a Michael addition process with each considered reaction condition option, while a ninth model was aimed to predict whether the assumed Michael addition is feasible at all. Different machine-learning methods (Support Vector Machine, Naive Bayes, and Random Forest) in combination with different types of descriptors (ISIDA fragments issued from Condensed Graphs of Reactions, MOLMAP, Electronic Effect Descriptors, and Chemistry Development Kit computed descriptors) have been used. Models have good predictive performance in 3-fold cross-validation done three times: balanced accuracy varies from 0.7 to 1. Developed models are available for the users at http://infochim.u-strasbg.fr/webserv/VSEngine.html . Eventually, these were challenged to predict feasibility conditions for ∼50 novel Michael reactions from the eNovalys database (originally

  14. Expert system for predicting reaction conditions: the Michael reaction case.

    PubMed

    Marcou, G; Aires de Sousa, J; Latino, D A R S; de Luca, A; Horvath, D; Rietsch, V; Varnek, A

    2015-02-23

    A generic chemical transformation may often be achieved under various synthetic conditions. However, for any specific reagents, only one or a few among the reported synthetic protocols may be successful. For example, Michael β-addition reactions may proceed under different choices of solvent (e.g., hydrophobic, aprotic polar, protic) and catalyst (e.g., Brønsted acid, Lewis acid, Lewis base, etc.). Chemoinformatics methods could be efficiently used to establish a relationship between the reagent structures and the required reaction conditions, which would allow synthetic chemists to waste less time and resources in trying out various protocols in search for the appropriate one. In order to address this problem, a number of 2-classes classification models have been built on a set of 198 Michael reactions retrieved from literature. Trained models discriminate between processes that are compatible and respectively processes not feasible under a specific reaction condition option (feasible or not with a Lewis acid catalyst, feasible or not in hydrophobic solvent, etc.). Eight distinct models were built to decide the compatibility of a Michael addition process with each considered reaction condition option, while a ninth model was aimed to predict whether the assumed Michael addition is feasible at all. Different machine-learning methods (Support Vector Machine, Naive Bayes, and Random Forest) in combination with different types of descriptors (ISIDA fragments issued from Condensed Graphs of Reactions, MOLMAP, Electronic Effect Descriptors, and Chemistry Development Kit computed descriptors) have been used. Models have good predictive performance in 3-fold cross-validation done three times: balanced accuracy varies from 0.7 to 1. Developed models are available for the users at http://infochim.u-strasbg.fr/webserv/VSEngine.html . Eventually, these were challenged to predict feasibility conditions for ∼50 novel Michael reactions from the eNovalys database (originally

  15. A Lewis acid-promoted Pinner reaction

    PubMed Central

    Pfaff, Dominik; Nemecek, Gregor

    2013-01-01

    Summary Carbonitriles and alcohols react in a Lewis acid-promoted Pinner reaction to carboxylic esters. Best results are obtained with two equivalents of trimethylsilyl triflate as Lewis acid. Good yields are achieved with primary alcohols and aliphatic or benzylic carbonitriles, but the straightforward synthesis of acrylates and benzoates starting with acrylonitrile and benzonitrile, respectively, is similarly possible. Phenols are not acylated under these reaction conditions. The method has been used for the first total synthesis of the natural product monaspilosin. In the reaction of benzyl alcohols variable amounts of amides are formed in a Ritter-type side reaction. PMID:23946857

  16. Fe-N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions.

    PubMed

    Ferrero, Guillermo A; Preuss, Kathrin; Marinovic, Adam; Jorge, Ana Belen; Mansor, Noramalina; Brett, Dan J L; Fuertes, Antonio B; Sevilla, Marta; Titirici, Maria-Magdalena

    2016-06-28

    High surface area N-doped mesoporous carbon capsules with iron traces exhibit outstanding electrocatalytic activity for the oxygen reduction reaction in both alkaline and acidic media. In alkaline conditions, they exhibit more positive onset (0.94 V vs RHE) and half-wave potentials (0.83 V vs RHE) than commercial Pt/C, while in acidic media the onset potential is comparable to that of commercial Pt/C with a peroxide yield lower than 10%. The Fe-N-doped carbon catalyst combines high catalytic activity with remarkable performance stability (3500 cycles between 0.6 and 1.0 V vs RHE), which stems from the fact that iron is coordinated to nitrogen. Additionally, the newly developed electrocatalyst is unaffected by the methanol crossover effect in both acid and basic media, contrary to commercial Pt/C. The excellent catalytic behavior of the Fe-N-doped carbon, even in the more relevant acid medium, is attributable to the combination of chemical functions (N-pyridinic, N-quaternary, and Fe-N coordination sites) and structural properties (large surface area, open mesoporous structure, and short diffusion paths), which guarantees a large number of highly active and fully accessible catalytic sites and rapid mass-transfer kinetics. Thus, this catalyst represents an important step forward toward replacing Pt catalysts with cheaper alternatives. In this regard, an alkaline anion exchange membrane fuel cell was assembled with Fe-N-doped mesoporous carbon capsules as the cathode catalyst to provide current and power densities matching those of a commercial Pt/C, which indicates the practical applicability of the Fe-N-carbon catalyst.

  17. The impact of raw materials and baking conditions on Maillard reaction products, thiamine, folate, phytic acid and minerals in white bread.

    PubMed

    Helou, Cynthia; Gadonna-Widehem, Pascale; Robert, Nathalie; Branlard, Gérard; Thebault, Jacques; Librere, Sarah; Jacquot, Sylvain; Mardon, Julie; Piquet-Pissaloux, Agnès; Chapron, Sophie; Chatillon, Antoine; Niquet-Léridon, Céline; Tessier, Frédéric J

    2016-06-15

    The aim of this study was to develop a white bread with improved nutrient contents and reduced levels of potentially harmful Maillard reaction products such as N(ε)-carboxymethyllysine (CML) and 5-hydroxymethylfurfural (HMF). Assays were carried out through a full factorial experimental design allowing the simultaneous analysis of four factors at two levels: (1) wheat flour extraction rates (ash content: 0.60%-0.72%), (2) leavening agents (bakers' yeast - bakers' yeast and sourdough), (3) prebaking and (4) baking conditions (different sets of time and temperature). The baking conditions affected HMF and CML as well as certain mineral contents. A reduced baking temperature along with a prolonged heat treatment was found to be favourable for reducing both the CML (up to 20%) and HMF concentrations (up to 96%). The presence of sourdough decreased the formation of CML (up to 28%), and increased the apparent amounts of calcium (up to 8%) and manganese (up to 17.5%) probably through acidification of the dough. The extraction rate of flours as well as interactions between multiple factors also affected certain mineral content. However, compounds like folate, thiamine, copper, zinc, iron and phytic acid were not affected by any of the factors studied.

  18. The impact of raw materials and baking conditions on Maillard reaction products, thiamine, folate, phytic acid and minerals in white bread.

    PubMed

    Helou, Cynthia; Gadonna-Widehem, Pascale; Robert, Nathalie; Branlard, Gérard; Thebault, Jacques; Librere, Sarah; Jacquot, Sylvain; Mardon, Julie; Piquet-Pissaloux, Agnès; Chapron, Sophie; Chatillon, Antoine; Niquet-Léridon, Céline; Tessier, Frédéric J

    2016-06-15

    The aim of this study was to develop a white bread with improved nutrient contents and reduced levels of potentially harmful Maillard reaction products such as N(ε)-carboxymethyllysine (CML) and 5-hydroxymethylfurfural (HMF). Assays were carried out through a full factorial experimental design allowing the simultaneous analysis of four factors at two levels: (1) wheat flour extraction rates (ash content: 0.60%-0.72%), (2) leavening agents (bakers' yeast - bakers' yeast and sourdough), (3) prebaking and (4) baking conditions (different sets of time and temperature). The baking conditions affected HMF and CML as well as certain mineral contents. A reduced baking temperature along with a prolonged heat treatment was found to be favourable for reducing both the CML (up to 20%) and HMF concentrations (up to 96%). The presence of sourdough decreased the formation of CML (up to 28%), and increased the apparent amounts of calcium (up to 8%) and manganese (up to 17.5%) probably through acidification of the dough. The extraction rate of flours as well as interactions between multiple factors also affected certain mineral content. However, compounds like folate, thiamine, copper, zinc, iron and phytic acid were not affected by any of the factors studied. PMID:26974195

  19. Aqueous Suzuki Coupling Reactions of Basic Nitrogen-Containing Substrates in the Absence of Added Base and Ligand: Observation of High Yields under Acidic Conditions.

    PubMed

    Li, Zhao; Gelbaum, Carol; Fisk, Jason S; Holden, Bruce; Jaganathan, Arvind; Whiteker, Gregory T; Pollet, Pamela; Liotta, Charles L

    2016-09-16

    A series of aqueous heterogeneous Suzuki coupling reactions of substrates containing basic nitrogen centers with phenylboronic acid in the absence of added base and ligand is presented. High yields of products were obtained by employing aryl bromides containing aliphatic 1°, 2°, and 3° amine substituents, and good to high yields were obtained by employing a variety of substituted bromopyridines. In the former series, the pH of the aqueous phase changed from basic to acidic during the course of the reaction, while in the latter series the aqueous phase was on the acidic side of the pH scale throughout the entire course of reaction. A mechanistic interpretation for these observations, which generally preserves the oxo palladium catalytic cycle widely accepted in the literature, is presented. PMID:27559749

  20. Aqueous Suzuki Coupling Reactions of Basic Nitrogen-Containing Substrates in the Absence of Added Base and Ligand: Observation of High Yields under Acidic Conditions.

    PubMed

    Li, Zhao; Gelbaum, Carol; Fisk, Jason S; Holden, Bruce; Jaganathan, Arvind; Whiteker, Gregory T; Pollet, Pamela; Liotta, Charles L

    2016-09-16

    A series of aqueous heterogeneous Suzuki coupling reactions of substrates containing basic nitrogen centers with phenylboronic acid in the absence of added base and ligand is presented. High yields of products were obtained by employing aryl bromides containing aliphatic 1°, 2°, and 3° amine substituents, and good to high yields were obtained by employing a variety of substituted bromopyridines. In the former series, the pH of the aqueous phase changed from basic to acidic during the course of the reaction, while in the latter series the aqueous phase was on the acidic side of the pH scale throughout the entire course of reaction. A mechanistic interpretation for these observations, which generally preserves the oxo palladium catalytic cycle widely accepted in the literature, is presented.

  1. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  2. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  3. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-02-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(O)OOH) is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  4. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-01-01

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  5. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-12-31

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  6. Initial inhomogeneity-induced crazy-clock behavior in the iodate-arsenous acid reaction in a buffered medium under stirred batch conditions.

    PubMed

    Valkai, László; Csekő, György; Horváth, Attila K

    2015-09-14

    It is unambiguously demonstrated that in the case of an autocatalytic reaction, initial inhomogeneities induced by the imperfectly mixed part of the overall volume may result in a serious irreproducibility of the individual kinetic runs. A statistically meaningful number of repetitions, however, gives rise to a reproducible cumulative probability distribution curve often referred to as a support of the stochastic feature. The iodate-arsenous acid reaction being autocatalytic with respect to both iodide and hydrogen ions displays clock behavior. However, the time lag necessary for the appearance of iodine, even in buffered solution, varies in an apparently random manner. Careful analysis of the variation of the different parameters like stirring rate, overall volume, geometry of the reactor and the way of mixing the reactants led us to conclude that the fate of the individual samples is determined at the initial stage when the reacting system is per se inhomogeneous. The place, the size of the so-called ignition volume, where the reacting system is imperfectly stirred, as well as the residence time spent there by the imperfectly mixed reactants all seem to depend on external factors. PMID:26239390

  7. Heterogeneous reactions of epoxides in acidic media.

    PubMed

    Lal, Vinita; Khalizov, Alexei F; Lin, Yun; Galvan, Maria D; Connell, Brian T; Zhang, Renyi

    2012-06-21

    Epoxides have recently been identified as important intermediates in the gas phase oxidation of hydrocarbons, and their hydrolysis products have been observed in ambient aerosols. To evaluate the role of epoxides in the formation of secondary organic aerosols (SOA), the kinetics and mechanism of heterogeneous reactions of two model epoxides, isoprene oxide and α-pinene oxide, with sulfuric acid, ammonium bisulfate, and ammonium sulfate have been investigated using complementary experimental techniques. Kinetic experiments using a fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS) show a fast irreversible loss of the epoxides with the uptake coefficients (γ) of (1.7 ± 0.1) × 10(-2) and (4.6 ± 0.3) × 10(-2) for isoprene oxide and α-pinene oxide, respectively, for 90 wt % H(2)SO(4) and at room temperature. Experiments using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) reveal that diols are the major products in ammonium bisulfate and dilute H(2)SO(4) (<25 wt %) solutions for both epoxides. In concentrated H(2)SO(4) (>65 wt %), acetals are formed from isoprene oxide, whereas organosulfates are produced from α-pinene oxide. The reaction of the epoxides with ammonium sulfate is slow and no products are observed. The epoxide reactions using bulk samples and Nuclear Magnetic Resonance (NMR) spectroscopy reveal the presence of diols as the major products for isoprene oxide, accompanied by aldehyde formation. For α-pinene oxide, organosulfate formation is observed with a yield increasing with the acidity. Large yields of organosulfates in all NMR experiments with α-pinene oxide are attributed to the kinetic isotope effect (KIE) from the use of deuterated sulfuric acid and water. Our results suggest that acid-catalyzed hydrolysis of epoxides results in the formation of a wide range of products, and some of the products have low volatility and contribute to SOA growth under ambient conditions

  8. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester... identified generically as carboxylic acid, substituted alkylstannylene ester, reaction products...

  9. Reaction of atomic hydrogen with formic acid.

    PubMed

    Cao, Qian; Berski, Slawomir; Latajka, Zdzislaw; Räsänen, Markku; Khriachtchev, Leonid

    2014-04-01

    We study the reaction of atomic hydrogen with formic acid and characterize the radical products using IR spectroscopy in a Kr matrix and quantum chemical calculations. The reaction first leads to the formation of an intermediate radical trans-H2COOH, which converts to the more stable radical trans-cis-HC(OH)2via hydrogen atom tunneling on a timescale of hours at 4.3 K. These open-shell species are observed for the first time as well as a reaction between atomic hydrogen and formic acid. The structural assignment is aided by extensive deuteration experiments and ab initio calculations at the UMP2 and UCCSD(T) levels of theory. The simplest geminal diol radical trans-cis-HC(OH)2 identified in the present work as the final product of the reaction should be very reactive, and further reaction channels are of particular interest. These reactions and species may constitute new channels for the initiation and propagation of more complex organic species in the interstellar clouds.

  10. Gallic Acid, Ellagic Acid and Pyrogallol Reaction with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Jaén, J. A.; González, L.; Vargas, A.; Olave, G.

    2003-06-01

    The reaction between gallic acid, ellagic acid and pyrogallol with metallic iron was studied using infrared and Mössbauer spectroscopy. Most hydrolysable tannins with interesting anticorrosive or inhibition properties are structurally related to these compounds, thus they may be used as models for the study of hydrolysable tannins and related polyphenols. The interaction was followed up to 3 months. Results indicated two different behaviors. At polyphenol concentrations higher than 1% iron converts to sparingly soluble and amorphous ferric (and ferrous) polyphenolate complexes. At lower concentrations (0.1%), the hydrolysis reactions are dominant, resulting in the formation of oxyhydroxides, which can be further reduced to compounds like magnetite by the polyphenols.

  11. Reversible Hydrolysis Reaction with the Spore Photoproduct under Alkaline Conditions.

    PubMed

    Adhikari, Surya; Lin, Gengjie; Li, Lei

    2016-09-16

    DNA lesions may reduce the electron density at the nucleobases, making them prone to further modifications upon the alkaline treatment. The dominant DNA photolesion found in UV-irradiated bacterial endospores is a thymine dimer, 5-thyminyl-5,6-dihydrothymine, i.e., the spore photoproduct (SP). Here we report a stepwise addition/elimination reaction in the SP hydrolysis product under strong basic conditions where a ureido group is added to the carboxyl moiety to form a cyclic amide, regenerating SP after eliminating a hydroxide ion. Direct amidation of carboxylic acids by reaction with amines in the presence of a catalyst is well documented; however, it is very rare for an amidation reaction to occur without activation. This uncatalyzed SP reverse reaction in aqueous solution is even more surprising because the carboxyl moiety is not a good electrophile due to the negative charge it carries. Examination of the base-catalyzed hydrolyses of two other saturated pyrimidine lesions, 5,6-dihydro-2'-deoxyuridine and pyrimidine (6-4) pyrimidone photoproduct, reveals that neither reaction is reversible even though all three hydrolysis reactions may share the same gem-diol intermediate. Therefore, the SP structure where the two thymine residues maintain a stacked conformation likely provides the needed framework enabling this highly unusual carboxyl addition/elimination reaction. PMID:27537985

  12. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions.

  13. Catalytical Conversion of Carbohydrates into Lactic Acid via Hydrothermal Reaction

    NASA Astrophysics Data System (ADS)

    Wei, Zhen; Jin, Fangming; Zhang, Guangyi; Zhang, Shiping; Yao, Guodong

    2010-11-01

    This paper focuses on catalytical conversion of carbohydrates into lactic acid, under the hydrothermal conditions, which may have a promising future for its high speediness and effectiveness. The catalysis of ZnO was investigated to improve the lactic acid yields. The results showed that the lactic acid yields increased immensely by the addition of ZnO. The effects of the reaction time and the addition amount of ZnO on the conversion of carbohydrates to lactic acid were studied. The highest lactic acid yields reached up to 28% starting from glucose after the reaction time of 60 s under the conditions of 0.2 mmol ZnO, 300° C, the filling rate of 35%, and over 30% starting from fructose at the same temperature and filling rate when the reaction time of 40 s and 2.0 mmol ZnO were employed. The collaborative effects of ZnO and NaOH used as the catalysts together at the same time were also studied. Furthermore, the catalytic mechanism of ZnO in the hydrothermal conversion of carbohydrates into lactic acid was discussed.

  14. Reactions of tetraphenyltitanium with organic acids

    SciTech Connect

    Razuvaev, G.A.; Vyshinskaya, L.I.; Vasil'eva, G.A.

    1987-12-10

    As a result of the reactions of tetraphenyltitanium with dibasic organic acids high yields were obtained of new thermally stable titanium(III) complexes: phenyltitanium(III)carboxylates. Under the action of proton-active reagents (hydrochloric acid, cyclopentadiene, methanol) the latter break down with the breakage of titanium-phenyl bond. The proposed structure was based on IR- and ESR-spectral data. The dinuclear structure of the complexes was established on the basis of a study of the triplet structure of the ESR spectra, which showed the existence of intermolecular titanium-titanium exchange through methylene groups of the dicarboxylate bridges.

  15. Studies on Lewis acid-mediated intramolecular cyclization reactions of allene-ene systems.

    PubMed

    Hiroi, K; Watanabe, T; Tsukui, A

    2000-03-01

    The Lewis acid-mediated reactions of allene-ene compounds, derived from 3-methylcitronellal or dimethyl malonate, were carried out using various Lewis acids such as ethylaluminum dichloride, diethylaluminum chloride, titanium chloride, zinc chloride etherate, or boron trifluoride etherate, affording unexpectedly intramolecular [2+2]cycloaddition products under some particular reaction conditions without any formation of intramolecular ene reaction products.

  16. Mutagenicity and genotoxicity of sorbic acid-amine reaction products.

    PubMed

    Ferrand, C; Marc, F; Fritsch, P; Cassand, P; de Saint Blanquat, G

    2000-11-01

    Sorbic acid (E200) and its salts (potassium and calcium sorbate: E202 and E203) are allowed for use as preservatives in numerous processed foods. Sorbic acid had a conjugated system of double bonds which makes it susceptible to nucleophilic attack, sometimes giving mutagenic products. Under conditions typical of food processing (50-80 degrees C), we analysed the cyclic derivatives resulting from a double addition reaction between sorbic acid and various amines. Mutagenesis studies, involving Ames' test and genotoxicity studies with HeLa cells and plasmid DNA, showed that none of the products studied presented either mutagenic or genotoxic activities.

  17. Microwave reactions under continuous flow conditions.

    PubMed

    Baxendale, Ian R; Hayward, John J; Ley, Steven V

    2007-12-01

    Microwave chemistry has already impacted significantly on the everyday synthesis of organic molecules. The adoption and integration of this liberating technology has permitted a resurrection of many synthetic transformations that were previously considered too extreme in their conditions (temperatures, pressures, reaction times) to be synthetically useful. Furthermore, whole arrays of additional chemical transformations have been devised under microwave heating that allow access to more diverse chemical architectures via more expedient routes. Continuous flow processing of chemical intermediates taking advantage of the unique heating mechanism and characteristics of microwave irradiation will certainly be the next evolutionary step forward in this area. The synergistic combination afforded by the simultaneous application of these two core processing tools will enhance still further the synthetic capabilities of tomorrow's chemists. This short review aims to highlight the current developments and future potential offered by continuous flow microwave mediated synthesis.

  18. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    SciTech Connect

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  19. The unique stability of Vibrio proteolyticus neutral protease under alkaline conditions affords a selective step for purification and use in amino acid-coupling reactions.

    PubMed

    Durham, D R

    1990-08-01

    A procedure is described for the purification of a neutral protease from fermentation broths of Vibrio proteolyticus. The key feature of the purification scheme is the selective, irreversible inactivation of a contaminating exoenzyme, aminopeptidase, by alkali treatment, rather than removal of this enzyme by conventional chromatographic methods. Fermentation broths or concentrates were brought to pH 11.5 to 11.7 by Na2CO3-NaOH addition and incubated at 25 degrees C until aminopeptidase activity was diminished. The alkali treatment resulted in greater than 99% reduction of aminopeptidase activity with minimal loss of neutral protease activity. The neutral protease could be further purified to apparent homogeneity by QA-52 cellulose chromatography. The alkali treatment of fermentation concentrates was also useful for preparation of V. proteolyticus neutral protease to effect the coupling of N-protected aspartic acid and phenylalanine methyl ester for the production of N-aspartylphenylalanine methyl ester, a precursor for the sweetener aspartame.

  20. Template directed reactions of 2-aminoadenylic acid derivatives

    NASA Technical Reports Server (NTRS)

    Webb, T. R.; Orgel, L. E.

    1982-01-01

    The template-directed oligomerization of activated derivatives of 2-aminoadenylic acid (paA) on polyuridylic acid (poly(U)) in aqueous buffers was studied. The reaction differs from that of adenylic acid (pA) under identical conditions, in that only di- and tri-nucleotides are observed as substantial products rather than a longer sequence of oligomers. The reaction of paA also differs from that of pA in that it does not require Mg (2+), and is less susceptible to increased temperature. The relevance of these observations to the chemical evolution of polynucleotide replication is discussed. Improved syntheses of paA and its diphosphate are reported.

  1. The Chlorate-Iodine-Nitrous Acid Clock Reaction

    PubMed Central

    Sant'Anna, Rafaela T. P.; Faria, Roberto B.

    2014-01-01

    A new clock reaction based on chlorate, iodine and nitrous acid is presented. The induction period of this new clock reaction decreases when the initial concentrations of chlorate, nitrous acid and perchloric acid increase, but it is independent on the initial iodine concentration. The proposed mechanism is based on the LLKE autocatalytic mechanism for the chlorite-iodide reaction and the initial reaction between chlorate and nitrous acid to produce nitrate and chlorite. This new clock reaction opens the possibility for a new family of oscillating reactions containing chlorate or nitrous acid, which in both cases has not been observed until now. PMID:25313803

  2. The chlorate-iodine-nitrous acid clock reaction.

    PubMed

    Sant'Anna, Rafaela T P; Faria, Roberto B

    2014-01-01

    A new clock reaction based on chlorate, iodine and nitrous acid is presented. The induction period of this new clock reaction decreases when the initial concentrations of chlorate, nitrous acid and perchloric acid increase, but it is independent on the initial iodine concentration. The proposed mechanism is based on the LLKE autocatalytic mechanism for the chlorite-iodide reaction and the initial reaction between chlorate and nitrous acid to produce nitrate and chlorite. This new clock reaction opens the possibility for a new family of oscillating reactions containing chlorate or nitrous acid, which in both cases has not been observed until now. PMID:25313803

  3. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  4. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  5. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  6. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  7. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... Substances § 721.10125 Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and.... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester,...

  8. Heterogeneous atmospheric reactions - Sulfuric acid aerosols as tropospheric sinks

    NASA Technical Reports Server (NTRS)

    Baldwin, A. C.; Golden, D. M.

    1979-01-01

    The reaction probabilities of various atmospheric species incident on a bulk sulfuric acid surface are measured in order to determine the role of sulfuric acid aerosols as pollutant sinks. Reaction products and unreacted starting materials leaving a Knudsen cell flow reactor after collision at 300 K with a H2SO4 surface or a soot surface were detected by mass spectrometry. Significant collision reaction probabilities are observed on a H2SO4 surface for H2O2, HNO3, HO2NO2, ClONO2, N2O5, H2O and NH3, and on soot for NH3. Estimates of the contribution of heterogeneous reactions to pollutant removal under atmospheric conditions indicate that while aerosol removal in the stratosphere is insignificant (loss rate constants approximately 10 to the -10th/sec), heterogeneous reactions may be the dominant loss process for several tropospheric species (loss rate constant approximately 10 to the -5th/sec, comparable to photolysis rate constants).

  9. Serum uric acid levels during leprosy reaction episodes

    PubMed Central

    Alves-Junior, Eduardo R.; Arruda, Talita A.; Lopes, Jose C.; Fontes, Cor J.F.

    2016-01-01

    Background. Leprosy reactions are acute inflammatory episodes that occur mainly in the multibacillary forms of the disease. The reactions are classified as type 1 (reverse reaction) or type 2 (erythema nodosum leprosum). Leprosy-associated oxidative stress has been widely demonstrated. Several recent studies have shown uric acid (UA) to have antioxidative effects under pathologic conditions. The objective of this study was to assess serum levels of UA in patients with leprosy reactions, with the aim of monitoring their levels before and after treatment, compared with levels in leprosy patients without reactions. Methods. The study included patients aged 18–69 years assisted at a leprosy treatment reference center in the Central Region of Brazil. Patients who were pregnant; were using immunosuppressant drugs or immunobiologicals; or had an autoimmune disease, human immunodeficiency virus infection, acquired immune deficiency syndrome, or tuberculosis were excluded. Upon recruitment, all individuals were clinically assessed for skin lesions and neural or systemic impairment. Some patients had already completed treatment for leprosy, while others were still undergoing treatment or had initiated treatment after being admitted. The treatment of the reactional episode was started only after the initial evaluation. Laboratory assessments were performed upon admission (baseline) and at approximately 30 and 60 days (time points 1 and 2, respectively). Results. A total of 123 leprosy patients were recruited between June 2012 and June 2015; among them, 56, 42, and 25 presented with type 1, type 2, and no reactions, respectively. Serum UA levels were significantly reduced in patients with type 2 leprosy reactions compared with patients in the control group and remained lower in the two subsequent assessments, after initiation of anti-reaction treatments, with similar values to those recorded before the treatment. Discussion. The decreased serum UA levels in patients with

  10. Multicomponent cascade reactions of unprotected carbohydrates and amino acids.

    PubMed

    Voigt, Benjamin; Linke, Michael; Mahrwald, Rainer

    2015-06-01

    Herein an operationally simple multicomponent reaction of unprotected carbohydrates with amino acids and isonitriles is presented. By the extension of this Ugi-type reaction to an unprotected disaccharide a novel glycopeptide structure was accessible.

  11. Predictions of diagenetic reactions in the presence of organic acids

    NASA Astrophysics Data System (ADS)

    Harrison, Wendy J.; Thyne, Geoffrey D.

    1992-02-01

    Stability constants have been estimated for cation complexes with anions of monofunctional and difunctional acids (combinations of Ca, Mg, Fe, Al, Sr, Mn, U, Th, Pb, Cu, Zn with formate, acetate, propionate, oxalate, malonate, succinate, and salicylate) between 0 and 200°C. Difunctional acid anions form much more stable complexes than monofunctional acid anions with aluminum; the importance of the aluminum-acetate complex is relatively minor in comparison to aluminum oxalate and malonate complexes. Divalent metal cations such as Mg, Ca, and Fe form more stable complexes with acetate than with difunctional acid anions. Aluminum-oxalate can dominate the species distribution of aluminum under acidic pH conditions, whereas the divalent cation-acetate and oxalate complexes rarely account for more than 60% of the total dissolved cation, and then only in more alkaline waters. Mineral thermodynamic affinities were calculated using the reaction path model EQ3/6 for waters having variable organic acid anion (OAA) contents under conditions representative of those found during normal burial diagenesis. The following scenarios are possible: 1) K-feldspar and albite are stable, anorthite dissolves 2) All feldpars are stable 3) Carbonates can be very unstable to slightly unstable, but never increase in stability. Organic acid anions are ineffective at neutral to alkaline pH in modifying stabilities of aluminosilicate minerals whereas the anions are variably effective under a wide range of pH in modifying carbonate mineral stabilities. Reaction path calculations demonstrate that the sequence of mineral reactions occurring in an arkosic sandstone-fluid system is only slightly modified by the presence of OAA. A spectrum of possible sandstone alteration mineralogies can be obtained depending on the selected boundary conditions: EQ3/6 predictions include quartz overgrowth, calcite replacement of plagioclase, albitization of plagioclase, and the formation of porosity-occluding calcite

  12. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    EPA Science Inventory

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  13. Laboratory measurements of heterogeneous reactions on sulfuric acid surfaces

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Manion, Jeffrey A.; Golden, David M.; Tolbert, Margaret A.

    1994-01-01

    Increasing evidence from field, modeling, and laboratory studies suggests that heterogeneous reactions on stratospheric sulfate aerosol particles may contribute to global ozone depletion. Using a Knudsen cell reactor technique, the authors have studied the uptake, reactivity, and solubility of several trace atmospheric species on cold sulfuric acid surfaces representative of stratospheric aerosol particles. The results suggest that the heterogeneous conversion of N2O5 to HNO3 is fast enough to significantly affect the partitioning of nitrogen species in the global stratosphere and thus contribute to global ozone depletion. The hydrolysis of ClONO2 is slower and unlikely to be important under normal conditions at midlatitudes. The solubilities of HCl and HNO3 in sulfuric acid down to 200 K were found to be quite low. For HCl, this means that little HCl is available for reaction on the surfaces of stratospheric sulfate aerosol particles. The low solubility of HNO3 means that this product of heterogeneous reactions will enter the gas phase, and the denitrification observed in polar regions is unlikely to occur in the global stratosphere.

  14. Reaction of arenesulfinimidic acid derivatives with thiophenols

    SciTech Connect

    Pel'kis, N.P.; Levchenko, E.S.

    1986-07-20

    The amides and esters of N-substituted arenesulfinimidic acids are reduced by the action of thiophenols primarily to N-substituted arenesulfenamides, while the thiophenols are oxidized to the corresponding derivatives of the arenesulfinic acids.

  15. Multiphase Chemistry of Pyruvic Acid Under Atmospherically Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Vaida, V.; Monod, A.; Doussin, J. F.; Reed Harris, A. E.; Griffith, E. C.; Kroll, J. A.; Rapf, R.

    2014-12-01

    Chemistry in the natural environment proceeds in multiple phases and is subject to effects from atmospheric constituents and conditions. This presentation will use pyruvic acid as a case study to demonstrate the complexity of atmospheric multiphase chemistry. The photophysics and photochemistry of pyruvic acid proceeds on different potential energy surfaces with different reaction mechanisms, rates, and products in gas versus the aqueous phase. While the gas phase reaction generally decreases the complexity of products, the aqueous chemistry creates higher molecular weight, surface-active compounds. The studies presented involve a combination of laboratory studies that focus on the photochemistry of pyruvic acid in both the gas and aqueous phases. Further, experiments in an environmental simulation chamber (CESAM) that follow the photochemistry chemistry of pyruvic acid under atmospherically relevant conditions will be presented to highlight the effect of pressure, oxygen, relative humidity, and phase on the photochemistry of pyruvic acid. The results provide new input for atmospheric chemistry models that is required to better describe the behavior of α-keto acids in the environment.

  16. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.

    PubMed

    Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario

    2016-08-01

    DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.

  17. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  18. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    ERIC Educational Resources Information Center

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  19. A sulfenylation reaction: direct synthesis of 3-arylsulfinylindoles from arylsulfinic acids and indoles in water.

    PubMed

    Miao, Tao; Li, Pinhua; Zhang, Yicheng; Wang, Lei

    2015-02-20

    A novel and efficient electrophilic sulfenylation of indoles with arylsulfinic acids is realized. The reaction utilizes readily available starting materials in water under catalyst- and additive-free conditions, providing an alternative and attractive approach to 3-arylsulfinylindoles with high yields. Preliminary mechanistic investigation suggested that the reaction is through an electrophilic substitution process.

  20. Effect the conditions of the acid-thermal modification of clinoptilolite have on the catalytic properties of palladium-copper complexes anchored on it in the reaction of carbon monoxide oxidation

    NASA Astrophysics Data System (ADS)

    Rakitskaya, T. L.; Kiose, T. A.; Ennan, A. A.; Golubchik, K. O.; Oleksenko, L. P.; Gerasiova, V. G.

    2016-06-01

    The dependence of the physicochemical and structural-adsorption properties of natural and acid-thermal modified clinoptilolite, and of Pd(II)-Cu(II) catalysts based on them, on the duration of acid-thermal modification is investigated. The samples under study are described via XRD and thermal gravimetric (DTG and DTA) analysis, IR, DR UV-Vis, EPR spectroscopy, and water vapor adsorption. Values of both the specific surface area ( S sp) and pH of aqueous suspensions are determined. The resulting catalysts are tested in the reaction of low-temperature carbon monoxide oxidation with air oxygen. A conclusion is drawn about the nature of surface bimetallic Pd(II)-Cu(II) complexes. The greatest catalytic activity is shown by complexes based on clinoptilolite and modified with 3 M HNO3 for 0.5 and 1 h.

  1. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    SciTech Connect

    Alyapyshev, M.; Paulenova, A.; Tkac, P.; Cleveland, M.A.; Bruso, J.E.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the method of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)

  2. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  3. Jammed acid-base reactions at interfaces.

    PubMed

    Gibbs-Davis, Julianne M; Kruk, Jennifer J; Konek, Christopher T; Scheidt, Karl A; Geiger, Franz M

    2008-11-19

    Using nonlinear optics, we show that acid-base chemistry at aqueous/solid interfaces tracks bulk pH changes at low salt concentrations. In the presence of 10 to 100 mM salt concentrations, however, the interfacial acid-base chemistry remains jammed for hours, until it finally occurs within minutes at a rate that follows the kinetic salt effect. For various alkali halide salts, the delay times increase with increasing anion polarizability and extent of cation hydration and lead to massive hysteresis in interfacial acid-base titrations. The resulting implications for pH cycling in these systems are that interfacial systems can spatially and temporally lag bulk acid-base chemistry when the Debye length approaches 1 nm.

  4. Iminodicarboxylic acids in the Murchison meteorite: Evidence of Strecker reactions

    NASA Astrophysics Data System (ADS)

    Lerner, Narcinda R.; Cooper, George W.

    2005-06-01

    α-Amino acids and α-hydroxy acids are well known constituents of several carbonaceous meteorites. One proposed mechanism of their formation is the reactions of CN -, NH 3, aldehydes and ketones in aqueous solution, a Strecker-like synthesis. Iminodicarboxylic acids, relatively unusual in molecular structure, are significant by-products of laboratory Strecker syntheses of α-amino acids. It is therefore notable that an analogous suite of imino acids has not been reported in CM2 chondrites where amino and hydroxy acids are abundant. In this work, aqueous extracts of the Murchison meteorite were examined for the presence of imino acids; GC-MS and HPLC molecular analyses revealed a complex suite of such acids. With the exception of one of the seven-carbon members, all of the C4 through C7 imino acids were observed in Murchison. These observations suggest that the Strecker synthesis made, at least, some contribution to the formation of extraterrestrial amino acids.

  5. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  6. Imino Acids in the Murchison Meteorite: Evidence of Strecker Reactions

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cooper, G. W.

    2003-01-01

    Both alpha-amino acids and alpha-hydroxy acids occur in aqueous extracts of the Murchison carbonaceous meteorite. The Strecker-cyanohydrin reaction, the reaction of carbonyl compounds, cyanide, and ammonia to produce amino and hydroxy acids, has been proposed as a source of such organic acids in meteorites. Such syntheses are consistent with the suggestion that interstellar precursors of meteoritic organic compounds accreted on the meteorite parent body together with other ices. Subsequent internal heating of the parent body melted these ices and led to the formation of larger compounds in synthetic reactions during aqueous alteration, which probably occurred at temperatures between 273K and 298K. In the laboratory, imino acids are observed as important by-products of the Strecker synthesis.

  7. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    SciTech Connect

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  8. High explosive violent reaction (HEVR) from slow heating conditions

    SciTech Connect

    Vigil, A.S.

    1999-03-01

    The high explosives (HEs) developed and used at the Los Alamos National Laboratory are designed to be insensitive to impact and thermal insults under all but the most extreme conditions. Nevertheless, violent reactions do occasionally occur when HE is involved in an accident. The HE response is closely dependent on the type of external stimulus that initiates the reaction. For example, fast heating of conventional HE will probably result in fairly benign burning, while long-term, slow heating of conventional HE is more likely to produce an HEVR that will do much more damage to the immediate surroundings. An HEVR (High Explosive Violent Reaction) can be defined as the rapid release of energy from an explosive that ranges from slightly faster than a deflagration (very rapid burning) to a reaction that approaches a detonation. A number of thermal analyses have been done to determine slow heat/cook-off conditions that produce HE self-heating that can build up to a catastrophic runaway reaction. The author specifies the conditions that control reaction violence, describes experiments that produced an HEVR, describes analyses done to determine a heating rate threshold for HEVR, and lists possible HEVR situations.

  9. Fluorogenic, catalytic, photochemical reaction for amplified detection of nucleic acids.

    PubMed

    Dutta, Subrata; Fülöp, Annabelle; Mokhir, Andriy

    2013-09-18

    Photochemical, nucleic acid-induced reactions, which are controlled by nontoxic red light, are well-suited for detection of nucleic acids in live cells, since they do not require any additives and can be spatially and temporally regulated. We have recently described the first reaction of this type, in which a phenylselenyl derivative of thymidine (5'-PhSeT-ODNa) is cleaved in the presence of singlet oxygen (Fülöp, A., Peng, X., Greenberg, M. M., Mokhir, A. (2010) A nucleic acid directed, red light-induced chemical reaction. Chem. Commun. 46, 5659-5661). The latter reagent is produced upon exposure of a photosensitizer 3'-PS-ODNb (PS = Indium(III)-pyropheophorbide-a-chloride: InPPa) to >630 nm light. In 2012 we reported on a fluorogenic version of this reaction (Dutta, S., Flottmann, B., Heilemann, M., Mokhir, A. (2012) Hybridization and reaction-based, fluorogenic nucleic acid probes. Chem. Commun. 47, 9664-9666), which is potentially applicable for the detection of nucleic acids in cells. Unfortunately, its yield does not exceed 25% and no catalytic turnover could be observed in the presence of substrate excess. This problem occurs due to the efficient, competing oxidation of the substrate containing an electron rich carbon-carbon double bonds (SCH═CHS) in the presence of singlet oxygen with formation of a noncleavable product (SCH═CHSO). Herein we describe a related, but substantially improved photochemical, catalytic transformation of a fluorogenic, organic substrate, which consists of 9,10-dialkoxyanthracene linked to fluorescein, with formation of a bright fluorescent dye. In highly dilute solution this reaction occurs only in the presence of a nucleic acid template. We developed three types of such a reaction and demonstrated that they are high yielding and generate over 7.7 catalytic turnovers, are sensitive to single mismatches in nucleic acid targets, and can be applied for determination of both the amount of nucleic acids and potentially their

  10. Perfluorinated resinsulfonic acid--a catalyst for certain organic reactions

    SciTech Connect

    Etlis, V.S.; Beshenova, E.P.; Semenova, E.A.; Shomina, F.N.; Dreiman, N.A.; Balaev, G.A.

    1986-09-10

    The purpose of this work was to examine the possibility of using, as a catalyst in certain organic reactions, the perfluorinated resinsulfonic acid F-4SK in the H form, which is an analog of the perfluorinated resinsulfonic acid Nafion-H.

  11. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  12. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  13. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  14. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  15. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  16. Marangoni instability in the iodate-arsenous acid reaction front

    NASA Astrophysics Data System (ADS)

    Pópity-Tóth, Éva; Pótári, Gábor; Erdős, István; Horváth, Dezső; Tóth, Ágota

    2014-07-01

    Horizontally propagating chemical fronts leading to the formation of a single stable convection roll are investigated in the iodate-arsenous acid reaction with arsenous acid stoichiometrically limiting, leaving the surface active iodine present in the product mixture. In sufficiently thin solution layers with open upper surface, the contribution of Marangoni instability is significantly enhanced. Acting in the same direction as buoyancy driven instability, it distorts the entire tilted reaction front that becomes 50% more elongated. The corresponding three-dimensional calculations based on the empirical rate-law of the reaction corroborate the experimental findings.

  17. Marangoni instability in the iodate–arsenous acid reaction front

    SciTech Connect

    Pópity-Tóth, Éva; Pótári, Gábor; Erdős, István; Tóth, Ágota; Horváth, Dezső

    2014-07-28

    Horizontally propagating chemical fronts leading to the formation of a single stable convection roll are investigated in the iodate–arsenous acid reaction with arsenous acid stoichiometrically limiting, leaving the surface active iodine present in the product mixture. In sufficiently thin solution layers with open upper surface, the contribution of Marangoni instability is significantly enhanced. Acting in the same direction as buoyancy driven instability, it distorts the entire tilted reaction front that becomes 50% more elongated. The corresponding three-dimensional calculations based on the empirical rate-law of the reaction corroborate the experimental findings.

  18. Direct microwave-assisted amino acid synthesis by reaction of succinic acid and ammonia in the presence of magnetite

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Liu, Dandan; Shi, Weiguang; Hua, Yingjie; Wang, Chongtai; Liu, Xiaoyang

    2013-10-01

    Since the discovery of submarine hot vents in the late 1970s, it has been postulated that submarine hydrothermal environments would be suitable for emergence of life on Earth. To simulate warm spring conditions, we designed a series of microwave-assisted amino acid synthesis involving direct reactions between succinic acid and ammonia in the presence of the magnetite catalyst. These reactions which generated aspartic acid and glycine were carried out under mild temperatures and pressures (90-180 °C, 4-19 bar). We studied this specific reaction inasmuch as succinic acid and ammonia were traditionally identified as prebiotic compounds in primitive deep-sea hydrothermal systems on Earth. The experimental results were discussed in both biochemical and geochemical context to offer a possible route for abiotic amino acid synthesis. With extremely diluted starting materials (0.002 M carboxylic acid and 0.002 M ammonia) and catalyst loading, an obvious temperature dependency was observed in both cases [neither product was detected at 90 °C in comparison with 21.08 μmol L-1 (aspartic acid) and 70.25 umol L-1 (glycine) in 180 °C]. However, an opposite trend presented for reaction time factor, namely a positive correlation for glycine, but a negative one for aspartic acid.

  19. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-01

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  20. Solvent effects in acid-catalyzed biomass conversion reactions.

    PubMed

    Mellmer, Max A; Sener, Canan; Gallo, Jean Marcel R; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A

    2014-10-27

    Reaction kinetics were studied to quantify the effects of polar aprotic organic solvents on the acid-catalyzed conversion of xylose into furfural. A solvent of particular importance is γ-valerolactone (GVL), which leads to significant increases in reaction rates compared to water in addition to increased product selectivity. GVL has similar effects on the kinetics for the dehydration of 1,2-propanediol to propanal and for the hydrolysis of cellobiose to glucose. Based on results obtained for homogeneous Brønsted acid catalysts that span a range of pKa values, we suggest that an aprotic organic solvent affects the reaction kinetics by changing the stabilization of the acidic proton relative to the protonated transition state. This same behavior is displayed by strong solid Brønsted acid catalysts, such as H-mordenite and H-beta. PMID:25214063

  1. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  2. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions.

    PubMed

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C-50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO₄(-)• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO₄(-)•, followed by a HF elimination process aided by •OH, which produces one-CF₂-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn-1F2n-1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  3. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions.

    PubMed

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C-50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO₄(-)• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO₄(-)•, followed by a HF elimination process aided by •OH, which produces one-CF₂-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn-1F2n-1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs.

  4. Parametric effects of glass reaction under unsaturated conditions

    SciTech Connect

    Bates, J.K.; Gerding, T.J.; Woodland, A.B.

    1989-11-01

    Eventual liquid water contact of high-level waste glass stored under the unsaturated conditions anticipated at the Yucca Mountain site will be by slow intrusion of water into a breached container/canister assembly. The water flow patterns under these unsaturated conditions will vary, and the Unsaturated Test method has been developed by the YMP to study glass reaction. The results from seven different sets of tests done to investigate the effect of systematically varying parameters, such as glass composition, composition and degree of sensitization of 304L stainless steel, water input volume, and the interval of water contact are discussed. Glass reaction has been monitored over a period of five years, and the parametric effects can result in up to a ten-fold variance in the degree of glass reaction.

  5. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). (a... generically as alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and...

  6. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  7. 40 CFR 721.10664 - Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with alkenoic acid alkyl esters and diamine (generic). 721.10664 Section 721.10664... Alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and diamine (generic). (a... generically as alkenedioic acid dialkyl ester, reaction products with alkenoic acid alkyl esters and...

  8. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  9. Benzyl- and 2- and 4-nitrobenzylcyclopropanes and their reaction with organic acids

    SciTech Connect

    Fedotov, A.N.; Trofimova, E.V.; Mochalov, S.S.; Shabarov, Yu.S.

    1988-12-10

    The nitration of benzylcyclopropane and its transformations in organic acids were studied. Under the conditions of electrophilic nitration the small ring is preserved while the ratio of the o- and p-nitrophenyl derivatives amount to 1.1:1. The reaction of benzylcyclopropane with formic and acetic acids takes place with the addition of the fragments of the acid at the 1,2-bond of the three-carbon ring; o- and p-nitrobenzylcyclopropanes do not react with formic and acetic acids, with trifluoroacetic acid they form trifluoroacetates, and in the case of the ortho-substituted isomer nucleophilic assistance from the nitro group is observed. Significant differences in the behavior of phenylcyclopropane and benzylcyclopropane due to the destruction of the conjugation between the fragments in the molecule are observed in the acid-catalyzed reactions.

  10. Hydrodynamic instability in the open system of the iodate-arsenous acid reaction.

    PubMed

    Pópity-Tóth, Éva; Pimienta, Véronique; Horváth, Dezső; Tóth, Ágota

    2013-10-28

    Hydrodynamic instability arising in horizontally propagating vertical chemical fronts leading to the formation of a single stable convection roll is investigated experimentally in the iodate-arsenous acid reaction for various stoichiometry. In the presence of a free surface, the tilted reaction front becomes more elongated due to the evaporation of the surface active iodine and the decrease in the surface tension during the reaction. The experimental conditions are then identified where Marangoni instability represents the driving force for the distortion of the reaction front at the surface.

  11. Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid.

    PubMed

    Su, Chia-Hung

    2013-02-01

    The catalytic performance and recoverability of several homogeneous acid catalysts (hydrochloric, sulfuric, and nitric acids) for the esterification of enzyme-hydrolyzed free fatty acid (FFA) and methanol were studied. Although all tested catalysts drove the reaction to a high yield, hydrochloric acid was the only catalyst that could be considerably recovered and reused. The kinetics of the esterification reaction catalyzed by hydrochloric acid was investigated under varying catalyst loading (0.1-1M), reaction temperature (303-343K), and methanol/FFA molar ratio (1:1-20:1). In addition, a pseudo-homogeneous kinetic model incorporating the above factors was developed. A good agreement (r(2)=0.98) between the experimental and calculated data was obtained, thus proving the reliability of the model. Furthermore, the reusability of hydrochloric acid in FFA esterification can be predicted by the developed model. The recoverable hydrochloric acid achieved high yields of FFA esterification within five times of reuse.

  12. Ozonolysis of Mixed Oleic-Acid/Stearic-Acid Particles: Reaction Kinetics and Chemical Morphology

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Katrib, Y.; Biskos, G.; Buseck, P. R.; Davidovits, P.; Jayne, J. T.; Mochida, M.; Wise, M. E.; Worsnop, D. R.

    2005-12-01

    OL loss, decreases linearly from 1.25(+/-0.2) 10-3 to 0.60(+/-0.15) 10-3 for composition changes of 100/0 to 60/40. At 50/50 composition, the uptake coefficient drops abruptly to 0.15(+/-0.1) 10-3, and there are no further changes with increased SA content. The amount of SA in the particles also decreases during OL ozonolysis. The stabilized Criegee intermediate (SCI) formed by OL ozonolysis attacks the carboxylic acid group of SA to yield an acyloxyalkyl hydroperoxide product. The experimental observations of this study can be explained by the following two postulates: (1) unreacted mixed particles remain as supersatured liquids up to 60/40 composition and (2) SA, as it solidifies, locks in a significant amount of oleic acid. The results of this study point out the important effects of particle phase, composition, and morphology on chemical reactivity. Oleic acid in liquid regions of a particle reacts rapidly with O3 whereas OL trapped inside solid SA is essentially unavailable for reaction with O3. These results contribute to the continuing development of the scientific community's understanding of particle aging process in the atmosphere, for which the ultimate goal is to provide quantitative mechanistic models of physicochemical transformations under atmospheric conditions.

  13. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  14. Formation of aromatic compounds from carbohydrates. X reaction of xylose, glucose, and glucuronic acid in acidic solution at 300C

    SciTech Connect

    Theander, O.; Nelson, D.A.; Hallen, R.T.

    1987-04-01

    For several years our respective groups have investigated the formation of aromatic compounds from carbohydrates in aqueous solution at various pH-values under reflux or hydrothermolytic conditions. For instance, previous papers in this series concerned the degradation of hexoses, pentoses, erythrose, dihydroxyacetone, and hexuronic acids to phenolic and enolic components. Of particular interest were the isolation and identification of catechols, an acetophenone, and chromones from pentoses and hexuronic acids at pH 4.5. The formation of these compounds, as well as reductic acid, was found to be more pronounced than that of 2-furaldehyde under acidic conditions. The aromatic precursors of 3 and 4 were also isolated from these reaction mixtures. This is in contrast to the high yields of 2 obtained from pentoses and hexuronic acids at very low pH.

  15. Kinetic-spectrophotometric determination of ascorbic acid by inhibition of the hydrochloric acid-bromate reaction

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Rezaei, B.; Movahedinia, H.

    2002-10-01

    A new analytical method was developed for the determination of ascorbic acid in fruit juice and pharmaceuticals. The method is based on its inhibition effect on the reaction between hydrochloric acid and bromate. The decolourisation of Methyl Orange by the reaction products was used to monitor the reaction spectrophotometrically at 510 nm. The linearity range of the calibration graph depends on bromate concentration. The variable affecting the rate of the reaction was investigated. The method is simple, rapid, relatively sensitive and precise. The limit of detection is 7.6×10 -6 M and calibration rang is 8×10 -6-1.2×10 -3 M ascorbic acid. The relative standard deviation of seven replication determinations of 8×10 -6 and 2×10 -5 M ascorbic acid was 2.8 and 1.7%, respectively. The influence of potential interfering substance was studied. The method was successfully applied for the determination of ascorbic acid in pharmaceuticals.

  16. Nucleic Acid Templated Chemical Reaction in a Live Vertebrate

    PubMed Central

    2016-01-01

    Nucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex. We showed that this system reports specific expression of miRNA in living tissues of a vertebrate. PMID:27413783

  17. Nucleic Acid Templated Chemical Reaction in a Live Vertebrate.

    PubMed

    Holtzer, Laurent; Oleinich, Igor; Anzola, Marcello; Lindberg, Eric; Sadhu, Kalyan K; Gonzalez-Gaitan, Marcos; Winssinger, Nicolas

    2016-06-22

    Nucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex. We showed that this system reports specific expression of miRNA in living tissues of a vertebrate.

  18. Enantioselective aldol reaction between isatins and cyclohexanone catalyzed by amino acid sulphonamides.

    PubMed

    Wang, Jun; Liu, Qi; Hao, Qing; Sun, Yanhua; Luo, Yiming; Yang, Hua

    2015-04-01

    Sulphonamides derived from primary α-amino acid were successfully applied to catalyze the aldol reaction between isatin and cyclohexanone under neat conditions. More interestingly, molecular sieves, as privileged additives, were found to play a vital role in achieving high enantioselectivity. Consequently, high yields (up to 99%) along with good enantioselectivities (up to 92% ee) and diastereoselectivities (up to 95:5 dr) were obtained. In addition, this reaction was also conveniently scaled up, demonstrating the applicability of this protocol.

  19. Reactions of animals and people under conditions of brief weightlessness

    NASA Technical Reports Server (NTRS)

    Kitayev-Smik, L. A.

    1975-01-01

    It has been shown that under brief weightlessness sensory reactions arise in a number of people, mainly those under these conditions for the first time, in the form of spatial and visual illusions, motor excitation, in which tonic and motor components can be distinguished, and vestibular-vegetative disturbances (nausea, vomiting, etc.). In repeated flights with creation of weightlessness, a decrease in the extent of expression and, then, disappearance of these reactions occurred in a significant majority of those studied. Experiments in weightlessness with the vision cut off and with the absence of vestibular functions in the subjects confirm the hypothesis that spatial conceptions of people in weightlessness depend on predominance of gravireceptor or visual afferent signals under these conditions.

  20. Dissociative attachment reactions of electrons with strong acid molecules

    SciTech Connect

    Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J.

    1986-06-15

    Using the flowing afterglow/Langmuir probe (FALP) technique, we have determined (at variously 300 and 570 K) the dissociative attachment coefficients ..beta.. for the reactions of electrons with the common acids HNO/sub 3/ (producing NO/sup -//sub 2/) and H/sub 2/SO/sub 4/ (HSO/sup -//sub 4/), the superacids FSO/sub 3/H (FSO/sup -//sub 3/), CF/sub 3/SO/sub 3/H (CF/sub 3/SO/sup -//sub 3/), ClSO/sub 3/H (ClSO/sup -//sub 3/,Cl/sup -/), the acid anhydride (CF/sub 3/SO/sub 2/)/sub 2/O (CF/sub 3/SO/sup -//sub 3/), and the halogen halides HBr (Br/sup -/) and HI (I/sup -/). The anions formed in the reactions are those given in the parentheses. The reactions with HF and HCl were investigated, but did not occur at a measurable rate since they are very endothermic. Dissociative attachment is rapid for the common acids, the superacids, and the anhydride, the measured ..beta.. being appreciable fractions of the theoretical maximum ..beta.. for such reactions, ..beta../sub max/. The HI reaction is very fast ( ..beta..approx...beta../sub max/) but the HBr reaction occurs much more slowly because it is significantly endothermic. The data indicate that the extreme acidity of the (Bronsted-type) superacids has its equivalence in the very efficient gas-phase dissociative attachment which these species undergo when reacting with free electrons. The anions of the superacids generated in these reactions, notably FSO/sup -//sub 3/ and CF/sub 3/SO/sup -//sub 3/, are very stable (unreactive) implying exceptionally large electron affinities for the FSO/sub 3/ and CF/sub 3/SO/sub 3/ radicals.

  1. Homogeneous-Heterogeneous Reactions in Peristaltic Flow with Convective Conditions

    PubMed Central

    Hayat, Tasawar; Tanveer, Anum; Yasmin, Humaira; Alsaedi, Ahmed

    2014-01-01

    This article addresses the effects of homogeneous-heterogeneous reactions in peristaltic transport of Carreau fluid in a channel with wall properties. Mathematical modelling and analysis have been carried out in the presence of Hall current. The channel walls satisfy the more realistic convective conditions. The governing partial differential equations along with long wavelength and low Reynolds number considerations are solved. The results of temperature and heat transfer coefficient are analyzed for various parameters of interest. PMID:25460608

  2. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Chen, Minmin; Wang, Lei; Liang, Chanjuan; Zhou, Qing; Huang, Xiaohua

    2012-05-01

    Interactive effects of cadmium (Cd(2+)) and acid rain on photosynthetic light reaction in soybean seedlings were investigated under hydroponic conditions. Single treatment with Cd(2+) or acid rain and the combined treatment decreased the content of chlorophyll, Hill reaction rate, the activity of Mg(2+)-ATPase, maximal photochemical efficiency and maximal quantum yield, increased initial fluorescence and damaged the chloroplast structure in soybean seedlings. In the combined treatment, the change in the photosynthetic parameters and the damage of chloroplast structure were stronger than those of any single pollution. Meanwhile, Cd(2+) and acid rain had the interactive effects on the test indices in soybean seedlings. The results indicated that the combined pollution of Cd(2+) and acid rain aggravated the toxic effect of the single pollution of Cd(2+) or acid rain on the photosynthetic parameters due to the serious damage to the chloroplast structure.

  3. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    SciTech Connect

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  4. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  5. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  6. Reactions of Thiocyanate Ions with Acid: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1984-01-01

    Background information, procedures, and typical results are provided for a three-part experiment involving reactions of potassium thiocynate (KNCS) with sulfuric acid. The experiment represents the final stage of structured work prior to students' research projects during their final year. (JM)

  7. Four acid-catalysed dehydration reactions proceed without interference.

    PubMed

    Lirag, Rio Carlo; Miljanić, Ognjen Š

    2014-08-25

    Four acid-catalysed dehydration reactions can proceed in one pot, simultaneously and without interference, to yield one imine, one acetal (or boronic ester), one ester and one alkene, even though many other cross-products could be conceived. This advanced self-sorting behaviour is attributed to different dehydration rates, brought about by dissimilar electronic properties of starting materials.

  8. Carboxylic acid free novel isocyanide-based reactions.

    PubMed

    Soeta, Takahiro; Ukaji, Yutaka

    2014-02-01

    In order to develop a practical method for the construction of drug-like and heterocyclic compounds, we have designed a novel Passerini- or Ugi-type reaction system where a compound (which we write in the general form as Z-X) composed of an electrophilic (Z) and a nucleophilic group (X) could essentially perform the same function as the carboxylic acid. Based on this concept, we have developed the O-silylative Passerini reaction and the borinic acid catalyzed α-addition of isocyanides to aldehydes and water. In addition, we have designed and demonstrated the addition reaction of isocyanides to nitrones in the presence of TMSCl to afford the corresponding 1,2,3,4-tetrahydroisoquinoline-1-carboxyamides. Furthermore, a novel [5 + 1] cycloaddition of isocyanide was explored with C,N-cyclic N'-acyl azomethine imines as a "1,5-dipole" via a strategy involving intramolecular trapping of the isocyanide.

  9. Reaction sequences in simulated neutralized current acid waste slurry during processing with formic acid

    SciTech Connect

    Smith, H.D.; Wiemers, K.D.; Langowski, M.H.; Powell, M.R.; Larson, D.E.

    1993-11-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed for the Department of Energy to immobilize high-level and transuranic wastes as glass for permanent disposal. Pacific Northwest Laboratory is supporting the HWVP design activities by conducting laboratory-scale studies using a HWVP simulated waste slurry. Conditions which affect the slurry processing chemistry were evaluated in terms of offgas composition and peak generation rate and changes in slurry composition. A standard offgas profile defined in terms of three reaction phases, decomposition of H{sub 2}CO{sub 3}, destruction of NO{sub 2}{sup {minus}}, and production of H{sub 2} and NH{sub 3} was used as a baseline against which changes were evaluated. The test variables include nitrite concentration, acid neutralization capacity, temperature, and formic acid addition rate. Results to date indicate that pH is an important parameter influencing the N{sub 2}O/NO{sub x} generation ratio; nitrite can both inhibit and activate rhodium as a catalyst for formic acid decomposition to CO{sub 2} and H{sub 2}; and a separate reduced metal phase forms in the reducing environment. These data are being compiled to provide a basis for predicting the HWVP feed processing chemistry as a function of feed composition and operation variables, recommending criteria for chemical adjustments, and providing guidelines with respect to important control parameters to consider during routine and upset plant operation.

  10. Dilute-acid hydrolysis of sugarcane bagasse at varying conditions.

    PubMed

    Neureiter, Markus; Danner, Herbert; Thomasser, Christiane; Saidi, Bamusi; Braun, Rudolf

    2002-01-01

    Sugarcane bagasse, a byproduct of the cane sugar industry, is an abundant source of hemicellulose that could be hydrolyzed to yield a fermentation feedstock for the production of fuel ethanol and chemicals. The effects of sulfuric acid concentration, temperature, time, and dry matter concentration on hemicellulose hydrolysis were studied with a 20-L batch hydrolysis reactor using a statistical experimental design. Even at less severe conditions considerable amounts (>29%) of the hemicellulose fraction could be extracted. The percentage of soluble oligosaccharides becomes very low in experiments with high yields in monosaccharides, which indicates that the cellulose fraction is only slightly affected. For the sugar yields, acid concentration appears to be the most important parameter, while for the formation of sugar degradation products, temperature shows the highest impact. It could be demonstrated that the dry matter concentration in the reaction slurry has a negative effect on the xylose yield that can be compensated by higher concentrations of sulfuric acid owing to a positive interaction between acid concentration and dry matter contents.

  11. Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: Reaction optimization and identification of sodium lactate as the active catalyst

    SciTech Connect

    Wadley, D.C.; Tam, M.S.; Miller, D.J.

    1997-01-15

    Lactic acid is converted to 2,3-pentanedione, acrylic acid, and other products in vapor-phase reactions over silica-supported sodium lactate formed from sodium nitrate. Multiparameter optimization of reaction conditions using a Box-Benkhen experimental design shows that the highest yield and selectivity to 2,3-pentanedione are achieved at low temperature, elevated pressure, and long contact time, while yield and selectivity to acrylic acid are most favorable at high temperature, low pressure, and short contact time. Post-reaction Fourier transform infrared spectroscopic analyses of the catalyst indicate that sodium nitrate as the initial catalyst material is transformed to sodium lactate at the onset of reaction via proton transfer from lactic acid to nitrate. The resultant nitric acid vaporizes as it is formed, leaving sodium lactate as the sole sodium-bearing species on the catalyst during reaction. 19 refs., 8 figs., 5 tabs.

  12. Effects of Meteorological Conditions on Reactions to Noise Exposure

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P. (Technical Monitor); Fields, James M.

    2004-01-01

    More than 80,000 residents' responses to transportation noise at different times of year provide the best, but imprecise, statistical estimates of the effects of season and meteorological conditions on community response to noise. Annoyance with noise is found to be slightly statistically significantly higher in the summer than in the winter in a seven-year study in the Netherlands. Analyses of 41 other surveys drawn from diverse countries, climates, and times of year find noise annoyance is increased by temperature, and may be increased by more sunshine, less precipitation, and reduced wind speeds. Meteorological conditions on the day of the interview or the immediately preceding days do not appear to have any more effect on reactions than do the conditions over the immediately preceding weeks or months.

  13. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    PubMed

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites. PMID:27322707

  14. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    PubMed

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  15. The role of boronic acids in accelerating condensation reactions of α-effect amines with carbonyls.

    PubMed

    Gillingham, Dennis

    2016-08-10

    A broad palette of bioconjugation reactions are available for chemical biologists, but an area that still requires investigation is high-rate constant reactions. These are indispensable in certain applications, particularly for in vivo labelling. Appropriately positioned boronic acids accelerate normally sluggish Schiff base condensations of α-effect nucleophiles by five orders of magnitude - providing a new entry to the rare set of reactions that have a rate constant above 100 M(-1) s(-1) under physiological conditions. I summarize here a number of recent reports, including work from my own group, and outline a mechanistic picture that explains the differing behaviour of seemingly similar substrate classes.

  16. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.

    PubMed

    Hisatomi, Shihoko; Guan, Ling; Nakajima, Mami; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2013-11-15

    Diphenylarsinic acid (DPAA) is a toxic phenylarsenical compound often found around sites contaminated with phenylarsenic chemical warfare agents, diphenylcyanoarsine or diphenylchloroarsine, which were buried in soil after the World Wars. This research concerns the elucidation of the chemical structure of an arsenic metabolite transformed from DPAA under anaerobic sulfate-reducing soil conditions. In LC/ICP-MS analysis, the retention time of the metabolite was identical to that of a major phenylarsenical compound synthesized by chemical reaction of DPAA and hydrogen sulfide. Moreover the mass spectra for the two compounds measured using LC/TOF-MS were similar. Subsequent high resolution mass spectral analysis indicated that two major ions at m/z 261 and 279, observed on both mass spectra, were attributable to C12H10AsS and C12H12AsSO, respectively. These findings strongly suggest that the latter ion is the molecular-related ion ([M+H](+)) of diphenylthioarsinic acid (DPTA; (C6H5)2AsS(OH)) and the former ion is its dehydrated fragment. Thus, our results reveal that DPAA can be transformed to DPTA, as a major metabolite, under sulfate-reducing soil conditions. Moreover, formation of diphenyldithioarsinic acid and subsequent dimerization were predicted by the chemical reaction analysis of DPAA with hydrogen sulfide. This is the first report to elucidate the occurrence of DPAA-thionation in an anaerobic soil. PMID:24007995

  17. Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions.

    PubMed

    Andreozzi, R; Canterino, M; Caprio, V; Di Somma, I; Sanchirico, R

    2006-12-01

    Runaway phenomena and thermal explosions can originate during the nitration of salicylic acid by means of a nitric acid/acetic acid mixture when the thermal control is lost, mainly as a result of the formation and thermal decomposition of picric acid. The prediction of the behaviour of this system is thus of great importance in view of possible industrial applications and the need to avoid the occurrence of unwanted dangerous events. During a previous investigation a model was developed to simulate its behaviour when the starting concentration of the substrate is too low, thus, preventing the precipitation of poor soluble intermediates. In this work this model is extended to deal with more concentrated systems even in case of a solid phase separating during the process. To this purpose the previously assessed dependence of the solubility of 3-nitro and 5-nitrosalicylic acids upon temperature and nitric acid concentration is included in the model. It is assumed that when 3-nitro and 5-nitrosalicylic acids are partially suspended in the reacting medium a kinetic regime of "dissolution with reaction" is established; that is, the redissolution of these species is a fast process compared to the successive nitration to give dinitroderivatives. Good results are obtained in the comparison of the experimental data with those calculated both in isoperibolic and adiabatic conditions when the revised model is used.

  18. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  19. Acid-catalyzed heterogeneous reaction of 3-methyl-2-buten-1-ol with hydrogen peroxide.

    PubMed

    Liu, Qifan; Wang, Weigang; Ge, Maofa

    2015-05-01

    Acid-catalyzed heterogeneous oxidation with hydrogen peroxide (H2O2) has been suggested to be a potential pathway for secondary organic aerosol (SOA) formation from isoprene and its oxidation products. However, knowledge of the chemical mechanism and kinetics for this process is still incomplete. 3-Methyl-2-buten-1-ol (MBO321), an aliphatic alcohol structurally similar to isoprene, is emitted by pine forests and widely used in the manufacturing industries. Herein the uptake of MBO321 into H2SO4-H2O2 mixed solution was investigated using a flow-tube reactor coupled to a mass spectrometer. The reactive uptake coefficients (γ) were acquired for the first time and were found to increase rapidly with increasing acid concentration. Corresponding aqueous-phase reactions were performed to further study the mechanism of this acid-catalyzed reaction. MBO321 could convert to 2-methyl-3-buten-2-ol (MBO232) and yield isoprene in acidic media. Organic hydroperoxides (ROOHs) were found to be generated through the acid-catalyzed route, which could undergo a rearrangement reaction and result in the formation of acetone and acetaldehyde. Organosulfates, which have been proposed to be SOA tracer compounds in the atmosphere, were also produced during the oxidation process. These results suggest that the heterogeneous acid-catalyzed reaction of MBO321 with H2O2 may contribute to SOA mass under certain atmospheric conditions.

  20. An Investigation of Solid-State Amidization and Imidization Reactions in Vapor Deposited Poly (amic acid)

    SciTech Connect

    Anthamatten, M; Letts, S A; Day, K; Cook, R C; Gies, A P; Hamilton, T P; Nonidez, W K

    2004-06-28

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FT-IR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of films at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments reveal that, upon vapor deposition, poly(amic acid) oligomers form that have a number-average molecular weight of about 1500 Daltons. Between 100 - 130 C these chains undergo additional condensation reaction to form slightly higher molecular weight oligomers. Calorimetry measurements show that this reaction is exothermic ({Delta}H {approx} -30 J/g) with an activation energy of about 120 kJ/mol. Experimental reaction enthalpies are compared to results from ab initio molecular modeling calculations to estimate the number of amide groups formed. At higher temperatures (150 - 300 C) imidization of amide linkages occurs as an endothermic reaction ({Delta}H {approx} +120 J/g) with an activation energy of about 130 kJ/mol. Solid-state kinetics were found to depend on reaction conversion as well as the processing conditions used to deposit films.

  1. Influence of ions on aqueous acid-base reactions.

    PubMed

    Cox, M Jocelyn; Siwick, Bradley J; Bakker, Huib J

    2009-01-12

    We study the effects of bromide salts on the rate and mechanism of the aqueous proton/deuteron-transfer reaction between the photoacid 8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS) and the base acetate. The proton/deuteron release is triggered by exciting HPTS with 400 nm femtosecond laser pulses. Probing the electronic and vibrational resonances of the photoacid, the conjugate photobase, the hydrated proton/deuteron and the accepting base with femtosecond visible and mid-infrared pulses monitors the proton transfer. Two reaction channels are identified: 1) direct long-range proton transfer over hydrogen-bonded water bridges that connect the acid and base and 2) acid dissociation to produce fully solvated protons followed by proton scavenging from solution by acetate. We observe that the addition of salt affects the long-range reaction pathway, and reduces both the rate at which protons are released to solution by HPTS and the rate at which solvated protons are scavenged from solution by acetate. We study the dependence of these effects on the nature and concentration of the dissolved salt.

  2. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  3. Reaction behaviors of glycine under super- and subcritical water conditions.

    PubMed

    Alargov, Dimitar K; Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2002-02-01

    The influence of temperature and pressure on the dimerization and decomposition of glycine under simulated hydrothermal system conditions was studied by injecting a glycine solution into water in the sub- and supercritical state. The experiments at five different temperatures of supplied water--250, 300, 350, 374, and 400 degrees C--were performed at 22.2 and 40.0 MPa. At 350 degrees C, experiments under 15.0-40.0 MPa were conducted. Diglycine, triglycine (trace), diketopiperazine, and an unidentified product with a high molecular mass (433 Da) were the main products of oligomerization. The results show that temperature and pressure influence the extent of dimerization and decomposition of glycine. The maximum of dimers formation was observed at 350 and 375 degrees C at 22.2 and 40.0 MPa, respectively, and coincided with a high rate of glycine decomposition. Glycine, alanine, aspartic acid, as well as other amino acids, were obtained by injecting a mixture of formaldehyde and ammonia. The results support the oligomerization and synthesis of amino acids in a submarine hydrothermal system. PMID:11889913

  4. Reaction Behaviors of Glycine under Super- and Subcritical Water Conditions

    NASA Astrophysics Data System (ADS)

    Alargov, Dimitar K.; Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2002-02-01

    The influence of temperature and pressure on the dimerization and decomposition of glycine under simulated hydrothermal system conditions was studied by injecting a glycine solution into water in the sub- and supercritical state. The experiments at five different temperatures of supplied water - 250, 300, 350, 374, and 400 °C - were performed at 22.2 and 40.0 MPa. At 350 °C, experiments under 15.0-40.0 MPa were conducted. Diglycine, triglycine (trace), diketopiperazine, and an unidentified product with a high molecular mass (433 Da) were the main products of oligomerization. The results show that temperature and pressure influence the extent of dimerization and decomposition of glycine. The maximum of dimers formation was observed at 350 and 375 °C at 22.2 and 40.0 MPa, respectively, and coincided with a high rate of glycine decomposition. Glycine, alanine, aspartic acid, as well as other amino acids, were obtained by injecting a mixture of formaldehyde and ammonia. The results support the oligomerization and synthesis of amino acids in a submarine hydrothermal system.

  5. Quantitative study of solid-state acid-base reactions between polymorphs of flufenamic acid and magnesium oxide using X-ray powder diffraction.

    PubMed

    Chen, Xiaoming; Stowell, Joseph G; Morris, Kenneth R; Byrn, Stephen R

    2010-03-11

    The purpose of this study is to investigate solid-state acid-base reactions between polymorphs of flufenamic acid (FFA) and magnesium oxide (MgO) using X-ray powder diffraction (XRPD). Polymorphs of FFA were blended with MgO and stored under conditions of 96.5% RH and 89% RH at 40 degrees C. The disappearance of FFA and production of magnesium flufenamate were monitored by XRPD. It was observed that the reactions between FFA and MgO proceeded following the Jander equation. Form I of FFA is more reactive with MgO than Form III. Differential accessibility of reactive groups is hypothesized as one of the reasons that Form I is more reactive than Form III. It was noted that the reaction between FFA and MgO could be mitigated by adding another acidic excipient such as polyacrylic acid to prevent the acid-base reaction with FFA. The effectiveness of polyacrylic acid was impacted by the mixing order of the tertiary mixture. Mixing polyacrylic acid and MgO first provided the most significant protection. In conclusion, solid-state acid-base reactions could be investigated using XRPD. Different forms may have distinct reactivity. Acid-base reactions in the solid state could be mitigated through the addition of another "shielding" excipient.

  6. Solvent-Free Conversion of Alpha-Naphthaldehyde to 1-Naphthoic Acid and 1-Naphthalenemethanol: Application of the Cannizzaro Reaction

    ERIC Educational Resources Information Center

    Esteb, John J.; Gligorich, Keith M.; O'Reilly, Stacy A.; Richter, Jeremy M.

    2004-01-01

    A mixture of potassium hydroxide and alpha-naphthaldehyde (1) are heated under solvent-free conditions to produce 1-naphthoic acid (2) and 1-naphthalenemethanol (3). The experiment offers several advantages over many existing exercises including the ease of reaction workup, shorter reaction time, relative environmental friendliness of the…

  7. Reservoir-Condition Pore-Scale Imaging of Reaction in Carbonates using Synchrotron Fast Tomography

    NASA Astrophysics Data System (ADS)

    Menke, H. P.; Andrew, M. G.; Bijeljic, B.; Blunt, M. J.

    2015-12-01

    Carbon capture and storage in carbonate reservoirs is essential for mitigating climate change. Supercritical CO2 mixed with host brine is acidic and can dissolve the surrounding pore structure and change flow dynamics. However, the type, speed, and magnitude of the dissolution are dependent on both the reactive transport properties of the pore-fluid and the intrinsic properties of the rock. Understanding how changes in the pore structure, chemistry, and flow properties affect dissolution is vital for successful predictive modelling both on the pore-scale and for up-scaled reservoir simulations. Reaction in carbonates has been studied at the pore-scale but has never been imaged dynamically in situ. We present an experimental method whereby both lab-based benchtop instruments and 'Pink Beam' synchrotron radiation are used in X-ray microtomography to investigate pore structure changes during supercritical CO2 injection at reservoir conditions. Three types of pure limestone rock with broadly varying rock topology were imaged under the same reservoir conditions. Flow-rate and brine acidity was varied in successive experiments by half an order of magnitude to gain insight into the impact of flow, transport, and physical heterogeneity. The images were binarized and the magnitude of dissolution was identified on a voxel-by-voxel basis to extract pore-by-pore dissolution data. The impact of dissolution on flow characteristics was studied by computing the evolution of the pore-scale velocity fields with a flow solver. We found that increasing rock heterogeneity increased channelized flow [Figure 1] through preferential pathways and that higher flow rate increased total dissolution. Additionally, decreasing reaction rate lowered overall reaction rate and made axial flow less uniform. Experimentally measured reaction rates in real rocks are at least an order of magnitude lower when compared to batch experiments. We provide evidence that this can be due to transport limitations

  8. Dissolution of acidic and basic compounds from the rotating disk: influence of convective diffusion and reaction.

    PubMed

    McNamara, D P; Amidon, G L

    1986-09-01

    A mass transfer model was developed to describe the dissolution and reaction of acidic and basic compounds from a rotating disk in unbuffered water. Dissolution of two carboxylic acids, 2-naphthoic acid (1) and naproxen [(+)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid, 2], and the free base, papaverine (6,7-dimethoxy-1-veratrylisoquinoline, 3), in aqueous solutions (mu = 0.1 with KCI) at 25 degrees C were investigated. An automated dissolution apparatus, which consisted of microcomputer-controlled autoburets, was constructed to monitor and adjust the pH of the aqueous solutions during the experiments. Unique features of the mass transfer model include treatment of mass transfer as a convective diffusion process rather than a stagnant film diffusion only process; treatment of ionization and acid-base reactions as heterogeneous reactions; use of experimental diffusion coefficients for all species, particularly H+ and OH-; and application of boundary conditions that specify flux for surface ionization produced species. The model accurately predicted the dissolution rate assuming the solubility, pKa, and diffusion coefficient of the compound were independently known. The model also predicted pH at the solid-liquid surface, the flux of H+ from the surface, and the contribution of A- to the total acid flux as a function of bulk pH of the aqueous solution. PMID:3783452

  9. Palm fatty acid biodiesel: process optimization and study of reaction kinetics.

    PubMed

    Yadav, Praveen K S; Singh, Onkar; Singh, R P

    2010-01-01

    The relatively high cost of refined oils render the resulting fuels unable to compete with petroleum derived fuel. In this study, biodiesel is prepared from palm fatty acid (PFA) which is a by-product of palm oil refinery. The process conditions were optimized for production of palm fatty acid methyl esters. A maximum conversion of 94.4% was obtained using two step trans-esterification with 1:10 molar ratio of oil to methanol at 65°C. Sulfuric acid and Sodium hydroxide were used as acid and base catalyst respectively. The composition of fatty acid methyl esters (FAME) obtained was similar to that of palm oil. The biodiesel produced met the established specifications of biodiesel of American Society for Testing and Materials (ASTM). The kinetics of the trans-esterification reaction was also studied and the data reveals that the reaction is of first order in fatty acid and methanol (MeOH) and over all the reaction is of second order. PMID:20972357

  10. Transition-metal free reactions of boronic acids: cascade addition - ring-opening of furans towards functionalized γ-ketoaldehydes.

    PubMed

    Roscales, S; Csákÿ, A G

    2016-02-18

    We describe the first ring-opening of furfuryl alcohols with boronic acids to afford functionalized γ-ketoaldehydes. The transformation builds a new C-C bond at the original C-4 of the starting furan, and tolerates ring-substitution at C-3 and C-4 positions. The reaction takes place under metal-free conditions by promotion with tartaric acid.

  11. Water-wire catalysis in photoinduced acid-base reactions.

    PubMed

    Kwon, Oh-Hoon; Mohammed, Omar F

    2012-07-01

    The pronounced ability of water to form a hyperdense hydrogen (H)-bond network among itself is at the heart of its exceptional properties. Due to the unique H-bonding capability and amphoteric nature, water is not only a passive medium, but also behaves as an active participant in many chemical and biological reactions. Here, we reveal the catalytic role of a short water wire, composed of two (or three) water molecules, in model aqueous acid-base reactions synthesizing 7-hydroxyquinoline derivatives. Utilizing femtosecond-resolved fluorescence spectroscopy, we tracked the trajectories of excited-state proton transfer and discovered that proton hopping along the water wire accomplishes the reaction more efficiently compared to the transfer occurring with bulk water clusters. Our finding suggests that the directionality of the proton movements along the charge-gradient H-bond network may be a key element for long-distance proton translocation in biological systems, as the H-bond networks wiring acidic and basic sites distal to each other can provide a shortcut for a proton in searching a global minimum on a complex energy landscape to its destination.

  12. Kinetics of the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.; Watson, R. T.

    1982-01-01

    An extensive study was made of the reaction of hydroxyl radicals with nitric acid in a laser photolysis-resonance fluorescence system. A 266 nm laser was used to photolyze HNO3 in the temperature range 225-415 K at pressures of 20-300 torr. A temperature dependence was detected below room temperature, with a leveling off at 298 K and a wide spread in the rate constants. A pressure dependence was observed over the entire range and was more pronounced at lower temperatures. The results are noted to be in agreement with those of previous investigations. However, the wide range of rate constants are suggested to be a problem for stratospheric HO(x) modeling for anthropogenic effects. No explanation could be given of the varying results obtained by other investigators regarding the kinetics of the reactions.

  13. Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry.

    PubMed

    Otake, Tsubasa; Taniguchi, Takashi; Furukawa, Yoshihiro; Kawamura, Fumio; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2011-10-01

    The polymerization of amino acids leading to the formation of peptides and proteins is a significant problem for the origin of life. This problem stems from the instability of amino acids and the difficulty of their oligomerization in aqueous environments, such as seafloor hydrothermal systems. We investigated the stability of amino acids and their oligomerization reactions under high-temperature (180-400°C) and high-pressure (1.0-5.5 GPa) conditions, based on the hypothesis that the polymerization of amino acids occurred in marine sediments during diagenesis and metamorphism, at convergent margins on early Earth. Our results show that the amino acids glycine and alanine are stabilized by high pressure. Oligomers up to pentamers were formed, which has never been reported for alanine in the absence of a catalyst. The yields of peptides at a given temperature and reaction time were higher under higher-pressure conditions. Elemental, infrared, and isotopic analyses of the reaction products indicated that deamination is a key degradation process for amino acids and peptides under high-pressure conditions. A possible NH(3)-rich environment in marine sediments on early Earth may have further stabilized amino acids and peptides by inhibiting their deamination.

  14. Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry.

    PubMed

    Otake, Tsubasa; Taniguchi, Takashi; Furukawa, Yoshihiro; Kawamura, Fumio; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2011-10-01

    The polymerization of amino acids leading to the formation of peptides and proteins is a significant problem for the origin of life. This problem stems from the instability of amino acids and the difficulty of their oligomerization in aqueous environments, such as seafloor hydrothermal systems. We investigated the stability of amino acids and their oligomerization reactions under high-temperature (180-400°C) and high-pressure (1.0-5.5 GPa) conditions, based on the hypothesis that the polymerization of amino acids occurred in marine sediments during diagenesis and metamorphism, at convergent margins on early Earth. Our results show that the amino acids glycine and alanine are stabilized by high pressure. Oligomers up to pentamers were formed, which has never been reported for alanine in the absence of a catalyst. The yields of peptides at a given temperature and reaction time were higher under higher-pressure conditions. Elemental, infrared, and isotopic analyses of the reaction products indicated that deamination is a key degradation process for amino acids and peptides under high-pressure conditions. A possible NH(3)-rich environment in marine sediments on early Earth may have further stabilized amino acids and peptides by inhibiting their deamination. PMID:21961531

  15. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  16. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  17. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  18. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  19. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  20. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  1. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  2. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  3. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  4. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  5. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  6. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  7. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  8. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  9. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  10. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  11. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  12. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  13. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  14. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  15. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  16. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction products with... Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... generically as fatty acid, reaction products with alkanolamine (PMN P-03-461) is subject to reporting...

  17. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction products... New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... identified generically as a hydrofluoric acid, reaction products with octane (PMN P-99-0052) is subject...

  18. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Octadecanoic acid, reaction products... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products...

  19. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction products... Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... hydrofluoric acid, reaction products with heptane (PMN P-98-1036; CAS No. 207409-71-0) is subject to...

  20. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tall oil fatty acids, reaction... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products...

  1. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, reaction products with... Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... generically as fatty acids, reaction products with alkanolamine (PMN P-09-366) is subject to reporting...

  2. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dimer acid/rosin amidoamine reaction... Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... generically as Dimer acid/rosin amidoamine reaction product (PMN P-99-0143) is subject to reporting under...

  3. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction products with... Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... generically as fatty acid, reaction products with alkanolamine (PMN P-03-461) is subject to reporting...

  4. Ion-exchange properties of strontium hydroxyapatite under acidic conditions

    SciTech Connect

    Sugiyama, Shigeru; Nishioka, Hitoshi; Moriga, Toshihiro; Hayashi, Hiromu; Moffat, J.B.

    1998-09-01

    The ion exchange of strontium hydroxyapatite (SrHAp) with Pb{sup 2+} has been investigated under acidic conditions at 293 K. The addition of various acids to the exchanging solution enhanced the exchange capacity in the order HCl > HBr > HF > HNO{sub 3} > no acid, corresponding to the formation of halogen apatites with the former three acids or hydrogen phosphate with HNO{sub 3}. Since the ion-exchange capacity of SrHAp under nonacidic conditions is higher than that of chlorapatite, the aforementioned observations can be attributed to the participation of the protons introduced by the acids.z

  5. Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction.

    PubMed

    Ortwerth, B J; Olesen, P R

    1988-08-31

    The incubation of calf lens extracts with 20 mM ascorbic acid under sterile conditions for 8 weeks caused extensive protein crosslinking, which was not observed with either 20 mM sorbitol or 20 mM glucose. While no precipitation was observed, ascorbic acid did induce the formation of high-molecular-weight protein aggregates as determined by Agarose A-5m chromatography. Proteins modified by ascorbic acid bound strongly to a boronate affinity column, however, crosslinked proteins were present mainly in the unbound fraction. These observations suggest that the cis-diol groups of ascorbic acid were present in the primary adduct, but were either lost during the crosslinking reaction or sterically hindered from binding to the column matrix. The amino acid composition of the ascorbic acid-modified proteins was identical to controls except for a 15% decrease in lysine. Amino acid analysis after borohydride reduction, however, showed a 25% decrease in lysine, a 7% decrease in arginine and an additional peak which eluted between phenylalanine and histidine. Extensive browning occurred during the ascorbic acid-modification reaction. This resulted in protein-bound chromophores with a broad absorption spectrum from 300 to 400 nm, and protein-bound fluorophores with excitation/emission maxima of 350/450 nm. A 4 week incubation of dialyzed crude lens extract with [1-14C]ascorbic acid showed increased incorporation for 2 weeks, followed by a decrease over the next 2 weeks as crosslinking was initiated. The addition of cyanoborohydride to the reaction mixture completely inhibited crosslinking and increased [1-14C]ascorbic acid incorporation to a plateau value of 180 nmol per mg protein. Amino acid analysis showed a 50% loss of lysine, and 8% decrease in arginine and the presence of a new peak which eluted slightly earlier than methionine. These data are consistent with the non-enzymatic glycation of lens proteins by either ascorbic acid or an oxidation product of ascorbic acid via

  6. MICROWAVE-ACCELERATED MULTICOMPONENT REACTIONS UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    The application of microwave-accelerated solventless synthetic protocols in multicomponent (MCC) reactions will be exemplified by several condensation and cyclization reactions including the rapid one-pot assembly of valuable heterocyclic compounds from in situ generated intermed...

  7. Formic acid production from carbohydrates biomass by hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Yun, J.; Jin, F.; Kishita, A.; Tohji, K.; Enomoto, H.

    2010-03-01

    The formation of formic acid or formate salts by hydrothermal oxidation of model biomass materials (glucose, starch and cellulose) was investigated. All experiments were conducted in a batch reactor, made of SUS 316 tubing, providing an internal volume of 5.7 cm3. A 30 wt% hydrogen peroxide aqueous solution was used as an oxidant. The experiments were carried out with temperature of 250°C, reaction time varying from 0.5 min to 5 min, H2O2 supply of 240%, and alkaline concentration varying from 0 to 1.25 M. Similar to glucose, in the cases of the oxidation of hydrothermal starch and cellulose, the addition of alkaline can also improve the yield of formic acid. And the yield were glucose>starch> cellulose in cases of with or without of alkaline addition.

  8. Hydraulic Fracturing Fluid Reaction with Shale in Experiments at Unconventional Gas Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Paukert, A. N.; Hakala, A.; Jarvis, K. B.

    2015-12-01

    Despite the marked increase in hydraulic fracturing for unconventional natural gas production over the past decade, reactions between hydraulic fracturing fluids (HFF) and shale reservoirs remain poorly reported in the scientific literature. Shale-HFF interaction could cause mineral dissolution, releasing matter from the shale, or mineral precipitation that degrades reservoir permeability. Furthermore, data are limited on whether scale inhibitors are effective at preventing mineral precipitation and whether these inhibitors adversely affect reservoir fluid chemistry and permeability. To investigate HFF-rock interaction within shale reservoirs, we conducted flow-through experiments exposing Marcellus Shale to synthetic HFF at reservoir conditions (66oC, 20MPa). Outcrop shale samples were cored, artificially fractured, and propped open with quartz sand. Synthetic HFFs were mixed with chemical additives similar to those used for Marcellus Shale gas wells in Ohio and Southwestern Pennsylvania (FracFocus.org). We evaluated differences between shale reactions with HFF made from natural freshwater and reactions with HFF made from synthetic produced water (designed to simulate produced water that is diluted and re-used for subsequent hydraulic fracturing). We also compared reactions with HFFs including hydrochloric acid (HCl) to represent the initial acid stage, and HFFs excluding HCl. Reactions were determined through changes in fluid chemistry and X-ray CT and SEM imaging of the shale before and after experiments. Results from experiments with HFF containing HCl showed dissolution of primary calcite, as expected. Experiments using HFF made from synthetic produced water had significant mineral precipitation, particularly of barium and calcium sulfates. X-ray CT images from these experiments indicate precipitation of minerals occurred either along the main fracture or within smaller splay fractures, depending on fluid composition. These experiments suggest that HFF

  9. Impact of reaction conditions on grafting acrylamide onto starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have explored the radical initiated graft polymerization reaction of acrylamide onto starch where the solvent, concentration, temperature and reaction times were varied. We have found that the morphology of the resulting grafted polymer is dramatically different and is dependent on the reaction c...

  10. Secondary organic aerosol-forming reactions of glyoxal with amino acids.

    PubMed

    De Haan, David O; Corrigan, Ashley L; Smith, Kyle W; Stroik, Daniel R; Turley, Jacob J; Lee, Frances E; Tolbert, Margaret A; Jimenez, Jose L; Cordova, Kyle E; Ferrell, Grant R

    2009-04-15

    Glyoxal, the simplest and most abundant alpha-dicarbonyl compound in the atmosphere, is scavenged by clouds and aerosol, where it reacts with nucleophiles to form low-volatility products. Here we examine the reactions of glyoxal with five amino acids common in clouds. When glyoxal and glycine, serine, aspartic acid or ornithine are present at concentrations as low as 30/microM in evaporating aqueous droplets or bulk solutions, 1,3-disubstituted imidazoles are formed in irreversible second-order reactions detected by nuclear magnetic resonance (NMR), aerosol mass spectrometry (AMS) and electrospray ionization mass spectrometry (ESI-MS). In contrast, glyoxal reacts with arginine preferentially at side chain amino groups, forming nonaromatic five-membered rings. All reactions were accompanied by browning. The uptake of 45 ppb glyoxal by solid-phase glycine aerosol at 50% RH was also studied and found to cause particle growth and the production of imidazole measured by scanning mobility particle sizing and AMS, respectively, with a glyoxal uptake coefficient alpha = 0.0004. Comparison of reaction kinetics in bulk and in drying droplets shows that conversion of glyoxal dihydrate to monohydrate accelerates the reaction by over 3 orders of magnitude, allowing these reactions to occur at atmospheric conditions.

  11. Secondary organic aerosol-forming reactions of glyoxal with amino acids.

    PubMed

    De Haan, David O; Corrigan, Ashley L; Smith, Kyle W; Stroik, Daniel R; Turley, Jacob J; Lee, Frances E; Tolbert, Margaret A; Jimenez, Jose L; Cordova, Kyle E; Ferrell, Grant R

    2009-04-15

    Glyoxal, the simplest and most abundant alpha-dicarbonyl compound in the atmosphere, is scavenged by clouds and aerosol, where it reacts with nucleophiles to form low-volatility products. Here we examine the reactions of glyoxal with five amino acids common in clouds. When glyoxal and glycine, serine, aspartic acid or ornithine are present at concentrations as low as 30/microM in evaporating aqueous droplets or bulk solutions, 1,3-disubstituted imidazoles are formed in irreversible second-order reactions detected by nuclear magnetic resonance (NMR), aerosol mass spectrometry (AMS) and electrospray ionization mass spectrometry (ESI-MS). In contrast, glyoxal reacts with arginine preferentially at side chain amino groups, forming nonaromatic five-membered rings. All reactions were accompanied by browning. The uptake of 45 ppb glyoxal by solid-phase glycine aerosol at 50% RH was also studied and found to cause particle growth and the production of imidazole measured by scanning mobility particle sizing and AMS, respectively, with a glyoxal uptake coefficient alpha = 0.0004. Comparison of reaction kinetics in bulk and in drying droplets shows that conversion of glyoxal dihydrate to monohydrate accelerates the reaction by over 3 orders of magnitude, allowing these reactions to occur at atmospheric conditions. PMID:19475956

  12. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  13. Innovative effect of illite on improved microbiological conversion of L-tyrosine to 3,4 dihydroxy phenyl L-alanine (L-DOPA) by Aspergillus oryzae ME2 under acidic reaction conditions.

    PubMed

    Sikander, Ali; Ikram-ul-Haq

    2006-11-01

    In the present investigation, the previous ultraviolet irradiated mutant strain of Aspergillus oryzae UV-7 was further improved in terms of 3,4 dihydroxy phenyl L-alanine (L-DOPA) activity after chemical mutagenesis through 1-methyl 3-nitro 1-nitroso guanidine (MNNG = 250-1500 microg/ml) treatment (0-30 min). Among several mutant variants, the one that produced a larger amount of L-DOPA from L-tyrosine was designated to as ME2 and it was made 2-deoxy-D-glucose-resistant by growing it at various concentrations of 2 dg (0.01-0.025 %, w/v) in Vogel's agar medium. Relatively better production of L-DOPA (> 0.60 mg/ml) was obtained when 2.0% (w/v) glucose was used as a carbon source in the mycelium production medium and the tyrosinase activity increased constitutively (1.08 mg/ml), which resulted in a greater production of L-DOPA. At optimum pH0 (pH 6.0) and reaction time (60 min), more than 65% sugar was utilized for cell mass formation. The maximum conversion of L-tyrosine to L-DOPA (0.428 mg/ml) was achieved 60 min after the biochemical reaction. Mould mycelium was used for microbiological conversion of L-tyrosine to L-DOPA because tyrosinases, beta-carboxylases, and tyrosine hydroxylases are intracellular enzymes. The effect of illite (1.0 x 10(6)-6.0 x 10(6) M) on biochemical conversion of L-tyrosine to L-DOPA by Aspergillus oryzae ME(2 )was also carried out. Best results of L-DOPA biosynthesis were observed when the concentration of illite was 3.5 x 10(-6) M (1.686 mg/ml L-DOPA produced with 1.525 mg/ml consumption of L-tyrosine). It was noted that the addition of illite not only increased enzyme activity but also enhanced the permeability of cell membrane to facilitate the secretion of enzymes into the reaction broth. The comparison of kinetic parameters showed the ability of mutant to yield L-DOPA (i.e., Yp/x 7.360 +/- 0.04 mg/mg). When the culture grown on various illite concentrations was monitored for Qp, Qs, and qp, there was significant enhancement (p < 0

  14. Construction of functional group reactivity database under various reaction conditions automatically extracted from reaction database in a synthesis design system.

    PubMed

    Tanaka, Akio; Okamoto, Hideho; Bersohn, Malcolm

    2010-03-22

    To be able to estimate the reactivity of functional groups under certain reaction conditions, we have stored three types of data: (1) data of change or destruction of the functional groups by the conditions of the reaction conditions; (2) data showing no influence of the reaction conditions on the functional groups; and (3) data showing the relative reactivity of two functional groups in the presence of certain reaction conditions. These three types of data, considered together, form entities that are referenced as "interaction data". These interaction data are used in a synthesis design system called SYNSUP. A new module in our system has been constructed that automatically generates interaction data from the reaction databases. From 15 265 reactions in the database, our program selected 2763 useful reactions with yields of > or =90% and one functional group change. From these useful reactions, data regarding 465 interferences, 815 cases of inert functional groups (under the reaction conditions), and 62 relative rate data could be extracted. In addition, with the use of multiple relative rate datasets, the reactivity of more than two functional groups could be deduced.

  15. Gas-Phase Formation Rates of Nitric Acid and Its Isomers Under Urban Conditions

    NASA Technical Reports Server (NTRS)

    Okumura, M.; Mollner, A. K.; Fry, J. L.; Feng, L.

    2005-01-01

    Ozone formation in urban smog is controlled by a complex set of reactions which includes radical production from photochemical processes, catalytic cycles which convert NO to NO2, and termination steps that tie up reactive intermediates in long-lived reservoirs. The reaction OH + NO2 + M -4 HONO2 + M (la) is a key termination step because it transforms two short-lived reactive intermediates, OH and NO2, into relatively long-lived nitric acid. Under certain conditions (low VOC/NOx), ozone production in polluted urban airsheds can be highly sensitive to this reaction, but the rate parameters are not well constrained. This report summarizes the results of new laboratory studies of the OH + NO2 + M reaction including direct determination of the overall rate constant and branching ratio for the two reaction channels under atmospherically relevant conditions.

  16. Origin and yields of acetic acid in pentose-based Maillard reaction systems.

    PubMed

    Davidek, Tomas; Gouézec, Elisabeth; Devaud, Stéphanie; Blank, Imre

    2008-04-01

    The formation of acetic acid from pentoses was studied in aqueous buffered systems (90-120 degrees C, pH 6.0-8.0) containing equimolar concentrations of 13C-labeled xylose and glycine. Acetic acid was quantified by gas chromatography-mass spectroscopy using an isotope dilution assay. Acetic acid was mainly formed from the C-1/C-2 carbon atoms of xylose (77-87%), while small amounts were also formed from the C-4/C-5 atoms of the pentose sugar (9-15%). Temperature and pH had only a small effect on the relative contribution of the sugar carbon atoms to acetic acid. These results support beta-dicarbonyl cleavage of 1-deoxypento-2,4-diulose as a major pathway leading to acetic acid in pentose-based Maillard reaction systems under food processing conditions. Acetic acid was confirmed as a major degradation product of pentoses at the early stage of the Maillard reaction, yielding 16 mol% and 28 mol% at pH 6.0 and pH 8.0, respectively. PMID:18448822

  17. Optimization of reaction conditions for the electroleaching of manganese from low-grade pyrolusite

    NASA Astrophysics Data System (ADS)

    Zhang, Xing-ran; Liu, Zuo-hua; Fan, Xing; Lian, Xin; Tao, Chang-yuan

    2015-11-01

    In the present study, a response surface methodology was used to optimize the electroleaching of Mn from low-grade pyrolusite. Ferrous sulfate heptahydrate was used in this reaction as a reducing agent in sulfuric acid solutions. The effect of six process variables, including the mass ratio of ferrous sulfate heptahydrate to pyrolusite, mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio, current density, leaching temperature, and leaching time, as well as their binary interactions, were modeled. The results revealed that the order of these factors with respect to their effects on the leaching efficiency were mass ratio of ferrous sulfate heptahydrate to pyrolusite > leaching time > mass ratio of sulfuric acid to pyrolusite > liquid-to-solid ratio > leaching temperature > current density. The optimum conditions were as follows: 1.10:1 mass ratio of ferrous sulfate heptahydrate to pyrolusite, 0.9:1 mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio of 0.7:1, current density of 947 A/m2, leaching time of 180 min, and leaching temperature of 73°C. Under these conditions, the predicted leaching efficiency for Mn was 94.1%; the obtained experimental result was 95.7%, which confirmed the validity of the model.

  18. A more robust model of the biodiesel reaction, allowing identification of process conditions for significantly enhanced rate and water tolerance.

    PubMed

    Eze, Valentine C; Phan, Anh N; Harvey, Adam P

    2014-03-01

    A more robust kinetic model of base-catalysed transesterification than the conventional reaction scheme has been developed. All the relevant reactions in the base-catalysed transesterification of rapeseed oil (RSO) to fatty acid methyl ester (FAME) were investigated experimentally, and validated numerically in a model implemented using MATLAB. It was found that including the saponification of RSO and FAME side reactions and hydroxide-methoxide equilibrium data explained various effects that are not captured by simpler conventional models. Both the experiment and modelling showed that the "biodiesel reaction" can reach the desired level of conversion (>95%) in less than 2min. Given the right set of conditions, the transesterification can reach over 95% conversion, before the saponification losses become significant. This means that the reaction must be performed in a reactor exhibiting good mixing and good control of residence time, and the reaction mixture must be quenched rapidly as it leaves the reactor.

  19. A more robust model of the biodiesel reaction, allowing identification of process conditions for significantly enhanced rate and water tolerance.

    PubMed

    Eze, Valentine C; Phan, Anh N; Harvey, Adam P

    2014-03-01

    A more robust kinetic model of base-catalysed transesterification than the conventional reaction scheme has been developed. All the relevant reactions in the base-catalysed transesterification of rapeseed oil (RSO) to fatty acid methyl ester (FAME) were investigated experimentally, and validated numerically in a model implemented using MATLAB. It was found that including the saponification of RSO and FAME side reactions and hydroxide-methoxide equilibrium data explained various effects that are not captured by simpler conventional models. Both the experiment and modelling showed that the "biodiesel reaction" can reach the desired level of conversion (>95%) in less than 2min. Given the right set of conditions, the transesterification can reach over 95% conversion, before the saponification losses become significant. This means that the reaction must be performed in a reactor exhibiting good mixing and good control of residence time, and the reaction mixture must be quenched rapidly as it leaves the reactor. PMID:24508659

  20. Catalytic effect of water, formic acid, or sulfuric acid on the reaction of formaldehyde with OH radicals.

    PubMed

    Zhang, Weichao; Du, Benni; Qin, Zhenglong

    2014-07-01

    In this paper, for the hydrogen abstraction reaction of HCHO by OH radicals assisted by water, formic acid, or sulfur acid, the possible reaction mechanisms and kinetics have been investigated theoretically using quantum chemistry methods and transition-state theory. The potential energy surfaces calculated at the CCSD(T)/6-311++G(df,pd)//MP2(full)/6-311++G(df,pd) levels of theory reveal that, due to the formation of strong hydrogen bond(s), the relative energies of the transition states involving catalyst are significantly reduced compared to that reaction without catalyst. However, the kinetics calculations show that the rate constants are smaller by about 3, 9, or 10 orders of magnitude for water, formic acid, or sulfur acid assisted reactions than that uncatalyzed reaction, respectively. Consequently, none of the water, formic acid, or sulfur acid can accelerate the title reaction in the atmosphere.

  1. Dicarboxylic acid anhydride condensation with compounds containing active methylene groups. 4: Some 4-nitrophthalic anhydride condensation reactions

    NASA Technical Reports Server (NTRS)

    Oskaja, V.; Rotberg, J.

    1985-01-01

    By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.

  2. Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and Atmospheric Implications.

    PubMed

    Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig

    2016-08-22

    Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2 OO, with two inorganic acids, HCl and HNO3 , both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2 OO with HCl and HNO3 have rate constants of 4.6×10(-11)  cm(3)  s(-1) and 5.4×10(-10)  cm(3)  s(-1) , respectively. Complementary quantum-chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.

  3. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  4. Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions.

    PubMed

    Weingarten, Ronen; Cho, Joungmo; Xing, Rong; Conner, William Curtis; Huber, George W

    2012-07-01

    We have developed a kinetic model for aqueous-phase production of levulinic acid from glucose using a homogeneous acid catalyst. The proposed model shows a good fit with experimental data collected in this study in a batch reactor. The model was also fitted to steady-state data obtained in a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). The kinetic model consists of four key steps: (1) glucose dehydration to form 5-hydroxymethylfurfural (HMF); (2) glucose reversion/degradation reactions to produce humins (highly polymerized insoluble carbonaceous species); (3) HMF rehydration to form levulinic acid and formic acid; and (4) HMF degradation to form humins. We use our model to predict the optimal reactor design and operating conditions for HMF and levulinic acid production in a continuous reactor system. Higher temperatures (180-200 °C) and shorter reaction times (less than 1 min) are essential to maximize the HMF content. In contrast, relatively low temperatures (140-160 °C) and longer residence times (above 100 min) are essential for maximum levulinic acid yield. We estimate that a maximum HMF carbon yield of 14% can be obtained in a PFR at 200 °C and a reaction time of 10 s. Levulinic acid can be produced at 57% carbon yield (68% of the theoretical yield) in a PFR at 149 °C and a residence time of 500 min. A system of two consecutive PFR reactors shows a higher performance than a PFR and CSTR combination. However, compared to a single PFR, there is no distinct advantage to implement a system of two consecutive reactors.

  5. Reactions of atomic hydrogen with formic acid and carbon monoxide in solid parahydrogen II: Deuterated reaction studies.

    PubMed

    Wonderly, William R; Anderson, David T

    2014-09-11

    It is difficult to determine whether the measured rate constant for reaction of atomic hydrogen with formic acid reported in Part 1 reflects the H atom quantum diffusion rate or the rate constant for the tunneling reaction step. In Part 2 of this series, we present kinetic studies of the postphotolysis H atom reactions with deuterated formic acid (DCOOD) to address this ambiguity. Short duration 193 nm in situ photolysis of DCOOD trapped in solid parahydrogen results in partial depletion of the DCOOD precursor and photoproduction of primarily CO, CO2, DOCO, HCO and mobile H atoms. At 1.9 K we observe post-irradiation growth in the concentrations of DOCO and HCO that can be explained by H atom tunneling reactions with DCOOD and CO, respectively. Conducting experiments with different deuterium isotopomers of formic acid (DCOOD, DCOOH, HCOOD and HCOOH) provides strong circumstantial evidence the reaction involves H atom abstraction from the alkyl group of formic acid. Further, the anomalous temperature dependence measured for the H + HCOOH reaction in Part 1 is also observed for the analogous reactions with deuterated formic acid. The rate constants extracted for H atom reactions with DCOOD and HCOOH are equivalent to within experimental uncertainty. This lack of a kinetic isotope effect in the measured rate constant is interpreted as evidence the reactions are diffusion limited; the measured rate constant reflects the H atom diffusion rate and not the tunneling reaction rate. Whether or not H atom reactions with chemical species in solid parahydrogen are diffusion limited is one of the outstanding questions in this field, and this work makes significant strides toward showing the reaction kinetics with formic acid are diffusion limited.

  6. Effects of phosphoric acid on the lead-acid battery reactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Osamu; Iwakura, Chiaki; Yoneyama, Hiroshi; Tamura, Hideo

    1986-10-01

    The addition of a small amount of phosphoric acid to 5 M H2SO4 (commercial electrolyte of lead-acid batteries) results in various positive effects on the lead-acid battery reactions: (1) depression of the corrosion rate of the lead substrate through a preferential formation of alpha-PbO2 on the substrate surface; (2) retardation of hard sulfate formation or of deactivation of active materials; and (3) change in the crystal morphology of PbSO2 formed on the discharge of PbO2. Most of these effects results from chemisorption of phosphoric acid on PbSO4 crystals produced in the discharge process of PbO2.

  7. Organocatalytic acetylation of starch: effect of reaction conditions on DS and characterisation of esterified granules.

    PubMed

    Tupa, Maribel Victoria; Ávila Ramírez, Jhon Alejandro; Vázquez, Analía; Foresti, María Laura

    2015-03-01

    Starch acetates with varying degree of substitution (DS) were prepared by a novel solvent-free organocatalytic methodology. The acetylation protocol involved a non-toxic biobased α-hydroxycarboxylic acid as catalyst, and proceeded with high efficiency in absence of solvents. The effect of reaction conditions including reaction temperature (90-140 °C), catalyst load (0-2.3 g/g starch), acetic anhydride/starch weight ratio (6.5-13.5 g/g), and starch moisture content (0.6-14.8%) on the DS of the esters was evaluated. The analysis performed showed that the increase of temperature and catalyst concentration resulted in higher DS values, and evidenced a beneficial contribution of native starch moisture content on the substitution level achieved. Variation of reaction conditions allowed starch esters to be obtained with DS in the 0.03-2.93 range. Starch esters were characterised in terms of morphology, chemical structure, thermal properties, and distribution in polar/non polar liquid systems. PMID:25306348

  8. Search for reaction conditions and catalyst for selective prebiotic formation of Aldopentoses from Glycolaldehyde and Formaldehyde

    NASA Astrophysics Data System (ADS)

    Delidovich, Irina; Taran, Oxana; Parmon, Valentin; Gromov, Nikolay

    2012-07-01

    Formation of organic compounds from simple precursors appears to have been one of the first steps from geochemistry towards modern biochemistry. The Earth lagoons, hydrothermal springs, cosmic dust, meteorites, protoplanetary disk, etc. has been considered as the possible ``reactors'' in which the prebiotic synthesis could have taken place. The finding of reactions and reaction conditions which allow to produce the high yields of the biologically relevant substances from simple compounds could help us to verify different hypothesis of plausible prebotic conditions. In this work we have studied the formation of vitally important sugars, namely aldopentoses (ribose, xylose, lyxose and arabinose), from glycolaldehyde and formaldehyde over catalysts. Aldopentoses nowadays play the important roles as the components of polysaccharides, glycosides, nucleic acids and ATP. Glycolaldehyde is the simplest monosaccharide, which was found in the interstellar space [1], where it could be generated as a result of several processes, for instance, condensation of formaldehyde under UV-radiation [2]. In this work the peculiarities of interaction between glycolaldehyde and formaldehyde in the presence of soluble (phosphate and borate buffers) and solid (minerals apatite and montmorillonites) catalysts were studied. The dependences of composition of the reaction products on the catalyst nature, molar ratio of substrates, pH value of reaction mixture were revealed. The yields of aldopentoses amount to ca. 60-65% in the presence of borate catalyst under optimized reaction conditions. Borate acts not only as a catalyst, but also as the stabilizer of active intermediates and aldopentoses from side reactions [3]. Borates are present in some mineral and clays (serpentine, montmorillonite etc.) and in water of Cityhot springs (Geyser valley, placeKamchatka) in rather high concentrations. Therefore catalysis by borates could be considered as plausible prebotic condition. Acknowledgements. We

  9. Bioorthogonal tetrazine-mediated transfer reactions facilitate reaction turnover in nucleic acid-templated detection of microRNA.

    PubMed

    Wu, Haoxing; Cisneros, Brandon T; Cole, Christian M; Devaraj, Neal K

    2014-12-31

    Tetrazine ligations have proven to be a powerful bioorthogonal technique for the detection of many labeled biomolecules, but the ligating nature of these reactions can limit reaction turnover in templated chemistry. We have developed a transfer reaction between 7-azabenzonorbornadiene derivatives and fluorogenic tetrazines that facilitates turnover amplification of the fluorogenic response in nucleic acid-templated reactions. Fluorogenic tetrazine-mediated transfer (TMT) reaction probes can be used to detect DNA and microRNA (miRNA) templates to 0.5 and 5 pM concentrations, respectively. The endogenous oncogenic miRNA target mir-21 could be detected in crude cell lysates and detected by imaging in live cells. Remarkably, the technique is also able to differentiate between miRNA templates bearing a single mismatch with high signal to background. We imagine that TMT reactions could find wide application for amplified fluorescent detection of clinically relevant nucleic acid templates.

  10. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center_dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  11. A preliminary investigation of acid-catalyzed polymerization reactions of shale oil distillates

    SciTech Connect

    Netzel, D.A.

    1991-04-01

    Sinor (1989) reported that a major specialty market may exist for shale oil as an asphalt blending material. Shale oil can be converted to an asphalt blending material by acid catalyzed condensation and polymerization reactions of the many molecular species comprising the composition of shale oil. To simplify the investigation, crude shale oil was separated by distillation into three distillates of different hydrocarbon and heteroaromatic compositions. These distillates were then treated with two different types of acids to determine the effect of acid type on the end products. Three western shale oil distillates, a naphtha, a middle distillate, and an atmospheric gas oil, were reacted with anhydrous AlCl{sub 3} and 85% H{sub 2}SO{sub 4} under low-severity conditions. At relatively low temperatures, little change in the hydrocarbon composition was noted for the AlCl{sub 3} reactions. AlCl{sub 3}{center dot} (a polymerized product and/or complex) was formed. However, it is assumed that the sludge was mainly the result of heteroaromatic-AlCl{sub 3} reactions.

  12. A computational study of ultrafast acid dissociation and acid-base neutralization reactions. I. The model.

    PubMed

    Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu

    2010-07-28

    Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Bronsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa congruent with 1) as a model for excited-state HPTS( *) (pKa congruent with 1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.

  13. A computational study of ultrafast acid dissociation and acid-base neutralization reactions. I. The model

    NASA Astrophysics Data System (ADS)

    Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu

    2010-07-01

    Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Brønsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa≅1) as a model for excited-state HPTS∗ (pKa≅1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.

  14. Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids.

    PubMed

    Liao, George P; Abdelraheem, Eman M M; Neochoritis, Constantinos G; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; McGowan, David C; Dömling, Alexander

    2015-10-16

    The direct macrocycle synthesis of α-isocyano-ω-carboxylic acids via an Ugi multicomponent reaction is introduced. This multicomponent reaction (MCR) protocol differs by being especially short, convergent, and versatile, giving access to 12-22 membered rings.

  15. High School Forum: "Invitations to Enquiry": The Calcite/Acid Reaction.

    ERIC Educational Resources Information Center

    Herron, J. Dudley, Ed.; Driscoll, D. R.

    1979-01-01

    Describes a high school chemistry experiment which involves the reaction between calcite and hydrochloric and sulfuric acids. This reaction can be carried out as a projected demonstration and on an individual basis. (HM)

  16. Study of the kinetics and equilibria of the oligomerization reactions of 2-methylglyceric acid

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Zentner, C. A.; Elrod, M. J.

    2013-03-01

    The presence of a variety of chemical species related to the gaseous precursor isoprene in ambient secondary organic aerosol (SOA) has stimulated investigations of the nature of SOA-phase chemical processing. Recent work has demonstrated that 2-methylglyceric acid (2-MG) is an important isoprene-derived ambient SOA component and atmospheric chamber experiments have suggested that 2-MG may exist in oligomeric form (as oligoesters) under conditions of low SOA water content. In order to better understand the thermodynamic and kinetic parameters of such oligomerization reactions, nuclear magnetic resonance techniques were used to study the bulk phase acid-catalyzed aqueous reactions (Fischer esterification) of 2-MG. While the present results indicate that 2-MG oligoesters are formed in the bulk phase with similar water content equilibrium dependences as observed in atmospheric chamber SOA experiments, the acid-catalyzed rate of the Fischer esterification mechanism may be too slow to rationalize the 2-MG oligoester production timescales observed in the atmospheric chamber experiments. Furthermore, it appears that unrealistically high ambient SOA acidities would also be required for significant 2-MG oligoester content to arise via Fischer esterification. Therefore, the present results suggest that other, more kinetically facile, esterification mechanisms may be necessary to rationalize the existence of 2-MG oligomers in atmospheric chamber-generated and ambient SOA.

  17. Study of the kinetics and equilibria of the oligomerization reactions of 2-methylglyceric acid

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Zentner, C. A.; Elrod, M. J.

    2012-11-01

    The presence of a variety of chemical species related to the gaseous precursor isoprene in ambient secondary organic aerosol (SOA) has stimulated investigations of the nature of SOA-phase chemical processing. Recent work has demonstrated that 2-methylglyceric acid (2-MG) is an important isoprene-derived ambient SOA component and atmospheric chamber experiments have suggested that 2-MG may exist in oligomeric form (as oligoesters) under conditions of low SOA water content. In order to better understand the thermodynamic and kinetic parameters of such oligomerization reactions, nuclear magnetic resonance techniques were used to study the bulk phase acid-catalyzed aqueous reactions (Fischer esterification) of 2-MG. While the present results indicate that 2-MG oligoesters are formed in the bulk phase with similar water content equilibrium dependences as observed in atmospheric chamber SOA experiments, the acid-catalyzed rate of the Fischer esterification mechanism may be too slow to rationalize the 2-MG oligoester production timescales observed in the atmospheric chamber experiments. Furthermore, it appears that unrealistically high ambient SOA acidities would also be required for significant 2-MG oligoester content to arise via Fischer esterification. Therefore, the present results suggest that other, more kinetically facile, esterification mechanisms may be necessary to rationalize the existence of 2-MG oligomers in atmospheric chamber-generated and ambient SOA.

  18. Reactions of acids with naphthyridine-functionalized ferrocenes: protonation and metal extrusion.

    PubMed

    Sadhukhan, Nabanita; Sarkar, Mithun; Ghatak, Tapas; Rahaman, S M Wahidur; Barbour, Leonard J; Bera, Jitendra K

    2013-02-01

    Reaction of 1,8-naphthyrid-2-yl-ferrocene (FcNP) with a variety of acids affords protonated salts at first, whereas longer reaction time leads to partial demetalation of FcNP resulting in a series of Fe complexes. The corresponding salts [FcNP·H][X] (X = BF(4) or CF(3)SO(3) (1)) are isolated for HBF(4) and CF(3)SO(3)H. Reaction of FcNP with equimolar amount of CF(3)CO(2)H for 12 h affords a neutral complex [Fe(FcNP)(2)(O(2)CCF(3))(2)(OH(2))(2)] (2). Use of excess acid gave a trinuclear Fe(II) complex [Fe(3)(H(2)O)(2)(O(2)CCF(3))(8)(FcNP·H)(2)] (3). Three linear iron atoms are held together by four bridging trifluoroacetates and two aqua ligands in a symmetric fashion. Reaction with ethereal solution of HCl afforded [(FcNP·H)(3)(Cl)][FeCl(4)](2) (4) irrespective of the amount of the acid used. Even the picric acid (HPic) led to metal extrusion giving rise to [Fe(2)(Cl)(2)(FcNP)(2)(Pic)(2)] (5) when crystallized from dichloromethane. Metal extrusion was also observed for CF(3)SO(3)H, but an analytically pure compound could not be isolated. The demetalation reaction proceeds with an initial proton attack to the distal nitrogen of the NP unit. Subsequently, coordination of the conjugate base to the electrophilic Fe facilitates the release of Cp rings from metal. The conjugate base plays an important role in the demetalation process and favors the isolation of the Fe complex as well. The 1,1'-bis(1,8-naphthyrid-2-yl)ferrocene (FcNP(2)) does not undergo demetalation under identical conditions. Two NP units share one positive charge causing the Fe-Cp bonds weakened to an extent that is not sufficient for demetalation. X-ray structure of the monoprotonated FcNP(2) reveals a discrete dimer [(FcNP(2)·H)](2)[OTf](2) (6) supported by two N-H···N hydrogen bonds. Crystal packing and dispersive forces associated with intra- and intermolecular π-π stacking interactions (NP···NP and Cp···NP) allow the formation of the dimer in the solid-state. The protonation and

  19. Carboxymethylcellulose Obtained by Ethanol/Water Organosolv Process Under Acid Conditions

    NASA Astrophysics Data System (ADS)

    Ruzene, Denise S.; Gonçalves, Adilson R.; Teixeira, José A.; Pessoa de Amorim, Maria T.

    Sugar cane bagasse pulps were obtained by ethanol/water organosolv process under acid and alkaline conditions. The best condition of acid pulping for the sugarcane bagasse was 0.02 mol/L sulfuric acid at 160°C, for 1h, whereas the best condition for alkaline pulping was 5% sodium hydroxide (base pulp) at 160°C, for 3h. For the residual lignin removal, the acid and alkaline pulps were submitted to a chemical bleaching using sodium chlorite. Pulps under acid and alkaline conditions bleached with sodium chlorite presented viscosities of 3.6 and 7.8 mPas, respectively, and μ-kappa numbers of 1.1 and 2.4, respectively. The pulp under acid condition, bleached with sodium chlorite was used to obtain carboxymethylcellulose (CMC). CMC yield was 35% (pulp based), showing mass gain after the carboxymethylation reaction corresponding to 23.6% of substitution or 0.70 groups-CH2COONa per unit of glucose residue. The infrared spectra showed the CMC characteristic bands and by the infrared technique it was possible to obtain a substitution degree (0.63), similar to the substitution degree calculated by mass gain (0.70).

  20. Cyanuric acid + nitric oxide reaction at 700 sup 0 C and the effects of oxygen

    SciTech Connect

    Wicke, B.G.; Grady, K.A.; Ratcliffe, J.W. )

    1989-11-01

    The reaction of cyanuric acid, (HNCO)/sub 3/, with nitric oxide has been examined in a flow tube under conditions similar to those initially reported for RAPRENO/sub chi/. Surface interactions are shown to play an important role in the observed chemistry. In a quartz flow tube at 700{sup 0}C, (HNCO)/sub 3/ decomposes slowly; addition of nitric oxide does not affect the (HNCO)/sub 3/ decomposition, and no NO reduction occurs. In an otherwise equivalent stainless-steel flow system, (HNCO)/sub 3/ decomposes rapidly to H/sub 2/, CO, and N/sub 2/ at 700{sup 0}C. In this stainless-steel flow tube, NO is efficiently reduced to N/sub 2/ by (HNCO)/sub 3/. At 700{sup 0}C, the stoichiometry of this fast chemistry is 2(HNCO)/sub 3/ + 9 NO{yields}3 H/sub 2/O + 7.5 N/sub 2/ + 6 CO/sub 2/. O/sub 2/ also reacts rapidly with (HNCO)/sub 3/ vapor at 700{sup 0}C in stainless steel. The dominant nitrogen-containing product of this reaction is NO. This reaction of (HNCO)/sub 3/ vapor with O/sub 2/ is faster than the corresponding reaction with NO. Under conditions examined here in stainless steel, reduction of NO by (HNCO)/sub 3/ in the presence of O/sub 2/ occurs only after the O/sub 2/ is consumed.

  1. Kinetic Studies on the Reaction between Dicyanocobinamide and Hypochlorous Acid

    PubMed Central

    Maitra, Dhiman; Ali, Iyad; Abdulridha, Rasha M.; Shaeib, Faten; Khan, Sana N.; Saed, Ghassan M.; Pennathur, Subramaniam; Abu-Soud, Husam M.

    2014-01-01

    Hypochlorous acid (HOCl) is a potent oxidant generated by myeloperoxidase (MPO), which is an abundant enzyme used for defense against microbes. We examined the potential role of HOCl in corrin ring destruction and subsequent formation of cyanogen chloride (CNCl) from dicyanocobinamide ((CN)2-Cbi). Stopped-flow analysis revealed that the reaction consists of at least three observable steps, including at least two sequential transient intermediates prior to corrin ring destruction. The first two steps were attributed to sequential replacement of the two cyanide ligands with hypochlorite, while the third step was the destruction of the corrin ring. The formation of (OCl)(CN)-Cbi and its conversion to (OCl)2-Cbi was fitted to a first order rate equation with second order rate constants of 0.002 and 0.0002 µM−1s−1, respectively. The significantly lower rate of the second step compared to the first suggests that the replacement of the first cyanide molecule by hypochlorite causes an alteration in the ligand trans effects changing the affinity and/or accessibility of Co toward hypochlorite. Plots of the apparent rate constants as a function of HOCl concentration for all the three steps were linear with Y-intercepts close to zero, indicating that HOCl binds in an irreversible one-step mechanism. Collectively, these results illustrate functional differences in the corrin ring environments toward binding of diatomic ligands. PMID:25375773

  2. [Influencing factors and reaction mechanism of chloroacetic acid reduction by cast iron].

    PubMed

    Tang, Shun; Yang, Hong-Wei; Wang, Xiao-Mao; Xie, Yue-Feng

    2014-03-01

    The chloroacetic acids are ubiquitous present as a class of trace chlorinated organic pollutants in surface and drinking water. Most of chloroacetic acids are known or suspected carcinogens and, when at high concentrations, are of great concern to human health. In order to economically remove chloroacetic acids, the degradation of chloroacetic acids by cast iron was investigated. Moreover, the effect of iron style, pretreatment process, shocking mode and dissolved oxygen on chloroacetic acids reduced by cast iron was discussed. Compared to iron source and acid pretreatment, mass transfer was more important to chloroacetic acid removal. Dichloroacetic acid (DCAA) and monochloroacetic acid (MCAA) were the main products of anoxic and oxic degradation of trichloroacetic acid (TCAA) by cast iron during the researched reaction time, respectively. With longtitudinal shock, the reaction kinetics of chloroaectic acid removal by cast iron conformed well to the pseudo first order reaction. The anoxic reaction constants of TCAA, DCAA and MCAA were 0.46 h(-1), 0.03 h(-1) and 0, and their oxic constants were 1.24 h(-1), 0.79 h(-1) and 0.28 h(-1), respectively. The removal mechanisms of chloroacetic acids were different under various oxygen concentrations, including sequential hydrogenolysis for anoxic reaction and sequential hydrogenolysis and direct transformation possible for oxic reaction, respectively.

  3. Application of click chemistry conditions for 5-bromo-2'-deoxyuridine determination through Fenton and related reactions.

    PubMed

    Cappella, Paolo; Pulici, Maurizio; Gasparri, Fabio

    2015-01-05

    Mixtures of ascorbate and copper used in certain click chemistry experimental conditions act as oxidizing agents, catalyzing the formation of reactive oxygen species through Fenton and related reactions. Hydroxyl radicals act as chemical nucleases, introducing DNA strand breaks that can be exploited for BrdU immunostaining in place of acid denaturation. This procedure is readily applicable to high content analysis and flow cytometry assays, and provides results comparable to click chemistry EdU cycloaddition and classical BrdU immunodetection. Importantly, this approach allows preservation of labile epitopes such as phosphoproteins. This unit describes an optimized method that successfully employs Fenton chemistry for simultaneous detection of phosphoproteins and BrdU in intact cells.

  4. Enzymatic production of infant milk fat analogs containing palmitic acid: optimization of reactions by response surface methodology.

    PubMed

    Maduko, C O; Akoh, C C; Park, Y W

    2007-05-01

    Infant milk fat analogs resembling human milk fat were synthesized by an enzymatic interesterification between tripalmitin, coconut oil, safflower oil, and soybean oil in hexane. A commercially immobilized 1,3-specific lipase, Lipozyme RM IM, obtained from Rhizomucor miehei was used as a biocatalyst. The effects of substrate molar ratio, reaction time, and incubation temperature on the incorporation of palmitic acid at the sn-2 position of the triacylglycerols were investigated. A central composite design with 5 levels and 3 factors consisting of substrate ratio, reaction temperature, and incubation time was used to model and optimize the reaction conditions using response surface methodology. A quadratic model using multiple regressions was then obtained for the incorporation of palmitic acid at the sn-2 positions of glycerols as the response. The coefficient of determination (R2) value for the model was 0.845. The incorporation of palmitic acid appeared to increase with the decrease in substrate molar ratio and increase in reaction temperature, and optimum incubation time occurred at 18 h. The optimal conditions generated from the model for the targeted 40% palmitic acid incorporation at the sn-2 position were 3 mol/mol, 14.4 h, and 55 degrees C; and 2.8 mol/mol, 19.6 h, and 55 degrees C for substrate ratio (moles of total fatty acid/moles of tripalmitin), time, and temperature, respectively. Infant milk fat containing fatty acid composition and sn-2 fatty acid profile similar to human milk fat was successfully produced. The fat analogs produced under optimal conditions had total and sn-2 positional palmitic acid levels comparable to that of human milk fat. PMID:17430912

  5. Nutritional consequences of the reactions between proteins and oxidized polyphenolic acids.

    PubMed

    Hurrell, R F; Finot, P A

    1984-01-01

    The chemical and enzymatic browning reactions of plant polyphenols and their effects on amino acids and proteins are reviewed. A model system of casein and oxidizing caffeic acid has been studied in more detail. The effects of pH, time, caffeic acid level and the presence or not of tyrosinase on the decrease of FDNB-reactive lysine are described. The chemical loss of lysine, methionine and tryptophan and the change in the bioavailability of these amino acids to rats has been evaluated in two systems: pH 7.0 with tyrosinase and pH 10.0 without tyrosinase. At pH 10.0, reactive lysine was more reduced. At pH 7.0 plus tyrosinase methionine was more extensively oxidized to its sulphoxide. Tryptophan was not chemically reduced under either condition. At pH 10.0 there was a decrease in the protein digestibility which was responsible for a corresponding reduction in tryptophan availability and partly responsible for lower methionine availability. Metabolic transit of casein labelled with tritiated lysine treated under the same conditions indicated that the lower lysine availability in rats was due to a lower digestibility of the lysine-caffeoquinone complexes. PMID:6496220

  6. Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models.

    PubMed

    Liberman, M A; Kiverin, A D; Ivanov, M F

    2012-05-01

    Regimes of chemical reaction wave propagation initiated by initial temperature nonuniformity in gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied using a multispecies transport model and a detailed chemical model. Possible regimes of reaction wave propagation are identified for stoichiometric hydrogen-oxygen and hydrogen-air mixtures in a wide range of initial pressures and temperature levels, depending on the initial non-uniformity steepness. The limits of the regimes of reaction wave propagation depend upon the values of the spontaneous wave speed and the characteristic velocities of the problem. It is shown that one-step kinetics cannot reproduce either quantitative neither qualitative features of the ignition process in real gaseous mixtures because the difference between the induction time and the time when the exothermic reaction begins significantly affects the ignition, evolution, and coupling of the spontaneous reaction wave and the pressure wave, especially at lower temperatures. We show that all the regimes initiated by the temperature gradient occur for much shallower temperature gradients than predicted by a one-step model. The difference is very large for lower initial pressures and for slowly reacting mixtures. In this way the paper provides an answer to questions, important in practice, about the ignition energy, its distribution, and the scale of the initial nonuniformity required for ignition in one or another regime of combustion wave propagation.

  7. Gene Expressions for Signal Transduction under Acidic Conditions

    PubMed Central

    Fukamachi, Toshihiko; Ikeda, Syunsuke; Wang, Xin; Saito, Hiromi; Tagawa, Masatoshi; Kobayashi, Hiroshi

    2013-01-01

    Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4. PMID:24705103

  8. Carbonate-containing apatite (CAP) synthesis under moderate conditions starting from calcium carbonate and orthophosphoric acid.

    PubMed

    Pham Minh, Doan; Tran, Ngoc Dung; Nzihou, Ange; Sharrock, Patrick

    2013-07-01

    The synthesis of carbonate-containing apatite (CAP) from calcium carbonate and orthophosphoric acid under moderate conditions was investigated. In all cases, complete precipitation of orthophosphate species was observed. The reaction temperature influenced strongly the decomposition of calcium carbonate and therefore the composition of formed products. The reaction temperature of 80 °C was found to be effective for the complete decomposition of calcium carbonate particles after 48 h of reaction. Infra-red spectroscopy (IR), nuclear magnetic resonance (NMR), thermogravimetry/mass spectroscopy (TG-MS) coupling, and X-ray diffraction (XRD) characterizations allowed the identification of the composition of formed products. By increasing the reaction temperature from 20 °C to 80 °C, the content of A-type CAP increased and that of B-type CAP decreased, according to the favorable effect of temperature on the formation of A-type CAP. The total amount of carbonate content incorporated in CAP's structure, which was determined by TG-MS analysis, increased with the reaction temperature and reached up to 4.1% at 80 °C. At this temperature, the solid product was mainly composed of apatitic components and showed the typical flat-needle-like structure of CAP particles obtained in hydrothermal conditions. These results show an interesting one-step synthesis of CAP from calcium carbonate and orthophosphoric acid as low cost but high purity starting materials.

  9. Uranium plasma emission at gas-core reaction conditions

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.

    1976-01-01

    The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.

  10. Geochemical Modeling of Reactions and Partitioning of Trace Metals and Radionuclides during Titration of Contaminated Acidic Sediments

    SciTech Connect

    Zhang, Fan; Parker, Jack C.; Luo, Wensui; Spalding, Brian Patrick; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-01-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.

  11. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  12. Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2006-01-01

    Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…

  13. Visible-light-mediated chan-lam coupling reactions of aryl boronic acids and aniline derivatives.

    PubMed

    Yoo, Woo-Jin; Tsukamoto, Tatsuhiro; Kobayashi, Shū

    2015-05-26

    The copper(II)-catalyzed aerobic oxidative coupling reaction between aryl boronic acids and aniline derivatives was found to be improved significantly under visible-light-mediated photoredox catalysis. The substrate scope of this oxidative Chan-Lam reaction was thus expanded to include electron-deficient aryl boronic acids as viable starting materials.

  14. Students' Understanding of Acid, Base and Salt Reactions in Qualitative Analysis.

    ERIC Educational Resources Information Center

    Tan, Kim-Chwee Daniel; Goh, Ngoh-Khang; Chia, Lian-Sai; Treagust, David F.

    2003-01-01

    Uses a two-tier, multiple-choice diagnostic instrument to determine (n=915) grade 10 students' understanding of the acid, base, and salt reactions involved in basic qualitative analysis. Reports that many students did not understand the formation of precipitates and the complex salts, acid/salt-base reactions, and thermal decomposition involved in…

  15. Study of reaction parameters and kinetics of esterification of lauric acid with butanol by immobilized Candida antarctica lipase.

    PubMed

    Shankar, Sini; Agarwal, Madhu; Chaurasia, S P

    2013-12-01

    Esterification of lauric acid with n-butanol, catalyzed by immobilized Candida antarctica lipase (CAL) in aqueous-organic biphasic solvent system was studied. Effects of various reaction parameters on esterification were investigated, such as type and amount of solvent, amount of buffer, pH, temperature, speed of agitation, amount of enzyme, butanol and lauric acid. The most suitable reaction conditions for esterification were observed at 50 degrees C and pH 7.0 using 5000 micromoles of lauric acid, 7000 pmoles of butanol, 0.25 ml phosphate buffer, 1 ml of isooctane as the solvent and 50 mg of immobilized enzyme in the reaction medium at agitation speed of 150 rpm. Maximum esterification of 96.36% was acheived in 600 min of reaction time at n-butanol to lauric acid molar ratio of 1: 0.7. Kinetic study for the esterification of lauric acid with n-butanol using immobilized CAL was carried out and the kinetic constants were estimated by using non-linear regression method. The estimated value of Michaelis kinetic constants for butanol (KmBt) and acid (KmAc) were 451.56 (M) and 4.7 x 10(-7)(M), respectively and the value of dissociation constant (KBt) of the butanol-lipase complex was 9.41 x 10(7)(M). The estimated constants agreed fairly well with literature data.

  16. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  17. Degradation rates of glycerol polyesters at acidic and basic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  18. Lewis Acid Catalyzed Selective Reactions of Donor-Acceptor Cyclopropanes with 2-Naphthols.

    PubMed

    Kaicharla, Trinadh; Roy, Tony; Thangaraj, Manikandan; Gonnade, Rajesh G; Biju, Akkattu T

    2016-08-16

    Lewis acid-catalyzed reactions of 2-substituted cyclopropane 1,1-dicarboxylates with 2-naphthols is reported. The reaction exhibits tunable selectivity depending on the nature of Lewis acid employed and proceed as a dearomatization/rearomatization sequence. With Bi(OTf)3 as the Lewis acid, a highly selective dehydrative [3+2] cyclopentannulation takes place leading to the formation of naphthalene-fused cyclopentanes. Interestingly, engaging Sc(OTf)3 as the Lewis acid, a Friedel-Crafts-type addition of 2-naphthols to cyclopropanes takes place, thus affording functionalized 2-naphthols. Both reactions furnished the target products in high regioselectivity and moderate to high yields. PMID:27391792

  19. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions.

    PubMed

    Greenwald, Jason; Friedmann, Michael P; Riek, Roland

    2016-09-12

    Current theories on the origin of life reveal significant gaps in our understanding of the mechanisms that allowed simple chemical precursors to coalesce into the complex polymers that are needed to sustain life. The volcanic gas carbonyl sulfide (COS) is known to catalyze the condensation of amino acids under aqueous conditions, but the reported di-, tri-, and tetra-peptides are too short to support a regular tertiary structure. Here, we demonstrate that alanine and valine, two of the proteinogenic amino acids believed to have been among the most abundant on a prebiotic earth, can polymerize into peptides and subsequently assemble into ordered amyloid fibers comprising a cross-β-sheet quaternary structure following COS-activated continuous polymerization of as little as 1 mm amino acid. Furthermore, this spontaneous assembly is not limited to pure amino acids, since mixtures of glycine, alanine, aspartate, and valine yield similar structures. PMID:27511635

  20. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  1. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  2. 40 CFR 721.10428 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with 1-piperazineethanamine. 721.10428 Section 721.10428 Protection of Environment..., reaction products with 1-piperazineethanamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as fatty acids, C18-unsatd., dimers, reaction products...

  3. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  4. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  5. 40 CFR 721.10428 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with 1-piperazineethanamine. 721.10428 Section 721.10428 Protection of Environment..., reaction products with 1-piperazineethanamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as fatty acids, C18-unsatd., dimers, reaction products...

  6. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment ENVIRONMENTAL... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product...

  7. Analysis of Reaction between α-Lipoic Acid and 2-Chloro-1-methylquinolinium Tetrafluoroborate Used as a Precolumn Derivatization Technique in Chromatographic Determination of α-Lipoic Acid.

    PubMed

    Godlewska, Magdalena; Odachowska, Angelika; Turkowicz, Monika; Karpinska, Joanna

    2015-01-01

    The present study offers results of analysis concerning the course of reaction between reduced α-lipoic acid (LA) and 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT). In water environments, the reaction between CMQT and hydrophilic thiols proceeds very rapidly and the resultant products are stable. For the described analysis, optimum reaction conditions, such as concentration of the reducing agent, environment pH, and concentration of the reagent were carefully selected. The spectrophotometric assay was carried out measuring absorbance at λ = 348 nm (i.e., the spectral band of the obtained reaction product). Furthermore, the calibration curve of lipoic acid was registered. It was concluded that the Lambert-Beer law was observed within the range 1-10 μmol L(-1). Later, the reaction between LA and CMQT was used as precolumn derivatization in a chromatographic determination of the lipoic acid in the range 2.5-50 μmol L(-1). Practical applicability of the designed methods was evaluated by determining lipoic acid in Revitanerv pharmaceutical preparation which contains 300 mg LA in a single capsule. The error of the determination did not exceed 0.5% in relation to the declared value. PMID:26504616

  8. Analysis of Reaction between α-Lipoic Acid and 2-Chloro-1-methylquinolinium Tetrafluoroborate Used as a Precolumn Derivatization Technique in Chromatographic Determination of α-Lipoic Acid

    PubMed Central

    Godlewska, Magdalena; Odachowska, Angelika; Turkowicz, Monika; Karpinska, Joanna

    2015-01-01

    The present study offers results of analysis concerning the course of reaction between reduced α-lipoic acid (LA) and 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT). In water environments, the reaction between CMQT and hydrophilic thiols proceeds very rapidly and the resultant products are stable. For the described analysis, optimum reaction conditions, such as concentration of the reducing agent, environment pH, and concentration of the reagent were carefully selected. The spectrophotometric assay was carried out measuring absorbance at λ = 348 nm (i.e., the spectral band of the obtained reaction product). Furthermore, the calibration curve of lipoic acid was registered. It was concluded that the Lambert-Beer law was observed within the range 1–10 μmol L−1. Later, the reaction between LA and CMQT was used as precolumn derivatization in a chromatographic determination of the lipoic acid in the range 2.5–50 μmol L−1. Practical applicability of the designed methods was evaluated by determining lipoic acid in Revitanerv pharmaceutical preparation which contains 300 mg LA in a single capsule. The error of the determination did not exceed 0.5% in relation to the declared value. PMID:26504616

  9. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    PubMed

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. PMID:22759534

  10. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    PubMed

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA.

  11. Effective molarity in a nucleic acid-controlled reaction.

    PubMed

    Catalano, Michael J; Price, Nathan E; Gates, Kent S

    2016-06-01

    Positioning of reactive functional groups within a DNA duplex can enable chemical reactions that otherwise would not occur to an appreciable extent. However, few studies have quantitatively defined the extent to which the enforced proximity of reaction partners in duplex DNA can favor chemical processes. Here, we measured substantial effective molarities (as high as 25M) afforded by duplex DNA to a reaction involving interstrand cross-link formation between 2'-deoxyadenosine and a 2-deoxyribose abasic (Ap) site.

  12. Kinetics and Mechanisms of the Acid-base Reaction Between NH3 and HCOOH in Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Bergner, Jennifer B.; Öberg, Karin I.; Rajappan, Mahesh; Fayolle, Edith C.

    2016-10-01

    Interstellar complex organic molecules are commonly observed during star formation, and are proposed to form through radical chemistry in icy grain mantles. Reactions between ions and neutral molecules in ices may provide an alternative cold channel to complexity, as ion-neutral reactions are thought to have low or even no-energy barriers. Here we present a study of the kinetics and mechanisms of a potential ion-generating, acid-base reaction between NH3 and HCOOH to form the salt NH{}4+HCOO-. We observe salt growth at temperatures as low as 15 K, indicating that this reaction is feasible in cold environments. The kinetics of salt growth are best fit by a two-step model involving a slow “pre-reaction” step followed by a fast reaction step. The reaction energy barrier is determined to be 70 ± 30 K with a pre-exponential factor 1.4 ± 0.4 × 10-3 s-1. The pre-reaction rate varies under different experimental conditions and likely represents a combination of diffusion and orientation of reactant molecules. For a diffusion-limited case, the pre-reaction barrier is 770 ± 110 K with a pre-exponential factor of ˜7.6 × 10-3 s-1. Acid-base chemistry of common ice constituents is thus a potential cold pathway to generating ions in interstellar ices.

  13. Reaction of folic acid with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ellison, Mark D.; Chorney, Matthew

    2016-10-01

    The oxygen-containing functional groups on oxidized single-walled carbon nanotubes (SWNTs) are used to covalently bond folic acid molecules to the SWNTs. Infrared spectroscopy confirms intact molecular binding to the SWNTs through the formation of an amide bond between a carboxylic acid group on an SWNT and the primary amine group of folic acid. The folic acid-functionalized SWNTs are readily dispersible in water and phosphate-buffered saline, and the dispersions are stable for a period of two weeks or longer. These folic acid-functionalized SWNTs offer potential for use as biocompatible SWNTs.

  14. 40 CFR 721.10429 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and tall-oil...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with 1-piperazineethanamine and tall-oil fatty acids. 721.10429 Section 721.10429... Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and tall-oil fatty acids... identified as fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and...

  15. 40 CFR 721.10429 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and tall-oil...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with 1-piperazineethanamine and tall-oil fatty acids. 721.10429 Section 721.10429... Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and tall-oil fatty acids... identified as fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine and...

  16. Characteristics of uranium carbonitride microparticles synthesized using different reaction conditions

    SciTech Connect

    Silva, Chinthaka M; Lindemer, Terrence; Voit, Stewart L; Hunt, Rodney Dale; Besmann, Theodore M; Terrani, Kurt A; Snead, Lance Lewis

    2014-11-01

    Three sets of different experimental conditions by changing the cover gases during the sample preparation were tested to synthesize uranium carbonitride (UC1-xNx) microparticles. In the first two sets of experiments using (N2 to N2-4%H2 to Ar) and (Ar to N2 to Ar) environments, single phase UC1-xNx was synthesized. When reducing environments (Ar-4%H2 to N2-4%H2 to Ar-4%H2) were utilized, theoretical densities up to 97% of single phase UC1-xNx kernels were obtained. Physical and chemical characteristics such as density, phase purity, and chemical compositions of the synthesized UC1-xNx materials for the diferent experimental conditions used are provided. In-depth analysis of the microstrutures of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.

  17. Organo-niobate Ionic Liquids: Synthesis, Characterization and Application as Acid Catalyst in Pechmann Reactions

    PubMed Central

    Soares, Valerio C. D.; Alves, Melquizedeque B.; Souza, Ernesto R.; Pinto, Ivana O.; Rubim, Joel C.; Andrade, Carlos Kleber Z.; Suarez, Paulo A. Z.

    2007-01-01

    The combinations of 1-butyl-3-methylimidazolium chloride with NbCl5 yielded ionic mixtures with different melting point temperatures and acidity depending on the niobium molar fraction. The mixtures were characterized by thermal (DSC) and spectroscopic (FT-IR and 1H NMR) analysis. The Pechmann reactions of different phenols with ethylacetoacetate, producing coumarins, was used as model to evaluate the catalytic behavior of these mixtures as acid Lewis catalyst. These reactions were carried out using acidic mixtures of 60 mol%.

  18. Synthesis and chirality of amino acids under interstellar conditions.

    PubMed

    Giri, Chaitanya; Goesmann, Fred; Meinert, Cornelia; Evans, Amanda C; Meierhenrich, Uwe J

    2013-01-01

    Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices.

  19. Synthesis and chirality of amino acids under interstellar conditions.

    PubMed

    Giri, Chaitanya; Goesmann, Fred; Meinert, Cornelia; Evans, Amanda C; Meierhenrich, Uwe J

    2013-01-01

    Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices. PMID:22976459

  20. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing arsenic

    SciTech Connect

    Ata, O.N.; Colak, S.; Copur, M.; Celik, C.

    2000-02-01

    The Taguchi method was used to determine optimum conditions for the boric acid extraction from colemanite ore containing As in aqueous media saturated by CO{sub 2} gas. After the parameters were determined to be efficient on the extraction efficiency, the experimental series with two steps were carried out. The chosen experimental parameters for the first series of experiments and their ranges were as follows: (1) reaction temperature, 25--70 C; (2) solid-to-liquid ratio (by weight), 0.091 to 0.333; (3) gas flow rate (in mL/min), 66.70--711; (4) mean particle size, {minus}100 to {minus}10 mesh; (5) stirring speed, 200--600 rpm; (6) reaction time, 10--90 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.091; gas flow rate, 711 (in mL/min); particle size, {minus}100 mesh; stirring speed, 500 rpm; reaction time, 90 min. Under these optimum conditions, the boric acid extraction efficiency from the colemanite containing As was approximately 54%. Chosen experimental parameters for the second series of experiments and their ranges were as follows: (1) reaction temperature, 60--80 C; (2) solid-to-liquid ratio (by weight), 0.1000 to 0.167; (3) gas pressure (in atm), 1.5; 2.7; (4) reaction time, 45--120 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.1; gas pressure, 2.7 atm; reaction time, 120 min. Under these optimum conditions the boric acid extraction efficiency from the colemanite ore was approximately 75%. Under these optimum conditions, the boric acid extraction efficiency from calcined colemanite ore was approximately 99.55%.

  1. Kinetics of OH + CO reaction under atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Wine, P. H.; Ravishankara, A. R.

    1986-01-01

    A pulsed laser photolysis-pulsed laser-induced fluorescence technique is used to directly measure the temperature, pressure, and H2O concentration dependence on k1 in air. K1 is found to increase linearly with increasing pressure at pressures of not greater than 1 atm, and the pressure dependence of k1 at 299 K is the same in N2 buffer gas as in O2 buffer gas. The rate constant in the low-pressure limit and the slope of the k1 versus pressure dependence are shown to be the same at 262 K as at 299 K. The present results significantly reduce the current atmospheric model uncertainties in the temperature dependence under atmospheric conditions, in the third body efficiency of O2, and in the effect of water vapor on k1.

  2. Carboxylic Acids as Indicators of Parent Body Conditions

    NASA Technical Reports Server (NTRS)

    Lerner N. R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched. It is postulated that they arose from a common interstellar scurce: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alpha-hydroxy nitriles, RR'CO + HCN right and left arrow RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibrium with the alpha-amino nitriles, RR'C(OH)CN + NH3 right and left arrow - RRCNH2CN + H2O. Both nitrites are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O yields RR'C(OH)CO2H and RR'C(NH2)CN + H2O yields RR'C(NH2)CO2H.

  3. Modeling of matrix acidizing process under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Turegeldieva, Karlygash; Assilbekov, Bakhytzhan; Zhapbasbayev, Uzak; Zolotukhin, Anatoly; Bekibaev, Timur; Kenzhebekov, Nurlan; Gubkin Russian State University of oil; gas Collaboration

    2013-11-01

    Effectiveness of the process depends on the parameters: well choice, geological structure of the reservoir, definition of physical and chemical properties of rocks and fluids, agent choice. There are different mathematical models of the matrix acidizing, including the two scale model. These models describe the process in the core scale and Darcy scale, i.e. in an area with dimensions of several centimeters. It leads to the main problem - how to use these models to the near wellbore scale under reservoir conditions. Some authors have increased the dimensions of the cores in numerical simulations and investigated the influence of the core dimensions to acidizing process. In this paper effort to indirectly solve this problem made. It based on boundary conditions alteration and simultaneous solution of matrix acidizing in damaged zone and reservoir fluid flow models. Furthermore in this work the criterion of the acid injection shut down for optimal breakthrough volume calculation was modified. Influence of boundary conditions on near well-bore zone treatment process was investigated. Science Committee of Ministry of Education and Science of Republic of Kazakhstan.

  4. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  5. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  6. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  7. Influence of mineralogy on the preservation of amino acids under simulated Mars conditions

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato; Patel, Manish; Cuadros, Javier; Martins, Zita

    2016-10-01

    reactions with reactive oxygen species generated under Mars-like conditions. Olivine (forsterite) preserved more amino acids than the other non-clay silicates due to low or absent ferrous iron. Our results show that D- and L-amino acids are degraded at equal rates, and that there is a certain correlation between preservation/degradation of amino acids and their molecular structure: alkyl substitution in the α-carbon seem to contribute towards amino acid stability under UV radiation. These results contribute towards a better selection of sampling sites for the search of biomarkers on future life detection missions on the surface of Mars.

  8. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  9. Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts.

    PubMed

    Karademir, Yeşim; Göncüoğlu, Neslihan; Gökmen, Vural

    2013-07-01

    This study aimed to investigate the contribution of lipid oxidation to non-enzymatic browning reactions in lipid rich model and actual food systems. Hazelnut oil and model reaction mixtures consisting of different amino acids were heated under certain conditions to determine possible lipid oxidation and non-enzymatic browning reaction products. In model systems, the Schiff base of 2,4-decadienal, its decarboxylated form, and reaction products formed after hydrolytic cleavage of the Schiff base or decarboxylated form were identified by high resolution mass spectrometry. No furosine was detected in hazelnuts after roasting at 160 °C while the concentration of free amino acids significantly decreased. 2,4-Decadienal reacted effectively with all amino acids studied through a Maillard type carbonyl-amine condensation pathway. (2E,4E)-Deca-2,4-dien-1-amine was identified as a typical reaction product in model systems and roasted hazelnuts. In lipid-rich foods like hazelnuts, lipid-derived carbonyls might be responsible for potential modifications of free and protein bound amino acids during heating. PMID:23474835

  10. Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts.

    PubMed

    Karademir, Yeşim; Göncüoğlu, Neslihan; Gökmen, Vural

    2013-07-01

    This study aimed to investigate the contribution of lipid oxidation to non-enzymatic browning reactions in lipid rich model and actual food systems. Hazelnut oil and model reaction mixtures consisting of different amino acids were heated under certain conditions to determine possible lipid oxidation and non-enzymatic browning reaction products. In model systems, the Schiff base of 2,4-decadienal, its decarboxylated form, and reaction products formed after hydrolytic cleavage of the Schiff base or decarboxylated form were identified by high resolution mass spectrometry. No furosine was detected in hazelnuts after roasting at 160 °C while the concentration of free amino acids significantly decreased. 2,4-Decadienal reacted effectively with all amino acids studied through a Maillard type carbonyl-amine condensation pathway. (2E,4E)-Deca-2,4-dien-1-amine was identified as a typical reaction product in model systems and roasted hazelnuts. In lipid-rich foods like hazelnuts, lipid-derived carbonyls might be responsible for potential modifications of free and protein bound amino acids during heating.

  11. The effects of phytic acid on the Maillard reaction and the formation of acrylamide.

    PubMed

    Wang, Huan; Zhou, Yamin; Ma, Jimei; Zhou, Yuanyuan; Jiang, Hong

    2013-11-01

    Phytic acid, myo-inositol hexaphosphoric acid, exists in substantial (1-5%) amounts in edible plant seeds. In this study the effects of phytic acid on the Maillard reaction and the formation of acrylamide were investigated. Both phytic acid and phosphate enhanced browning in glucose/β-alanine system, but phytic acid was less effective than phosphate. Higher pH favoured the catalytic activities for both of them. The influence of the types of sugar and amino acid on the reaction was also examined. Browning was suppressed by the addition of calcium and magnesium ions, but an additive effect was observed for ferrous ions and phytic acid in glucose/β-alanine solution at pH 8.0. Both phytic acid and phosphate promoted the polymerisation of the reaction intermediates. The kinetics of Maillard reaction was first-ordered reaction in the presence of phytic acid. Phytic acid was less effective than phosphate in the formation of acrylamide. When potato slices were treated with sodium phytate and calcium chloride successively, the formation of acrylamide was greatly suppressed. PMID:23768320

  12. Unusual coupling reactions of aldehydes and alkynes: a novel preparation of substituted phthalic acid derivatives by automated synthesis.

    PubMed

    Jacobi von Wangelin, Axel; Neumann, Helfried; Gördes, Dirk; Klaus, Stefan; Jiao, Haijun; Spannenberg, Anke; Krüger, Thomas; Wendler, Christian; Thurow, Kerstin; Stoll, Norbert; Beller, Matthias

    2003-05-23

    Based upon a highly versatile multicomponent methodology, a new one-pot synthesis of substituted phthalic acid derivatives from alpha,beta-unsaturated aldehydes was developed. The reaction involves the intermediacy of an acetamidodiene species which undergoes Diels-Alder addition to diethyl acetylenedicarboxylate. The resultant acetamidocyclohexadiene is subject to elimination of acetamide under the reaction conditions to give rise to substituted diethyl phthalates in good yields. This domino condensation-cycloaddition-elimination sequence has been applied to a variety of alpha,beta-unsaturated aldehydes. Furthermore, we demonstrated the exploitation of parallelized and automated synthesis technology for the rapid screening of reaction conditions and compositions. Detailed studies revealed the catalytic role of the employed acetamide and the occurrence of a stereoselective 1,4-syn elimination pathway under standard conditions.

  13. Carbocations as Lewis acid catalysts in Diels-Alder and Michael addition reactions.

    PubMed

    Bah, Juho; Franzén, Johan

    2014-01-20

    In general, Lewis acid catalysts are metal-based compounds that owe their reactivity to a low-lying empty orbital. However, one potential Lewis acid that has received negligible attention as a catalyst is the carbocation. We have demonstrated the potential of the carbocation as a highly powerful Lewis acid catalyst for organic reactions. The stable and easily available triphenylmethyl (trityl) cation was found to be a highly efficient catalyst for the Diels-Alder reaction for a range of substrates. Catalyst loadings as low as 500 ppm, excellent yields, and good endo/exo selectivities were achieved. Furthermore, by changing the electronic properties of the substituents on the tritylium ion, the Lewis acidity of the catalyst could be tuned to control the outcome of the reaction. The ability of this carbocation as a Lewis acid catalyst was also further extended to the Michael reaction.

  14. Conversion of waste cellulose to ethanol. Phase 2: Reaction kinetics with phosphoric acid

    NASA Astrophysics Data System (ADS)

    Moeller, M. B.; Isbell, R. E.

    1982-05-01

    Waste cellulosic material can be hydrolyzed in dilute acid solution to produce fermentable sugars which can then be converted into ethanol. A laboratory investigation was made of the feasibility of using phosphoric acid as the hydrolysis catalyst. The hydrolysis reaction with phosphoric acid solutions was compared with the reaction employing the more conventional dilute sulfuric acid catalyst. The purpose of this research was to examine the hydrolysis step in a proposed process for the conversion of cellulose (from wood, newspapers, municipal solid waste, or other sources) into ethanol - by which a potentially valuable co-product, DICAL (dicalcium phosphate), might be made and sold with or without the lignin content as a fertilizer. The pertinent reaction kinetics for the acid catalyzed production of glucose from cellulose consists of consecutive, pseudo-first order reactions.

  15. Carboxylic Acids as Indicators of Parent Body Conditions

    NASA Astrophysics Data System (ADS)

    Lerner, N. R.

    1995-09-01

    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched [1]. It is postulated that they arose from a common interstellar source: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alph-hydroxy nitriles, RR'CO + HCN <--> RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibirum with the alpha-amino nitriles, RR'C(OH)CN +NH3 .<--> RRCNH2CN + H2O. Both nitriles are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O --> RR'C(OH)CO2H and RR'C(NH2)CN + H2O --> RR'C(NH2)CO2H. Carbonyl compounds observed in the interstellar medium have been shown to be deuterium enriched [2]. The combined alpha-amino acids found on Murchison have deltaD = +1751 o/oo while the combined alpha-hydroxy acids have deltaD = +573. o/oo [1]. This large discrepancy in deltaD values does not preclude common precursors for the alpha-amino acids and the alpha-hydroxy acids. Different relative amounts of specific alpha-amino and alpha-hydroxy acids could lead to quite different combined D/H ratios. If the alpha-hydroxy acids lose significantly more deuterium during synthesis than the alpha-amino acids or if they have a higher rate of H/D exchange with liquid water than alpha-amino acids, the alpha-hydroxy acids would be isotopically lighter than the alpha-amino acids, because the water responsible for the aqueous alteration of the Murchison parent body was deuterium depleted with deltaD = -100. o/oo [3]. To determine between these alternative mechanisms we measured the rates of hydrogen-deuterium exchange of glycolic acid (the alpha-hydroxy analog of glycine), lactic acid (the alpha-hydroxy analog of alanine), and alpha-hydroxy isobutyric acid have been measured in D2O as a function of pH, temperature and the presence of Allende or Murchison minerals. No detectable H/D exchange was observed. Glycine subjected to similar conditons exchanged

  16. Determination of Arrhenius and Thermodynamic Parameters for the Aqueous Reaction of the Hydroxyl Radical with Lactic Acid

    SciTech Connect

    Leigh R. Martin; Stephen P. Mezyk; Bruce J. Mincher

    2009-01-01

    Lactic acid is a major component of the TALSPEAK process planned for use in the separation of trivalent lanthanide and actinide elements. This acid acts both as a buffer, and also to protect the actinide complexant from radiolytic damage. However, there is little kinetic information on the reaction of water radiolysis species with lactic acid, particularly under the anticipated process conditions of aerated aqueous solution at pH~3, where oxidizing reactions are expected to dominate. Here we have determined temperature-dependent reaction rate constants for the reactions of the hydroxyl radical with lactic acid and the lactate ion. For lactic acid this rate constant is given by the equation: ln k1 = (23.85 ± 0.19) – (1120 ± 54) / T, corresponding to an activation energy of 9.31 ± 0.45 kJ mol-1 and a room temperature reaction rate constant of (5.24 ± 0.09) x 108 M-1 s-1 (24.0oC). For the lactate ion, the temperature-dependent rate constant is given by: ln k2 = (24.83 ± 0.14) – (1295 ± 42) / T, for an activation energy of 10.76 ± 0.35 kJ mol-1 and a room temperature value of (7.77 ± 0.11) x 108 M-1 s-1 (22.2oC). These kinetic data have been combined with autotitration measurements to determine the temperature-dependent behavior of the lactic acid pKa value, allowing thermodynamic parameters for the acid dissociation to be calculated as ?Hº = -10.75 ± 1.77 kJ mol-1, ?Sº = -103.9 ± 6.0 J K-1 mol-1 and ?Gº = 20.24 ± 2.52 kJ mol-1 at low ionic strength.

  17. [Effects of low molecular weight organic acids on redox reactions of mercury].

    PubMed

    Zhao, Shi-Bo; Sun, Rong-Guo; Wang, Ding-Yong; Wang, Xiao-Wen; Zhang, Cheng

    2014-06-01

    To study the effects of the main component of vegetation root exudates-low molecular weight organic acids on the redox reactions of mercury, laboratory experiments were conducted to investigate the roles of tartaric, citric, and succinic acid in the redox reactions of mercury, and to analyze their interaction mechanism. The results indicated that tartaric acid significantly stimulated the mercury reduction reaction, while citric acid had inhibitory effect. Succinic acid improved the reduction rate at low concentration, and inhibited the reaction at high concentration. The mercury reduction rate by tartaric acid treatment was second-order with respect to Hg2+ concentration, ranging from 0.0014 L x (ng x min)(-1) to 0.005 6 L x (ng x min)(-1). All three organic acids showed a capacity for oxidating Hg(0) in the early stage, but the oxidized Hg(0) was subsequently reduced. The oxidation capacity of the three organic acids was in the order of citric acid > tartaric acid > succinic acid.

  18. Novel mechanistic aspects on the reaction between low spin Fe(II) Schiff base amino acid complexes and hydrogen peroxide-spectrophotometric tracer of intraperoxo intermediate catalyzed reaction.

    PubMed

    Awad, Aida M; Shaker, Ali Mohamad; Zaki, Ahmad Borhan El-Din; Nassr, Lobna Abdel-Mohsen Ebaid

    2008-12-01

    The kinetics and mechanism of the reaction of hydrogen peroxide with some Fe(II) Schiff base complexes were investigated spectrophotometrically in aqueous solution at pH 8 and 35 degrees C under pseudo-first-order conditions. The used ligands were derived from salicylaldehyde or o-hydroxynaphthaldehyde and some amino acids (l-leucine, l-iso-leucine, l-serine, l-methionine and dl-tryptophan). It was found that the formation of the purple interaperoxo complex appears only above pH 7.5. The reaction consists of two steps. The first step involves reversible formation of the intraperoxo intermediate which renders irreversible at pH 8. The second step consists of inner-sphere electron transfer. The suggested scheme illustrated first-order kinetics at low [H(2)O(2)] and zero-order at high [H(2)O(2)]. Moreover, the activation parameters of the reaction were evaluated. PMID:18394952

  19. Response of gonococcal clinical isolates to acidic conditions.

    PubMed

    Pettit, R K; McAllister, S C; Hamer, T A

    1999-02-01

    This study examined the response to acidic conditions of four gonococcal isolates -NRL38874 (Proto/IB-2), NRL38884 (Pro/IA-2), NRL38953 (Proto/IB-3) and NRL39029 (Pro/IA-3) - obtained from various sites in patients in whom a diagnosis of pelvic inflammatory disease had been made by laparoscopic examination. Acid tolerance of the clinical isolates was strain and growth phase dependent. Growth of the four strains on solid media was undetectable below pH 5.8. In liquid culture, strain NRL38884 did not survive below pH 5.2; strains NRL38874, NRL38953 and NRL39029 survived to pH 4.5. Between pH 4.2 and pH 5.1, the latter three strains exhibited a peak in survival at pH 4.6-4.7 during log phase, suggesting that there may be a distinct acid tolerance system operating at this pH. SDS-PAGE of whole-cell, total membrane and outer-membrane fractions of the four strains prepared from pH 7.2 and pH 6.1 plate cultures revealed numerous differences in protein composition. Acidic conditions reduced the expression of the reduction modifiable outer-membrane protein Rmp, and induced the expression of many membrane proteins, including gonococcal hsp63. Immunoblotting studies with matched serum samples and strains from patients with pelvic inflammatory disease indicated that IgG recognition of outer-membrane components from strains cultured in acidic and neutral conditions was quite different. The results suggest that the immune system interacts with unique outer-membrane constituents on gonococci colonising sites at different pH.

  20. Prebiotic Nitrogen Fixation by FeS Reduction of Nitrite Under Acidic Conditions

    NASA Technical Reports Server (NTRS)

    Summers, David P.; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Theories for the origin of life require the availability of reduced nitrogen for the formation of such species as amino acid and nucleic acids. In a strongly reducing atmosphere, compounds essential to the chemical evolution of life, such as amino acids, can form by reactions between HCN, NH3, and carbonyl compounds produced in spark discharges. However, under non-reducing atmospheres, electric discharges produced NO rather than HCN or NH3. This raises the questions of; how ammonia can be formed under a neutral atmosphere, and what conditions are needed such formation to occur? On possibility is the conversion of NO into nitric and nitrous acids (through HNO) and rained into the oceans. The reduction of nitrite by aqueous Fe(II) (6 Fe(+2) + 7 H(+) + NO2(-) yields 6 Fe(III) + 2 H2O + NH3) such as was present on the early Earth could then have produced ammonia. However, this reaction does not proceed at pHs less than 7.3. An alternative is reduction by other forms of Fe(II), such as FeS. We will present results that show that FeS can reduce nitrite to ammonia at pHs as low as pH 5 under a variety of conditions.

  1. Hetropolyacid-Catalyzed Oxidation of Glycerol into Lactic Acid under Mild Base-Free Conditions.

    PubMed

    Tao, Meilin; Yi, Xiaohu; Delidovich, Irina; Palkovits, Regina; Shi, Junyou; Wang, Xiaohong

    2015-12-21

    Lactic acid (LA) is a versatile platform molecule owing to the opportunity to transform this compound into useful chemicals and materials. Therefore, efficient production of LA based on inexpensive renewable feedstocks is of utmost importance for insuring its market availability. Herein, we report the efficient conversion of glycerol into LA catalyzed by heteropolyacids (HPAs) under mild base-free conditions. The catalytic performance of molecular HPAs appears to correlate with their redox potential and Brønsted acidity. Namely, H3 PMo(12)O(40) (HPMo) exhibits the best selectivity towards LA (90 %) with 88 % conversion of glycerol. Loading of HPMo onto a carbon support (HPMo/C) further improves LA productivity resulting in 94 % selectivity at 98 % conversion under optimized reaction conditions. The reaction takes place through the formation of dihydroxyacetone/glyceraldehyde and pyruvaldehyde as intermediates. No leaching of HPMo was observed under the applied reaction conditions and HPMo/C could be recycled 5 times without significant loss of activity.

  2. The reaction of hyaluronic acid and its monomers, glucuronic acid and N-acetylglucosamine, with reactive oxygen species.

    PubMed

    Jahn, M; Baynes, J W; Spiteller, G

    1999-10-15

    Synovial fluid is a approximately 0.15% (w/v) aqueous solution of hyaluronic acid (HA), a polysaccharide consisting of alternating units of GlcA and GlcNAc. In synovial fluid of patients suffering from rheumatoid arthritis, HA is thought to be degraded either by radicals generated by Fenton chemistry (Fe2+/H2O2) or by NaOCl generated by myeloperoxidase. We investigated the course of model reactions of these two reactants in physiological buffer with HA, and with the corresponding monomers GlcA and GlcNAc. meso-Tartaric acid, arabinuronic acid, arabinaric acid and glucaric acid were identified by GC-MS as oxidation products of glucuronic acid. When GlcNAc was oxidised, erythronic acid, arabinonic acid, 2-acetamido-2-deoxy-gluconic acid, glyceric acid, erythrose and arabinose were formed. NaOCl oxidation of HA yielded meso-tartaric acid; in addition, arabinaric acid and glucaric acid were obtained by oxidation with Fe2+/H2O2. These results indicate that oxidative degradation of HA proceeds primarily at glucuronic acid residues. meso-Tartaric acid may be a useful biomarker of hyaluronate oxidation since it is produced by both NaOCl and Fenton chemistry.

  3. Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method

    PubMed Central

    Liu, Wei; Dong, Derong; Yang, Zhan; Zou, Dayang; Chen, Zeliang; Yuan, Jing; Huang, Liuyu

    2015-01-01

    In this study, we report a novel isothermal nucleic acid amplification method only requires one pair of primers and one enzyme, termed Polymerase Spiral Reaction (PSR) with high specificity, efficiency, and rapidity under isothermal condition. The recombinant plasmid of blaNDM-1 was imported to Escherichia coli BL21, and selected as the microbial target. PSR method employs a Bst DNA polymerase and a pair of primers designed targeting the blaNDM-1 gene sequence. The forward and reverse Tab primer sequences are reverse to each other at their 5’ end (Nr and N), whereas their 3’ end sequences are complementary to their respective target nucleic acid sequences. The PSR method was performed at a constant temperature 61 °C–65 °C, yielding a complicated spiral structure. PSR assay was monitored continuously in a real-time turbidimeter instrument or visually detected with the aid of a fluorescent dye (SYBR Greenı), and could be finished within 1 h with a high accumulation of 109 copies of the target and a fine sensitivity of 6 CFU per reaction. Clinical evaluation was also conducted using PSR, showing high specificity of this method. The PSR technique provides a convenient and cost-effective alternative for clinical screening, on-site diagnosis and primary quarantine purposes. PMID:26220251

  4. Study on the spectrophotometric detection of free fatty acids in palm oil utilizing enzymatic reactions.

    PubMed

    Azeman, Nur Hidayah; Yusof, Nor Azah; Abdullah, Jaafar; Yunus, Robiah; Hamidon, Mohd Nizar; Hajian, Reza

    2015-07-07

    In this paper, a comprehensive study has been made on the detection of free fatty acids (FFAs) in palm oil via an optical technique based on enzymatic aminolysis reactions. FFAs in crude palm oil (CPO) were converted into fatty hydroxamic acids (FHAs) in a biphasic lipid/aqueous medium in the presence of immobilized lipase. The colored compound formed after complexation between FHA and vanadium (V) ion solution was proportional to the FFA content in the CPO samples and was analyzed using a spectrophotometric method. In order to develop a rapid detection system, the parameters involved in the aminolysis process were studied. The utilization of immobilized lipase as catalyst during the aminolysis process offers simplicity in the product isolation and the possibility of conducting the process under extreme reaction conditions. A good agreement was found between the developed method using immobilized Thermomyces lanuginose lipase as catalyst for the aminolysis process and the Malaysian Palm Oil Board (MPOB) standard titration method (R2 = 0.9453).

  5. Study on the spectrophotometric detection of free fatty acids in palm oil utilizing enzymatic reactions.

    PubMed

    Azeman, Nur Hidayah; Yusof, Nor Azah; Abdullah, Jaafar; Yunus, Robiah; Hamidon, Mohd Nizar; Hajian, Reza

    2015-01-01

    In this paper, a comprehensive study has been made on the detection of free fatty acids (FFAs) in palm oil via an optical technique based on enzymatic aminolysis reactions. FFAs in crude palm oil (CPO) were converted into fatty hydroxamic acids (FHAs) in a biphasic lipid/aqueous medium in the presence of immobilized lipase. The colored compound formed after complexation between FHA and vanadium (V) ion solution was proportional to the FFA content in the CPO samples and was analyzed using a spectrophotometric method. In order to develop a rapid detection system, the parameters involved in the aminolysis process were studied. The utilization of immobilized lipase as catalyst during the aminolysis process offers simplicity in the product isolation and the possibility of conducting the process under extreme reaction conditions. A good agreement was found between the developed method using immobilized Thermomyces lanuginose lipase as catalyst for the aminolysis process and the Malaysian Palm Oil Board (MPOB) standard titration method (R2 = 0.9453). PMID:26198220

  6. Glutathione Responsive Hyaluronic Acid Nanocapsules Obtained by Bioorthogonal Interfacial "Click" Reaction.

    PubMed

    Baier, Grit; Fichter, Michael; Kreyes, Andreas; Klein, Katja; Mailänder, Volker; Gehring, Stephan; Landfester, Katharina

    2016-01-11

    Azide-functionalized hyaluronic acid and disulfide dialkyne have been used for "click" reaction polymerization at the miniemulsion droplets interface leading to glutathione responsive nanocapsules (NCs). Inverse miniemulsion polymerization was chosen, due to its excellent performance properties, for example, tuning of size and size distribution, shell thickness/density, and high pay loading efficiency. The obtained size, size distribution, and encapsulation efficiency were checked via fluorescent spectroscopy, and the tripeptide glutathione was used to release an encapsulated fluorescent dye after cleavage of the nanocapsules shell. To show the glutathione-mediated intracellular cleavage of disulfide-containing NC shells, CellTracker was encapsulated into the nanocapsules. The cellular uptake in dendritic cells and the cleavage of the nanocapsules in the cells were studied using confocal laser scanning microscopy. Because of the mild reaction conditions used during the interfacial polymerization and the excellent cleavage properties, we believe that the synthesis of glutathione responsive hyaluronic acid NCs reported herein are of high interest for the encapsulation and release of sensitive compounds at high yields.

  7. Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method.

    PubMed

    Liu, Wei; Dong, Derong; Yang, Zhan; Zou, Dayang; Chen, Zeliang; Yuan, Jing; Huang, Liuyu

    2015-01-01

    In this study, we report a novel isothermal nucleic acid amplification method only requires one pair of primers and one enzyme, termed Polymerase Spiral Reaction (PSR) with high specificity, efficiency, and rapidity under isothermal condition. The recombinant plasmid of blaNDM-1 was imported to Escherichia coli BL21, and selected as the microbial target. PSR method employs a Bst DNA polymerase and a pair of primers designed targeting the blaNDM-1 gene sequence. The forward and reverse Tab primer sequences are reverse to each other at their 5' end (Nr and N), whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The PSR method was performed at a constant temperature 61 °C-65 °C, yielding a complicated spiral structure. PSR assay was monitored continuously in a real-time turbidimeter instrument or visually detected with the aid of a fluorescent dye (SYBR Greenı), and could be finished within 1 h with a high accumulation of 10(9) copies of the target and a fine sensitivity of 6 CFU per reaction. Clinical evaluation was also conducted using PSR, showing high specificity of this method. The PSR technique provides a convenient and cost-effective alternative for clinical screening, on-site diagnosis and primary quarantine purposes. PMID:26220251

  8. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. PMID:27469095

  9. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis.

  10. Manganese Triazacyclononane Oxidation Catalysts Grafted under Reaction Conditions on Solid Co-Catalytic Supports

    SciTech Connect

    Schoenfeldt, Nicholas J.; Ni, Zhenjuan; Korinda, Andrew W.; Meyer, Randall J.; Notestein, Justin M.

    2012-01-23

    Manganese complexes of 1,4,7-trimethyl-1,4,7-triazacyclononane (tmtacn) are highly active and selective alkene oxidation catalysts with aqueous H{sub 2}O{sub 2}. Here, carboxylic acid-functionalized SiO{sub 2} simultaneously immobilizes and activates these complexes under oxidation reaction conditions. H{sub 2}O{sub 2} and the functionalized support are both necessary to transform the inactive [(tmtacn)Mn{sup IV}({mu}-O)3Mn{sup IV}(tmtacn)]{sup 2+} into the active, dicarboxylate-bridged [(tmtacn)Mn{sup III}({mu}-O)({mu}-RCOO){sub 2}Mn{sup III}(tmtacn)]{sup 2+}. This transformation is assigned on the basis of comparison of diffuse reflectance UV-visible spectra to known soluble models, assignment of oxidation state by Mn K-edge X-ray absorption near-edge spectroscopy, the dependence of rates on the acid/Mn ratios, and comparison of the surface structures derived from density functional theory with extended X-ray absorption fine structure. Productivity in cis-cyclooctene oxidation to epoxide and cis-diol with 2-10 equiv of solid cocatalytic supports is superior to that obtained with analogous soluble valeric acid cocatalysts, which require 1000-fold excess to reach similar levels at comparable times. Cyclooctene oxidation rates are near first order in H{sub 2}O{sub 2} and near zero order in all other species, including H{sub 2}O. These observations are consistent with a mechanism of substrate oxidation following rate-limiting H{sub 2}O{sub 2} activation on the hydrated, supported complex. This general mechanism and the observed alkene oxidation activation energy of 38 {+-} 6 kJ/mol are comparable to H{sub 2}O{sub 2} activation by related soluble catalysts. Undesired decomposition of H{sub 2}O{sub 2} is not a limiting factor for these solid catalysts, and as such, productivity remains high up to 25 C and initial H{sub 2}O{sub 2} concentration of 0.5 M, increasing reactor throughput. These results show that immobilized carboxylic acids can be utilized and understood

  11. Intramolecular Schmidt reaction involving primary azidoalcohols under nonacidic conditions: synthesis of indolizidine (-)-167B.

    PubMed

    Kapat, Ajoy; Nyfeler, Erich; Giuffredi, Guy T; Renaud, Philippe

    2009-12-16

    A powerful intramolecular Schmidt reaction starting from primary azidoalcohols is reported. This approach involves a nonacidic activation of the alcohol via triflation. The synthetic potential offered by the mild reaction conditions is demonstrated by a highly selective synthesis of (-)-indolizidine 167B. PMID:19928759

  12. Impact of reaction conditions on architecture and rheological properties of starch graft polyacrylamide polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We carried out experiments examining the impact that solvent selection and reaction conditions have on the radical initiated graft polymerization reaction of acrylamide onto starch. We have also evaluated the rheological properties the starch graftpolyacrylamide product when a gel is formed in water...

  13. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  14. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  15. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  16. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  17. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  18. Formic Acid Decomposition on Au catalysts: DFT, Microkinetic Modeling, and Reaction Kinetics Experiments

    SciTech Connect

    Singh, Suyash; Li, Sha; Carrasquillo-Flores, Ronald; Alba-Rubio, Ana C.; Dumesic, James A.; Mavrikakis, Manos

    2014-04-01

    A combined theoretical and experimental approach is presented that uses a comprehensive mean-field microkinetic model, reaction kinetics experiments, and scanning transmission electron microscopy imaging to unravel the reaction mechanism and provide insights into the nature of active sites for formic acid (HCOOH) decomposition on Au/SiC catalysts. All input parameters for the microkinetic model are derived from periodic, self-consistent, generalized gradient approximation (GGA-PW91) density functional theory calculations on the Au(111), Au(100), and Au(211) surfaces and are subsequently adjusted to describe the experimental HCOOH decomposition rate and selectivity data. It is shown that the HCOOH decomposition follows the formate (HCOO) mediated path, with 100% selectivity toward the dehydrogenation products (CO21H2) under all reaction conditions. An analysis of the kinetic parameters suggests that an Au surface in which the coordination number of surface Au atoms is 4 may provide a better model for the active site of HCOOH decomposition on these specific supported Au catalysts.

  19. Oxidative degradation of nalidixic acid by nano-magnetite via Fe2+/O2-mediated reactions.

    PubMed

    Ardo, Sandy G; Nélieu, Sylvie; Ona-Nguema, Georges; Delarue, Ghislaine; Brest, Jessica; Pironin, Elsa; Morin, Guillaume

    2015-04-01

    Organic pollution has become a critical issue worldwide due to the increasing input and persistence of organic compounds in the environment. Iron minerals are potentially able to degrade efficiently organic pollutants sorbed to their surfaces via oxidative or reductive transformation processes. Here, we explored the oxidative capacity of nano-magnetite (Fe3O4) having ∼ 12 nm particle size, to promote heterogeneous Fenton-like reactions for the removal of nalidixic acid (NAL), a recalcitrant quinolone antibacterial agent. Results show that NAL was adsorbed at the surface of magnetite and was efficiently degraded under oxic conditions. Nearly 60% of this organic contaminant was eliminated after 30 min exposure to air bubbling in solution in the presence of an excess of nano-magnetite. X-ray diffraction (XRD) and Fe K-edge X-ray absorption spectroscopy (XANES and EXAFS) showed a partial oxidation of magnetite to maghemite during the reaction, and four byproducts of NAL were identified by liquid chromatography-mass spectroscopy (UHPLC-MS/MS). We also provide evidence that hydroxyl radicals (HO(•)) were involved in the oxidative degradation of NAL, as indicated by the quenching of the degradation reaction in the presence of ethanol. This study points out the promising potentialities of mixed valence iron oxides for the treatment of soils and wastewater contaminated by organic pollutants.

  20. Effective and site-specific phosphoramidation reaction for universally labeling nucleic acids.

    PubMed

    Su, Yu-Chih; Chen, Hsing-Yin; Ko, Ni Chien; Hwang, Chi-Ching; Wu, Min Hui; Wang, Li-Fang; Wang, Yun-Ming; Chang, Sheng-Nan; Wang, Eng-Chi; Wang, Tzu-Pin

    2014-03-15

    Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02-1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5'-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro.

  1. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  2. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip.

    PubMed

    Shen, Feng; Davydova, Elena K; Du, Wenbin; Kreutz, Jason E; Piepenburg, Olaf; Ismagilov, Rustem F

    2011-05-01

    In this paper, digital quantitative detection of nucleic acids was achieved at the single-molecule level by chemical initiation of over one thousand sequence-specific, nanoliter isothermal amplification reactions in parallel. Digital polymerase chain reaction (digital PCR), a method used for quantification of nucleic acids, counts the presence or absence of amplification of individual molecules. However, it still requires temperature cycling, which is undesirable under resource-limited conditions. This makes isothermal methods for nucleic acid amplification, such as recombinase polymerase amplification (RPA), more attractive. A microfluidic digital RPA SlipChip is described here for simultaneous initiation of over one thousand nL-scale RPA reactions by adding a chemical initiator to each reaction compartment with a simple slipping step after instrument-free pipet loading. Two designs of the SlipChip, two-step slipping and one-step slipping, were validated using digital RPA. By using the digital RPA SlipChip, false-positive results from preinitiation of the RPA amplification reaction before incubation were eliminated. End point fluorescence readout was used for "yes or no" digital quantification. The performance of digital RPA in a SlipChip was validated by amplifying and counting single molecules of the target nucleic acid, methicillin-resistant Staphylococcus aureus (MRSA) genomic DNA. The digital RPA on SlipChip was also tolerant to fluctuations of the incubation temperature (37-42 °C), and its performance was comparable to digital PCR on the same SlipChip design. The digital RPA SlipChip provides a simple method to quantify nucleic acids without requiring thermal cycling or kinetic measurements, with potential applications in diagnostics and environmental monitoring under resource-limited settings. The ability to initiate thousands of chemical reactions in parallel on the nanoliter scale using solvent-resistant glass devices is likely to be useful for a broader

  3. Scope and limitations of aliphatic Friedel-Crafts alkylations. Lewis acid catalyzed addition reactions of alkyl chlorides to carbon-carbon double bonds

    SciTech Connect

    Mayr, H.; Striepe, W.

    1983-04-22

    Lewis acid catalyzed addition reactions of alkyl halides with unsaturated hydrocarbons have been studied. 1:1 addition products are formed if the addends dissociate faster than the corresponding products; otherwise, polymerization takes place. For reaction conditions under which these compounds exist mainly undissociated, solvolysis constants of model compounds can be used to predict the outcome of any such addition reactions if systems with considerable steric hindrance are excluded.

  4. A Mini-Review on Solid Acid Catalysts for Esterification Reactions

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Hansora, Dharmesh; Usmani, Ghayas A.

    2016-04-01

    This paper presents an overview of research pertaining to solid acid catalysts for esterification reactions. Prominence has been given to the literatures that have been appeared during the last two decades. A variety of reactions catalyzed by solid acid catalysts have been tabulated according to their broad classification; industrially important reactions have been outlined. Examples, where the use of various solid acid catalysts have led to an improvement in the selectivity of the desired products, have also been discussed. Various catalyzed esterification reactions using different approaches and previous kinetic studies have been reviewed. Types, preparation and synthesis of various solid acid catalysts have been reviewed and discussed. Suggestions have been summarized for their implementation in future work.

  5. Envisioning an enzymatic Diels-Alder reaction by in situ acid-base catalyzed diene generation.

    PubMed

    Linder, Mats; Johansson, Adam Johannes; Manta, Bianca; Olsson, Philip; Brinck, Tore

    2012-06-01

    We present and evaluate a new and potentially efficient route for enzyme-mediated Diels-Alder reactions, utilizing general acid-base catalysis. The viability of employing the active site of ketosteroid isomerase is demonstrated.

  6. Why and How To Teach Acid-Base Reactions without Equilibrium.

    ERIC Educational Resources Information Center

    Carlton, Terry S.

    1997-01-01

    Recommends an approach to the treatment of acid-base equilibria that involves treating each reaction as either going to completion or not occurring at all. Compares the method with the traditional approach step by step. (DDR)

  7. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  8. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  9. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  10. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  11. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  12. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  13. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  14. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  15. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  16. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  17. Kinetics of Acid Reactions: Making Sense of Associated Concepts

    ERIC Educational Resources Information Center

    Tan, Kim Chwee Daniel; Treagust, David F.; Chandrasegaran, A. L.; Mocerino, Mauro

    2010-01-01

    In chemical kinetics, in addition to the concepts related to kinetics, stoichiometry, chemical equilibrium and the characteristics of the reactants are often involved when comparing the rates of different reactions, making such comparisons very challenging for students at all levels, as well as for pre-service science teachers. Consequently, four…

  18. Caffeoylquinic acid derived free radicals identified during antioxidant reactions of bitter tea (Ilex latifolia and Ilex kudincha).

    PubMed

    Pirker, Katharina Franziska; Goodman, Bernard Albert

    2010-12-01

    In order to provide some insight into the chemical basis for the antioxidant behaviour of bitter tea, the Chinese medicinal beverage derived from leaves of Ilex kudincha or Ilex latifolia, free radicals generated during the oxidation of aqueous extracts of dried leaves have been investigated by electron paramagnetic resonance (EPR) spectroscopy. With both beverages, the major components in the EPR spectra after accelerated autoxidation under alkaline conditions or oxidation with the superoxide anion radical were comparable to those derived from reactions of caffeoylquinic acids. Thus these reaction products have sufficient stability for biological activity, and the present results suggest that such molecules contribute appreciably to the antioxidant chemistry of these beverages.

  19. Reaction of /alpha/,/beta/-unsaturated acyl isothiocyanates with salts of dithiocarbamic acids

    SciTech Connect

    Krus, K.; Masias, A.; Beletskaya, I.P.

    1989-01-10

    The reaction of unsaturated isothiocyanates with the sodium and calcium salts of N-alkyl- and N,N-dialkyldithiocarbamic acids was studied. Depending on the structure of the dithiocarbamate, the reaction products are thiazines or acyl dithiocarbamates. For the salts of methyldithiocarbamic acid the effect of the concentration and the nature of the metal on the relative yields of 6-phenyl-3-methylpropiorhodanine and 6-phenylpropiorhodanine was studied. A method is proposed for the synthesis of 3-substituted propiorhodanines.

  20. Kinetics of the reaction between hydrogen and sulfur under high-temperature Claus furnace conditions

    SciTech Connect

    Dowling, N.I.; Hyne, J.B. ); Brown, D.M. )

    1990-12-01

    The reaction H{sub 2} + (1/2)S{sub 2} {r equilibrium}H{sub 2}S has been studied as a function of temperature and residence time over the ranges 602--1290{degrees}C and 0.03--1.5 s in the absence of a catalyst. This paper shows that the combination of H{sub 2} and elemental sulfur vapor under the high-temperature conditions typical of a Claus sulfur recovery unit proceeds via a reversible homogeneous gas-phase reaction that is first order in both H{sub 2} and sulfur concentration and follows the rate law {minus}d(H{sub 2})/dt = k{sub 1}(H{sub 2})(S{sub 2}) {minus} k{sub 2}(H{sub 2}S) with a second-order recombination rate constant k{sub 1} = 1 {minus} 1 {times} 10{sup 3} atm{sup {minus}1} s{sup {minus}1} (A{sub 1} = (4.3 {plus minus} 0.2) {times} 10{sup 6} atm{sup {minus}1} s{sup {minus}1}; {Delta}H{sub 1} = 26 {plus minus} 1 kcal/mol) and first-order decomposition rate constant k{sub 2} = 4 {times} 10{sup {minus}4} {minus} 70 s{sup {minus}1} (A{sub 2} = (3.6 {plus minus} 1) {times} 10{sup 8} s{sup {minus}1}; {Delta}H{sub 2} = 48 {plus minus} 1 kcal/mol) over the temperature range studied. These findings can be used to exploit opportunities in acid gas processing, such as effecting improved efficiencies for O{sub 2} usage in oxygen- blown Claus units and maximizing H{sub 2} content in the tail gas.

  1. Photochemical reactions of divalent mercury with thioglycolic acid: formation of mercuric sulfide particles.

    PubMed

    Si, Lin; Ariya, Parisa A

    2015-01-01

    Mercury (Hg) is a key toxic global pollutant. Studies in aquatic environment have suggested that thiols could be important for mercury speciation. Thioglycolic acid has been detected in various natural water systems and used as a model compound to study the complicated interaction between mercury and polyfunctional dissolved organic matter (DOM). We herein presented the first evidence for mercury particle formation during kinetic and product studies on the photochemistry of divalent mercury (Hg(2+)) with thioglycolic acid at near environmental conditions. Mercuric sulfide (HgS) particles formed upon photolysis were identified by high-resolution transmission electron microscopy coupled with energy dispersive spectrometry and select area electron diffraction. Kinetic data were obtained using UV-visible spectrophotometry and cold vapour atomic fluorescent spectrometry. The apparent first-order reaction rate constant under our experimental conditions was calculated to be (2.3±0.4)×10(-5) s(-1) at T=296±2 K and pH 4.0. It was found that (89±3)% of the reactants undergo photoreduction to generate elemental mercury (Hg(0)). The effects of ionic strengths, pH and potassium ion were also investigated. The formation of HgS particles pointed to the possible involvement of heterogeneous processes. Our kinetic results indicated the importance of weak binding sites on DOM to Hg in photoreduction of Hg(2+) to Hg(0). The potential implications of our data on environmental mercury transformation were discussed.

  2. Peroxide promoted tunable decarboxylative alkylation of cinnamic acids to form alkenes or ketones under metal-free conditions.

    PubMed

    Ji, Jing; Liu, Ping; Sun, Peipei

    2015-05-01

    A tunable decarboxylative alkylation of cinnamic acids with alkanes was developed to form alkenes or ketones under transition metal-free conditions. In the presence of DTBP or DTBP/TBHP, the reaction gave alkenes and ketones respectively via a radical mechanism in moderate to good yields.

  3. [Characteristics of the formation of conditioned defense reactions in monkeys in a primatological chair].

    PubMed

    Karamian, A I; Sollertinskaia, T N; Iliukha, V A

    1987-01-01

    Rate of reactions in motor conditioned electro-defensive reflexes and different kinds of internal inhibition, such as acute extinction, differentiation and delay with different retardations, were studied on monkeys in primatological chair. Specificity in formation of conditioned reactions was studied with simultaneous recording of vegetative (respiration and heart rate) and motor conditioned reactions. It has been established, that forming of vegetative and motor components of defensive reflex does not proceed synchronously. At first (2-4 trials) vegetative reactions appear, such as increase of heart and respiration rates. Conditioned motor reactions (legs' jerks) appear later, after 4-9 trials. It has been shown that in monkeys in the primatological chair we have a possibility to form all kinds of negative conditioned defensive reactions: acute extinction, differentiation, delay. Formation of delay inhibition with retardation of 90 s leads to neurotic disorders. But they last only for short periods and disappear after breaks in work. The obtained data are discussed from evolutionary point of view, with a comparative study of specificity of higher nervous activity formation among lower organized vertebrates and with consideration of processes of excitation and inhibition in evolution.

  4. Effects of salt concentration on the reaction rate of Glc with amino acids, peptides, and proteins.

    PubMed

    Yamaguchi, Keiko; Noumi, Yuri; Nakajima, Katsumi; Nagatsuka, Chiharu; Aizawa, Haruko; Nakawaki, Rie; Mizude, Eri; Otsuka, Yuzuru; Homma, Takeshi; Chuyen, Nguyen Van

    2009-11-01

    The reaction between the amino group and the carbonyl group is important in food quality control. Furthermore, advanced glycation end products from foods are considered to relate to aging and diabetes. Thus, it is important to control this reaction. In this study, we investigated the effects of salt concentration on the rates of browning reaction of amino acid, peptides, and proteins. A high concentration of sodium chloride retarded the reaction rate of Glc with amino acids as measured with the absorbance at 470 nm, but did not change the browning rate of Glc with peptides. On the other hand, sodium chloride retarded the browning reaction rate of proteins as measured with polymerization degree or by the loss of Lys. It is hoped that the results of this study will be applied in the control of amino-carbonyl reaction rates in the food industry. PMID:19897911

  5. Acid-Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols

    ERIC Educational Resources Information Center

    Goodney, David E.

    2006-01-01

    Examples of acid-base reactions from Robert Boyle's "The Sceptical Chemist" are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe the same reaction that can be done quite simply with a chemical equation. Reading or hearing the words, however, enriches the student's…

  6. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  7. Exploring water catalysis in the reaction of thioformic acid with hydroxyl radical: a global reaction route mapping perspective.

    PubMed

    Kaur, Gurpreet; Vikas

    2014-06-12

    Hydrogen abstraction pathways, in the gas-phase reaction of tautomers of thioformic acid (TFA), TFA(thiol), and TFA(thione), with hydroxyl radical in the presence and absence of single water molecule acting as a catalyst, is investigated with high-level quantum mechanical calculations at CCSD(T)/6-311++G(2d,2p)//MP2/6-311++G(2d,2p), CCSD(T)/6-311++G(d,p)//DFT/BHandHLYP/6-311++G(d,p), and DFT/B3LYP/6-311++G(2df,2p) levels of the theory. A systematic and automated search of the potential energy surface (PES) for the reaction pathways is performed using the global reaction route mapping (GRRM) method that employs an uphill walking technique to search prereaction complexes and transition states. The computations reveal significant lowering of the PES and substantial reduction in the activation energy for the hydrogen abstraction pathway in the presence of water, thereby proving water as an efficient catalyst in the reaction of both the TFA tautomers with OH radical. The hydrogen-bonding interactions are observed to be responsible for the large catalytic effect of water. Notably, in the case of TFA(thiol), formyl hydrogen abstraction is observed to be kinetically more favorable, while acidic hydrogen abstraction is observed to be thermodynamically more feasible. Interestingly, in the case of TFA(thione), reaction pathways involving only formyl hydrogen abstraction were observed to be feasible. The water-catalyzed hydrogen abstraction reaction of TFA with hydroxyl radical, investigated in this work, can provide significant insights into the corresponding reaction in the biological systems.

  8. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  9. Understanding E2 versus SN2 Competition under Acidic and Basic Conditions

    PubMed Central

    Wolters, Lando P; Ren, Yi; Bickelhaupt, F Matthias

    2014-01-01

    Our purpose is to understand the mechanism through which pH affects the competition between base-induced elimination and substitution. To this end, we have quantum chemically investigated the competition between elimination and substitution pathways in H2O+C2H5OH2+ and OH−+C2H5OH, that is, two related model systems that represent, in a generic manner, the same reaction under acidic and basic conditions, respectively. We find that substitution is favored in the acidic case while elimination prevails under basic conditions. Activation-strain analyses of the reaction profiles reveal that the switch in preferred reactivity from substitution to elimination, if one goes from acidic to basic catalysis, is related to (1) the higher basicity of the deprotonated base, and (2) the change in character of the substrates LUMO from Cβ−H bonding in C2H5OH2+ to Cβ−H antibonding in C2H5OH. PMID:24688892

  10. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3

  11. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Golden, D. C.; Ming, D.; Niles, P. B.

    2011-12-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then "large" carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3

  12. Optimization of reaction conditions by RSM and structure characterization of sulfated locust bean gum.

    PubMed

    Wang, Junlong; Yang, Ting; Tian, Jia; Liu, Wenxi; Jing, Fan; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2014-12-19

    Sulfated derivatives of galactomannan from locust bean gum (LBG) with the degree of substitution (DS) of 0.34-1.07 were synthesized using chlorosulfonic acid/pyridine (CSA/Py) method. Box-Behnken design (BBD) of response surface methodology (RSM) was employed to optimize the reaction conditions. Results of FT-IR and X-ray photoelectron spectroscopy (XPS) indicated that SO3H groups were widely present in sulfated LBG (SLBG). (13)C NMR result revealed that sulfation had occurred and C-6 substitution was predominant in SLBG. All sulfated samples showed a decrease in Mw and more broad molar mass distribution in size exclusion chromatography combined with laser light scattering (SEC-LLS) analysis. Results of MW - [Formula: see text] showed a decrease in fractal dimension (df) value. Laser light scattering results also showed a conformation transition from a compact chain conformation of branched clusters to a random coil conformation of SLBG. Compared to LBG and SLBG with low DS and molecular weight, SLBG2 exhibited an internal structure of random coil with a DS of 1.07. DS and molecular weight had great influence on its conformation in aqueous solution. Our results confirmed that the degradation of polysaccharide and SO3H groups improved significantly the stiffness of the chains due to the electrostatic effect.

  13. Optimization of reaction conditions by RSM and structure characterization of sulfated locust bean gum.

    PubMed

    Wang, Junlong; Yang, Ting; Tian, Jia; Liu, Wenxi; Jing, Fan; Yao, Jian; Zhang, Ji; Lei, Ziqiang

    2014-12-19

    Sulfated derivatives of galactomannan from locust bean gum (LBG) with the degree of substitution (DS) of 0.34-1.07 were synthesized using chlorosulfonic acid/pyridine (CSA/Py) method. Box-Behnken design (BBD) of response surface methodology (RSM) was employed to optimize the reaction conditions. Results of FT-IR and X-ray photoelectron spectroscopy (XPS) indicated that SO3H groups were widely present in sulfated LBG (SLBG). (13)C NMR result revealed that sulfation had occurred and C-6 substitution was predominant in SLBG. All sulfated samples showed a decrease in Mw and more broad molar mass distribution in size exclusion chromatography combined with laser light scattering (SEC-LLS) analysis. Results of MW - [Formula: see text] showed a decrease in fractal dimension (df) value. Laser light scattering results also showed a conformation transition from a compact chain conformation of branched clusters to a random coil conformation of SLBG. Compared to LBG and SLBG with low DS and molecular weight, SLBG2 exhibited an internal structure of random coil with a DS of 1.07. DS and molecular weight had great influence on its conformation in aqueous solution. Our results confirmed that the degradation of polysaccharide and SO3H groups improved significantly the stiffness of the chains due to the electrostatic effect. PMID:25263904

  14. Effect of aluminum ion on Fe(2+)-induced lipid peroxidation in phospholipid liposomes under acidic conditions.

    PubMed

    Ohyashiki, T; Karino, T; Suzuki, S; Matsui, K

    1996-11-01

    The effects of Al3+ on Fe(2+)-induced lipid peroxidation in phospholipid liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) were examined under acidic conditions. The stimulatory effect of Al3+ on Fe(2+)-induced lipid peroxidation in the liposomes showed a biphasic response against pH variation, and the maximum stimulation was observed around pH 6.0. In addition, it was found that the stimulatory effect of Al3+ on the lipid peroxidation was dependent on the proportion of PS in the liposomes. On the other hand, the lipid peroxidation in PC liposomes was not stimulated by the addition of Al3+. From these findings, it is suggested that the Al3+ effect on Fe(2+)-induced lipid peroxidation under acidic conditions is largely dependent on the phospholipid composition. Trivalent cations such as Tb3+ and Ga3+ also stimulated Fe(2+)-induced lipid peroxidation in PC/PS liposomes under acidic conditions, but divalent cations (Zn2+ and Mn2+) showed no stimulatory effect. The extents of Fe2+ disappearance and Fe3+ formation during the reaction were enhanced by the addition of Al3+ or Ga2+, but Tb3+ had no effect on Fe2+ disappearance. The results with 1,6-diphenyl-1,3,5-hexatriene (DPH) showed that the fluorescence anisotropy of DPH-labeled PC/PS liposomes under acidic conditions was increased by the addition of Al3+. Furthermore, there is a relation between the extents of the fluorescence anisotropy of the complex and TBARS production. In contrast, the fluorescence anisotropy of DPH molecules embedded in PC liposomes was not changed by the addition of Al3+. Based on these results, a possible mechanism of the stimulatory effect of Al3+ on Fe(2+)-induced lipid peroxidation under acidic conditions is discussed. PMID:8982853

  15. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  16. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.

  17. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions.

    PubMed

    Cech, Jiří; Přibyl, Michal; Snita, Dalimil

    2013-01-01

    Here, we introduce a solution to low stability of a two-phase slug flow with a chemical reaction occurring at the phase interface in a microfluidic reactor where substantial merging of individual reacting slugs results in the loss of uniformity of the flow. We create a three-phase slug flow by introducing a third fluid phase into the originally two-phase liquid-liquid slug flow, which generates small two-phase liquid slugs separated by gas phase. Introduction of the third phase into our system efficiently prevents merging of slugs and provides beneficial reaction conditions, such as uniform flow pattern along the whole reaction capillary, interfacial area with good reproducibility, and intensive water-oil interface renewal. We tested the three-phase flow on an enzyme hydrolysis of soybean oil and compared the reaction conversion with those from unstable two-phase slug flows. We experimentally confirmed that the three-phase slug flow arrangement provides conversions and pressure drops comparable or even better with two-phase liquid-liquid arrangements.

  18. In-situ Scanning Transmission X-ray Microscopy of catalytic materials under reaction conditions

    NASA Astrophysics Data System (ADS)

    de Smit, Emiel; Creemer, J. Fredrik; Zandbergen, Henny W.; Weckhuysen, Bert M.; de Groot, Frank M. F.

    2009-11-01

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant reaction conditions, and provide detailed information on the morphology and composition of the catalyst material. The nanometer resolution combined with powerful chemical speciation by XAS and the ability to image materials under realistic conditions opens up new opportunities to study many chemical processes.

  19. A Comparative Study of French and Turkish Students' Ideas on Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cokelez, Aytekin

    2010-01-01

    The goal of this comparative study was to determine the knowledge that French and Turkish upper secondary-school students (grades 11 and 12) acquire on the concept of acid-base reactions. Following an examination of the relevant curricula and textbooks in the two countries, 528 students answered six written questions about the acid-base concept.…

  20. [Study of Reaction Dynamics between Bovine Serum Albumin and Folic Acid by Stopped-Flow/Fluorescence].

    PubMed

    Ye, San-xian; Luo, Yun-jing; Qiao, Shu-liang; Li, Li; Liu, Cai-hong; Shi, Jian-long; An, Xue-jing

    2016-01-01

    As a kind of coenzyme of one-carbon enzymes in vivo, folic acid belongs to B vitamins, which can interact with other vitamins and has great significance for converting among amino acids, dividing growth of cells and protein synthesis reactions. Half-life, concentration and reaction rate constant of drugs are important parameters in pharmacokinetic study. In this paper, by utilizing fluorescence spectrophotometer and stopped-flow spectrum analyzer, reaction kinetic parameters between bovine serum albumin(BSA) and folic acid in a bionic system have been investigated, which provide references for parameters of drug metabolism related to folic acid. By using Stern-Volmer equation dealing with fluorescence quenching experiments data, we concluded that under 25, 30, and 37 degrees C, the static quenching constants of folic acid to intrinsic fluorescence from bovine serum albumin were 2.455 x 10(10), 4.900 x 10(10) and 6.427 x 10(10) L x mol(-1) x s(-1) respectively; The results of kinetic reaction rate have shown that the reaction rate of BSA and folic acid are greater than 100 mol x L(-1) x s(-1) at different temperatures, pH and buffering media, illustrating that the quenching mechanism between BSA and folic acid is to form composite static quenching process. Reaction concentration of bovine serum albumin and its initial concentration were equal to the secondary reaction formula, and the correlation coefficient was 0.998 7, while the half-life (t1/2) was 0.059 s at physiological temperature. With the increase of folic acid concentration, the apparent rate constant of this reaction had a linear increasing trend, the BSA fluorescence quenching rate constant catalyzed by folic acid was 3.174 x 10(5) mol x L(-1) x s(-1). Furthermore, with different buffer, the apparent rate constant and reaction rate constant of BSA interacting with folic acid were detected to explore the influence on the reaction under physiological medium, which is of great significance to determine the

  1. [Study of Reaction Dynamics between Bovine Serum Albumin and Folic Acid by Stopped-Flow/Fluorescence].

    PubMed

    Ye, San-xian; Luo, Yun-jing; Qiao, Shu-liang; Li, Li; Liu, Cai-hong; Shi, Jian-long; An, Xue-jing

    2016-01-01

    As a kind of coenzyme of one-carbon enzymes in vivo, folic acid belongs to B vitamins, which can interact with other vitamins and has great significance for converting among amino acids, dividing growth of cells and protein synthesis reactions. Half-life, concentration and reaction rate constant of drugs are important parameters in pharmacokinetic study. In this paper, by utilizing fluorescence spectrophotometer and stopped-flow spectrum analyzer, reaction kinetic parameters between bovine serum albumin(BSA) and folic acid in a bionic system have been investigated, which provide references for parameters of drug metabolism related to folic acid. By using Stern-Volmer equation dealing with fluorescence quenching experiments data, we concluded that under 25, 30, and 37 degrees C, the static quenching constants of folic acid to intrinsic fluorescence from bovine serum albumin were 2.455 x 10(10), 4.900 x 10(10) and 6.427 x 10(10) L x mol(-1) x s(-1) respectively; The results of kinetic reaction rate have shown that the reaction rate of BSA and folic acid are greater than 100 mol x L(-1) x s(-1) at different temperatures, pH and buffering media, illustrating that the quenching mechanism between BSA and folic acid is to form composite static quenching process. Reaction concentration of bovine serum albumin and its initial concentration were equal to the secondary reaction formula, and the correlation coefficient was 0.998 7, while the half-life (t1/2) was 0.059 s at physiological temperature. With the increase of folic acid concentration, the apparent rate constant of this reaction had a linear increasing trend, the BSA fluorescence quenching rate constant catalyzed by folic acid was 3.174 x 10(5) mol x L(-1) x s(-1). Furthermore, with different buffer, the apparent rate constant and reaction rate constant of BSA interacting with folic acid were detected to explore the influence on the reaction under physiological medium, which is of great significance to determine the

  2. Reversible click reactions with boronic acids to build supramolecular architectures in water.

    PubMed

    Arzt, Matthias; Seidler, Christiane; Ng, David Y W; Weil, Tanja

    2014-08-01

    The interaction of boronic acids with various bifunctional reagents offers great potential for the preparation of responsive supramolecular architectures. Boronic acids react with 1,2-diols yielding cyclic boronate esters that are stable at pH>7.4 but can be hydrolyzed at pH<5.0. The phenylboronic acid (PBA)-salicylhydroxamic acid (SHA) system offers ultra-fast reaction kinetics and high binding affinities. This Focus Review summarizes the current advances in exploiting the bioorthogonal interaction of boronic acids to build pH-responsive supramolecular architectures in water.

  3. The Use of Gel Electrophoresis to Study the Reactions of Activated Amino Acids with Oligonucleotides

    NASA Technical Reports Server (NTRS)

    Zieboll, Gerhard; Orgel, Leslie E.

    1994-01-01

    We have used gel electrophoresis to study the primary covalent addition of amino acids to oligonu-cleotides or their analogs and the subsequent addition of further molecules of the amino acids to generate peptides covalently linked to the oligonucleotides. We have surveyed the reactions of a variety of amino acids with the phosphoramidates derived from oligonucleotide 5 inches phosphates and ethylenediamine. We find that arginine and amino acids can interact with oligonucleotidesl through stacking interactions react most efficiently. D- and L-amino acids give indistinguishable families of products.

  4. Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions.

    PubMed

    Bosica, Giovanna; Abdilla, Roderick

    2016-06-22

    Aza-Michael reactions between primary aliphatic and aromatic amines and various Michael acceptors have been performed under environmentally-friendly solventless conditions using acidic alumina as a heterogeneous catalyst to selectively obtain the corresponding mono-adducts in high yields. Ethyl acrylate was the main acceptor used, although others such as acrylonitrile, methyl acrylate and acrylamide were also utilized successfully. Bi-functional amines also gave the mono-adducts in good to excellent yields. Such compounds can serve as intermediates for the synthesis of anti-cancer and antibiotic drugs.

  5. Anaerobic conditions improve germination of a gibberellic acid deficient rice

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  6. Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne-Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid.

    PubMed

    Terada, Masahiro; Ota, Yusuke; Li, Feng; Toda, Yasunori; Kondoh, Azusa

    2016-08-31

    Catalytic enantioselective syntheses enable a practical approach to enantioenriched molecules. While most of these syntheses have been accomplished by reaction at the prochiral sp(2)-hybridized carbon atom, little attention has been paid to enantioselective nucleophilic substitution at the sp(3)-hybridized carbon atom. In particular, substitution at the chiral sp(3)-hybridized carbon atom of racemic electrophiles has been rarely exploited. To establish an unprecedented enantioselective substitution reaction of racemic electrophiles, enantioconvergent Nicholas reaction of an alkyne-dicobalt complex derived from racemic propargylic alcohol was developed using a chiral phosphoric acid catalyst. In the present enantioconvergent process, both enantiomers of the racemic alcohol were transformed efficiently to a variety of thioethers with high enantioselectivity. The key to achieving success is dynamic kinetic asymmetric transformation (DYKAT) of enantiomeric cationic intermediates generated via dehydroxylation of the starting racemic alcohol under the influence of the chiral phosphoric acid catalyst. The present fascinating DYKAT involves the efficient racemization of these enantiomeric intermediates and effective resolution of these enantiomers through utilization of the chiral conjugate base of the phosphoric acid. PMID:27490239

  7. Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne-Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid.

    PubMed

    Terada, Masahiro; Ota, Yusuke; Li, Feng; Toda, Yasunori; Kondoh, Azusa

    2016-08-31

    Catalytic enantioselective syntheses enable a practical approach to enantioenriched molecules. While most of these syntheses have been accomplished by reaction at the prochiral sp(2)-hybridized carbon atom, little attention has been paid to enantioselective nucleophilic substitution at the sp(3)-hybridized carbon atom. In particular, substitution at the chiral sp(3)-hybridized carbon atom of racemic electrophiles has been rarely exploited. To establish an unprecedented enantioselective substitution reaction of racemic electrophiles, enantioconvergent Nicholas reaction of an alkyne-dicobalt complex derived from racemic propargylic alcohol was developed using a chiral phosphoric acid catalyst. In the present enantioconvergent process, both enantiomers of the racemic alcohol were transformed efficiently to a variety of thioethers with high enantioselectivity. The key to achieving success is dynamic kinetic asymmetric transformation (DYKAT) of enantiomeric cationic intermediates generated via dehydroxylation of the starting racemic alcohol under the influence of the chiral phosphoric acid catalyst. The present fascinating DYKAT involves the efficient racemization of these enantiomeric intermediates and effective resolution of these enantiomers through utilization of the chiral conjugate base of the phosphoric acid.

  8. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions.

    PubMed

    Berndt, Torsten; Kaethner, Ralf; Voigtländer, Jens; Stratmann, Frank; Pfeifle, Mark; Reichle, Patrick; Sipilä, Mikko; Kulmala, Markku; Olzmann, Matthias

    2015-08-14

    Stabilized Criegee Intermediates (sCIs) have been identified as oxidants of atmospheric trace gases such as SO2, NO2, carboxylic acids or carbonyls. The atmospheric sCI concentrations, and accordingly their importance for trace gas oxidation, are controlled by the rate of the most important loss processes, very likely the unimolecular reactions and the reaction with water vapour (monomer and dimer) ubiquitously present at high concentrations in the troposphere. In this study, the rate coefficients of the unimolecular reaction of the simplest sCI, formaldehyde oxide, CH2OO, and its bimolecular reaction with the water monomer have been experimentally determined at T = (297 ± 1) K and at atmospheric pressure by using a free-jet flow system. CH2OO was produced by the reaction of ozone with C2H4, and CH2OO concentrations were probed indirectly by detecting H2SO4 after titration with SO2. Time-resolved experiments yield a rate coefficient of the unimolecular reaction of k(uni) = (0.19 ± 0.07) s(-1), a value that is supported by quantum-chemical and statistical rate theory calculations as well as by additional measurements performed under CH2OO steady-state conditions. A rate coefficient of k(CH2OO+H2O) = (3.2 ± 1.2) × 10(-16) cm(3) molecule(-1) s(-1) has been determined for sufficiently low H2O concentrations (<10(15) molecule cm(-3)) that allow separation from the CH2OO reaction with the water dimer. In order to evaluate the accuracy of the experimental approach, the rate coefficients of the reactions with acetaldehyde and acetone were reinvestigated. The obtained rate coefficients k(CH2OO+acetald) = (1.7 ± 0.5) × 10(-12) and k(CH2OO+acetone) = (3.4 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) are in good agreement with literature data.

  9. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.

    PubMed

    Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications. PMID:27399667

  10. Experimental and Guided Theoretical Investigation of Complex Reaction Mechanisms in a Prins Reaction of Glyoxylic Acid and Isobutene

    ERIC Educational Resources Information Center

    Angelici, Gaetano; Nicolet, Stefan; Uda, Narasimha R.; Creus, Marc

    2014-01-01

    A laboratory experiment was designed for undergraduate students, in which the outcome of an easy single-step organic synthesis with well-defined conditions was not elucidated until the end of the exercise. In class, students predict and discuss the possible products using their knowledge of reaction mechanisms. In the laboratory, they learn how to…

  11. Role of (α ,n ) reactions under r -process conditions in neutrino-driven winds reexamined

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2016-09-01

    Background: The astrophysical r -process occurs in an explosive astrophysical event under extremely neutron-rich conditions, leading to (n ,γ )-(γ ,n ) equilibrium along isotopic chains which peaks around neutron separation energies of a few MeV. Nuclei with larger Z are usually produced by β- decay, but under certain conditions also α -induced reactions may become relevant for the production of nuclei with Z +2 . Purpose: The uncertainties of the reaction rates of these α -induced reactions are discussed within the statistical model. As an example, α -induced (α ,n ) and (α ,x n ) reaction cross sections for the neutron-rich 86Se nucleus are studied in detail. Method: In a first step, the relevance of (α ,n ) and (α ,x n ) reactions is analyzed. Next the uncertainties are determined from a variation of the α -nucleus potential which is the all-dominant parameter for the astrophysical Z →Z +2 reaction rate. Results: It is found that the r -process flow towards nuclei with larger Z is essentially influenced only by the α -nucleus potential whereas the other ingredients of the statistical model play a very minor role. This finding is based on the fact that the flow towards larger Z depends on the sum over all (α ,x n ) cross sections, which is practically identical to the total α -induced reaction cross section. Conclusions: α -nucleus potentials play an important role under certain r -process conditions because the flow towards larger Z depends sensitively on the total α -induced reaction cross section. The uncertainty of the reaction rate is about a factor of two to three at higher temperatures and exceeds one order of magnitude at very low temperatures.

  12. Mechanistic investigation of the uncatalyzed esterification reaction of acetic acid and acid halides with methanol: a DFT study.

    PubMed

    Lawal, Monsurat M; Govender, Thavendran; Maguire, Glenn E M; Honarparvar, Bahareh; Kruger, Hendrik G

    2016-10-01

    Implementation of catalysts to drive reactions from reactants to products remains a burden to synthetic and organic chemists. In spite of investigations into the kinetics and mechanism of catalyzed esterification reactions, less effort has been made to explore the possibility of an uncatalyzed esterification process. Therefore, a comprehensive mechanistic perspective for the uncatalyzed mechanism at the molecular level is presented. Herein, we describe the non-catalyzed esterification reaction of acetic acid and its halide derivatives (XAc, where X= OH, F, Cl, Br, I) with methanol (MeOH) through a concerted process. The reaction in vacuum and methanol was performed using the density functional theory (DFT) method at M06-2X level with def2-TZVP basis set after a careful literature survey and computations. Esterification through cyclic 4- or 6-membered transition state structures in one- or two-step concerted mechanisms were investigated. The present study outlines the possible cyclic geometry conformations that may occur during experiments at simple ratio of reactants. The free energy of activation for acetic acid and acetyl chloride are 36 kcal mol(-1) and 21 kcal mol(-1), respectively. These are in good agreement with available experimental results from the literature. The selected quantum chemical descriptors proved to be useful tools in chemical reactivity prediction for the reaction mechanism. This quantum mechanics study can serve as a necessary step towards revisiting uncatalyzed reaction mechanisms in some classical organic reactions. PMID:27604278

  13. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    NASA Technical Reports Server (NTRS)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  14. Very efficient, reusable copper catalyst for carbene transfer reactions under biphasic conditions using ionic liquids.

    PubMed

    Rodríguez, Pilar; Caballero, Ana; Díaz-Requejo, M Mar; Nicasio, M Carmen; Pérez, Pedro J

    2006-02-16

    [reaction: see text] The complex {[HC(3,5-Me(2)pz)(3)]Cu(NCMe)}BF(4) catalyzes the transfer of the :CHCO(2)Et unit from ethyl diazoacetate to several saturated and unsaturated substrates with very high yields and under biphasic conditions using the ionic liquid [bmim][PF(6)] and hexane as the reaction medium. The catalyst has been tested for several cycles of recovery and reuse without any loss of activity.

  15. Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions.

    PubMed

    Nishibayashi, Yoshiaki

    2015-10-01

    This paper describes our recent progress in catalytic nitrogen fixation by using transition-metal-dinitrogen complexes as catalysts. Two reaction systems for the catalytic transformation of molecular dinitrogen into ammonia and its equivalent such as silylamine under ambient reaction conditions have been achieved by the molybdenum-, iron-, and cobalt-dinitrogen complexes as catalysts. Many new findings presented here may provide new access to the development of economical nitrogen fixation in place of the Haber-Bosch process. PMID:26131967

  16. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase.

    PubMed

    Gheibi, N; Saboury, A A; Haghbeen, K; Rajaei, F; Pahlevan, A A

    2009-10-01

    Catecholase and cresolase activities of mushroom tyrosinase (MT) were studied in presence of some n-alkyl carboxylic acid derivatives. Catecholase activity of MT achieved its optimal activity in presence of 1.0, 1.25, 2.0, 2.2 and 3.2 mM of pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butanoic acid, and 2-oxo-octanoic acid, respectively. Contrarily, the cresolase activity of MT was inhibited by all type of the above acids. Propanoic acid caused an uncompetitive mode of inhibition (K(i)=0.14 mM), however, the pyruvic, acrylic, 2-oxo-butanoic and 2-oxo-octanoic acids showed a competitive manner of inhibition with the inhibition constants (K(i)) of 0.36, 0.6, 3.6 and 4.5 mM, respectively. So, it seems that, there is a physical difference in the docking of mono- and o-diphenols to the tyrosinase active site. This difference could be an essential determinant for the course of the catalytic cycle. Monophenols are proposed to bind only the oxyform of the tyrosinase. It is likely that the binding of acids occurs through their carboxylate group with one copper ion of the binuclear site. Thus, they could completely block the cresolase reaction, by preventing monophenol binding to the enzyme. From an allosteric point of view, n-alkyl acids may be involved in activation of MT catecholase reactions.

  17. Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2004-06-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  18. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    information was gained from the analysis of intact polar lipids. Ethanolamines and cholines were the most abundant head groups within bacteria and are mainly combined with one specific and one unspecific fatty acid. Reactions on changing environmental conditions occurred mainly by modifications of fatty acids and rarely by a change of the headgroup fingerprint. This approach thus enables to categorize a certain amount of formerly unspecific fatty acids towards a specific microbial group. Ecological understanding for the interface between surrounding environment and cellular metabolism could be deepened by investigating the intact compounds e.g. intact phospholipids of microbial membranes. However, data from further organisms as well as diverse microbial communities are needed to continue the databases of intact phospholipids. Further investigations of diverse microbial communities under changing environmental conditions have to follow these first studies to 1) assess the effects of soil environment on microbial membranes (e.g. associations in biofilms) and 2) assess the effect of interspecific microbial interactions on their membrane properties and lipid fingerprints. Thus, combination of various lipid biomarkers as well as their intact characterization enables a more detailed look into microbial community structure and their respond on environmental conditions, improves our understanding of microbial functioning in ecosystems and enables a more specific estimation of biomass of various microbial groups.

  19. A stronger necessary condition for the multistationarity of chemical reaction networks.

    PubMed

    Soliman, Sylvain

    2013-11-01

    Biochemical reaction networks grow bigger and bigger, fed by the high-throughput data provided by biologists and bred in open repositories of models allowing merging and evolution. Nevertheless, since the available data is still very far from permitting the identification of the increasing number of kinetic parameters of such models, the necessity of structural analyses for describing the dynamics of chemical networks appears stronger every day. Using the structural information, notably from the stoichiometric matrix, of a biochemical reaction system, we state a more strict version of the famous Thomas' necessary condition for multistationarity. In particular, the obvious cases where Thomas' condition was trivially satisfied, mutual inhibition due to a multimolecular reaction and mutual activation due to a reversible reaction, can now easily be ruled out. This more strict condition shall not be seen as some version of Thomas' circuit functionality for the continuous case but rather as related and complementary to the whole domain of the structural analysis of (bio)chemical reaction systems, as pioneered by the chemical reaction network theory.

  20. Synthesis of boron suboxide from boron and boric acid under mild pressure and temperature conditions

    SciTech Connect

    Jiao, Xiaopeng; Jin, Hua; Ding, Zhanhui; Yang, Bin; Lu, Fengguo; Zhao, Xudong; Liu, Xiaoyang; Peng, Liping

    2011-05-15

    Graphical abstract: Well-crystallized and icosahedral B{sub 6}O crystals were prepared by reacting boron and boric acid at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work.. Research highlights: {yields} Well-crystallized icosahedral B{sub 6}O was synthesized by reacting boric acid and boron. {yields} The synthesis conditions (1 GPa and 1300 {sup o}C for 2 h) are milder in comparison with previous work. {yields} The more practical synthesis method may make B{sub 6}O as a potential substitute for diamond in industry. -- Abstract: Boron suboxide (B{sub 6}O) was synthesized by reacting boron and boric acid (H{sub 3}BO{sub 3}) at pressures between 1 and 10 GPa, and at temperatures between 1300 and 1400 {sup o}C. The B{sub 6}O samples prepared were icosahedral with diameters ranging from 20 to 300 nm. Well-crystallized and icosahedral crystals with an average size of {approx}100 nm can be obtained at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work. The bulk B{sub 6}O sample was stable in air at 600 {sup o}C and then slowly oxidized up to 1000 {sup o}C. The relatively mild synthetic conditions developed in this study provide a more practical synthesis of B{sub 6}O, which may potentially be used as a substitute for diamond in industry as a new superhard material.

  1. Activation of stratospheric chlorine by reactions in liquid sulphuric acid

    SciTech Connect

    Cox, R.A.; MacKenzie, A.R. ); Mueller, R.H.; Peter, Th.; Crutzen, P.J. )

    1994-06-22

    The authors discuss activation mechanisms for chlorine compounds in the stratosphere, based on laboratory measurements for the solubility and reaction rates of HOCl and HCl in H[sub 2]SO[sub 4] solutions, as found on aerosols in the stratosphere. Their interest is in the impact of the large increase in aerosol loading in the stratosphere in the winter on 1991-92 due to the Mt. Pinatubo eruption. While laboratory data is not available for the temperature range close to 190 K, they argue that should the solubility and hydrolysis rates be high enough, this excess aerosol density could have contributed a significant additional amount of reactive chlorine to the stratosphere.

  2. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  3. Macromolecular crowding conditions enhance glycation and oxidation of whey proteins in ultrasound-induced Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Cirkovic Velickovic, Tanja; Stanic-Vucinic, Dragana

    2015-06-15

    High intensity ultrasound (HIUS) can promote Maillard reaction (MR). Macromolecular crowding conditions accelerate reactions and stabilise protein structure. The aim of this study was to investigate if combined application of ultrasound and macromolecular crowding can improve efficiency of MR. The presence of crowding agent (polyethylene glycol) significantly increased ultrasound-induced whey protein (WP) glycation by arabinose. An increase in glycation efficiency results only in slight change of WP structure. Macromolecular crowding intensifies oxidative modifications of WP, as well as formation of amyloid-like structures by enhancement of MR. Solubility at different pH, thermal stability and antioxidative capacity of glycated WP were increased, especially in the presence of crowding agent, compared to sonicated nonglycated proteins. The application of HIUS under crowding conditions can be a new approach for enhancement of reactions in general, enabling short processing time and mild conditions, while preserving protein structure and minimising protein aggregation.

  4. Macromolecular crowding conditions enhance glycation and oxidation of whey proteins in ultrasound-induced Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Cirkovic Velickovic, Tanja; Stanic-Vucinic, Dragana

    2015-06-15

    High intensity ultrasound (HIUS) can promote Maillard reaction (MR). Macromolecular crowding conditions accelerate reactions and stabilise protein structure. The aim of this study was to investigate if combined application of ultrasound and macromolecular crowding can improve efficiency of MR. The presence of crowding agent (polyethylene glycol) significantly increased ultrasound-induced whey protein (WP) glycation by arabinose. An increase in glycation efficiency results only in slight change of WP structure. Macromolecular crowding intensifies oxidative modifications of WP, as well as formation of amyloid-like structures by enhancement of MR. Solubility at different pH, thermal stability and antioxidative capacity of glycated WP were increased, especially in the presence of crowding agent, compared to sonicated nonglycated proteins. The application of HIUS under crowding conditions can be a new approach for enhancement of reactions in general, enabling short processing time and mild conditions, while preserving protein structure and minimising protein aggregation. PMID:25660883

  5. Critical ignition conditions in exothermically reacting systems for arbitrary reaction kinetics

    NASA Astrophysics Data System (ADS)

    Filimonov, Valeriy Yu.; Koshelev, Konstantin B.

    2016-08-01

    In this work, a universal method for determination of the critical ignition conditions taking into account the reactant consumption is proposed. Based on the analysis of the phase trajectories equation, the equation for maximal temperatures of exothermic reactions was obtained. In this case, the asymptotic criterion of ignition is determined by the impossibility of slow reaction mode realization with low value of maximum temperature. The method allows demarcating the regions of low- and high-temperature modes of exothermic reactions and to establish the criteria of transition to the region of high-temperature modes. The corresponding parametric diagrams can be characterized as the bifurcation ones (bistability). It was found that the region of thermal explosion (TE) existence is bounded by the classical TE conditions from below and by the degeneration conditions from above. The comparison of analytical calculation results with the results of numerical calculation gives a satisfactory agreement.

  6. Styrene oligomerization as a molecular probe reaction for Brønsted acidity at the nanoscale.

    PubMed

    Aramburo, Luis R; Wirick, Sue; Miedema, Piter S; Buurmans, Inge L C; de Groot, Frank M F; Weckhuysen, Bert M

    2012-05-21

    The Brønsted acid-catalyzed oligomerization of 4-fluorostyrene has been studied on a series of H-ZSM-5 zeolite powders, steamed under different conditions, with a combination of UV-Vis micro-spectroscopy and Scanning Transmission X-ray Microscopy (STXM). UV-Vis micro-spectroscopy and STXM have been used to monitor the relative formation of cyclic and linear dimeric carbocations as a function of the steaming post-treatment (i.e., parent vs. steaming at 600, 700 and 800 °C). It was found that the UV-Vis band intensity ratios of linear to cyclic dimeric species increase from 0.79 (parent H-ZSM-5) over 1.41 (H-ZSM-5 steamed at 600 °C) and 1.88 (H-ZSM-5 steamed at 700 °C) to 2.33 (H-ZSM-5 steamed at 800 °C). STXM confirms this trend in reaction product selectivity, as the relative intensities of the transitions attributed to the presence of the cyclic dimer in the carbon K-edge spectra decrease with increasing severity of the steaming post-treatment. Furthermore, STXM reveals spatial heterogeneities in reaction product formation within the H-ZSM-5 zeolite powders at the nanoscale. More specifically, a shrinking carbon core-shell distribution was detected within the zeolite aggregates, in which the relative amount of cyclic dimeric species is higher in the core relative to the shell of the zeolite aggregate and the relative amount of cyclic dimeric species in the zeolite core gradually decreases with increasing severity of the steaming post-treatment. These differences are rationalized in terms of spatial differences in Brønsted acidity within H-ZSM-5 zeolite powders as well as by changes in the formation process of linear and dimeric carbocations within H-ZSM-5 micro- and mesopores.

  7. Connecting Proline and γ-Aminobutyric Acid in Stressed Plants through Non-Enzymatic Reactions

    PubMed Central

    Signorelli, Santiago; Dans, Pablo D.; Coitiño, E. Laura; Borsani, Omar; Monza, Jorge

    2015-01-01

    The accumulation of proline (Pro) in plants exposed to biotic/abiotic stress is a well-documented and conserved response in most vegetal species. Stress conditions induce the overproduction of reactive oxygen species which can lead to cellular damage. In vitro assays have shown that enzyme inactivation by hydroxyl radicals (·OH) can be avoided in presence of Pro, suggesting that this amino acid could act as an ·OH scavenger. We applied Density Functional Theory coupled with a polarizable continuum model to elucidate how Pro reacts with ·OH. In this work we suggest that Pro reacts favourably with ·OH by H–abstraction on the amine group. This reaction produces the spontaneous decarboxylation of Pro leading to the formation of pyrrolidin-1-yl. In turn, pyrrolidin-1-yl can easily be converted to Δ1-pyrroline, the substrate of the enzyme Δ1-pyrroline dehydrogenase, which produces γ-aminobutyric acid (GABA). GABA and Pro are frequently accumulated in stressed plants and several protective roles have been assigned to these molecules. Thereby we present an alternative non-enzymatic way to synthetize GABA under oxidative stress. Finally this work sheds light on a new beneficial role of Pro accumulation in the maintenance of photosynthetic activity. PMID:25775459

  8. Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions.

    PubMed

    Signorelli, Santiago; Dans, Pablo D; Coitiño, E Laura; Borsani, Omar; Monza, Jorge

    2015-01-01

    The accumulation of proline (Pro) in plants exposed to biotic/abiotic stress is a well-documented and conserved response in most vegetal species. Stress conditions induce the overproduction of reactive oxygen species which can lead to cellular damage. In vitro assays have shown that enzyme inactivation by hydroxyl radicals (·OH) can be avoided in presence of Pro, suggesting that this amino acid could act as an ·OH scavenger. We applied Density Functional Theory coupled with a polarizable continuum model to elucidate how Pro reacts with ·OH. In this work we suggest that Pro reacts favourably with ·OH by H-abstraction on the amine group. This reaction produces the spontaneous decarboxylation of Pro leading to the formation of pyrrolidin-1-yl. In turn, pyrrolidin-1-yl can easily be converted to Δ1-pyrroline, the substrate of the enzyme Δ1-pyrroline dehydrogenase, which produces γ-aminobutyric acid (GABA). GABA and Pro are frequently accumulated in stressed plants and several protective roles have been assigned to these molecules. Thereby we present an alternative non-enzymatic way to synthetize GABA under oxidative stress. Finally this work sheds light on a new beneficial role of Pro accumulation in the maintenance of photosynthetic activity.

  9. Iron nitrosyl hemoglobin formation from the reaction of hydroxylamine and hemoglobin under physiological conditions.

    PubMed

    Lockamy, Virginia L; Shields, Howard; Kim-Shapiro, Daniel B; King, S Bruce

    2004-11-01

    Sickle cell disease patients receiving hydroxyurea (HU) therapy have shown increases in the production of nitric oxide (NO) metabolites, which include iron nitrosyl hemoglobin (HbNO), nitrite, and nitrate. However, the exact mechanism by which HU forms HbNO in vivo is not understood. Previous studies indicate that the reaction of oxyhemoglobin (oxyHb) or deoxyhemoglobin (deoxyHb) with HU are too slow to account for in vivo HbNO production. In this study, we show that the reaction of methemoglobin (metHb) with HU to form HbNO could potentially be fast enough to account for in vivo HbNO formation but competing reactions of either excess oxyHb or deoxyHb during the reaction reduces the likelihood that HbNO will be produced from the metHb-HU reaction. Using electron paramagnetic resonance (EPR) spectroscopy we have detected measurable amounts of HbNO and metHb during the reactions of oxyHb, deoxyHb, and metHb with excess hydroxylamine (HA). We also demonstrate HbNO and metHb formation from the reactions of excess oxyHb, deoxyHb, or metHb and HA, conditions that are more likely to mimic those in vivo. These results indicate that the reaction of hydroxylamine with hemoglobin produces HbNO and lend chemical support for a potential role for hydroxylamine in the in vivo metabolism of hydroxyurea.

  10. Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols.

    PubMed

    Jang, Myoseon; Carroll, Brian; Chandramouli, Bharadwaj; Kamens, Richard M

    2003-09-01

    Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone, and octanal were studied. The carbonyls were selected based on their reactivity for acid-catalyzed reactions, their proton affinity, and their similarity to the ring-opening products from the atmospheric oxidation of aromatics. To facilitate acid-catalyzed heterogeneous hemiacetal/acetal formation, glycerol was injected along with inorganic seed aerosols into the flow reactor system. Carbonyl heterogeneous reactions were accelerated in the presence of acid catalysts (H2SO4), leading to higher aerosol yields than in their absence. Aldehydes were more reactive than ketones for acid-catalyzed reactions. The conjugated functionality also resulted in higher organic aerosol yieldsthan saturated aliphatic carbonyls because conjugation with the olefinic bond increases the basicity of the carbonyl leading to increased stability of the protonated carbonyl. Aerosol population was measured from a series of sampling ports along the length of the flow reactor using a scanning mobility particle sizer. Fourier transform infrared spectrometry of either an impacted liquid aerosol layer or direct reaction of carbonyls as a thin liquid layer on a zinc selenide FTIR disk was employed to demonstrate the direct transformation of chemical functional groups via the acid-catalyzed reactions. These results strongly indicate that atmospheric multifunctional organic carbonyls, which are created by atmospheric photooxidation reactions, can contribute significantly to secondary organic aerosol formation through acid-catalyzed heterogeneous reactions. Exploratory studies in 25- and 190-m3 outdoor chambers

  11. Urea-acetylene dicarboxylic acid reaction: A likely pathway for prebiotic uracil formation

    NASA Astrophysics Data System (ADS)

    Subbaraman, A. S.; Kazi, Z. A.; Choughuley, A. S. U.; Chadha, M. S.

    1980-12-01

    A number of routes have been suggested for the prebiotic synthesis of uracil involving the reaction of urea with malic acid, propiolic acid, cyanoacetylene and others. Cyanoacetylene has been detected in the interstellar medium as well as simulated prebiotic experiments. It is therefore plausible that dicyanoacetylene and its hydrolytic product acetylene dicarboxylic acid, (ADCA) may have played a role in chemical evolution. This aspect has been examined in the present work for the synthesis of uracil from ADCA and urea reaction. It was found that when ADCA reacted with urea, uracil was formed only in the presence of phosphoric acid and phosphates. Ammonium phosphates gave higher yields of uracil than other phosphates. In the absence of phosphoric acid or phosphates no uracil formation took place. This type of synthesis could have taken place in prebiotic oceans which contained ammonium phosphates and other salts.

  12. Ultrasonic and densimetric titration applied for acid-base reactions.

    PubMed

    Burakowski, Andrzej; Gliński, Jacek

    2014-01-01

    Classical acoustic acid-base titration was monitored using sound speed and density measurements. Plots of these parameters, as well as of the adiabatic compressibility coefficient calculated from them, exhibit changes with the volume of added titrant. Compressibility changes can be explained and quantitatively predicted theoretically in terms of Pasynski theory of non-compressible hydrates combined with that of the additivity of the hydration numbers with the amount and type of ions and molecules present in solution. It also seems that this development could be applied in chemical engineering for monitoring the course of chemical processes, since the applied experimental methods can be carried out almost independently on the medium under test (harmful, aggressive, etc.).

  13. Experimental Studies of Hydrogenation and Other Reactions on Surfaces Under Astrophysically Relevant Conditions

    NASA Technical Reports Server (NTRS)

    Vidali, Gianfranco

    1998-01-01

    The goal of our project is to study hydrogen recombination reactions on solid surfaces under conditions that are relevant in astrophysics. Laboratory experiments were conducted using low-flux, cold atomic H and D beams impinging on a sample kept under ultra high vacuum conditions. Realistic analogues of interstellar dust grains were used. Our results show that current models for hydrogen recombination reactions have to be modified to take into account the role of activated diffusion of H on surfaces even at low temperature.

  14. Michael addition reactions for the modification of gold nanoparticles facilitated by hyperbaric conditions.

    PubMed

    Hartlen, Kurtis D; Ismaili, Hossein; Zhu, Jun; Workentin, Mark S

    2012-01-10

    The chemical interfacial modification of organic solvent soluble 2.4 ± 0.5 nm maleimide-modified monolayer protected gold nanoparticles (2-C(12)AuNPs) with primary or secondary amines via Michael addition reactions is demonstrated. Michael addition reactions between 2-C(12)AuNPs and primary or secondary amines at ambient temperature and pressure and under the conditions where the AuNP is soluble and stable are possible albeit sluggish, often taking days to weeks to go to completion. The rates and efficacies of the these same reactions are drastically increased at hyperbaric pressure conditions (11 000 atm) with no observed adverse effect to the gold nanoparticle stability. The resulting Michael addition adducts (3-C(12)AuNPs) formed from 2-C(12)AuNPs and the corresponding amines were characterized by TEM and by comparison of the (1)H NMR spectra of the 3-C(12)AuNPs with those of model reactions of the same amines with N-dodecylmaleimide, 2. The Michael addition reactions occur more readily with 2 rather than 2-C(12)AuNPs, consistent with the local environment of the latter imposing additional steric or other barriers to the reaction. The use of hyperbaric conditions makes the reaction of the organic solvent soluble 2-C(12)AuNP via Michael addition a viable interfacial modification process that is otherwise impractical. The results also suggest that it is a useful protocol for facilitating Michael addition reactions generally in solution at low temperatures.

  15. Light-induced nitrous acid (HONO) production from NO2 heterogeneous reactions on household chemicals

    NASA Astrophysics Data System (ADS)

    Gómez Alvarez, Elena; Sörgel, Matthias; Gligorovski, Sasho; Bassil, Sabina; Bartolomei, Vincent; Coulomb, Bruno; Zetzsch, Cornelius; Wortham, Henri

    2014-10-01

    Nitrous acid (HONO) can be generated in various indoor environments directly during combustion processes or indirectly via heterogeneous NO2 reactions with water adsorbed layers on diverse surfaces. Indoors not only the concentrations of NO2 are higher but the surface to volume (S/V) ratios are larger and therefore the potential of HONO production is significantly elevated compared to outdoors. It has been claimed that the UV solar light is largely attenuated indoors. Here, we show that solar light (λ > 340 nm) penetrates indoors and can influence the heterogeneous reactions of gas-phase NO2 with various household surfaces. The NO2 to HONO conversion mediated by light on surfaces covered with domestic chemicals has been determined at atmospherically relevant conditions i.e. 50 ppb NO2 and 50% RH. The formation rates of HONO were enhanced in presence of light for all the studied surfaces and are determined in the following order: 1.3·109 molecules cm-2 s-1 for borosilicate glass, 1.7·109 molecules cm-2 s-1 for bathroom cleaner, 1.0·1010 molecules cm-2 s-1 on alkaline detergent (floor cleaner), 1.3·1010 molecules cm-2 s-1 for white wall paint and 2.7·1010 molecules cm-2 s-1 for lacquer. These results highlight the potential of household chemicals, used for cleaning purposes to generate HONO indoors through light-enhanced NO2 heterogeneous reactions. The results obtained have been applied to predict the timely evolution of HONO in a real indoor environment using a dynamic mass balance model. A steady state mixing ratio of HONO has been estimated at 1.6 ppb assuming a contribution from glass, paint and lacquer and considering the photolysis of HONO as the most important loss process.

  16. Mechanochemical solid-state synthesis of 2-aminothiazoles, quinoxalines and benzoylbenzofurans from ketones by one-pot sequential acid- and base-mediated reactions.

    PubMed

    Nagarajaiah, Honnappa; Mishra, Abhaya Kumar; Moorthy, Jarugu Narasimha

    2016-04-26

    α-Chloroketones - obtained by the atom-economical chlorination of ketones with trichloroisocyanuric acid (TCCA) in the presence of p-TSA under ball-milling conditions - were set up for a sequential base-mediated condensation reaction with thiourea/thiosemicarbazides, o-phenylenediamine and salicylaldehyde to afford 2-aminothiazoles, 2-hydrazinylthiazoles, quinoxalines and benzoylbenzofurans, respectively, in respectable yields. The viability of one-pot sequential acid- and base-mediated reactions in the solid state under ball-milling conditions is thus demonstrated.

  17. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-08-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of a similar magnitude, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity-dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  18. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-12-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters, and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied with experimental methods. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of similar magnitudes, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  19. Antioxidant effect of non-enzymatic browning reaction products on linoleic acid

    SciTech Connect

    Kim, N.S.K.

    1987-01-01

    In aqueous lysine-sucrose model systems, the effects of reaction time, pH and molar ratio were studied on the formation of non-enzymatic browning reaction (NBR) products. The extent of sucrose hydrolysis was measured and the antioxidant effect of NBR products on linoleic acid emulsions was examined. Nuclear magnetic resonance (NMR) spectra were obtained at various stages of browning. Sucrose produced NMR produces with lysine in an aqueous system at 100/sup 0/C. The C-13 NMR spectra indicated that the NBR started when sucrose and lysine were dissolved in water. The C-13 NMR spectra also showed that heating did not have an effect on the gross composition of polymeric species. The absorbance at 480 nm of 0.75 M lysine-sucrose solution heated up to 6 hours increased with reaction times. The pH values of heated lysine-sucrose solution gradually decreased with reaction time. When 0.75 M sucrose or lysine solution was heated separately up to 6 hours, there were no changes in absorbance in pH. In the pH range of 3.52-6.35, higher absorbance was obtained from heated lysine-sucrose solution at acidic pH levels than at neutral pH levels. As the concentration of lysine and sucrose solution was increased, the absorbance increased. At longer reaction times or acidic pH levels, enhanced hydrolysis of sucrose to reducing sugars resulted in more NBR products. NBR products obtained at a longer reaction time, an acidic pH, and higher concentration of reactants showed a darker brown color and were effective in preventing the formation of peroxides. The oxygen uptake of linoleic acid emulsion having NBR products was smaller than that of linoleic acid emulsion without NBR products. Based on these results, it was concluded that sucrose may act as an antioxidant in processed foods containing both amino acids and lipids.

  20. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    SciTech Connect

    Dennis Cartlidge; Hans Schellhase

    2003-07-31

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid

  1. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  2. A historical note on the iodine-sulphuric acid reaction of amyloid.

    PubMed

    Aterman, K

    1976-10-22

    The historical development of the iodine-sulphuric acid reaction for amyloid is described. The reaction dates back to 1814 when Colin and Gaultier de Claubry, and independently Stromeyer, introduced the iodine reaction for starch. A variant of the acidified iodine reaction appears to have been used for printing paper by Gmelin in 1829, and in 1838 Schleiden used the iodine-sulphuric acid test on plants to demonstrate what he considered to be a transformation of the plant material into starch. Shortly afterwards Payen (1839) defined "cellulose", and the iodine-sulphuric acid reaction became a standard procedure used by botanists to demonstrate this plant component. In 1853 Virchow used Harting's (1847) procedure to demonstrate the reaction of Purkynĕ's corpora amylacea to this test, on the assumption that they might be cellulose derivatives, and applied it to what appeared to be similar corpuscles in a "waxy" spleen. The first histochemical reaction for amyloidosis had thus been introduced into pathology, and continued to exert from that time on an important influence on amyloid research, whose impact is felt to the present day. PMID:791904

  3. Sulfuric, hydrochloric, and nitric acid-catalyzed triacetone triperoxide (TATP) reaction mixtures: an aging study.

    PubMed

    Fitzgerald, Mark; Bilusich, Daniel

    2011-09-01

    The organic peroxide explosive triacetone triperoxide (TATP) is regularly encountered by law enforcement agents in various stages of its production. This study utilizes solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to examine sulfuric acid-, hydrochloric acid-, and nitric acid-catalyzed TATP syntheses during the initial 24 h of these reactions at low temperatures (5-9°C). Additionally, aging of the reaction mixtures was examined at both low and ambient temperatures (19-21°C) for a further 9 days. For each experiment, TATP could be readily identified in the headspace above the reaction mixture 1 h subsequent to the combination of reagents; at 24 h, TATP and diacetone diperoxide (DADP) were prominent. TATP degraded more rapidly than DADP. Additionally, chlorinated acetones chloroacetone and 1,1,-dichloroacetone were identified in the headspace above the hydrochloric acid-catalyzed TATP reaction mixture. These were not present when the catalyst was sulfuric acid or nitric acid. PMID:21595692

  4. Ligand-Promoted, Boron-Mediated Chemoselective Carboxylic Acid Aldol Reaction.

    PubMed

    Nagai, Hideoki; Morita, Yuya; Shimizu, Yohei; Kanai, Motomu

    2016-05-01

    The first carboxylic acid selective aldol reaction mediated by boron compounds and a mild organic base (DBU) was developed. Inclusion of electron-withdrawing groups in the amino acid derivative ligands reacted with BH3·SMe2 forms a boron promoter with increased Lewis acidity at the boron atom and facilitated the carboxylic acid selective enolate formation, even in the presence of other carbonyl groups such as amides, esters, ketones, or aliphatic aldehydes. The remarkable ligand effect led to the broad substrate scope including biologically relevant compounds. PMID:27104352

  5. Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars

    PubMed Central

    Marcucci, Emma C; Hynek, Brian M

    2014-01-01

    We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1–60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals. PMID:26213665

  6. Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W. H.; Surratt, J. D.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2008-12-01

    Chamber studies of glyoxal uptake onto neutral ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions; glyoxal oligomer formation and overall organic growth were found to be reversible under dark conditions. Analysis of high-resolution time-of-flight aerosol mass spectra provides evidence for irreversible formation of carbon-nitrogen (C-N) compounds in the aerosol. These compounds are likely to be imidazoles formed by reaction of glyoxal with the ammonium sulphate seed. To the authors' knowledge, this is the first time C-N compounds resulting from condensed phase reactions with ammonium sulphate seed have been detected in aerosol. Organosulphates were not detected under dark conditions. However, active oxidative photochemistry, similar to that found in cloud processing, was found to occur within aerosol during irradiated experiments. Organosulphates, carboxylic acids, and organic esters were identified within the aerosol. Our study suggests that both C-N compound formation and photochemical processes should be considered in models of secondary organic aerosol formation via glyoxal.

  7. Is trichloroacetic acid an insufficient sample quencher of redox reactions?

    PubMed

    Curbo, Sophie; Reiser, Kathrin; Rundlöf, Anna-Klara; Karlsson, Anna; Lundberg, Mathias

    2013-03-01

    The global protein thiol pool has been reported to play a major role in the defense against oxidative stress as a redox buffer similar to glutathione. The present study uses a novel method to visualize cellular changes of the global protein thiol pool in response to induced oxidative stress. Unexpectedly, the results showed an uneven distribution of protein thiols in resting cells with no apparent change in their level or distribution in response to diamide as has been reported previously. Further analysis revealed that thiol pool oxidation is artificially high due to insufficient activity of the widely used sample quencher trichloroacetic acid (TCA). This suggests that previously published articles based on TCA as a quencher should be interpreted with caution as TCA could have caused similar artifacts. Overall, the results presented here question the major role for the global thiol pool in the defense against oxidative stress. Instead our hypothesis is that the fraction of proteins involved in response to oxidative stress is much smaller than previously anticipated in support of a fine-tuned cell signaling by redox regulation.

  8. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a...

  9. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a...

  10. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  11. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  12. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  13. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a...

  14. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a...

  15. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  16. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a...

  17. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  18. Carboxymethylation of Cassava Starch in Different Solvents and Solvent-Water Mixtures: Optimization of Reaction Conditions

    NASA Astrophysics Data System (ADS)

    Nwokocha, Louis M.; Ogunmola, Gabiel B.

    The influence of reaction medium on carboxymethylation process was investigated by treating cassava starch with sodium monochloroacetate in different solvents and solvent-water mixtures under alkaline conditions. The amount of carboxyl groups introduced into the starch moiety was determined titrimetrically and used to calculate the Degree of Substitution (DS) and Reaction Efficiency (RE). The results showed that carboxymethylation is significantly affected by the nature of reaction medium at p<0.05. Carboxymethylation in different solvent-water mixtures showed that aqueous 80% n-propanol offered the best medium for carboxymethylation. Optimization of reaction conditions in aqueous 80% n-propanol showed that the best condition for carboxymethylation was at starch-liquor ratio of 1:3, NaOH/reagent molar ratio of 4.0 and reagent-starch molar ratio of 0.35. An increase in temperature was required to effect the reaction at shorter time. At 55°C the highest values of DS and RE achieved in 0.5 h would require three hours to achieve the same values of DS and RE at 45°C.

  19. Periodate oxidation of 4-O-methylglucuronoxylans: Influence of the reaction conditions.

    PubMed

    Chemin, Maud; Rakotovelo, Alex; Ham-Pichavant, Frédérique; Chollet, Guillaume; Da Silva Perez, Denilson; Petit-Conil, Michel; Cramail, Henri; Grelier, Stéphane

    2016-05-20

    This work aims at studying the sodium periodate oxidation of 4-O-methylglucuronoxylans (MGX) in different experimental conditions for a control of the oxidation degree. A series of sodium periodate oxidation reactions were conducted at three NaIO4/xylose molar ratios: 0.05, 0.20 and 1.00. The effects of xylan molar mass, xylan concentration and reaction temperature on the reaction rate have been evaluated by UV/visible spectroscopy at 0.20 NaIO4/xylose ratio. No depolymerization is observed at 0.05 ratio while depolymerization occurs at 0.20 and is even complete at 1.00 NaIO4/xylose ratio. An increase of the reaction temperature - up to 80 °C - leads to an increase of the oxidation rate with no effect on the depolymerization. At high xylan concentrations, the oxidation rate increases but promotes chains aggregation.

  20. Periodate oxidation of 4-O-methylglucuronoxylans: Influence of the reaction conditions.

    PubMed

    Chemin, Maud; Rakotovelo, Alex; Ham-Pichavant, Frédérique; Chollet, Guillaume; Da Silva Perez, Denilson; Petit-Conil, Michel; Cramail, Henri; Grelier, Stéphane

    2016-05-20

    This work aims at studying the sodium periodate oxidation of 4-O-methylglucuronoxylans (MGX) in different experimental conditions for a control of the oxidation degree. A series of sodium periodate oxidation reactions were conducted at three NaIO4/xylose molar ratios: 0.05, 0.20 and 1.00. The effects of xylan molar mass, xylan concentration and reaction temperature on the reaction rate have been evaluated by UV/visible spectroscopy at 0.20 NaIO4/xylose ratio. No depolymerization is observed at 0.05 ratio while depolymerization occurs at 0.20 and is even complete at 1.00 NaIO4/xylose ratio. An increase of the reaction temperature - up to 80 °C - leads to an increase of the oxidation rate with no effect on the depolymerization. At high xylan concentrations, the oxidation rate increases but promotes chains aggregation. PMID:26917372

  1. Review and analysis of high temperature chemical reactions and the effect of non-equilibrium conditions

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1986-01-01

    Chemical reactions at high temperatures have been considered extensively because of their importance to the heating effects on re-entry of space vehicles. Data on these reactions however, are not abundant and even when found there are discrepancies in data collected by various investigators. In particular, data for recombination reactions are calculated from the dissociation reactions or vice versa through the equilibrium constant. This involves the use of the principle of detailed balancing. This principle is discussed in reference to conditions where it is valid as well as to those where it is not valid. Related topics that merit further study or for which applicable information was available are briefly mentioned in an appendix to this report.

  2. Using Group-Inquiry to Study Differing Reaction Conditions in the E2 Elimination of Cyclohexyl Halides

    ERIC Educational Resources Information Center

    Long, Robert D.

    2012-01-01

    In this experiment, students individually conduct one of several variations of an E2 dehydrohalogenation reaction on a cyclohexyl halide substrate for 30 min, which is sufficient only for a partial reaction to occur. The variations examine reaction conditions including different leaving groups, decreased reaction temperature, or reduced base…

  3. An experimental study of tissue reaction to hyaluronic acid (Restylane) and polymethylmethacrylate (Metacrill) in the mouse.

    PubMed

    Rosa, Simone C; Macedo, Jefferson L S; Magalhães, Albino V

    2012-10-01

    The aging skin is a challenge for medical science. Plastic surgeons and dermatologists are called every day to solve problems like filling wrinkles or folds. The material used must be biocompatible because abnormal reactions may cause catastrophic results. This study analyzes the biological behavior of polymethylmethacrylate (Metacrill) and hyaluronic acid (Restylane), using a histopathologic study in mice. A prospective study was performed using 40 mice for each substance: polymethylmethacrylate or hyaluronic acid was injected into the right ear, the left ear been used as a control. Histopathologic analyses of the right ear, liver, and kidney were performed at intervals during the study and revealed the development of a granulomatous reaction with fibrosis and absorption of spheres and signs of liver and kidney sistematization for polymethylmethacrylate. A discrete cellular reaction, with less formation of fibrosis, and no giant cells were seen in the mice injected with hyaluronic acid.

  4. Investigation and application of multiple reactions between molybdoniobium heteropoly acid and di- or trimethylthionines

    SciTech Connect

    Mirzoyam, F.B.; Karapetyan, A.A.

    1986-03-01

    This paper presents the results of the study and use of reactions of molybdoniobic acid (MNA) with di- and trimethylthiones (DMT and TMT, respectively). It was found that light absorption of acetone solutions of the products of outer-sphere interaction between MNA and DMT or TMT enabled the determination of optimum acidity for MNA formation. Reaction between TMT and MNA gives two different compounds containing two and five associated dye cations, different in molar extinction coefficient and optimum reaction acidity (pH 0.05-0.25 and 0.35-0.90). Formation of the 6th and 8th molybdenum series with an identical composition of the outer sphere is shown. A highly sensitive photometric method for determining niobium has been developed.

  5. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    USGS Publications Warehouse

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  6. Characterization of the esterification reaction in high free fatty acid oils

    NASA Astrophysics Data System (ADS)

    Altic, Lucas Eli Porter

    Energy and vegetable oil prices have caused many biodiesel producers to turn to waste cooking oils as feedstocks. These oils contain high levels of free fatty acids (FFAs) which make them difficult or impossible to convert to biodiesel by conventional production methods. Esterification is required for ultra-high FFA feedstocks such as Brown Grease. In addition, ultrasonic irradiation has the potential to improve the kinetics of the esterification reaction. 2-level, multi-factor DOE experiments were conducted to characterize the esterification reaction in ultra-high FFA oils as well as determine whether ultrasonic irradiation gives any benefit besides energy input. The study determined that sulfuric acid content had the greatest effect followed by temperature and water content (inhibited reaction). Methanol content had no effect in the range studied. A small interaction term existed between sulfuric acid and temperature. The study also concluded that sonication did not give any additional benefit over energy input.

  7. Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid.

    PubMed

    Boatright, William L

    2016-04-01

    The effect of oxygen on the two separate one-electron reactions involved in the oxidation of ascorbic acid was investigated. The rate of ascorbate radical (Asc(-)) formation (and stability) was strongly dependent on the presence of oxygen. A product of ascorbic acid oxidation was measurable levels of hydrogen peroxide, as high as 32.5 μM from 100 μM ascorbic acid. Evidence for a feedback mechanism where hydrogen peroxide generated during the oxidation of ascorbic acid accelerates further oxidation of ascorbic acid is also presented. The second one-electron oxidation reaction of ascorbic acid leading to the disappearance of Asc(-) was also strongly inhibited in samples flushed with argon. In the range of 0.05-1.2 mM ascorbic acid, maximum levels of measurable hydrogen peroxide were achieved with an initial concentration of 0.2 mM ascorbic acid. Hydrogen peroxide generation was greatly diminished at ascorbic acid levels of 0.8 mM or above.

  8. Mechanism of silver- and copper-catalyzed decarboxylation reactions of aryl carboxylic acids.

    PubMed

    Xue, Liqin; Su, Weiping; Lin, Zhenyang

    2011-11-28

    Silver- and copper-catalyzed decarboxylation reactions of aryl carboxylic acids were investigated with the aid of density functional theory calculations. The reaction mechanism starts with a carboxylate complex of silver or copper. Decarboxylation occurs via ejecting CO(2) from the carboxylate complex followed by protodemetallation with an aryl carboxylic acid molecule to regenerate the starting complex. Our results indicated that the primary factor to affect the overall reaction barriers is the ortho steric destabilization effect on the starting carboxylate complexes for most cases. Certain ortho substituents that are capable of coordinating with the catalyst metal center without causing significant ring strain stabilize the decarboxylation transition states and reduce the overall reaction barriers. However, the coordination effect is found to be the secondary factor when compared with the ortho effect. PMID:21979246

  9. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil,...

  10. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil,...

  11. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil,...

  12. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil,...

  13. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil,...

  14. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-05-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C⋯O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate.

  15. Reversible ring-opening reactions of nimetazepam and nitrazepam in acidic media at body temperature.

    PubMed

    Inotsume, N; Nakano, M

    1980-11-01

    Hydrolytic reactions of nimetazepam and nitrazepam in acidic solutions at body temperature were studied spectrophotometrically. The open-ring compounds produced by hydrolysis were in equilibrium with the corresponding closed-ring compounds (protonated nimetazepam and nitrazepam). Forward-reaction rate constants of both drugs were greater than the rate constant of diazepam. In nimetazepam, the forward-reaction rate constant was smaller than the reverse-reaction rate constant; in nitrazepam, the reverse-reaction rate constant was much smaller than the forward-reaction rate constant, and possible amide bond cleavage was indicated. The activation energies of the forward and reverse reactions of nimetazepam and the forward reaction of nitrazepam were calculated from Arrhenius-type plots, whereas no clear temperature dependency was observed in the reverse-reaction rate constant of nitrazepam. The effect of pH on these reactions also was examined. In addition, the pKa values of nimetazepam and nitrazepam were calculated to be 2.53 and 2.77, respectively.

  16. Friedel-Crafts Fluoroacetylation of Indoles with Fluorinated Acetic Acids for the Synthesis of Fluoromethyl Indol-3-yl Ketones under Catalyst- and Additive-Free Conditions.

    PubMed

    Yao, Shun-Jiang; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2016-05-20

    A simple and efficient protocol for the fluoroacetylation of indoles is reported. The reaction uses fluorinated acetic acids as the fluoroacetylation reagents to synthesize diverse fluoromethyl indol-3-yl ketones in good yields under catalyst- and additive-free conditions. In addition, the only byproduct is water in this transformation. The synthetic utility of this reaction was also demonstrated by the concise synthesis of α-(trifluoromethyl)(indol-3-yl)methanol and indole-3-carboxylic acid. PMID:27101475

  17. Sensory characteristics and consumer acceptability of beef stock containing glutathione Maillard reaction products prepared at various conditions.

    PubMed

    Kwon, G Y; Hong, J H; Kim, Y S; Lee, S M; Kim, K O

    2011-01-01

    The sensory characteristics and consumer acceptability of beef soup samples containing 9 types of glutathione Maillard reaction products (GMRPs) were investigated to examine the effects of the GMRPs produced under different reaction conditions on the flavor of the beef soup. The sensory characteristics of the beef stocks were examined using descriptive analysis. In consumer testing, 50 consumers evaluated the overall acceptability and flavor intensities of beef odor, salty taste, beef flavor, and seasoning flavor in the beef soup samples. It was found that the reaction conditions, including sugar type and pH, affected the sensory characteristics of the beef stock containing the GMRPs. The samples containing the GMRPs reacted at pH 7 were characterized with strong beef flavor, chestnut flavor, and cooked rice flavor. However, the GMRP reacted with xylose at pH 7 (XM7) was significantly stronger in beef-related sensory characteristics than the GMRPs reacted with glucose or fructose at pH 7 (GM7 and FM7). The samples containing the GMRPs reacted at pH 3 had strong acid-related attributes whereas the GMRPs reacted at pH 11 exhibited strong sulfur-related attributes and a bitter taste. Overall, the beef soup containing XM7, which was perceived as having a strong beef odor and flavor, was rated the highest consumer acceptability score. This suggests that XM7 has feasibility as a flavor enhancer. To elucidate its effectiveness further, it is required to apply XM7 in various food systems at varying levels and to compare its flavor enhancing effects with other flavor enhancers such as monosodium L-glutamate in future studies. Practical Application: This study characterized sensory attributes of glutathione Maillard reaction products (GMRPs) reacted under various conditions and evaluated their potential as a flavor enhancer by examining consumer acceptability of beef stock containing the GMRPs. This study showed that the GMRP reacted with xylose at pH 7 had strong 71 beef

  18. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Ritter, G.; Simoneit, B. R.

    1999-01-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  19. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  20. Palladium-phosphinous acid complexes catalyzed Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid in water/alcoholic solvents.

    PubMed

    Li, Ben; Wang, Cuiping; Chen, Guang; Zhang, Zhiqiang

    2013-06-01

    Highly active, air-stable and water-soluble palladium-phosphinous acid complexes have been applied to Suzuki cross-coupling reaction of heteroaryl bromides under mild conditions in water/alcoholic solvents. Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid occurred efficiently using palladium phosphinous acid complexes (POPd) and phase transfer catalyst (tetrabutylammonium bromide and polyethylene glycol) in water/ethanol mixture, water/propanol mixture and neat water respectively, the corresponding yields of cross-coupling heteroaryl-aryls were satisfied. The tert-butyl substituted ligand di-tert-butylphosphino in combination with POPd was found to be more active than the same family derived catalysts dipalladium complexes POPd1 and POPd2, and other two kinds of Pd-catalysts Pd(PPh3)4 and Pd2(dba)3. The mechanism of Suzuki cross-coupling reaction between heteroaryl bromides and phenylboronic acid in water was proposed with respect to the key role of phase transfer catalyst on the transmetallation step. Compared with other solid phase transfer catalysts, TBAB was tested as the ideal one. The alkalinity of base and the molar proportion between POPd and TBAB were investigated in water and alcoholic solvents. Notably, in the presence of TBAB adding alcoholic solvents into water enhanced the yields of target products. However in terms of the liquid phase transfer catalyst of PEGs, mixing water into PEGs could slightly decrease the yields with respect to the water free PEGs bulk phase, which was probably due to the homogenous liquid conditions in pure PEGs and weak interactions between PEGs and heteroaryl bromide molecules in water depending on their molecular chain lengths.

  1. Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions

    PubMed Central

    2013-01-01

    We produced organic acids, including lactate and succinate, directly from soluble starch under anaerobic conditions using high cell-density cultures of Corynebacterium glutamicum displaying α-amylase (AmyA) from Streptococcus bovis 148 on the cell surface. Notably, reactions performed under anaerobic conditions at 35 and 40°C, which are higher than the optimal growth temperature of 30°C, showed 32% and 19%, respectively, higher productivity of the organic acids lactate, succinate, and acetate compared to that at 30°C. However, α-amylase was not stably anchored and released into the medium from the cell surface during reactions at these higher temperatures, as demonstrated by the 61% and 85% decreases in activity, respectively, from baseline, compared to the only 8% decrease at 30°C. The AmyA-displaying C. glutamicum cells retained their starch-degrading capacity during five 10 h reaction cycles at 30°C, producing 107.8 g/l of total organic acids, including 88.9 g/l lactate and 14.0 g/l succinate. The applicability of cell surface-engineering technology for the production of organic acids from biomass by high cell-density cultures of C. glutamicum under anaerobic conditions was demonstrated. PMID:24342107

  2. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    PubMed Central

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516

  3. Kinetics and quantitative structure-activity relationship study on the degradation reaction from perfluorooctanoic acid to trifluoroacetic acid.

    PubMed

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-08-14

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure-activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure-activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure-activity model shows, the bond length and energy of C1-C2 (RC1-C2 and EC1-C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated.

  4. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta. PMID:23091030

  5. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  6. The role of alkoxy radicals in the heterogeneous reaction of two structural isomers of dimethylsuccinic acid.

    PubMed

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R

    2015-10-14

    A key challenge in understanding the transformation chemistry of organic aerosols is to quantify how changes in molecular structure alter heterogeneous reaction mechanisms. Here we use two model systems to investigate how the relative locations of branched methyl groups control the heterogeneous reaction of OH with two isomers of dimethylsuccinic acid (C6H10O4). 2,2-Dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA) differ only in the location of the two branched methyl groups, thus enabling a closer inspection of how the distribution of carbon reaction sites impacts the chemical evolution of the aerosol. The heterogeneous reaction of OH with 2,3-DMSA (reactive OH uptake coefficient, γ = 0.99 ± 0.16) is found to be ∼2 times faster than that of 2,2-DMSA (γ = 0.41 ± 0.07), which is attributed to the larger stability of the tertiary alkyl radical produced by the initial OH abstraction reaction. While changes in the average aerosol oxidation state (OSC) and the carbon number (NC) are similar for both isomers upon reaction, significant differences are observed in the underlying molecular distribution of reaction products. The reaction of OH with the 2,3-DMSA isomer produces two major reaction products: a product containing a new alcohol functional group (C6H10O5) formed by intermolecular hydrogen abstraction and a C5 compound formed via carbon-carbon (C-C) bond scission. Both of these reaction products are explained by the formation and subsequent reaction of a tertiary alkoxy radical. In contrast, the OH reaction with the 2,2-DMSA isomer forms four dominant reaction products, the majority of which are C5 scission products. The difference in the quantity of C-C bond scission products for these two isomers is unexpected since decomposition is assumed to be favored for the isomer with the most tertiary carbon sites (i.e. 2,3-DMSA). For both isomers, there is a much larger abundance of C6 alcohol relative to C6 ketone products, which suggests

  7. Fate of aniline and sulfanilic acid in UASB bioreactors under denitrifying conditions.

    PubMed

    Pereira, Raquel; Pereira, Luciana; van der Zee, Frank P; Madalena Alves, M

    2011-01-01

    Two upflow anaerobic sludge blanket (UASB) reactors were operated to investigate the fate of aromatic amines under denitrifying conditions. The feed consisted of synthetic wastewater containing aniline and/or sulfanilic acid and a mixture of volatile fatty acids (VFA) as the primary electron donors. Reactor 1 (R1) contained a stoichiometric concentration of nitrate and Reactor 2 (R2) a stoichiometric nitrate and nitrite mixture as terminal electron acceptors. The R1 results demonstrated that aniline could be degraded under denitrifying conditions while sulfanilic acid remains. The presence of nitrite in the influent of R2, caused a chemical reaction that led to immediate disappearance of both aromatic amines and the formation of an intense yellow coloured solution. HPLC analysis of the influent solution, revealed the emergence of three product peaks: the major one at retention time (R(t)) 14.3 min and two minor at R(t) 17.2 and 21.5 min. In the effluent, the intensity of the peaks at R(t) 14.3 and 17.2 min was very low and of that at R(t) 21.5 min increased (∼3-fold). Based on the mass spectrometry analysis, we propose the structures of some possible products, mainly azo compounds. Denitrification activity tests suggest that biomass needed to adapt to the new coloured compounds, but after a 3 days lag phase, activity is recovered and the final (N(2) + N(2)O) is even higher than that of the control.

  8. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.

    PubMed

    Jiang, Deshou; Chiaro, Christopher; Maddali, Pranav; Prabhu, K Sandeep; Peterson, Devin G

    2009-11-11

    The chemistry and fate of hydroxycinnamic acids (ferulic, p-coumeric, caffeic, sinapic, and cinnamic acid) in a glucose/glycine simulated baking model (10% moisture at 200 degrees C for 15 min) were investigated. Liquid chromatography-mass spectrometry analysis of glucose/glycine and glucose/glycine/hydroxycinnamic acid model systems confirmed the phenolics reacted with Maillard intermediates; two main reaction product adducts were reported. On the basis of isotopomeric analysis, LC-MS, and NMR spectroscopy, structures of two ferulic acid-Maillard reaction products were identified as 6-(4-hydroxy-3-methoxyphenyl)-5-(hydroxymethyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (adduct I) and 2-(6-(furan-2-yl)-7-(4-hydroxy-3-methoxyphenyl)-1-methyl-3-oxo-2,5-diazabicyclo[2.2.2]oct-5-en-2-yl)acetic acid (adduct II). In addition, a pyrazinone-type Maillard product, 2-(5-(furan-2-yl)-6-methyl-2-oxopyrazin-1(2H)-yl) acetic acid (IIa), was identified as an intermediate for reaction product adduct II, whereas 3-deoxy-2-hexosulose was identified as an intermediate of adduct I. Both adducts I and II were suggested to be generated by pericyclic reaction mechanisms. Quantitative gas chromatography (GC) analysis and liquid chromatography (LC) also indicated that the addition of ferulic acid to a glucose/glycine model significantly reduced the generation of select Maillard-type aroma compounds, such as furfurals, methylpyrazines, 2-acetylfuran, 2-acetylpyridine, 2-acetylpyrrole, and cyclotene as well as inhibited color development in these Maillard models. In addition, adducts I and II suppressed the bacterial lipopolysaccharide (LPS)-mediated expression of two prototypical pro-inflammatory genes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, in an in vitro murine macrophage model; ferulic acid reported negligible activity.

  9. [Optimization of reaction conditions for RAPD analysis of freshwater planarians in China].

    PubMed

    Zhang, He Cai; Chen, Guang Wen; Li, Yu Chang; Xu, Cun Shuan

    2004-08-01

    Using the Genomic DNA purification kit, the total DNA of the freshwater planarian was extracted and developed one single band through 0.8% agarose gel electrophoresis with OD260/OD280 between 1.5 and 2.2, which could satisfy the requirements of RAPD and PCR on DNA. With the extracted DNA template, we tested experimental conditions that might affect RAPD results including annealing temperature, concentrations of template DNA, primer, Mg2+ and dNTPs. Through comparision we found that it was necessary and important to optimize the experimental conditions for producing stable and repeatable RAPD results. The optimized reaction conditions of RAPD for freshwater planarian in 25 microl reaction volume were as follows: 20 ng template DNA, 37 degrees C annealing temperature, 0.2 micromol/L primer, 2.0 mmol/L Mg2+ and 200 micromol/L dNTPs.

  10. Evaluation of Hanford high level waste vitrification chemistry for an NCAW simulant -- FY 1994: Potential exothermic reactions in the presence of formic acid, glycolic acid, and oxalic acid

    SciTech Connect

    Sills, J.A.

    1995-07-01

    A potential for an uncontrollable exothermic reaction between nitrate and organic salts during preparation of a high level waste melter feed has been identified. In order to examine this potential more closely, the thermal behavior of simulated neutralized current acid waste (NCAW) treated with various organic reductants was studied. Differential scanning calorimetry (DSC) measurements were collected on simulated waste samples and their supernates treated with organics. Organic reductants used were formic acid, glycolic acid, and oxalic acid. For comparison, samples of untreated simulant and untreated simulant with added noble metals were tested. When heated, untreated simulant samples both with and without noble metals showed no exothermic behavior. All of the treated waste simulant samples showed exothermic behavior. Onset temperatures of exothermic reactions were 120 C to 210 C. Many onset temperatures, particularly those for formic acid treated samples, are well below 181 C, the estimated maximum steam coil temperature (considered to be a worst case maximum temperature for chemical process tank contents). The enthalpies of the reactions were {minus}180 {times} 10{sup {minus}3} J/Kg supernate ({minus}181 J/g) for the oxalic acid treated simulant supernate to {minus}1,150 {times} 10{sup {minus}3} J/Kg supernate ({minus}1,153 J/g) for the formic acid treated simulant supernate.

  11. Kinetics of diamond-silicon reaction under high pressure-high temperature conditions

    NASA Astrophysics Data System (ADS)

    Pantea, Cristian

    In this dissertation work, the kinetics of the reaction between diamond and silicon at high pressure-high temperature conditions was investigated. This study was motivated by the extremely limited amount of information related to the kinetics of the reaction in diamond-silicon carbide composites formation. It was found that the reaction between diamond and melted silicon and the subsequent silicon carbide formation is a two-stage process. The initial stage is a result of direct reaction of melted silicon with carbon atoms from the diamond surface, the phase boundary reaction. Further growth of SiC is much more complicated and when the outer surfaces of diamond crystals are covered with the silicon carbide layer it involves diffusion of carbon and silicon atoms through the SiC layer. The reaction takes place differently for the two regions of stability of carbon. In the graphite-stable region, the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, while in the diamond-stable region there is no intermediary step for the reaction. The data obtained at HPHT were fitted by the Avrami-Erofeev equation. It was found that the reaction is isotropic, the beta-SiC grown on different faces of the diamond crystals showing the same reaction rate, and that the controlling mechanism for the reaction is the diffusion. In the graphite-stable region the activation energy, 402 kJ/mol is slightly higher than in the diamond-stable region, 260 kJ/mol, as the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, which has higher activation energy. In the diamond-stable region, the calculated activation energy is higher for micron size diamond powders (≈260 kJ/mol), while for nanocrystalline diamond powders a lower value of 170 kJ/mol was obtained. This effect was attributed to nanocrystalline structure and strained bonds within grain boundaries in SiC formed from nanosize diamond

  12. Reaction of unsaturated uronic acid residues with mercuric salts. Cleavage of the hyaluronic acid disaccharide 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-glucose.

    PubMed Central

    Ludwigs, U; Elgavish, A; Esko, J D; Meezan, E; Rodén, L

    1987-01-01

    Degradation of connective-tissue polysaccharides with bacterial or fungal eliminases and subsequent characterization of the reaction products are now part of standard methodology for the analysis of these compounds. However, the scope of preparative and analytical work based on the use of eliminases has been limited by the lack of procedures for specific removal of the unsaturated uronic acid residues generated in the eliminase reactions. In the present investigation, we have shown that these residues are cleaved by mercuric salts under mild conditions that are not likely to affect other structures in an oligo- or poly-saccharide molecule. Thus the disaccharide generated from hyaluronic acid by digestion with chondroitinase AC or ABC was cleaved into a keto acid and free N-acetylglucosamine within 10 min at room temperature upon exposure to 14 mM-mercuric acetate at pH 5. The reaction of the disaccharide with mercuric salts was used for ready determination of the distribution of radioactivity between the glucuronic acid and N-acetylglucosamine moieties in radioactive hyaluronic acid that had been synthesized by IMR-90 fibroblasts from 3H-labelled monosaccharides. When the precursor was [3H]galactose, over 95% of the incorporated radioactivity was found in the glucuronic acid moiety. In contrast, cells grown in the presence of [3H]glucosamine synthesized a polysaccharide in which almost all of the label was located in the N-acetylglucosamine units. It is apparent from these experiments that the reaction of unsaturated uronic acid residues with mercuric salts provides a new tool with potential for many applications in the study of the structure and metabolism of connective-tissue polysaccharides. PMID:3663191

  13. Polyol-acid anhydride-n-alkyl-alkylene diamine reaction product and motor fuel composition containing same

    SciTech Connect

    Sung, R.L.; Jenkins, R.H. Jr.

    1987-02-17

    A fuel composition for an internal combustion engine comprising: (a) a major portion of a liquid hydrocarbon fuel and (b) a minor amount, as a deposit inhibitor additive, of a reaction product of a process comprising: (i) reacting a dibasic acid anhydride with a polyol, thereby forming an ester of maleic acid; (ii) reacting the ester of maleic acid with an N-alkyl-alkylene diamine, thereby forming the reaction product; and (iii) recovering the reaction product.

  14. Synthesis of ortho acid ester-type 1,3-dioxolanofullerenes: radical reaction of [60]fullerene with halocarboxylic acids promoted by lead(IV) acetate.

    PubMed

    You, Xun; Li, Fa-Bao; Wang, Guan-Wu

    2014-11-21

    A lead(IV) acetate-promoted radical reaction of [60]fullerene with halocarboxylic acids has been exploited to synthesize rare ortho acid ester-type 1,3-dioxolanofullerenes, the hydroxyl group of which can be further transformed to an ester or ether group. Intriguingly, an ortho acid ester-type 1,3-dioxolanofullerene can also be converted to a 1,4-dioxanonofullerene in the presence of a base or manipulated to another ortho acid ester-type 1,3-dioxolanofullerene by reaction with a stronger halocarboxylic acid. Moreover, two possible reaction pathways leading to the observed products are also proposed.

  15. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOEpatents

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  16. Reversible Reshaping of Supported Metal Nanoislands Under Reaction Conditions in a Minimalistic Lattice Model

    NASA Astrophysics Data System (ADS)

    Korobov, A.

    2016-05-01

    The shape of (nano)islands is among significant factors of the catalytic activity of supported catalysts. A lattice model of the reshaping under reaction conditions is suggested and studied by means of kinetic Monte Carlo simulations. It is rooted in experimental findings and is simplified as far as possible to still demonstrate reversible compact—ramified shape transitions. This simple model with complex behavior demonstrates several reshaping regimes and is considered as a possible sub-network of more realistic networks of heterogeneous catalytic reactions.

  17. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    PubMed

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave

  18. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    PubMed

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave

  19. Lewis acid promoted highly diastereoselective Petasis Borono-Mannich reaction: efficient synthesis of optically active β,γ-unsaturated α-amino acids.

    PubMed

    Li, Yi; Xu, Ming-Hua

    2012-04-20

    An efficient and straightforward method for the preparation of highly enantiomerically enriched β,γ-unsaturated α-amino acid derivatives by a Lewis acid promoted diastereoselective Petasis reaction of vinylboronic acid, N-tert-butanesulfinamide, and glyoxylic acid has been developed. The synthetic utilities of the approach were demonstrated by the rapid and convenient construction of challenging cyclopenta[c]proline derivatives.

  20. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments.

  1. Kinetic resolution of acids in acylation reactions in the presence of chiral tertiary amines

    SciTech Connect

    Potapov, V.M.; Dem'yanovich, V.M.; Khlebnikov, V.A.

    1988-07-10

    Asymmetric synthesis has now become an important method for the production of optically active compounds, and its most attractive form is asymmetric catalysis. This work was devoted to an investigation into asymmetric catalysis with chiral tertiary amines in acylation reactions. During the acylation of alcohols and amines by the action of racemic 2-phenylpropionic and 2-methyl-3-phenylpropionic acids in the presence of S-nicotine the initial acids are resolved kinetically. The (R)-2-phenylpropionic acid obtained in this way had an optical purity of 0.5-1.5%.

  2. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    PubMed

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides.

  3. Deuteration of pentacene in benzoic acid: Monitoring the reaction kinetics via low-temperature optical spectroscopy

    SciTech Connect

    Corval, A.; Casalegno, R.; Astilean, S.; Trommsdorff, H.P.

    1992-06-25

    In the deuteration of pentacene in benzoic acid, this reaction is monitored via low-temperature optical spectroscopy to observe the proton-deuterium rate of exchange between the solvent and solute molecules. Of the 14 pentacene protons, 6 have an exchange rate 2 orders of magnitude greater than the remaining 8. 20 refs., 3 figs.

  4. Nonmetal catalyzed insertion reactions of diazocarbonyls to acid derivatives in fluorinated alcohols.

    PubMed

    Dumitrescu, Lidia; Azzouzi-Zriba, Kaouther; Bonnet-Delpon, Danièle; Crousse, Benoit

    2011-02-18

    The insertion reaction of diazocarbonyls to acids could be performed smoothly in fluorinated alcohols in the absence of metal catalyst. This new procedure allowed the chemoselective preparation of various functionalized compounds such as acyloxyesters, depsipeptides, and sulfonate, phosphonate, or boronate derivatives.

  5. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    ERIC Educational Resources Information Center

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  6. Permanganate oxidation of α-amino acids: kinetic correlations for the nonautocatalytic and autocatalytic reaction pathways.

    PubMed

    Perez-Benito, Joaquin F

    2011-09-01

    The reactions of permanganate ion with seven α-amino acids in aqueous KH(2)PO(4)/K(2)HPO(4) buffers have been followed spectrophotometrically at two different wavelengths: 526 nm (decay of MnO(4)(-)) and 418 nm (formation of colloidal MnO(2)). All of the reactions studied were autocatalyzed by colloidal MnO(2), with the contribution of the autocatalytic reaction pathway decreasing in the order glycine > l-threonine > l-alanine > l-glutamic acid > l-leucine > l-isoleucine > l-valine. The rate constants corresponding to the nonautocatalytic and autocatalytic pathways were obtained by means of either a differential rate law or an integrated one, the latter requiring the use of an iterative method for its implementation. The activation parameters for the two pathways were determined and analyzed to obtain statistically significant correlations for the series of reactions studied. The activation enthalpy of the nonautocatalytic pathway showed a strong, positive dependence on the standard Gibbs energy for the dissociation of the protonated amino group of the α-amino acid. Linear enthalpy-entropy correlations were found for both pathways, leading to isokinetic temperatures of 370 ± 21 K (nonautocatalytic) and 364 ± 28 K (autocatalytic). Mechanisms in agreement with the experimental data are proposed for the two reaction pathways.

  7. Catalytic C-H bond activation at nanoscale Lewis acidic aluminium fluorides: H/D exchange reactions at aromatic and aliphatic hydrocarbons.

    PubMed

    Prechtl, Martin H G; Teltewskoi, Michael; Dimitrov, Anton; Kemnitz, Erhard; Braun, Thomas

    2011-12-16

    Nanoscopic amorphous Lewis acidic aluminium fluorides, such as aluminium chlorofluoride (ACF) and high-surface aluminium fluoride (HS-AlF(3)), are capable of activating C-H bonds of aliphatic hydrocarbons. H/D exchange reactions are catalysed under mild conditions (40 °C).

  8. A cascade of acid-promoted C-O bond cleavage and redox reactions: from oxa-bridged benzazepines to benzazepinones.

    PubMed

    Zhang, Yuewei; Yang, Fengzhi; Zheng, Lianyou; Dang, Qun; Bai, Xu

    2014-12-01

    A sequence of C-O bond cleavage and redox reactions in oxa-bridged azepines was realized under acid promoted conditions. This protocol provides an atom-economical and straightforward approach to access benzo[b]azepin-5(2H)-ones in high yields. The formal synthesis of tolvaptan was achieved by exploiting this new transformation.

  9. Total Syntheses of the Resorcylic Acid Lactones Paecilomycin F and Cochliomycin C Using an Intramolecular Loh-Type α-Allylation Reaction for Macrolide Formation.

    PubMed

    Ma, Xiang; Bolte, Benoit; Banwell, Martin G; Willis, Anthony C

    2016-09-01

    Subjection of the resorcylic ester 16 to a Nozaki-Hiyama-Kishi reaction afforded the 12-membered lactone 17, while treatment of it under the Loh-type α-allylation conditions using indium metal gave the isomeric, 14-membered macrolide 18. Compound 18 was readily elaborated to the resorcylic acid lactone type natural products paecilomycin F and cochliomycin C. PMID:27541929

  10. Synthesis of unnatural amino acids via microwave-assisted regio-selective one-pot multi-component reactions of sulfamidates

    EPA Science Inventory

    Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...

  11. Acetic Acid Increases Stability of Silage under Aerobic Conditions

    PubMed Central

    Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R.

    2003-01-01

    The effects of various compounds on the aerobic stability of silages were evaluated. It has been observed that inoculation of whole-crop maize with homofermentative lactic acid bacteria leads to silages which have low stability against aerobic deterioration, while inoculation with heterofermentative lactic acid bacteria, such as Lactobacillus brevis or Lactobacillus buchneri, increases stability. Acetic acid has been proven to be the sole substance responsible for the increased aerobic stability, and this acid acts as an inhibitor of spoilage organisms. Therefore, stability increases exponentially with acetic acid concentration. Only butyric acid has a similar effect. Other compounds, like lactic acid, 1,2-propanediol, and 1-propanol, have been shown to have no effect, while fructose and mannitol reduce stability. PMID:12514042

  12. Correlation changes in EEG, conditioned and behavioral reactions with various degrees of oxygen insufficiency

    NASA Technical Reports Server (NTRS)

    Agadzhanyan, N. A.; Zakharova, I. N.; Kalyuzhnyy, L. V.; Dvorzhak, I. I.; Moravek, M.; Tsmiral, Y. I.

    1974-01-01

    The dynamics of change in bioelectric activity of the brain during acute hypoxia are studied for the time that working capacity and active consciousness are preserved, and to establish the correlation between EEG changes and behavioral reactions under oxygen starvation. Changes in body functions and behavioral disturbances are related to the degree of oxygen saturation in the blood, to bioelectric activity of the brain, and to an increase in conditioned reflexes. The capacity for adequate reaction to external signals and for coordinated psychomotor activity after loss of consciousness returns to man after 30 seconds. Repeated effects of hypoxia produce changes in the physiological reactions of the body directed toward better adaptation to changing gaseous environments.

  13. Studying the pseudomorphic replacement of olivine by silica at acidic conditions

    NASA Astrophysics Data System (ADS)

    King, Helen E.; Geisler, Thorsten; Putnis, Andrew

    2010-05-01

    different reaction conditions highlights the sensitivity of olivine replacement in acidic conditions to factors such as pH. We used an 18O-enriched fluid to trace the mechanism of the pseudomorphic replacement. Raman spectroscopy of the silica layer showed that the 18O was taken into the silica rim in enough concentration to produce a shift in the Raman peaks resulting from 18O-Si bonding within the silica network. The products from experiments with different sulphuric acid concentrations showed that as concentration was reduced the silica layer became increasingly fragile until it no longer precipitated as a pseudomorph. This observation and the incorporation of 18O into the amorphous silica structure indicate that the formation of a pseudomorph occurs via an interface-coupled dissolution-reprecipitation mechanism (Putnis and Putnis, 2007). References Africano F. and Bernard A. (2000), J. Volcanol. Geoth. Res., 97 475-495 Putnis A. and Putnis C. V. (2007), J. Solid State Chem., 180, 1783-1786 Varekamp J. C., Pasternack G. B. and Rowe Jr. G. L. (2000), J. Volcanol. Geoth. Res., 97 161-179

  14. Geminal Brønsted Acid Ionic Liquids as Catalysts for the Mannich Reaction in Water

    PubMed Central

    He, Leqin; Qin, Shenjun; Chang, Tao; Sun, Yuzhuang; Zhao, Jiquan

    2014-01-01

    Quaternary ammonium geminal Brønsted acid ionic liquids (GBAILs) based on zwitterionic 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]ethane (where the carbon number of the alkyl chain is 4, 8, 10, 12, 14, 16, or 18) and p-toluenesulfonic acid monohydrate were synthesized. The catalytic ionic liquids were applied in three-component Mannich reactions with an aldehyde, ketone, and amine at 25 °C in water. The effects of the type and amount of catalyst and reaction time as well as the scope of the reaction were investigated. Results showed that GBAIL-C14 has excellent catalytic activity and fair reusability. The catalytic procedure was simple, and the catalyst could be recycled seven times via a simple separation process without noticeable decreases in catalytic activity. PMID:24837832

  15. Geminal Brønsted acid ionic liquids as catalysts for the Mannich reaction in water.

    PubMed

    He, Leqin; Qin, Shenjun; Chang, Tao; Sun, Yuzhuang; Zhao, Jiquan

    2014-05-15

    Quaternary ammonium geminal Brønsted acid ionic liquids (GBAILs) based on zwitterionic 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]ethane (where the carbon number of the alkyl chain is 4, 8, 10, 12, 14, 16, or 18) and p-toluenesulfonic acid monohydrate were synthesized. The catalytic ionic liquids were applied in three-component Mannich reactions with an aldehyde, ketone, and amine at 25 °C in water. The effects of the type and amount of catalyst and reaction time as well as the scope of the reaction were investigated. Results showed that GBAIL-C14 has excellent catalytic activity and fair reusability. The catalytic procedure was simple, and the catalyst could be recycled seven times via a simple separation process without noticeable decreases in catalytic activity.

  16. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    PubMed

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst.

  17. Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction.

    PubMed

    Wang, Jie; Cheng, Bo; Li, Jie; Zhang, Zhaoyue; Hong, Weiyao; Chen, Xing; Chen, Peng R

    2015-04-27

    We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium-mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N-(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell-surface glycans. This conversion chemically mimics the enzymatic de-N-acetylation of N-acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell-surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell-surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.

  18. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  19. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  20. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  1. Direct observation of unstable reaction intermediates by acid-base complex formation.

    PubMed

    Ohashi, Yuji

    2013-06-01

    The structures of several unstable or metastable reaction intermediates that were photoproduced in crystals were analyzed by using X-ray techniques. The presence of enough void space around the reactive group(s) is an essential factor for the reaction to occur with retention of the single-crystal form. To expand the void space, an acid group (COOH) was substituted onto the reactant molecule and acid-base complex crystals were prepared with several amines, such as dibenzylamine and dicyclohexylamine. Following the formation of such acid-base complexes in crystals, the metastable structures of nitrenes and red species of photochromic salicylideneanilines have been successfully analyzed by using X-ray techniques. Moreover, the structure of a Pt complex anion in the excited state has been analyzed, which formed acid-base complex crystals with various alkylammonium cations. The formation of acid-base complexes will be a powerful tool for directly observing the structure of unstable or metastable reaction intermediates by using X-ray techniques.

  2. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  3. Infrared studies of the reaction of methanesulfonic acid with trimethylamine on surfaces.

    PubMed

    Nishino, Noriko; Arquero, Kristine D; Dawson, Matthew L; Finlayson-Pitts, Barbara J

    2014-01-01

    Organosulfur compounds generated from a variety of biological as well as anthropogenic sources are oxidized in air to form sulfuric acid and methanesulfonic acid (MSA). Both of these acids formed initially in the gas phase react with ammonia and amines in air to form and grow new particles, which is important for visibility, human health and climate. A competing sink is deposition on surfaces in the boundary layer. However, relatively little is known about reactions after they deposit on surfaces. We report here diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) studies of the reaction of MSA with trimethylamine (TMA) on a silicon powder at atmospheric pressure in synthetic air and at room temperature, either in the absence or in the presence of water vapor. In both cases, DRIFTS spectra of the product surface species are essentially the same as the transmission spectrum obtained for trimethylaminium methanesulfonate, indicating the formation of the salt on the surface with a lower limit to the reaction probability of γ > 10(-6). To the best of our knowledge, this is the first infrared study to demonstrate this chemistry from the heterogeneous reaction of MSA with an amine on a surface. This heterogeneous chemistry appears to be sufficiently fast that it could impact measurements of gas-phase amines through reactions with surface-adsorbed acids on sampling lines and inlets. It could also represent an additional sink for amines in the boundary layer, especially at night when the gas-phase reactions of amines with OH radical and ozone are minimized.

  4. Growth of sulphuric acid nanoparticles under wet and dry conditions

    NASA Astrophysics Data System (ADS)

    Škrabalová, L.; Brus, D.; Anttila, T.; Ždímal, V.; Lihavainen, H.

    2013-09-01

    particles with three different extents of neutralization by the ammonia NH3: (1) pure H2SO4 - H2O particles (2) particles formed by ammonium bisulphate, (NH4)HSO4 (3) particles formed by ammonium sulphate, (NH4)2SO4. The highest growth rates were found for ammonium sulphate particles. Since the model accounting for the initial H2SO4 concentration predicted the experimental growth rates correctly, our results suggest that the commonly presumed diffusional wall losses of H2SO4 are not so significant. We therefore assume that there are not only losses of H2SO4 on the wall but also a flux of H2SO4 molecules from the wall into the flow tube, the effect being more profound under dry conditions and at higher temperatures of the tube wall. Based on a comparison with the atmospheric observations, our results indicate that sulphuric acid alone can not explain the growth rates of particles formed in the atmosphere.

  5. Growth of sulphuric acid nanoparticles under wet and dry conditions

    NASA Astrophysics Data System (ADS)

    Skrabalova, L.; Brus, D.; Anttila, T.; Zdimal, V.; Lihavainen, H.

    2014-06-01

    the growth of particles with three different extents of neutralization by ammonia, NH3: (1) pure H2SO4 - H2O particles; (2) particles formed by ammonium bisulphate, (NH4)HSO4; (3) particles formed by ammonium sulphate, (NH4)2SO4. The highest growth rates were found for ammonium sulphate particles. Since the model accounting for the initial H2SO4 concentration predicted the experimental growth rates correctly, our results suggest that the commonly presumed diffusional wall losses of H2SO4 in case of long-lasting experiments are not so significant. We therefore assume that there are not only losses of H2SO4 on the wall, but also a flux of H2SO4 molecules from the wall into the flow tube, the effect being more profound under dry conditions and at higher temperatures of the tube wall. Based on a comparison with the atmospheric observations, our results indicate that sulphuric acid alone cannot explain the growth rates of particles formed in the atmosphere.

  6. Experimental study of the reaction of methane with petroleum hydrocarbons in geological conditions

    SciTech Connect

    Gold, T.; Gordon, B.E.; Streett, W.; Bilson, E.; Patnaik, P.

    1986-11-01

    In order to assess the possible role of methane in petroleum formation, they studied the reaction of methane with liquid hydrocarbons representing the three main classes of compounds dominant in crude oil. The experimental reaction conditions simulated those of a geological setting for petroleum formations, at 1000 atm and 150-250/sup 0/C in the presence of montmorillonite, a natural clay catalyst. Since they expected very slow reaction rates and thus low yields, we used /sup 14/C labeled methane to trace the reaction products. They report here the detection of ethylbenzene and ethyltoluene formed by the interaction of methane with benzene and toluene, respectively. Instead of methylation of benzene, predominantly C/sub 2/ addition occurred, although very small amounts of products corresponding to C/sub 1/ addition were also detected. They propose that catalytic dissociation of methane occurred, forming ethylene which participated in a Friedel-Crafts type alkylation process of the aromatic ring on the catalyst surface. In addition to ring alkylation, side reactions such as polymerization of unsaturates (ethylene, acetylene) appeared to have occurred on the catalyst surface. The nature of these polymers is yet to be determined.

  7. Experimental study of the reaction of methane with petroleum hydrocarbons in geological conditions

    NASA Astrophysics Data System (ADS)

    Gold, Thomas; Gordon, Benjamin E.; Streett, William; Bilson, Elizabeth; Patnaik, Pradyot

    1986-11-01

    In order to assess the possible role of methane in petroleum formation, we studied the reaction of methane with liquid hydrocarbons representing the three main classes of compounds dominant in crude oil. The experimental reaction conditions simulated those of a geological setting for petroleum formations, at 1000 atm and 150-250°C in the presence of montmorillonite, a natural clay catalyst. Since we expected very slow reaction rates and thus low yields, we used 14C labeled methane to trace the reaction products. We report here the detection of ethylbenzene and ethyltoluene formed by the interaction of methane with benzene and toluene, respectively. Instead of methylation of benzene, predominantly C 2 addition occurred, although very small amounts of products corresponding to C 1 addition were also detected. We propose that catalytic dissociation of methane occurred, forming ethylene which participated in a Friedel-Crafts type alkylation process of the aromatic ring on the catalyst surface. In addition to ring alkylation, side reactions such as polymerization of unsaturates (ethylene, acetylene) appeared to have occurred on the catalyst surface. The nature of these polymers is yet to be determined.

  8. High-pressure matrix isolation of heterogeneous condensed phase chemical reactions under extreme conditions

    NASA Astrophysics Data System (ADS)

    Rice, Jane K.; Russell, T. P.

    1995-03-01

    A new technique which combines high-pressure and thermal-shock conditions with low-temperature matrix isolation in a gem anvil cell is presented. This serves to partially quench or arrest the reaction sequence of an energetic material. New chemical species are observed which indicate that intermediates are trapped in addition to final products. This combination of high pressure and low temperature helps elucidate the complicated reaction pathways in the deflagration to detonation regime. We have applied this technique to hexanitrohexaazaisowurtzitane (HNIW, chemical name: 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.0 5,9.0 3,11]dodecane). Products are identified using infrared spectroscopy and comparisons are made to previously reported data taken under thermal, ambient pressure conditions.

  9. Conditions for calibration of an isothermal titration calorimeter using chemical reactions.

    PubMed

    Sgarlata, Carmelo; Zito, Valeria; Arena, Giuseppe

    2013-01-01

    The reaction of protonation of 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) is a suitable one for the calibration of isothermal titration calorimeter (ITC), providing that experimental conditions are appropriately chosen. The conditions and methods for handling experimental data from a nanowatt-ITC are discussed. Also, the binding of Ba(2+) to 18-Crown-6 is successfully used to check the accuracy and precision of the chemical calibration performed with TRIS. This latter reaction has the additional advantage that the data can also be used for a check on the determination of the value of a binding constant. The anomaly of the first injection in ITC is analyzed and, by combining calorimetric and spectroscopic measurements, it is shown that it mainly results from a backlash effect of the syringe plunger rather than from a diffusion effect. PMID:23196751

  10. The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions

    NASA Astrophysics Data System (ADS)

    Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.

    2013-12-01

    During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer

  11. Determination of fumaric and maleic acids with stacking analytes by transient moving chemical reaction boundary method in capillary electrophoresis.

    PubMed

    He, Jian-Feng; Yang, Wei-Ying; Yao, Fu-Jun; Zhao, Hong; Li, Xiang-Jun; Yuan, Zhuo-Bin

    2011-06-17

    The paper presents an on-line transient moving chemical reaction boundary (MCRB) method for simply but efficiently stacking analytes in capillary electrophoresis (CE). The CE technique was developed for a rapid determination of fumaric and maleic acid. Based on the theory of MCRB, Effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were investigated to acquire the optimum conditions. The optimized separations were carried out in a 20 mmol/L sulphate neutralized with ethylenediamine to pH 6.0 electrolytes using a capillary coated with poly (diallyldimethylammonium chloride) and direct UV detection at 214 nm. The optimized preconcentrations were carried out in 50 mmol/L borax (pH 9.0). The calibration curves were linear in the concentration range of 1.0×10⁻⁷-1.0×10⁻⁴ mol/L and 5.0×10⁻⁷-1.0×10⁻⁴ mol/L for fumaric and maleic acid with correlation coefficients higher than 0.9991. The detection limits were 5.34×10⁻⁸ mol/L for fumaric acid and 1.92×10⁻⁷ mol/L for maleic acid. This method was applied for determination of fumaric acid in apple juice and of fumaric and maleic acid in dl-malic, the recovery tests established for real samples were within the range 95-105%. This work provided a valid and simple approach to detect fumaric and maleic acid.

  12. Relative Reaction Rates of Sulfamic Acid and Hydroxylamine with Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-03-28

    This report describes a study of comparative reaction rates where the reductant is in excess, as in the 1B bank in the Purex process. The results of this work apply to planned plant tests to partially substitute HAN for the ferrous sulfamate reductant in the Purex 1B bank.

  13. Photolytic degradation of chlorophenols from industrial wastewaters by organic oxidants peroxy acetic acid, para nitro benzoic acid and methyl ethyl ketone peroxide: identification of reaction products.

    PubMed

    Sharma, Swati; Mukhopadhyay, Mausumi; Murthy, Zagabathuni Venkata Panchakshari

    2014-01-01

    In this investigation, chlorophenol (CP) containing industrial wastewater was remediated by ultraviolet irradiation in conjunction with organic oxidants, peroxy acetic acid (PAA); para nitro benzoic acid (PNBA); and methyl ethyl ketone peroxide (MEKP). CP mineralization was studied with regard to chemical oxygen demand (COD) and chloride ion release under identical test conditions. COD depletion to the extent of 81% by PAA, 66% by PNBA, and 67% by MEKP was noted along with an upwardly mobile trend of chloride ion release upon irradiation of samples at 254 nm. A 90-99% decrease in CP concentration (as per high pressure liquid chromatography (HPLC) analysis) was achieved with an additional 15.0 ml of organic oxidant in all cases. Gas chromatography high resolution mass spectroscopy (GC-HRMS) results also indicated the formation of such reaction products as are free from chlorine substitutions. This treatment also leads to total decolorization of the collected samples. PMID:24647192

  14. Diffusion-reaction modelling of early diagenesis of sediments affected by acid mine drainage.

    NASA Astrophysics Data System (ADS)

    Torres, E.; Ayora, C.; Arias, J. L.; Garcia Robledo, E.; Papaspyrou, S.; Corzo, A.

    2012-04-01

    The Sancho Reservoir (SW Spain) is a monomictic water reservoir affected by acid mine drainage. It has a pH of ~4, with high sulfate (200 ppm) and heavy metal concentrations in the water column. The reservoir develops reducing conditions at the bottom during the stratification period. A laboratory experiment was carried out to study the effect of this oxygen variation on the early diagenesis processes and the cycling of metals. Sediment cores and bottom water were collected during the stratification period and brought to the laboratory. The cores were maintained in an aquarium bubbled with nitrogen gas to maintain hypoxic conditions (~10 µmol O2 L-1) for 1 day. Then, oxic conditions were induced by bubbling with air and maintained for 50 days. Finally, hypoxia was re-established for 10 days. Triplicate cores were sliced in a anaerobic glove box at each stage. Pore water was extracted by centrifugation and: Eh, pH, DO, DOC, sulfate, Fe and trace metals were analyzed. The sediment was freeze-dried and a sequential extraction protocol was applied to determine the exchangeable, AVS, Fe-(oxy)hydroxides, Fe-oxides, organic matter, pyrite sulfur and residual phase iron fractions. Organic carbon and total C, N, H and S were also analyzed in the sediment. A reactive diffusion model has been used to obtain the rates of biogeochemical reactions by fitting to the experimental data. During hypoxic conditions sulfate and Fe-(oxy)hydroxides are reduced, due to the anaerobic oxidation of organic matter, at the very first few cm, releasing sulfide and Fe(II) which precipitate as iron sulfide. When oxygen diffuses in the sediment, sulfate-reduction and the sulfide peaks are displaced deeper into the sediment. Oxygen penetration depth and its consumption rates in the sediment increase quickly, resulting in the reoxidation of the iron sulfides that had precipitated during hypoxic conditions. Sulfide and Fe(II) are released and are again oxidized to Fe(III) and sulfate respectively

  15. Study on the reaction kinetics in pulsed RF discharges under RIE conditions

    NASA Astrophysics Data System (ADS)

    Baggerman, Jacobus Antonius Gijsbertus

    1993-10-01

    In the present-day electronics industry, reactive ion etching (RIE) is a technique widely used to etch thin films anisotropically. The subject of this thesis is the determination of (reaction) kinetics of rf discharges under RIE conditions. Special attention is given to determining quantitatively the rise and decay of densities and energy distributions of plasma particles. A production-type RIE reactor was used for all experiments. In chapter 2 the ion density is determined by LIF spectroscopy in a model (N2) discharge under RIE conditions. Chapter 3 concerns energy-flux density measurements on the various parts of the etch reactor in contact with a 30 Pa nitrogen rf discharge. Chapter 4 concerns the etch mechanism of various organic polymers in oxygen and argon of discharges under RIE conditions studied by performing energy-flux density and ion-flux density measurements on the powered electrode. The polymers of interest are a novolac-based photoresist, polyimide and polymethylmethacrylate (PMMA). The density and the reaction kinetics of ground-state methylidyne (CH radical) are determined by LIF in order to determine whether small molecules in addition to atoms are sputtered from the polymer surface. In chapter 5 a model is set up in which diffusion of CH from the substrate into the gas phase and chemical reactions in the gas phase are taken into account.

  16. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    PubMed

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  17. The mechanism of low levels of nitrogen dioxide reaction with unsaturated fatty acid esters

    SciTech Connect

    Gallon, A.A.

    1990-01-01

    Nitrogen dioxide is a toxic air pollutant that exists at less than 0.5 ppm in the atmosphere. This toxic compound is known to initiate autoxidation of unsaturated fatty acids both in vivo and in vitro. When autoxidation occurs in vivo, membrane damage that can lead to cell death can occur. Low concentrations of nitrogen dioxide were shown to react with the polyunsaturated fatty acid esters, methyl linoleate and methyl linoleate, by a H-abstraction mechanism. However, methyl oleate, an unsaturated fatty acid ester, was demonstrated to react with a low concentration of nitrogen dioxide by only an addition mechanism. Although methyl oleate reacts by an addition mechanism, a 50:50 molar solution of methyl oleate and methyl linoleate reacted with a low level of nitrogen dioxide exclusively by a H-abstraction mechanism. Therefore, low levels of nitrogen dioxide will probably react with polyunsaturated fatty acid components of pulmonary lipids by a H-abstraction mechanism forming nitrous acid directly in the cell membrane. Vitamin E was demonstrated to be able to act as a preventative antioxidant in the nitrogen dioxide and methyl linoleate reactions; but vitamin C could not prevent nitrogen dioxide from reacting with methyl linoleate by a H-abstraction mechanism. These results suggest that low levels of nitrogen dioxide will react with polyunsaturated fatty acids by a H-abstraction mechanism and that vitamin E can be used to prevent the reaction from occurring.

  18. The Combination of Salt Induced Peptide Formation Reaction and Clay Catalysis: A Way to Higher Peptides under Primitive Earth Conditions

    NASA Astrophysics Data System (ADS)

    Rode, Bernd M.; Son, Hoang L.; Suwannachot, Yuttana; Bujdak, Juraj

    1999-05-01

    Two reactions with suggested prebiotic relevance for peptide evolution, the saltinduced peptide formation reaction and the peptide chain elongation/stabilization on clay minerals have been combined in experimental series starting from dipeptides and dipeptide/amino acid mixtures. The results show that both reactions can take place simultaneously in the same reaction environment and that the presence of mineral catalysts favours the formation of higher oligopeptides. These findings lend further support to the relevance of these reactions for peptide evolution on the primitive earth. The detailed effects of the specific clay mineral depend both on the nature of the mineral and the reactants in solution.

  19. Stable condition of dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid ( DMDTAV) in landfill leachate

    NASA Astrophysics Data System (ADS)

    Kwon, E.; Yoon, H. O.; Kim, J. A.; Lee, H.; Jung, S.; Kim, Y. T.

    2015-12-01

    When waste containing arsenic (As) are disposed of landfill, such facilities (i.e., landfill) can play an important role in disseminating As to the surrounding environment. These disposal of waste containing As might cause a serious environmental pollution due to potentially As remobilization in landfill. Especially, As species containing sulfur such as DMDTAv and DMMTAv found occasionally high concentration in landfill leachate. These As species (i.e., DMDTAv and DMMTAv) had the higher toxicity to human cells compared to other pentavalent As species. However, there was no chemical standard material of these As species (i.e., DMDTAv and DMMTAv) commercially. In this study, we synthesized DMDTAv and DMMTAv by simulating reaction with the sufficient sulfur condition from DMAv. DMMTAv was quite changeable to DMDTAv due to its short life time from our preliminary study. Thus, it is important to find the stable condition of synthesis process for DMDTAv and DMMTAv under suitable environmental condition. This study can be very significant in quantitative analysis area to detect the various As species in environmental media such as landfill.

  20. Influence of Catalyst Structure and Reaction Conditions on Anti- vs. Syn-Aminopalladation Pathways in Pd-Catalyzed Alkene Carboamination Reactions of N-Allyl Sulfamides

    PubMed Central

    Fornwald, Ryan M.; Fritz, Jonathan A.

    2014-01-01

    The Pd-catalyzed coupling of N-allyl sulfamides with aryl and alkenyl triflates to afford cyclic sulfamide products is described. In contrast to other known Pd-catalyzed alkene carboamination reactions, these transformations may be selectively induced to occur by way of either anti- or syn-aminopalladation mechanistic pathways by modifying catalyst structure and reaction conditions. PMID:24938206

  1. Enantioselective Arylation of N-Tosylimines by Phenylboronic Acid Catalysed by a Rhodium/Diene Complex: Reaction Mechanism from Density Functional Theory.

    PubMed

    Sieffert, Nicolas; Boisson, Julien; Py, Sandrine

    2015-06-26

    A DFT study of the reaction mechanism of the rhodium-catalysed enantioselective arylation of (E)-N-propylidene-4-methyl-benzenesulfonamide by phenylboronic acid [Lin et al J. Am. Chem. Soc. 2011, 133, 12394] is reported. The catalyst ([{Rh(OH)(diene)}2]) includes a chiral diene ligand and the reaction is conducted in 1,4-dioxane in the presence of drying agents (4 Å molecular sieves). Because phenylboronic acid is in equilibrium with phenylboroxin and water under the reaction conditions, three catalytic cycles are proposed that differ in the way the transmetallation and the release of the product are brought about, depending on the availability of phenylboronic acid, water and boroxin in the reaction medium. Based on computations, a new mechanism for the title reaction is proposed, in which phenylboronic acid plays the double role of "aryl source" and proton donor. This path does not require the presence of adventitious water molecules, in keeping with a reaction conducted in a dry medium. Comparisons with the generally accepted mechanism for arylation of enones proposed by Hayashi and co-workers (J. Am. Chem. Soc. 2002, 124, 5052) show that the latter mechanism is less favourable and is not expected to operate in the case of the N-tosylimine substrate considered herein. Finally, the possibility that phenylboroxin is the aryl source has also been investigated, but is not found to be competitive. PMID:26032123

  2. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  3. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  4. Reaction of Oxidized Polysialic Acid and a Diaminooxy Linker: Characterization and Process Optimization Using Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Ray, G Joseph; Siekmann, Jürgen; Scheinecker, Richard; Zhang, Zhenqing; Gerasimov, Mikhail V; Szabo, Christina M; Kosma, Paul

    2016-09-21

    Native polysialic acid (natPSA) is a high-molecular-weight glycan composed of repeat units of α-(2 → 8) linked N-acetylneuraminic acid (Neu5Ac). Mild periodate oxidation of PSA selectively targets the end sialic acid ring containing three adjacent alcohols generating a putative aldehyde, which can be used, after attachment of a linker molecule, for terminal attachment of PSA to protein. Previously, we showed that the oxidized PSA (oxoPSA) contained a hemiacetal at the oxidation site and can react with a linker containing an aminooxy group in a conjugation reaction to form a stable oxime linkage. Thus, reagents containing an aminooxy group may be prepared for conjugation of PSA to the carbohydrate moiety of therapeutic proteins, thereby increasing their half-life. These aminooxy-PSA reagents can selectively react with aldehyde groups generated by mild NaIO4 oxidation of glycans on the surface of the target protein. To comprehend the conjugation, unoxidized tetrasialic acid and Neu5Ac were reacted in model reactions with a diaminooxy linker to define the nuclear magnetic resonance (NMR) chemical shifts. Based on these data, we were able to show that, in the case of PSA, the reaction with the linker occurs not only at the expected oxidized end to form an aldoxime but also at the end distal to the oxidation to form a ketoxime. We determined that, in aged solutions, both oxoPSA and PSA aldoxime were hydrolyzed. PSA aldoxime was also shown to disproportionate to form a dimer (PSA-linker-PSA), which then could react further with the released linker at one of its PSA termini. Furthermore, NMR was used to monitor the effects of deliberate process changes so that conditions could be optimized for attachment of linker at the desired end of the PSA chain, which led to a well-defined product.

  5. Heterogeneous Reactions of ClONO2, HCl, and HOCl on Liquid Sulfuric Acid Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1994-01-01

    The heterogeneous reactions of ClONO2 + H2O yields HNO3 + HOCl (1), ClONO2 + HCl yields C12 + HNO3 (2), and HOCl + HCl yields Cl2 + H2O (3) on liquid sulfuric acid surfaces have been studied using a fast flow reactor coupled to a quadrupole mass spectrometer. The main objectives of the study are to investigate: (a) the temperature dependence of these reactions at a fixed H2O partial pressure typical of the lower stratosphere (that is, by changing temperature at a constant water partial pressure, the H2SO4 content of the surfaces is also changed), (b) the relative importance or competition between reactions 1 and 2, and (c) the effect of HNO3 on the reaction probabilities due to the formation of a H2SO4/HNO3/H2O ternary system. The measurements show that all the reactions depend markedly on temperature at a fixed H2O partial pressure: they proceed efficiently at temperatures near 200 K and much slower at temperatures near 220 K. The reaction probability (gamma(sub 1)) for ClONO2 hydrolysis approaches 0.01 at temperatures below 200 K, whereas the values for gamma(sub 2) and gamma(sub 3) are on the order of a few tenths at 200 K. Although detailed mechanisms for these reactions are still unknown, the present data indicate that the competition between ClONO2 hydrolysis and ClONO2 reaction with HCl may depend on temperature (or H2SO4 Wt %): in the presence of gaseous HCl at stratospheric concentrations, reaction 2 is dominant at lower temperatures (less than 200 K), but reaction 1 becomes important at temperatures above 210 K. Furthermore, reaction probability measurements performed on the H2SO4/HNO3/ H2O ternary solutions do not exhibit noticeable deviation from those performed on the H2SO4/H2O binary system, suggesting little effect of HNO3 in sulfate aerosols on the ClONO2 and HOCl reactions with HCl. The results reveal that significant reductions in the chlorine-containing reservoir species (such as ClONO2 and HCl) can take place on stratospheric sulfate aerosols at

  6. Reaction of chlorine dioxide with amino acids and peptides: kinetics and mutagenicity studies.

    PubMed

    Tan, H K; Wheeler, W B; Wei, C I

    1987-08-01

    Chlorine dioxide (ClO2) is currently being considered as an alternate to chlorine as a disinfectant for water treatment. Many organic compounds present in water and food treated with ClO2 are subject to oxidation. 21 amino acids and 3 peptides (L-aspartyl-L-phenylalanine methyl ester (aspartame), L-glycyl-L-tryptophan and L-tryptophylglycine) were studied for their reactivity with ClO2. Chlorine dioxide reacted only with 6 amino acids in 0.1 M sodium phosphate buffer, pH 6.0. The reaction with cysteine, tryptophan and tyrosine was too rapid to be monitored either iodometrically or spectrophotometrically. The reaction with histidine, hydroxyproline and proline was found to be pseudo-first order. ClO2 readily reacted with L-glycyl-L-tryptophan and L-tryptophylglycine but not with aspartame. Mutagenicity studies with the Salmonella microsome assay of the reaction mixtures of ClO2 with those 6 reactive amino acids and the 3 peptides indicated that the reaction products of the 3 peptides, hydroxyproline, and tyrosine exerted mutagenic activity toward both tester strains of TA98 and TA100 in the presence and absence of rat-liver S9 mix.

  7. Development of Stereocontrolled Palladium(II)-Catalyzed Domino Heck/Suzuki β,α-Diarylation Reactions with Chelating Vinyl Ethers and Arylboronic Acids

    PubMed Central

    Trejos, Alejandro; Odell, Luke R; Larhed, Mats

    2012-01-01

    A stereoselective and 1,4-benzoquinone-mediated palladium(II)-catalyzed Heck/Suzuki domino reaction involving metal coordinating cyclic methylamino vinyl ethers and a number of electronically diverse arylboronic acids has been developed and studied. Diastereomeric ratios up to 39:1 and 78 % isolated yields were obtained. The stereoselectivity of the reaction was found to be highly dependent on the nature of the arylboronic acid and the amount of water present in the reaction mixture. Thus, a domino β,α-diarylation–reduction of chelating vinyl ethers can now be accomplished and stereochemically controlled, given that optimized conditions and an appropriate chiral auxiliary are used. To the best of our knowledge, this represents the first example of a stereoselective, oxidative Heck/Suzuki domino reaction in the literature. PMID:24551492

  8. Structural changes of Salix miyabeana cellulose fibres during dilute-acid steam explosion: impact of reaction temperature and retention time.

    PubMed

    Diop, Chérif Ibrahima Khalil; Lavoie, Jean-Michel; Huneault, Michel A

    2015-03-30

    Dilute-acid steam explosion of Salix miyabeana has been carried out to understand the effect of processing conditions, expressed through a severity factors (SFT), on the changes in cellulose fibre structures in a perspective of using these in polymer composites. This thermo-chemico-mechanical extraction leads to the isolation of cellulose fibres as observed by SEM images. Fibre length as well as length to diameter aspect ratios decreased with the severity of the treatment. Likewise, fibre whiteness diminished with an increasing severity factor, which could be a tangible effect of physical degradation. Variations in crystallinity seemed to be dependent upon the reaction temperature, generally decreasing with regards to retention time. Above a severity threshold, a structural disorganization was observed. Overall, dilute-acid steam explosion was shown to be a valuable cellulose extraction process that can provide a variety of fibre structures.

  9. Consistency between kinetics and thermodynamics: general scaling conditions for reaction rates of nonlinear chemical systems without constraints far from equilibrium.

    PubMed

    Vlad, Marcel O; Popa, Vlad T; Ross, John

    2011-02-01

    We examine the problem of consistency between the kinetic and thermodynamic descriptions of reaction networks. We focus on reaction networks with linearly dependent (but generally kinetically independent) reactions for which only some of the stoichiometric vectors attached to the different reactions are linearly independent. We show that for elementary reactions without constraints preventing the system from approaching equilibrium there are general scaling relations for nonequilibrium rates, one for each linearly dependent reaction. These scaling relations express the ratios of the forward and backward rates of the linearly dependent reactions in terms of products of the ratios of the forward and backward rates of the linearly independent reactions raised to different scaling powers; the scaling powers are elements of the transformation matrix, which relates the linearly dependent stoichiometric vectors to the linearly independent stoichiometric vectors. These relations are valid for any network of elementary reactions without constraints, linear or nonlinear kinetics, far from equilibrium or close to equilibrium. We show that similar scaling relations for the reaction routes exist for networks of nonelementary reactions described by the Horiuti-Temkin theory of reaction routes where the linear dependence of the mechanistic (elementary) reactions is transferred to the overall (route) reactions. However, in this case, the scaling conditions are valid only at the steady state. General relationships between reaction rates of the two levels of description are presented. These relationships are illustrated for a specific complex reaction: radical chlorination of ethylene.

  10. Total synthesis of cephalosporolide E via a tandem radical/polar crossover reaction. The use of the radical cations under nonoxidative conditions in total synthesis.

    PubMed

    Cortezano-Arellano, Omar; Quintero, Leticia; Sartillo-Piscil, Fernando

    2015-03-01

    The present work reports the first example of the use of the chemistry of radical cations under nonoxidative conditions in total synthesis. Using a late-stage tandem radical/polar crossover reaction, a highly stereoselective total synthesis of cephalosporolide E (which is typically obtained admixed with cephalosporolide F) was accomplished. The reaction of a phthalimido derivative with triphenyltin radical in refluxing toluene engenders a contact ion-pair (radical cation) that leads, in the first instance, to the cephalosporolide F, which is transformed into the cephalosporolide E via a stereocontrolled spiroketal isomerization promoted by the diphenylphosphate acid that is formed during the tandem transformation.

  11. Thermodynamical characteristics of the reaction of pyridoxal-5'-phosphate with L-amino acids in aqueous buffer solution

    NASA Astrophysics Data System (ADS)

    Barannikov, V. P.; Badelin, V. G.; Venediktov, E. A.; Mezhevoi, I. N.; Guseinov, S. S.

    2011-01-01

    The reaction of pyridoxal-5'-phosphate with L-isomers of alanine, lysine, arginine, aspartic acid, glutamic acid, and glycine in phosphate buffer solution was studied by absorption spectroscopy and the calorimetry of dissolution at physiological acidity of the medium (pH 7.35). The formation constants of Schiff bases during reactions and changes in Gibbs energy, enthalpy, and entropy were determined. It was shown that the formation constant of the Schiff base and its spectral properties depend on the nature of the bound amino acid. The progress of the reaction with a majority of amino acids is governed by the entropy factor due to the predominant role of the dehydration effect of the reaction center of amino acids during chemical reactions. The intramolecular electrostatic interaction of an ionized phosphate group with the positively charged amino group on the end of the chain of amino acid residue stabilizes the Schiff bases formed by lysine and arginine. The extinction coefficient of the base, equilibrium constant, and the exothermic effect of the reaction then increase. The excess negative charge on the end of the chain of amino acid residues of aspartic and glutamic acids destabilizes the molecule of the Schiff base. In this case, the equilibrium constant decreases and the endothermic effect of the reaction increases.

  12. Modeling of Turing Structures in the Chlorite-Iodide-Malonic Acid-Starch Reaction System

    NASA Astrophysics Data System (ADS)

    Lengyel, Istivan; Epstein, Irving R.

    1991-02-01

    Recent experiments on the chlorite-iodide-malonic acid-starch reaction in a gel reactor give the first evidence of the existence of the symmetry breaking, reaction-diffusion structures predicted by Turing in 1952. A five-variable model that describes the temporal behavior of the system is reduced to a two-variable model, and its spatial behavior is analyzed. Structures have been found with wavelengths that are in good agreement with those observed experimentally. The gel plays a key role by binding key iodine species, thereby creating the necessary difference in the effective diffusion coefficients of the activator and inhibitor species, iodide and chlorite ions, respectively.

  13. Organocatalytic Enantioselective Aza-Friedel-Crafts Reaction of Cyclic Ketimines with Pyrroles using Imidazolinephosphoric Acid Catalysts.

    PubMed

    Nakamura, Shuichi; Matsuda, Nazumi; Ohara, Mutsuyo

    2016-07-01

    Organocatalytic enantioselective aza-Friedel-Crafts reactions of cyclic ketimines with pyrroles or indoles were catalyzed by imidazoline/phosphoric acid catalysts. The reaction was applied to various 3H-indol-3-ones to afford products in excellent yields and enantioselectivities. The chiral catalysts can be recovered by a single separation step using column chromatography and are reusable without further purification. Based on the experimental investigations, a possible transition state has been proposed to explain the origin of the asymmetric induction. PMID:27124556

  14. Pitchfork and winged-cusp singularities in iodate-arsenous acid reaction

    NASA Astrophysics Data System (ADS)

    Li, Ru-Sheng

    1994-09-01

    The iodate-arsenous acid reaction was reported to be able to exhibit hysteresis bistability, including mushrooms and isolas, in a continuous flow stirred tank reactor (CSTR) when an additional flow of solvent is introduced [N. Ganapathisubramanian and K. Showalter, J. Chem. Phys. 80, 4177 (1984)]. Based on their kinetic data and the empirical rate law, it is shown that the reaction may also exhibit pitchfork-type and winged cusp-type singularities if additional flows of the reactants are introduced to the CSTR.

  15. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    PubMed

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  16. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis.

    PubMed

    Hodgman, C Eric; Jewett, Michael C

    2013-10-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform technology to help satisfy the growing demand for simple, affordable, and efficient protein production. In this article, we describe a novel CFPS platform derived from the popular bio-manufacturing organism Saccharomyces cerevisiae. By developing a streamlined crude extract preparation protocol and optimizing the CFPS reaction conditions we were able to achieve active firefly luciferase synthesis yields of 7.7 ± 0.5 µg mL(-1) with batch reactions lasting up to 2 h. This duration of synthesis is the longest ever reported for a yeast CFPS batch reaction. Furthermore, by removing extraneous processing steps and eliminating expensive reagents from the cell-free reaction, we have increased relative product yield (µg protein synthesized per $ reagent cost) over an alternative commonly used method up to 2000-fold from ∼2 × 10(-4) to ∼4 × 10(-1)  µg $(-1) , which now puts the yeast CPFS platform on par with other eukaryotic CFPS platforms commercially available. Our results set the stage for developing a yeast CFPS platform that provides for high-yielding and cost-effective expression of a variety of protein therapeutics and protein libraries.

  17. Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Giannouri, M.; Boukos, N.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Reduced graphene oxide sheets (rGO) were prepared by hydrothermal treatment of aqueous dispersions of graphite oxide (GtO) applied for short (4 h) and prolonged reaction times (19-24 h). The effect of process duration as well as the alkaline conditions (pH ∼10) by addition of K2CO3 on the quality characteristics of the produced rGO materials was investigated. Both reduction and exfoliation occurred during this process as it was evidenced by FTIR and XRD data. SEM, TEM and HRTEM microscopy displayed highly exfoliated rGO materials. XPS verified that the re-establishment of the conjugated graphene network is more extensive for prolonged times of hydrothermal processing in accordance to Raman spectroscopy measurements. The sample produced under alkaline conditions bore fewer defects and almost 5 times higher BET surface area (∼181 m2/g) than the sample with no pH adjustment (∼34 m2/g) for the same hydrothermal reaction time (19 h), attributed to the developed microporosity. The specific capacitance of this material estimated by electrochemical impedance using three-electrode cell and KCl aqueous solution as an electrolyte was ∼400-500 F/g. When EDLC capacitors were fabricated from rGO materials the electrochemical testing in organic electrolyte i.e. TEABF4 in PC, revealed that the shortest hydrothermal reaction time (4 h) was more efficient resulting in capacitance around 60 F/g.

  18. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    SciTech Connect

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    2013-08-08

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  19. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  20. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    NASA Technical Reports Server (NTRS)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  1. Experimental dissolution vs. transformation of micas under acidic soil conditions: Clues from boron isotopes

    NASA Astrophysics Data System (ADS)

    Voinot, A.; Lemarchand, D.; Collignon, C.; Granet, M.; Chabaux, F.; Turpault, M.-P.

    2013-09-01

    Minerals in soils evolve through contact with water and other weathering agents (protons, organic acids and ligands) from the atmosphere or released by the surrounding vegetation and associated fauna. Determining the respective contribution of these agents to weathering budgets and the mechanisms by which they interact with soil minerals is a key step toward obtaining refined models of soil development, plant/mineral interactions and, ultimately, soil sustainability. To test the influence of different chemical agents on the processes of mica weathering (dissolution and transformation), we conducted a series of laboratory flow-through experiments on biotite using three chemical groups of reactants found in forest soils: protons (HCl), organic acids (citric acid) and ligands (siderophores). These experiments were performed at two different pH values (pH 3 and pH 4.5) for 37 days at 20 °C. Biotite was chosen as a test-mineral because it is reactive with acids and water and because it is commonly found in granite soils. To investigate the weathering reactions, the chemical and isotopic compositions of B (δ11B) and the concentrations of predominant cation (Si, Al, Mg, K and Fe) were monitored in the outflowing solutions. The choice of B as a proxy for weathering processes is based on the fact that B is located in different crystallographic sites in biotite (interlayers and structural sites, named I- and S-sites, respectively). We observed a large δ11B contrast between these sites (Δ11BS-I sites˜80‰), which allows for a precise quantification of the respective contribution of I- and S-sites to B released during biotite weathering. The individual reaction rates for these crystallographic sites were inferred from the B chemical and isotopic compositions of the outflowing solutions. A comparison with the major elements reveals that B is preferentially released to solution under all tested experimental conditions (up to 4 times more), particularly in the presence of

  2. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  3. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  4. 40 CFR 721.10363 - Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4′ -methylenebis...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-oxiranylmethyl ester, reaction products with 4,4â² -methylenebis (cyclohexanamine) (generic). 721.10363 Section... Substances § 721.10363 Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4..., reaction products with 4,4′ -methylenebis (cyclohexanamine) (PMN P-10-47) is subject to reporting...

  5. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  6. 40 CFR 721.10363 - Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4′ -methylenebis...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-oxiranylmethyl ester, reaction products with 4,4â² -methylenebis (cyclohexanamine) (generic). 721.10363 Section... Substances § 721.10363 Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4..., reaction products with 4,4′ -methylenebis (cyclohexanamine) (PMN P-10-47) is subject to reporting...

  7. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  8. 40 CFR 721.9400 - Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of phenolic... Reaction product of phenolic pentaerythritol tetraesters with fatty acid esters and oils, and glyceride... substances identified generically as Reaction product of phenolic pentaerythritol tetraesters with fatty...

  9. 40 CFR 721.10363 - Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4′ -methylenebis...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-oxiranylmethyl ester, reaction products with 4,4â² -methylenebis (cyclohexanamine) (generic). 721.10363 Section... Substances § 721.10363 Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4..., reaction products with 4,4′ -methylenebis (cyclohexanamine) (PMN P-10-47) is subject to reporting...

  10. One-pot synthesis of magnetically recyclable mesoporous silica supported acid-base catalysts for tandem reactions.

    PubMed

    Jun, Samuel Woojoo; Shokouhimehr, Mohammadreza; Lee, Dong Jun; Jang, Youngjin; Park, Jinkyung; Hyeon, Taeghwan

    2013-09-14

    We report one-pot synthesis of magnetically recyclable mesoporous silica catalysts for tandem acid-base reactions. The catalysts could be easily recovered from the reaction mixture using a magnet, and the pore size of the catalysts could be controlled by introducing a swelling agent, resulting in the significant enhancement of the reaction rate.

  11. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long-Chain Alkenes.

    PubMed

    Passananti, Monica; Kong, Lingdong; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; Chen, Jianmin; Donaldson, D James; George, Christian

    2016-08-22

    The heterogeneous reaction between SO2 and unsaturated compounds results in the efficient production of organosulfates for several fatty acids and long-chain alkenes. The presence of an acid group, the physical state of the reactants (solid or liquid), the nature of the double bond (cis, trans, terminal), and the use of light irradiation all have an impact on the reaction rate. The reaction was investigated using different set-ups (coated flow tube, aerosol flow tube, and diffuse reflectance infrared Fourier transform cell). The reaction products were identified by high-resolution mass spectrometry and the impact of this reaction on organosulfate formation in the atmosphere is discussed.

  12. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Fatty Acids and Long-Chain Alkenes.

    PubMed

    Passananti, Monica; Kong, Lingdong; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; Chen, Jianmin; Donaldson, D James; George, Christian

    2016-08-22

    The heterogeneous reaction between SO2 and unsaturated compounds results in the efficient production of organosulfates for several fatty acids and long-chain alkenes. The presence of an acid group, the physical state of the reactants (solid or liquid), the nature of the double bond (cis, trans, terminal), and the use of light irradiation all have an impact on the reaction rate. The reaction was investigated using different set-ups (coated flow tube, aerosol flow tube, and diffuse reflectance infrared Fourier transform cell). The reaction products were identified by high-resolution mass spectrometry and the impact of this reaction on organosulfate formation in the atmosphere is discussed. PMID:27458109

  13. Changes of nucleic acids of wheat seedlings under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Sytnyk, K. M.; Musatenko, L. I.

    1983-01-01

    The effects of space flight on the growth of wheat seedlings and their nucleic acid content were studied. It was shown that both space and ground seedlings have almost the same appearance, dry weight and nucleic acid content in the root, coleoptile and leaves. The only difference found is in the RNA and DNA content, which is twice as much in the ground seedling apices as in the space-grown seedlings.

  14. Concerted effects in the reaction of rad OH radicals with aromatics: radiolytic oxidation of salicylic acid

    NASA Astrophysics Data System (ADS)

    Albarran, G.; Schuler, R. H.

    2003-06-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, rad OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because rad OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid.

  15. Specificity of psychomotor reactions in the conditions of support deprivation including effects of countermeasures

    NASA Astrophysics Data System (ADS)

    Nichiporuk, Igor; Ivanov, Oleg

    Activity of the cosmonaut demands high level of psychomotor reactions (PMR) which can vary during space flight under the influences of psychophysiological state’s variability and unusual inhabitancy that causes the necessity of PMR estimation’s inclusion into quality monitoring of capacity for work (CW). A main objective of research was a study of features of visual-motor reactions (VMR) and elements of CW of the person within simulation of microgravity effects via 7-day dry immersion (DI) in healthy male-volunteers 20-35 years old. The experimental data were received which testified to peculiarities of VMR and recognition of simple figures of main colors of a visible spectrum (red, green, blue, the RGB-standard) in the conditions of the DI characterized by support deprivation and decreased proprioceptive afferentation - in a control series and in a series with use of mioelectrostimulation as a countermeasure.

  16. Temperature-dependent reaction-rate expression for oxygen recombination at Shuttle entry conditions

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Simmonds, A. L.; Gupta, R. N.

    1984-01-01

    A temperature-dependent oxygen surface reaction-rate coefficient has been determined from experimental STS-2 heating and wall temperature data at altitudes of 77.91 km, 74.98 km, and 71.29 km. The coefficient is presented in an Arrhenius form and is shown to be less temperature dependent than previous results. Finite-rate viscous-shock-layer heating rates based on this present expression have been compared with predicted heating rates using the previous rate coefficients and with experimental heating data obtained over an extensive range of STS-2 and STS-3 entry conditions. A substantial improvement is obtained in comparison of experimental data and predicted heating rates using the present oxygen reaction-rate expression.

  17. Effect of reaction conditions on phenol removal by polymerization and precipitation using Coprinus cinereus peroxidase.

    PubMed

    Masuda, M; Sakurai, A; Sakakibara, M

    2001-03-01

    The quantitative relationships between removal efficiency of phenol and reaction conditions were investigated using Coprinus cinereus peroxidase. The most effective ratio of hydrogen peroxide to phenol was nearly 1/1 (mol/mol) at an adequate enzyme dose. 12.2 U of the enzyme was needed to remove 1 mg of phenol when our peroxidase preparation was used. At an insufficient peroxidase dose, the optimum pH value was 9.0, and lowering the reaction temperature led to the improvement of removal efficiency. At an excess peroxidase dose, almost 100% removal of phenol was obtained over a wide range of pH (5-9) and temperature (0-60 degrees C). Despite the presence of culture medium components, it was shown that Coprinus cinereus peroxidase had the same phenol polymerization performance as horseradish peroxidase or Arthromyces ramosus peroxidase.

  18. Long-term behavior of reaction-diffusion equations with nonlocal boundary conditions on rough domains

    NASA Astrophysics Data System (ADS)

    Gal, Ciprian G.; Warma, Mahamadi

    2016-08-01

    We investigate the long term behavior in terms of finite dimensional global and exponential attractors, as time goes to infinity, of solutions to a semilinear reaction-diffusion equation on non-smooth domains subject to nonlocal Robin boundary conditions, characterized by the presence of fractional diffusion on the boundary. Our results are of general character and apply to a large class of irregular domains, including domains whose boundary is Hölder continuous and domains which have fractal-like geometry. In addition to recovering most of the existing results on existence, regularity, uniqueness, stability, attractor existence, and dimension, for the well-known reaction-diffusion equation in smooth domains, the framework we develop also makes possible a number of new results for all diffusion models in other non-smooth settings.

  19. Reaction between alkyl isocyanides and isopropylidene Meldrum's acid in the presence of bidentate nucleophiles.

    PubMed

    Yavari, Issa; Sabbaghan, Maryam; Hossaini, Zinatossadat

    2007-02-01

    The reaction between alkyl isocyanides and isopropylidene Meldrum's acid in the presence of 1,2-ethanediol leads to N (1)-(alkyl)-2-(5,7-dioxo-1,4-dioxepane-6-yl)-2-methylpropanamides. 1,3-Propanediol or 1,4-butanediol produce hydroxyalkyl 1-(tert-butyl)-4,4-dimethyl-2,5-dioxo-3-pyrrolidinecarboxylates. When the reaction was performed in the presence of catechol, bis(2-hydroxyphenyl) 2-[2-(tert-butylamino)-1,1-dimethyl-2-oxoethyl]malonate was obtained. 2-Aminophenols react with alkyl isocyanides in the presence of isopropylidene Meldrum's acid to produce 1-alkyl-N (3)-(2-hydroxyaryl)-4,4-dimethyl-2,5-dioxo-3-pyrrolidinecarboxamides in good yields.

  20. Origin of fatty acid synthesis - Thermodynamics and kinetics of reaction pathways

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1991-01-01

    The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, an alternative pathway of primitive fatty acid synthesis is proposed that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy. Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.